ANÁLISIS FUNCIONAL: TAREA 11

- 1. Sea (Ω, Σ, μ) un espacio de medida y $h : \Omega \to \Omega$ una biyección tal que $h(A) \in \Sigma$, $\forall A \in \Sigma$. Prueba que $\nu(A) \equiv \mu(h(A))$ define una medida en Σ .
- 2. Sea (Ω, Σ, μ) un espacio de medida. Si $f \in L^1(\mu)$, prueba que $\int_{\Omega} f(x) d\mu = \int_{\Omega} \overline{f(x)} d\mu$.
- 3. Sea E un espacio localmente compacto y Hausdorff. Si $K \subset U \subset E$, K es compacto y U es abierto, prueba que existe V abierto tal que $K \subset V \subset \overline{V} \subset U$ y \overline{V} es compacto. (Sug.: i) Es posible suponer que \overline{U} es compacto. ii) Trata de separar los puntos en Fr U con K de acuerdo al ejercicio 10.1.)
- 4. Sea E un EVT. Prueba que $A \subset E$ es acotado si, y sólo si, para cualesquiera sucesiones $\{x_n\} \subset A$ y $\{r_n\}$ tal que $r_n \to 0$, se cumple que $r_n x_n \to 0$.

Definición La función de Heaviside es la función característica de $[0, \infty)$.

- 5. Prueba que la función de Heaviside H no tiene derivada débil. (Sug.: supón que $g \equiv H'$ y prueba que g = 0 c.t.p. en $(-\infty, -a)$ y en (a, ∞) , $\forall a > 0$.
- 6. Supongamos que G es un grupo que actúa sobre un espacio topológico X. Si en G consideramos su topología discreta, prueba que la acción es continua.
- 7. Sea G un grupo topológico Hausdorff y \mathcal{B} su σ -álgebra de Borel. Si $A \in \mathcal{B}$, prueba que $A^{-1} \in \mathcal{B}$.
- 8. Sea V un espacio vectorial y $A \subset V$ Si A es convexo, $x_1, \ldots, x_n \in A$, $t_1, \ldots, t_n \geq 0, t_1 + \cdots + t_n = 1$, prueba que $t_1x_1 + \cdots + t_nx_n \in A$.

Definición Un espacio de Banach X es *estrictamente convexo* si cuando $x, y \in B_X$ y $x \neq y$, se cumple que $\left\|\frac{x+y}{2}\right\| < 1$.

- 9. Determina si $X \equiv (\mathbb{R}^2, \|\cdot\|_{\infty})$ es estrictamente convexo.
- 10. Sea X un espacio de Banach y $S \equiv \{x \in X : ||x|| = 1\}$. Si X es estrictamente convexo, prueba que $S = \text{ex}(B_X)$.

Para revisar y entregarse el miércoles 20 de mayo, 2009.