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Preface

The primary goal of these lectures is to introduce a beginner to the finite-
dimensional representations of Lie groups and Lie algebras. Since this goal is
shared by quite a few ofher books, we should explain in this Preface how our
approach differs, although the potential reader can probably see this better
by a quick browse through the book.

Representation theory is simple to define: it is the study of the ways in
which a given group may act on vector spaces. It is almost certamly unique,
however, among such clearly delineated subjects, in the breadth of its interest
to mathematicians. This is not surprising: group actions are ubiquitous in 20th
century mathematics, and where lhe object on which a group acts is not a
ce it by o that is {e.g., a coliomology
group, tangent space, etc.). As a consequence, many mathematicians other
than specialists in the lield (or even those who think they might want to be)
come in contact with the subject in various ways. It is for such people that
this text is designed. To put it another way, we intend this as a book for
beginners to learn from and not as a reference.

This idea essentially determines the choice of material covered here. As
simple as is the definition of representation theory given above, it fragments
considerably when we try to get more specific. For a start, what kind of group
G are we dealing with—a finite group like the symmetric group &, or the
general linear group over a finite field GL,(F,), an infinite discrete group
like SL,(2), a Lie group like SL,C, or possibly a Lie group over a local
field? Needicss to say, cach of these settings requires 2 substantially different
approach (o its representation theory. Likewise, what sort of vector space is

; of nossibly 2 fiald o Chngasica 0 1o i
G acting on: is it over C, R, ©, or possibly a field of finite characteristic? Is it

finite dimensional or infinite dimensional, and if the latter, what additional
structure (such as norm, or inner product) does it carry? Various combinations

vector snace. we have learsad to 2o
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vi Prclace

of answers to these questions lead to arcas of intense research activity in
representation theory, and it is natural for a text intended to prepare students
for a career in the subject to lead up to one or more of these areas. As a
corollary, such a book tends to get through the elementary material as quickly
h 1 to get up to and through Harish—Chandra
modules, there is little time to dawdle over the representations of &, and
SL,C.
By contrast, the present book focuses exactly on the simplest cases: repre-
sentations of finite groups and Lie groups on finite-dimensional real and

the comi sround of the
i some sense the comtnon ground of the

as possible: if on

complex vector spaces. This is
subject, the area that is the object of most of the interest in representation
theory coming from outside.

The intent of this book to serve nonspecialists likewise dictates to some
degree our approach to the material we do cover. Probably the main feature
of our presentation is that we concentrate on examples, developing the general
theory sparingly, and then mamly as a useful and unifying language to describe
pt already d in concrete cases. By the same token, we for
the most part introduce theoretical notions when and where they are useful
for analyzing concrete situations, postponing as long as possible those notions
that are used mainly for proving general theorems.

Finalty, our goal of making the book accessible to outsiders accounts in
part for the style of the writing. These lectures have grown from coutses of
the second author in 1984 and 1987, and we have altemp!ed to keep lhe

informal stvle of these lectires. Thus there is almost no att
inlormai styse o1 these sectures. Taus tnere s aimost

where it seems to make sense from a didactic point of view, we work out many
special cases of an idea by hand before proving the general case; and we
cheerfully give several proofs of one fact if we think they are illuminating.
Slmllarly, while it is common to develop the whole sem:snmple story [rom one
point of view, say that of compaci groups, or Lic aigebras, o
we have avoided this, as efficient as it may be.

1t is of course not a strikingly original notion that beginners can best learn
about a subject by working through examples, with general machinery only
introduced slowly and as the need arises, but it scems particularly appropriate
here. In most subjects such an approach means one has a few; out of an
unknown infinity of examples which are useful to 1llummate ’hf general
situation. When the subject is the rep ion theory of
Lie groups and algebras, however, something special happens: once one has
worked through all the examnples readily at hand—the “classical” cases of the
spe linear, orthogonal, and symplectic groups—one has not just a few
useful examples, one has all but five “exceptional” cases.

This is essentially what we do here. We start with a quick tour through
representauon !heory of finite gmups‘ with emphasis determined by what is
useful for Lie groups. in this regard, we include imore o the symimetric groups
than is usual. Then we turn to Lie groups and Lie algebras. After some
preliminaries and a look at low-dimensional examples, and one lecture with
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some general notions about ity, we get to the heart of the course:
working out the finite-dimensional representations of the classical groups.

_ For each series of classical Lie algebras we prove the fundamental existence
theorem for representations of given highest weight by explicit construction.
Our object, however, is not just exist

ce, but to see the representations in
action, to see geometric mpllcahons of decompositions of naturally occurring
representations, and to see the relations among them caused by coincidences
between the Lie algebras.

The goal of the last six lectures is to make a bridge between the example-
orienied approach of ihe earlier paris and the general iheory, Here we make
an attempt to interpret what has gone before in abstract terms, trying to make
connections with modern terminology. We develop the general (heory enough
to see that we have studied all the simple complex Lie algebras with five
exceptions, Since these are encountered less frequently than the classical series,
itis probably not reasonable in a first course to work out their representations
as explicitly, although we do carry this out for one of them, We also prove the
general Weyl character formula, which can be used to verify and extend many
of the results we worked out by hand earlier in the book.

Of course, the point we reach hardly touches the current state of affairs in
Lie theory, but we hope it is enough to keep the reader’s eyes from glazing
over when conlronted with a lecture that begins: “Let G be a semisimple
Lie group, P a parabolic subgroup, ...” We might also hope that working
through this book would prepare some readers to appreciate the elegance (and

effiniency) of the ahsiract ameceoach
SUICICRCY) Of in¢ aosiract approaci.

In spirit this book is probably closer to Weyl's classic [ Wel] than to others
written today. Indeed, a secondary goal of our book is to present many of the
results of Weyl and his predecessors in a form more accessible to modern
readers. In particular, we include Weyl's constructions of the representations
of ihe generai and speciai jinear groups by using Young’s syminetrizers; and
we invoke a little invariant theory to do the corresponding result for the
orthogonal and symplectic groups. We also include Weyl's formulas for the
characters of these representations in terms of the elementary characters of
symmetric powers of the standard representations. (Interestingly, Weyl onty
gave the corresponding formulas in terms of the exterior powers for the general
linear group. The corresponding formutas for the orthogonal and symplectic
groups were only given recently by Koike and Terada. We include a simplc
new proofl of these determinantal formulas.)

More about indi
parts of the book.

Needless to say, a price is paid [or the inefficiency and restricted focus of
these notes. The most obvious is a lot of omitted material: for example, we
include little on the basic topological differentiable, or analytic propenies of
Lie BIGUpS, as illﬁ pnay’s a Sﬁiﬂll I'Ule inour Sll)l’y and is Well covered in 0026“5
of other sources, including many graduate texts on manifolds, Moreover, there
are no infinite-di ional repr ions, no Harish--Chandra or Verma
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modules, no Steifel diagrams, no Lie algebra cohomalogy, no analysis on
symmelric spaces of groups, no arithmetic groups or automorphic forms, and
nothing about representations in characteristic p > 0. There is no consistent
attempt to indicate which of our results on Lie groups apply more generally
to algebraic groups over fields other than R or C (e.g, local fields). And there
is only passing mention of other standard topics, such as universal enveloping
algebras or Bruhat decompositions, which have become standard tools of
representation theory. (Experts who saw drafts of this book agreed that some
topic we omitted must not be left out of a modern book on representation
theory—biit nio two experts suggested the same topic)

We have not tried to trace the history of the subjects treated, or assign
credit, or to attribute ideas to original sources—this is [ar beyond our knowl-
edge. When we give references, we have simply tried to send the reader to
sources that are as readable as possible for one knowing what is written here.
A good systematic reference for the finite-group material, inciuding proofs of
the results we leave out, is Serre [Se2]. For Lie groups and Lie algebras,
Serre [Se3], Adams [Ad], Humphreys [Hul], and Bourbaki [Bour} are
recommended references, as are the classics Weyl [Wel] and Littlewood
[Liti].

We would like to thank the many people who have contributed ideas and
suggestions for this manuscript, among them J-F. Burnol, R. Bryant, J. Carrell,
B. Conrad, P. Diaconis, D. Eisenbud, D. Goldstein, M. Green, P. Griffiths,
B. Gross, M. Hildebrand, R. Howe, H. Kraft, A. Landman, B. Mazur,
N. Chriss, D. Petersen, G. Schwartz, I. Towber, and L. Tu. In particular, we
would like to thank David Mumford, from whom we learned rauch of what
we know about the subject, and whose ideas are very much in evidence in this
book.

Had this book been written 10 years ago, we would at this point thank the
people who typed it, That being no fonger applicabie, perhaps we should
thank instead the National Science Foundation, the University of Chicago,
and Harvard University for generously providing the various Macintoshes on
which this manuscript was produced. Finally, we thank Chan Fulton for
making the drawings.

Bill Fulton andl Joe Harris
!

Using This Book

ds a
prerequisites are minim e assume only a basic knowledge of standard
first-year graduate material in algebra and topology, including basic notions
about manifolds. A good undergraduate background should be more than
enough for most of the text; some examples and exercises, and some of the
discussion in Part IV may refer io more advanced topics, but these can readily
be skipped. Probably the main practical requirement is 2 good working
knowledge ol multilinear algebra, including tensor, exterior, and symmetric
products of finite dimensional vector spaces, for which Appendix B may help.
We have indicated, in introductory remarks to each lecture, when any back-
ground beyond this is assumed and how essential it is.

For a course, this book could be used in two ways. First, there are a number
of topics that ate not logically essential to the rest of the book and that can
be skimmed or skipped entirely. For example, in a minimal reading one could
skip§§4,5,6,11.3,13.4,15.3-15.5,17.3,19.5,20,22.1,22.3,23.3-23.4, 25.3, and
26.2; this might be suitable for a basic one-semester course. On the other hand,
in a year-long course it should be possible to work through as much of the
material as background and/or interest suggested. Most of the material in the
Appendices is relevant only to such a long course. Again, we have tried

to indicate. in the introductory remarks in eac
to indicate, in the introductory remark: h

inessential and may be omitted.

Another aspect of the book that readers may want to approach in different
ways is the profusion of examples. These are put in largely for didactic reasons:
we feel that this is the sort of material that can best be understood by gaining
some direct hands-on experience with the objects involved. For the most part,
however, they do not actually develop new ideas; the reader whose tastes run
more to the abstract and general than the concrete and special may skip many

in @ aotisrn swhioh tocion ooo
S in ¢acn ieClure, wiichn {opics are



X Using This Book

of them without logical consequence. (Of course, such 2 reader will probably
wind up burning this book anyway.)

We include hundreds of exercises, of wildly different purposes and dilficulties.
Some are the usual sorts of variations of the examples in the text or are

straightforward verifications of facts needed, a student will probably want to

atiempt most of these. Sometimes an exercise is inserted whose solution is a
special case of something we do in the text tater, if we think working on it will
be useful motivation (again, there is no attempt at “efficiency,” and readers
are encouraged to go back to old exercises from time to time). Many exercises
are included that indicate some furtlier directions or new topics (or standard
topics we have omitted); a beginner may best be advised to skim these for
general information, perhaps working out a few simple cases. In exercises, we
tried to inctude topics that may be hard for nonexperts to extract from the
literature, especially the older literature. In general, much of the theory is in
the exercises—and most of the examples in the text.

We have resisted the idea of grading the exercises by (expected) difficulty,
although a “problem” is probably harder than an “exercise.” Many exercises
he # is not an indication of difficulty, but means that the reader

'mation about it in the section “Hints, Answers, and
References at the back of the book. This may be a hint, a statement of the
answer, a complele solution, a reference to where more can be found, or
a combination of any of these. We hope these miscellaneous remarks, as

haphazard and uneven as they are, will be of some use.
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PART 1
FINITE GROUPS

Given that over three-quarters of this book is devoted to the representation
theory of Lie groups and Lie algebras, why have a discussion of the represen-
tations of finite groups at all? There are certainly valid reasons from a logical
point of view: many of the ideas, concepts, and constructions we will introduce
here will be applied in the study of Lie groups and algebras. The real reason
for us, however, is didactic, as we will now try to explain.

Representation theory is very much a 20th-century subject, in the following
sense. In the 19th century, when groups were dealt with they were generally
understood to be subsets of the permutations of a set, or of the automor-
phisms GL(V) of a vector space ¥, closed under composition and inverse. Only
in the 20th cenfury was the notion of an abstract group given, making it
possible to make a distinction between properties of the abstract group and
properties of the particular realization as a subgroup of a permutation group
or GL(V). To give an analogy, in the 19th century a manilold was always a
subset of R”; only in the 20th century did the notion of an abstract Riemannian
manifoid become common.

In both cases, the introduction of the abstract object made a fundamental
difference to the subject. In differential geometry, one could make a crucial
distinction between the intrinsic and extrinsic geometry of the manifold: which
properties were invariants of the metric on the manifold and which were
propertics of the particular embedding in R". Questions of existence or non-
existence, for example, could be broken up into two parts: did the abstract
manifold exist, and could it be embedded. Similarly, what would have been
called in the 19th century simply “group theory” is now factored into two
parts. First, there is the study of the structure of abstract groups (e.g, the
classification of simple groups). Second is the companion question: given a
group G, how can we describe all the ways in which G may be embedded in




9 1. Finite Groups

(or mapped to) a linear group GL(V)7. This, of course, is the subject matter
of representation theory.

Given this point of view, it makes sense when first introducing representa-
tion theory to do so in a context where the nature of the groups G in question
is itself simple, and relatively well understood. It is largely for this reason that
we are starting off with the representation theory of finite groups: for those
readers who are not already familiar with the motivations and goals of
representation theory, it scemed better to establish thosc first in a sctting where
the structure of the groups was not itsell an issue. When we analyze, for
example, the re

se of the symmetric and alternating groups on 3,4,
and 5 letters, it can be expected that the reader is already famlhar with (he
groups and can focus on the basic concepts of representation theory being
introduced.

We will spend the first six lectures on the case of finite groups. Many of the
techniques developed for finite groups wili carry over to Lie groups; indeed,
our choice of topics is in part guided by this. For example, we spend quite a
bit of time on the symmetric group; this is partly for its own interest, but also
partly because what we learn here gives one way to study representations of
the general linear group and its subgroups. There are other topics, such as the
alternating group ,, and the groups SL,(F,) and GL,(F,) that are studied
purely for their own interest and do not appear later. (In general, for those
readers primarily concerned with Lie theory, we have tried to indicate in the
introductory notes to each lecture which ideas will be useful in the succeeding
parts of this book.) Nonetheless, this is by no means a comprehensive treat-
ment of the representation theory of finite groups; many important topics,
such as the Artin and Brauer theorems and the whole subject of modular
representations, are omitted.

LECTURE 1

Representations of Finite Groups

g
the basic results, sh g direct sum ol irreduc-
ible ones. We work out as examples the case of abelian groups, and the simplest
nonabelian group, the symmetric group on 3 letters. In the latter case we give an
analysis that will turn out not to be useful for the study of finite groups, but whose
main idea is central to the study of the representations of Lie groups.

§1.1: Definitions
§1.2: Complete reducibility; Schur's lemma
§1.3: Examples: Abelian groups; S,

§1.1. Definitions

A representation of a finite group. G on a finite-dimensional complex vector
space ¥ is a homomotphism g: G —+ GL{V} of G to the group of auiomor-
phisms of V; we say that such a map gives V' the structure of a G-module. When
there is little ambiguity about the map p (and, we’re afraid, even sometimes
when there is) we sometimes call V itself a representation of G; in this vein we
will often suppress the symbol p and write g - v or gv for p(g)(v). The dimension
of V is sometimes called the degree of p.

A map @ between two representations V and W of G is a vector space map
@: ¥V = W such that

V2o w
!l J'
v 2w



4 1. Represcutations of Finitc Groups

commutes for every g € G. (We will call this a G-linear map when we want to
distinguish it from an arbitrary linear map between the vector spaces ¥ and
W.) We can then define Ker ¢, Im ¢, and Coker ¢, which are also G-modules.

A subrepresentation of a representation ¥ is a vector subspace W of V which
is invariant under G. A representation V is called irreducible if there i
proper nonzero invariant subspace W of V.

IEV and Ware representations, the direct sum V @ W and the tensor product
V ® W are also representations, the latter via

glv® w) = gv @ gw.

For a representation ¥, the nth tensor power ¥®" is again a representation of
G by this rule, and the exterior powers (V) and symmetric powers Sym™(V)
are subrepresentations' of it. The dual V* = Hom(V, C) of V is also a repre-
sentation, though not in the most obvious way: we want the two representa-
tions of G to respect the naturai pairing (denoted ¢ , >) between ¥* and V,
so that if p: G— GL(V) is a representation and p*: G — GL(V*} is the dual,
we should have

{p*(@)*), p(9) ) = (v*, v)
for all g € G, ve V¥, and v* e V*. This in turn forces us to define the dual
representation by
PHg)="plg™"y V>V
forallgeG.

Exercise 1.1 Verify that with this definition of p*, the relation above is
satisfied.

Having defined the dual of a representation and ihe iensor product of two
representations, it is likewise the case thatif ¥ and W are representations, then
Hom(V, W) is also a representation, via the identification Hom(V, W) =
V* ® W. Unraveling this, if we view an element of Hom(V, W) as a finear map
o from V to W, we have

(99) () = golg™'v) j
for all v e V. In other words, the definition is such that the diagram

VLo w

special case of this:

! For more on exterior and symmetric powers, including descriptions as quotient spaces of tensor
powers, see Appendix B,
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when W = Cis the trivial representation, i.e, gw = wfor all w e C, this makes
V* into a G-module, with ge(v) = p(g™"v), ie., go = (g7 ")o.

Exercise 1.2. Verify that in general the vector space of G-linear maps between
two representations V and W of G is just the subspace Hom(V, W)¢ of
elements of Hom(V, W) fixed under the action of G. This subspace is often
denoted Homg(¥, W),

We have, in effect, taken the identification Hom(V, W) = V* ® W as the
definition of the representation Hom(V, W). More generally, the usual iden-
tities for vector spaces are also true for representations, ¢.g.,

VeUaew)=(rel)d(vew),
Nyaw)= @ NMvenNw,
avh=k

NV} = AV,

and so on.

Exercise 1.3*. Let p: G - GL(V) be any representation of the finite group G
on an n-dimensional vector space ¥ and suppose that for any g € G, the
determinant of p(g) is |. Show that the spaces AV and A""*¥* are iso-
morphic as representations of G.

If X is any finite set and G acts on the left on X, ic., G —» Aut(X) is a
homomorphism to the permutation group of X, there is an associated per-
mutation representation: let ¥ be the vector space with basis {e,: x € X}, and
let G act on ¥ by

g o, =Y a.e,.
The regular representation, denoted R, or R, corresponds to the left action of

G on itself. Alternatively, R is the space of complex-valued functions on G,
where an element g € G acts on a function o by (go)(h) = a(g ™" h).

Exercise 1,4*. (a) Verify that these two descriptions of R agree, by identifying
the element e, with the characteristic function which takes the value 1 on x,
0 on other elements of G.

(b) The space of functions on G can also be made into a G-module by the
rule (go)(h) = x(hg). Show that this is an isomorphic representation.

§1.2. Complete Reducibility; Schur’s Lemma

As in any study, before we begin our attempt to classify the representations
of a finite group G in carnest we should try to simplify life by restricting our
search somewhat. Specifically, we have seen that representations of G can be
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built up out of other representations by linear algebraic operations, most
simply by taking the direct sum. We should focus, then, on representations
that are “atomic” with respect to this operation, i.e., that cannot be expressed
as a direct sum of others; the usual term for such a represemalion is Inde-

_____ IS S,

""""" Hap t coiild possibly be: a repre-

Lumpu\ume oaj ll‘y', the s Ol iS as i
sentation is atomic in this sense if and only il it is irteducible (i.e., contains no
proper subrepresentations); and every representation is the direct sum of

irreducibles, in a suitable sense uniquely so. The key to all this is

ion of a repr ion V of a finite
y invariant subsy W of V, so that

Proposition LS. If W is a subrepr
group G, then there is a compl
V=WwWaoWw.

Proor. There are twe ways of doing this, One can intreduce a
definite) Hermitian inner product H on ¥ which is preserved by each g ¢ G
(i.e, such that H(gv, gw) = H{v, w) for all v, w € V and g € G). Indeed, if H, is
any Hermitian product on ¥, one gets such an H by averaging over G:

H(v,w) =Y. Hy(gv, gw).
596G

Then the perpendicular subspace W* is complementary to W in V. Alterna-
tively (but similarly), we can simply choose an arbilrary subspace U comple-
mentary to W, fet n,: ¥ —» W be the projection given by the direct sum
decomposition ¥ = W @ U, and average ihc map r, over G: that is, take

() = Zﬂ glro(g™ 1)

This will then be a (‘ hncar map from V¥ onto W, which multlphcahon by

PR
{Glon W; under G and

complementary to W. a

Corollary 1.6. Any representation is a direct sum of irreducible representations.

This property is called complete reducibility, or semisimplicity. We will see
that, for continuous representations, the circle S', or any compaci group, has
this property; integration over the group (with respect to an invariant measure
on the group) plays the role of averaging in the above proof. The (additive)
group R does not have this property: the representation

(5 %)

leaves the x axis fixed, but there is no complementary subspace. We will see
other Lie groups such as SL,(C) that are semisimple in this sense. Note also
that this argument would fail if the vector space V was over a field of finite
characteristic since it might then be the case that #(v) = O for v & W. The failure
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of complete reducibility is one of the things that makes the subject of modular
repr ions, or repr ions on vector spaces over finite fields, so tricky.
The extent Lo which the decomposition of an arbitrary representation into
a direct sum of irreducible ones is unique is one of the consequences of the

FRTI

olowing:

Schur’s Lemma 1.7. If V and W are irreducible representations of G and
@: V - W is a G-module homomorphism, then

(1) Either ¢ is an isom

(2) Ifv= W then g = A1 for s J.EL 1 the identity.

PROOF. The first claim follows from the fact that Ker ¢ and Im ¢ arc invariant
subspaces. For the second, since C is algebraicaily closed, ¢ must have an
cigenvalue 4, ie., for some L& €, p — Al has a nonzero kernel. By (1), then,
we must have ¢ — Al = 0,50 ¢ = A1 '

We can summarize what we have shown so far in
Proposition 1.8. For any representation V of a finite yroup G, there is a
decomposition
V= V‘@m ®® ‘/;@"I(’

where the V, are distinct irreducible representations. The decom

e position of V
into a direct sum of the k factors is unique, as are the V; that occur and their
multiplicities a;.

Proor. It follows from Schur’s lemma that if W is another representation of
G, with a decomposition W = @ W,#", and ¢: V — W is a map of represen-
tahons, then @ must map the facmr V“’" into that factor W®" for which

= V; when applied to the identity map of ¥ to V, the slated unigueness
follows ]

In the next lecture we will give a formula for the projection of ¥ onto ¥®%,
The decomposition of the ith summand into a direct sum of a; copies of ¥} is
not unique if a; > 1, however.

Occasionally the decomposition is written

V=a® ®aVi=a¥ + +alh, (1.9)

especially when one is concerned only about (he isomorphism classes and
multiplicities of the ¥].

One more fact that will be established in the following lecture is that a finite
group G admits only finitcly many irreducible representations Vi up to iso-
morphism (in fact, we will say how many). This, then, is the framework of the
classification of all representations of G: by the above, once we have described
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the irreducible representations of G, we will be able to describe an arbitrary
repri ion as a linear o ion of these. Our first goal, in analyzing
the representations of any group, will therefore be:

(i) Describe all the irreducible representations of G.

Once we have done this, there remains the problem of carrying out in practice
the description of a given representation in these terms. Thus, our second goal
will be:

(i) Fin the direct sum decomposition {1.9), and in

particular determining the multiplicities a, of an arbitrary representation V.

nigues for oiv
niques for gi

Finally, it is the case that the representations we will most often be concerned
with are those arising from simpler ones by the sort of linear- or multilinear-
algebraic operations described above. We would like, thereflore, to be able to
describe, in the terms above, the representation we get when we perform these
operations on a known representation. This is known generally as

(iti) Plethysm: Describe the d. positions, with icities, of represen-
tations derived from a given representation V, such as V@V, V*, A(V),
Sym*(¥), and A“(\'V). Note that if ¥ decomposes into a sum of two represen-
tations, these represcntations decompose accordingly;e.g.,if V = U @ W, then

‘Y i J
NV ‘@k/\U®/\W,

so it is cnough to work out this piethysm for irreducibie representations.
Similarly, if V and W are two irreducible representations, we want to decom-
pose V @ W; this is usually known as the Clebsch—Gordon problem.

§1.3. Examples: Abelian Groups; S,

One obvious place to look for cxamples is with abelian groups. It does not
take long, however, to deal with this case. Basically, we may observe in general
that if ¥ is a representation of the finite group G, abelian or not, each g & G
gives a map p{g): V - V; but this map is not generally a G- modyle homomor-
phism: for general 1 € G we will have

g(h(v)) # hig(v)).

Indeed, p(g): V — ¥V will be G-linear for every p if (and only if'} g is in the center
Z(G)of G. In particular if G is abelian, and V is an irreducible representation,
then by Schur's lemma every element g € G acts on V by a scalar multiple of

lhe 1denmy Every subspace of V is thus invariant; so that ¥V must be one
1. The irreducibl

representations of an abelian group G are tht

simply elements of the dual group, that is, homomorphisms

PG
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We consider next the simplest nonabelian group, G = &,, To begin with,
we have (as with any symmetric group) two one-dimensional representations:
we have the trivial representation, which we wilt denote U, and the alternating
representation U’, defined by setting

gv = sgn{g)v

forg € G, ve C. Next, since G comes to us as a permutation group, we have
a natural pefmutation representation, in which G acts on C* by permuting
the coordinates. Explicitly, if {e,, e,, ej} is the standard basis, then g ¢, = e,
of, equivalently,

9" (21, 22, 23) = (Zg-11), Zg-12ps 2t
This representation, like any permutation representation, is not irreducible:

the line spanned by the sum (1, 1, 1) of the basis vectors is invariant, with
complementary subspace

V= {(z,25,2,) e C*z, + 2, + 2, = 0}

This two-dimensional representation V is easily seen to be irreducible; we call
it the standard representation of &;.

Let us now turn to the problem of describing an arbitrary representation
of &4, We will see in the next lecture a wonderful tool for doing this, called
character theory; but, as inefficient as this may be, we would like here to adopt
a more ad hoc appmach This has some virtues as a didactic technique in the
preseit context (admittedly dubious ones, consisiing malmy of mang the
point that there are other and far worse ways of doing things than character
theory). The real reason we are doing it is that it will serve to introduce an
idea that, while superfluous for analyzing the representations of finite groups
in general, will prove to be the key to understanding representations of Lie
groups.

The idea is a very simple one: since we have just seen that the representation
theory of a finite abelian group is virtually trivial, we will start our analysis
of an arbitrary representation W of &, by looking just at the action of the
abelian subgroup A, = 7/3 c &, on W. This yields a very simple decom-
position: if we take 1 10 be any generator of 2, (that is, any three-cycle), the
space W is spanned by eigenvectors v, for the action of t, whose eigenvalues
are of course all powers of a cube root of unity @ = €2, Thus,

W=D,
where
¥i=Cu and 1o =%y

Next, we ask how the remaining clements of &, act on W in terms of this
decomposition. To see how this goes, let o be any transposition, so that  and
o togelher generate S, with the relation oto = 2. We want to know where
o sends an eigenvector v for the action of t, say with eigenvalue o'; to answer
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this, we look at how t acts on o(v). We usc he basic refation above to write
(o(t)) = o(r* (1))

= o(w? )

=w¥ a(v).

', then

tor for t with ei

lue w?,

The conclusion, then, is that if v is an eig
o(v) is again an tor for v, with

Exercise 1.10. Verify that with o = (i2), r = (i23), the standard representation
has a basis a = (o, 1, @?), § = (1, », ©?), with

B=wf, oa=f o=«

1= o,

bupposc now that we siart with such an eigenvector v for 7. If the eigenvalue
of pis @' # 1, then o(v) is an eigenvector with eigenvalue @ # o', and so is
independent of v; and v and o(v) together span a two-dimensional subspace
V' of W invariant under S,. In fact, V' is isomorphic to the standard repre-
sentation, which follows from Exercise 1.10. If, on the other hand, the eigen-
value of vis [, then o(r) may or may not be independent of v. If it is not, then
v spans a one-dimensional subrepresentation of W, isomorphic to the trivial
representation if o(v) = v and to the alternating representation if o{v) = —v.
1f o(v) and v are independent, then v + o(v)and v — o(v) span one-dimensional
representations of W isomorphic to the trivial and alternating representations,
respectively.

We have thus accomplished the fitst two of the goals we have sct for
ourselves above in the case of the group G = &,. First, we scc from the above
that the only three irreducible representations of &, are the trivial, alternating,

and standard representations U. U' and V. Moreover, for an arbitrary repre-
ana slanadra representalions v, ana V. Moreover, Iof an aroitrary repre

sentation W of &, we can write
W=UgUogye,;

and we have a way to determine the multiplicities 4, b, and c: ¢, for example,

is the number of independent eigenvectors for r with eigenvalue w, whereas

a + cis the multiplicity of 1 as an eigenvalue of 6, and b + cis the multiplicity
of — 1 as an cigenvalue of o.

In fact, this approach gives us as well the answer to our third problem,
finding the decomposition of the symmetric, alternating, or tensor powers of
a given representation W, since if we know the eigenvalues of 7 on such a
representation, we know the eigenvalues of T on the various tensor powers of
W. For example, we can use this method to decompose V ® V, where ¥ is
the standard two-dimensional represemation ForV@Vis spanned by the
vectors « @ &, « wp, A @« and @ f; these are cigeaveciors for © with
eigenvalues o, 1, 1, and o, respectively, and o interchanges ¢ ® o with
A® fand x @ f with f @ a. Thus x ® ¢ and § @ f span a subrepresentation

§1.3. Examples: Abelian Groups; S, 3

isomorphic to ¥, «® f#+ f® « spans a trivial representation U, and
2@ f — f @ aspans U, so

VV=Ue U eV

Exercise 1,11, Use this approach 1o find the decomposition of the represen-
tations Sym?¥ and Sym?V.

Exercise 1.12. (2) Decompose the regular representation R of S,.
(b) Show that Sym***V is isomorphic to Sym*V @R, and compute
Sym*V for ali k.

Exercise  L13*. Show that Sym?(Sym?V) z= Sym3(Sym?V). Is
Sym™(Sym"V} isomorphic to Sym"(Sym™V)?

As we have indicated, the idea of studying a representation V of a group G -
by first restricting the action to an abelian subgroup, getting a decomposition
of ¥ into one-d jonal invariant subsp and then asking how the
g generators of the group act on these subspaces, does not work well
ite G in generai; for one thing, there wili not in generai be a convenient
abelian subgroup to use. This idea will turn out, however, to be the key to
understanding the representations of Lie groups, with a torus subgroup
playing the role of the cyclic subgroup in this example.

Exercise 1.14*. Let V be an irreducible representation of the finite group G.
Show that, up to scalars, there is a unigue Hermitian inner product on V
preserved by G.



LECTURE 2

Characters

This lecture contains the heart of our treatment of the representation theory of finite
groups: the definition in §2.1 of the character of a representation, and the main theorem
(proved in two steps in §2.2 and §2.4) that the characters of the irreducible representa-
tions form an orthonormal basis for the space of class functions on G. There wiil be
more examples and more constructions in the following lectures, but this is what you
need to know.

: Characters
The st projection formula and its consequences
.3: Examples: &, and 9,

: More projection formulas; more consequences

§2.1. Characters

As we indicated in the preceding section, there is a remarkably effective
tool for understanding the representations of a finite group G, called
character theory. This is in some ways motivated by the exaniple worked out
in the last section where we saw that a representation of &, was determined
by knowing the eigenvalues of the action of the elements t and ¢ € &,. Fora
general group G, it is not clear what subgroups and/or elements should play
the rofe of Ay, t, and o; but the example certainly suggests that knowing
ail the cigenvalues of each element of G should suffice to describe the
representation.

Of course, specifying all the eigenvalues of the action of each element of G
is somewhat unwieldy; but fortunately it is redundant as well. For cxample,
if we know the eigenvalues {4,} of an element g € G, then of course we know
the eigenvalues {4}} of g* for cach k as well. We can thus use this redundancy
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tosimplify the data we have to specify. The key observation here is it is enough
to give, for example, just the sun of the eigenvalues of each element of G, since
knowing the sums )" A} of the kth powers of the cigenvalues of a given element
g € G isequivalent to knowing the eigenvalues {1,} of g themselves. This then

suggests the followine:
suggests the lollewing:

Definition. If V is a representation of G, its character gy is the complex-valued
function on the group defined by
the trace of g on V.

In particular, we have
so that y, is constant on the conjugacy classes of G; such a function is called
a class function. Note that x,(1) = dim V.

Proposition 2.1. Let V and W be representations of G. Then

Yvow = Xv + tw, Xvew = v Xw,
=% and  ypn(g) = dlxe(9)? — 1 le™)].

W haracters on a fixed clemient g € G.
For the acuon of oV has elgenvalues {/1 } and W has eigenvalues {,}. Then
{4 + g} and {A;- ;) are eigenvalues for V¥ @ W and ¥ @ W, from which the
first two formulas follow. Similarly {47! = 7} arc the cigenvalues for g on V'*,
since all c:genvalues are nth roots of umty, with n the order of g. Finally,

{AAdi < j} are the eigenvaiues for g on A?¥, and

ZA’}'J (ZA) ‘Z'z'z

and since g has eigenvalues {42}, the last formula follows.

a

Exercise 2.2. For Sym?®V, verify that
Ksymrv(9) = 30l 9 + 1(9*)):
Note that this is compatible with the decomposition
VRV =Sym*V @AV
Exercise 2.3*, Compute the characters of Sym*V and AV,

Exercise 2.4*. Show that if we know the character y, of a representation V,
then we know the eigenvalucs of each element g of G, in the sense that we
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know the coeflicients of the characteristic polynomial of g: V — ¥. Carry this
out explicitly for elements g € G of orders 2, 3, and 4, and for a representation
of G on a vector space of dimension 2, 3, or 4.

