VARIABLE COMPLEJA: TAREA 10

Definición Dados $A \subset \mathbb{R}^m$ y $x \in \mathbb{R}^m$, sea $d(x, A) := \inf\{d(x, a) : a \in A\}$. Observa que $0 \le d(x, A) \le \infty$.

- 1. Sea $A \subset \mathbb{R}^m$ un conjunto no vacío y consideremos $f : \mathbb{R}^m \to \mathbb{R}$ definida por $f(x) = \operatorname{dist}(x, A)$. Prueba que f es continua.
- 2. Sea $W \subset \mathbb{R}^m$ un abierto y $A \subset W$ tal que $A \cap K$ es finito, para cada compacto $K \subset W$. Prueba que A es numerable.
- 3. Sea r > 0. Si $W \subset \mathbb{R}^m$ es un abierto y $B_r(0) \subset W$, prueba que existe R > r tal que $B_R(0) \subset W$.
- 4. Prueba que todo polinomio preserva conjuntos cerrados.
- 5. Si P es un polinomio de grado $m \in \mathbb{N}$ y Q es un polinomio de grado $n \in \mathbb{N}$ que no tienen raíces en común, prueba que existen polinomios únicos p de grado m-1 y q de grado n-1 tales que qP+pQ=1.
- 6. Si $W \subset \mathbb{R}^m$ es abierto, prueba que sus componentes conexas también lo son.
- 7. Si $A \subset \mathbb{R}^m$ es acotado, prueba que A^c tiene exactamente una componente conexa que no es acotada.
- 8. Prueba el criterio por componentes para la existencia de un límite.
- 9. Desarrolla el polinomio $P(z) = 4i 3z^2 + (1+i)z^5$ alrededor de a = i.
- 10. Prueba la regla de la cadena para $f \circ \alpha$ en el caso en que f es una función holomorfa y α una curva.
- 11. Sea $W\subset \mathbb{C}$ una región y $f\in H(W)$. Si $n\in \mathbb{N}$ y $f^{(n)}=0$, prueba que f es un polinomio de grado $\leq n-1$.
- 12. Sea $c(z) := \cos z$, $s(z) := \sin z$, $\forall z \in \mathbb{C}$. Verifica: i) c' = -s. ii) s' = c. iii) c(0) = 1. iv) s(0) = 0.

Para revisar y entregarse el viernes 26 de abril, 2013. Segundo examen parcial: lunes 29 de abril, 4 PM.