ECUACIONES DIFERENCIALES PARCIALES: TAREA 11

Cuando corresponda, prueba lo senãlado. Si no se indica otra cosa, $U\subset \mathbb{R}^n$ es un conjunto abierto no-vacío.

1.
$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$
.

2. Calcula
$$\int_{\|x-a\|<\frac{\|a\|}{2}} \frac{dx}{\|x\|^{n-2}}$$
, donde $n \geq 3$ y $a \in \mathbb{R}^n \setminus \{0\}$.

- 3. Sea $f: \mathbb{R}^n \to \mathbb{R}$ una función localmente R-integrable.
- i) Si f es continua en $x \in \mathbb{R}^n$, entonces $f_r(x) \to f(x)$ cuando $r \to 0$.
- ii) Si f es continua, entonces existe una sucesión $\{g_m\} \subset C^{\infty}(\mathbb{R}^n)$ tal que $f = \lim_{m \to \infty} g_m$.
- iii) Si f es uniformemente continua, entonces existe una sucesión $\{g_m\} \subset C^{\infty}(\mathbb{R}^n)$ tal que $f = \lim_{m \to \infty} g_m$ uniformemente.
- 4. Sea $p: \mathbb{R}^n \to \mathbb{R}$ un polinomio en n variables. Si $U \subset \mathbb{R}^n$ es un abierto acotado, prueba que existe $u \in C^{\infty}(\mathbb{R}^n)$ tal que $\Delta u = p$ en U.
- 5. Sean $U \subset \mathbb{R}^n$ un conjunto abierto, $u \in C^2(U)$ y $x \in U$. Si existe R > 0 tal que $\Delta u \geq 0$ en $B_R(x) \subset U$, prueba que $u(x) \leq \int_{B_r(x)} u$ para $0 < r \leq R$.
- 6. Sea $A \subset \mathbb{R}^n$. Entonces A es abierto y cerrado si, y sólo si, $\operatorname{Fr} A = \phi$.
- 7. Si $A \subset \mathbb{R}^n$ es conexo y $f:A \to \mathbb{R}^m$ es continua, entonces f(A) es conexo.
- 8. Sean $A \subset \mathbb{R}^n$ y $x \in \mathbb{R}^n$. Entonces $x \in \overline{A}$ si, y sólo si, $\operatorname{dist}(x, A) = 0$.
- 9. Sea $\alpha > 0$. Prueba que $\lim_{r \to \infty} \frac{\ln r}{r^{\alpha}} = 0$.

Definición Sea V un espacio vectorial. Una función $\|\cdot\|: V \to \mathbb{R}$ es una seminorma si tiene las propiedades de una norma, excepto que puede haber elementos $x \in V$ tales que $x \neq 0$ y $\|x\| = 0$.

Notación Dados $a, b \in \mathbb{R}$ tales que a < b, denotaremos por R[a, b] el subespacio de $F([a, b], \mathbb{R})$ formado por las funciones Riemann integrables.

- 10. La función $||f||_1 := \int_a^b |f|$ es una seminorma en R[a, b] que no es norma.
- 11. Sea $1 \le p < \infty$. Prueba que $a^p + b^p \le (a+b)^p, \ \forall a, b \ge 0$.

Para revisar y entregarse el miércoles 24 de octubre, 2018