Exercise 2.5. (The ariginal fixed-point formula). If V is the permutation repre-
sentation associated to the action of a group G on a finite set X, show that
2y(g) is the number of elements of X fixed by g.

As we have said, the character of a representaiion of a gtoup G is reaily a
function on the set of conjugacy classes in G. This suggests expressing the basic
information about the irreducible representations of a group G in the form of
a character table. This is a table with the conjugacy classes [g] of G listed
across the top, usually given by a representative g, with (for reasons that will
become apparent later) the number of elements in cach conjugacy class over
it; the irreducible representations ¥ of G listed on the left; and, in the appro-
priate box, the value of the character x, on the conjugacy class [g].

Exampie 2.6, We compute tie character iabie of S,. This is easy: to begin
with, the trivial representation takes the values (1, 1, 1) on the three conjugacy
classes [11, [(12)1, and [(123)], whereas the alternating representation has
values (1, —1, 1). To see the character of the standard representation, note
that the permutation representation decomposes: C* = U @ V; since the
character of the permutation representation has, by Exercise 2.5, the vajues
3,1,0), we have p =g — v =3, LO - (1,1, 1) = (2,0, —1). In sum,
then, the character table of &, is

1 3 2
S, i 12 (123)

trivial U 1 1 1
alternating U’ 1 -1 1
standard ¥ | 2 0 ~1

'

This gives us another solution of the basic problem posed in Lecture 1: if

W is anv renresentation of S, and we d W into i ible renre-
W is any representation of ©, and we decompose W into irreducibie fepre

sentations W = U@ U'®* @ V¥, then xy = ayy + byy- + cxy. In particu-
fat, since the functions xy, xy- and xp are independent, we see that W is
deterntined up to isomorphism by its character yy.

Consider, for example. ¥ ® V. Its character is (x, )%, which has values 4,0,
and | on the three conjugacy classes. Since V'@ U @ U’ has the same char-
acter, this implies that V ® V decomposes into V@ U @ U, as we have seen
directly. Similarly, ¥ ® U’ has values 2,0,and —1L,so V@ U = V.

§2.2. The First Projection Formula and Its Consequences 15

Exercise 2.7*. Find the decomposition of the representation V'®" using char-
acter theory.

Characters will be similarly useful for larger groups, although it is rare to

{ind muplc ciosed formuias for ﬂecomposlng tensor products

§2.2. The First Projection Formula and
Its Consequences

In the last lecture, we asked (among other things) for a way of locating
explicitly the direct sum factors in the decomposition of a representation into
irreducible ones. In this section we will start by giving an explicit formula for
the projection of an irreducible representation onto the direct sum of the trivial
factors in this decomposition; as it will turn out, this formula alone has
tremendous consequences.

To start, for any representation V of a group G, we set

=[veVigr=v VgeG)

We ask for a way of finding ¥'¢ explicitly. The idea behind our solution to
this is already implicit in the previous lecturc. We observed there that for any
representation ¥ of G and any g € G, the endomorphism g: V - V is, in
general, not a G-module nomomorphism. On tiie other hand, if we take the
average of all these endomorphlsms, that is, we set

v= Z g€ End(V),

|Gf
then the endomorphism ¢ will be G-linear since 3 g = ¥ hgh™'. In fact, we
have

Proposition 2.8. The map ¢ is a projection of V onto V.

Proor, First, suppose v = @(w) = (/G Y, gw. Then, for any h e G,

1 1
hw=__-5h =
i |G|Z gw IGIZ”W’

so ihe image of ¢ is contained in ¥5. Conversely, if ve V9, then p(v) =
(/IG) Y v=1v,50 V¢ < Im(p)and p o ¢ = .

We thus have a way of finding explicitly the direct sum of the trivial
subrepresentations of a given representation, although the formula can be
hard o use if it does not simplify. If we just want to know the number m of
copies of the trivial representation appearing in the decomposition of ¥, we
can do this numerically, since this number will be just the trace of the
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projection p. We have

= dim V¢ = Trace(p)

1 1
=.— ¥ Trace(g)= — } 1,(9) 29)
1Gl ¢e6 |Gl 4ec

In particular, we observe that for an irreducible representation V other than
the trivial one, the sum over all g € G of the vaiues of the character y,, is zero.
We can do much more with this idea, however. The key is to use Exercise
i.2:if ¥V and W are represeniations of G, then with Hom({¥, W), the represeiia-

tion defined in Lecture i, we have

Hom(V, W)¢ = {G-medule homomorphisms from V to W},

If ¥ is itreducible then by Schur’s lemma dim Hom(V, W)© is the multiplicity
of ¥ in W; similarly, if W is irreducible, dim Hom(¥, W) is the multiplicity
of W in V, and in the case where both ¥ and W are irreducible, we have

1 fv=w

dim Homg(V, W) = {Q HVEW

But now the character yyiom, i) of the representation Hom(V, W) = V* @ W
is given by

(2.10)
To express this, let
C1ass(G) = {class lunctions on G}
and define an Hermitian inner product on €,,,.,(G) by
(o, B) = 1y alg)Bla). .10
ST {

Formuia (2.10) then amounts te

Theorem 2.12. In terms of this inner product, the characters of the irreducible
representations of G are orthonormai.

For example, the orthonormality of the three irreducible representations
of S, can be read from its character table in Example 2.6. The numbers over
each conjugacy class tell how many times to count entries in that column.

Corollary 2.13. The munber of irreducible representations of G is less than or
equal 10 the mumber of conjugacy classes.
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We will soon show that there are no nonzero class functions orthogonal
to the characters, so that equality holds in Corollary 2,13,

Corollary 2.14. Any representation is determined by its character.

Indeed il V = V@1 @ - @ V@, with the ¥, distinct irreducible characters,
then x, = Y. a;2y,, and the y,, are linearly independent.

Corollary 2.15. A repr V is irreducible if and only if (xy, xy) = 1.
In fact, if ¥ = V@ @ - @ V% as above, then (y,., ) = ¥, af.
; lated via

The multiplicities @, can be cal vi

Corollary 2.16. The multiplicity a, of Vyin V is the inner product of 1, with x;.,
ie, @ = (tys 2y

We obtain some further corollarics by applying ail this to the regular

representation R of G. First, by Exercise 2.5 we know the character of R; it is
simply
0 ifg#e
Tale) = {IGI itg—e.

Thus, we see first of all that R is not irreducible if G # {e}. In fact, if we set
R = DV, with ¥, distinct irreducibies, then

1 .
a4 =gy, Xa) = ﬁxv,(e)-lﬁl =dim V. .17

orollary JO T I
Corollary 2.18. Any irrediicible representation  of G appears int the regular

representation dim V times.
Tn particular, this proves again that there are only finitely many irreducible
representations. As a numerical consequence of this we have the formula
|Gl = dim{R) = Z dim (V)% {2.19)
Also, applying this to the value of the character of the regular representation
on an element g € G other than the identity, we have
0=3 (dim V) 1y (9) Hg=e (2.20)

These two formulas amount to the Fourier inversion formula for finite groups,
cf. Example 3.32. For example, if dll but one of the characters is known, they
give a formula for the unknown character.

Exercise 2.21. The orthogonality of the rows of thé character table is equiv-
alent to an orthogonality for the columns (assuming the fact that there are as
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many rows as columns). Written out, this says:
(i} Forge G,

@ _ 16

Zz: o)z = e

where the sum is over all irreducible characters, and c(g) is the number of

clements in the conjugacy class of g.
(i) If g and h are elements of G that are not conjugate, then

¥, xlgxim = 0.
x

Note that for g = e these reduce to (2.19) and (2.20).

§2.3. Examples: S, and A,

To see how the analysis of the characters of a group actually goes in practice,
we now work out the character table of §,. To start, we list the conjugacy
classes in S, and the number of elements of &, in each, As with any symmetric
group S, the conjugacy classes correspond naturally to the partitions of d,
that is, expressions of d as a sum of positive intcgers ay, a,, ..., &, where
the correspondence associates to such a partition the conjugacy class of a
permutation consisting of disjoint cycles of length a,, a5, ..., a,. Thus, in &,
we have the classcs of the identity element 1 (4 =1+ 1+ 1 + 1), a trans-
position such as (12), corresponding to the partition 4 = 2 + | + 1; a three-
cycle (123) corresponding to 4 = 3 + 1; a four-cycle (1234) (4 = 4); and the
product of two disjoint transpositions (12)(34) (4 = 2 + 2).

Exercise 2,22, Show that the number of elements in each of these conjugacy
classes is, respectively, 1, 6, 8, 6, and 3.

As for the irreducible representations of €, we slart with the same ones
that we had in the case of S,: the trivial U, the alternat,mg U', and the
standard representation ¥, ie., the quotient of the permutalmn representation
associated to the standard acnon of S, on a set of four elements by the
trivial subrepresentation. The character of the trivial representation on the
five conjugacy classes is of course (1, 1, 1, 1, 1), and that of the alternating
representation is (1, —1, 1, —1,1). To find the character of the standard
representation, we observe that by Exercise 2.5 the character of the permuta-
tion representation on C* is ¢+ = (4, 2, 1,0, 0) and, correspondingly,

w=ree— =010 -1,-1

Note that |y, ] = 1, so V is irreducible. The character table so far looks fike
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1 6 8 6 3
3, 1 (12) (123) (1234) (12)(34)
trivial U 1 1 1 t {
alternating U’ 1 -1 1 -1 i
standard V | 3 1 0 -1 —1

Clearly, we are not done yet: since the sum of the squares of the dimensions
of these three representations is 1 + 1 +9 = 11, by (2.19) there must be
additionai irreducible representations of &,, the squares of whose dimensions
add upto24 — 11 = 13. Since there are by Corollary 2.13 at most two of them,
there must be exactly two, of dimensions 2 and 3. The latter of these is easy
to locate: if we just tensor the standard representation ¥ with the alternating
one U', we arrive at a representation V' with character yy. = 2, yy =
(3, —1,0, 1, —1). We can see thal this is irreducible either from its character.
(since |xy] = 1) or from the fact that it is the tensor product of an jrreducible
representation with a onc-dimensional one; since its character is not equal to
that of any of the first three, this must be one of the two missing ones. As for
th ply call it W;
we can determme its character from the orthogonality relations (2.10). We
obtain then the complete character table for S,:

n of rlpgrnn two we will for now
n Of gegree twe, we will [or now

11 6 [ 6 3
S, | 1 (1 (23 (023 (1904

trivial U 1 1 t i 1

alternating U’ 1 -1 1 -1 1

standard V | 3 1 0 -1 -1

-veu | 3 -1 0 1 -1

Another W 2 0 i 0 2

Exercise 2.23. Verify the last row of this table from (2.10) or (2.20).

We now get a dividend: we can take the character of the mystery represen-
tation W, which we have obtained from general character theory alone, and
use it to describe the representation W explicitly! The key is the 2 in the last
column for y,y: this says that the action of (12)(34) on the two-dimensional
vector space W is an involution of trace 2, and so must be the identity. Thus,
W is really a representation of the quotient group!

If N is a normal subgroup of a group G, a representation p: G — GL(V) is trivial on N if and
only if it factors through the quotient
G~ G/N = GL(V).

Representations of G/N can be identified with reptesentations of G that are trivial on N.
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S,/{1,(12)(34), (13)(24), (14)(23)} = S,.

[One may see this isomorphism by letting &, acl on the elements of the
conjugacy class of (12)(34); equivalently, if we realize &, as the group of rigid
motions of a cube (see below), by looking at the action of ©, on pairs of
opposite faces.] W must then be just the standard representation of S, puiled
back to &, via this quotient,

Example 2.24. As we said above, the group of rigid motions of a cube is the
symmetric group on four letters; &, acts on the cube via its action on the four
long diagonals, It follows, of course, that &, acts as weil on the set of faces,
of edges, of vertices, etc; and (o each of these is associated a permutation
representation of ©,. We may thus ask how these representations decomposc;
we will do here the case of the faces and leave the others as exercises.

We start, of course, by describing the character x of the permutation
representation associated to the faces of the cube. Rotation by 180° about a
line joining the midpoints of two opposite edges is a transposition in S, and
fixes no faces, so x(12) = 0. Rotation by 120° about a long diagonal shows
x(123) = 0. Rotation by 90° aboui a line joining the midpoints of iwo opposite
faces shows x(1234) = 2, and rotation by 180° gives x((12)(34)) = 2. Now
(x, x) = 3, so y is the sum of three distinct irreducible representations. From
the table, (x, xy) = (%, xv-) = (6 xw) = 1, and the inner products with the
others are zero, so this representation is U @ V' @ W. In fact, the sums of
opposite faces span a three-dil ional subrepr ion which ins U
(spanned by the sum of all faces), so this representation is U @ W. The
differences of opposite faces therefore span V.

Exercise 2.25%

vertices and (i) the edges of the cube.

Exercise 2.26. The alternating group %, has four conjugacy classes. Three
representations U, U', and U” come from the representations of

W /{1, (12)(34), (13)(24), (14)(23)} = Z/3,

: . . i . r
so there is one more irreducible representation V of dimension 3. Compute
the character table, with w = e2™/;

14 4 3
w, | 1 g2y g3y (1204
vt 1 I
vt ow o? t
|2 ? © 1
vii o 0 -t
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Exercise 2.27. Consider the representations of &, and their restrictions to 9.
Which are still irreducible when restricted, and which decompose? Which
pairs of nonisomorphic representations of &, become isomorphic when
restricted? Which representations of 9, arise as restrictions from &,?

§2.4. More Projection Formulas; More Consequences

in this section, we compiete the anaiysis of the characters of tie irreducible
representations of a general finite group begun in §2.2 and give a more general
formula for the projection of a general representation ¥ onto the direct sum
of the factors in ¥ isomorphic to a given irreducibie representation W. The
main idea for both is a generalization of the “averaging” of the endomorphisms
g: ¥V — V used in §2.2, the point being that instcad of simply averaging all the
g we can ask the question: what linear combinations of the endomorphisms
g: V = V are G-linear endomorphisms? The answer is given by

= 99

Pronacie

Tot cr O € ho anv fasetios oo o o e s
ATOPOSINGH £.40. 1€l «: U - ve any funiction on the group G, and jor any

et
representation V of G set
Gey =L alg) g: V> V.
Then @, y is a homomorphism of G-modules for all V if and only if « is a class
Junction,
PRoor. We simply write out the condition that ¢, ,, be G-linear, and the result
falls out: we have
Pe.v(ht) = T a(g) glhw)

=Y alhgh™")- hgh™ (I
(substituting hgh ™! for g)

= h(}. a(hgh™)-g(v))

= (Y alg)- g(o))
(if « is a class function)

= i,y (v)).

Exercise 2.29*, Complete this proof by showing that conversely if « is not 2

class function, then there exists a representation V of G for which ¢, fails to

Lo O linans
oe {-iiear. L

As an immediate consequence of this proposition, we have
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Proposition 2.38. The number of irreducible representations of G is equai to the
number of conjugacy classes of G. Equivalently, their characters {xy} Jorm an

arthonormal basis for € ,,,(G).

PROOF. Suppose a: G - Cis a class function and (a, x,,) = 0 for all irreducible
representations ¥; we must show that o — 0. Consider the endomorphism

Py =L 0lg)g: VoV
as defined above. By Schur’s lemma, ¢, , = 4-1d; and if n = dim V, then

A= %-tracc((p,.,,)
= % Y g (9)

Gl
oy
=0.

Thus, ¢, , = 0, or Za(g}-g = {) on any representation V of G; in particular,
this will be true for the regular representation ¥ = R. But in R the elements
{g € G}, thought of as elements of End(R), are linearly independent. For
cxample, the elements {g(e)} are all independent. Thus a(g) = 0 for all g, as
required. Im]

This proposition completes the description of the characters of a finite
group in general. We will see in more examples below how we can use this
information to build up the character table of a given group. For now, we
mention another way of expressing this proposition, via the representation
ring of the group G.

The representation ring R(G) of a group G is easy to define. First, as a group
we just take R(G) to be the frec abelian group gencrated by all (isomorphism
classes of) representations of G, and mod out by the subgroup generated by
clements of the form ¥ + W — (V @ W). Equivaientiy, given the statement of
complete reducibility, we can just take all integral linear combinations Y a,
of the irreducible repr ions ¥, of G, el ts of R(G) are correspondingly
called virtual representations. The ring structure is then given simply by tensor
product, defined on the generators of R(G) and extended by linearity.

We can express most of what we have learned so far about representations
of a finite group G in these terms, To begin, the character defines a map

X R(G) > Cqppi(G)
from R(G) to the ring of complex-valued functions on G; by the basic formulas
of Proposition 2.1, this map is in lact a ring homomorphism. The statement

that a representation in determined by its character then says that y is injective;
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the images of y are called virtual characters and correspond thereby to virtual
representations. Finally, our last proposition amounts to the statement that
¥ induces an isomorphism

Xc: R(G)® € — Cy,, (G).

The virtual characters of G form a Jattice A = Z° in €,y,,,(G), in which the
actual characters sit as a cone A, = N° = Z°. We can thus think of the
problem of describing the characters of G as having two parts: first, we have
to find A, and then the cone A, = A (once we know A, the characters of the
irreducible represeniations wiil be defermined). In the following iecture we
will state theorems of Artin and Brauer characterizing A @ Q@ and A.

The argument for Proposition 2.30 also suggests how Lo obtain a more
general projection formula. Explicitly, it W is a fixed irreducible representation,
then for any representation ¥, look at the weighted sum

[
V==Y xw(g):geEnd(V).
|G} 456

By Proposition 2.28, y is a G-module homomorphism. Hence, if V is irreduc-
ible, we have ¢ = A-1d, and

l=-L—Tracc¢

dim V
1 |
= amﬁ 2. xw(g) xvlg)
A—l ifV=Ww
= JddimV -
Lo ivew
For arbitrary ¥,
Yy = dim wo L wig)g: V-V (231)

is the projection of ¥ onto the factor consisting of the sum of all copies of W
appearing in V. In other words, if V = () V", then

. 1 J——
n=dim Ve T e e 3
1614

is the projection of V onto ¥;®™.

Exercise 2.33% (a) In terms of representations ¥ and W in R(G), the inner
product on C,,,(G) takes the simple form

(¥, W) = dim Homg(V, W).
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(h) IT x & ©,,,.(G) is 4 virtuai character, and (x, x) = I, then either yor —y
is the character of an irreducible representation, the plus sign occurring when
x(1)> 0. 10 (x, ) = 2, and y(1) > 0, then yx is either the sum or the difference
of two irreducibie characters.

(¢) If U, ¥, and W are irreducible representations, show that U appears in
V@ W if and only if W occurs in ¥* @ U. Deduce that this cannot occur
unless dim U > dim W/dim V.

We conclude this lecture with some exercises that use characters to work
out some standard facts about representations.

Exercise 2.34* Let ¥ and W be irreducible representations of G, and
Ly: V - W any linear mapping. Define L: V —» W by

l - .
Lip) = @‘EG g7 Lo(g-v).

Show that L = 0if V and W are not isomorphic, and that L is multiplication
by trace(Lo)/dim(VYif V = W.

Exercise 2.35*. Show that, if the irreducible repr ions of G are ref i
by unitary matrices {cf. Exercise 1.14], the matrix entries of these representa-
tions form an orthogonal basis for the space of all functions on G [with inner
produci given by (2.1j].

Exercise 2.36*. If G; and G, are groups, and F; and ¥, are representations of
G, and G,, then the tensor product ¥V, ® V, isa reprcscmahon of G1 x Gy,
by(g; x g;) ; Qu)=g; v, g, v;. Tod i
product from the internal tensor producl—when Gl G,—this external
tensor product is sometimes denoted V, @ ¥,. If y, is the character of ¥}, then
the value of tlie character y of ¥, ® ¥, is given by the product:

(g1 % g5) = 1,(g1)12(g2).

If ¥; and ¥, are irreducible, show that V, @V, is also irredugible and show
that every irreducible representation of G, x G, arises this way. In terms of
representation rings,

R{G, x (,) = R(G) ® R(G,).

In these lcctures we will often be given a subgroup G of a general linear
group GL(V), and we will look for other representations inside tensor powers
nf Y/ Tha fallawing neahlam whish in o thaneans Af Duoencide and At

. The following problem, which is a theorem of Buraside arid Molien,

shows that for a finite group G, all irreducible representations can be found
this way.

§2.4. More Projection Formulas; More Consequences 25

Problem 2.37*. Show that if ¥ is a faithful representation of G, ie, p: G >
GL(V) is injective, then any irreducible representation of G is contained in
some tensor power V2" of V.

l’l’UDleﬂl 4,387, anow lna[ me mmensmn DI an IITBOUCIDIC reprcsemauon of
G divides the order of G.

Another challenge:

Problem 2.39*. Show that the ch ter of any irreducible rey ion of
dimension greater than ! assumes the value 0 on some conjugacy class of the
group.
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We will see quite a bit more about the rep ions of the symmetric groups in
general later; §4 is devoted to this and will certainty subsume this discussion, but this
should provide at least a sense of how we can go about analyzing representations of
a class of groups, 53 troduce two
basic notions in representation theory, induced reptesentanonx and the group algebra.

Finally, in §3.5 we show how to classily representations of a finite group on a real
vector space, given the answer to the corresponding question over C, and say a few
words about the analogous question for subfields of C other than R. Everything in this
lecture is elementary except Exercises 3.9 and 3.32, which involve the notions of Clifford
algebras and the Fourier transform, respectively (both exercises, of course, can be
skipped).

§3.1: Examples: S, and U,
§3.2: Exterior powers of the standard representation of S,
diced lepﬁ:Sémauonb

§3.4; The group algebra
§3.5: Real repr ions and rep ions aver subfields of C

re is som:

§3.1. Examples: ©; and U,

We have found the representations of the symmetric and alternating groups
for n < 4. Before turning to a more systematic study of symmetric and alter-
nating groups, we wiil work out the next coupie of cases.

§3.1. Examples: S, and A 27

Representations of the Symmetric Group &,

As before, we start by listing the conjugacy classes of S and giving the number
of elements of each: we have 10 transpositions, 20 three-cycles, 30 four-cycles
and 24 five-cycles; in addition, we have 15 elements conjugate to (12)(34) and
10 elements conjugate to (12)(345). As for the irreducible representations, we
have, of course, the trivial representation U, the alternating representation U’,
and the standard representation ¥; also, as in the case of &, we can tensor
the standard representation V with the alternating one to obtain another
irreducible representation V* with character yy. = xp " 2o

Exercise 3.1. Find the characters of the representations ¥ and V7; deduce in
particular that ¥ and ¥’ are distinct irreducible representations.

The first four rows of the character table are thus

| 1 10 2 30 24 15 20
S |1 (2 (123) (3 (1245 (1204 (129045
U 1 1 1 1 1 1
[ B | 1 -1 1 1 -1
v |4 2 1 0 -1 0 -1
vIi4e -2 1 0 -1 0 t

Clearly, we need three more irreducible representations. Where should we
look for these? On the basis of our previous experience (and Problem 2.37),a
natural place would be in the tensor products/powers of the irreducible
representations we have found so far, in particular in V ® V (the other two
possible products will yield nothing new: wehave V'@ ¥V = V® V ® U’ and
V'@ V' =¥ ® V). Of course, ¥ @ V¥ breaks up into A2V and Sym?¥, so we
look at these separately. To start with, by the formula

Xner(@) = $ (0 — xola®)
we calculate the character of A2V
xaw =1(6,0,0,0, 1, —2,0);

we see from this that it is indeed a fifth irreducibie representation {and that
AV @ U’ = AV, 50 we get nothing new that way).

We can now find the remaining two representations in either of two ways.
First, if n; and n, are their dimensions, we have

2 2, A2 2 2 22 w2
S=120= 12412442 4 42 4 62 4 u? 41,

50 nl + n} = 50. There are no more one-dimensional representations, since
these are trivial on normal subgroups whose quotient group is cyclic, and
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is the only such subgroup. So the only possibility isn, = n, = 5. Let W denote
one of these five-dimensional representations, and set W’ = W® U'. In the
table, if the row giving the character of W is

5 ap a a

s Oy s o)
3 %3 5 )

that of Wis (5 —o; a, —ay @, a5 —d) Using the orthogonality

felations or (2.20), one sees that W’ 2 W; and with a little calculation, up to
interchanging W and W', the last two rows are as given:

to10 20 30 24 5 20
S | 1 01 (23 (23 (12345 (1)34) (120345
R 1 1 1 1 1 i
v - 1 — i 1 -
V|4 2 1 0 .y 0 -1
vi|la -2 ! 0 y o 1

AR 0 0 1 -2 0
ws I -1 0 1 1
wois -t -t ( 0 i -1

From the decomposition ¥ @ U = C5, we have also A*V = ASCS = U,
and V* = V. The perfect pairing!

Vx NV MY = U,
taking v X (v, A 5, A B;) 10 A vy A 1y A vy shows that ATV is isomorphic
V*RU =V
Anotlie to find the representations W and W' would be to proceed

ANULIE]
wi_th.our original plan, and look at the representation Sym?¥, We will leave
this in the form of an exercise:

Exercise 3.2. (i) Find the character of the representation Sym?V.
(if) Without using any knowledge of the character table of S5, use this to
show that Sym?V is the direct sum of three distinct irreducible representations.
(iii} Using our knowledge of the first five rows of the character table, show
that Sym?V is the direct sum of the representations U, ¥, and a third irreduc-

ihla ranracant

ivle representation W. Complete the character tabie for S;.

E;(ercise 3.3. Find the decomposition into itreducibles of the represeniations
NW, Sym®W, and v @ W,

¥ vl.r ¥ and W are n-dimensional vector spaces, and U is one dimensional, a perfect pairing is a
bilinear map fi: ¥ x W — U such that no nonzero vector v in ¥ has P, W) = 0. Equivalently,
the map ¥ - Hom(W, U) = W* @ U, v (w1 fi(y, w)), is an isomorphism.

§3.1. Examples: €, and U, 29

Representations of the Alternating Group 2

What happens to the conjugacy classes above il we replace &, by U,?
Obviously, all the odd conjugacy classes disappear; but at the same time, since
conjugation by a transposition is now an outer, rather than inner, auto-
morphism, some conjugacy classes may break into two.

Exercise 3.4. Show that the conjugacy class in &, of permutations consisting
of products of disjoint cycles of lengths by, b, ... will break up into the union
of two conjugacy classes in U, if all the & are odd and distinct; if any b; are
even or repeated, it remains a single conjugacy class in . (We consider a
fixed point as a cycle of length 1)

acy clase of three-cycles

he co y ciass of three-cycles

In the case of 9, this means we have ¢
(as before, 20 elements), and of products of two disjoint transpositions (15
elements); the conjugacy class of five-cycles, however, breaks up into the
conjugacy classes of (12345) and (21345), each having 12 elements.

As for the representations, the obvious first place to look is at restrictions
to ¥ of the irreducible representations of S found above. An irreducible
representation of G, may become reducible when restricted to s; or two
distinct representations may becotne isomorphic, as will be the case with U
and U’, V and V’, or W and W' In fact, U, V, and W stay irreducible
since their characters satisfy (y, y) = 1. But the character of A>V has values
(6,0, —2, 1, 1) on the conjugacy classes listed above, so (x, ¥) = 2, and A2V is
the sum of two irreducible representations, which we denote by ¥ and Z. Since
the sums of the squares of all the dimensions is 60, (dim Y)? 4 (dim Z)? = 18,
so each must be three dimensional.

Exercise 3.5. Use the orthogonality relations to complete the character table
of Ag:

|t 20 15 12 12
wo| 1 @) pee (2345 (1345
u 1 1 1 1 1
v a 1 0 ~1 _1
wls -1 1 0 0
y l 3 0 IR SURVE B E v
z |3 0 -1 1-y8 1S

2 2

The representations ¥ and Z may in fact be familiar: 25 can be realized as
the group of motions of an icosahedron (or, equivalently, of a dodecahedron)
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and Y is the corresponding representation, Note that the two representations
N, -+ GL4(R) corresponding to ¥ and Z have the same image, but (as you
can see from the fact that their characters differ only on the conjugacy classes
0f (12345) and (21345)) differ by an outer automorphism of Ay

Note also that A’V does not decompose over Q; we could see this directly
from the fact that the vertices of a dodecahedron cannot all have rationat
coordinates, which lollows from the analogous fact for a regular pentagon in
the plane.
FEyorcice 16 Find

Axercise 6. ying

on of (he permutation representation of A
corresponding to the (i) vertices, (ii) faces, and (iii) edges of the icosahedron.

Exercise 3.7. Consider the dihedral group D,,, defined to be the group of
isometries of a regular n-gon in the plane. Let I & Z/n < D,, be the subgroup
of rotations. Use the methods of Lecture | (applied there to the case S, = Dy)
to analyze the representations of D,,: that is, restrict an arbitrary representa-
tion of D,, to I', break it up into eigenspaces for the action of ', and ask how
the remaining generator of D,, acts of these eigenspaces.

Exercise 3.8. Analyze the representations of tlie dihedral group Dy, using the
character theory developed in Lecture 2,

Exercise 3.9. (a) Find the character table of the group of order 8 consisting of
the quaternions {41, 44, +j, +&} under tiplication. This is the case
m = 3 of a collection of groups of order 2™, which we denote H,,. To describe
them, let C,, denote the complex Clifford algebra generated byv,,..., s, with
relations o} = —1 and v vy = —u;-v;, 80 C, has a basis v, = Uyt g, 88
I'={i; <-- <i,} varies over subsets of {1, ..., m}. (See §20.1 for notation and

basic facts about Clifford algebras). Set

H, = {to;1]iseven} = (Cor*")*.

This group is a 2-to-1 covering of the abelian 2-group of m x m diagonal
matrices with + 1 diagonal entries and determinant 1. The center of H,, is
{£1} if mis odd and is {+]1, *0(1,..m;} i mis even, The other conjugacy
classes consist of pairs of elements {v,}. The isomorphisms; of C&'™" with a
matrix algebra or a product of two matrix algebras give a 2"-dimensional
“spin” representation § of H,,,,, and two 2"'-dimensional “spin” or “hall-
spin” representations S* and 5 of H,,.

(b) Compute the characters of these spin representations and verify that
they are irreducible.

(c) Deduce that the spin representations, together with the 2™™! one-
dimensional representations coming from the abelian group H, /{1 1} givea

complete set of irreducible representations, and compuie the characier tabie

for H,,.
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For odd m the groups H,, are examples of extra-special 2-groups, cf. [Grie],

[Qu].
Exercise 3.10. Find the character table of the group SL,(Z/3).

Exercise 3.11. Let H(Z/3) be the Heisenberg group of order 27:

1 ad
H(Z/3) = 0 1 c|abcceZ/3; <SLiy(Z/3).
L\O d iy J

Analyze the representations of H(Z/3), first by the methods of Lecture 1
{restricting in this case to the center
([t 0 b 1
z=4[0 1 0| betp3}t =23
N
of H(Z/3)), and then by character theory.

§3.2. Exterior Powers of the Standard
Representation of &,

How should we go about constructing representation§ of th§ symmetr‘ic
groups in general? The answer to this is not immediate; itisa suh}eFt that fwll
oceupy most of the next lecture (where we will produce all the |rrsdu.c1hle
representations of &,). For now, as an example of the el‘ememaryl techniques

eveloped so far we will analyze directly one of the obvious candidates:
Proposition 3.12. Each exterior power \*V of the standard representation V of
G, is irreducible, 0 < k < d — 1.

ProoF. From the decomposition C* = V @ U, we see that V is irreducible if
and only if (xce, 1ca) = 2. Similarly, since
NC = NV RN NIV AU = AV ATy,
it suffices to show that (x, y) = 2, where x is the character of the representation
NCLLet 4 ={1,2,...,d}). For asubset B of A with k elements,andge G =
S, let
0 ifg(B)+B
{g}s= 1 if g(B) = B and gl, is an even permutation
-1 if g(B) = B and gl; is odd.
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Heze, if g{B) = B, glp denotes the permutation of the set B determined by g.
Then x(g) = Y {g}s, and
1 2
63 X)=‘| ( {.‘1}1;)
€6 B
=3 % I3 (ahalle
dl e 7T

=di Z, ; . (sgn glp)-(sen glc),
where the sums are over subsets B and C of 4 with & elements, and in the last
equation, the sum is over those g with g(B) = B and 4(C) = C. Such g is given
by four permutations: one of B C, one of B\B C,one of C\B n C, and one
of A\B U C. Letting ! be the cardinality of B n C, this last sum can be written

1
RN Ll Ll

5 )

1
= E;;”(d -2k + l)l(“g;’ sgn b/ Y

These last sums are zero unless k — ! = 0 or 1. The case k = | gives

%;kl(d -l = —;—,(Z)k!(n —Kl=1

Similarly, the terms with k — | = | also add up to 1, so (¥, X) = 2, as required.
O

Note by way of contrast that the symmetric powers of the standard repre-
sentation of S, are almost never irreducible. For exampie, we aiready know
that the representation Sym2¥ contains one copy of the trivial representation:
this is just the statement that every irreducible real representation (such as V)
admits an inner product (unique, up to scalars) invariant under the group
action; nor is the quotient of Sym?¥’ by this trivial subrepresentation neces-
sarily irreducible, as witness the case of &;.

§3.3. Induced Representations

I H = Gisasubgroup, any representation V of G restricts to a representation
of H, denoted Res§ V' or simple Res V. In this section, we describe an impor-
tant construction which produces representations of G from representations
of H. Suppose V is a representation of G, and W< Vs a subspace which is
l-invariant. For any g in G, the subspace g - W = {g'w: we W} depends only
onthe left coset gH of g modulo H, since gh- W = g «(h- W) = g- W;for acoset
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¢ in G/H, we write ¢ - W for this subspace of V. We say that V' is induced by W
if every element in ¥ can be written uniquely as a sum of elements in such
translates of W, ie.,
Ve @ oW
oeG/H

In this case we write V = Ind§W = Ind W,

Example 3.13, The permutation representation associated to the left action of
G on G/H is induced from the trivial one-dimensional representation W of H.
Here V has basis {¢,: ¢ € G/H}, and W = C e, with I the trivial coset.

Example 3.14. The regular representation of G is induced from the regular
representation of H. Here V has basis {e,: g € G}, whereas W has basis
{ex: he H).

