OPERADORES LINEALES ACOTADOS: TAREA 7

1. Sea X un espacio normado real. Prueba que la función

$$||x + iy|| := \sup\{|x\cos t - \sin ty| : t \in [0, 2\pi]\}$$

define una norma en $X_{\mathbb{C}}$.

- 2. Consideremos el espacio de Hilbert ℓ^2 y la sucesión canónica $\{e_n\} \subset H$. Sean V la cerradura del espacio cerrado generado por $\{e_{2n-1} : n \in \mathbb{N}\}$ y W la cerradura del espacio generado por $\{\frac{e_{2n}}{2n} e_{2n-1} : n \in \mathbb{N}\}$. Prueba:
- i) V + W es denso en ℓ^2 . ii) V + W no es cerrado.

Definición Sean W un espacio vectorial y S una colección de operadores lineales $T:W\to W$. Un subespacio vectorial $V\subset W$ es invariante bajo S, si $SV\subset V$, $\forall\,S\in S$. Cuando $S=\{T\}$, simplemente diremos que V es invariante bajo T (o T-invariante).

A continuación, X es un espacio normado y A es un álgebra de Banach.

3. Sean $S \subset \mathcal{L}(X)$ y $V \subset X$ un subespacio. Si V es invariante bajo S, prueba que \overline{V} también lo es.

Definición Según el ejercicio 6.4, el operador lineal T ahí considerado se puede extender lineal y continuamente de manera única a $E := \overline{\operatorname{Esc}([a,b],X)}$. Denotemos por $\int_a^b f(s)ds \in X$ el valor asignado por dicho operador a $f \in E$.

4. Si $f \in E$, prueba que ||f|| es R-integrable en [a,b] y que se cumple ||f|| f(s) ||f|| f

- 5. Sean X y Y espacios de Banach. Prueba que el conjunto formado por los operadores $T \in \mathcal{L}(X,Y)$ tales que T es 1-1 y R(T) es cerrado, es abierto.
- 6. Sea W un subespacio de X^* tal que $n := \dim W < \infty$. Prueba:
- i) dim $X/^{\perp}W = n$. (Sug.: Considera una base de W, $\{\varphi_1, \ldots, \varphi_n\}$ y analiza $T: X \to \mathbb{K}^n$ dado por $T(x) := (\varphi_1 x, \cdots, \varphi_n x)$.)
- ii) $\dim(^{\perp}W)^{\perp} = n$. iii) $W = (^{\perp}W)^{\perp}$.
- 7. Dado $x \in A$, prueba que $\{y \in A : xy = yx\}$ es una subálgebra de A con identidad, que es cerrada.
- 8. Prueba que $||e^x|| \le e^{||x||}, \ \forall x \in A$.

- 9. Sean $M\subset A$ un ideal cerrado y en el espacio de Banach cociente A/M definamos [x][y]:=[xy]. Prueba que esto define un producto en A/M y que de esta forma A/M es un álgebra de Banach.
- 10. Sea $T \in \mathcal{L}(X)$. Supongamos que λ_j es un valor propio de T y v_j un vector propio correspondiente, $j = 1, \ldots, n$. Si los escalares λ_j 's son distintos entre sí, prueba que v_1, \cdots, v_n , son linealmente independientes.
- 11. Sean $T \in \mathcal{L}(X)$, $\lambda \in \mathbb{K}$ y $\{x_n\} \subset X$ tal que $||x_n|| = 1, \forall n \in \mathbb{N}$. Prueba que $\lambda \in \sigma(T)$ en los siguientes casos:
- i) Si $(T \lambda I)x_n \to 0$. ii) Si $\lambda_n \to \lambda$ y $(T \lambda_n I)x_n \to 0$.
- 12. Encuentra explícitamente la función resolvente $(T-\lambda I)^{-1}$ para el operador de Volterra $T:C[0,1]\to C[0,1].$

Para revisar y entregarse el lunes 7 de octubre, 2013