VARIABLE COMPLEJA: EXAMEN FINAL

Sólo hay que resolver 8 de los 9 ejercicios

Duración: 3 horas

(Desarrrolla primero los ejercicios que consideres más accesibles)

- 1. Sea $n \in \mathbb{N}$. Dados n puntos distintos $a_1, \ldots a_n \in \mathbb{C}$, prueba que existe un único polinomio P de grado n-1 tal que $P(a_1)=1$ y $P(a_j)=0$ si $j \in \{2, \ldots, n\}$.
- 2. Determina si el conjunto $W=\mathbb{C}\setminus\mathbb{Z}$ es una región. Justifica tu respuesta.
- 3. Sean $W \subseteq \mathbb{C}$ un conjunto abierto, $a \in W$, $f \in H(W)$ y $f(a) \neq 0$. Entonces la función $g := \frac{1}{f}$ está definida y es holomorfa en un disco abierto alrededor de a. Si $f(z) = c_0 + c_1(z-a) + \cdots$ alrededor de a, prueba que $g(z) = \frac{1}{c_0} \frac{c_1}{c_0^2}(z-a) + \cdots$, alrededor de a.
- 4. Calcula $\int_{\alpha} (z^3 z^2 + (1 i)) dz$, donde α es el camino definido como sigue: Empieza con el segmento que va del origen a i y sigue por el arco de la circunferencia con centro en el origen, radio 1 y orientada en el sentido de las manecillas del reloj, hasta llegar al punto 1.
- 5. Determina si existe $F: \mathbb{C} \to \mathbb{C}$ tal que $F'(z) = \overline{z}, \ \forall z \in \mathbb{C}$.
- 6. Encuentra $\sup\{|z^2+z|:z=ti-s,s,t\in[0,1]\}.$ (Sug.: considera el principio del módulo máximo.)
- 7. Determina si la función sen es acotada (en \mathbb{C}). Justifica tu respuesta.
- 8. Sean $W:=\mathbb{C}\setminus\mathbb{Z}$ y $f(z):=\sum_{n=0}^{\infty}\frac{1}{z^2-n^2}, \forall\,z\in W.$ Prueba:
- i) f está bien definida.
- ii) f es holomorfa.
- 9. Sean f una función entera y P un polinomio no-constante.
- i) Prueba que los puntos donde $g=\frac{f}{P}$ no está definida son singularidades aisladas.
- ii) Da un ejemplo de un caso donde la singularidad sea removible y otro donde sea un polo.