We claim that, given a representation W of I, such ¥ exists and is unique
up to isomorphism, Although we will later give scveral fancier ways to see
this, it is not hard to do it by hand. Choose a representative g, € G for each

s,
w,, for elements
w, in W. Given g in G, write g-g, = g, h for some 7 € G/H and he H. Then
we must have

a-(8,w,) =(a-g,)w, = (g.-hw, = g.(hw,)

This proves the uniqueness and tells us how to construct ¥ = Ind(W¥) from
W. Take a copy W? of W for each left coset ¢ € G/H; for w e ¥, let g, w denote
the element of W corresponding to w in W. Let V= P W7, so every

G

elomoant oF L boo oo
aeinient o1 V nasa

g€ G, define

nits w, in W. Given

T oo o ale
2.9q W, 10T SIS0

7°(ga%s) = gelhw,) ilg-g, =g, b
To show that this defines as action of G on ¥, we must verify that g’ - (g- (g, w,))
= (g~ g)(g,w,) for another element ¢’ in G. Now il g’-g, = g, I, then
9" (g (g,m,)) = 9" (g(hw,)) = g, (K (hw,)).
Since (9"-9) g, = 9" (g°9,) = ¢"*g."h = g, ¥ - h, we have

(9" @) (g,w,} = g,((i - Wyw,} = g, (- (Aiw, )},

as required.

Example 3.15. If W = D W,, then Ind W = PlInd W,

The existence of the induced representation follows from Examples 3.14
and 3.15 since any W is a direct sum of summands of the regular representation.
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Fxercise 3.16. (a) If U is a representation of G and W a representation of H,
show that (with all fensor products over C)

U ®Ind W = Ind(Res(U) ® W).

In particular, Ind(Res(U)) = U ® P, where P is the permutation representa-
tion of G on G/H., For a formula for Res(Ind(W)), for W a representalion of
4, see {Se2, p. 58].

(b) Like restriction, induction is transitive: if H = K < G are subgroups,
show that

Note that Example 3.15 says that the map Ind gives a group homomor-
phism between the representation rings R(H) and R(G), in the opposite direc-
tion from the ring homomorphism Res: R(G) — R(H) given by restriction;
Exercise 3.16(a) says that this map satisfics a “push—pull” formula o Ind(f) =
Ind(Res(a)- #) with respect to the restriction map.

Proposition 3.17. Let W be a represenmuon of H, U arepresentation of G, and
suppose V = Ind W, Then any H- 1 WU e
unigteely to a G-module homomorphism @: V~’ U

Homg(W, Res U) = Homg(Ind W, ).

In particular, this universal property determines Ind W up to canonical

ProoF. With V = (B, . ¢,u 0 W as belore, define ¢ on o - W by
oW E, w2y, y,

which is independent of the representative g, for o since ¢ is H-linear. (3

To compute the character of ¥ = Ind W, note that g € G maps oW (o ga ¥,
so the trace is calculated from those cosets ¢ with go = o, i.e., s”'gs e H for
s € 0. Therelore,

Tmaw(@ = Y xw(s"lgs)  (s€ o arbitrary). ; (3.18)
grme :

Exercise 3.19. (a) If C is a conjugacy class of G, and C n H decomposes into

conjugacy classes D, ..., D, of H, (3.18) can be rewritten as: the value of the

character of Ind W on C is

]Dl

Xinaw(C) = |”| ‘Z ici

xw(D)

(b) Ii W is the trivial representation of H, then

G H
Yina w{C) = Lléi ]-ICnH|_
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Corollary 3.20 (Frobenius Reciprocity). If W is a representation of H, and U a
representation of G, then

(lnaws Xvde = (Xw, Aresv)u-

PrOOF. [t sullices by linearity to prove this when W and U are irreducible.
The left-hand side is the number of times U appears in Ind W, which is
the dimension of Homg(Ind W, U). The right-hand side is the dimension of
Homy (W, Res U). These dimensions are equal by the proposition. O

T Wand U are irreducible, Frobenius reciprocity says: the number of times
U appears in Ind W is the same as the number of times W appears in Res U.

Trobenius reciprocity can be used to find characters of G if characters of
H are known.

Example 3.21. We compute Ind§W, when H = 6, c G = S,, W =V, (the
standard representation) = U; (ll\e alternating representation). We know the
irreducible represenatations o[ S4: Uy, Uj, V3, which restrict to Uy, U; =V,
U, @ Uj, respectively. Thus, by Frobenius, Ind ¥, = Uy @ V.

Example 3.22. Consider next H = S; = G = &,, W = V,. Again we know the
irreducible representations, and Res Uy = U, Res U; = U}, Res V, = U, @ V,
[the vector

(L, L1, =3)e Vo = {(x,, X2, X3, x2): 2, x, = 0}

isfixed by H], Res ¥; = Uy @ V3, with ¥§ = V3, and Res W, = V; (as one may
see directly). Hence, Ind ¥V, = ¥, @ ¥, @ W,. (Note that the isomorphism
Res W, = V, actually follows, since one W, is all that could be added to
Vo @ Vytoget Ind 1y

Exercise 3.23. Determine the isomorphisin classes of the representations of S,
induced by (i) the one-dimensional representation of the group generated by
(1234) in which (1234)-v = iv, i = / — 1, (ii) the one-dimensional representa-
tion of the group generated by (123) in which (123)-v = >,

Exercise 3.24. Let H = N, = G = S;. Show that Ind U = U@ U, Ind ¥ =
Ve V,and Ind W= W@ W', whereas Ind ¥ = Ind Z = AV,

Exercise 3.25*. Which irreducible representations of &, remain irreducible
when restricted to 1,7 Which are induced from 2,? How much does this tell
you about the irreducible representations of u,?

Exercise 3.26%. There is a unique nonabeiian group ol order 21, which can be
realized as the group of affine transformations x - ax + f§ of the line over the
field with seven elements, with « a cube root of unity in that field. Find the
irreducible representations and character table for this group.
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Now titat we have introduced the notion of induced representation, we can
state two important theorems describing the characters of representations of
a [inite group. In the preceding lecture we mentioned the notion of virtual
character; this is just an element of the image A of the character map

S RIS (D
Kol onglU)

from the representation ring R(G) of virtual representations. The following

two theorems both state that in order to generate A @ @ (resp. A) it is enough

to consider the simplest kind of induced representations, namely, those induced

from cyclic (respective elementary) subgroups of G. For the proofs of these

theorems we refer to [Se2, §9, 10]. We will not need them in these lectures.

Artin’s Theorem 3.27. The characters of induced representations from cyclic
subgroups of G generate a lattice of finite index in A.

A subgroup H of G is p-elementary if H = A x B, with A cyclic of order
prime to p and B a p-group.

Brauer’s Theorem 3.28. The characters of induced representations from elemen-
tary subgroups of G generate the lattice A.

§3.4. The Group Algebra

There is an important notion that we have already dealt with implicitly but
not explicitly; this is the group algebra CG associated to a finite group G. This
is an object that for all intents and purposes can completely replace the group
G itself; any statement about the representations of G has an exact equivalent
statement about the group aigebra. Indeed, to a large extent the choice of
language is a matter of taste.

The underlying vector space of the group algebra of G is the vector space
with basis {¢,} corresponding to elements of the group G, that is, the under-
lying vector space of the regular representation. We define the algebra struc-
ture on this vector space simply by

€ e, = ey,
By a representation of the algebra CG on a vector space ¥ we mean simply
an algebra homomorphism

CG - End(V),

so that a representation ¥ of €G is the same thing as a lelt CG-module. Note
that a representation p: G - Aut(V) will extend by linearity toamap §: CG -
End(V), so that representations of CG d exactly to

) so that representations of CG correspond exactly to representations
of G; the left CG-module given by CG itsell corresponds to the regular
representation.
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If {W;} are the irreducible representations of G, then we have seen that the
regular representation R decomposes

R=¢P (W) Dawmory_

We can now refine this statement in terms of the group al

Propesition 3.29. As algebras,
CG = @ End(W)).

PROOF. As we have said, for any representation W of G, the map G -+ Aut(W)
extends by linearity to a map CG — End(W); applying this to each of the
irreducible representations W, gives us a canonical map

0:€G - @ End(W))

This is injective since the representation on the regular representation is
faithful. Since both have dimension Y (dim W;)?, the map is an isomorphism.

m}

A few remarks are in order about the isomorphism ¢ of the proposition.
First, @ can be interpreted as the Fourier transform, cf. Exercise 3.32. Note
algo that Proposition 2.28 has a natural interpretation in terms of the group
algebra: it says that the center of CG consists of those ) «(g)e, for which « is
a class funciion.

Next, we can thinkof ¢ as the decomposition of the semisimple algebra CG
into a product of matrix algebras. It implies that the matrix entries of the
irreducible representations give a basis for the space of all functions on G, cf.
Exercise 2.35.

Note in particular that any irreducible representation is isomorphic to a
(minimal) left ideal in CG. These left ideals are generated by idempotents. 1
fact, we can interpret the projection formulas of the last lecture in the language
of the group algebra: the formulas say simply that the elements

IGI Z xwl(g) e, € CG

are the idempotents in the group algebra corresponding to the direct sum
factors in the decomposition of Proposition 3.29. To locate the irreducible
representations W, of a group G [not just a direct sum of dim(I¥;) copies], we
want to find other idempotents of CG. We will see this carried out for the
symmetric groups in the following lecture.

The group algebra also gives us another description of induced representa-
tions: if W is a representation of a subgroup H of G, then the induced

representation may be constructed simply by
Ind W= CG ®cy W.
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where  acts on the first factor: g- (e, ® W) = ¢, ® w. The isomorphism of
the reciprocity theorem is then a special case of a general formula for a change
of rings CH - CG:

Homgy(W, U) = Hom¢g(CG Rcy W, U).

Exercise 3.30*. The induced representation Ind(W) can also be realized con-
cretely as a space of W-valued funciions on G, which can be useful to produce
matrix realizations, or when trying to decompose Ind(W) into irreducible

pieces. Show that 'pd’W\ is isomorphic to

Hom,(€G, W) = {: G- W:f(hg) = hf(g), VheH,geG),
where G acts by (¢’ fNg) = f(gg’).

Exercise 3,31, If CG is identified with the space of functions on G, the function
@ corresponding to ngq:(g)e,, show that the product in CG corresponds
to the convolution * of functions:

lo+9)g) = X olhppi™")
(With integration replacing ion, this indicates how one may extend
the notion of regular representation to compact groups.)

Exercise 3.32*. I p: G — GL(V,) is a representation, and ¢ is a function on G,
define the Fourler transform ¢(p) in End(V,) by the formula

®lp) = ng o(g) plg).

(a) Show that ¢+ ¥(p) = 3lp) - W(p).

b) Prove ihe Fourier inversion formula

olg)= @ T dim(¥,) Trace(p(g™")- ¢(p)),

the sum over the irreducible representations p of G. This formul
to formulas (2.19) and (2.20).
(¢} Prove the Plancherel formula for functions ¢ and  on G

T 06 (0) = g 3 dim(v,)- Trace(@ (o) ().

Our choice of left action of a group on a space has been perfectly arbitrary,
and the entire story is the same il G acts on the right instead. Moreover, there
is a standard way to change a right action into a left action, and vice versa:

Given a right action of G on V definie the left aoer -
Given a right action of ¢ on ¥, define the left action by

gov=vi(g"), geGureV.
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If A =CG is the group algebra, a right action of G on ¥ makes V a right
A-module, To turn right modules into left modules, we can use the anti-
involution @@ of 4 defined by (Y a.e,)* = ¥ aze,-1. A right A-module is
then turned into a left A-module by settinga-v=v-4.

The following exercise will take you back to the origins of representation
theory in the 19th century, when Frobenius found the characters by factoring
this determinant.

Exercise 3.33*. Given a finite group G of order n, take a variable x, for each
element g in G, and order the elements of G arbitrarily. Let F be the deter-
minant of the 1 x n matrix whose entry in the row labeled by ¢ and column
labeled by h is x_.,-1. This is a form of degre¢ n in the n variables x,, which is
independent of the ordering. Normalize the factors of F to take "w valye !
when xe=1and x, =0 for g # e. Show that the irreducible factors of F -
correspond to the irreducible representations of G. Moreover, if F, is the factor
corresponding to the representation p, show that the degree of F, is the degree
d(p) of the representation p, and that each F, occurs in F d(p) times. if , is

Ayt

the characier of i show that xa“" is the COelllClel'l( of Xg X" in F',A

§3.5. Real Representations and Representations
over Subfieids of C

If a group G acts on a real vector space V,, then we say the corresponding
complex representation of ¥V = ¥V, ®g C is real. To the extent that we are
interested in the action of a group G on real rather than complex vector
spaces, the problem we face is to say which of the complex representations of
G we have studied are in fact real.

Qur first guess might be that a representation is real if and only if its
character is real-valued. T Ins turns out not to be the case: the character of a
real represents 1 j real- ‘v‘muvu, biit ihe converse need not be tiie.
To find an example, suppose G < SU(2}is a finite, nonabelian subgroup. Then
G acts on €* = V with a real-valued character since the trace of any matrix
in SU(2) is real. If ¥ were a real representation, however, then G would be a
subgroup of SO(2) = §*, which is abelian. To produce such a group, note that
SU(2) can be identified with the unit quaternions. Set G — {+ 1, i, +j, +k}.
Then G/{+ 1} is abelian, so has [our one-dimensional representations, which
give four one-dimensional representations of G. Thus, G has one irreducible
two-dimensional representation, whose character is real, but which is not real.

Exercise 3.34*, Compute the character table for this quaternion group G, and
compare it with the character table of the dihedral group of order 8.
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A more successful approach is to note that if ¥ is a real representation of
G, comiug from J;, as above, then one can find a positive definite symmetric
bilinear form on ¥, which is preserved by G, This gives a symmetric bilinear
form on V which is preserved by G. Not every representation will have such
a form since degeneracies may arise when one tries to construct one following
the construction of Proposition 1.5, In fact,

Lemma 3.35. An irreducible representation V of G is real if and only if there is
a nondegenerate symmetric bilinear form B on V preserved by G.

ProoF. H we have such B, and an arbitrary nondegenerate Hermitian form H,
also G-invariant, then

vivsBy
gives a conjugate linear isomorphism ¢ from V to V: given x e V, there is a
unique ¢(x) € ¥ with B(x, y} = H(p(x), y), and ¢ commutes with the action
of G. Then ¢* = p = ¢ is a complex linear G-module homomorphism, so
@* = 1-1d. Moreover,

H{gx), ) = B{x, y) = Bly, x) = Hio(y), x) = H{x, o)},
from which it follows that H(p2(x), y) = H{x, ¢2(y)), and therefore A is a
positive real number. Changing H by a scalar, we may assume A =1, so
@* = Id. Thus, ¥ is a sum of real eigenspaces ¥, and V. for ¢ corresponding
toeigenvalues { and — 1. Since ¢ commutes with G, ¥, and ¥_ are G-invariant

subspaces. Finally, p(ix) = —ig(x),s0 iV, = V_,and V=¥, ® C. [}

Note from the proof that a real representation is also characterized by the
existence of a conjugate linear endomorphism of ¥ whose square is the
identity; il ¥ = V, ®¢ €, it is given by conjugation: v, @ A0, ® 1.

A warning is in order here: an irreducible representation of G on a vector
space over R may become reducible when we extend the group field to €. To
give the simpl le, the rep ion of Z/n on R? given by

P

e PUIPRY

Ik - 2mk
COS —— — 8N —-
& n n
pi ks
s 2k 2nk
in—— cos—
n n

is irreducible over R for n > 2 (no line in R? is fixed by the action of Z/n), but
will be reducible over €. Thus, classifying the irreducible representations of G
over C that are real does not mean that we have classified all the irreducible
real representations. However, we will see in Exercise 3.39 below how to finish
the siory once we have found tie reai representations of G that are irreducibie
over C.
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Suppose ¥ is an irieducible representation of G with x, real. Then there is
a G-equivariant isomorphism V = V*, ie, there is a G-equivariant (non-
degenerate) bilinear form B on V; but, in general, B need not be symmetric.
Regarding B in

V*Q V* =Sym?V* @ A?V*,

and noling the uniqueness of B up to multiplication by scalars, we see that B
is either symmetric or skew-symmetric. If B is skew-symmetric, proceeding as

Definition 3.36. A gnaternionic representation is a (complex) representation V'
which has a G-invariant homomorphism J: ¥ — V that is conjugate linear,
and satisfies J> = —Id. Thus, a skew-symmetric nondegenerate G-invariant
B determines a quaternionic struciure on V.

Summarizing the preceding discussion we have the

Theoem 3.37. An irreducible representation V is one and only one of the
Jollowing:

(1) Complex: xy is not real-valued; V does not have a G-invariant non-
degenerate bilinear form.

(2) Real: V = ¥, ® C, a real representation; V has a G-invariant symmetric
nondegenerate bilinear form.

{3) Quaternionic: gy Is real, but V is not real; V has a G-invariant skew-
symmetric nondegeneate bilinear form.

Exercise 3.38. Show that for V irreducible,
0 if ¥ is complex
1
= Y xlg)=4 1 ilVisreal
|Gl ge6
—1 if ¥ is quaternionic.
This verifies that the three cases in the theorem are mutually exclusive. It also

implies that if the order of G is odd, all nontrivial representations must be
complex.

Exercise 3.39. Let ¥, be a real vector space on which G acts irreducibly,
V = V¥, ® € the corresponding real representation of G. Show that if V is not
irreducible, then it has exactly two irreducible factors, and they are conjugate
complex representations of G.

* See §7.2 for more on quaternjons and quaternonic representations.
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Exercise 3.41*, The group algebra RG is a product of simple R-algebras corre-
sponding to the irreducible representations over R. These siinple algebras are
matrix algebras over C, R, or the quaternions H according as the representa-
tion is conipiex, reai, or quaiernionic.

Exercise 3.42*, (a) Show that all characters of a group are real if and only if
every element is conjugate to its inverse.

(b) Show that an element ¢ in a split conjugacy class of 2, is conjugate to
its inverse if and only if the number of cycles in ¢ whose length is congruent
to 3 modulo 4 is even.

(c) Show that the only d’s for which every character of ¥, is real-valued arc
d=1,2,5,6,10,and 14.

Exercise 3.43* Show that: (i) the tensor product of two real or two quater-
nionic representations is real; (ii) for any ¥, V* ® V is real; (iii) if V is real, so
are all A'V; (iv) if V is quaternionic, A*¥ is real for k even, quaternionic for
k odd.

Representations over Sublfields of C in General

We consider next the generalization of the preceding problem to more general
subfieids of €. Unfortunately, our results will not be nearly as strong in
general, but we can at least express the problem neatly in terms of the
representation ring of G.

To begin with, our terminology in this general setting is a little different.
Let K = € be any subfield. We define a K-representation of G to be a vector
space ¥, over K on which G acts; in this case we say that the complex
representation V = V, ® € is defined over K.

One way to measitre how many of the representations of G are defined over
a field K is to introduce the representation ring R¢(G) of G over K. This is
defined just like the ordinary representatio,
of formal linear combinations of K-representations of G modulo relations of
the form V' + W — (V@ W), with mulliplication given by tensor product.

ring; that is, it is just the group

Exercise 3.44*. Describe the representation ring of G over R for some of the
Eroups G whose compiex representation we have analyzed above. In partic-
ular, is the rank of R (G) always the same as the rank of R(G)?

Exercise 3.45%. (a) Show that Ry(G) is the subring of the ring of class functions
on G generated (as an additive group) by characters of representations defined
over K.

§3.5. Real Repr over Subfields of 43

ions and Repr

{b) Show that the characters of irreducible representations over K form an
orthogonal basis for Rg(G).

(c) Show that a complex representation of G can be defined over K if and
only il its character belongs to Rg(G).

For more on the relation between Rg(G) and R(G), see [Se2].
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Representations of ©,: Young Diagrams
and Frobenius’s Character Formula

In this lecture we get to work Specifically, we gwe in §4.1 a complete description of
ions of the sy ic group, that is, a construction of the
rcprcsenlauom (vm Young symmetrizers) and a formula (Frobenius® forniula) for their
characters. The proof that the representations constructed in §4.1 are indeed the
irreducible representations of the symmetric group is given in §4.2; the proof of

Frobenius’ formula, as well as a number of others, in §4.3. Apart from their intrinsic

Lie theory: analogs of the Young symmetrizers wifl give a construction of the irredite-

ible representations of SL,C. At the same time, while the techniques of this lecture are
cowpletely clementary (we use only a few ideatities about symmetiic polynomials,
proved in Appendix A), the level of difficulty is clearly higher than in preceding
lectures. The results in the latter half of §4.3 (from Corollary 4.39 on) in particular are
quite difficult, and inasmuch as they are not used later in the text may be skipped hy
readers who are not symmetric group enthusiasts,

Statements of the resuits
Irreducible representations of G4

Proof of Frobenius's formula

T3
Bl

%

§4.1. Statements of the Results

The number of irreducible representaton of &, is the number of conjugacy
classes, which is the number p(d) of partitions® of did =4, +* + 4,
Ay 2 A4 > L. We have

s i i, and fmes & i

iice, to have pattitions that end in one or
more zeros; il convenienl, we allow some of the 1, on the end to be zero. Two sequences define
the same partition, of course, if they differ only by zeros at the end.
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Lo =)

=+ )1+ 2+ )1+ 34

which converges exactly in |1} < |. This partition number is an interesti
arithietic function, whose congruences and growth behavior as a function of
d have been much studied (cf. [Har], [And]). For example, p(d) is asymptoti-
cally equal to (1/ad)e? V2, with a = 4/3and f = n./2/3.

To a parlition 1 = (4, ..., 4,) is associated a Young diagram (sometimes
caited a Young frame or Ferrers diagram)

Ay
v [

with 4, boxes in the ith row, the rows of boxes lined up on the left. The
conjugate partition ' = (1},..., ) to the partition 1 is defined by inter-
changing rows and columns in the Young diagram, i.e., reflecting the diagram
in the 45° line. For example, the diagram above is that of the partition
{3,3,2, 1, 1), whose conjugate is (5, 3, 2). (Without reference to the diagram, the
conjugate partition to 4 can be defined by saying A; is the number of terms in
the partition A that are greater than or equal to i)

Young diagrams can be used to describe projection operators for the
regular representation, which will then give the irreducible representations of
©,. For a given Young diagram, number the boxes, say consecutively as
shown:

3]

—

B

6
B2
Lo

More generally, define a tablear on a given Young diagram to be a numbering
of the boxes by the'integers 1, ..., d. Given a tablea, say the canonical one
shown, define two subgroups® of the symmetric group

* 11a tableay other than the canonical one were closen, one would get different groups in place of
P and @, and different efements in the group ring, but the representations constricted this way
will be isomorphic.
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P =P, = [g € G g preserves each row}

Q = 0, = {g € ©,: g preserves each column}.

the group algebra £8,, we inirodiice iwo elemeris cortesponding to ihese
a,= Y e and b= ) sgn(g)e,. @1
i3]

To see what a, and &, do, observe that if ¥ is any vector space and &, acts
on the dth tensor power ¥ ®? by permuting factors, the image of the element
a, € CS, - End(V ®) is just the subspace

Im(a,) = Sym* V @Sym*V ® - - @ Sym**V < V&4,

where the inclusion on the right is obtained by grouping the factors of 1 ®4
according o the rows of the Young tableaux. Similarly, the image of b, on
this tensor power is

Im(b;) = V@AV @ - @ NV = V&,

where p is the conjugate partition to A.
Finally, we set

c;=a; b eCS&,; 4.2)

this is calied a Young symmetrizer. For example, when 4 = (d), ¢, = agy, =
Yge .8 and the image of ¢y, on V8 is Sym'V. When 1=(l,..., 1),
ooy = b, 1y = Ygee,5E0()e,, and the image of ¢, _,, on V@ is A4V,
We will eventually see that the image of the symmetrizers c, in V®¢ provide
essentially all the finite-dimensional irreducible representations of GL(V).
Here we state the corresponding fact for representations of S,

Theorem 4.3. Some scalar multiple of c, is idempotent, i.e., c3 = n,c,, and the
image of c, (by right multiplication on C&,) is an irreducible representation
V2 of ©,. Every irreducibie representation of. , can he obtained in this
way for a unique partition.

We will prove this theorem in the next section. Note that, as a coroliary,
eachirreducible representation of &, can be defined over the rational numbers
since ¢, is in the rational group algebra @S,. Nole also that the theorem gives
a direct correspondence between conjugacy classes in &, and irreducible
representations of &, something which has never been achieved for gencral
groups.

For example, for 1 = (d),

Vg=C8p Y ¢,=C- Y ¢,

§4.1. Statements of the Resulis : 47

is the trivial representation U, and when 1 = (1, ..., 1),

Va..on= CG.;-’; sen(gle, = C-"%' sgn(g)e,

Gz, =€y + ep)(er —ey3) =1+ €12~ €um — €uaz

in CS;, and V,,,,, is spanned by ¢, ,, and (13)-¢qa,1), 80 V3,4, is the standard
representation of S,.

Exercise 4.4*. Set 4 = CS,, 50 V; = Ac, = Aa,h,.

(a) Show that V, = Ab,a,.

(b) Show that V, is the image of the map from Aa, to Ab, given by right
multiplication by b, By {a), this is isomorphic to the image of Ab, - Aa, given
by right multiplication by a,.

{c) Using (a) and the description of V, in the theorem show that

Ve=1@U,

where 2'is the conjugate partition to A and U’ is the alternating representation.

Examples 4.5. In earlier lectures we described the irreducible representations
of €, ford < 5. From the construction of the representation corresponding to
a Young diagram it is not hard to work out which representations come from
which diagrams;

&, 17 trivial

E altemnating

-
&, {T13 U trivial H U' altemating

B:] V  standard

& 4 v EU'
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o v
EEW EEPW'

e
i

Exercise 4.6*. Show that for general 4, the standard representation V corre-
sponds to the partition d = (d — 1) + 1. As a challenge, you can try to prove
R

ihat ihe exierior powers of the siandard represeniation ¥ are represented by
a “hook™

EREEN

r
I
5

\

[

Note that this recovers our theorem that the A°V are irreducible.

Next we turn to Frobenius's formula for the character y, of ¥, which
includes a formula for its dimension. Let C; denote the conjugacy class in S,
determined by a sequence

i= (), 0., 0,) with) ai, =d:
G consists of those permutations that have i, 1-cycles, i, 2-cycles, ..., and i,
d-cycles. .
Introduce independent variables x,, ..., x,, with k at least as large as the

number of rows in the Young diagram of A Define the power sums Bix),
1 <j < d, and the discriminant A(x) by

Pix)=x{ + x{ + -+ xf,

Alx) = in} X = x;).
I f(x) = flx,, ..., %) is a formal power series, and (I, ..., 1,) is a k-tuple
of non-negative integers, let

[/ ]q.....np = coeflicient of x{' -+ xpin f. 4.8)
Given a partition A: 4, = -+~ = 4, > 0 of d, set

h=Aibk—t, L=l+k-2.L=4, @9

@.7)
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a strictly decreasing sequence of k non-negative integers. The character of v
evaluated on g & Cjis given by the remarkable

Frobenius Formula 4.10

Gy = [A(x)- I1 P,(x)'f]
¥ (LTS )

For example, if d = 5, 1 = (3, 2), and C, is the conjugacy class of (12)(345),

ie, iy =0,iy=1i,=1 thea

13.(C) =[xy — x2)* 6} + D0 + ¥DTpagy = L.

Other entries in our character tables for &,, &, and &, can be verified as
easily, verifying the assertions of Examples 4.5.

In terms of certain symmetric functions §, called Schur polynomials, Fro-
benius’s formula can be expressed by

[J] R = ¥ a(C)S,,

the sum over all partitions A of d in at most & parts (cf. Proposition 4.37
and (A.27)). Although we do not use Schur polynomials explicitly in this
lecture, they play the central role in the algebraic background developed in
Appendix A.

Let us use the Frobenius formula to compute the dir
conjugacy class of the identity corresponds to i = (d), so

nsion of V,. Tl

dim V; = x,(Cgy) = [A(X) (xy + -+ + T, 10

Now A(x) is the Vandermonde determinant:

oy - xpt
: = 3 (sgnahg® ... XL,
- 2
1 ox, Xk e
The other term is
i LS “
() =Y X2 X

rlonl

%

the sum over k-tuples (r,, ..., r,) that sum to d, To find the coefficient
X" x{* in the product, we pair off corresponding terms in these two sums,
getting

d!
T 0@+ DI, ~ e F O

Lsenlo)

the sum over those a in &, such that ,_,,, —a(i) + 1 > 0forall | <i<k.
This sum can be written as



50 4. Representations of S, Young Diagrams and Frobenius’s Character Formula

fé sgn(a)j-f[llj(lj~ Dotk —j 4+ 142

4 I' I.k ’k(lkil) |

d!
ARAN

il - : N

P L= ’
By column reduction this determinant reduces to the van der Monde deter-
minant, so

-1 @11

withly=1,+k—1i

There is another way of expressing the dimensions of the V,. The hook
Josoctle ol o b 2en o Voo A cricnn 20 bhan srimbene af aciemeas dieoatle Lalau,
leiigth of & box in a Young diagram is the number of squares directly below

or directly to the right of the box, including the box once.

!
4

In the following diagram, each box is labeled by its hook length:

3

4]3[1]
2]1

Hook Length Formula 4.12.
d!
dmV, = ——— -,
* [1(Hook lengths)
For the above partition 4 + 3 + 1 of 8, the dimension of the corresponding
representation of €y is therefore 81/6-4-4-2-3 = 70. i

Exercise 4.13*, Deduce the hook tength formula from the Frobenius formula
(4.11).

Exercise 4.14%, Use the hook length formula to show that the only irreducible
representations of &, of dimension less than d are the trivial and alternating
representations U and U’ of dimension 1, the staridard representation V
and V' = V@ U’ of dimension d — 1, and three other examples: the two-
dimensional representation of &, corresponding to the partition 4 =2 + 2,
and the two five-dimensional representations of €, corresponding to the
partitions6 =3 4+ 3and 6 =2+ 2 + 2.
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Exercise 4.15%, Using Frobenius’s formula or otherwise, show that:

Ya-1 (G =iy — 1

Xa-2.1.0(C) = 3y — Dl ~ 2) ~ iy}

Ha-2.20C) =} — DG Y iy L
Can you continue this list?
Exercise 4.16*. Il g is a cycle of length d in &,, show that x,(g)is +1iflisa
hook, and zero il 1 is not a hook:

(-1 i=@d—-s1..,1)0<s<d—-1
1alg) = {0

otherwise.

Exercise 4.17. Frobenius [Fro1] used his formula to compute the value of x,
on a cycle of length m < d.

{a) Following the procedure that led to (4.11)—which was the case
m = {—show that ’

o (.18

I~
3

PR

_ v 1Y LOD o Ly
A= A Vi) = g — 1y

mamy

Uin the Laurent

The sum in (4.18) can be realized as the coeflicient of x~
expansion of ¥ (x)/p(x) at x = 0.

Define the rank r of a partition to be the length of the diagonal of its Young
diagram, and let a, and &, be the number of boxes below and to the right of
the ith box of the diagonal, reading from lower right to upper left. Frobenius
a,a;...4a,
bib, ... b,
areverse notation for the characte

For the partition (10,9, 9, 4,4, 4, 1):

called ( ) the characteristics ol the partition. (Many writers now use

tics, writing (b,

a,)instead.)

-

r=4

haracteristi 2 3 46
characteristics =, . ., o

Algebraically, » and the characteristics ¢, < --* < a, and b, <--- < b, are
determined by requiring the equality of the two sets
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.. b b—1—ay,...k—1—a} and
(0,4 k—Lk+b,....k+b}
(b) Show that y(x)/p(x) = g{y)/f(y), where y = x — d and

[lo-h .
f=5"———— g =fr-m[[y—j+1.
_ﬂl(y-)-a,+1) -

Deduce that the sum in (4.18) is the coefficient of x™* in g(x)/f(x).
{c) When m = 2, use this to prove the formula

i Ve s
dd(;m_ ;) ‘; (btb + 1) — afa; + 1).

Hurwitz [Hur] used this formula of Frobenius to calculate the number of
ways to write a given permutation as a product of transpositions. From this
he gave a formula for the number of branched coverings of the Riemann sphere
with a given number of sheets and given simple branch points. Ingram [In]
bas given oilier formulas for x,{y), when g is a somewhat more complicated
conjugacy class,

1((12) =

Exercise 4.19*. 1T V is the standard representation of S,, prove the decom-
positions into irreducible representations:

Sym*’V 2 U@ VDV
VOV =Sym*VONV 2 UD VS Vy12,2® Vuoa 11y

Exercise 4.20*. Suppose 1 is symmetric, ie, A=V, and let g, > g, >+ >
q, > 0 be the lengths of the symmetric hooks that form the diagram of 4; thus,
q, =24 — 1,49, =21, — 3, .... Show that if g is a product of disjoint cycles

of lengths q,, q,, ..., g,, then
Xal) = (= -

§4.2. Irreducible Representations of &,

We show next (hat the representations ¥, constructed in the first section are
exactly the irreducible representations of &,. This proof appears in many
standard texts (e.g. [C-R], [Ja-Ke], [N-S], [Wel]), so we will be a little
concise.

et A = €&, be the group ring of S,. For a partition 4 of d, let P and ¢
be the corresponding subgroups preserving the rows and columns of a Young
tableau T corresponding to 1, let a=a,, b =bhy, and let ¢ = ¢, = ab be
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the corresponding Young symmetrizer, so V;, = Ac, is the corresponding
representation. {These groups and elements should really be subscripted by
T to denote dependence on the tableau chosen, but the assertions made
depend only on the partition, so we usually omit reference to T)

Note that P~ @ = {1}, so an element of S, can be written in at most one
way as a product p-q, p€ P, g € Q. Thus, ¢ is the sum 3, +e,, the sum over
all g that can be written as p- g, with coefficient + | being sgn{g); in particular,
the cosllicient of e in ¢ is 1.

Lemm

2L (1) ForpeP,

420 (1) F =a

mma \pPa=ay L
(2) For g Q,(sgn{q)q) b = b-(sgn(q)q) = b.

