ANÁLISIS FUNCIONAL: TAREA 9

Notación $\mathcal{M}(m \times n)$ denotará el espacio de las matrices (reales o complejas) de tamaño $m \times n$ y se identificará con \mathbb{K}^{mn} . Así, $\mathcal{M}(m \times n)$ cuenta con la norma euclidiana correspondiente. Como es usual, $\mathcal{M}(n) \equiv \mathcal{M}(n \times n)$.

- 1. Sea $A \in \mathcal{M}(m \times n)$, $B \in \mathcal{M}(n \times k)$ y $x \in \mathbb{R}^n (= \mathcal{M}(n \times 1))$. Prueba: i) $||Ax|| \le ||A|| ||x||$. ii) $||AB|| \le ||A|| ||B||$. iii) Si n = m y $j \in \mathbb{N}$, entonces $||A^j|| \le ||A||^j$.
- 2. Sea $I \subset \mathbb{R}$ un intervalo abierto no-vacío y $\varphi \in C_c^{\infty}(I)$. Prueba que existe $\psi \in C_c^{\infty}(I)$ tal que $\psi' = \varphi$ si, y sólo si, $\int_I \varphi(x) dx = 0$.
- 3. Sea E un espacio localmente compacto. Si $K \subset U \subset E$, K es compacto y U es abierto, prueba que existe V abierto tal que $K \subset V \subset \overline{V} \subset U$ y \overline{V} es compacto.

Definición Sea E un EVT. Un conjunto $A \subset E$ es acotado, si para cada abierto $V \subset E$ tal que $0 \in V$, existe s > 0 tal que $A \subset tV$, $\forall t > s$.

- 4. Sea E un EVT obtenido a partir de una familia suficiente de seminormas $\{\|\cdot\|_{\alpha}: \alpha \in I\}$. Prueba que $A \subset E$ es acotado si, y sólo si, cada seminorma $\|\cdot\|_{\alpha}$ es acotada en A.
- 5. Sea V un espacio vectorial y $\|\cdot\|$ una seminorma definida en V. Prueba que, para cada $p \in V$ y r > 0, la "bola" $\{x \in V : \|x p\| < r\}$ es un conjunto convexo.
- 6. Sea E un espacio topológico y G un subgrupo de Homeo(E). Definamos $A:G\times E\to E$ por A(g,x)=g(x). Prueba que A define una acción de G en E.

Para revisar y entregarse el miércoles 22 de abril, 2009.