ANALISIS FUNCIONAL 2: TAREA 16

Enseguida X y Y siempre son espacios normados.

- 1. Sea $T \in \mathcal{L}(X)$. Si $r_s(T) < 1$, prueba que $I T \in \mathcal{G}(\mathcal{L}(X))$. (Compara este resultado con el de la serie de Neumann.)
- 2. Supongamos que Y es completo. Si dim $Y=\infty$, prueba que el espacio $F(X,Y)\subset \mathcal{L}(X,Y)$ no es cerrado.

Definición Sea H un espacio de Hilbert separable. Un operador $T \in \mathcal{L}(H)$ es de Hilbert-Schmidt, si H tiene una base ortonormal $\{e_n : n \in N\}$ tal que $\sum_{n \in N} ||Te_n||^2 < \infty$.

- 3. Sea H un espacio de Hilbert. Si $T \in \mathcal{L}(H)$ es un operador de Hilbert-Schmidt, prueba que T es compacto.
- 4. (Continuacion del ejercicio 14.8) Sea $1 \leq p < \infty$. Prueba que el operador transpuesto de $T: L^p(\Omega) \to L^p(\Omega)$ también es un operador integral y senãla su núcleo.
- 5. Prueba que la convolución en $L^1(\mathbb{R}^n)$ es una operación conmutativa.
- 6. Muestra que puede suceder que X=V+W sin que V o W sea cerrado. (Sug.: considera el ejercicio 3.9.)
- 7. Sea X un espacio de Banach. Si $T \in F(X)$, prueba que $\sigma(F)$ es finito.
- 8. Sea $T:X\to Y$ un operador lineal. Si X=V+W y T es 1-1 en W, prueba que $\alpha(T)\leq \dim V$.
- 9. Sea $T \in \Phi(X)$. Si ind (T) = 0, prueba que existe un operador invertible $S \in \mathcal{L}(X)$ y $K \in F(X)$ tal que T = S + K.
- 10. Sean X,Y y Z espacios de Banach y $T \in \mathcal{L}(X,Y), S \in \mathcal{L}(Y,Z)$. Si $ST \in \Phi^+(X,Z)$, prueba que $T \in \Phi^+(X,Y)$.
- 11. Supongamos que dim $X \geq 2$. Sea $T \in \mathcal{L}(X)$ tal que $T'\varphi = \lambda \varphi$, para algún $\lambda \in \mathbb{K}$ y $\varphi \in X^* \setminus \{0\}$. Prueba que $N(\varphi)$ es un subespacio de T que es propio e invariante bajo $\mathrm{Conm}(T)$.

Para revisar y entregarse el viernes 29 de mayo, 2015