(3) Forallpe P, qeQ, p-c-(sgn(g)q) = ¢, and, up to muitiplication by a
scalar, c (s the only such element in A.

Proor. Only the last asscrtion is not obvious. Il ) # e, satisfies the condition
in (3), then n,,, = sgn{g)n, for all g, p, g; in particular, n,, = sgn(g)n,. Thus,
it suffices to verify that n, = 0 il g ¢ PQ. For such g it suffices to find a
transposition ¢ such that p =t e P and g7 'tg € Q; for then g = pgq, so
n = —n, If T' = gT is the tableau ob ea iof T
by g(i), the claim is tirat there is are two distinct integers that appear in the
satne row of T and in the same column of T*; ¢ is then the transposition of
these two integers. We must verify that if there were no such pair of integers,
then one could write g = p-gforsome p € P,q € Q. To do this, first take p, € P
and gy € @' = gQg~
on the rest of the tableau, one gets p € P and ¢' € ¢ so that pT = ¢'T". Then
pT = q'gT, so p = q'g, and therefore g = pg, where ¢ = g7'(¢')"'g € Q, as
required. [}

We order partitions lexicographically:

A> p if the first nonvanishing 4, — g, is positive. 4.22)

Lemma 4.23.(1) If 1 > p, then for all x € A,a,- x*b, = 0.1n particular,if A > p,
then ¢, ¢, — 0,

(2) Forallx e A,c; xc; = is a scalar multiple of c,. In particular,c, ¢, =
nycy for some ny e C.

PRrooF. For (1), we may take x = g € ©,. Since g-b, g™ is the element con-
structed from ¢gT', where T” is the tableau used to construct b, it suffices to
show thata, - b, = 0. One verifies that 1 > pimplies that there are two integers
in the same row of T and the same column of T". If ¢ is the transposition of

these integers, then a, t = a,, t-b, = —b,,50 a,-b, = a, t-t-h, = —ay'b,,
as raauirad Dact 19) fall ooy T e ANt (o]
as required. Part (2) follows from Lemma 4.21 (3). ]

Exercise 4.24%. Show thatif A # g, then ¢, A ¢, = 0;in particular, ¢, ¢, = 0.
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Lemma 4.25, (1) Each V, is an irreducible representation of ©,.
(2) If A 3 p, then V, and V, are not isomorphic.

Proor. For (1) note that ¢;V, < Cc, by Lemma 423, If WV, is a
subrepresentation, then c;W is either Cc; or 0. If the first is true, then
Vi=d- e W Otherwise W-W < 4- cAW 0, but this implies W— X
Indeed, a projection from A onto W is given by right multiplication by an
element g € 4 with ¢ = p” e W- W = 0. This argument also shows that
¢ V3 # 0, ie, that the number n, of the previous lemma is nonzero.
For (2}, we may assume A > ji. Then ¢, ¥ = Ce, # §,bui ¢, ¥, = ¢;- dc, =

0, so they cannot be isomorphic 4-modules.

Lemma 4.26. For any 4, ¢, ¢; = m,c,, with n, = di/dim V,,

ProoF. Let F be right multiplication by ¢, on A. Since F is multiplication by
1, on ¥y, and zero on Ker(c,), the trace of F is n, (imes the dimension of ¥,.
But the coefficient of ¢, in ¢, c, is 1, 50 (race(F) = |&,| = d1. (]

Since there are as many irreducible representations ¥, as conjugacy classes
of &,, these must form a complete set of isomorphism classes of itreducible
representations, which completes the proof of Theorem 4.3, In the next section
we will prove Frobenius’s lormula for the character of Vi, and, in a series of
exercises, discuss a little of what else is known about them: how to decompnse

ts or induced or restricted representations, how to find a bas

for V), etc.

§4.3. Proof of Frobenius’s Formula

For any partition 4 of d, we have a subgroup, often called a Young subgroup,
S, =8, x 4.27)

Let U, be the representation of €, induced from the trivial representation of
©,. Equivalently, U, = A" a,, with a, as in the preceding section. Let

x €, =6,

V1 = xu, = character of U,.

4.28)

Key to this investigation is the relation between U, and ¥, i.e., between y,

and the character x, of ¥;. Note first that ¥, appears in U,, since there is a
surjection

U, = Aa, » V; = Aa,b,,

X x-by. 4.29)

Alternatively,

Vy = Aayb, > Abja;, = Aa, = U,,
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by Exercise 4.4, For example, we have

Ui-t.0 2 M,y © Wy

which expresses the fact that the permutation representation C* of &, is the
sum of the s

ndard representation and the trivial representation. Eventually

we will see that every U, contains ¥, with multiplicity one, and contains only
other ¥, for p > 1.

The character of U, is easy to compute directly since U, is an induced
representation, and we do this next.
ig)a d-tuple of non-ncgative iniegers with Y. ai, = d, denote

Fori={,,...,
by
Cc§,
the conjugacy class Lonsisting of elements made up of i, I-cycles, i, 2-cycles,

cvetos T

, iy d-cycles. The number of efements in C, is easiiy counted o be

d!
Gl = i, 12001 deil @30

By the formula [or characters of induced representations (Exercise 3.19),

VG = €,:8,1'1CN G,

m[

I AT 8

1 Z[I oy !_ ,“lpa.fﬁ'

n !
1<p<k<qg<d} of non-

where the sum is over all collections {
negative integers salisfying

fg=Tg+r,+ " +n,

A=ty 2y o dry,

(To count C;n &, wrile the pth component of an element of €, as a product
of r,y t-cycles, r,; 2-cycles, ....) Simplifying,

va(G) =3, H =

=1 Fyg.

(4.31)

the sum over the same collections of integers {r,,q)
This sum is exactly the coefficient of the monomial X* = x}

power sum symmetric polynomial

.. xf in the

PO = (o o) o xR e b ) (432)
So we have the formula
U (C) = [P™], = coeflicient of X*in P, 4.33)

To prove Frobenius’s formula, we need to compare these coefficients with the
coefficients w,{i) defined by
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i) =[A- P, I=@G+k—1LA+k—2,..,4). (439

QOur goal, Frobenius's formula, is the assertion that y,(C)) = w,(i).
There is a general identity, valid for any symmetric polynomial P, relating
such coefficients:

[Pl= Z Kul[A‘P](;”+k*|,pz+k—-2,..4,yk7!
"

where the coefficients K, are certain universally defined integers, called

Kmtka numbers. For any partitions A and yof d, the integer K2 may be defined
com

atorially as the number of ways to fill the boxes of the Yo
umber of ways {6 fill the boxes of the Young diagram

for p with 1, 1 s, 43 25, up to A, K’s, in such a way that the entries in each
row are nondecreasing, and those in each column are strictly increasing; such
are called semistandard tableaux on p of type 1. In particular,

K =1, and Kaa=0forpu< A

The inleger KM may be also be defined to be the coeflicient of the monomial

X* e xfre -x in the Schur polynomial S, corresponding to u. For the

proof that these are equivalent definitions, see (A.9) and (A.19) of Appendlx

(,]\ In the present case, applying Lemma A.26 to the polynomial P = PV, we
educe

VG = X K,a0,00) = @,) + E‘ K0, (4.35)
# w>
The result of Lemma A.28 can be written, using (4.30), in the form
1 -
Ji ; [Clos (), ) = 6y, (4.36)

This indicates that the functions w,, regarded as funchom on the con_yugacy
classes of &;, sati

fy the same orth I 1 ag the
.............. hogonality relations as the irreducible

characters o[ 6,, In [dcl, one can deduce formally from these equations that
the w, must be the irreducible characters of &,, which is what Frobenius
proved. A littte more work is needed to see that w, is actually the character
of the representation V,, that is, to prove

Proposition 4.37. Let x, = x,, be the character of V,. Then for any conjugacy
class Gy of &,

124G} = 0,(i).

Proor. We have seen in (4.29) that the representation U,, whose character is
i3, contains the irreducible representation V;. In fact, this is all that we need
to know about the relation between U, and ¥;. It implies that we have

o=V %, Ho> b alls
Va= LBpke HaZs a0
[

5 &al iy,

[\

0 4y
G, {4.38)

Consider this equation together with (4.35). We deduce first that each w;isa
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virtuat character: we can write
wy = Z MapXer My €L
But the w,, like the x,, are orthonormal by (4.36), so

1 =(wy, @) = Z "':,.,
0

and hence w, is 4. ¢ for some irreducible character x. (It foliows from the hook
length formula that the plus sign holds here, but we do not need to assume
thig)

Fix 4, and assume inductively that y, = @, for alt 4 > 4, so by (4.35)

a =y + Z Koty
e

Comparing this with (4.38), and using the linear independence of characters,
the only possibility is that w, = x,. O

Corollary 4.39 (Young's rule). The integer K, Is the multiplicity of the irreduc-
ible representation V, in the induced representation U,

V2V, @K,u ur Vi=ta+ Z‘ Ly
1

Note that when A=(l,..., 1), U, is just the regular representation, so
Kya,...1y = dim V,. This shows that the dimension of V, is the number of
standard tableaux on A, i.e., the number of ways (o fiii the Young diagtam of
A with the numbers from 1 to d, such that aill rows and columns are increasing.
The hook iength formula gives another combinatorial formula for this dimen-
sion. Frame, Robinson, and Thrall proved that these two numbers are equal.
For a short and purely combinatorial proof, see [G-N-WJ. For another proof
that the di ion of ¥, is the ber of standard tableaux, see [Jam]. The
tatter leads to a canonical decomposition of the group ring 4 = CS, as the
direct sum of left ideals .4e;, summing over all standard tableaux, with
ey = (dim Vy/d")- ¢y, and c; the Young symmetrizer corresponding to T, cf.
Exercises 4.47 and 4.50. This, in turn, leads to explicit calculation of matrices
of the representations ¥, with integer coefficients.

For another example of Young's rul¢, we have a decomposition

Ud-a,p = @V(a Ly

In fact, the only it whose diagrams can be filled with d — a 1's and a 2's,
nondecreasing in rows and strictly increasing in columns, are those with at
most two rows, with the second row no longer than a; and such a diagram
has only one such tableau, so there are no multiplicities.

Exercise 4.40* The characters ¥/, ol €, have been defined only when dis a
partition of d. Extend the definition to any k-tuple a = (ay, ..., a;) of inlegers
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that add up to 4 by setting ¥, = 0 if any of the a, are negative, and otherwise
W, = Y5, where 1 is the reordering of ay, ..., a, in descending order. In this
case y, is the character of the represenldlion induced from the trivial represen-
tation by the inclusion of &, x - . in &, Use (A 5) and (A.9) of
ixAto prove { ihe deie; wtal _[Ul immi for the irreducible characiers
X1 in terms of the induced characters ¢,:

= Zé SE(OWa, et)=1, dghet2) =2, 2y otk k1
&%

I product yr, -y, -...- ¥,
4y Yay o0 Yy

can be written

'/’A. '//a,ﬂ V’A,uk 1
Vit ¥ayeee

=Wl = . Bt Th .

’d’lk»kdl-“ ¥, I

The formal product of the preceding exercise is the character version of an
“outer product” of representations. Given any non-negative integers d,, ...,
dy, and representations V; o &, , denote by ¥, o -+ o ¥, the (isomorphism class
of the) representation of &, d = Zd,, induced from the tensor product repre-
sentation W& @ ¥, of &, x - x &, by the inclusion of S, x -~ x &,,
in &, (see Exercise 2.36). This product is commutative and associative. It w1l|
turn out to be useful to have a procedure for decomposing such a representa-
tion into its irreducible pieces. For this it is enough to do the case of (wo
factors, and with the individual representations V, irreducible. In this case, one
has, for ¥, the representation of S, corresponding to the partition 4 of d and
¥, the representation of €, corresponding to the partition y of m,

Vie V=2 Ny Vo (4.41)

the sum over all partitions v of d + m, with Ny, the coeflicients given by the
Littlewood- Richardson rule (A.8) of Appendix A. Indeed, by the exercise, the
character of ¥, o ¥, is the product of the corresponding determinants, and, by
(A.8), that is the sum of the characters Ny, x,.

When m == | and p = (m), V, is trivial; this gives

dgm =3V, (4.42)

the sum over all v whose Young diagram is obtained from that of 1 by adding
one box. This formula uses only a simpler form of the Littlewood—Richardson
rule known as Pieri’s formula, which is proved in (A.7).

Exercise 4.43*. Show that the Littlewood—Richardson number N,,, is the

o 17 o renrecontatinn I/ in o ractriatine -
licity of the irreducible representation ¥,8Y, in .h» restriction of ¥,

from &,,,, to &, x S,,. In particular, taking m = 1, g = (1), Pieri’s formula
(A.7) gives

Resga 1V, =Y Vv,
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the sum over all 1 obtained from v by removing one box. This is known as
the “branching theorem,” and is useful for inductive proofs and constructions,
particularly because the decomposition is multiplicity free. For example, you
can use it to reprove the fact that the multiplicity of ¥, in U, is the number of
andard tableaux on ji of type A. 1t can also be used {0 prove the assertion
made in Exercise 4.6 that the representations corresponding to hooks are
exterior powers of the standard representation.

Exercise 4.44* (Pieri’s rule). Regard &, as a subgroup of €,,,, as usual. Let 1
be a partition ol d and v a partition of d + m. Use Exercise 4.40 to show that
the multiplicity of V, in the induced representation Ind(V,) is zero unless the
Young diagram of 1 is contained in that of v, and then it is the number of
ways (o number the skew diagram lying between them with the numbers from
1 to m, increasing in both row and column. By Frobenius reciprocity, this is
the same as the multiplicity of ¥, in Res(V,). .

When applicd to d = 0 (or 1), this implics again that the dimension of ¥, is
the number of standard tableaux on the Young diagram of v.
of these rules, see [Dia §7, §81.

cations of these ries, see (21a fl, §

Fora of the manv
For a sampung of (D many ap

Problem 4.45*. The Murnaghan—Nakayama rule gives an eflicient inductive
method for computing character values: If A is a partition of d, and g € S, is
written as a product of an m-cycle and a disjoint permutation h € &,_,,, then

Xatg) = 3 (= 1y, (),

where the sum is over all partitions st of d — m that are obtained from 1 by
removing a skew hook of length m, and r{g) is the number of vertical steps in
the skew hook, i.e., one less than the number of rows in the hook. A skew hook
for 1 is a connected region of boundary boxes for its Young diagram such
that removing them leaves a smaller Young diagram; there is a one-to-one
correspondence between skew hooks and ordinary hooks of the same size, as
indicated:

A=(1,6,554.411)
n=(7,4,4,3,31,1,1)
hook length =9,r =4

For example, if A has no hooks of length m, then x,(g) =

The Murnaghan-Nakayatna rule may be written inductively as follows: If
g is a written as a product of disjoint cycles of lengths m,, m,, ..., My, with
the lengths m, taken in any order, then y,(g) is the sum Y (— 1", where the
sum is over all ways s to decompose the Young diagram of 1 by successively
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removing p skew hooks of lengths m,, ..., m,, and r(s) is the total number of
vertical steps in the hooks of 5.

(a) Deduce the Murnaghan—Nakayama rule from (4.41) and Exercise 4.16,
using the Littlewood—Richardson rule. Or:

{b) Wiih the notation of iixercise 4.40, show that

k
Ve V@ = 3l Al 0

Exercise 4.46*. Show that Coroliary 4.39 implies the “Snapper conjecture™
the irreducible representation V, occurs in the induced representation U, if
and only il

oy forallj> 1t

Problem 4.47*. There is a more intrinsic construction of the irreducible
representation V,, calied a Specht module, which does not involve of the choice
of a tableau; it is also useful for studying representations of &, in positive
characteristic. Define a tabloid {T} (o be an equivalence class of tableaux
(numberings by the integers 1 to d) on 4, two being equivalent if the rows are
the same up to order. Then S, acts by permulations on the tabloids, and the
corresponding representation, with basis the tabloids, is isomorphic to U,.

For each tableau 7' define an element E.. in ¢
For each tableau 7| define an element E, in

Er = bp{T} =} sgniq){qT),

the sum over the g that preserve the columns of T. The span of ali E’s is
isomorphic to ¥, and the E,’s, where T varies over the standard tableaux,
form a basis.

Another construction of ¥, is to take the subspace of the polynomial ring
C[x,, ..., x,] spanned by all polynomials Fy, where Fy = TTtx; = xy), the
product over all pairs i < j which occur in the same column in the tableau 7.

Exercise 4.48*. Let U; be the representation A - b, which is the representation
of &, induced from the tensor product of the alternating representations on
the subgroup 8, = &, x -~ x &, , where u = 1’ is the conjugate partition.
Show that the decomposition of Uj is

SUp =YK, ¥,
i

Deduce that ¥, is the only irreducible representation that occurs in both U,
and U3, and it occurs in each with multiplicity one.

Note, however, thatin general A- ¢, £ A-a, n A+ b, since A-¢;may not be
contained in 4 -a,.
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Exercise 4.49*. With potation as in (441), if U’ = ¥, _ ,, is the alternating
representation of &, show that ¥, o I, decomposes into a direct sum
@V,, the sum over all 7 whose Young diagram can be obtained from that of
1 by adding m boxes, with no two in the same row.

Exercise 4.50, We have scen that 4 = C&, is isomorphic to a direct sum of
i1, copies of V, = Ac,, where m, = dim V, is the number of standard tableaux
on A. This can be scen explicitly as lollows. For each standard tableau T on
each 4, let ¢, be the element of CS, constructed [rom T. Then A = @A cr.
Indeed, an argument like that in Lemma 4.23 shows thai cr - ¢q. = § whenever
T and T’ are (ableaux on the same diagram and T > T, ie,, the first entry
(reading from lelt to right, then top to bottom) where the tableaux differ has
the entry of T larger than that of T". From this it follows that the sum £4 - ¢,
is direct. A dimension count concludes the proof. (This also gives another
proof that the dimension of V, is the number of standard tableaux on 4,
provided one verifies that the sum of the squares of the latter numbers is d1,
<f. [Boe] or [Ke])

1*

1 methods for decomposing a tensor product
of (wo representations of &,, which amounts to finding the coeflicients C,,,
in the decomposition

eV, =x.G,V,
s how (o expres: s
of the induced representations U,, it suffices to compute V3 ® U,, which
is isomorphic to Ind(Res(V,)), testricting and inducing from the subgroup
S, =8, x &,, x -; this restriction and induction can be computed b)" the
Littlewood—Richardson rule. For d < 5, you can work out these coefficients
using only restriction to &,_; and Pieri’s formula.

(a) Prove the following closed-form formula for the coefficients, which
shows in particular that they are independent of the ordering of the subscripts
A, p,and v:

ess ¥, in U
> Tr

|

LI .
Cow = }I_, 265 wz(‘)“’,‘(i)‘”v(l)a
the sum over all i = (i}, ..., iy) with Zod, = d, and with ,() = x,(C;) and
2(0) = iy 111,121 qgld™
(b) Show that

1 ifp=2 b oifp=1
Couay = { K Ciutnn = {

0 otherwise, 0 otherwise.

ise 4.52* Let R, = R(S;) denote the representation ring, and set
= @;“;9 R,. The outer product of (4.41) determines maps

R,® R, Ryims
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which makes R into a commutative, graded Z-aigebra. Restriction determines
maps

Rosm = R(Spin) > R(&, X &,) = R, O R,
which defines a co-product &: R - R® R. Together, these make R into a
(graded! Hopf algebra. (This assertion implies many of the formulas we have
proved in this lecture, as well as some we have not.)
(a) Show that, as an algebra,
R=Z[H,,...,H,,...],

where H, i‘s an indeterminate of degree d; H, corresponds to the triviat
representation of ;. Show that the co-product § is determined by
OH)=H,®1+H,_,®H, +- + 1 ®H,.

if we ’sel A= ZU{‘,, ey Hy ] = @A,, we can identify A, with the
symmelnAc po_lynom:als of degree d in &k > d variables. The basic symmetric
polynomials in A, defined in Appendix A therefore correspond to vittual
representations of S;.

(b) Show that E, corresponds to the alternating representation U’, and

HyoU,  SeV, EoU.

(c) Show that the scalar product { , ) defined on A, in (A.16) corresponds
to the scalar product defined on class functions in (2.11).

(d) Show th
4 representation with the alternating representation U,

(e) Show that the inverse map from R, to A, takes a representation W to

1
Fag cor®

where z(i) = i 11'- 1,120 1d%,

The (inner) tensor product of representations of &, gives a map R, ® R,
lf, which corresponds to an “inner product” on symmetric functions so:ne-
times denoted *. '

(f) Show that

piry po — 10 forj+i
2HPY ifj=1i
Since these P™ forini a basis for

product.

Representations of A, and GL,(F,)

In this lecture we analyze the representation of two more types of groups: the alternat-
ing groups U, and the linear groups GL,(F,) and SL,(F ) over finite fields. 1 the former
case, we prove some general results relating the representations of & group to the
representations of asubgroupofindex two, and use what we know about the symmetric
group; this should be completely straightforward given just the basic ideas of the
preceding lecture. In the latter case we start essentially from scratch. The two sections

of

cacy fo remaind:

can be tead (or not} independentiy; neither is jogically necessary for the remainder

the book.

§5.1: Representations of 2,
§5.2: Representations of GL,(F,) and SL,(F,)

§5.1. Representations of A,

The alternating groups 2,, d > 5, form one of the infinite families of simple
groups. In this section, continuing the discussion of §3.1, we describe their
irreducible representations. The basic method for analyzing representations
of 91, is by restricting the representations we know [rom €,.

In general when H is a subgroup of index two in a group G, there is a close
relationship between their representations. We will see this phenomenon again
in Lie theory for the subgroups SO, of the orthogonat groups O,.

Let U and U’ denote the trivial and nontrivial representation of G obtained
from the two representations of G/H. For any representation V of G, let
V' =V ® U'; the character of V' is the same as the character of V on
values on elements not in H. In particular,

elements of H, but takes opposi
s of H, but takes oppost

ResG V' = Resi V.
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o - P

[ W is any representation of i, ihere is a conjugate representation defined
by conjugating by any element ¢ of G that is not in H; if y is the character
of W, the character of the conjugate is hi— y(tht™), Since ¢ is unique up to
multiplication by an el of H, the conjugate reg tion is unique up
to isomorphism.

Proposition 5.1. Let V be an irreducible representation of G, and let W = ResjV
be the restriction of V to H. Then exactly one of the Jollowing holds:

(1) Visnotisomorphicto V'; W isirreducible and isomorphic to its conjugate;
IndfWz=vey.

Q) V=V, W=w W where W and W" are irreducible and conjugate
but not isomorphic; Ind§ W' = Ind§w” = .

Each irreducible representation of H arises uniquely in this way, noting that
in case (1) V' and V determine the same representation.

PROOF. Let x be the character of V. We have
1GI=2H= ) |x(* + :;_;'ll(')lz-
1

heH
Since the first sum is an integral muitiple of [H|, this multiple must be 1 or 2,
which are the two cases of the proposition. This shows that W is either
itreducible or the sum of two distinct irreducible tepresentations W’ and W,
Note that the second case happens when y(t) = 0 for all t ¢ H, which is the
case when V" is isomorphic to V. In the second case, W’ and W* must be
conjugate since W is self-conjugate, and if W’ and W” were self-conjugate ¥
would not be irreducible. The other assertions in (1) and (2) follow from the
isomorphism Ind(Res V) = ¥ ® (U @ U’) of Exercise 3.16. Similarly, for any
representation W of H, Res(Ind W) is the direct sum of W and its conjugate—
as follows say from Exercise 3.19—from which the last stateinent follows

readily. 0

Most of this discussion extends with little change to the case where H is a
normal subgroup of arbitrary prime index in G, cf. [B-tD, pp. 293-296].
Clifford has exiended much of this proposition to arbitrary normal subgroups
of finite index, cf. [Dor, §14].

There are two types of conjugacy classes ¢ in H: those that are also
conjugacy classes in G, and those such that cu ¢’ is a conjugacy class in G,
where ¢’ = tet™, t ¢ H; the latter are called split. When W is irreducible, its
character assumes the same values—those of the character of the representa-
tion V of G that restricts to W—on pairs of split conjugacy classes, whereas
in the other case the characters of W' and W” agree on nonsplit classes, but
they must disagree on some split clasges. If xw(€) = gw(c') = x, and gy (c') =
Yywfc) = y, we know the sum x -+ y, since it is the value of the character of
the representation V that gives rise to W’ and W” on ¢ ¢, Often the exact
values of x and y can be determined from orthogonality considerations.
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Exercise 5.2*. Show that the number of split conjugacy classes is equal to the

ber of irreducible rey ations V ol G that are isomorphic to V', or
to the number of irreducible representations of H that are not isomorphic
to their conjugates. Equivalently, the number of nonsplit classes in H is same
as the number of conjugacy classes of G that are not in H.

We apply these considerations to the alternating subgroup of the symmetric
group. Consider restrictions of the representations V; from €, to Ay, Recall
that if A’ is the conjugate partition to A, then

Ve = @ U,

with U’ the alternating representation. The (wo cases of the proposition
correspond (o the cases (1) A'#£ 4 and Q) ' =1L I A #, let W, be. the
restriction of ¥, to U, M 1’ = A, let W; and Wy’ be the two representations
whose sum is the restriction of V;. We have

Ind W, =V, ®V,, Res V, = Res V. = W, when X' # 4,
Ind W,=Ind W = V,, ResV,=W,@W wheni =1

= #{conjugacy classes in &, breaking into two classes in 9,}.

Now a conjugacy class of an element written as a product of 'disj‘oim c_ycle's
is split if and only if there is no odd permutation commuting w1.th 1'l, W{hlcllls
equivaient {o aii the cycies having odd iengih, and no two cycles having the
same length. So the number of self-conjugate representations is l'he number
of partitions of d as a sum of distinct odd numbers. In fact, there is a natural
correspondence between these two sets: any such partition corresponds to a
symmetric Young diagram, assembling hooks as indicated:

]
|

LIt

If 4 is the partition, the lengths of the cycles in the corresponding split
conjugacy classes are g, = 24, — {,q, =24, ~ 3,q, =24, — 5,....
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ot v and v deniate the ch
n A, let ¥ and x] denote the cf

racters of W
and W', and let c and ¢ be a pair of split conjugacy classes, consisting of cycles
of odd lengths g, > g, >+ > q,. The following proposition of Frobenius
completes the description of the character table of %,

5.3.(1) If c and ¢ do not correspond to the partition 1, then

10} = xale’) = 13(0) = xi(c) = xcu ).
(2} If cand ¢’ correspond to A, then

with x and y the two numbers

H-b" 2 =T q,),

andm=YIl1g — ) =4d -

For example, if d = 4 and 1 = (2, 2), we have r = 2,4,=3,g;=1,and x
and y are the cube roots of unity; the representations W; and W, are the
representations labeled U’ and U” in the table in §2.3. For d = S, A=(3,4L1),
L g =5, and we find the represeniations cailed ¥ and Z in §3.1. For
d < 7, there is at most one split pair, so the character table can be derived
from orthogonality alone. ’

Note that since only one pair of character values is not taken care of by
the first case of Frobenius’s formula, the choice of which representation is Wy
and which W} is equivalent to choosing the plus and minus sign in (2). Note
also that the integer m occurring in (2) is the number of squares above the
diagonal in the Young diagram of 4.

We outline a proof of the proposition as an exercise:

r=

Exercise 54*. Step 1. Let g = (g, >+ > 4,) be a sequence of positive odd
integers adding to d, and let ¢’ = ¢'(q) and ¢” = ¢"(q) be the corresponding
conjugacy classes in %, Let A be a seil-conjugate partition of d, and let x, and
13 be the corresponding characters of A,. Assume that x) and y take on the

same values on each element of %, that is not in ¢’ or ¢”. Lef u = 1) =

zile") and v = xi(c") = (e, .

(i) Show that uand v are real when m = $3(q,— 1)iseven, and # = v when
m is odd.

(ii) Let 8 = x; — x}. Deduce from the equation (%, 9 =2 that ju — v|? =
Gy g,

(iti) Show that 1 is the partition that corresponds to q and that u# + v =
(=1)", and deduce that u and v are the numbers specified in (2) of the
proposition.

Step 2. Prove the proposition by induction on d, and for fixed d, look at
that g which has smallest @y, and for which some character has values on the
classes ¢'(q) and ¢"(q) other than those prescribed by the proposition.
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() Ifr = 1,50 ¢, = d = 2m + 1, the corresponding self-conjugate partition
isd=(m+ 1,1 ..., 1). By induction, Step 1 applies to y} and y.

(i) Ifr > 1, consider the imbedding I = 91, x Ay, <G =, and let
X’ and X" be the representations of G induced [rom the representations
W/m@W; and Wy B Wj;, where W] and W/ are the representations of L
corresponding to gy, i, to the self-conjugate partition (}(q, — 1), [,..., 1) of
a1; W3 is one of the representations of U, _,, corresponding to (g, ..., ¢,); and
® denotes the external tensor product (see Exercise 2.36). Show that X and
X" are conjugate representations of 2, and their characters y' and y” take
equal values on each pair of split conjugacy classes, with tiie exception of ¢'ig)
and c"(g), and compute the values of these characters on ¢'(g) and c"(q).

(iii) Let 9=y’ — y”, and show that (9, 9) = 2. Decomposing X’ and X"
into their irreducible pieces, deduce that X' = Y @ Wy and X" = Y ® W/ for
some sell-conjugate representation Y and some self-conjugate partition A of d.

(iv) Apply Step | to the charactets y; and y;, and conclude the proof.

Exercise 5.5*. Show that if d > 6, the only irreducible representations of
U, of dimension less than d are the trivial representation and the (n — 1)-
dimensional restriction of the standard representation of &
tions for d < 6.

We have worked out the character tables for all &, and 4, for d < 5. With
the formulas of Frobenius, an interested reader can construct the tables for a

number of nartitions of d becomes 1aroe
he number of partitions of d becoines large.

T

§5.2. Representations of GL,(F,) and SL,(F))

The groups GL,(F,) of invertible 2 x 2 matrices with entries in the finite lield
F, with g elements, where g is a prime power, form another important series
of finite groups, as do their subgroups SL,(F,) consisting of matrices of
determinant one. The quotient PGL,(F,) = GL,(F,)/F} is the automor-
phism proup of the finite projective line PY(F,). The quotients PSL,(F,)} =
SL,(F,)/{ + 1} are simple groups if ¢ # 2, 3 (Exercise 5.9). In this section we
sketch the character theory of these proups.
We begin with G = GL,(F,). There are several key subgroups:

(/a B\ (1 B\
GoB= N= .
5= )=V =1l 1))
(This “Borel subgroup” B and the group of upper triangular unipotent
matrices N will reappear when we look at Lie groups.) Since G acts transitively
on ihe projeciive line P*(F,), with B the isotropy group of the point (1:0), we
have
[Gl = |BI"IP'(E)l = (g — 1)qlg + 1).



68 5. Representations of %, and GL,(F,)

We will also need the diagonal subgroup

o-{f 9)ror

where we write ¥ for F,_ Let F' = F,2 be the extension of F of degree two, unique
up to isomorphism. We can |denl|fy GL,(F,) as the group of all F-linear
mveruble endomorphisms of F', This makes evident a large cyclic subgroup

= (F')* of G. At least il g is odd, we may make this isomorphism explicit by
choosmg a generator ¢ for the cyclic group F* and choosing a square root \/
in . Then 1 and /& form a basis for ¥’ as a vector space over F, so we can
make the identification:

T R e

K is a cyctic subgroup of G of order ¢> — 1. We often make this identification,
leaving it as an exercise to make the necessary modifications in case g is even.
The conjugacy classes in G arc casily found:

Representative No. Elements in Class No. Classes

a_x() 1
0 x . ¢-1

x 1
b=(3 1) -1 a-1
\V X/
0 @~1g-2
= , 2 9-Dg—-2)
s (o y)’“*’ e ta —
ay={* )y %0 :_, alq -1
ol o) y 7

H . 01 .
ere ¢, ,and c, . are conjugate by ,and d, ,and d, _ are conjugate
a —ec -9 ' '

by any . To count the number of elements in the coniugacy class
¢ —aj Jugacy cl

of b,, ook at the action of G on this class by conjugation; the isotropy group
a

. b
is 0 ”)}, so the number of etements in the class is the index of this group

in G, whichis g — 1. Similarly the i isotropy groupforc, isD, and thei
groupford, ,is K. To see that the classes are dlsmmt consxdcr the eigenvalues
and the Jordan canonicat forms. Since they account for |G| elements, the list
is complete.

There are g% — 1 conjugacy classes, so we must find the same number of
irreducible representations. Consider first the permutation representation of
G on P(F), which has dimension ¢ + 1. It contains the trivial representation;

sotrony
vers
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let V be the compl y g-di ional rep ation. The values of the
character x of V on the four types of conjugacy classes are x(a,) = 4, x(b,) = 0,
xlee,,) = 1, xd,,,) = — 1, which we display as the table:

V. q 0 1 —1

Since (x, x} = 1, V is irreducible.

For each of the g — | characters a: F* — C* of F*, we have a one-
dimensional representation U, ol G defined by U,(g) = a(det(g)). We also
have the representations ¥, = V ® U,. The values of the characters of these
representations are

U a(x) a(x)  alx)a(y) a(x* — &%)
Ve qa(x)? 0 a(x)a(y)  —alx® —5p?)

