ANALISIS II: TAREA 13

Definición Una función $f:[a,b]\to\mathbb{R}$ es continua por pedazos, si existe una partición $P = \{x_0, \dots, x_n\}$ de [a, b] tal que: a) f es continua en cada $x \in [a, b] \setminus P$. b) En cada $x = x_k, k = 0, \ldots, n$, existen los límites laterales.

- 1. Señala un función $f:[0,1]\to\mathbb{R}$ que sea continua por pedazos y que no sea continua.
- 2. Sean $A, B \subset \mathbb{R}^N$ conjuntos cerrados y disjuntos entre sí. Tomemos $q(x) \equiv$
- $d(x,A), \ h(x) \equiv d(x,B), \ \forall x \in \mathbb{R}^N. \ i)$ Verifica que $g(x)+h(x)>0, \ \forall x \in \mathbb{R}^N.$ ii) Si $f \equiv \frac{g}{g+h}$, prueba que f es continua, $0 \le f \le 1$, f(A) = 0 y f(B) = 1.
- 3. Sea $A \subset \mathbb{R}^N$ tal que para cada $x, y \in A$ existe un conjunto conexo $C_{x,y} \subset A$ tal que $x, y \in C_{x,y}$. Prueba que A es conexo.
- 4. Sea $A \subset \mathbb{R}^2$. Si $A \subset \mathbb{R}^2$ es contable, prueba que $\mathbb{R}^2 \setminus A$ es conexo. (Sug.: considera el ejercicio 12.3.)
- 5. Sea $A\subset \mathbb{R}^N.$ SiAes no-numerable, prueba que A^a es no-numerable.
- 6. Una definición de la función logaritmo natural es $\ln x \equiv \int_1^x \frac{1}{s} ds, \forall x > 0.$ A partir de esta definición, prueba: a) $\ln 1 = 0$. b) \ln es creciente. c) $\ln x < 0$ si 0 < x < 1 y $\ln x$ > 0 si x > 1. d) $\ln xy = \ln x + \ln y$, $\forall x, y$ > 0.
- e) $\ln \frac{1}{x} = -\ln x$, $\forall x > 0$. f) $\ln x \to \infty$ cuando $x \to \infty$. g) $\ln x \to -\infty$ cuando $x \to 0^+$. h) El rango de ln es \mathbb{R} .
- 7. Sean $c,d \in \mathbb{R},\ c < d$ y $u:[c,d] \to \mathbb{R}$ de clase C^1 . Si f es continua en el intervalo $\{u(t): t \in [c,d]\}$. Prueba que $\int_c^d f(u(t)) \, u'(t) dt = \int_{u(c)}^{u(d)} f(x) dx$.
- 8. Prueba que $\int_0^1 x^n (1-x)^m dx = \frac{n! \, m!}{(n+m+1)!}, \, \forall n, m \in \mathbb{N}.$
- 9. (Derivación bajo la integral) Sea $f:[a,b]\times\mathbb{R}\to\mathbb{R}$ de clase C^1 , y definamos $G(y)=\int_a^b f(x,y)dx,\ \forall\,y\in\mathbb{R}$. Prueba que $G'(y)=\int_a^b \frac{\partial f}{\partial y}(x,y)dx,\ \forall\,y\in\mathbb{R}$.
- 10. Prueba que la serie $\sum_{n=1}^{\infty} \frac{1}{1+n^2x}$ no converge uniformemente en $(0,\infty)$.
- 11. Sea $D \subset \mathbb{R}^N$, $f_n : D \to \mathbb{R}^M$ continua, $\forall n \in \mathbb{N}$, $\{x_n\} \subset D$ y $x \in D$. Si $f_n \xrightarrow{\longrightarrow} f$ y $x_n \to x$, prueba que $f_n(x_n) \to f(x)$.
- 12. Consideremos el ejercicio 12.6 y y sea \mathcal{F} una colección de funciones continuas $f:[a,b]\to\mathbb{R}$. Si \mathcal{F} es uniformemente acotada, prueba que $T(\mathcal{F})\equiv$ $\{Tf: f \in \mathcal{F}\}$ es una familia equicontinua.

Para revisar y entregarse el martes 27 de mayo, 2008.