VARIABLE COMPLEJA: TAREA 5

1. Dado $n \in \mathbb{N}$, sean w_1, \ldots, w_n las raíces n-ésimas de la unidad. Si $z \in \mathbb{C} \setminus \{0\}$ y $w := \sqrt[n]{z}$, prueba que las raíces n-ésimas de z son ww_1, \ldots, ww_n .

Definición Las funciones coseno y seno hiperbólico, respectivamente, son:

$$\cosh(z) := \frac{e^z + e^{-z}}{2}, \ \operatorname{senh}(z) := \frac{e^z - e^{-z}}{2}, \ \forall z \in \mathbb{C}.$$

- 2. Verifica que $\cosh^2(z) \sinh^2(z) = 1, \ \forall z \in \mathbb{C}.$
- 3. Sea V un espacio vectorial, $n \in \mathbb{N}$ y $v_1, \ldots v_n \in V$. Prueba que el conjunto de puntos de la forma $t_1v_1+\ldots t_nv_n$, donde $t_1,\ldots,t_n\in[0,1]$ y $t_1+\ldots+t_n=1$, es convexo.
- 4. Sean $a,b \in \mathbb{C}, \ a \neq 0$. Describe geométricamente el conjunto formado por aquellos puntos $z \in \mathbb{C}$ tales que $\frac{\text{Im}(z-b)}{a} < 0$.
- 5. Prueba la ley del paralelogramo en \mathbb{C} : $|w+z|^2+|w-z|^2=2|w|^2+2|z|^2$.
- 6. Sean P un polinomio y $a \in \mathbb{C}$. Prueba que P(a) = 0 si, y sólo si, existe un polinomio Q tal que P(z) = (z a)Q(z).
- 7. Sea P un polinomio de grado 1 y $a \in \mathbb{C}$. Si $P(a) \neq 0$, prueba que para cada r > 0 existe $z \in D_r(a)$ tal que |P(z)| < |P(a)|.
- 8. Determina si la sucesión $\{\sqrt[n]{n!}\}$ es convergente. (Justifica tu respuesta.)

Definición Una serie de la forma $\sum_{n=-\infty}^{n=\infty} z_n$ converge, si las series $\sum_{n=1}^{\infty} z_{-n}$ y $\sum_{n=0}^{\infty} z_n$ convergen. En este caso definimos

$$\sum_{n=0}^{-\infty} z_n := \sum_{n=1}^{\infty} z_{-n} \ y \ \sum_{n=-\infty}^{n=\infty} z_n := \sum_{n=0}^{-\infty} z_n + \sum_{n=1}^{\infty} z_n.$$

Definición Para cada $r \in [0,1)$, el *núcleo de Poisson* P_r está definido por $P_r(\theta) := \sum_{n=-\infty}^{n=\infty} r^{|n|} e^{in\theta}, \ \forall \theta \in \mathbb{R}.$

9. Prueba que $P_r(\theta)=\frac{1-r^2}{1-2r\cos\theta+r^2},\ \forall\,\theta\in\mathbb{R}.$ (Sug.: observa que $P_r(\theta)=\mathrm{Re}(1+2\sum_{n=1}^{\infty}(re^{i\theta})^n.)$

Definición Sea $\sum_{n=1}^{\infty} z_n$ una serie en \mathbb{C} . Si $\varphi : \mathbb{N} \to \mathbb{N}$ es una biyección, a la serie $\sum_{k=1}^{\infty} a_{\varphi(k)}$ la llamaremos *reordenamiento* de la serie original.

- 10. Si una serie en \mathbb{C} converge absolutamente, prueba que cualquiera de sus reordenamientos converge y lo hace al mismo límite que la serie original.
- 11. Si P es un polinomio y grP > 0, prueba que $\lim_{|z| \to \infty} |P(z)| = \infty$.
- 12. Sea $D \subset \mathbb{C}$, $f: D \to \mathbb{C}$ y $z_0 \in D$. Prueba que f es continua en z_0 si, y sólo si, sus partes real e imaginaria lo son.

Para revisar y entregarse el viernes 1 de marzo, 2013. Primer examen parcial: lunes 4 de marzo, 4 PM.