INTEGRAL DE BOCHNER: Tarea 12

Sea $K \subset [0,1]$ el conjunto de Cantor, h la función ternaria de Cantor y $f(x) \equiv x + h(x)$. Prueba:

- 1. La función $f:[0,1] \to [0,2]$ es un homeomorfismo.
- 2. La medida de f(K) es 1. (Sug. : considera la medida de $f([0,1] \setminus K)$).
- 3. La función f no preserva conjuntos Lebesgue-medibles. (Sug.: si $A \subset \mathbb{R}$ es medible y $\lambda(A) > 0$, entonces existe $B \subset A$ tal que B no es medible.)
- 4. Si X tiene dimensión finita, prueba que el subespacio de $L^{\infty}(\mu, X)$ formado por las funciones que son simples, es denso en $L^{\infty}(\mu, X)$.
- 5. Sea (Ω, Σ, μ) un espacio de medida finita y $f \in L^{\infty}(\mu, X)$. Dado $\epsilon > 0$, prueba que existe $s \in St(\mu, X)$ y $A \in \Sigma$ tal que $\mu(A) \leq \epsilon$ y $\|f s\|_{B(A^c)} \leq \epsilon$.
- 6. Sea (Ω, Σ, μ) un espacio de medida. Si μ es completa y f es μ -medible, prueba que f es medible.
- 7. Sea μ^* una medida exterior en Ω y $A, B \subset \Omega$. Si A es μ^* -medible y $\mu^*(A\Delta B) = 0$, prueba que B es μ^* -medible y $\mu(A) = \mu(B)$.
 - Sea $f: \mathbb{R} \to \mathbb{R}$ una función monótona-creciente.
- 8. Prueba que μ_f^* es una medida exterior en \mathbb{R} .

Definición Si A, B son conjuntos, $A\Delta B \equiv (A \setminus B) \cup (B \setminus A)$.

- 9. Si $A \subset \mathbb{R}$ es un conjunto μ_f^* -medible, prueba que existen conjuntos $B, D \subset \mathbb{R}$ tales que $A = B \setminus D$, B es un conjunto G_{δ} y $D \in N(\mu)$.
- 10. Prueba las fórmulas para $\mu_f((a,b])$ y $\mu_f((a,b))$ indicadas en clase.

Definición Sean $A \subset \mathbb{R}^n$, $\|\cdot\|$ la norma euclidiana en \mathbb{R}^n , $\delta > 0$ y s > 0.

- a) El diámetro de A es $|A| \equiv \sup\{||x y|| : x, y \in A\}.$
- b) Una δ -cubierta de A es una colección numerable $\{A_j\}$ de subconjuntos de \mathbb{R}^n tal que $A \subset \bigcup_{n=1}^{\infty} A_j$ y $|A_j| \leq \delta$, $\forall j \in \mathbb{N}$.
- c) Definimos $H^s_{\delta}(A) \equiv \inf\{\sum_{j=1}^{\infty} |A_j|^s : \{A_j\} \text{ es } \delta\text{-cubierta de } A\}.$
- 11. Prueba que H^s_{δ} es una medida exterior en \mathbb{R}^n .

Para revisar y entregarse el jueves 27 de mayo, 2010.