ANÁLISIS FUNCIONAL: TAREA 7

- 1. Sea Ω un espacio métrico. Prueba que $C_c(\Omega)$ es denso en $C_0(\Omega)$. (Sug.: ten presente el ejercicio 6.2)
- 2. (Continuación del ejercicio 6.3.) Definamos $F(x) \equiv \psi(\|x\|^2), \ \forall x \in \mathbb{R}^n$ y $a \equiv \int_{\mathbb{R}^n} F d\lambda$. Verifica que F es de clase C^{∞} , a > 0 y determina sopF.
- 3. Sea E un EVT definido mediante la familia suficiente de seminormas $\{\|\cdot\|_{\alpha}:\alpha\in I\}$. Prueba que cada seminorma $\|\cdot\|_{\alpha}:E\to\mathbb{R}$ es continua.
- 4. Sea E un EVT. Si $\varphi: E \to \mathbb{K}$ es lineal y $\varphi \neq 0$, prueba que φ preserva abiertos.
- 5. 5. Sea I un intervalo abierto, $f, g: I \to \mathbb{R}$ y $p \in I$. Si f y g son derivables k veces en p, prueba la fórmula de Leibniz: $(fg)^{(k)}(p) = \sum_{j=0}^{n} \binom{k}{j} f^{(j)}(p) g^{(k-j)}(p)$, $(f^{(0)} = f)$.

Definición Una función $f: I \to \mathbb{C}$, donde $I \subset \mathbb{R}$ es un intervalo abierto, es absolutamente continua, si f es absolutamente continua en cualquier intervalo $[a, b] \subset I$.

- 6. Prueba que la función valor absoluto es absolutamente continua en \mathbb{R} .
- 7. Prueba que, en ℓ^{∞} , $e_n \stackrel{w}{\to} 0$.

Sea (Ω, Σ) un espacio medible.

- 8. Si E cualquier conjunto y $f:\Omega\to E$, prueba que $\{B\subset E:\varphi^{-1}(B)\in\Sigma\}$ una σ -álgebra en E.
- 9. Supongamos además que Ω es un espacio topológico y consideremos φ : $\Omega \to \Omega$ función medible. Si μ es una medida en Σ , prueba que $\varphi_*\mu$ también lo es.
- 10. Supongamos que μ es una medida en (Ω, Σ) y sean $f, g\mathcal{M}(\Omega)^+$. Si $\int_A f d\mu = \int_A g d\mu$, $\forall A \in \Sigma$, prueba que f = g c.t.p.

Para revisar y entregarse el miércoles 25 de marzo, 2009.