3.5. COMPLETEZ 105

3.5. Completez

Como vemos enseguida, en cualquier espacio métrico M tiene sentido el que una sucesión $\{x_n\} \subseteq M$ sea de Cauchy.

Definición 1 Una sucesión $\{x_n\} \subseteq M$ es de Cauchy, si para cada $\epsilon > 0$ existe $N \in \mathbb{N}$ tal que $d(x_n, x_m) \leq \epsilon, \ \forall m, n \geq N$.

El siguiente resultado se puede probar procediendo como en el caso de \mathbb{R} .

Lema 1 Si $\{x_n\}$ es una sucesión convergente en M, entonces $\{x_n\}$ es de Cauchy.

Una característica muy importante de la convergencia en \mathbb{R} es que se cumple la implicación recíproca a la del lema anterior, esto es, toda sucesión de Cauchy en \mathbb{R} converge. El siguiente es un ejemplo de un espacio métrico donde esta implicación no se cumpla.

Ejemplo 1 Sea M el intervalo (0,1] con la métrica inducida por \mathbb{R} y consideremos la sucesión $s = \{\frac{1}{n}\} \subseteq M$. Para verificar que s es de Cauchy, demos $\epsilon > 0$ y tomemos $m, n \in \mathbb{N}$. Entonces

$$d\left(\frac{1}{n}, \frac{1}{m}\right) = \left|\frac{1}{n} - \frac{1}{m}\right| \le \frac{1}{n} + \frac{1}{m}.\tag{1}$$

Puesto que $\frac{1}{k} \to 0$, podemos encontrar $N \in \mathbb{N}$ tal que $\frac{1}{k} \leq \frac{\epsilon}{2}$ si $k \geq N$. Luego, para $m, n \geq N$, de (1) resulta que $d(\frac{1}{n}, \frac{1}{m}) \leq \epsilon$. Esto prueba que s es de Cauchy.

Veamos ahora que s no es convergente en M. Para ello procedemos por contradicción. Supongamos que s converge a $p \in M \subseteq \mathbb{R}$. Entonces $p \in \mathbb{R}$ y $p \neq 0$. Por otra parte, ya que la métrica en M es la de \mathbb{R} , concluimos que s converge a p en \mathbb{R} . Puesto que $s = \{\frac{1}{k}\}$ converge a 0, la unicidad del límite nos indica que p = 0. Lo cual es una contradicción.

Definición 2 Un espacio métrico M es completo, si toda sucesión en M que sea de Cauchy, es convergente.

Así, los espacios métricos completos son aquellos espacios métricos donde el criterio de Cauchy es válido.

Usando bolas, en un espacio métrico M podemos definir cuándo un conjunto $A\subseteq M$ es acotado.

Definición 3 Un conjunto $A \subseteq M$ es acotado, si existen $x \in M$ y r > 0 tales que $A \subseteq V_r(x)$, es decir, $d(a, x) \le r, \forall a \in A$.

A continuación estudiaremos algunas propiedades de las sucesiones de Cauchy. La primera se puede establecer procediendo como en el caso de \mathbb{R} .

Lema 2 $Si\{x_k\} \subseteq M$ es una sucesión de Cauchy, entonces $\{x_k\}$ es acotada.

La próxima propiedad nos será útil.

Lema 3 Si $\{x_n\} \subseteq M$ es una sucesión de Cauchy y tiene una subsucesión convergente, entonces $\{x_n\}$ es convergente.

Demostración Supongamos que $\{x_{n(k)}\}$ es una subsucesión de $\{x_n\}$ que converge a $x \in M$. Veamos que $x_n \to x$. Consideremos $\epsilon > 0$. De acuerdo a la hipótesis, elijamos $K \in \mathbb{N}$ tal que

$$d(x_{n(k)}, x) \le \frac{\epsilon}{2} \text{ si } k \ge K.$$
 (2)

Por otra parte, siendo $\{x_n\}$ una sucesión de Cauchy, existe $N \in \mathbb{N}$ tal que $N \geq n(K)$ y

$$d(x_m, x_n) \le \frac{\epsilon}{2} \text{ si } m, n \ge N.$$
 (3)

Dado $n \geq N$, elijamos $k \in \mathbb{N}$ tal que $n(k) \geq n$. Entonces $n(k) \geq n(K)$, por lo cual $k \geq K$. Además, $n(k) \geq n \geq N$. Esto permite usar las desigualdades en (2) y (3) para concluir que $d(x_n, x) \leq d(x_n, x_{n(k)}) + d(x_{n(k)}, x) \leq \epsilon$. \square

Propiedad de Bolzano-Weierstrass en \mathbb{R}^n

Hasta aquí no hemos considerado ninguna propiedad de \mathbb{R}^n semejante al axioma del supremo. La dificultad radica en que, no teniendo \mathbb{R}^n un orden como el de \mathbb{R} , la noción de supremo no tendría propiedades similares. Sin embargo, \mathbb{R}^n posee una característica muy importante que, en el caso de \mathbb{R} , es consecuencia del axioma del supremo. Se trata de la propiedad señalada

3.5. COMPLETEZ 107

por el teorema de Bolzano-Weierstrass, el cual estableceremos a continuación. Como consecuencia obtendremos que \mathbb{R}^n es completo.

