Tarea núm. 5

Para el viernes 5 de sept. 2008

1. Sea $n \in \mathbb{Z}$ con n > 1. Demuestra que para todo $a, b \in \mathbb{Z}$ con $a \equiv b \mod n$, (a, n) = 1 si y solo si (b, n) = 1. (O sea, la condición (a, n) = 1 depende solamente de la clase de congruencia de $a \mod n$.)

Nota: "A si y solo si B" significa "A implica B y B implica A" (dos incisos separados).

- 2. Sean $a, b, m, n \in \mathbb{Z}$, donde m, n > 1 y (m, n) = 1.
 - a) Existe un $x \in \mathbb{Z}$ tal que $x \equiv a \mod m$ y $x \equiv b \mod n$.
 - b) Tal x es único modo mn. O sea, si $y \in \mathbb{Z}$ tal que $y \equiv a \mod m$ y $y \equiv b \mod n$ entonces $x \equiv y \mod mn$.

Sugerencia para inciso (a): las soluciones a la primera ecuación son de la forma x := a + km, $k \in \mathbb{Z}$. Ahora busca las k tal que x resuelva la segunda ecuación tambien. Es útil usar el problema 1 de la tarea 4.

Sugerencia para inciso (b): define z := x - y y estudia sus propiedades.

3. Sean $a_1, \ldots, a_k, n_1, \ldots, n_k \in \mathbb{Z}$, donde $n_1, \ldots, n_k > 1$ y $(n_i, n_j) = 1$ para cada $i \neq j$. Demuestra que existe un x, único mod $n_1 \cdots n_k$, tal que $x \equiv a_1 \mod n_1, \ldots, x \equiv a_k \mod n_k$ (son k congruencias que el x debe satisfacer.)

Nota: este resultado se llama el "Teorema Chino de Resíduos".

Sugerencia: usar el Problema anterior e inducción sobre k.

4. Sean $A, B, m, n \in \mathbb{Z}$, donde m, n > 1 y (m, n) = 1. Entonces $A \equiv B \mod mn$ si y solo si $A \equiv B \mod n$ y $A \equiv B \mod n$

Sugerencia: se puede demostrar directamente, o se puede usar el problema 1, con a = b = 0, x = A - B.

- 5. Sean p, q dos primos distintos, n = pq, f = (p-1)(q-1) y $M, k \in \mathbb{Z}, k \geq 0$. Demuestra que $M^{1+fk} \equiv M \mod n$.
- 6. Resolver las siguientes ecuaciones (encontrar todos los valores de x en cada caso):
 - a) $3x \equiv 2 \mod 5$.
 - $b) \ 3x \equiv 2 \bmod 100.$
 - c) $17x \equiv 1 \mod 100$.
 - d) $x \equiv 77^{77} \mod 100$.
 - e) $x \equiv 14 \mod 15$ y $x \equiv 16 \mod 17$.
 - f) $29 \equiv x^{87} \mod 55$.