Teoría de Conjuntos – Tarea num. 6

(Por entregar el 19 de sept 2002)

Nota: en los siguientes problemas puedes suponer, donde lo encuentras necesario, que $\alpha \cdot \alpha = \alpha$ para todo cardinal transfinito α (la demostración de esto, usando la axioma de elección, veremos mas tarde en el curso).

- 1. Sea α un cardinal infinito.
 - (a) Demuestra que $\alpha = n + \alpha = n\alpha = \alpha^n$ para todo cardinal finito n > 0.
 - (b) Demuestra que $n^{\alpha} = m^{\alpha}$ para todos cardinales finitos $n, m \geq 2$.
 - (c) Opcional: ¿Puedes demostrar que $\alpha = \aleph_0 + \alpha = \aleph_0 \cdot \alpha$ y que $(\aleph_0)^{\alpha} = n^{\alpha}$ para todo cardinal finito n > 2?
 - (d) Demuestra que $\alpha + \beta = \alpha\beta$ para cualquer cardinal $\beta > 0$.
- 2. (a) Sea $\{\alpha_i\}_{i\in I}$ una familia de cardinales. Define $\sum_{i\in I}\alpha_i$, y demuestra que si existe un cardinal α tal que $\alpha_i=\alpha$ para todo $i\in I$ entonces $\sum_{i\in I}\alpha_i=\alpha\beta$, donde $\beta=|I|$.
 - (b) Sean $\{\alpha_i\}_{i\in I}$ y $\{\beta_i\}_{i\in I}$ dos familias de cardinales tales que $\alpha_i < \beta_i$ para todo $i \in I$. Demuestra que $\sum_{i\in I} \alpha_i < X_{i\in I}\beta_i$.
- 3. Sea A un conjunto con cardinalidad α .
 - (a) Encuentra la cardinalidad del conjunto de todos los subconjuntos finitos de A.
 - (b) Encuentra la cardinalidad del conjunto de todos los subconjuntos numerables de A.
 - (c) Sea β un cardinal. Encuentra la cardinalidad del conjunto de todos los subconjuntos de A de cardinalidad β .
 - (d) Encuentra la cardinalidad del conjunto de todas las funciones $A \to A$.
 - (e) Encuentra la cardinalidad del conjunto de todas las biyecciones $A \to A$.