TAREA 11: ANÁLISIS I

Según corresponda, prueba lo indicado.

Definición A las soluciones de una ecuación polinomial, esto es, de la forma

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0,$$

donde $n \in \mathbb{N}$, $a_n \neq 0$ y los coeficientes a_j , $j = 1, \ldots, n$, son enteros, se les llama números algebraicos. Prueba:

- 1. i) Cualquier número racional es un número algebraico.
- ii) $\sqrt{2}$ es un número algebraico.
- iii) La colección de números algebraicos es contable.
- 2. Si $\{a_n\} \subseteq [0,\infty)$ es una sucesión tal que $a_n \to 0$, entonces existe otra sucesión $\{r_n\} \subseteq (0,\infty)$ tal que $r_n \to \infty$ y $r_n a_n \to 0$.
- 3. Sean $\{a_n\}$, $\{b_n\} \subseteq \mathbb{R}$ sucesiones acotadas. Prueba i) o ii) siguientes:
- i) $\liminf_{n\to\infty} a_n + \liminf_{n\to\infty} b_n \le \liminf_{n\to\infty} (a_n + b_n)$.
- ii) $\limsup_{n\to\infty} (a_n + b_n) \le \limsup_{n\to\infty} a_n + \limsup_{n\to\infty} b_n$.
- 4. $\lim_{n\to\infty} \frac{n!}{n^n} = 0$.
- 5. Si $\sum_{n=1}^{\infty} a_n$ es una serie absolutamente convergente y $\{b_n\}$ es una sucesión acotada, entonces la serie $\sum_{n=1}^{\infty} a_n b_n$ es absolutamente convergente.
- 6*. Analiza el comportamiento de la serie $\sum_{n=1}^{\infty} (\sqrt[n]{n} 1)$.
- 7. Sea $\sum_{n=1}^{\infty} a_n$ una serie. Supongamos que podemos hallar otra serie $\sum_{n=1}^{\infty} b_n$ tal que $b_n \neq 0$, $\forall n \in \mathbb{N}$, y $\lim_{n \to \infty} \left| \frac{a_n}{b_n} \right| = L \in \mathbb{R}$. Si $L \neq 0$, entonces $\sum_{n=1}^{\infty} b_n$ es absolutamente convergente, si, y sólo si, $\sum_{n=1}^{\infty} a_n$ también lo es.
- 8. Sea (M,d) un espacio métrico y definamos $D(x,y) = \min\{d(x,y),1\}$, para $x,y\in M$. Entonces:
- i) D es una métrica acotada. (Así, cualquier $A \subseteq M$ es acotado bajo D.)
- ii) $\{x_n\} \subseteq M$ converge a x bajo d si, y sólo si, lo hace bajo D.
- 9. Si $(X, \|\cdot\|)$ es un espacio normado, entonces $d(x, y) := \|x y\|$ define una métrica en X.

10*. Sean $x, y \in \mathbb{R}^n$. Entonces $|\langle x, y \rangle| = ||x|| ||y||$ si, sólo si, x y y son linealmente dependientes.

Definición (Recordemos que S denota al espacio vectorial formado por las sucesiones reales). Si $s = \{a_n\} \in S$, definimos $||s||_{\infty} := \sup\{|a_n| : n \in \mathbb{N}\}$ y $\ell^{\infty} := \{s \in S : ||s||_{\infty} < \infty\}$.

- 11. i) ℓ^{∞} consta exactamente de las sucesiones (reales) que son acotadas.
- ii) ℓ^{∞} es un espacio vectorial y $\|\cdot\|_{\infty}$ es una norma en ℓ^{∞} .

Para entregarse el jueves 5 de noviembre, 2020

Sugerencias:

- 6*. Compara $\sqrt[n]{n} 1$ con $\frac{1}{n}$.
- $10^*.$ Una implicación es clara. Para la otra determina primero cuándo se cumple que $ab=\frac{a^2b^2}{2},$ donde $a,b\geq 0.$ Después trata de usar esto en la demostración de la desigualdad de Schwarz; se puede suponer que $x\neq 0.$