ANÁLISIS II: TAREA 11

Cuando no se indique otra cosa, M es un espacio métrico. En cada caso prueba lo indicado.

Por si tienen alguna dificultad, en la siguiente página les indiqué unas sugerencias respecto a los ejercicios marcados con asterisco.

- 1*. GL(n) es denso en $\mathcal{M}(n)$.
- 2. (Teorema de Dini) Sea $\{f_n\} \subset C([0,1])$ tal que $f_{n+1} \leq f_n, \forall n \in \mathbb{N}$ y $f = \lim_{n \to \infty} f_n$ es continua. Tomemos $g_n = f_n f, \ \forall n \in \mathbb{N}$.
- i) Sea $\epsilon > 0$. Para cada $x \in [0, 1]$, prueba que existe $N(x) \in \mathbb{N}$ y r(x) > 0 tal que si $y \in [0, 1]$ y $y \in V_r(x)$, entonces $0 \leq g_{N(x)}(y) < \epsilon$
- ii) Dado $\epsilon > 0$, prueba que existe $N \in \mathbb{N}$ tal que $0 \le g_N(y) < \epsilon, \ \forall y \in [0,1]$.
- iii) Concluye que $g_n \stackrel{u}{\to} 0$, esto es, $f_n \stackrel{u}{\to} f$.
- 3. Sea $\{f_n\} \subset C(M,\mathbb{R})$. Si $\{f_n\}$ es equicontinua y converge puntualmente a f, entonces f es uniformemente continua.
- 4. Señala una familia de funciones que sea equicontinua y no sea puntualmente acotada.
- 5. Considera en \mathbb{R} la sucesión definida por $a_0 = \frac{3}{2}$, $a_n = 1 + \frac{1}{a_{n-1}}$, $n \in \mathbb{N}$. Prueba que $\{a_n\}$ converge y calcula su límite.
- 6. Encuentra una función $f: \mathbb{R} \to \mathbb{R}$ tal que |f(x) f(y)| < |x y| si $x \neq y$, y que no tenga puntos fijos.
- 7. i) A partir de $f_0=1$, construye las dos primeras iteraciones de Picard para el problema $\frac{dx}{dt}=t^2+x^2,\ x(0)=1.$
- ii) Prueba que la solución al problema anterior existe y es única en el intervalo [-0.22, 0.22].
- 8. Sea $f: \mathbb{R}^2 \to \mathbb{R}$, $(t_0, x_0) \in \mathbb{R}^2$. Si f es continua, y $\frac{\partial f}{\partial x}$ existe y es acotada en \mathbb{R}^2 , prueba que la solución del problema $\frac{dx}{dt} = f(t, x)$, $x(t_0) = x_0$, está definida en \mathbb{R} . (Sug.: Considera la prueba del tma. de existencia y unicidad.)
- 9*. Sea $J \neq \phi$. Si $\{I_{\alpha} : \alpha \in J\}$ es una colección de intervalos, entonces $\cap_{\alpha \in J} I_{\alpha}$ es un intervalo.

10. Si A_k y B_k son conjuntos, $\forall k \in \{1, \dots, n\}$, entonces $(A_1 \times \dots \times A_n) \cap (B_1 \times \dots \times B_n) = (A_1 \cap B_1) \times \dots \times (A_n \cap B_n)$.

Definición Para $f \in F(D)$ y $a \in \mathbb{R}^n$ definamos $f_a : a + D \to \mathbb{R}$ por $f_a(x) := f(x - a)$.

- 11. (Cambio de variable) Sea $R \in \mathcal{R}(\mathbb{R}^n)$.
- i) $a + R \in \mathcal{R}(\mathbb{R}^n)$.
- ii) Si $f \in Int(R)$, entonces $f_a \in Int(a+R)$ y $\int_{a+R} f_a = \int_R f$.
- 12. Si $f \in C([a,b]), \ f \ge 0$ y $\int_a^b f = 0$, entonces f = 0.

Para revisar y entregarse el miércoles 20 de marzo, 2019.

SUGERENCIAS

- 1. Dada $A \in \mathcal{M}(n)$ considera las matrices $A \lambda I$.
- 2. Te presente que $I\subset\mathbb{R}$ es un intervalo si, y sólo si, I es convexo.