ANÁLISIS II: TAREA 4

Cuando corresponda, prueba lo indicado. El conjunto M siempre es un espacio métrico.

- 1. Se
aI un intervalo. El conjunto de discontinuidades de una función monóton
a $f:I\to\mathbb{R}$ es numerable.
- 2. Dado a>0 sea $M:=[a,\infty]$ el espacio métrico definido en el ejercicio 3.4 y $D:=[a,\infty)$. Entonces:
- i) $\infty \in D^a$.
- ii) La definición de $\lim_{x\to\infty} f(x)$, para $f:D\to\mathbb{R}$, en el espacio métrico M coincide con la definición "directa" dada con anterioridad en clase.
- 3. Sean $f, g : \mathbb{R} \to \mathbb{R}$ dos funciones derivables tales que f' = g, g' = -f y f(0) = 1, g(0) = 0. Prueba que f = sen y g = cos. (Sug.: considera la función $h(x) := (f(x) \text{sen } x)^2 + (g(x) \text{cos } x)^2$, $\forall x \in \mathbb{R}$. Nota que esto implica que la definición presentada para las funciones coseno y seno coincide con la definición usual de Cálculo.)
- 4. Prueba que $\cos \frac{\pi}{2} = 0$ y sen $\frac{\pi}{2} = 1$.
- 5. Para cada $n \in \mathbb{N}$ definamos $f_n(x) := \begin{cases} x^n \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$. Encuentra $n \in \mathbb{N}$ tal que f_n es derivable y f_n' no es continua.
- 6. $\ln(1+x)=1-x+\frac{x^2}{2}-\frac{x^3}{3}+....$, si |x|<1. (Sug.: analiza la serie de potencias $1-x+\frac{x^2}{2}-\frac{x^3}{3}+....$)
- 7. $e^{xy} = (e^x)^y, \ \forall x, y \in \mathbb{R}$.
- 8. Si $f_p(x) := x^p, \ x \ge 0$, determina para qué valores de p > 0 existe $f_p'(0)$.
- 9. Sean I un intervalo, $n \in \mathbb{N}$, $f, g: I \to \mathbb{R}$ y $p \in I$. Si f y g son derivables n veces en p, entonces el producto fg también lo es y que se cumple la $f\acute{o}rmula$ de $Leibniz: <math>(fg)^{(n)}(p) = \sum_{k=0}^n \binom{n}{k} f^{(k)}(p)g^{(n-k)}(p), \quad (f^{(0)} = f).$
- 10. Sean I y J intervalos, y $f:I\to J,\ g:J\to\mathbb{R}.$ Si f y g son funciones convexas y g es monótona creciente, prueba que $g\circ f$ es convexa.

11. Prueba que
$$\frac{2}{\pi} < \frac{\sin x}{x}$$
, $0 < x < \frac{\pi}{2}$. (Sug.: considera la concavidad de $f(x) = \sin x$.)

Para revisar y entregarse el viernes 3 de marzo, 2017.