ANALISIS I: TAREA 16

Cuando corresponda, prueba lo indicado. El conjunto M siempre es un espacio métrico.

- 1*. Sea $f: \mathbb{R} \to \mathbb{R}$ tal que f(x+y) = f(x) + f(y), f(xy) = f(x)f(y), $x, y \in \mathbb{R}$. Si $f \neq 0$, entonces f(x) = x.
- 2. Sea A un conjunto no-vacío. Supongamos que existe una función inyectiva $h:A\to M$ y definamos $\widetilde{d}:A^2\to\mathbb{R}$ por $\widetilde{d}(x,y)=d(h(x),h(y)),\ \forall\,x,y\in A$. Entonces \widetilde{d} es una métrica en A.

Definición Una sucesión $\{x_n\} \subseteq M$ es eventualmente constante, si existen $x \in M$ y $N \in \mathbb{N}$ tales que $x_n = x, \forall n \geq N$.

- 3. Sea A un conjunto no-vacío con su métrica discreta. Entonces una sucesión $\{x_n\} \subseteq A$ converge si, y sólo si, $\{x_n\}$ es eventualmente constante.
- 4. Para cada $n \in \mathbb{N}$ definamos $g_n : [0, \infty) \to \mathbb{R}$ por $g_n(x) = \frac{x}{nx+1}$. La sucesión $\{g_n\}$ converge uniformemente.
- 5. Señala sucesiones de funciones $\{f_n\}$ y $\{g_n\}$ tales que $f_n, g_n : [0,1] \to \mathbb{R}$, $\{f_n\}$ y $\{g_n\}$ convergen uniformemente y su producto $\{f_ng_n\}$ no.
- 6. Las siguientes propiedades son equivalentes:
- i) Si $A \subseteq M$ es cualquier conjunto infinito, entonces $A^a \neq \phi$.
- ii) Cualquier sucesión en M tiene una subsucesión convergente.
- 7. La función $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^2$ no es uniformemente continua. Concluye que el producto de funciones uniformemente continuas puede no ser uniformemente continua.
- 8. Sean $a, b \in \mathbb{R}$ tales que a < b. Ya que los intervalos [a, b) y (0, 1) tienen la misma cardinalidad, existe una biyección $h : [a, b) \to (0, 1)$. Prueba que h no es continua.
- 9. (Lema del sandwich para límites de funciones.) Sean $D \subseteq M$, $p \in D^a$ y $f, g, h : D \to \mathbb{R}$ tales que $f(x) \leq g(x) \leq h(x)$, $\forall x \in D$. Si se cumple que $\lim_{x \to p} f(x) = \lim_{x \to p} h(x) = L$, entonces $\lim_{x \to p} g(x) = L$.
- 10. Sea $a \in \mathbb{R}$ y consideremos una función $f:[a,\infty) \to \mathbb{R}$. Indica la definición de $\lim_{x\to\infty} f(x) = -\infty$.

- 11. Si P es un polinomio, entonces |P| tiene un valor mínimo.
- 12. (Criterio por límites laterales) Sean $a, b \in \mathbb{R}^*, \ f : (a, b) \to \mathbb{R} \ y \ p \in (a, b)$. Entonces lím $_{x \to p} f(x)$ existe si, y sólo si, $f(p^+)$ y $f(p^-)$ existen y son iguales.

Para entregarse el jueves 10 de diciembre, 2020. El tercer examen parcial será el lunes 14 de diciembre, 11 hrs.

Sugerencias:

1. ¿Es f creciente?