VARIABLE COMPLEJA: TAREA 7

- 1. Sean $\theta \in \mathbb{R}$ y $c \in \mathbb{C}$. Si $ce^{-i\theta} \notin \mathbb{R}$, prueba que la ecuación $z + e^{2i\theta}\overline{z} + c = 0$ no tiene solución. (Sug.: multiplícala por $e^{-i\theta}$.)
- 2. Sean $p \in \mathbb{R}^k$ y r > 0. Prueba que $B_r(p)$ es un conjunto convexo.
- 3. Sean $c_1, \ldots, c_n \in \mathbb{C}$, no todos iguales a 0. Si w es una raíz del polinomio $P(z) = z^n + c_1 z^{n-1} + \cdots + c_n$, prueba que |w| < 2C, donde $C := \max\{|c_j|^{\frac{1}{j}}: j = 1, \ldots, n\}$. (Sug.: si $|w| \geq 2C$, observa que $|c_j| \leq \frac{|w|^j}{2^j}$, $j = 1, \ldots, n$.)
- 4. (Fracciones parciales) Sea $n \in \mathbb{N}$, P un polinomio de grado menor que n y $a \in \mathbb{C}$. Prueba que la función racional R definida por $R(z) := \frac{P}{(z-a)^n}$ se puede expresar en la forma $R(z) = \sum_{j=1}^{n} \frac{b_j}{(z-a)^j}$, donde $b_1, \ldots, b_n \in \mathbb{C}$.

Definición Una serie de potencias alrededor de un punto $a \in \mathbb{C}$ es una serie de la forma $\sum_{n=0}^{\infty} c_n(z-a)^n$, donde $c_n \in \mathbb{C}$, $\forall n \in \mathbb{N}_0$.

- 5. Expresa la función racional R definida por $R(z) := \frac{1}{z}$ como serie de potencias alrededor de $a \neq 0$.
- 6. Determina si el ejercicio 6.7 es válido para polinomios $P: \mathbb{R} \to \mathbb{R}$.
- 7. Prueba las propiedades básicas de los conjuntos cerrados en \mathbb{R}^k .
- 8. Prueba que $\mathbb{R}^k = A^0 \cup \operatorname{Fr} A \cup (A^c)^0, \ \forall A \subset \mathbb{R}^k$.
- 9. Si $K \subset \mathbb{R}$ es compacto y no vacío, prueba que ínf K, sup $K \in K$.

Notación Si $w, z \in \mathbb{R}^k$, entonces $[w, z] := \{(1 - t)w + tz : 0 \le t \le 1\}$.

- 10. Sean $z_1, z_2, z_3 \in \mathbb{C}$, puntos no-colineales, y consideremos el triángulo definido por ellos. Con estos puntos y los puntos medios de los segmentos $[z_1, z_2], [z_2, z_3]$ y $[z_3, z_1]$ se forman cuatro "subtriángulos". Prueba que el diámetro de cada uno de ellos es la mitad del diámetro original.
- 11. Sean $K, W \subset \mathbb{R}^k$. Si K es compacto, W es abierto y $K \subset W$, prueba que existe r > 0 tal que $V_r(z) \subset W$, $\forall z \in K$.
- 12. Si P es un polinomio de grado $n \ge 1$, con coeficiente principal c_n , prueba que P se puede factorizar en la forma $P(z) = c_n(z a_1) \cdots (z a_n)$, donde $a_1, \ldots, a_n \in \mathbb{C}$.

Para revisar y entregarse el viernes 15 de marzo, 2013