ANALISIS II: TAREA 2

1. Sea $\{A_{\alpha} : \alpha \in I\}$ una colección de subconjuntos de X. Prueba la ley de De Morgan: $\left(\bigcap_{\alpha \in I} A_{\alpha}\right)^{c} = \bigcup_{\alpha \in I} A_{\alpha}^{c}$.

En particular, si $A, B \subset X$, nota que $(A \cap B)^c = A^c \cup B^c$.

2. Sea $f:D\to E$. i) Si A es cualquier conjunto, prueba que $f(f^{-1}(A)\subset A$. ii) Si $B\subset D$, prueba que $B\subset f^{-1}(f(B))$.

Definición Una combinación convexa de $u_1, \ldots, u_m \in \mathbb{R}^N$ es una de la forma $t_1u_1 + \cdots + t_mu_m$, donde $t_1, \ldots, t_m \geq 0$ y $t_1 + \cdots + t_m = 1$.

- 3. Sea $K \subset \mathbb{R}^N$ un conjunto convexo. Si $u_1, \ldots, u_m \in K$, prueba que cualesquiera de sus combinaciones convexas también pertenece a K.
- 4. Sean $x,y\in\mathbb{R}^N, x\neq 0$. Prueba que $\|x+y\|=\|x\|+\|y\|$ si, y sólo si, $y=\lambda x$ donde $\lambda\geq 0$.
- 5. Prueba que el límite de una sucesión convergente en \mathbb{R}^N es único.
- 6. Prueba que toda sucesión convergente en \mathbb{R}^N es de Cauchy.
- 7. Prueba que toda sucesión de Cauchy en \mathbb{R}^N es acotada.
- 8. Si $\{u_k\} \subset \mathbb{R}^N$ y $\{c_k\} \subset \mathbb{R}$ son sucesiones convergentes, prueba que $\lim_{k\to\infty} c_k u_k = \lim_{k\to\infty} c_k \lim_{k\to\infty} u_k$.
- 9. Sea $\{x_k\} \subset \mathbb{R}^N$. Si la serie $\sum_{k=1}^{\infty} x_k$ converge, prueba que $x_k \to 0$.
- 10. Sea $A \subset \mathbb{R}^N$, $p \in \mathbb{R}^N$. Prueba que $p \in A^a$ si, y sólo si, existe una sucesión $\{p_k\} \subset A$ tal que $p_k \to p$ y los puntos p_k son distintos entre sí.
- 11. Determina si la norma $\|\cdot\|_{\infty}$ en \mathbb{R}^2 satisface la ley del paralelogramo. (Justifica tu respuesta.)
- 12. Sea η una norma en \mathbb{R}^N . Prueba que existe C>0 de manera que $\eta(u)\leq C\|u\|,\ \forall\,u\in\mathbb{R}^N.$ (Sug.: considera una base para $\mathbb{R}^N.$)

Para revisarse y entregarse el jueves 14 de febrero.