ANALISIS II: TAREA 3

A continuación E es un espacio topológico y V un espacio vectorial. Cuando corresponda, prueba lo indicado.

- 1. Sean E y F espacios topológicos, $f: E \to F$ y $A, B \subset E$ conjuntos cerrados tales que $E = A \cup B$. Si las restricciones $f|_A$ y $f|_B$ son continuas, entonces f es continua.
- 2. Para cada $n \in \mathbb{N}$, sea $f_n : \mathbb{R} \to \mathbb{R}$ definida por $f_n(x) := \frac{1}{1+nx^2}$. Encuentra $f(x) := \lim_{n \to \infty} f_n(x), \ \forall x \in \mathbb{R}$ y determina si la convergencia es uniforme.
- 3. Fijemos $a \in \mathbb{R}$ tal que |a| < 1 y definamos $f(x) = \sum_{n=1}^{\infty} a^n \cos nx$, $\forall x \in \mathbb{R}$. La función f es de clase C^{∞} .

Definición Sea V un espacio vectorial. Para cada $\lambda \in \mathbb{R}$ la dilatación por λ es la función $M_{\lambda}: V \to V$ definida por $M_{\lambda}(x) := \lambda x$.

- 4. Si $\lambda \neq 0$, entonces $M_{\lambda}: V \to V$ es un isomorfismo.
- 5. Sea $V \neq \{0\}$ un espacio vectorial de dimensión finita y $\{v_1, \cdots, v_m\}$ una base suya. Fijemos $j = 1, \cdots, m$, y definamos $\varphi_j(\sum_{k=1}^m a_k v_k) = a_j$. Observa que $\varphi_j : V \to \mathbb{R}$ está bien definida y verifica que es lineal.

Definición Sea V un espacio vectorial y $K \subset V$ un conjunto convexo. Una función $f: K \to \mathbb{R}$ es convexa, si siempre que $a, b \in K$ y $t \in [0, 1]$ resulta $f((1-t)a+tb) \leq (1-t)f(a)+tf(b)$.

- 6. Sea $K \subset V$ un conjunto convexo. Si $f: K \to \mathbb{R}$, es una función convexa y $x_1, \ldots, x_n \in K$, entonces $f(t_1x_1 + \cdots + t_nx_n) \leq t_1f(x_1) + \cdots + t_nf(x_n)$ para cualquier combinación convexa $t_1x_1 + \cdots + t_nx_n$ de x_1, \ldots, x_n .
- 7 Verifica las propiedades básicas del producto escalar en \mathbb{R}^n .
- 8. Sean $x,y\in\mathbb{R}^n, x\neq 0$. Entonces $\|x+y\|_2=\|x\|_2+\|y\|_2$ si, y sólo si, $y=\lambda x$ donde $\lambda\geq 0$.
- 9. Bosqueja geométricamente la bola unitaria B_X en los siguientes casos:
- a) $X := (\mathbb{R}^2, \| \cdot \|_{\infty}).$
- b) $X := (\mathbb{R}^2, \| \cdot \|_1).$
- 10. Sean $A \subset \mathbb{R}^m$ y $B \subset \mathbb{R}^n$. Si A y B son cerrados, entonces $A \times B \subset \mathbb{R}^{m+n}$ es cerrado.

Definición Sea X un espacio vectorial. Dos normas en X, $\|\cdot\|_a$ y $\|\cdot\|_b$, son equivalentes, si existen $C_1, C_2 > 0$ tales que $C_1 \|x\|_a \le \|x\|_b \le C_2 \|x\|_a, x \in X$. 11. Determina si las normas en $\mathbb{R}^n \|\cdot\|_1$ y $\|\cdot\|_2$ son equivalentes.

Definición Un conjunto $A \subset E$ es arco-conexo, si para cualquier par de puntos $x,y \in E$ existe una curva $\alpha:[0,1] \to E$ tal que $\alpha(0)=x$ y $\alpha(1)=y$. 12. Un conjunto arco-conexo es conexo.

Para resolver y entregarse el miércoles 13 de febrero, 2018.