Note that il we identily (x ny) with{ =x + y\/g in I, then
y x

Xt —pyt= det(x i ) = Notmge({) = {-{¢= {*%
y x

The next place to look for representations is at those that are induced
from Jarge subgroups. For each pair o, ff of characters of F*, there is a character
of the subgroup B:

BoB/N=D=F*x F* 5 C* x C* 5 C*,

b
which takes (; d) to a(@)fld). Let W, , be the representation induced from

Bto G by this representation; this is a representation of dimension [G : B] =
q + 1. By Exercise 3.19 its character values are found to be:

Wert @+ Dalx)Blx)  a(9f()  a(x)BO) +alnhlx} O

We see from this that W, , = W, ,, that ¥, - = U,®V,, and that for a #
the representation is irreducible. This gives 1(q — 1){g — 2) more irreducible

nresontati of di H ail
repr ons, o1 g+ i

Comparing with the list of conjugacy classes, we see that there are }q{g — 1)
irreducible characters feft to be found. A natural way to find new characters
is to induce characters from the cyclic subgroup K. For a representation

0K =(F)* > C*,

d

the character values of the ind rep ation of di
g° — lare

ion [G: K] =

Ind(g):  qlg—Delx) 0 0 o)+ ey

Here again { =x + y\/; e K = (F')*. Note that Ind{p?) = Ind(p), so the
representations Ind(p) for @7 # ¢ give $q(g — 1) different representations.
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However, these represenations are not irreducible: the character y of {nd(p)
satisfies (y, ) = g — 1 il @° # ¢, and otherwise (x, 1) = g. We will have to
work a little harder to get irreducible representations fron: these Ind(g).
Another attempt to find more representalions is to look inside lensor
products of representations we know. We have ¥, ® U, = ¥,,,and ¥, ,® U,
W, 50 thete are no new ones to be found this way. But lensor products or
the V.'s and W, 's are more promising. For example, V¥ ® W, , has character
valucs:

Vew.: qlg+ Dalx)

=]

@) Ll
7

)
a{x, oy Q

We can calculate some inner products of these characters with each other
to estimate how many irreducible representations each contains, and how
many they have in common. For example,

(lv@w.,,v XW.‘.) =1,
(Klua(w: lw._,) =1 ifglp =20,
(Avew, » tvew,,)=q+3,
fv_ £ Y = 3
WAV@W, s Alnd(p)) — 4 1
Comparing with the formula (Xtndtep Xind@) = ¢ — 1, one deduces that

V@ W, , and Ind(p) contain many of the same representations. With any
Tuck, lnd((p) and W, , should both be contained in V¥ ® W, . This guess is

easily confirmed; me

character
Lo = Xvew,, ~ Aw,, — Xindie)

takes values (g — Da(x), —a(x), 0, and —(({) + @({)") on the four types of
conjugacy classes. Therefore, (x4, x,) =1, and y,()=g — 1 >0, so e

in fact, the character of an irreducible subrepresentation of V' ® W of
dimension ¢ — 1. We denote this representation by X,. These %q(q -1
representations, for ¢ # @9 and with Xo = X0, (herefore complete the list
of irreducible representations for GL,(F) The charactcr table is

! 7 -1 7 +q ?-q

Q x x O x £
3L, ={* - - _ A

e I B O R e R
U, a(x*) alx?) a(xy} a({)
A qa(x?) 0 a(xy) ~a({")
Wor | (@ + Dedx)flx) a(x)f(x) a(x)B(y) + a(yfix) o

Xq (9 - Delx) —9(x) Y =0+ o)

Exercise 5.6. Find the multiplicity of each irreducible representation in the
representations ¥V ® W, , and Tnd(gp).
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Exercise 5.7. Find the character table of PGL,(F) = GL,(F)/F*. Note that its
characters are just the characters of GL,(F) that take the same values on
elements equivalent mod F*.

We turn next to the subgroup SL,(F,) of 2 x 2 matrices of determinant
one, with g odd. The conjugacy classes, together with the number of elements
in each conjugacy class, and the number of conjugacy classes of each type, are

Representative No. Elements in Class No. Classes

o) e= ((') ?) [ 1

-1 0
@ ~e=( 0 _1 t !
AN L4
[ g’ —t
3 (0 1) 2 1
(1 &) -1
“ \o 1/ 2 !
-1 1 ¢ -1
© ( 0 ~1) 2 f
{1 \ q2_=
© ( 0 -1) 2 !
U] (g x(f,),xséil aq+1
O (5 Dara og—1)

The verifications are very much as we did for GL,(F,). In (7), the classes of

{x 0\ {x~

ko X ) and ( 0

are the same; as before, a better Jabeling is by the element { in the cyclic group
C={ley: ("' =1}

N\
:) are the same. In (8), the classes for (x, y) and (x, —y)

the elements + 1 are not used, and the classes of { and (™! are the same.

The total number of conjugacy classes is ¢ + 4, 50 we turn to the task of
finding q + 4 irreducible representations. We fitst see what we get by restrict-
ing representations from GL,(F,). Since we know the characters, there is no
probiem working this out, and we simply state the resuits:

(1} The U, all restrict to the trivial representation U. Hence, il we restrict any
representation, we will gel the same for all tensor products by U,'s.
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(2) The restriction ¥ of the V,’s is irteducible,

(3) The restriction W, of W, , isirreducible ifa® # t,and W, = Wywhen =«

or i = a~'. These give 4(q — 3) irreducible representations of dimension

q+ 1.

Let ¢ deniote tlie characier of F* with 1> = 1, 7 # 1. The resiriciion of W,

is the sum of two distinct irreducible representations, which we denote

W' and W,

(4) The restriction of X,, depends only on the restriction of ¢ to the subgroup
C, and ¢ and @' determine the same representation. The representation
is irreducible if @2 7 1. This gives }(g — 1) irreducible representations of
dimension g — 1.

(4) If fr denotes the character of € with 2 = 1, # 1, the restriction of X,
is the sum of two distinct irreducible representations, which we denote
X"and X",

an
W)

Altogether this list gives g + 4 distinct irreducible representations, and it
is therefore the complete list. To finish the character table, the problem is to
describe the four representations W', W”, X', and X”. Since we know the sum
of the squares of the dimensions of all representations, we can deduce that the
sum of the squares of these four representations is % + 1, which is only
possible if the first two have dimension 4(q + 1) and the other two (g — 1).
This is similar to what we saw happens for restrictions of representations to
subgroups of index two. Although the index here is larger, we can use what
we know about index two subgroups by finding 2 subgroup H of index two
in GL,(F,) that contains SL,(F,), and analyzing the restrictions of these four
representations to H.

For H we take the matrices in GL,(F,) whose determinant is a square. The
representatives of the conjugacy classes are the same as those for GL,(F,),
including, of course, only those representatives whose determinant is a square,

X & .
but we must add classes represented by the elements (O ), x € F*. These
X

1
are conjugate to the elements (; Y) in GL,(F,), but not in H. These are the
\U X/

q — I split conjugacy classes. The procedure of the preceding section can be
used to work out all the representations of H, but we need only a little of this.

Note that the sign representation U’ from G/H is U, so that W, ~
W1 ® U'and X, = X, ® U'; their restrictions to H split into sums of conju-
gaie irreducibie representations of haif their dimensions. This shows these
representations stay irreducible on restriction from I to SL,(F,), so that #*
and W” are conjugate representations of dimension i(g + 1), and X’ and X*
are conjugate rep ions of di 4(g — 1). In addition, we know
that their character values on all nonsplit conjugacy classes are the same as
hall the characters of the representations W, , and Xy, respectively. This is alt
the information we need to finish the character table, Indeed, the only values
not covered by this discussion are

T
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G 61 Coo) (55

W s t s t
W ¢ s : s
X u v u’ v
X v u v’ u
The first two rows are determined as e know that s 4 i =
Zw,_,( (1) : = 1. In addition, since (; *]‘ is conjugate to
1 6

1 I 1
(0 l) il q is congruent to | modulo 4, and to (0 ) otherwise, and since

[
x(g™") = x(g) for any character, we conclude that s and ¢ are rea} if q=
1 mod{4), and s = 7if g = 3 mod(4). In addition, since —e acts as the identity
or minus the identity for any irreducible representation (Schur's lemma),
x(=g) = x(9) x(D)/x(~—e)

for any irreducible character y. This gives the relations 5" — t(—1)s and
t' = (~1)t. Finally, applying the equation (y, y) = 1 to the character of W"
gives a formula for st + (3. Solving these equations gives s, [ = 1+ i\/aTq,
where @ = t(—1) is t or —1 according as ¢ = 1 or 3 mod(4). Similarly one
compites that i and v are —4 + §. /ewg. This conciudes the computations
needed to write out the character table.

Exercise 5.8. By considering the action of SL,(F,) on the set P'(F,), show that
SL,(F;) = &,, PSL,(F;) = U, and SL,(F,) ~ U,.

Exercise 5.9*, Use the character table for SL,(F,) to show that PSL,{F,) is a
simple group if g is odd and greater than 3.

Exercise 5.10. Compute the character table of PSL,(F,), either by regardin

o
Ly (F,); either arding

it as a quotient of SL,(F,), or as a subgroup of index two in PGL,(F,).

Exercise 5,11*, Find the conjugacy classes of GL,(F,), and compute the char-
acters of the permutation representations obtained by the action of GL,4(F,)
on (i) the projective plane P*(F,) and (ii) the “fag variety” consisting of a point
on aline in P*(F,). Show that the first is irreducible and that the second is a
sum of the trivial representation, two copies of the first representation, and
an irreducible representation.

Although the characters of the above groups were found by the early
pioneers in representation theory, actually producing the representations in
anatural way is more difficult. There has been a great deat of work extending
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this story to GL,(F,) and SL,(F,) for n > 2 (e [Gr]), anfi Tor corrcs‘pondmg
groups, called finite Chevalley groups, related to o_ther Lie groups. For some
hints in this direction see [Hu3], as well as [Ti2J. Smt;e all but a finite nullnber
of finite simple groups are now known to arise this way (or are cychf: or
alternating groups, whose characters we already know), such repr.esentallm?s
play a fundamental role in group heory. In recent worlf their Lle-thenreu'c
origins have been exploited to produce their representations, but to tell this
story would go far beyond the scope of these lecture(r)s.

LECTURE 6

Weyl’s Construction

In this lecture we introduce and study an importa; ctors gefieralizing
the symmetric powers and exterior powers. These are defined simply in terms of the
Young symmetrizers c, introduced in §4: givenarepresentation ¥ of an arbitrary group
G, we consider the dth tensor power of ¥, on which both G and the symmetric group
on d letters acl. We then take the image of the action of ¢, on V@ this is again a
representation of G, denoted S,(V). This gives us a way of g ¥ representa-
tions, whose main application will be (o Lie groups: for example, we will generate ail
tepresentations of SL,C by applying these to the standard representation C" of SL,C.
While it may be easiest to read this material while the definitions of the Young
symmetrizers are still fresh in the mind, the construction will not be used again until
§15, so that this lecture can be deferred until then.

§6.1: Schur functors and their characters
§6.2: The proofs

§6.1. Schur Functors and Their Characters
For any finite-dimensional complex vector space V¥, we have the canonical
decomposition

V@V =S8ym?r® AV,

The group GL(V) acts on ¥ ® V, and this is, as we shall soon see, the decom-
position of ¥ ® V into a direct sum of irreducible GL(V)-representations. For
the next tensor power,

VOV YV =Sym*’V@®AV@® another space.

We shall see that this other space is a sum of two copies of an irreducible



76 6. Weyl's Construction

GL{¥)-representation. Just as Sym“y and AV are images of symmeirizing
operators from V® = V@ V@ - ® V to itsell, so are the other factors. The
symmetric group &, acts on ¥ ®4, say on the right, by permuting the factors

1@ ®) 0= 0,1y ® * ® Vg

This action commutes with the left action of GL(F). For any partition 4 of d
we have from the last lecture a Young symmetrizer ¢, in €S,. We denote the
image of ¢, on ¥ ® by S,V

S,V = Im(cylyed)

which is again a representation of GL({V). We call the functor! ¥ ~~§, ¥ the
Schur functor or Weyl module, or simply Weyl's construction, corresponding
to 4. 1t was Schur who made the correspondence between representations of
symmetric groups and representations of general linear groups, and Weyl who
made the construction we give liere.2 We will give othier descriptions fater, cf.
Exercise 6.14 and §15.5.

For example, the partition d = d corresponds to the functor V ~~ Sym? ¥,
and the partitiond = 1 4 -+ + | to the functor V ~~+ AV,

We find something new for the partition 3 = 2 + 1. The corresponding
symmetrizer ¢, is

Can=1+euz ey~ €3z

so the image of ¢, is the subspace of ¥ ®? spanned by all vectors
ViRV, R + 1, Q1 Ry —
I A’V ® V is embedded in V3 by mapping
(7 A DR U0, DV, ® 03— 0, @V, D 1y,

then the image of ¢, is the subspace of A2V @ V spanned by all vectors

vy A D) R0 + (v, A V)R,
It is not hard to verify that these vectors span the kernel of the canonical map
from A2V ® V to A3V, so we have

S,V =Ker(ATV @ V - APV),

(This gives the missing factor in the decomposition of 1®3)

Note that some of the S, 1 can be zero if ¥ has small dimension. We will
see that this is the case precisely when the number of rows in the Young
diagram of A is greater than the dimension of ¥,

! The functoriality meanssimply that a linear map @: ¥V — ¥ of veclor spaces determines z linear
map Sy(@): S, ¥ -+ S, I, with S,(¢ « §) = 5,(¢) o §,(¥) and §,(Idy) = Ids,,,

2 The notion goes by a variety of names and notations in the literature, depending on the context,
Caing s differ markedly when not over a field of characteristic zero; and many authors now
¢ them by the conjugate partitions. Our choice of notation is guided by the corre-
spondence befween these [urictors and Schur polynomials, which we will see are their characters.
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When G = GL(V), and for important subgroups G = GL(F), these §, V
give many ol the irreducible representations of G; we will come back to this
Jater in the book. For now we can use our knowledge of symmetric group
representations to prove a few facts about them—in particular, we show that
they decompose the tensor powers ¥ ®, and that they are irreducibie repre-
sentations of GL(¥). We will also compute their characters; this will eventually
be seen to be a special case of the Weyl character formula.

Any endomorphism g of V' gives rise to an endomorphism of S, V. In order
to tell what representations we get, we will need to compute the trace of this
endomorphism on §, V; we denote this trace by ¥, (g). For the compulation,
let x;, ..., x, be the eigenvalues ofgon ¥,k = dim V. Two cases are easy. For
A={(d),

Ssz Sydev ls,,,,v(g) = Hy(x,, ..., Xe) (6.1)

where Hy(x,,..., x,) is the complete symmetric polynomial of degree d. The
definition of these symmetric polynormials is given in (A.1) of Appendix A.
The truth of (6.1) is evident when g is a diagonal matrix, and its truth for the
dense set of diagonalizable endomorphisms implies it for all endomorphisms;
or one can see it directly by using the Jor

A=(1,..., 1), we have similarly

an canonical form of . For

Sa...nV =NV, Xsg,. (9 = Eg(xy, oy 20 (6.2)

with Ey(x,, ..., x;) the elementary symmetric polynomial [see (A.3)]. The
polynomials H, and E, are special cases of the Sciur polynomials, which we
denote by §, = 8,(xy, ..., x,). As A varies over the partitions of 4 into at most
k parts, these polynomials S, form a basis for the symmetric polynomials of
degree d in these k variables. Schur polynomials are defined and discussed in
Appendix A, especially (A.4)~(A.6). The above two formulas can be written

Xswlg) = Si(xys...,xy) ford=(dandl=(1,..., 1)
We will show that this equation is valid for alt 1:
Theorem 6.3. (1) Let k =dim V, Then S,V is zero if sy #0
=242 0), then
dim §,V = §,(1,..., 1) = A-dti-i

1si<jsk J

(B Let i, be the

corresponding to A, Then

of the irreducible representation V, of &,

Vo= @s,vem
a

o g on S,V is the value of the Schur

(3) For any ge GL(V), 2V
polynomial on the eigenvalues XXy 0f gon V:

€ GL(V), the trace

Asy(9) = Silxpe . .h )
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(4) Each S,V Is an irreducible representation of GL(V).

This theorem will be proved in the next section. Other formulas for the
dimension of S,V are given in Exercises A.30 and A.31. The following is

anather
anotner:

Exercise 6.4* Show that

dim S, =*H(k—x+,)—1‘1(k”'+’)

where the products are over the d pairs (i, /) that number the row and column
of boxes for 1, and hy, is the hook ber of the cor ding box.

P

Exercise 6.5. Show that ¥'®3 > Sym3V @ NPV @ (S ,V)®% and
Vo4 = Sym* V@AV ® (§(3,|)V)e’3 @& (§(2,2)V)®2 ] (S(Z.I,I)V)Qa
Compute the dimensions of each of the irreducible factors.

— P R S
The prooi o1 ine in€ored actua

Corollary 6.6. If ¢ ¢ CS,, and (C8,) ¢ = P, V;2"* as representations of ©,,
then there is a corresponding decomposition of GL(V)-spaces:

ved.. - (MS§, v

Vele =S,V

If Xy, ..., X are the eig lues of an phism of V, the trace of the

induced endomorphism of V- cis Y. 1,8,(X 1, ..., Xy).

If A and g are different partitions, each with at most k = dim V" parts, the
irreducible GL(V)-spaces S,V and S,V are not isomorphic. Indeed, their
characters are the Schur polynomials S, and S,, which are different. Mote
generally, at least for those representations of GL(V) which can be decom-
posed into a direct sum of copies of the represenations S, V’s, the representa-
tions are completely determined by their characters. This follows immediately
from the fact that the Schur polynomials are linearly mdependem

Note, however, that we cannot hope to get all finite-di ducibl

lll
representatlons of GL(V) this way, since the duals of these representations
are not included. We wiki see in Lecture 15 that this is essentially the only
omission. Note also that although the operation that takes representations of
&, to representations of GL(V) preserves direct sams, the situation with
respect to other linear algebra constructions such as tensor products is more
complicated. N -

One important application of Corollary 6.6 is to the decomposition of a
tensor product S,¥ ® S,V of two Weyl modules, with, say, 1 a partition of
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d and g a partition of m. The result is
SV®S, V= PN,,S,V; ()]

here the sum is over partitions v of d + m, and N,,,, are numbers determined
by the Littlewood—Richardson rule. This is a rule that gives N, as the number
of ways to expand the Young diagram of 4, using  in an appropriate way, to
achieve the Young diagram for v; see (A.8) for the precise formula. Two
important special cases are easier to use and prove since they involve only the
simpler Pieri formula (A.7). For y = (m), we have

S, Vsym"v= @S,V (6.8)
the sum over all v whose Young diagram is obtained by adding m boxes to

the Young diagram of A, with no two in the same column. Similarly for
p=0,...,1),

S,VeNV=PS,V, 6.9)

the sum over all partitions = whose Young diagram is obtained from that of

n the same row,

To prove these formulas, we need only observe that
SVRS, V=V c,@Ve.c
=V®QV® ' (c;®c,) = Ve

with ¢ = ¢, ® ¢, e CE,® CS,, = C(S,; x B,) < C&,y,,. This proves that
S,V ® 8,V has a decomposition as in Corollary 6.6, and the coefficients are
given by knowing the decomposition of the corresponding character. The
character of a tensor product is the produgt of the characters of the factors;
so this amounts to writing the product S, 5aSu of Schur polynomials as a linear
combination of Schur polynomials. This is done in Appendix A, and formulas
(6.7), (6.8), and (6.9) follow from {A.8), (A.7), and Exercise A.32 (v), respectively.
For example, from Sym*V @ V = Sym**'V @ S, )V, it follows that

Sy 1;V = Ker(Sym'V @ V - Sym*1y),

(T3Y) ym
and similarly for the conjugate partition,

¥V =Ker(XV® V- MY,

DAEILI:{E U.l\l . One cail dth UEHVG the plecemng uebomposmons OI tensor
products directly from corresponding decompositions of representations of
symmetric groups. Show that, in fact, S,V ® S,V corresponds to the “inner
product” representation ¥, o V, of &, described in (4.41).

Exercise 6.11*. (a) The Littlewood—Richardson rule also comes into the de-
composition of a Schur functor of a direct sum of vector spaces ¥ and W. This
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generalizes the well-known identities
Sym(v @ W)= @ Sym*V @ Sym*W),
ath=n

NVew)= B NVRNW)
a¥bn

Prove the general decomposition aver GL(V) x GL(W).
S,V @® W) =D NS,V RS, W),

. ser i such that the sum of the numbers partitioned

over all partitions 4, z such that

the sum
by 1 and p is the number partitioned by v. (To be consistent with Exercise
2.36 one should use the notation @ lor these “external” tensor products.y

(b) Similarly prove the formula for the Schur functor of a tensor product:
SV W)= PC, S,V RS, W),

A

where the coefficients C,,, are defined in Exercise 4.51. In particular show that
Sym'(r @ W)= P S,V S W

the sum over all partitions 1 of d with at mostdim V or dim W rows. Replacing
W by W*, this gives the decomposition for the space of polynomial functions
of degree d on the space Hom(V, W) over GL(V) x GL(W). For variations
on this theme, see [Ho3). Similarly,

NIYeWw)=MdS,VOS, W,
the sum over partitions A of d with at most dim ¥ rows and at most dim W
columns.
Exercise 6.12. Regarding
GL,€=GL,C x {1} « GL, € x GL, € = GLysu ©

the preceding exercise shows how the restriction of a representation de-
composes:

, Pieri’s formula gives
Res(S,(C™1)) = P SAL),

abtained rmm v by removing any number of boxes from

In particular, form =

=
o
£
]
% o
=
5
W
3
s
I
3
5
£
S
2
=
-
a
9.
£
ER
=

L uyofd,
NVRNYV Q- @ NV G}—)K;_,ﬁrlf,

Exercise 6.13*. Show that for any partition g = (p,, ..

ber and A’ the conj of A.

&

where K, is the Kostka
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Exercise 6.14*. Let st = 1’ be the conjugate partition. Put the factors of the
dth tensor power ¥ ®“ in one-to-one correspondence with the squares of the
Young diagram of A. Show that S, V is the image of this composile map:

U NT) > @uUBY) ~ V- R (&5Y) - ) (Sym¥7),

the first map being the tensor product of the obvious inclusions, the second
grouping the factors of ¥ ®¢ according to the columns of the Young diagram,
the third grouping the factors according to the rows of the Young diagram,
and the fourth the obvious quotient map. Alternatively, S,V is the image of
a composite map

R4 Sym 1) = (R (@MV) = V' - &), (@) = &) (M),

In particular, S,V can be realized as a subspace of tensors in ¥ ®? that are
wvariant by automorphisms that preserve the rows of a Young tabieau of
A, or a subspace that is anti-invariant under those that preserve the colunns,
but not both, cl. Exercise 4.48.

Problem 6.15*. The preceding exercise can be used to describe a basis for the
space S, V. Let vy, ..., v, be a basis for V. For each semistandard tableau T°
on A, one can use it to write down an element v;. in (X);(A"V); vy is a tensor
product of wedge products of basis elements, the ith factor in A"V being the
wedge product (in order) of those basis vectors whose indices occur in the ith

column of T The fact to be nroved is that the inmages of these element
coiumn of 1, 108 1ac! 1o pe proved is thal the images of these clements vy

under the first composite map of the preceding exercise form a basis for S, V.

At the end of Lecture 15, using more representation theory than we have
at the moment, we will work out a simple variation of the construction of S,V
which will give quick proofs of refi s of the preceding exercise and
problem.

Exercise 6.16*. The Pieri formula gives a decomposition
SymV @ SymV = P Syraan ¥

the sum over 0 < a < d. The left-hand side decomposes into a direct sum of
Sym?(Sym?¥) and A2 (Sym?V). Show that, in fact,
=8 v s Vs Ve ...

Sd,0n’ U Sad-2,2)" &I d-a,47 077,
= Say-1,0V D S@4-3,9V ® S5,V D"
Similarly using the dual form of Pieri to decompose A*V ® A’V into the sum
G—)S;V, thesumoverall 1 =(2,...,2, 1,..., 1) consisting of d — a 2’s and 2a

I's, 0 < a < d, show that Sym?(A!V) is the sum of those factors with a even,
and A2(ATV) is the sum of those with a odd.
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Exercise 6.17%. If 1and y are any partitions, we can form the composite functor
S,(S, V). The original “plethysm” problem—which remains very difficult in
general—is to decompose these composites:

§,-(§A V)= @ M-’-.'-"-'S-' |4

the sum over all partitions v of dm, where 4is a partition of dand pisa partition
of m. The preceding exercise carried out four special cases of this.
(a) Show that there a]ways exists such a decomposition for some non-

cin€Cs, , d ding on
n €S, dep on

negative integers M,,, by constructing an el
1 and g, such that SM(SA Vyis Ve
(b) Compute Sym*(S;, 5, V) and A2 (S‘z 2V)

Exercise 6.18* “Hermite reciprocity.” Show that if dim ¥V = 2 there are iso-
morphisms

Sym*(Sym?¥V) = Sym*(Sym’ V)

of GL(V)-representations, for all p and g.

Exercise 6.19*. Much of the story about Young diagrams and representations
of symmetric and general linear groups can be generalized to skew Young
diagrams, which are the diffcronces of two Young diagrams. If 1 and 1 are
partitions with j, < 4, for all i, /st denotes the complement of the Young

m for g in that of 1. For example, if 1=(3,3, 1) and p = (2, 1), A/u is

dinor
diagram for ¢ n that of

the numbered part of

o al covaenl 13 al A,
any of several generalizations of constructions of ordipary Schu

Using the notation of Appendix A, the following definitions are equivalent:

To each A/u we have a skew Schur function S,;,, which can be defined by
fi

0] St ™ Hyepymet b
(i) suu = 'Elivn}'lqlv
(i) Sy = om0

where m, is the number of ways lo number the boxes of A/u with a, Us, a, 2's,
., 4, X's, with nondecreasing rows and strictly increasing columns.
In terms of ordinary Schur polynomials, we have

(iv) Syp= L, NaraSs

where N, is the Littlewood—-Richardson number.

v
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Each A/u determines elements a,,, by, and Young symmetrizers c,,, =
Ayubypin A = €Sy, d =Y 1, — p,, exactly as in §4.1, and hence a representa-
tion denoted ’Alu = Acy, of &,. Equivalently, V,,, is the image of the map
Ab‘”, -+ Aa,, given by right multlphcalmn by a,,,, or the image of the map

sanby b econoSition
’“‘*/u

tion oy [z Thed GECTMpOsition of VU,
into irreducible representations is

2 Viw = 2 Nua Voo

SimAilar]y there are skew Schur functors S,,,, which take a vector space V'
to the ima.ge of ¢y, on V¥ equivalently, S,,, V is the image of a natural map
(generalizing that in the Exercise 6.14)

i) @ NIHV) o ¥ 24 () SymP ™ V),

or
(vii) R (Sym* V) - V& o ), (AY).

Given a basis vy, ..., v, for V and a standard tableau T on A/y, one can write
down an element vy in &), (A¥™4V); for example, corresponding to the dis-
piayed tabieau, vr = v, ® v, ® (v, A v3). A key fact, generaiizing the resuit of
Exercise 6.15, is that the images of these elements under the map (vi) form a
basis for S, V.

The character of S,V is given by the Schur function Syu: il g is an

-+ Aby, given by right mul

endomorphism of V with eigenvalues x,, ..., x,, then
(viii) A5 () = Syulxys o evs Xe)e
in terms of basic Schur functors,
(ix) SV =Y NS, V.

Exercise 6.20%. (a) Show that if 2 = (p, g), S, )V is the kernel of the contrac-
tion map
Cp.qt SYmPV @ Sym*V - SymP*'V ® Sym?' V.

Iii= .(p, q,7), show that S, .,V is the intersection of the kernels of
two contraction maps ¢, , ® 1. and 1, ® ¢, ,, where [, denotes the identity map

on Sym' V.
In general, for 1=(4,,..., 1), S;¥ < Sym""V®:--® Sym*V is the inter-
section of ihe kernels of the & — 1 maps

V=1, @1, ®.1,®,8 ®, T<i<k-1

(© Fori=(p,1,....,
map:

1), show that S,V is the kernel of the contraction

Se.t,....nV = KerSym’V @ APV — Sym™ 'V @ Aty

In general, for any choice of a between | and k — 1, the intersection of



84 6. Weyl's Construction

the kernels of all ¥ except , is S,V ®S,V, where ¢ = (1,,..., 4,) and
7= {4441, ..., 4); 50 S,V is the kernel of a contraction map defined on
S,V® S, V.Forexample,ifaisk — 1,and we set r = 1,, Pieri’s formula writes
S,V @ Sym'V as a direct sum of S,V and other factors S, V; the general
assertion in (b) is equivalent to the claim that S,V is the only factor that is
in the kernel of the contraction, ie.,

SV = Ker(Sq,,,....5, oV @Sym'V o VU @ Symr=iy),

These results correspond to writing the representations ¥, < U, of the sym-

metric group as the intersection of kernels of maps to U,

Exercise 6.21. The functorial nature of Weyl's construction has many conse-
quences, which are not explored in this book. For example, if £, is a complex
of vector spaces, the tensor product E$? is also a complex, and the symmetric
group &, acts o it; when factors in E, and E_are transposed past each other,
the usual sign (— 1) is inserted. The image of the Young symmetrizer c, is a
complex S,(E,), sometimes called a Schur complex. Show that if E, is the
complex E_; = V — E, = V, with the boundary map the identity map, and
1 = (d), then S,(E,,) is the Koszul complex

0NN @S SN2 S N @S o 500,
where Al = AV, and §/ = Sym/V,

§6.2. The Proofs

We need first a small piece of the general story about semisimple algebras,
which we work out by hand. For the moment G can be any finite group,
although our application is for the symmetric group, If U is a right module
over 4 = CG, let

B = Homg(U, U) = {p: U = U: p(v-g) = ¢(v) g, Yve U,ge G}.
Note that B acts on U on the left, commuting with the right action of 4; B is
called the commutator algebra. W U = () U™ is an irreducible decomposition

with U, nonisomorphic irreducible right 4-modules, then by Schur’s Lemma
1.7

B= @' Homg(UP", US™) = @l M, (C),

where M, (C} is the ring of n; x n, complex matrices.
It W is any left A-module, the tensor product

U@ W =U ®c W/subspace generated by {ra®@ w — v ® aw}
is a left B-module by acting on the first factor: b- (v ® w) = (b~ b} @ w.
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Lemma 6.22. Let U be a finite-di Iright A-modul

(i) For any c & A, the canonical map U ®, Ac — Ucisan isomorphism of left
B-maodules.

(ii) If W= Ac is an irreducible left A-module, then U@ W=Ucisan
irreducible left B-module.

(iii) If W, = Ac; are the distinct irreducible left A-modules, with my the
ditwension of W, then

U= DU & WoP™ = @, (Ucy @™

s the decomposition of U into irreducible left B-modules.

PROOF. Note first that Ac is a direct summand of A as a lefi A-module; this is
ac q of the isimplicity of all representations of G (Proposition
1.5). To prove (i), consider the commutative diagram

URA —> U de = U®, 4

T

U =5 U < U

where the vertical maps are the maps v ® ar v-a; since the left horizontal
maps are surjective, the right ones injective, and the outside vertical maps are
isomorphisms, the middle vertical map must be an isomorphism.

For {il), consider first the case where U is an irreducible A-module, so
B = C. It suffices to show that dim U ®, W < 1. For this we use Proposition
3.29.to identify A with a direct sum -1 M, € of r matrix algebras. We can
identify W with a minimal left ideal of A. Any minimal ideal in the sum of
matrix algebras is isomorphic to one which consi tuples of matrices
which are zero except in one factor, and in this factor are all zero except for
one column. Similarly, U can be identified with the right ideal of r-tuples which
are zero except in one factor, and in that factor alt are zero except in one row.
Then U @, W will be zero unless the factor is the same for U and W, in which
case U @ W can be identified with the matrices which are zero except in one
row and column of that factor. This completes the proofwhen U is itreducible.
For the general case of (ii), decompose U = D; UP™ into a sum of irreducible
tight A-modules, so U ®, W = @ (U, ®, W)®™ = C® for some k, which is
visibly irreducible over B = ® M, ).

Part {ifi) foliows, since tie isomorphism A =~ P W3 determines an iso-
morphism

sts of r-tunlec of matrices

Uz U@, 42U, @™ = BiU @ W)™ o

e 3 .
H

f hieoretn 6.3, we will apply Lemma 6.22 to the right CS,-module
V®%. That lemma shows how to decompose U asa B-module, where B
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is the algebra of all endomotphisms of U that commute with all permuta-
tions of the factors. The endomorphisms of U induced by endomorphisms of
V are cerlainly in this algebra B. Although B is generaily much larger than
End(V), we have

Lemma 6.23. The algebra B is spanned as a linear subspace of End(V®4) by
End(V). A subspace of V® is a sub-B-module if and only if it is invariant by
GL(F).

PROOF. Note that if # is any finite-dimensional vector space, then Sym*i is
the subspace of W® spanned by all w! = dlw ® -*- ® w as w runs through
W. Applying this to W = End(V) = V* ® V proves the first statement, since
End(V®9) =(V*)®¢ @ 1V®! = W, with compatible actions of ,. The second
follows from the fact that GL(V) is dense in End(V). [m}

We turn now (o the proof of Theorem 6.3. Note that S,V is Uc;, so parts
(2) and (4) follow from Lemmas 6.22 and 6.23. We use the same methods to
give a rather indirect but short prool of part (3); for a direct approach see
Exercise 6.28. From Lemma 6.22 we have an isomorphism of GL(V)-modules:

S, Vv,V (6.24)

with V, = 4-¢;. Similarly for U, = 4-a,, and since the image of right multi-
plication by a; on V® is the tensor product of symmetric powers, we have

Sym" V@ Sym* ) ® @ Sym*V = V¥ @, U,. (6.25)

But we have an isomorphism U, = @, K, ¥, of A-modules by Young's rule
(4.39), so we deduce an isomorphism of GL(V)-modules

Sym* ¥ @ Sym*V @+ @ Sym*V = (D K,,,S, V. (6.26)
H

By what we saw before the statement of the theorem, the trace of ¢ on the
left-hand side of (6.26) is the product H,(x,, ..., x,) of the complete symmetric
polynomials H,(x,, ..., x,). Let S,(g) denote the endomorphism of S,V
determined by an endomorphism g of V. We therefore have

Hy(xys ... %) = Z,K,, Trace(S,(g)).

But these are precisely the relations between the functions H, and the Schur
polynomials S, [see formula (A.9)], and these relations are invertible, since
the matrix (K,,;) of coefficients is triangular with 1’s on the diagonal. [t foliows
that Trace(S,(g)) = S,(x, ..., X,), which proves part (3).

