ANALISIS FUNCIONAL 2: TAREA 9

1. Prueba que $L^1(\Omega)^* = L^{\infty}(\Omega)$, para cualquier conjunto medible $\Omega \subset \mathbb{R}^n$.

A continuación, X y Y siempre son espacios normados.

- 2. Sea H un espacio pre-Hilbert, $\{x_n\} \subset H$ y $x \in H$. Si $x_n \xrightarrow{w} x$ y $||x_n|| \to ||x||$, prueba que $x_n \to x$.
- 3. Sea $1 , <math>\{x_n\}$ una sucesión en ℓ^p y $x \in \ell^p$. Expresemos $x := \{a_m\}$ y $x_n := \{a_{n,m}\}$, $\forall n \in \mathbb{N}$. Prueba que $\{x_n\}$ converge débilmente a x si, y sólo si, $\{x_n\}$ es acotada y $a_{m,n} \to a_m$ cuando $n \to \infty$, $\forall m \in \mathbb{N}$.
- 4. Sea K un espacio métrico compacto con infinidad de elementos. Prueba:
- i) Existen una sucesión $\{x_n\} \subset K$ formada por puntos distintos entre sí y $x \in X$ tal que $x_n \to x$ y $x \neq x_n, \forall n \in \mathbb{N}$.
- ii) Para cada $n \in \mathbb{N}$ existe una vecindad abierta V_n de x_n tal que $V_n \cap V_m = \emptyset$ si $n \neq m$.

Para cada $n \in \mathbb{N}$ escojamos $f_n \in C(K, \mathbb{R})$ tal que $0 \le f_n \le 1$, $f_n(x_n) = 1$ y sop $f_n \subset V_n$. Dada $s := \{a_n\} \in c_0$ definamos $f_s(x) := \sum_{n=1}^{\infty} a_n f_n(x)$.

- iii) Prueba que f_s está bien definida y que la correspondencia $s \mapsto f_s$ define una isometría lineal de c_0 en C(S).
- iv) Concluye que C(K) no es reflexivo.
- 5. Dada una función $g: S^1 \to \mathbb{K}$, definamos $f: [-\pi, \pi] \to \mathbb{K}$ por $f(\theta) := g(e^{i\theta})$. Prueba que g es continua si, y sólo si, f lo es.
- 6. Prueba que $\left\{\frac{e^{ikx}}{2\pi}: k \in \mathbb{Z}\right\}$ forma una base ortonormal de $L^2(-\pi,\pi)$.
- 7. (Lema de Riemann-Lebesgue) Dada $f \in L^1(-\pi, \pi)$, sea $\{a_n\}$ la sucesión de sus coeficientes de Fourier respecto de las funciones $\{\frac{\cos nt}{\sqrt{\pi}}\}$ y $\{b_n\}$ la sucesión de sus coeficientes de Fourier respecto de las funciones $\{\frac{\cos nt}{\sqrt{\pi}}\}$. Prueba que $a_n \to 0$ y $b_n \to 0$. (Sug.: aproxima f por funciones en $L^2(-\pi, \pi)$.)
- 8. Sea A un álgebra y $\{A_{\alpha} : \alpha \in J\}$ una familia no vacía de subálgebras de A. Prueba que $\bigcap_{\alpha \in I} A_{\alpha}$ es también una subálgebra de A.

Definición Sea A un álgebra. El álgebra generada por $B \subset A$ es $\mathcal{A}(B) := \cap E$, donde la intersección se toma sobre todas las subálgebras $E \subset A$ tales que $B \subset E$. Si A tiene elemento identidad e, definimos el álgebra con identidad generada por B como la generada por el conjunto $B \cup \{e\}$.

- 9. Sea A un álgebra con identidad.
- i) Prueba que el álgebra con identidad generada por $x \in A$, es $\mathcal{P}(x) := \{P(x) : P \in \mathcal{P}(\mathbb{K})\}\$ y que ésta álgebra es conmutativa.
- ii) Describe el álgebra generada por $x \in A$.
- 10. Si A es una matriz de orden n (con entradas en \mathbb{K}), prueba que existe un polinomio $P \neq 0$ tal que P(A) = 0.

Definición a) Un espacio vectorial topológico X es un espacio vectorial provisto con una topología Hausdorff respecto a la cual las operaciones de suma $S: X^2 \to X$ y de multiplicación por escalares $M: \mathbb{K} \times X \to \mathbb{K}$ son continuas. (En X^2 y en $\mathbb{K} \times X$ se considera la topología producto correspondiente.

- b) Un espacio vectorial topológico es localmente convexo, si dados $x \in X$ y un abierto U tal que $x \in U$, existe un abierto convexo V tal que $x \in V \subset U$.
- 11. Sean X un espacio vectorial y $S := \{ \| \cdot \|_{\alpha} : \alpha \in J \}$ una familia de seminormas que sólo se anulan en 0. Prueba:
- i) X, con la topología inducida por , es un espacio vectorial topológico.
- ii) X es localmente convexo.

Para entregar y revisarse el viernes 27 de marzo, 2015