ANÁLISIS FUNCIONAL: TAREA 10

1. Sea X un espacio topológico Hausdorff. Si $K \subset X$ es compacto y $x \in X \setminus K$, prueba que existen abiertos V y W, tales que $K \subset V$, $x \in W$ y $V \cap W = \emptyset$. (Nota que $V \cap \overline{W} = \emptyset$.)

Definición Sea V un espacio vectorial. Un conjunto $A \subset V$ es balanceado, si cuando $x \in A$ y $|c| \le 1$, siempre se cumple que $cx \in A$.

- 2. Sea E un espacio vectorial topológico. Si $V \subset E$ es un abierto y $0 \in V$, prueba que existe un abierto W tal que $0 \in W \subset V$ y W es balanceado.
- 3. Sea E un espacio vectorial topológico. Si $K \subset E$ es compacto, prueba que K es acotado.

Definición Una colección de conjuntos \mathcal{C} tiene la propiedad de intersección finita, si cualquier intersección finita $A_1 \cap \cdots A_n$, donde $A_1, \ldots, A_n \in \mathcal{C}$, es no vacía.

- 4. Sea X un espacio topológico y $\mathcal{C} \equiv \{K_{\alpha} : \alpha \in I\}$ una colección no-vacía de conjuntos compactos en X. Si \mathcal{C} tiene la propiedad de intersección finita, prueba que $\cap K_{\alpha} \neq \emptyset$.
- 5. Sea $I \subset \mathbb{R}$ un intervalo abierto no-vacío y $u \in L^1_{loc}$. Si u' = 0, prueba que u = c c.t.p. (Sug.: Fija $\theta \in C_c(I)$ tal que $\int_I \theta(x) dx = 0$, considera $\varphi \left(\int_I \varphi dx\right) \theta$ y ten presente el ejercicio 9.2.)
- 6. Sea G un grupo. Determina si G con la topología discreta es un grupo topológico.
- 7. Sean V, W espacios vectoriales y $T: V \to W$ una transformación lineal. Si $A \subset W$ es convexo, prueba que $T^{-1}(A)$ es convexo.
- 8. Sea E un espacio de Banach, $T \in B(E)$ y $K \subset E$ no vacío, compacto y convexo. Si $T(K) \subset K$, prueba que T tiene un punto fijo.
- 9. Sea X un espacio compacto Hausdorff no vacío. Si $h \in \text{Homeo}(X)$, prueba que existe una medida de probabilidad en X que es invariante bajo h.

Para revisar y entregarse el el miércoles 29 de abril, 2009.