Note that if 4 = (4,, ..., 4;) with d > k and 1,,, # 0, this same argument
shows that the trace is S(xy, ..., x,, 0, ..., 0), which is zero, for example by
{A.6). For g the identity, this shows that S,V = 0 in this case. From part (3)
we also get
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dim S,V = $,(1,..., 1), (6.27)
and computing S,(1, ..., 1) via Exercise A.30(ii) yields part (1). ]

Exercise 6.28. Il you have given an independent proof of Problem 6.15, part
(3) of Theorem 6.3 can be scen directly. The basis elements vy for S, specified
in Problem 6.15 are eigenvectors for a diagonal matrix with entries x, ..., X,
with eigenvalue X* = x{*-...  xf*, where the tableau T has a, 1's, a; 2’s, ...,
a, k's. The trace is therefore ) K,, X", where K, is the number of ways t
number the hoxes of the Young diagram of A with a; 5,4, 2, ...
is just the expression for 5, obtained in Exercise A.31(a).

We conclude this lecture with a few of the standard elaborations of these
ideas, in exercise form; they are not needed in these lectures.

Exercise 6.29*. Show that, in the context of Lemma 6.22, if U is a faithful
A-module, then A is the or of its cc tor B:

A={y: U~ U:(bv) = by(v), Vve U, be B}.

1 U is not faithiul, the canonical map from A to its bicommutator is surjective.
Conclude that, in Theorem 6.3, the algebra of endomorphisms of ¥4 that
commute with GL(V) is spanned by the permutations in S,.

Exercise 6.30. Show that, in Lemma 6.22, thete is a natural one-to-one cor-
respondence between the irreducible right A-modules U, that occur in U and
the irreducible left B-modules V;. Show (hat there is a canonical decomposition

U= @U’;@c U)

asa lelt B-module and as a right A-module. This shows again that the number
of times ¥} occurs in U is the dimension of U,, and dually that the number of
times U; occurs is the dimension of ¥;. Deduce the canonical decomposition

Vel = DS,V R V),
the sum over partitions A of dinto at most k = dim V parts; this decomposition
is compatible with the actions of GL(V) and &,. In particular, the number of
times V¥, occurs in the representation ¥ of &, is the dimension of S, V.

Exercise 6.31. Let e be an idempotent in the group algebra 4 = CG, and let
U = eA be the corresponding right A-module. Let E = ede, a subalgebra of
A. The algebra structure in 4 makes e4 a left E-module. Show that this defines
an isomorphism of C-algebras

E = eAe = Hom,(eA, e4) = Homy(U, U) = B.
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Exercise 6.32. If H is a subgroup of G, and e € CH is an idempotent, corre-
sponding lo a representation W = CH - e of H, show that CG - e s the induced
representation Tnd§(W). For example, if 3: H - C* is 2 one-dimensional
representation, then

Ind$() = CG-ey, wheree,_Fg

PART It
LIE GROUPS AND
LIE ALGEBRAS

e groups seem to stand at the opposite end of
the spectrum of groups [rom finite ones.! On the one hand, as abstract groups
they seem enormously complicated: for example, being of uncountable order,
there is no question of giving generators and refations. On the other hand,
lhey do come with the additional data of a topology and a manifold structure;
this makes it pU\bll)AC'—'dllu, gl ven the appaient nupclcssucs& of approat 3
them purely as algebraic objects, necessary—to use geometric concepts to
study them.

Lie groups thus represent a confluence of algebra, topology, and geometry,
which perhaps accounts in part for their ubiquity in modern mathematics. It
also makes the subject a potentiafly intimidating one: to have to understand,
both individually and collectively, all these aspects of a single object may be
somewhat daunting.

Happily, just because the algebra and the geometry/topology of a Lie group
are so closely entwined, there is an object we can use to approach the study
of Lie groups that extracts much of the structure of a Lie group (primarily
its algebraic structure) while seemingly getting rid of the topological com-
plexity. This is, of course, the Lie algebra. The Lie algebra is, at least according
to its definition, a purely algehraic object consisting simply of a vector space

nd o annane that acencinfing a in
ar operatior; and so it might appear that in associating to a Lie

group its Lie algebra we are necessarily giving up a lot of information abowt
the group. This is, in fact, not the case: as we shall see in many cases (and
perhaps all of the most important ones), encoded in the algebraic structure of
a Lie algebra is almost all of the geometry of the group. In particular, we will

* In spite of this there are deep, if only partially understood, refations between finite and Lie
groups, extending even 10 their simple group classifications.
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see by the end of Lecture 8 that there is a very close relationship between
representations of the Lie group we start with and representations of the Lie
algebra we associate to it; and by the end of the book we will make that
correspondence exact.

We said that passing frou
simplification because it eliminates whatever nontrivial topological structure
the group may have had; it “flattens out,” or “linearizes,” the group This, in
turn, atiows for a further simplification: since a Lie algebra is just a vector
space with bilinear operation, it makes perfect sense, if we are asked to study
a real Lie algebra (or one over any sublfield of C) to tensor with the complex
numbess. Thus, we may investigate first the structure and representations of
complex Lie algebras, and then go back to apply this knowledge to the study
of real ones. In fact, this turns out to be a feasible approach, in every respect:
the structure of complex Lie algebras tends to be substantially simpler than
that of real Lie algebras; and knowing the representations of the complex Lie
algebra will solve the problem of classifying the representations of the real onie.

There is one further reduction to be made: some very clementary Lie

algebra theory allows us to narrow our focus further to the study of semisimple
in

e Lie group to its Lic algebra represents a

Lie algebras. This is a subset of Lie algebras analogous to s

This is a subset of Lic algtbras analogous lo ¢ 1ple gro!

e gro
that they are in some sense atomic objects, but better behaved in a number
of ways: a semisimple Lie algebta is a direct sum of simple ones; there are easy
criteria for the semisimplicity of a given Lie algebra; and, most of all, their
representation theory can be approached in a completely uniform manner.
Moreover, as in the case of finite groups, there is a complete classification
theorem for simple Lie algebras.

We may thus describe our approach o the representation theory of Lie
groups by the sequence of objects

Lie group
~~ Lie algebra

~~s complex Lie algebra

~ seiltisimple coinpl

We describe this progression in Lectures 7-9. In Lectures 7 and 8 we intro-
duce the definitions of and some basic facts about Lie groups and Lie algebras.
Lecture 8 ends with a description of the exponential map, which allows us to

blish the close ion between the first two objecis above. We then
do, in Lecture 9, the very elementary classification theory of Lie algebras that
motivates our focus on semisimple complex Lie algebras, and at least state
the classification theorem for these. This establishes the fact that the second,
third, and fourth objects above have essentially the same irreducible repre-
sentations. (This lecture may also serve to give a brief tastc of some general
theory, which is mostiy postponed to later lectures or appendices.) In Lecture
10 we discuss examples of Lie algebras in low dimensions.
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From that point on we will proceed to devote oursclves almost exclusively
to the study of semisimple complex Lie algebras and their representations.
We do this, we have {o say, in an extremely inefficient manner: we start with
a couple of very special cases, which occupy us for three lectures (11-13);
enunciate the general paradigm in Lecture 14; carry this out for the classic
Lie algebras in Lectures 15-20; and (finatly) ﬁnlsh off the general lhcory in
Lectures 21-26. Thus, it will not be until the end that we go back and use the
knowledge we have gained to say something about the original problem. in
view of this long interlude, it is perhaps a good idea to enunciate one more
time our basic

Point of View: The primary objects of interest are Lie groups and their
representatiois; these are what actually occur in real life and these are what
we want (o understand. The notion of a complex Lie algebras is introduced
primarily as a tool in this study; it is an essential tool? and we should consider
ourselves iticredibly lucky to have such a wonderfully effective one; but in the
end it is for us a means to an end.

The special cases worked out in Lectures 11-13 are the Lie algebras of SL,
and SL,. Remarkably, most of the structure shared by all semisimple Lie
algebras can be seen in these ﬂmmnle_c ‘We should nmbab!v point out that
much of what we do by hand in these cases could bc deduced [rom the Weyl
construction we saw in Lecture 6 (as we will do generally in Lecture 15), but
we mainly ignore this, in order to work from a “Lie algebra™ point of view
and motivate the general story.

2 Perhaps not logically so; ¢f. Adams’ book [Ad].



LECTURE 7

Lie Groups

In this lecture we introduce the definitions and basic examples of Lie groups and Lie
algebras. We assume here familiarity with the definition of differentiable manifolds and
maps between them, but no more; in particular, we do not mention vector fields,
differential forms, Riemannian metrics, or any other tensors. Section 7.3, which
discusses maps of Lie groups that are covering space maps of the underlying manifolds,
may be skimmed and referred back to as needed, though working through it will help
promote familiarity with basic examples of Lie groups.

§7.1: Lie groups: definitions
§7.2: Examples of Lie groups
§7.3: Two constructions

§7.1. Lie Groups: Delinitions

You probably already know what a Lie group is; it is just a set endowed
simultaneously with the compatible structures of a group and a % manifold.
“Compatible” here means that the multiplication and inverse operations in
the group structure

x:GxG-G

and
2G=2G

are actually differentiable maps (logically, this is equivalent to the single
requirement ihat the map G x G — G sending (x, ¥} to x- y ™" is 7).

A map, or morphism, between two Lie groups G and H is jusl a map
p: G — H that is both differentiable and a group homomorphism. In general,

qualifiers applied to Lie groups refer to one or another of the two structures,
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usually without much ambiguity; thus, abelian refers (o the group structure,
n-dimensional or connected refets to the manifold structure. Sometimes a
condition on one structure turns out to be equivalent to a condition on the
other; for example, we will see below that to say that a map of connected Lie
groups ¢: G — H is a surje map of groups is equivalent to saying that the
differential do is surjective at every point.

One area where there is some potential confusion is in the definition of a
Lie subgroup. This is essentially a difficuity inherited directly from manifold
theory, where we have to make a distinction between a closed submanifold of
a manifoid M, by which we mean a subset X < M that inherits a manifoid
structure from M (ie, that may be given, locally in M, by setting a subset of
the local coordinates equal to zero), and an immersed submanifold, by which
we mean the image of a manifold X under a one-to-one map with injective
differential everywhere—that is, a map that is an embedding locally in X.
The distinction is necessary simply because the underlying topological space
strircture of an immersed submanifold may not agree with the topological
structure induced by the inclusion of X in M. For example, the map from X
to M could be the immersion of an open interval in R into the plane R? as a
figure “6™

[
17O

>

andard example of this,

of groups, would be to take M to be the two-dimensional reat torus R*/Z* =
§' x §',and X the image in M of a line V¥ = R? having irrational slope:

/

The upshot of this is that we define a Lie subgroup (or closed Lie subgroup,
if we want to emphasize the point) of a Lie group G to be a subset that is
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simultaneousiy a subgroup and a ciosed submanifoid; and we define an
immersed subgroup 1o be the image of a Lie group H under an injective
morphism to G. (That a one-to-one morphism of Lie gtoups has everywhere
injective differential will follow from discussions later in this leclure.)

The definition of a complex Lie group is exactly analogous, the words

“differentiable manifold” being replaced by “compt ifold™ and all
refated notions revised accordingly. Similarly, to define an algebraic group one
1 “diff iabl ifold” by “algebraic variety” and “differentiable

P
map” by “regular morphism.” As we will see, the category of complex Lie
groups is in many ways markedly different from that of real Lie groups (for

examnple, there are many lewer complex Lie groups than real ones). Of course,
the study of algebraic groups in general is quite different from either of these
since an algebraic group comes with a field of definition that may or may not
be a subfield of C (it may, for that matter, have positive characteristic). In
practice, though, while the iwo are not the same (we wili see exampies of this
in Lecure 10, for example), the category of algebraic groups over C behaves
very much like the category of complex Lie groups.

The basic example of a Lie group is of course the general linear group GL,R
of invertible n x n real matrices; this is an open subset of the vector space ol
all n x n matrices, and gets its manifold structure accordmgly (so that the
€nines (’l IHC “IdlI'IX are LUUI’UUIA‘ES oIt UL"U‘} llldl lllC Illl.llllp Ld\lUll
map GL,R x GL,R — GL,R is differentiable is clear; that the inverse map
GL,R - GL,Ris follows f[rom Cramer’s formula for the inverse. Occasionally
GL,R will come to us as the group of automorphisms of an #-dimensional
real vector space V; when we want to think of GL,R in this way (e.g., without
choosing a basis for V and thereby identifying G with the group of matrices),
we will write it as GL(V) or Aut(V). A representation of a Lie group G, of
course, is a morphism from G to GL(V).

Most other Lie groups are defined initially as subgroups of GL, (though
they may appear in other contexts as subgroups of other general linear groups,
which is, of course, the subject matter of these lectures). For the mosl parl,
such subgroups may be described either by equations on the entries of an
n x nmatrix, or as the subgroup ofautomorphisms of ¥ 2 R” prescrving some
structure on R". For example, we have:

the special linear group SL,R of automorphisms of R” preserving the
volume element; equivalently, n x n matrices A with determinant 1.

the group B, of upper-triangular matrices; equivalently, the subgroup of

automorphisms of R" preserving the flag'

! In general, a flag is & sequence of subspaces of a fixed vector space, each property contained in
the next; it is a complete Nag if cach has one dimension targer than the preceding, and partial
otherwise.
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O=tochelhe -V V=R,
whete V}is the span of the standard basis vectors €(,..., €. Note that choosing
a different basis and correspondingly a different llag yields a different sub-
group of GL,R, but one isomorphic to (indeed, conjugate to) B,. Somewhat
more generally, for any sequence of positive integers ay, ..., @ with sum n we
can look at the group of block-upper-triangular matrices; this is the subgroup
of automorphisms of R" preserving a partial flag

O=VcVeWheckh, cl=R"

where the dimension of Visa, + - + a;. I the subspace ¥, is spanned by the
fitsta, + -+ + abasis vectors, the group will be the set of matrices of the forin

EARRE \ }a,

O]« |*]« }nz
\ OO0 «j=* /

010101 «/ }a

The group N, of upper-triangular unipotent matrices (that is, upper triangular
with I’s on the diagonal); equivalently, the subgroup of automorphisms of R
preserving the complete flag {¥;} where ¥, is the span of the standard basis
vectorse,,..., e, and acting as the identity on the successive quotients ¥, /M.
As before, we can, for any sequence of positive integers a,, a, with sum n,
look at the group of block-upper-triangular unipotent m s; this is the

S,
subgroup of automorphisms of R" preserving a partial llag and acling as
the identity on successive quotients, i.e., matrices of the form

F+]x|»
[+t
lUOI&)

0lo0tol1/ }a,

Next, there are the subgroups of GL, R defined as the group of transforma-
tions of ¥ = R” of determinant 1 preserving some bilinear form Q: V x V = V.
If the bilinear form @ is symmetric and positive definite, the group we get
is called the (special) orthogonal group SO, R (sometimes written 30(n); see
p. 100). If Q is symmetric and 1 ate but not definite—e.g,, if it has k
positive eigenvalues and ! negative—the group is denoted SO or SOk, I,
note that SO(k, [} = SO, k). I£ Q is skew-symmetric and nondegenerate, the
group is called the symplectic group and denoted Sp,R; note that in this case
n must be even.

The equations that define the subgroup of GL, R preserving a bilinear form . |

Q areeasy to write down. If we represent () by a matrix M —that is, we write

o, wy="v-M-w
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for all v, w ¢ R" . then the condition
Q(Av, Aw) = Qv, w}
translates into the condition that
WA M-Aw="0-Mw
for all v and w; this is equivalent to saying that
A-M-4A=M.
Thus, for example, if @ is the symmetric form G(v, w) = ‘o w given by the
identity matrix M = I,, the group SO, R is just the group of n x n reaf matrices
A of determinant 1 such that 'A = 4~

Exercise 7.1*. Show that in the case of Sp,,R the requirement that the
transformations have determinant 1 is redundant; whereas in the case of SO,R
if we do not requite the transformations to have determinant | the group we
get (denoted O,R, or sometimes O (n)) is disconnected.

Exercise 7.2*, Show that SO(, I) has two connected components if k and I are
both positive, The connected component containing the identity is often
denoted SO*(k, I). (Composing with a projection onto R* or R/, we may
associate to an automorphism A e SOk, ) automorphisms of R* and R
SO*(k, 1) will consist of those 4 & SO(k, 1) whose associated automorphisms
preserve the orientations of R* and R')

Note that if the form Q is degenerate, a transformation preserving Q will
carry its kernel

Ker(Q) = {ve V:Q(,w) =0 ¥we vy

into itself; so that the group we get is simply the group of malrices preserving
the subspace Ker(Q) and preserving the induced nondegenerate form Qon the
quotient V/Ker(Q). Likewise, if Q is a general bilinear form, that is, neither
symmetric nor skew-symmetric, a linear transformation preserving Q will
preserve the sy ricand sk y tric parts of Q individually, so we just
get an intersection of the subgroups encountered already. At any rate, we
usually imit our altention to nondegenerate forms that are cither symmetric
or skew-symmetric. -

Of course, the group GL, € of complex linear automor phisms of a complex
veetor space V' = C" can be viewed as subgroup of the general linear group
GL,,B; it is, thus, a real Lie group as well, as is the subgroup SL,C ofn x n
complex matrices of determinant 1. Similarly, the subgroups SO,C < SL,C
and 8p,,C < SL,,C of transformations of a complex vector space preserving
a symmetiic and skew-syminetric nondegeneraie bilinear form, respectively,
are real as weil as complex Lie subgroups. Note that since all nondegenerate
bilinear symmetric forms on a complex vector space are isomorphic (in partic-
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tar, there is no such thing as a signature), there is oniy one complex
orthogonal subgroup SO,C = SL,C up to conjugation; there are no analogs
of the groups SO, R,

Another example we can come up with here is the unitary group U, or U(n),
defined to be the group of complex linear automorphisms of an n-dimensional
complex vector space V preserving a positive definite Hermitian inner product
H on V. (A Hermitian form H is required to be conjugate linear in the
first? factor, and linear in the second: H(lv, sw) = TH (v, wpt, and H(w, v) =
H{v, w; it is positive definite if H(v, v) > 0 for v # 0))

Just as in the case of the subgroups SO and Sp, it is easy to write down the
equations for U(n). for some n x n matrix M we can write the form H as

Ho,w)="5-Mw, VoweC"

o be conjugate symmetric, M must be conjugate symmetric,
o .

E:

(note that for H t
ie,'M = M), the

A satislying

fust the oo PR

just the group of i ¥ 7 compiex matrices

the o
n the g

YU-M-A=M.

In particular, if H is the “standard” Hermitian inner product Hv, w) = o-w
given by the identity matrix, U(n) wiil be the group of n x n complex matrices
A such that '4 = A7,

Exercise 7.3. Show that if H is a Hermitian form on a complex vector space
V, then the real part R = Re(H) of H is a symmetric form on the underlying
real space, and the imaginary part C = Im(H) is a skew-symmetric real
form; these are related by C(v, w) = R(in, w). Both R and C are invariant by
multiplication by i R(iv, iw) = R(v, w). Show conversely that any such reai
symmetric R is the real part of a unique Hermitian H. Show that if H is

/0 [
standard, so is R, and C corresponds to the matrix J = ( UI 8’) Deduce
“ia

that
U(n) = 02n) n Sp,,R.

Note that the determinant of a unitary matrix can be any complex number
of modulus 1; the special unitary group, SU(n), is the subgroup of U(n) of
automorphisms with determinant 1. The subgroup of GL,C preserving an
indefinite Hermitian inner product with k positive eigenvalues and I negative
ones is denoted U, ; or Ulk, I); the subgroup of those of determinant ! is
denoted SU, ; or SU(k, §).

In a similar vein, the group GL,H of quaternionic linear automorphisms
of an n-dimensional vector space V over the ring H of quaternions is a real

27

This o€ of which factor is finear and which conjugate finear is less common than the other.
Tt makes fittle difference in what follows, but it does have the small ad ge of being ibl
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Lie subgroup of the group GL,,R, as are the further subgroups of H-linear
transformations of V' preserving a bilinear form. Since H is not commutative,
care must be taken with the conventions here, and it may be worth a little
digression to go through this now. We take the vector spaces ¥ to be right
H-modules; H" is the space of column vectors with right multiplication by
scalars. In this way the n x 1 matrices with entries in H act in the usual way
on H" on the Jeft. Scalar multiplication on the left (only) is H-linear.

View H = C @ JC = C*, Then left multiplication by elements of M give
C-linear endomorphisms of C?, which determines a mapping H —» M,C to
the 2 x 2 complex matrices. In particular, H* = GL, H < GL,C. Similatly
H" = €" @ jC" = C*", 50 we have an embedding GL,H < GL,,C. Note that
a C-linear mapping ¢: H" - H” is H-linear exactly when it commutes with
Jolwj) = @@)j. Wv = v, + jv,, then v-j = — %, + j5,, so multiplication by

(o), (0 =N\(B)

jiakes o _ | Itfoliows that if ./ is the matrix of the preceding
L) A1 0 N\a)

exercise, then

GL,H = {4eGL,,C: 4J = JA4}.

Those matri suhgroup SL M,

A Hermitian form(or “symplectic scalar product”) on a quaternionic vector
space V is an R-bilinear form K: ¥ x V — H that is conjugate H-linear in the
first factor and H-linear in the second: K(vA, wy) = 1K (v, w)u, and satisfies
K(w, v) = K(v, w). It is positive definite if K(v, v) > 0 for v # 0. (The conjugate
Yof a quaternion 4 = a + bi + ¢j + dk is defined (o be @ — bi — ¢j — dk) The
standard Hermitian form on H" is Z5,w;. The group of automorphisms of an
n-dimensional quaternionic space preserving such a form is called the compact
symplectic group and denoted Sp(n) or Uy,(n). The standard Hermitian form on
H is Z5,w,.

Exercise 7.4. Regarding V as a complex vector space, show that every quater-
nionic Hermitian form K has the form

K(v, w) = H(v, w) + jQ(v, w),

where H is a complex Hermitian form and Q is a skew-symmetric complex
linear form on ¥, with H and Q related by Q(v, w) = H(vj, w), and satisfying
the condition H(yj, wj) = H(v, w). Conversely, any such Hermitian H is the
complex part of a unique K. If K is standard, so is If, and @ is given by the

same mattix as in Exercise 71 Dedics that
same matrix as in Exercise 7.3. Deduce that

Sp(r) = U@2m n Sp,,C.

This shows that the two notions of “symplectic” are compatible.

More generally, if K is not positive definite, but has signnluré {p: q), say the

with the natural choice for quatesnions,

tandard 5, 5w, — Y222, 5w, the automorphisms preserving it form a
group U, ;M. Or if the form is a skew Hermitian form (satisfying the same
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finearity conditions, but with K(w,v) = —K{
ur.

), the group is denoted

Exercise 7.5. Identify, among all the real Lie groups desctibed above, which
ones are compact.

Complex Lie Groups

So far, all of our examples have been examples of real Lie groups. As for
complex Lie groups, these are fewer in number, The general linear group GL,C
is one, and again, all the elementary examples come to us as subgroups of the
general linear group GL,C. There is, for example, the subgroup SO,C of
automorphisms of an n-dimensional complex vector space V having deter-
minant 1 and preserving a nondegenerate symmetric bilinear form @ (note
that @ no fonger has a signature); and likewise the subgroup Sp,C of trans-
formations of determinant | preserving a skew-symmetric bilinear form.

Exercise 7.6. Show that the subgroup SU(n)  SL,C is not a complex Lie
subgroup. (It is not enough to observe that the defining equations given above
are not holomorphic.)

Exercise 7.7. Show that none of the complex Lie groups described above is
compact.

We shouid remark here that both of ihese exercises are immediate con-
sequences of the general fact that any compact complex Lie group is ahelian;
we will prove this in the next lecture. A representation of a complex Lie group
G is 2 map of complex Lie groups from G to GL(V) = GL,C for an n-
dimensional complex vector space V; note that such a map is required to be
complex analytic.

Remarks on Notation

A common convention is to use a notation without subscripts or mention of .

ground field to denote the real groups: -
O, SO(), SO(p4) UM, SUM), SU(nq), Sp(w
and to use subscripts for the algebraic groups GL,, SL,, SO,, and Sp,. This,

of course, introduces somic anomalics: for example, SO,R is SO(), but Sp,R
is not Sp(n); but some violation of symmetry seems inevitable in any notation.
The notations GL(1, R) or GL{n, C) are often used in piace of our GL,R or
GL,C, and similarly for SL, SO, and Sp.

Also, where we have written Sp,,, some write Sp,. In practice, it seems that
those most interested in algebraic groups or Lie aigebras use the former
notation, and (hose interested in compact groups the latter. Other common
notations are U*(2n) in place of our GL,H, Sp(p, q) for our U, ;H, and
O*(2n) for our UXH.

§7.3. Two Constructions 1ol

Exercise 7.8. Find the dimensions of the various real Lie groups GL, R, SL R,
B,, N,, SO,R, SO, R, Sp,,R, U(n), SU(n), GL,C, SL,C, GL,H, and Sp(n)
introduced above.

§7.3. Two Constructions

There are two constructions, in some sense inverse to one another, that arise
frequently in dealing with Lie groups (and that also provide us with further
examples of Lie groups). They are expressed in the following two statements.

Proposition 7.9. Let G be a Lie group, H a connected manifold,and . H - G a
covering space map.® Let ¢’ be an element lying over the identity e of G. Then
there is a 76 ire on H and @ is

e d ¢ is
amap of Lie groups; and the kernel of ¢ is in the center of H.

Rt

Proposition 7.10. Let H be a Lie group, and I < Z(H) a discrete subgroup of
its center. Then there is a unique Lie group structure on the quotient group
G = H/T such that the quotient map H — G is a Lie group map.

The proof of the second proposition is straightforward. To prove the first, one
shows that the multiplication on G lifts uniquely to a inap i x H — H which
takes (¢’, ¢') to ¢’, and verifies that this product satisfies the group axioms. In
fact, it suffices to do this when H is the universal covering of G, for one can
then apply the second proposition to intermediate coverings. ]

Exercise 7.11*. (2) Show that any discrete normal subgroup of a connected

Lie eroup G is in the center Z(G),

Lie group (- 15 in the centfer Z((:)

(b) If Z{(G) is discrete, show that G/Z{G) has trivial center.

These two propositions motivate a definition: we say that a Lie group map
between two Lie groups G and H is an isogeny if it is a covering-space map
of the underiying manifoids; and we say iwo Lic groups G and i1 are isogenous
if there is an isogeny between them (in either direction). Isogeny is not an
equivalence relation, but generates one, observe thal every isogeny equiv-
alence class has an initial member (that is, one that maps to every other one
by an isogeny)—that is, just the universal covering space G of any one—and,
if the center of this universal cover is discrete, as will be the case for all our
semisimple groups, a final object G/Z(G) as well. For any group G in such an
equivalence class, we will call G the simply connected form of the group G, and
G/Z(G) (if it exists) the adjoint form (we will see later a more general definition

o form),

ol 2 form).

&)

3 This means that ¢ is a continuous map with the property that every point of G has a
neighborhood U such that ¢~ '(U) is a distoint union of apen sets each mapping homeaimor-
phically to U.
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Exercise 7.12. If If — G is a covering of connecled Lie groups, show that Z(G)
is discrete if and only if Z(H) is discrete, and then If/Z(H) = G/Z(G). There-
fore, if Z(G) is discrete, the adjoint form of G exists and is G/Z(G).

s I YL A S OISRy P SO

To apply these ideas (o some of the examples ssed, note that the cenier
of 5L, (over R or C) is just the subgroup of multiples of the identity by an ath
root of unity; the quotient may be denoted PSL, 8 or PSL,C. in the complex
case, PSL,C is isomorphic to the quotient of GL,C by its center C* of scalar
matrices, and so one often writes PGL, C instead of PSL,C. The center of the
group SO, is the subgroup {+ 7} when n is even, and trivial when n is odd; in
the former case the quotient will be denoted PSO,R or PSO,C. Finally the
center of the group Sp,, is similarly the subgroup { +1}, and the quotient is
denoted PSp,,R or PSp,,C.

Exercise 7.13*. Realize PGL,C as a matrix group, ie, find an embedding
{faithful representation) PGL,C =» GL,C for some N. Do the same for the
other quotients above.

In the other direction, whenever we have a Lic group that is not simply
connected, we can ask what its universal covering space is, This is, for example,
how the famous spin groups arise: as we will see, the orthogonal groups SO, R
and SO,C have fupdamental group Z/2, and so by the above there exist
connected, two-sheeted covers of these groups. These are denoted Spin,R and
Spin,C, and wiii be discussed in Lecture 20; for the time being, the reader may
find it worthwhile (if frustrating) to try to realize these as matrix groups. The
Iast exercises of this section sketch a few steps in this dircction which can be
done now by hand.

Exercise 7.14. Show that the universal covering of U(n) can be identified
with the subgroup of the product U(m) x R consisting of pairs (g, 1) with
det(g) = e™.
Exercise 7.15. We have seen in Exercise 7.4 that

SU(2) = Sp(2) = {qeH: g7 = 1}.

identifying R* with the imaginaty quaternions (with basis J, j, k), show that,
for g7 = 1, the map vi— gvg maps R to itself, and is an isometry. Verify that

SU(2) = Sp(2) - SO(3)
isa2: 1 covering map. Since the equation q7 = 1 describes a 3-sphere, SU(2)
is the universal covering of SO(3); and SO(3) is the adjoint form of SU(2).

Exercise 7.16. Let M,C = C* be the space of 2 x 2 matrices, with symmetric
form Q(A, B) = § Trace(AB"), where BY is the adjoint of the matrix B; the
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quadratic form associated to Q is the determinant. For g and & in SL, C, the
mapping A+ gAh™" is in SO,C. Show that this givesa 2: | covering

SL,C x SL,C - SO,C,
which, since SL,C is simply connected, realizes the universal covering of
S0,C.
Exercise 7.17. Identify C? wuh the space of traceless matrices in M,C, so
g€ SL,Cacts by A>gAg™". Show that this gives a 2: 1 covering
SL,C - 50,C,

which realizes the universal covering of SO, C.



LECTURE 8
Lie Algebras and Lie Groups

1T 1S cru
group and its relation to that group. All three sections are logically necessary for whai
follows; §8.1 is essential. We use here a little more manifold theory: specifically, the
differential of a map of jifolds is used in a fund | way in §8.1, the notion of
the tangent vector to an arc in a manifold is used in §8.2 and §8.3, and the notion of a
vector field is introduced in an auxiliary capacity in §8.3. The Campbell-Hausdorfl
Torinula is introduced only to establish the First and Second Principles of §8.1 below;
if you are willing to take those on faith the formuta (and exercises dealing with it) can
be skimmed. Exerciscs 8.27-B.29 give alternative descriptions of the Lie algebra
associated to a Lie group, but can be skipped for now.

§8.1: Lie algebras: motivation and definition
§8.2: Examples of Lic algebras
§8.3: The exponential map

§8.1. Lie Algebras: Motivation and Definition

Given that we want to study the representations of a Lie group, how do we
g0 about it? As we have said, the notions of generators and relations is .hardly
relevant here. The answer, of course, is that we have {o use the continuous
structure of the group. The first step in doing this is

Exercise 8.1. Let G be a connected Lie group, and U < G any neighborhood

of the identity. Show that U generates G.

This statement implies that any map p: G — H between connected Lie
groups will be determined by what it does on any open set containing the
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identity in G, i.e., p is determined by its germ at e € G. In fact; we can extend
this idea a good bit further: Jater in this lecture we will establish the

First Principle: Let G and H be Lie groups, with G connected. Amap p: G -+ H
is uniquely determined by its differential dp_: T,G — T,H at the identity.

This is, of course, great news: we can completely describe a homomorphism
of Lie groups by giving a linear map between two vector spaces. It is not really
worth that much, however, unless we can give at least some answer to the
next, obvious question: which maps between these two vector spaces actually
arise as dxﬂerentmls of group homomorphisins? The answer to this is expressed
in the Second Principle below, but it will take us a few pages to get there. To
start, we have to ask ourselves what it means for a2 map to be a homomor-
phism, and in what ways this may be reflected in the differential.

To begin with, the definition of a2 homomorphisin is sitpiy a ¥ map p
such that :

plgh) = p(g)- p(h)

for all g and hin G. To express this in a more confusing way, we can say that
a homomorphism respects the action of a group on itself by left or right multi-
plication: that is, for any g € G we denote by m,: G — G the differentiable map
given by multiplication by g, and obscrve that a ¥ map p: G — I of Lie
groups will be a homomorphism if it carries m, to m,, in the sense that the
diagram

—f s H

G
G

— H
"

commutes.