Sea $x = (a_1, \ldots, a_n)$. Directamente de la definición de la norma euclidiana resulta

$$|a_j| \le ||x||, \ j = 1, \dots, n.$$
 (4)

Por otra parte en el lema 3.2 establecimos que

$$||x|| \le \sqrt{n} ||x||_{\infty} \tag{5}$$

Antes de continuar conviene observar que una sucesión $\{x_k\} \subseteq \mathbb{R}^n$ determina n sucesiones reales, que son las formadas por sus componentes. Esto es, expresando $x_k = (a_{k,1}, \ldots, a_{k,n})$, para cada $j = 1, \ldots, n$ resulta la sucesión de las j-ésimas componentes $\{a_{k,j}\}_k$.

El siguiente resultado es importante pues expresa la equivalencia de la convergencia vectorial con la convergencia por componentes.

Lema 4 Sean
$$\{x_k\}$$
 una sucesión en \mathbb{R}^n , $x \in \mathbb{R}^n$ y $x_k = (a_{k,1}, \dots, a_{k,n})$, $x = (a_1, \dots, a_n)$. Entonces $x_k \to x$ si, y sólo si, $a_{k,j} \to a_j, \forall j = 1, \dots, n$.

Teorema 1 (de Bolzano-Weierstrass) Cualquier sucesión acotada en \mathbb{R}^n posee una subsucesión convergente.

Demostración Sea $\{x_k\} \subseteq \mathbb{R}^n$ una sucesión acotada, $x_k := (x_{k,1}, \ldots, x_{k,n})$. Para extraer de $\{x_k\}$ una subsucesión convergente, procederemos por componentes. El argumento es sencillo, pero hay que tener especial cuidado al elegir los índices para formar la subsucesión. Ya que $|x_{k,j}| \leq ||x_k||$, $\forall k \in \mathbb{N}$, $j = 1, \ldots, n$, notemos que cada sucesión componente es acotada.

De acuerdo al teorema de Bolzano-Weierstrass en \mathbb{R} , podemos encontrar una subsucesión $\{x_{k_1(m),1}\}$ de $\{x_{k,1}\}$ de manera que $x_{k_1(m),1} \to p_1$, para algún $p_1 \in \mathbb{R}$. Pasando ahora a la segunda componente, fijémonos no en toda la sucesión $\{x_{k,2}\}$, sino únicamente en la subsucesión $\{x_{k_1(m),2}\}$. Ya que ésta sigue siendo acotada, al aplicar nuevamente el teorema de Bolzano-Weierstrass obtenemos una subsucesión $\{x_{k_2(m),2}\}$ tal que $x_{k_2(m),2} \to p_2$, para algún $p_2 \in \mathbb{R}$. Siguiendo de esta forma, al cabo de n pasos habremos construido una sucesión creciente $\{k_n(m)\}$ de números naturales tal que $x_{k_n(m),j} \to p_j$ cuando $m \to \infty$, $j=1,\ldots,n$. Por el lema anterior, esto indica que $x_{k_n(m)} \to p = (p_1,\ldots,p_n)$. \square

Corolario 1 \mathbb{R}^n es completo.

Demostración Consideremos una sucesión de Cauchy $\{x_k\} \subseteq \mathbb{R}^n$, y expresemos $x_k := (x_{k,1}, \dots, x_{k,n}), \ \forall k \in \mathbb{N}$. Estableceremos que $\{x_k\}$ converge procediendo por componentes.

Fijemos j = 1, ..., n. Para concluir que $\{x_{k,j}\}$ también es de Cauchy, basta considerar la desigualdad

$$|x_{k,j} - x_{m,j}| \le ||x_k - x_m||,$$

señalada en (4. Usando ahora el criterio de Cauchy en \mathbb{R} , existe $a_j \in \mathbb{R}$ tal que $x_{k,j} \to a_j$. De acuerdo a (5), esto indica que $\{x_k\}$ converge a $p := (a_1, \ldots, a_n)$.

Definición 4 A un espacio normado que sea completo, lo llamaremos *espacio de Banach*.

Ejemplo 2 En el corolario 1 establecimos que \mathbb{R}^n es un espacio de Banach.

A continuación extendemos a un espacio normado X el concepto convergencia absoluta.

Definición 5 Sea X un espacio normado. Una serie $\sum_{n=1}^{\infty} x_n$ en X converge absolutamente, si $\sum_{n=1}^{\infty} ||x_n|| < \infty$.

Si X es un espacio de Banach se sigue cumpliendo una propiedad que ya conocemos en $\mathbb R$ y que se puedeestablecer de manera similar. Dejamos su prueba a cargo del lector.

Proposición 1 Si X es un espacio de Banach, entonces toda serie en X que converge absolutamente, es convergente.

PENDIENTE PENDIENTE

3.5. COMPLETEZ 109

Observación 1 Sean $f: M \to E$ y $x \in M$. Supongamos que f es continua en x y consideremos una sucesión $\{x_n\} \subseteq M$ tal que $x_n \to x$. El criterio por sucesiones para continuidad indica entonces que $f(x_n) \to f(x)$. Es decir,

$$\lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n).$$

Coloquialmente, esto se expresa diciendo que el límite se puede "meter dentro de la evaluación".

Notas Clase 24, noviembre 5, 2020 Fernando Galaz Fontes