ANALISIS FUNCIONAL 3: TAREA 8

Si no se indica otra cosa, H es un espacio de Hilbert y $S, T \in \mathcal{L}(H)$.

- 1. Sean $S,T\in\mathcal{L}(H)$ operadores positivos. Prueba que $S\leq T$ si, y sólo si, $\|\sqrt{S}\|\leq \|\sqrt{T}\|.$
- 2. Si $T \ge 0$ prueba que la función $f(\lambda) := \sqrt{T + \lambda I}$, $0 \le \lambda$ es continua.
- 3. Si $\underline{m} < \overline{m}$, encuentra una función $f \in L^{\infty}(J_T) \notin \mathcal{F}_T$.

Si S y T son operadores autoadjuntos y ST = TS, prueba:

- 4. |ST| = |S||T|.
- 5. $|S + T| \le |S| + |T|$.

Definición Sean T un operador autoadjunto y $\{E_{\lambda}\}$ su resolución de la identidad. Para cada $x, y \in H$, definimos la función

$$\alpha(x, y; \lambda) := \langle E_{\lambda} x, y \rangle, \ \forall \ \lambda \in \mathbb{R}.$$

Asímismo, $\alpha(x;\cdot) := \alpha(x,x;\lambda)$.

- 6. Prueba que, para cada $x,y \in H$, la función $\alpha(x,y;\cdot)$ es continua por la derecha y de variación acotada. Además:
- i) $\alpha(x,y;\lambda) = 0, \ \forall \lambda \in (-\infty,\underline{m}).$ Por lo tanto, $\alpha(x,y;\underline{m}^{-0}) = 0.$
- ii) $\alpha(x, y; \lambda) = \langle x, y \rangle, \ \forall \lambda \in [\overline{m}, \infty).$
- iii) $\alpha(x;\cdot)$ es no-negativa y monótona-creciente.
- 7. Sea X un espacio normado. Prueba que $\{T \in \mathcal{L}(X) : \dim R(T) < \infty\}$ es un ideal.
- 8. Sea A un álgebra normada. Si $M \subset A$ es un ideal, prueba que \overline{M} también.
- 9. Sea H un espacio de Hilbert separable. Si $M \subset \mathcal{L}(H)$ es un ideal y $T \in M$, prueba que T^* , $|T| \in M$.
- 10. Sean $a, b \in \mathbb{R}$, a < b. Para cada $x \in [a, b]$ sea $\delta_x := \chi_{\{x\}}$. Prueba:
- i) $\delta_x \in BV[a,b], \ \forall x \in [a,b].$
- ii) Sean $f, g : [a, b] \to \mathbb{R}$. Si $f \in V[a, b]$ y g = f excepto en un número finito de puntos, entonces $g \in BV[a, b]$.
- 11. Sean X y Y espacios normados, $V \subset X$ un subespacio y $T: V \to Y$ un operador lineal cerrado. Si Y es completo y $S \in \mathcal{L}(V,Y)$, prueba que $S+T: V \to Y$ es cerrado.

Para revisar y entregarse el viernes 16 de octubre, 2015