The problem with this characterization is that, since the maps n1, have no
fixed points, it is hard to associate to them any operation on the tangent space
to G at one point. This suggests looking, not at the diffcomorphisms m,, but
at the automorphisms of G given by conjugation. Explicitly, for any g € G we
define the map

Y:G-G
by
Y=g hg'
(¥, is actually a Lie group map, but that is not relevant for our present
purposes.) It is now equally the case that a homemorphism p respects the action

of agroup G on itself by conjugation: that is, it will carry ¥, into ¥,,,, in the
sense that the diagram
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— +H

G
G

- s M
_— ]

P
commutes. We have, in other words, a natural map
¥: G -» Aut(G).
The advantage of working with ¥ is that it fixes the identity element e € G;
we can therefore extract some of its structure by looking at its differential at
e: we set

Ad(g) = (@¥,).: T.G > T.G. 8.2)
This is a representaiion
Ad: G - Au(T,G) 8.3)
of the group G on its own tangent space, called the adjoint representation of
the group. This gives a third characterization’: a homomorphism p respects the
adjoint action of a gronp G on its tangent space T,G at the identity. In other
words, for any g € G the actions of Ad{g) on T,G and Ad{p(g)) on T,H must
comnmute with the dillerential (dp),’ T,G — T,H, i.e, the diagram

T.G -9, T.H

Adml ]Adw(m

Pt veotor i &
co . equivaientiiy, ior any {angent vecior v €

dp{Ad(g)(v)} = Ad(p(g)ldp(v)). 84)

This is nice, but does not yet answer our question, for preservation of the
adjoint representation Ad: G — Aut(T,G)still involves the map p on the group
G itself, and so is not purely a condition on the differential {(dp),. We have
instead to go one step further, and take the differential of the map Ad. The
group Aut(T,G) being just an open subset of the vector space of endomor-
phisms of T,G, its tangent space at the identity is naturally identified with
End(T, G);, taking the dillerential of the map Ad we arrive at a map

ad: T,G — End(T,G). (8.5)

This is essentially a trilinear gadget on the tangent space 7,G; that is, we can

a
LN

view the image ad(X)(Y) of a tangent vector Y under the map ad(X) asa -§

! “Characterization” is not the right word here {oc in the preceding case), since we do nol
mean an equival dition, but rather hing implied by the condition that p be a

homomarphism.
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function of the two variables X and Y, so that we get a bilinear map

7.G x T,G = T,G.
We use the notation [ , ] for this bilinear map; that is, for a pair of tangent
veciors X and Y io G at ¢, we wrile

def
[X, Y= ad(X)(¥). (8.5)
As desirgd, the map ad involves only the tangent space to the group G at

e, and so gives us our final characterization: the differential (dp), of a homo-
morphism p on a Lie group G respects the adjoint action of the tangent space

to G oit itself. Explicitly, the fact that p and dp, respect the adjoint represen-
fation implies in turn that the diagram

7;(,'_"”.”;,7;,.,

sdiy) l

1; G dp), LH

ad(dgie))

commutes; i.e., for any pair of tangent vectors X and ¥ to Gate,

dp(ad(X)(Y)) = ad(dp, (X)) (dp(1)). @7
or, equivalently,

dpALX, Y1) = [dp(X), dp,(Y)]. (8.8)

All t!lis may be fairly confusing @if it is not, you probably do not need to
be reading this book). Two things, however, should be borne in mind. They
are:

() It is sot 50 bad, in the sense that we can make the bracket operation,

as defined above, reasonably explicit. We do this first for the general linear
group G = GL,R. Note that in this case conjugation extends to the ambient
linear space E = End(R") = M,R of GL,R by the same formula; Ad(g)(M) =
g}'!g", fmd this ambient space is identified with the tangent space T.G;
differentiation in E is usual differentiation of matrices. For any pair of tangent
vectors X and Y to GL,Rate,let y: I — G be an arc with ¥(0) = e and tangent
vector ¥(0) = X, Then our definition of [X, ¥ is that

. Applying the product rule to AdGUONTY) = 9 Y1), this is

=70 Y7(0) + 9(0)- Y- (=9(©0)~ -4/ (0)-y(0) ™)

=X ¥-¥X

which,.of course, explains the bracket notation. In general, any time a Lie
group is given as a subgroup of a general linear group GL, 1, we can view its
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tangent space T,G at the identity as a subspace of the space of endomorphisins
of R"; and since bracket is preserved by (differentials of) maps of Lie groups,
the bracket operation on T,G will coincide with the commutator.

(ii) Even if it were that bad, it would be worth it. This is because it turns out
i on we raised

that the bracket oneratios

bracket operatio

before. Precisely, later in this lecture we will prove the

is exactly the answer to th

Second Principle: Let G and H be Lie groups, with G connected and simply
connected. A linear map T,G — T,H is the differential of a homomorphism
p: G - H if and only if it preserves the bracket operation, in the sense of (8.8)
above.

We are now almost done: maps between Lie groups are classified by maps
between vector spaces preserving the structure of a bilinear map [roin the
vector space 1o itself. We have only one more question to answer: when does
a vector space with this additional structure actually arise as the tangent space
at the identity to a Lie group, with the adjoint or bracket product? Happily,
we have the answer to this as well. First, though it is far from clear from our
initial definition, it follows from our description of the bracket as a commu-
tator that the bracket is skew-symmetric, ie, [X, Y]= —[Y, X]. Second, it
likewise follows from the description of [X, Y] as a commutator that it
satisfies the Jacobi identity: for any three tangent vectors X, Y, and Z,

[X. LY, Z)) + [V, (2, X1] + (Z,[X, Y]} = 0.

Definition 8.9, A Lie algebra g is a vector space together with a skew-symmetric
bilinear map

satisfying the Jacobi identity.

We should take a moment out here to make one important point. Why,
you might ask, do we define the bracket operation in terms of the relatively
difficult operations Ad and ad, instcad of just defining [X, Y] to be the
commutator XY — ¥ X? The answer is that the “composition” X -Y of
elements of a Lie algebra is not weil defined. Specifically, any time we embed
a Lie group G in a general linear group GL(V), we get a corresponding

embedding of its Lie algebra g in the space End{V), and can talk about the

composition X - ¥ € End(V} of elements of g in this context; but it must be
borne in inind that this composition X - Y will depend on the embedding of
g, and for that matter need not even be an element of g. Only the commutator
X Y — Y- Xisalwaysanel of g, independent of the rep ion. The
terminoiogy somneiimes heighiens the conjusion: for when we speak
of embedding a Lie algebra in the algebra End{V) of endomorphisms of V, the
word algebra may mean two very different things. In general, when we want
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to refer to the endomorphisms of a vector space ¥ (resp. R") as a Lie algebra
we will write gl(V') (resp. gl,R) instead of End(V) (resp. M,R). ’

To return to our discussion of Lic algebras, a map of Lie algebras is a linear
map of vect.or spaces preserving the bracket, in the sense of (8.8); notions like
Lie subalgebra are defined accordingly. We note in passing one {lling that wiil
{urn out to be significant: the definition of Lie algebra does not specify the
field. Thus, we have real Lie algebras, complex Lic algebras, etc, all defined
in the same way; and in addition, given a real Lie algebra g we may associate
toita complex Lie algebra, whose underlying vector space i85 Cand whose

ace is 5 ® Cand whose |,

bracket operation is just the bracket on 6 extended by linearity.

Exercise 8.!0*. The skew-commutativity and Jacobi identity also follow from
the naturality of the bracket (8.8), without using an embedding in ol(V):

(a) Deduce the skew-commutativity [ X, X1 = 0from that fact that any X can

be written the image of a vector by dp, for some homomorphism g: R - G,
(See §8.3 for the existence of p.)

(b) _Given.(hat the bracket is skew-commutative, verify that the Jacobi identity
is equivaient io ihe assertion that

ad = d(Ad),: g - End(g)

preserves the bracket. In particular, ad is a map of Lie algebras.

To sum up our progress so far: taking for the moment on faith the state-
ments made, we have seen that

(i) the tangent space g at the identity to a Lie group G is naturally endowed
with the structure of a Lie alsahra:

ructure of a Lie algebra;

(i) it G and H are Lie groups with G counected and simply connected,
the maps from G to H are in one-to-one correspondence with maps of
the associated Lie algebras, by associating 10 p: G - [f its differential
(dp):g—b.

Of course, we make the
l.)eﬂnilion 8.11. A representation of a Lie algebra g on a vector space V is
simply a map of Lie algrbras

e g -+ gi(V) = End(V),

¢, a linear map that preserves brackets, or an action of g on V such that

[X, Y1) = X(Y(o) — Y(X(w)).

Statement (i) above implies in particular that representations of a connected
and simply connected Lie group are in one-to-one correspondence with repre-
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sentations of its Lie algebra. This is, then, the first step of the series of
reductions outlined in the introduction to Part IL. .

At this point, a few words are in order about the relation b'etween repre-
sentations of a Lie group and the corresponding _r\epnf?cfta-l}?{:.s ofJin l_“f
algebra. The first remark to make is about tensors. Recall thatifl I and b are
representations of a Lie group G, then we define the representation ¥V ® W to

be the vector space I/ ® W with the action of G described by
90 @ w) = g(0) ® g(w).

The definition for representatious of a Lie algebra, however, is qui.te different.
For one thing, if g is the Lie algebra of G, so lh:j\l the representation of G on
the vector spaces ¥ and W induces representations of g on these spaces, we
want the tensor product of the representations V and W of g to be the
representation induced by the action of G on V@ Wabove. But now suppose
that {y,} is an arc in G with y = ¢ and tangent vector o = X €. Then by

definition the action of X on V is given by

x0=2| wo
=0

and similarly for w € W; it follows that the action of X on the tensor product
v wis

X @ w = i\ (2,(0) ® 7,(w))
Xp@w =g, 6o
4 d
= (I’:l(=01”(v)) Qw+r® (ELO ?.(W)>=
X @w)=X0)®w+ 0@ X(w). 8.12)

This, then, is how we define the action of a Lie algebra g on the tensor product

of two representations of g. This describes as well other tensors: f(;r exam[z)lc,
e 1 e any veclor & v

if ¥ is a representation of the group G, v & V' is any vector and v* € Sym™ |

its square, then for any g € G,
g(v*) = g(v)*.

On the other hand, if V is a representation of the Lic algebra g and X e g is
any element, we have

X(?) =20 X0} (8.13)
One further example: if p: G - GL(V) is a representation of the group G, the
du 't G - GL(V*) is defined by setting

ny

al represent

eprese

plgy="plg™ ) V*—V*
Differentiating this, we find that if p: g— gl{V') is a representation of a Lie
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algebra g, the dual representation of g on V* will be given by
PX)="p(—X) = —'p(X): V* > V*, 8.14)
A second and related point to be made concerns terminology. Obviously,
when we speak of the action of a group G on a vector space V preserving some

extra structure on ¥, we mean that literally: for example, if we have a quadratic
form Q on V, to say that G preserves () means just that

Q(g(), g(w) = Q(v,w), YgeGandy,wel.

Equivalently, we mean that the associated action of G on the vector space
Sym?V* fixes the element Q € Sym?V*. But by the above calculation, the
action of the associated Lie algebra g on V satisfies

O, X(w) + Q(X(v),w)=0, YXegandv,weV (8.15)

or, equivalently, Q(v, X(»)) = 0 for all X e g and v e V; in other words, the
{nduced action on Sym*V* kills the element Q. By way of terminology, then,
we will in general say that the action of a Lie algebra on a vector space preserves
some structure when a corresponding Lie group action does.

The next section wili be spent in giving examples. In §8.3 we will establish
the basic relations between Lie groups and their Lie algebras, to the point
where we can prove the First and Second Principles above. The further
statement that any Lie algebra is the Lic algebra of some Lie group will follow

from the statement (see Appendix E) that every Lie algebra may be embedded
in gl R,

Exercise 8.16*. Show that if G is connected the image of Ad: G — GL(y) is the
adjoint form of the group G when that exists.

Exercise 8.17*. Let V be a representation of a connected Lie group G and
p: g~ End(V) the corresponding map of Lie algebras. Show that a subspace
W of V is invariant by G if and only if it is carried into itself under the action
of the Lie algebra g, i.e., p(X)(W) c W for all X in g. Hence, V is irreducible

over G if and onlv iF )
Over G il ana omy i it i

§8.2. Examples of Lie Algebras

We start with the Lie algebras associated to each of the groups mentioned in
Lecture 7. Each of these groups is given as a subgroup of GL(V) = GL, R, so
their Lie algebras will be subspaces of End(V) = gl,R.

" Consider first the special linear group SL,R. If {4,} is an arc in SL,R with

Ay = I and tangent vector A = X at t = 0, then by definition we have for
any basis ey, ..., e, of V = R",

Afe) A AAfe)=e A Ae,
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Taking the derivative and evaluating at t = 0 we have by the product rule

0-4 (e A A Ade)

=):e, A AXE) AT AE
— Trace(X) (e, A """ A €.}

The tangent vectors to SL,Rare thus all endomorphisms of trace 0; comparingf
dimensions we can see that the Lic aigebra st,R is exactly the vector space of
traceless n x n matrices. ) \

The orthogonal and symplectic cases are somewhat slmpler.'For example,
the orthogonal group O,R is defined to be the automorphisms A ‘of an
a-dimensional vector space V preserving a quadratic form Q, so ll\at if {4}
is an arc in O,R with A = I and Ag = X we have for every pair of vectors v,
welV

Q(AL), A (w)) = Qo, w).
Taking derivatives, we see that
QX (), w) + O, X(w) =0

for all v, w € V; this is exactly the condition that describes the ?rlllogonal Lie"
algebra so,R = 0,R. In coordinates, if the quadratic form @ is given on V=~
as

®.i%)

Qo,w) ='v M-w {8.15
for some symmetric 1 X r matrix M, then as we have seen the condition on
AeGL,Rtobein O,Ris that

"A-M-A=M. (8:20)

Differentiating, the condition on an n x n mattix X to be in the Lie algebra
50, of the orthogonal group is that
X-M+M-X=0
Note that if M is the identity matrix .-i.e,, Q is the “standard” quadratic
form Q(v, w) = 'v- w on R"—then this says that so,R is the subspace z_)f skgw-
symmetric n x nmatrices, To put it intrinsically, in terms of the |dentfﬁcaulon
of V with V* given by the quadratic form Q, and the consequeq( lfienuﬁcatlon
End(F) = V@ V* =V @V, the Lie algebra so,R < End(V) is just the sub-
space 'V = V@V of skew-symmetric tensors:

so,R = A?V c End(V) = V@ V.

820

(8.22)

All of the above, with the exception of the last paragraph, works equally
well to describe the Lie aigebra sp,, R of the Lie group sz,B of tr:
tions preserving a skew-symmetric bilinear form @; that is, sp,,R is the
subspace of endomorphisms of V satisfying (8.18) for every pair f)f vectors v,
we V,or,if Qis given bya skew-symmetric 2n x 2n matrix M as in (8.19), the
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space of matrices satisfying (8.21). The one statement that has to be substan-
tially modified is the last one of the last paragraph: because Q is skew-
symmetric, condition (8.18) is equivalent to saying that

MUY ) =0

QXL wy =02
for all v, we V; thus, in terms of the identification of V with V* given
by @, the Lie algebra sp;,R < End(V)=V @ V* = V@ V is the subspace
Sym*vVecrveVv:

5p2aR = Sym?V c End(V) = V@ V. (823

Exercise 8.24*. With Q a standard skew form, say of Exercise 7.3, describe
Sp,,R and its Lie algebra sp,,R (as subgroup of GL,,R and subalgebra of
al,,R). Do 4 corresponding calculation for SO, ;R.

One more similar example is that of the Lic algebra u, of the unitary group
U(n); by a similar calculation we find that the Lic algebra of complex linear
endomorphisms of C" preserving a Hermitian inner product H is just the space

of matricas Y caticluing
©i matrices & salisiying

H(X(v),w)+ Hlo, X(w}} =0, Yo,weV;

if H is given by H(v, w) = 7w, this amounts to saying that X is conjugate
skew-symmetric, i.e, that ‘X = —X.

Exercise 8.25. Find the Lie algebras of the real Lie groups SL,C and SL,H—
the elements in GL,H whose real determinant is 1.

Exercise 8.26. Show that the Lie algebras of the Lie groups B, and N, intro-
duced in §7.2 are the algebra b, R of upper triangular » x » matrices and the
algebra 1, R of strictly upper triangular n x n matrices, respectively.

If G is a complex Lie group, its Lie algebra is a complex Lie algebra. Just
as in the real case, we have the complex Lie algebras gl,C, sl,C, s0,,C, and
s9,,C of the Lie groups GL,C, SL,C, 50,,C, and Sp,,C.

Exercise 8.27. Let A be any (real or complex) algebra, not necessarily finite

dimensional, or even associative. A derivation is a linear map D: 4 - A satis-

fying ihe Leibniiz rule D{ad) = ab(b) + Diajb.

(2) Show that the derivations Der(A) form a Lie algebra under the bracket
[P, E] = Do E — Eo D.If Ais [inite dimeasional, so is Der(A).

{(b) The group of automorphisms of A is a closed subgroup G of the group

aloebra of G is

algebra o

{c) If the algebra A is a Lie algebra, the map A — Der(A), X+ Dy, where
Dy(Y) =[X, Y1, is a map of Lie algebras.
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Exercise 8.28%. If g is a Lie algebra, the Lie algebra automorpliisms of g form
a Lie subgroup Aut(g) of the general linear group GL{g).

{a) Show that the Lie algebra of Aut(g) is Der(g). If G is a simply connected
Lie algebea 5, the map Aut(G) - Aut(g) by gt-do is

1 Lie algebra g,

Lie group
one-to-onc and onto, giving Aut(G) the structure of a Lie group with Lie
aigebra Der(g).

(b} Show that the automorphism group of any connected Lie group is a Lie
subgroup of the automorphism group of its Lie algebra.

Exercise 8.29%. For any manifold M, the C* vector fields on M form a Lie
algebra o(M), as follows: a vector field v can be identified with a derivation of
the ring A of C* functions on M, with o(f) the function whose value ata
point x of M is the value of the tangent vector v, on f at x. Show that the
vector fields on M form a Lie algebra, in fact a Lie subalgebra of the Lie
algebra Der(A). If a Lie group G acts on M, the G-invariant vector fields form
a Lic subalgebra vg M of v(M). If the action is transitive, the invariant vector
fields form a finite-dimensional Lie algebra.

i G is a Lie group, vglG) = T,G hecomes a Lie algebra by the above
process. Show that this bracket agrees with that defined using the adjoint map
{8.6). This gives another proof that the bracket is skew-symmetric and satisfies
Jacobi's identity.

§8.3. The Exponential Map

The essential ingredient in studying the relationship between a Lie group G
and its Lie algebra g is the exponential map. This may be defined in very
straightforward fashion, using the notion of one-parameter subgroups, which
we study next. Suppose that X € g is any clement, viewed simply as a tangent
vector lo G at the identity. For any element g € G, denote by m,: G —» G the
map of manifolds given by multiplication on the left by g. Then we can define

a vector fieid vy on ail of G simply by setiing
vx(g) = (), (X).

This vector field is clearly invariant under left transiation (i.e., it is carried
into itsell under the diffeomorphism m, for all g); and it is not hard to sce that
this gives an identification of g with the space of all left-invariant vector fields
on G. Under this identification, the bracket operation on the Lie algebra g
corresponds to Lie bracket of vector fields; indeed, this may he adopted as the
definition of the Lie algebra associated to a Lie group (cf. Exercise 8.29). For
our present purposes, however,'all we need to know is that vy exists and is
left-invariant.

Given any vector field v on a manifold M and a point pe M, a basic
theorem from differential equaiions allows us (o integrate the vector field. This
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gives a diflerentiable map ¢: f —» M, defined on some open interval I con-

tair}ing 0, with ¢(0) = p, whose tangent vector at any point is the vector
assigned to that point by v, i.e., such that

for all ¢ in I. The map ¢ is uniquely characterized by these properties. Now
suppose the manifold in question is a Lie group G, the vector field the field
vy associated to an element X € g, and p the identity. We arrive then at a map
@: I - G; we claim that, at least where ¢ is defined, it is a homomorphism, i.c.,
@fs + t) = @(s)e(t} whenever s, t, and s + ¢ are in I. To prove this; fix s'and.
let £ vary; that is, consider the two arcs o and § given by a(t) = ¢(s) ¢(t) and
B(t) = (s + 1). Of course, a(0) = B(0); and by the invariance of the vector ficld
:)r,‘,: xf'se:“('h:ﬂt :Ee tangent vectors satisfy of(t) = vy (x(t)) and £'(t) = v,(B(1))

iorant. 3y the un,

noce aftha intaaral curva of o vantae £,
ness of the integral curve of a vector ficld onan

we deduce that aft) = f(t) for all ¢.

From the ljact that @(s + ) = @(s)e(t) for all 5 and ¢ near 0, it folfows that
¢ extends uniquely to all of R, defining a homomorphism

f'/»X:R—.G

with @ (1) = vx(@Xt) = (1) (X) for ail ¢.

Ex?rtise 8.30. Establish the product rule for derivatives of arcs in a Lie group
G:if e and f are arcs in G and y(t) = «(t)- f(t), then

Y1) = din,,{( (1)) + dngy(e'(1)),

wher'e f?r any g e G, the map m, (resp. n,): G — G is given by left {resp. right}
multiplication by g. Use this to give another proof that ¢ is a homomorphism.

Exercise 8.31'. Show that ¢y is uniquely determined by the fact that it is a
homomorphlsm_of R to G with tangent vector ¢y(0) at the identity equal to
X. Deduce that if y: G — H is a map of Lie groups, then ¢, x = f o .

.Thc Lic group map gy: R —+ G is cailed the one-parameter subgroup of G
with tangent vector X at the identity. The construction of these one-parameter
subgroups for each X amounts to the verilication of the Second Principle of
§8.1 for homomorphisms from R to G. The fact that there exists such a
one-parameter subgroup of G with any given tangent vector at the identity is
crucial. [For example, it is not hard to see (we will do this in a moment) that
these one-parameter subgroups fill up a neighborhood of the identity in G,
which immediately implies the First Principle of §8.1. To carry this out, we:
define the exponential map '

exp:g— G
by
exp(X) = (1), (8.32)
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Note that by the uniqueness of gy, we have
Paxit) = ex(Ah

5o that the exponential map restricted to the lines through the origin in g
gives ihie one-paraineter subgroups of G. Indeed, Exercise 8.31 implies the
characlerization:

Proposition 8.33. The exponential map is the unique map from g to G taking 0
to e whose differential at the origin

(expedo: Tog =0 T,G=¢

is the identity, and whose restrictions to the lines through the origin in g are
one-parameter subgroups of G.

This in particular implies (cf. Exercise 8.31) that the exponential map is
natural, in the sense that for any map y: G — H of Lie groups the diagram

BL*')

|
elpl lew
G— H

commutes.

MNow, since the diflerential of the exponential map at the origin in g is an
isornorphism, the image of exp will contain a neighborhood of the identity in
G. Il G is connected, this will generate all of G; from this follows the First
Principle: if G is connected, then the map Y is determined by its differential (dy)),
at the identity.

Using (8.32), we can write down the exponential map very explicitly in the
case of GL, R, and hence for any subgroup of GL,R, We just use the standard
power series for the function e and sct, for X e End(V),

02
explX)=1+X+ 17 4.0, (8.34)

Observe that this converges and is invertible, with inverse exp(— X). Clearly,
the diflerential of this map from 8 to G at the origin is the identity; and by
the standard power series computation, the restriction of the map to any line
through the origin in g is a one-parameter subgroup of G. Thus, the map
coincides with the exponential as defined originally; and by naturality the
sanie is true for any subgronp of G. (Note that, as we have pointed out, the
individual terms in the expression on the right of (8.34) are very much depen-
dent of the particular embedding of G in a general linear group GL(V) and
correspondingly of g in End(V), even though the sum on the right in (8.34) is
not.)

This explicit form of the exponential map allows us (o give substance to
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the assertion that “the group structure of G is encoded in the Lic algebra.”
Explicitly, we claim that not only do the exponentials exp(X) generate G, but
for X and Y in a sufficiently small neighborhood of the origin in g, we can
write down the product exp(X)-exp(Y) as an exponential. To do this, we
introduce first the “inverse” of the exponential map:forg € G « GL, R, we set

-0 g-
e i e

log(g) = (g — I — - egl,R,

Of course, this will be defined only for g suffi

ily cose to the identity in G;
but where it is defined it will be an inverse to the exponential map.
Now, we define a new bilinear operation on ol we set

X * Y = log(exp(X)-exp(Y)).

We have to be careful what we mean by this, of course; we substitute for g in
the expression above for fog(g) the quantity

X2 v?
exp(X)-exp(Y) =(I +X +—2- + )(I +Y+ 5 + )
X2 Y?
=I+(X+ Y)+(7+X-Y+——i—)+---,
being careful, of course, to preserve the order of the factors in each product,
Doing this, we arrive at

X 2 2 2
X*Y:(X+Y)+(~(¥;XL+(X7+X'Y+gf)>+“-

=X+ Y+3X YT+ .

Observe in particular that the terms of degiee 2 in X and ¥ do not in-
volve the squares of X and Y or the product X - ¥ alone, but only the com-
mutator. In fact, this is true of each term in the formula, ie., the quantity
log{exp(X)-exp(Y)) can be expressed purely in terms of X, ¥, and the bracket
operation; the resulting formula is called the Campbell-Hausdorff' formula
{although the aciuai formuia in ciosed form was given by Dynkin). To degree
three, it is

Xa¥ =X+ ¥ + 40X, YT 500X, Y14 GG LE XT) 4o

Exercise 8.35%. Verify (and find the correct signs in) the cubic term of the
Campbeil- Hausdorff formula,

Exercise 8.36, Prove the assertion of the last paragraph thal the power series
log(exp(X)- exp(Y)) can be expressed purely in terms of X, ¥, and the bracket
Operation.

Exercise 8.37. Show that for X and ¥ sufficiently sinall, the power setics
log(exp(X)- exp(Y)) converges.
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Exercise 8.38*, (a) Show that there is a constant C such that for X, Y ¢ gl,,
X+Y=X+Y+[X, Y1+ E, where JE§ < C(IX]) + Y.

(b) Show that exp(X + ¥) = lim,.,, (exp(X/n)- exp(Y/n))".

(c) Show that

X Y X r\\"
exp([X, Y]) = :::2 (exp(—n—)-exp (;)'exp(—;)'exp(~—">) .

Exercise 8.39. Show that if G is a subgroup of GL,R, the elements ?f its
Lie algebra are the “infinitesimal transformations” of G in the sense of von
Neumann, i.., they are the matrices in gl,R which can be realized as limits

limi_—{, A,€G,e,>0,6-0.
-0 &

Exercise 8.40. Show that exp is surjective for G = GL,C butnotfor G = GLIR
ifn>1,0rfor G = SL,C.

B eho Okl TEosedod formala we gan
By ihe Campbeil-Hausdorll formuia, we can n

elements of G in a neighborhood of the identity, but we can also say what their
pairwise products are, thus making precise the sense in which g and its bracket
operation determines G and its group law locally. Of course, we have not
written a closed-form expression for the Campbell-Hausdorfl formula; but,
as we will see shortly, its very existence is significant. (For such a ciosed {ormi,
see [Sel, 1§4.8].)

We now consider another very natural question, namely, when a vector
subspace Iy = g is the Lie algebra of (i.c,, tangent space al the identity to) an
ersed subgroup of G. Obviously, a necessary condition is that by is closed

under the bracket operation; we claim here that this is sufficient as well:

Proposition 8.41, Let G be a Lie group, § its Lic algebra, and ) = g a Lie
subalgebra. Then the subgroup of the group G generated by exp(b) is an

e ] o he wiim I siith famaont enace T H =k,
imimersed subgroup f with tangent Space 555 = 3.

Proor. Note that the subgroup generated by exp(h) is thé same as the sub-
group generated by exp(U), where U is any neighborhood of the origin in b. It
will suffice, then (see Exercise 8.42), to show that the image of b under the
exponential map is “locally” closed under multiplication, i.c., that for a'sufﬁ-
ciently smail disc A < b, the product exp(8)- exp(8) (that is, the set of pairwise
products exp(X)-exp(Y) for X, Y € A} is contained in the image of § under
the exponential map.

We will do this under the hypothesis that G may be realized as a subgroup
of a general linear group GL,R, so that we can use the formuia (8.34) for the
exponential map. This is a harmless assumption, given the statement (to be
proved in Appendix E) that any finite-dimensional Lie algebra may be
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embedded in the Lic algebra g, R: the subgroup of GL,R generated by
explg) will be a group isogenous to G, and, as the reader can easily check,
proving the proposition for a group isogenous to G is equivalent to proving
it for G.

1t thus suffices to prove the ass

is exactly the of the C:

When applied to an embedding of a Lie aigebra g into gl,, we see, in
particular, that every finite-dimensional Lie algebra is the Lie algebra of a Lie
group. From what we have seen, this Lie group is unique if we require it io be
simply connected, and then all others are obtained by dividing this simply
connected model by a discrete subgroup of its center.

Exercise 8.42*, Suppose G, is an open neighborhood of the identity in a Lie
group G such that G,- G, « G, and G;! = G,. Suppose H,, is a closed sub-
manifold of G, such that Hy- Iy = Hyand Hy! = H,. Show that the subgroup
H of G generated by H, is an immersed Lie subgroup of G.

As a fairly easy consequence of this proposition, we can finally give a proof
of the Second Principle stated in §8.1, which we may restate as

Second Principle. Let G and H be Lie groups with G simply connected, and let
g and |y be their Lie algebras. A linear map o: ¢ — Y is the differential of a map

A Gy H ol Tio crosine 36 aed colu i o0 ie o sseam of B in adooba o
AlG -5 a1 Of L€ gronps if ana ondy I 015 @ midp af LiE aigecias.

Proor. To see this, consider the product G x H. Its Lie algebta is just g B .
Letj < g ® ) be the graph of the map «. Then the hypothesis that « is a map
of Lie algebras is equivalent to the statement that jis a Lie subalgebra of g @ [y;
and given this, by the proposition there exists an immersed Lie subgroup
J = G x H with tangent space T,J = .

Look now at the map n: J — G given by projection on the first factor..By
hypothesis, the differential of this map dn,: | - g is an isomorphism, so that
the map J — G is an isogeny; but since G is simply connected it follows that
ais an isomorphism. The projection : G = J — H on the second [actor is then
a Lie group map whose differential at the identity is o. O

Exercise 8.43*. If g —+ g’ is a homomorphism of Lie algebras with kernel b,

show that the kernel H of the corresponding map of simply connected Lie

groups G - G’ is a closed subgroup of G with Lie group b, This does not
extend to non-normal subgroups, i.c., to the situation when ) is not the kernel
of a homomorphism: give an example of an immersed subgroup of a simply
connected Lie group G whose image in G is not closed.

Exercise 8.44. Use the ideas of this lecture to prove the assertion that a
compact complex connected Lie group G must be abelian:
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(a) Verify that the map Ad: G - Aut(T,.G) = End(T,G) is holomorphic, and,
therefore (by the maximum principle), constant.

(b} Deduce that if ‘¥, is conjugation by g, then d'¥, is the identity, so
¥, (exp(X)) = exp(d'¥ (X)) = exp(X) for all X € T,G, which implies that
@ is abelian.

{c) Show that the exponential map from T,G to G is surjective, with the kernel
a fattice A, so G = T.G/A is a complex torus.

LECTURE 9

Initial Classification of Lie Algebras

) ibclasses of Lie algebras: nilpotent, solvable, semi-
simple, etc.,, and prove basic facts about their representations, The discussion is entirely
elementary (largely because the hard theorems are stated without proof for now); there
are no prerequisites beyond linear algebra. Apart from giving these basic definitions,
the purpose of the lecture is largely to motivate the narrowing of our focus to
semisimple algebras that will take place in the sequel. In particular, the first part of
§9.3 is logically the most important for what follows. -

§9.1: Rough classification of Lie algebras
§9.2: Engel's Theorem and Lie’s Theorem
§9.3: Semisimple Lie algebras

E0 A Qiecte Tio alootocs
§9.4: Simiple Lic algebras

§9.1. Rough Classification of Lie Algebras

We will give, in this section, a preliminary sort of classification of Lie algebras,
reflecting the degree to which a given Lie algebra g fails to be abelian. As we
have indicated, the goal ultimately is to narrow our focus onto semisimple Lic
algebras.

X & g such that [X, Y] =0 for all ¥ € 9. Of course, we say g is abelian if all
brackets are zero.

Exercise 9.1. Let G be a Lie group, g its Lie algebra. Show that the subgronp
of G generated by expo iating the Lie subalgebra Z(y) is the connected
component of the identity in the center Z(G) of G.
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Next, we say that a Lie subalgebra Iy ¢ g of a Lie algebra g is an ideal if it
satisfies the condition

[X,Y]eh
Just as cotinected subgroups of a Lie group correspond to subalgebras of its

Lic algebra, the notion of ideal in a Lie algebra cotresponds to the notion of
normal subgroup, in the following sense:

forall Xebh, Yeg.

Hyercise 9.2, Let G be a connected Lie group, H < G a connected subgroup
and g and 1) their Lie algebras. Shiow that H is a normal subgroup of Giland
only if Iy is an ideal of g.

Observealso that the bracket operation on g induces a bracket on the quotient
space o/f) if and only if Iy is an ideal in g.

This, in turns, motivates the next bit of terminology: we say that a Lie
algebra g is simple if dim ¢ > 1 and it contains no nonlriviaf ideals. By the last
exercise, this is equivalent (o saying that the adjoin( form G of the Lie algebra
¢ has no nontrivial normal Lie subgroups. 7 -

Now, to attempt to classify Lie algebras, we introduce two descending
chains of subalgebras. The first is the lower central series of subalgebras 2,9,
defined inductively by

. P9=19,9]
and
D0 = [8, D19

Note that the subalgebras @,g are in fact ideals in g. The other series is called

o doniiad conioo (ke it i dafinad by
thic derived series 97 Gy, it is Getined Oy

2'q=19.9]

and

Exercise 9.3. Use the Jacobi identity to show that @*g is also an ideal in g.
More generally, if ) is an ideal in a Lie algebra g, show that [b, b] is also an
ideal it g; hence all 2*]) are ideals in g.

Observe that we have @*g « @,q for all k, with equality when k = 1; we
often write simply @g for @, = @' g and call this the commutator subalgebra.
We now make the

Definitions

(i) We say that g is nilporent if @,g = 0 for some k.
(i} We say that g is solvable it 2% = 0 for some k.
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(iii) Wesay that gis perfect il @g = g(this is ot a concept we will use much).
(iv) We say that g is semisimple if 3 has no nonzero solvable ideals,

The standard example of a niipotent Lie algebra is the algebra n,R of

strictly upper-triangular n % » matric

ctly upper-triangular matrice!

in this case the kth subalgebra 2,5
in the lower central series will be the subspace 11, ,R of matrices 4 = (a; )
such that @, ; = 0 whenever j < i+ k, ie., that are zero below the diagonal
and within a distance k of it in each column or row. (In terms of a complete
flag {¥;} asin §7.2, these are just the endomorphisms that carry Vinto V;_,_,.)
it foilows aiso that any subaigebra of the Lie aigebra w,R is likewise niipotent;
we will show later that any nilpotent Lie algebra is isomorphic to such a
subaigebra. We will also see that if a Lic algebra g is represented on a vector

. space ¥, such that each element acts as a nilpotent endomorphism, there is a

[ basis for V such that, identifying gl(V} with gl,R, g maps to the subalgebra

R < gl R

Similarly, a standard example of a solvable Lie algebra is the space b, R of
upper-triangular »n % n matrices; in this Lie algebra the commutator &b, R is
the algebra u,R and the derived series is, thus, 2*b,R = ;-1 ,R. Again, it
follows that any su

and we

will prove later that, conversely, any representation of a solvable Lic algebra
on a vector space V consists, in terms of a suitable basis, entirely of upper-
triangular matrices (i.e., given a solvable Lie subalgebra g of gl(¥), there exists
a basis for I such that under the corresponding identification of gl(V) with

o

g R, the subalgebra g is contained in b,R < gi,R).

