ANÁLISIS II: TAREA 9

Cuando no se indique otra cosa, $D \neq \phi$, E es un espacio topológico, y M un espacio métrico. En cada caso prueba lo indicado.

1. Sea $\{f_n\} \subset F(D, M)$ Si $f_n \stackrel{u}{\to} f$ y $h: A \to D$, entonces $f_n \circ h \stackrel{u}{\to} f \circ h$.

Definición Sea A un conjunto. Una función $f: M \to A$ es localmente constante, si para cada $x \in M$ existe r > 0 tal que f es constante en $V_r(x)$.

- 2. Sea $f:M\to E$ una función continua. Si f es localmente constante y M es conexo, entonces f es constante.
- 3. Para cualquier $x \in \mathbb{R}^n$, se cumple que $||x|| = \sup\{|\langle x, y \rangle| : ||y|| \le 1\}$.
- 4. Una función continua entre espacios métricos puede no preservar sucesiones de Cauchy.
- 5. Encuentra una función $f: \mathbb{R} \to \mathbb{R}$ que sea discontinua y cuya gráfica sea un conjunto cerrado en \mathbb{R}^2 .
- 6. El espacio ℓ^2 es separable.
- 7. El espacio normado c_0 es completo. (Sug.: Trata de usar el ejercicio 8.8.)

Definición Una matriz $A \in \mathcal{M}(n)$ es ortogonal, si $AA^t = A^tA = I$.

- 8. Si $A \in \mathcal{M}(n)$ es ortogonal, encuentra $||A||_{\text{op}}$.
- 9. $\lim_{t \to 0} \int_0^1 (1 t^2)^n dt = 0$
- 10. Si $f \in C([0,1])$ y f(0) = 0, entonces existe una sucesión de polinomios $\{P_n\}$ tal que $P_n(0) = 0$ y $P_n \stackrel{u}{\to} f$.
- 11. Sean $A \subset \mathbb{R}^m$ y $B \subset \mathbb{R}^n$ conjuntos compactos. Dada una función continua $f: A \times B \to \mathbb{R}$, tomemos $\mathcal{F} = \{f_y : y \in B\}$, donde $f_y(x) = f(x,y)$, $\forall x \in A$. Entonces \mathcal{F} es equicontinua.

Definición Sean $a, b \in \mathbb{R}$ tales que a < b. Dada $f = (f_1, \dots, f_n) \in C([a, b], \mathbb{R}^n)$, definimos $\int_a^b f := (\int_a^b f_1, \dots, \int_a^b f_n) \in \mathbb{R}^n$.

12. Para $f \in C([a,b]$ definamos $I(f) = \int_a^b f$. Entonces $I: C([a,b], \mathbb{R}^n) \to \mathbb{R}^n$ es un operador lineal.

Para revisar y entregarse el miércoles 27 de marzo, 2019.