MEDIDA E INTEGRAL DE LEBESGUE: TAREA 6

Cuando no se indique otra cosa, D es un conjunto no-vacío y (Ω,Σ) un espacio medible.

1. Sean $A, B \subseteq D$. Entonces $\chi_{A \cap B} = \chi_A \chi_B$.

Definición Una colección S de subconjuntos de Ω es un *semianillo*, si: a) $\phi \in S$. b) Si $A, B \in S$, entonces $A \cap B \in S$. c) Si $A, B \in S$, entonces $A \setminus B$ es unión finita de conjuntos en S que son disjuntos entre sí.

2. Determina si la colección de los intervalos acotados es un semianillo en \mathbb{R} .

Definición Para $A \subseteq \mathbb{R}$ definamos

$$d^*(A) := \inf\{\sum_{n=1}^N \ell(I_n) : N \in \mathbb{N}, A \subseteq \bigcup_{n=1}^N I_n\},\$$

donde cada I_i es un intervalo abierto y acotado.

- 3. Entonces: i) $d^*(\phi) = 0$. ii) d^* es monótona.
- iii) d^* es subaditiva.
- 4*. Sea $E \subseteq \mathbb{R}^n$. La función $\chi_E : \mathbb{R}^n \to \mathbb{R}$ es continua si, y sólo si, $E = \phi$ o $E = \mathbb{R}^n$.

Definición Sea E un espacio topológico. Un conjunto $A \subseteq E$ es F_{σ} , si existe una familia de conjuntos cerrados $\{C_n : n \in \mathbb{N}\}$ tal que $A = \bigcup_{n=1}^{\infty} F_n$.

5. Sean E un espacio topológico y $f_n : E \to \mathbb{R}$ una función continua, $\forall n \in \mathbb{N}$. Prueba que el conjunto donde la sucesión $\{f_n\}$ converge en \mathbb{R} se puede expresar como intersección numerable de conjuntos F_{σ} . En particular es boreliano.

Definición Un espacio topológico (E, τ) es *metrizable*, si su topolgía es inducida por alguna métrica $d: E^2 \to [0, \infty)$.

- 6. Sea E un espacio topológico. Si existen un espacio métrico M y un homeomorfismo $h:E\to M$, entonces E es metrizable.
- 7. Una función $f:\Omega\to\mathbb{C}$ es medible si, y sólo si, sus partes real e imaginaria son medibles.
- 8. $(f \lor g) + h = (f + h) \lor (g + h), \ \forall f, g, h \in F(D, \mathbb{R}).$
- 9. Sea $\{f_n\} \subseteq \mathcal{L}^0(\Sigma)$ una sucesión. Entonces inf $f_n \in \mathcal{L}^0(\Sigma)$.
- 10. Sea $\{f_n\} \subseteq \mathcal{L}^0(\Sigma)$ una sucesión. Entonces $\limsup_{n\to\infty} f_n \in \mathcal{L}^0(\Sigma)$.
- 11*. Si $f \in \mathcal{L}_0(\Sigma)^+$, entonces f se puede expresar como $f = \sum_{k=1}^{\infty} c_k \chi_{A_k}$, donde $A_k \in \Sigma$ y $c_k \geq 0, \forall k \in \mathbb{N}$. Los conjuntos A_k pueden no ser disjuntos entre sí.

Para revisar y entregarse el jueves 23 de septiembre, 2024.

SUGERENCIAS

- $4^{\ast}.$ Considera el teorema del valor intermedio.
- 11*. Ten presente que cualquier sucesión se puede expresar como una serie.