VARIABLE COMPLEJA: TAREA 14

- 1. Si $\Delta \subset \mathbb{R}^m$ es un triángulo, prueba que Δ es compacto.
- 2. Supongamos que $f: \mathbb{C} \to \mathbb{C}$ satisface f'(0) = 1, y f(w+z) = f(w)f(z), $\forall w, z \in \mathbb{C}$. Prueba que $f(z) = e^z$, $\forall z \in \mathbb{C}$. (Sug.: prueba f' = f.)

Definición Sea $W \subset \mathbb{C}$ un abierto. Para $f: W \to \mathbb{C}$ de clase C^1 definamos los operadores ∂ y $\overline{\partial}$ por $\partial f := \frac{1}{2} [\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y}]$ y $\overline{\partial} f := \frac{1}{2} [\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y}]$.

- 3. Sea $W \subset \mathbb{C}$ un abierto y $f: W \to \mathbb{C}$ de clase C^1 . Prueba: i) f es holomorfa si, y sólo si, $\overline{\partial} f = 0$. ii) Si f es holomorfa, entonces $f' = \partial f$.
- 4. Sea $W \subset \mathbb{R}^m$ un abierto y $\{f_n\} \subset C(W,\mathbb{R}^j)$. Supongamos que $\sum_{n=1}^{\infty} c_n$ es una serie convergente de términos positivos y $g: W \to \mathbb{R}^m$ una función tal que $\frac{f_n}{c_n} \stackrel{cu}{\to} g$. Prueba que $f(z) := \sum_{n=1}^{\infty} f_n(z)$ define una función continua.
- 5. Sea $D \subset \mathbb{C}$, $\{f_n\} \subset C(D, \mathbb{R}^j)$, $\{z_n\} \subset D$ y $z \in D$. Si $f_n \stackrel{u}{\to} f$ y $z_n \to z$, prueba que $f_n(z_n) \to f(z)$.

Definición El conjunto de convergencia de una serie de funciones $\sum_{n=1}^{\infty} f_n$, consiste de todos aquellos $z \in \mathbb{C}$ donde $\sum_{n=1}^{\infty} f_n(z)$ converge.

6. Considerando las series de potencias $\sum_{n=1}^{\infty} \frac{z^n}{n}$ y $\sum_{n=1}^{\infty} z^{n-1}$ concluye que, aunque tienen igual radio de convergencia, los conjuntos de convergencia de una serie y de su serie derivada pueden ser distintos.

Definición El producto (de Cauchy) de las series complejas $\sum_{n=0}^{\infty} a_n$ y $\sum_{n=0}^{\infty} b_n$ es la serie $\sum_{n=0}^{\infty} c_n$, donde $c_n = \sum_{k=0}^{n} a_j b_{n-j}$.

- 7. Si las series complejas $\sum_{n=0}^{\infty} a_n$ y $\sum_{n=0}^{\infty} b_n$ convergen absolutamente, prueba que su producto $\sum_{n=0}^{\infty} c_n$ también. (Sug.: considera series de potencias.)
- 8. Sean W un abierto y $f:W\to\mathbb{C}$ una función que es localmente una serie de potencias. Si $f^{-1}(0)^a\neq\emptyset$, prueba que f=0. (Sug.: trata de emplear el resultado "correspondiente" para series de potencias.
- 9. Sean α_1 , α_2 y α_3 curvas en \mathbb{R}^m tales que α_2 le sigue a α_1 y α_3 le sigue a α_2 . Prueba que $(\alpha_1 + \alpha_2) + \alpha_3 = \alpha_1 + (\alpha_2 + \alpha_3)$.
- 10. Prueba que $\ell(\alpha_{op}) = \ell(\alpha)$, para cualquier curva α en \mathbb{R}^m .
- 11. Sean $a, c_0, \ldots, c_n \in \mathbb{C}$ y $P(z) = a_0 + c_1(z-a) + \cdots + c_n(z-a)^n$, $\forall z \in \mathbb{C}$. Encuentra $\int_{\alpha} |P(z)|^2 dz$, donde α es la circunferencia con centro en a, radio r > 0 y orientada positivamente.

12. Sea $\alpha:[a,b]\to\mathbb{C}$ una curva cerrada. Dado $c\in(a,b)$, definamos $\beta:[c,c+b-a]\to\mathbb{C}$ por $\beta(s):=\left\{\begin{array}{c}\alpha(s),\ c\leq t\leq b\\\alpha(a+s-b),\ b\leq b+(b-a)\end{array}\right.$. Prueba que $\int_{\alpha}f(z)dz=\int_{\beta}f(z)dz,\ \forall\,f\in C(\alpha^*,\mathbb{C}).$ (Nota que esto indica que la integral sobre una curva cerrada de clase C^1P no depende del punto inicial.)

Para revisar y entregarse el lunes 3 de junio, 4:30 pm