ANÁLISIS 2: TAREA 11

Al considerar un intervalo [a, b], entenderemos que $a, b \in \mathbb{R}$ y a < b.

Definición Sea V un espacio vectorial. Una combinación convexa de los vectores, $v_1, \ldots, v_n \in V$ es una de la forma $t_1v_1 + \cdots + t_nv_n$, donde $t_1, \ldots, t_n \geq 0$ y $t_1 + \cdots + t_n = 1$.

- 1. Si $K \subseteq V$ es convexo y $v_1, \ldots, v_n \in K$, entonces cualquiera de sus combinaciones convexas también pertenece a K.
- 2. Si $A \subseteq \mathbb{R}^k$ y $B \subseteq \mathbb{R}^n$ son compactos, entonces $A \times B \subseteq \mathbb{R}^{k+n}$ es compacto.
- 3. Si U y W son abiertos y densos en un espacio topológico E, entonces $U\cap W$ también es abierto y denso.

4. Si
$$p > 1$$
 y $k \in \mathbb{N}$, entonces
$$\sum_{n=1}^{\infty} \frac{(\ln n)^k}{n^p} < \infty.$$

- 5. Sea $X := (C([0,1]), \|\cdot\|_1)$. Determina si el funcional evaluación $\varphi : X \to \mathbb{R}$ definido por $\varphi(f) := f(0)$ es continuo.
- 6. Sea $f:[a,b]\to\mathbb{R}^n$. Si $n\geq 2$ y f es de Lipschitz, entonces $m_n(f([a,b]))=0$.
- 7. Si $f:[a,b]\to\mathbb{R}$ es monótona, entonces f es integrable.
- 8. Si $h: \mathbb{R}^n \to \mathbb{R}^n$ es un homeomorfismo, entonces $\mathrm{Fr} h(A) = h(\mathrm{Fr} A), A \subseteq \mathbb{R}^n$.
- 9. (Véase ejercicio 10.12) i) Si n = 2k, donde $k \in \mathbb{N}$, entonces $V(n) = \frac{\pi^k}{k!}$.

ii) Si
$$n = 2k - 1$$
, donde $k \in \mathbb{N}$, entonces $V(n) = \frac{k! \, 2^{2k} \pi^{k-1}}{(2k)!}$.

- 10. Sean D y E conjuntos no-vacíos, $f_n: D \to M, n \in \mathbb{N}$ y $f: D \to M$. Si $f_n \stackrel{u}{\to} f$ en D y $h: E \to D$, entonces $f_n \circ h \stackrel{u}{\to} f \circ h$ en E.
- 11*.(Lema de Riemann) Dada $f \in C([a,b])$ sea $a_n := \int_a^b f(x) \sin nx dx, n \in \mathbb{N}$. Entonces $\lim_{n \to \infty} a_n = 0$.
- 12. (La conclusión del teorema de Arzelá-Ascoli no siempre es válida.) Para cada $n \in \mathbb{N}$, sea $f_n(x) = \frac{1}{n}x$, $\forall x \in \mathbb{R}$. Entonces \mathbb{R} es separable, $\{f_n\}$ es puntualmente acotada, $\{f_n\}$ es equicontinua, y ninguna subsucesión de $\{f_n\}$ converge uniformemente.

Para entregarse el 30 de abril, 2021. El segundo examen parcial será el viernes 30 de abril, 11 hrs.

SUGERENCIAS

- 6*. Considera $j \in \mathbb{N}$ y divide [a,b] en j subintervalos de igual longitud. Si I es uno de esos subintervalos, prueba que f(I) está contenido en un cuadrado de lado $\frac{k}{j}$, donde k es la constante de Lipschitz para f.
- $11^{*}.$ Ten presente el teorema de aproximación de Weierstrass y un ejercicio de la tarea $^{*}.$