ANÁLISIS II: TAREA 10

Cuando corresponda, prueba lo indicado. En cualquier caso, M es un espacio métrico y X un espacio normado.

- 1. Sea $f:[0,\infty)\to[0,\infty)$. Si f(0)=0 y f es convexa, entonces:
- i) f es continua en 0.
- ii) $f(a) + f(b) \le f(a+b)$, $\forall a, b \ge 0$. Concluye que f es monótona-creciente. (Sug.: considera $0 < a \le b$ y expresa a, b, respectivamente, como combinación convexa de 0 y de a + b.)
- 2. Sean $A \subset \mathbb{R}^n$ un conjunto numerable, $b \in \mathbb{R}$ y supongamos que $H := \{(x_1, \ldots, x_n) : x_1 = b\} \subset A^c$. Prueba que, para cada $p \in A^c$ existe $q \in H$ tal que el segmento S de extremos p y q está contenido en A^c .
- 3. Sea $V \subset \mathbb{R}^n$ un subespacio vectorial, $V \neq \{0\}$. Fijemos una base ortonormal $\{v_1, \ldots, v_m\}$ de V. Dado $x \in \mathbb{R}^n$, sea $Px := \sum_{j=1}^m \langle x, v_j \rangle v_j$. Prueba:
- i) $x Px \in V^{\perp}$.
- ii) $\mathbb{R}^n = V \oplus V^{\perp}$.
- 4. Si $A \subset \mathbb{R}^m$ y $B \subset \mathbb{R}^n$ son abiertos, entonces $A \times B \subset \mathbb{R}^{m+n}$ es abierto.
- 5. Dado $a \in \mathbb{R}$, definamos $d : [0, 2\pi] \to \mathbb{R}$ por $d(\alpha) := ||e^{i(a+\alpha)} e^{ia}||$, donde $e^{ix} := (\cos x, \sin x), \ \forall x \in \mathbb{R}$. Prueba que d es creciente en $[0, \pi]$ y decreciente en $[\pi, 2\pi]$.
- 6. Sea $D \neq \phi$ y consideremos $f: D \to \mathbb{R}^n$, $f:=(f_1,\ldots,f_n)$ y $f_m: D \to \mathbb{R}^n$, $f_m:=(f_{m,1},\ldots,f_{m,n}), \ \forall m \in \mathbb{N}$. Prueba que $f_m \stackrel{u}{\to} f$ si, y sólo si, $f_{m,k} \stackrel{u}{\to} f_k$ para cada $k=1,\ldots,n$.

Definición La gráfica de una función $f: A \to B$ es

$$G(f) := \{(x, f(x)) : x \in A\} \subset A \times B.$$

- 7. Sean $E \subset \mathbb{R}^m$ y $f: E \to \mathbb{R}^n$. Si f es continua y E es cerrado, prueba que su gráfica $G(f) \subset \mathbb{R}^{n+m}$ es un conjunto cerrado.
- 8. Si $A \subset \mathbb{R}^n$, entonces el conjunto formado por sus puntos aislados es numerable.
- 9. Sean $V,W\subset M.$ Si V y W son abiertos y densos, prueba que $V\cap W$ también lo es.

Notación Dados unos espacios normados X y Y, denotaremos por $\mathcal{L}(X,Y)$ el espacio formado por los operadores lineales acotados $T:X\to Y$. Definimos entonces $||T||:=\sup\{||Tx||:||x||\le 1\}, \forall\, T\in\mathcal{L}(X,Y)$.

- 10. Prueba que $\mathcal{L}(X,Y)$ es un espacio vectorial y $\|\cdot\|$ es una norma en $\mathcal{L}(X,Y)$.
- 11. Sean X y Y espacios normados y $T: X \to Y$ un operador lineal. Entonces T es una isometría si, y sólo si, $||Tx|| = ||x||, \ \forall \, x \in X$.
- 12. Las normas $\|\cdot\|_{\infty}$ y $\|\cdot\|_{1}$ no son equivalentes en \mathcal{S}_{0} .

Para resolver y entregarse el miércoles 3 de mayo, 2017. El segundo examen parcial será el viernes 5 de mayo, 12:30 hrs. No olviden traer sus hojas para el examen.