1t is clear from the delinitions that the properties of being nilpotent or
solvable are inherited by subalgebras or homomorphic images. We will see
that the same is true for semisimplicity in the case of homomorphic images,
though not for subalgebras.

Note that g is solvable if and only if g has a sequence of Lie subalgebras
9=80>8; P > g =0, such that g;, is an ideal in g, and g,/g;,, is
abelian. Indeed, if this is the case, one sees by induction that %'g < g, for all
i. (One may also refine such a sequence to one where each quotient g,/g;,, is
one dimensional.) It follows from this description that i b is an ideal in a Lie
algebra g, then g is solvable if and only if b and g/Y are solvahle Lie algebras.
(The analogous assertion for nilpotent Lie algebras is false: the ideal n, is
nifpotent in the Lic algebra b, of upper-triangular matrices, and the quoticnt
is the nilpotent algebra b, of diagonal matrices, but b, is not nilpotent.) If g is
the Lie algebra of a connected Lie group G, then g is solvable if and only if
there js a sequence of connected subgroups, each normal in G (or in the next
* in the sequence), such that the quotients are abelian.

In particular, the sum of two solvable ideals in a Lie algebra g is again
solvable [note that (a + b)/b = a/(a N b)]. It follows that the sum of all solv-
abie ideals in g is a maximai soivable ideai, caiied the radical of g and denoted
Rad(g). The quotient g/Rad(g) is semisimple. Any Lie algebra g thus fits into
an exact sequence
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-+ Rad(g} - g - g/Rad(p) -+ 0 (94)
where the first algebra is solvable and the last is semisimple. With this
somewhat shaky justification (but sce Proposition 9.17), we may say that to
study the representation theory of an arbitrary Lie algebra, we have to

understand individually the representation theories of solvable and semi-

simple Lie algebras. Of these, the former is relatively easy, at least as regards
irreducible representations. The basic fact about them-—that any irreducible
representation of a soivable Lic algebra is one dimensional —will be proved
later in this lecture. The representation theory of semisimple Lic algebras, on
the other hand, is extraordinarily rich, and it is this subject that will occupy
us for most of the remainder of the book.

Anotler easy consequence of the definitions is the fact that a Lie algebra
is semisimple if and only if it has no nonzero abelian ideals. Indeed, the last
nonzero term in the derived sequence of ideals 2*Rad(g) would be an abelian
ideal in g (cf. Excrcise 9.3). A semisimple Lie algebra can have no center, so
the adjoint represeniation of a semisimple Lie algebra is faithful.

It is a fact that the sequence (9.4) splits, in the sense that there are sub-
algebras of g that map isomorphically onto g/Rad(g). The existence of such
a Levi decompositio . To show
thatan arburary Lie algebra hasa [anhful representation (Ado’s theorem), one
starts with a faithful representation of the center, and then builds a represen-
tation of the radical step by step, inserting a string of ideals between the center
and the radical. Then one uses a splitting to get from a faithful representation
o the radical to some representation on aii of ; the sum of this representation
and the adjoint representation is then a faithful representation. See Appendix
E for details.

One reason for the terminology simple/semisimple will become clear later
in this lecture, when we show that a semisimple Lie algebra is a direct sum of
simple ones.

Exercise 9.5, Every semisimple Lic algebra is perfect. Show that the Lic group
of Euclidean motions of R? has a Lie algebra g which is perfect, i.e., 9g = g,

but g is not semisimple. More generally, if % is semisimple, and ¥ is an

irreducible representation of b, the twisted product
g={(v,X)leeV, Xl with[(v, X)(w, ¥}]=(Xw— Yuo,[X, ¥])
is a Lie algebra with 2¢ = g, Rad(g) = V abelian, and g/Rad(g) = |

Exercise 9.6. (a) Show that the following are equivalent for a Lie algebra 9: (i)
g is nilpotent. (i) There is a chain of ideals g = g9 = g, = - > g, = 0 with
8i/0:4¢ contained in the center of g/g;,,. (iii) There is an mteger n such that

ad(X,) o ad(X,) oo ad(X, (¥} = [X,[X,,...,[X,, ¥]...]] =0
forall X,,..., X,, Ying.
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onclude tha ccted Lie srotin . e
{5} Conclude that a connected Lie group G is nilpotent if and onty i
a

be realized as a succession of central extensions of abelian Lie grou

=
@

Exercise 9.7*. If G is connected and nilpotent, show that the exponential map
exp: ¢ — G is surjective, making g the universal covering space of G.

Exercise 9.8. Show that the following are equivalent for a Lie algebra g: (i) g
is solvable. (i) There is a chain of ideals g =g, 29, - > g, =0 with
0i/9i4+, abelian. (iii) There is a chain of subalgebrasg = g o 9, 2 - 26, =0
such that g,,, is an ideal in g;, and g;/q;., is abelian.

§9.2. Engel’s Theorem and Lie’s Theorem

We wili now prove the statement made above abuut representations of sofv-
able Lie algebras always being upper triangular, This may give the reader an
idea of how the general theory proceeds, before we go back to the concrete
examples that are our main concern. The starting point is

Theorem 9.9 (Engel's Theorem). Let g < gl(V) be any Lie subalgebra such that
every X € gisanilpotent endomorphism of V. Then there exists a nonzero vector
ve Vsuchthat X(v) =0 forall X eg.

Note this implies that there exists a basis for V in terms of which the matrix
representative of each X € g is strictly upper triangular: since g kills v, it will
act on the quotient ¥ of V7 by the span of v, and by induction we can find a
basis ¥, ..., 5, for ¥ in terms of which this action is strictly upper triangular.
Lifting 5; to any v, € V and setting v, = v then gives a basis for V as desired.

ProoF OF THEOREM 9.9. One observation before we start is that if X € gl(V)
is any nilpotent element, then the adjoint action ad(X): gi(V) - gl(V) is nil-
potent. This is qtraightforward to say that X is nilpotent is to say that
there exists a flag of subspaces 6 c ¥, € ¥y c - = ¥, < ¥4y = V such that
X{V) © V;_y; we can then check that for any endomorphism Y of V the
endomorphism ad(X)™(Y) carries V, into V,;,_..

We now proceed by induction on the dimension of g. The first step is to
show that, under the hypotheses of the problem, g contains an ideal ) of
codimension one. In fact, let j = g be any maximal proper subalgebra; we
claim that [y has codimension one and is an ideal. To see this, we look at the
adjoint representation of g; since |y is a subalgebra the adjoint action ad(h) of
Iy on g preserves the subspace b < g and so acts on g/l). Moreover, by our
observation above, for any X € Iy ad(X) acts nilpotently on gl(V), hence on q,
hence on g/f. Thus, by mducuon lhere exists a nonzero elemeul Yeg/l kllled
by ad(X)forali X € Ij; equivalently, there exists an element ¥ € g not in ) such
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that ad{X}{Yj e} for all X eb. But this is io say thai the subspace i of g
spanned by [) and Y is a Lie subalgebra of g, in which § sits as an ideal of
codimension one; by the maximality of b we have Iy = g and we ate done.

We return now to the representation of g on ¥, We may apply the induction
hypothesis to the subalgebra ) of g found in the preceding paragraph to
conclude that there exists a nonzero vector v e V such that X{v) = 0 for all
X el let W V be the subspace of all such vectors ve V. Let ¥ be any
element of g not in b; since fj and Y span g, it will suffice to show that there
exists a (nonzero) vector v € W such that Y(v) = 0. Now for any vector we W
and any X € b, we have

X(Y(w) = Y(X (W) + [X, YI(w).

The fitst term on the right is zero because by hypothesis w e W, X € § and so
X(w) = 0; likewise, the second term is zero because [X, Y] = ad(X)(Y)eb.
Thus, X{V{w}) = Oforall X ¢ §; we deduce that Y{w) e W. But this

the action of Y on ¥ carries the subspace W into itself; since Y acts nilpotently
on ¥, it follows that there exists a vector v e W such that Y{(v) = 0. [}

Exercise 9.10*. Show that a Lie algebra g is nilpotent if and only if ad(X)is a
nilpotent endomotphism of g for every X € g.

Engel’s theorem, in turn, allows us to prove the basic statement made
above that every representation of a solvable Lie group can be put in upper-
triangular form. T implied by

‘Theorem 9.11 (Lie’s Theorem). Let g < gl(V) be a complex solvable Lie algebra.
Then there exists anonzero vector v e V that is an eigenvector of X forall X € g.

Exercise 9.12. Show that this implics the existence of a basis for ¥ in terms of
which the matrix representative of each X € g is upper triangular.

PROOF OF THEOREM 9.11. Once more, the first step in the argument is to assert

that g contains an ideal b of codimension one. This time, since g is solvabie

we know that 9g # g, so that the quotient a = o/@Pg is a nonzero abclian Lie
algebra; the inverse image in g of any codimension one subspace of a will
then be a codimension one ideal in g.

Still fo]lcwing the lines of the previous argument, we may by induction
assume that there is a vector v, € V that is an eigenvector for all X € §. Denote
the eigenvalue of X cotresponding to v, by A(X). We then consider the
subspace W < ¥ of all vectors satislying the same relation, i.e.. we set

W={veV:X(v)=AX) vVX ebh}.

Let Y now be any element of g not in b. As before, it will suffice to show that
Y catries some vector v € W into a multiple of itself, and lor this it is enough
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to show that Y carries W into itself. We prove this in a general context in the
following lemma.

Lemma 9.13. Let by be an ideal in a Lie algebra . Let V be a representation of
g, and A: b — C a linear function. Set

W={veV: X(t)=UX)vVXeh}
Then Y(W) < W forall Y e q.

PROOF. Let w be any nonzero element of W; to test whether Y(w)e W we let
X be any element of b and write

X(Y(w)) = V(X (W) + [X, YI(w)
= MX) Y(W) + ALX, Y)-w ©9.14)

since [X, ¥] € ly. This differs from our previous caleulation in that the second
term on the right is not immediately seen 10 be zero; indeed, Y(w) will lie in
Wif and oaly if }({X, Y])=Oforall X e }).

To verify this, we introduce another subspace of ¥, namely, the span U of
the images w, Y(w), Y2(w), ... of w under successive applications of ¥. This
subspace is clearly preserved by Y; we claim that any X € §j carries U into
itself as well. It is certainly the case that §) carries w into a multiple of itself,
and hence into U, and (9.14) says that (j carries Y(w) into a linear combination
of Y(w) and w, and so into U. In general we can see that §) carries Y*(w) into

: for any X € b we write
X(YHw) = Y(X(Y*1(w)) + [X, YT(Y* 2 (w)). 9.15)

Since X(Y*"'(w)) e U by induction the first term on the right is in U, and
since [X, Y] e b the second term is in U as well.

In fact, we see something more from (9.14) and (9.15): it follows that, in
terms of the basis w, Y(w), Y*(w), ... for U, the action of any X e) is upper
triangular, with diagonal entries all equal to A(X). In particutlar, forany X e b
the trace of the restriction of X to U is just the dimension of U times A(X).
On the other hand, for any element X € I the commutator [ X, Y] acts on U,
and being the commutator of two endomorphisms of U the trace of this action
is zero. It follows then that A([X, Y]) = 0, and we are done. o

and @q acts ivially
, and 2g acts trivially,

how that any irreducible representation of a solvable Lie
4 nai al
al

At least for irreducible representations, Lie's theorem implies they wilt all
be known for an arbitrary Lic algebra when they are known lor the semisimple
case, In fact, we have:

Proposition 9.17. Let g be a complex Lie algebra, g,, = a/Rad(q). Every irre-
ducible representation of g is of the form V = V, ® L, where ¥, is an irreducible
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representation of ¢, [i.e., a representation of g that is trivial on Rad(g)], and
L is a one-dimensional representation.

PROOF. By Lie’s theorem there is a 4 € (Rad(g))* such that

is not zero. Apply the preceding lemma, with I = Rad(g). Since V is irreduc-
ible, we must have W = V. Now extend 4 in any way to a linear function on
8. and let L be the one-dimensional representation of g determined by Z; in
other words, Y(z) = (Y)-z for all Yegand ze L, Then ¥ @ L* is a repre-
senlation that is trivial on Rad(g), 50 it comes from a representation of g,,,
as required. [m]

Exercise 9.18. Show that if g’ is a subalgebra of g that maps isomorphically
onto g/Rad{g), then any irreducible representation of g restricts to an irre-
ducible representation of ¢, and any irreducible representation of o’ extends

to a representation of g.

§9.3. Semisimple Lie Algebras

As is clear from the above, many of the aspects of the representation theoty
of finite groups that were essential to our approach are no longer valid in the
context of geierai Lic aigebras and Lie groups. Most obvious of these is
complete reducibility, which we have seen fails for Lie groups; another is the
fact that not only can the action of elements of a Lie group or algebra on a
vector space be nondiagonalizable, the action of some element of a Lie algebra
may be diagonalizable under one representation and not under another.
That is the bad news. The good news is that, if we just restrict ourselves to
semisimple Lie algebras, everything is once more as welt behaved as possible.
For one thing, we have complete reducibility again:
Theorem 9.19 (Complete Reducibility). Let V be o representation of the semi-
simple Lie algebra g and W < V a subspace invariant under the action of 9.
Then there exists a subspace W’ < V complementary to W and invariant under g

The proof of this basic result will be deferred to Appendix C.

The other question, the diagonalizability of elements of a Lie algebra under
& representation, requires a little more discussion. Recall {irst the statement

of Jordan decomposition: any endomorphism X of a complex vector space V

can be uniquely written in the form

X=X, +X,
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where X, is diagonalizable, X, is nilpotent, and the two commute. Moreover,
X, and X, may be exptessed as polynomials in X,

Now, suppose that g is an arbitrary Lic algebra, X € g any clement, and
p:9 — gl,C any representation. We have seen that the image p(X) need not
izable; we may still ask how p(X) behaves with respect to the

Jordan decomposition. The answer is that, in general, absolutely nothing need
be true. Forexample, just taking g = €, we see that under the representation

be diagon;

[iad U]

every efement is diagonalizabie, i.e., p(X), = p(X); under the representation

. 0 ¢
T
D2 0 0

representation.
If we assume the Lie algebra g is semisimple, however, the situation is
radically different. Specifically, we have

Theorem 9.20 (Preservation of Jordan Decomposition). Let g be @ semisimple
Lie algebra. For any element X € g, there exist X, and X, € g such that for any
representation p: g — pl(V) we have

p(X), = p(X,) and p(X), = p(X,).
In other words, if we think of p as injective and g accordingly as a Lie
subalgebra of gl(V), the diagonalizable and nilpotent parts of any element X of
g are again in g and are independent of the particular representation p.

The proefs we will give of the last tw

both involve introducing
objects that are not essential for the rest of this book, and we therefore relegate
them to Appendix C. It is worth remarking, however, that another approach
was used classically by Hermann Weyl; this is the famous unitary trick, which
we will describe briefly.

A Digression on “The Unitary Trick”

Basically, the idea is that the statements above (complete reducibility, pre-
servation of Jordan decomposition) can be proved readily for the represefi-
tations of 2 compact Lie group. To prove complete reducibility, for example,
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we can proceed more or less just as in the case of a finite group: if the compact
group G acts on a vector space, we see that there is a Hermitian mettic on ¥
invariant under the action of G by taking an arbitrary metric on V and
averaging its images under the action of G. If G fixes a subspace W < ¥, it will
then fix as well its orthogonal complement W' with respect to this metric.
(Alternatively, we can choose an arbitrary complement ¥’ to W, not neces-
sarily fixed by G, and average over G the projection map to g{W') with kernel
W; this average will have image invariant under G.)

How does this help us analyze the representation of a semisimple Lie
aigebra? The key faci here {to be proved in Leciure 26) is that if g is any
complex semisimple Lie algebra, there exists a (unique) real Lie algebra g, with
complexification g, ® C = g, such that the simply connected form of the Lie
algebra g is a compact Lie group G. Thus, restricting a given representation
of g to g,, we can exponentiate to obtain a representation of G, for which
complete reducibility holds; and we can deduce from this the complete re-
ducibility of the original representation. For example, while it is certainly not
true that any representation p of the Lie group SL,R on a vector space ¥V
admits an invariant Hermitian metric (in fact, it cannot, unless it is the trivial
representation), we can

(i} let p' be the corresponding (complex) representation of the Lie algebra
s(,R;
(ii) by linearity extend the representation p’ of sf,R to a representation p” of
st,C;
(iii) restrict to a representation p™ of the subalgebra su, < sl,C;
(iv) exponentiate to obtain a representation p™ of the unitary group SU,,.

We can now argue that
If a subspace W < V is invariant under the action of SL, R,

it must be invariant under sf,R; and since s1,€ = s, R ® €, itfollows that
it will be invariant under s(,€; 5o of course

it will be invariant under su,; and hence

it wilt be invariant under SU,,.

Now, since 8U, is compact, there will exist a complementary subspace W’

preserved by SU,; we argue that

W will then be invariant under su,; and since sl,C = su, ® C, it foliows
that

it will be invariant under ¢1,C. Restricting, we see that

it will be invariant under s1,R, and exponentiating,

it will be invariant under SL,R.

Similarly, if one wants to know that the diagonal elements of SL,R act
semisimpiy in any representation, or equivaiently that the diagonai elements
of sl,R act semisimply, one goes through the same reasoning, coming down
to the fact that the group of diagonal elements in su, is abelian and compact.
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In general, most of the theorems about the finite-dimensional represef-
tation of semisimple Lic algebras admit proofs along two different lines: ejther
algebraically, using just the structure of the Lie algebra; or by the unitary trick,
that is, by associating to a representation of such a Lie algebra a representation
of a compact Lie group and working with that. Which is preferable depends
very mruch on taste and context; in this hook we will for the most part go with
the algebraic proofs, though in the case of the Weyl character formula in Part
1V the proof via compact groups is so much more appealing it has to be
mentioned.

Tha fallawie

1 1€ IOnOWiii]

ude a few applications of these two theorems.

Exercise 9.21%. Show that a Lie algebra g is semisimple if and only if every
flinite-d nal ation is semisimple, i.c., every invariant subspace

has a complement.

Exercise 9.22. Use Wey!'s unitary trick to show that, for n> 2, all represeh-
tations of SO, C are semisimple, so that, in particular, the Lie algebras s0,C
are semisimple. Do the same for Sp,,C and sp,,C, n > |. Where does the
argument break down for SO,C?

Exercise 9.23. Show that a real Lie algebra g is solvable if and only if the
complex Lie algebra g ®gC is solvable. Similarly for nilpotent and semisimple.

4 in a Lie algebra g, show that g is semisimpie if
and only if b and g/h are semisimple. Deduce that every semisimple Lie algebra
is a direct sum of simple Lie algebras,

Exercise 9.25* A Lie algebra is called reductive if its radical is equal to its

r. A Lie group is reductive if its Lie alpebra is reductive, For example,
GL,C isreductive. Show that the foltowing are true for a reductive Lic algebra
o (i) Pg is semisimple; (ii) the adjoint repr tion of g is isimple; (iii) g
is a product of a semisimple and an abelian Lic algebra; (iv) g has a finite-
di ional faithful ple representation. Tn fact, each of these condi-
tions is equivalent to g being reductive.

§9.4. Simple Lie Algebras

There is one more basic fact about Lie algebras to be stated here; though its
proof w_ill have to be considerably deferred, it informs our whote approach to
the subject. This is the complete classification of simple Lie algebras:

Theorem 9.26. With five exceptions, every simple complex Lie algebra is iso-
morphic to either s1,C, %0,C, or sp,,C for some n.
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Tie five exceptions can ail be explicitiy described, though none is par-
ticutarly simple except in name; they are denoted g,, {4, €, €7, and eg. We
will give a construction of each later in the book (§22.3). The algebras ([ C
(for n > 1), 50, € (for n > 2), and sp,,C are commonly called the classical Lie
algebras (and the corresponding groups the classical Lie groups); the other five
algebras are called, naturally enough, the exceptional Lie algebras.

The nature of the classification theorem for simple Lie algebras creates a
dilemma as to how we approach the subject: many of the theotems about
simple Lie algebras can be proved either in the abstract, or by verifying them
in turn for each of the particular algebras listed in the classification theorem.
Another alternative is to declare that we are concerned with understanding
only the representations of the classical algebras sl,C, s0,C, and sp,,C, and
verify any relevant theorems just in these cases.

Of these three approaches, the last is in many ways the least satisfactory;

[A—— tho oo thot o obodE Fon tho inoet naet take Quenifically what

it is, however, the one that we shall for the most part take. Specifically, what

we will do, starting in Lecture 11,is the following:
Analyze in Lectures 11 13 a couple of examples, namely, 51, and s{,C,

on what may appear to be an ad hoc basis.

On the pggarlimn

for the study of representations of a simple (or semisimple) Lie algebra.
Proceed in Lectures 15-20 to carry out this analysis for the classical
algebras st,C, s0,C, and sp,, C.

(iv) Givein Part1V and the appendices proofs for general simple Lie algebras
of ihe facts discovered in ihe preceding sections for the ciassicai ones {as
well as one further important result, the Weyl character formula).

of

(iii)

We can at least partially justify this scemingly inefficient approach by
saying that even if one makes a beeline for the general theorems about the
structire and renresentation theory of a simnle Lie aloebra. to annly these
structure and representation theory of a simple Lie algebra, to apply these
results in practice we would still need to carry out the sort of explicit analysis
of the individual algebras done in Lectures 11--20. This is, however, a fairly
bald rationalization: the fact is, the reason we are doing it this way is that this
is the only way we have ever been able to understand any of the general results.

LECTURE 10

Lie Algebras in Dimensions One, Two,
and Three

LCTELS N W VS R v v

he associated to it

ne
t be asseciated to it

Just to get a sense of what a Lie algebra is and what ps
we will classify here all Lie algebras of dimension three ot less. We will work primarily
with complex Lie algebras and Lie groups, but will mention the real case as well,
Needless (o say, this lecture js logically superflluous; but it is casy, fun, and scrves a
didactic purpose, so why not read it anyway. The analyses of both the Lie algebras
and the Lie groups are letely el 'y, with one 1
of the complex Lie groups associated to abelian Lie algebras involves the theory of
complex tori, and should probably be skipped by anyone not familiar with this subject.

§10.1: Dimensions one and two
§10.2: Dimension three, rank one
810.3. thr 5

e, { 5]

§10.4: Dimension three, rank threg

§10.1. Dimensions One and Two

To begin with, any one-dimensional Lie algebra g is clearly abehan, that is,
- € with all brackets zero.

The simply connected Lic group with this Lie algebra is just the group C
under addition; and other connected Lie groups that have g as their Lie
algebra must all be quotients of € by discrete subgroups A < C. If A has rank
one, then the quotient is just €* under multiplication. If A has rank two,
however, G may be any one of a continuously varying family of complex tori
. of dimension one {or Riemann surfaces of genus one, or elliptic curves over C).
* The set of isomorphism classes of such tori is parametrized by the complex
. plane with ceordinate j, where the function j on the set of lattices A = € is
8s described in, e.g., [Ahl].

Over the real numbers, the situation is completely straightforward: the only
real Lie algebra of dimension one is again R with trivial bracket; the simply
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connected Lie group associated to it is R under addition; zlmd the onfy othet
connected real Lie group with this Lie algebra is R/Z = St

Dimension Two
Here we have to consider two cases, depending on whether g is abelian or not.

Case 1: ¢ abelian. This is very much like the previ(?U§ cnse;2 the simplyvc.on-
nected two-dimensional abelian complex Lie group is just C ul?der addlluon,
and the remaining connected Lie groups with Lie algebra g are just quotients
of €? by discrete subgroups. Such a subgroup A < €2 can have rank 1,2, 3h
or 4, and we analyze these possibilities in turn (t'he reade'r wl_xo has seen enoug.
complex tori in the preceding example may wish to skip directly to Case 2 at
this point) e i A o Lo e 2

If the rank of A is 1, we can complete the generator ol /A 10 & vasis 107 L,
so that A = Ze, < Ce; @ Ce,and G 2 C* x C.1f the rank of A is 2, there ar:
two possibilities: either A lies in a one-dimensional complgx subspace of c
or it does not. If it does not, a pair of generators for A will also be a bas;s
for €2 over C. so that A = Ze, @ Ze,, C? = Ce, @ Ce,, and G = C* x C*.
I on the other hand A does lic in a complex fine in fC’, so that we have
A = Ze, @ Zre, for some e C\R, then G = E x € will be the Prodl‘mt o;
the torus CAZ @ Zt) and C; the remarks above apply to the classification of
the’f’isz;i:::ztzclf‘tlg;{s rank 3 or 4 are a little less clear. To begin with: if
the rank of A is 3, the main question to ask is whether any rar!k 2 sublgthg:c
A’ of A lies in a complex line, If it does, then we can assume this sublattice is
saturated (ie., & pair of generators for A’ can be completed to a set of
generators for A) and write A = Ze, & Z1e, @ Ze,, so that we will have
G = E x C*, where E is a torus as above.

Exercise 10.1*. For two one-dimensional complex tori E %md E, sh_ow that
the complex Lie groups G = £ x C and G’ = E' % € are isomorphic if and
only if E = F'. Similarly for E x C* and E' x C*.

If, on the other hand, no such sublattice of A exists, lhe_sih'lalion is much
more mystcrious. One way we can try to represent Gisby c'hoosmgza genera?or
for A and considering the projection of C* onto the quotient of C by the tine
spanned by this generator; thus, if we write A = Ze, ® Ze,  Z(xe, + fe,)

then (assuming f§ is not real) we have maps

c? — C*/Ce; = C
1
G = C¥Ze, @ Ze, D Z{ae, + fes) — CAZ D ZP)

expressing G as a bundle over a torus E = CAZ & Zp), with fibers isomorphic
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to €*, This expression of G does not, however, help us very much to describe
the family of all such groups. For one thing, the elliptic curve E is surely not
determined by the data of G: if we just exchange ¢; and e,, for example, we
replace E by C/(Z ® Z«), which, of course, need not even be isogenous to E.

Indeed, this yields an example of different algebraic groups isomerphic as
complex Lie groups: expressing G as a C* bundle in this way gives it the
structure of an algebraic variety, which, in turn, determines the elliptic curve
E (for example, the ficld of rational functions on G wilt be the field of rational
functions on E with one variable adjoined). Thus, different expressions of the
compiex Lie group G as a C* bundie yield nonisomorphic aigebraic gronps.

Finally, the case where A has rank 4 remains completely mysterious.
Among such two-dimensional complex tori are the abelian varieties; these ate
just the tori that may be embedded in complex projective space (and hence
may be realized as algebraic varieties). For polarized abelian varieties (that is,
abelian varieties with equivalence class of embedding in projective space) there .
exists a reasonable moduli theory; but the set of abelian varieties forms only
a countable dense union in the set of all complex tori (indeed, the general
complex torus possesses no nonconstant meromorphic functions whatsoever),
No satisfactory theory of fo ,

Needless to say, the foregoing discussion of the various abelian complex
Lie groups in di ion two is completely orthogonal 1o out present pur-
poses. We hope to make the point, however, that even in this seemingly trivial
case there lurk some fairly mysterious phenomena. Of course, none of this
the real case, where the two-dimensional abelian simply connecied
real Lie group is just R x Rand any other connected two-dimensional abelian
yeal Lie group is the quotient of this by a sublattice A © R x R of rank 1 or
2, which is to say either R x §' or §1 x §!.

Case 2: g not abelian. Viewing the Lie bracket as afinearmap[ , J:A’q—yq,
we see that if it is not zero, it must have one-dimensional image. We can thus
choose a basis {X, Y} for g as vector space with X spanning the image of
[, J;after multiplying Y by an appropriate scalar we wili have [X, Y] = X,
which of course determines g completely. There is thus a unique nonabelian
two-dimensional Lic algebra g over either R or C.
What are the complex Lie groups with Lie algebra g? To find one, we start
with the adjoint representation of g, which is faithful: we have
ad(X): X —0, ad(Y): X —X,

Y X, Y—0
or in matrix notation, in terms of the basis {X, Y}forg,

01 —~1 0
(e ). ()

* *
These generate thealgebra g = (0 0) < gl,C; we may exponentiate toarrive

at the adjoint form
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G, = {(g l{):a #0} « GL,C.

Topologically this group is homeomorphic to € x C*. To take its universal
cover, we write a general member of G, as

(1)
o 1)
The product of two such matrices is given by
e s\ (e & et s+ e's”
(5 MG -0 )
so we may realize the universal cover G of G, as the group of pairs (t, s) e
€ x C with group law
t,5)-(t,s)=(@+t,5+e's)
The center of G is just the subgroup
Z(G) = {(2nin, 0)} = Z,
50 that the connected groups with Lic algebra g form a partially ordered tower

G
i

= G/nZ = {(a, B e C* x C:{a, b) (@', b') = (ad’, b + a"b'}}.

= D

1
Go

Exercise 10.2*. Show that for n # m the two groups G, and G, are not

isomorphic.

Finally, in the real case things are simpler: when we f?xponemia('e the
adjoint representation as above, the Lie group we arrive atis a!rea'dy simply
connected, and so is the unique connected real Lie group with this Lie algebra.
connected, and so is the

§10.2. Dimension Three, Rank 1

As in the case of dimension two, we iook at the i',ie i?rackei as a finear map
from A2g to g and begin our classification by considering the rank of this map .
{that is, the dimension of Py), which may be either 0, 1, 2, or 3. For the case
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of rank 0, we refer back to the discussion of abelian Lie groups above. We
begin with the case of rank 1.

Here the kernel of themap [ , ]: A2g — gis two dimensional, which means
that for some X e g it consists of all vectors of the form X A Y with ¥ ranging
over all of g (X here will just be the vector corresponding to the hyperplane
ker({ , 1) = A’y under the natural (up to scalars) duality between a three-
dimensional vector space and its exterior square). Completing X to a basis
{X, Y, Z} of g, we can write g in the form

[X,Y1=[X,Z]1=0,
[YZ)=aX +pY +yZ

for somew, §,y € C. If either f or yis nonzeto, we may now rechoose our basis,
replacing Y by a multiple of the linear combination aX + Y + yZ and either
leaving Z alone {if # + 0) or replacing Z by ¥ (if y 3 0). We will then have.

[X, Y]1=[X,Z]=0,
[v,zZ]=v

from which we see that g is just the product of the one-dimensional abelian
Lie algebra CX with the non-abelian two-dimensional Lie algebraCY@® CZ
described in the preceding discussion. We may thus ignore this case and
assume that in fact we have f = y = 0; replacing X by aX we then have the
Lie algebra

[X,Y1=[X,Z]=0,
[v.z1=x.

How do Wwe find the Lie groups with this Lie algebra? As before, we need
to start with a faithful representation of g, but here the adjoint representation
is useless, since X is in its kernel, We can, however, arrive at a representation
of g by considering the cquations defining g: we want to find a pair of
endomorphisms Y and Z on some vector space that do not commute, but that

do commute with their commutator X = [, Z3; thus,

Y(YZ-ZY)—(YZ—-ZY)Y = Y?Z —2YZY + ZY?* =0

and similarly for [Z, [ Y, Z]). One simple way to find such a pair of endo-
* morphisms three terms Y?Z, YZY, and Z2Y in the above equation
ze10, e.., by making Y and Z both have square zero, and to have YZ = 0
while ZY + 0. For example, on a three-dimensional vector space with basis
€15 €2, and e, we could take ¥ to be the map carrying ey to e, and killing
"¢y and e,, and Z the map cartying e, to e, and killing ¢, and e,; we then have
Z =0 while ZY sends e, i0 ¢,. We see then that g /s just the Lie algebra n,
strictly upper-triangular 3 x 3 matrices. When we exponentiate we arrive
the group




138 10. Lie Algebras in Dimensions One, Fwo, and Three

1 ab
G=4[0 1 ¢),abceC
0 01
which is simply connected. Now the center of G is the subgroup
tob
ZG) =410 1 0} beCr=C
0 0 1

so the discrete subgroups of Z(G) are just lattices A of rank 1 or 2; thus any
connected group with Lic algebra g is either G, G/Z, or GI(Z x Z)—that is,
an extension of C x C by either C, C*, ot a torus E.

Exercise i0.3. Show ihat G/
dimensional Z(G)/A.

A similar analysis holds in the real case: just as before, ny is u'.e unigue real
Lic algebra of di ion three with cc tator subalgebra o[dm.\enslon one;
its simply connected form is the group G of ijﬁipﬁf’c‘ﬁlt 3 x '3 matrice
center of this group being R) the only other group with this Lie algebra is the
quotient H = G/Z. .

Incidentally, the group H represents an interesting example ol"fx group l!\al
cannot be realized as a matrix group, i€, thatradmits no fml!lﬁfl Iﬁmle-
dimensional representations. One way lo see this is to argu;’, that in any
irreducible finite-dimensional representation ¥ the center S* of H, be{ng
compact and abelian, must be diagonalizable; and so under the correspondmg
representation of the Lie algebra g the element X must 'be carried 1o a
dizponalizable endomorphism of V. But now if v € V is any eigenvector for X

diagonalizablie endo

with cigenvalue A, we also have, arguing as in §9.2,
X(Y(@) = Y(X() = Y(lo} = 1Y (1)
and similarly X(Z(v)) = AZ(v), i.e., both Y(v) and Z{v) are also eigenvectors

for X with eigenvalue 4. Sitice Y and Z generate g and the representation V
N g . . Py
is irreducible, it follows that X must act as a scatar multiple A- I of the identity;

butsince X = [¥, Z]isacommutator and so has trace 0, it follows that 4 = 0.

{the

Exercise 10.4*. Show that if G is a simply connected Lie group, and |E },15

. P el
algebra is solvable, then G cannot contain any nontrivial compact SUVEIvRy
(in particular, it contains no elements of finite order).

The group H does, however, have an important infinite-dimensional repre-
sentation, This arises from the representation of the Lie algebra g on the space

V of €™ functions on the real line R with coordinate x, in which ¥, Z, and X
are the operators
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and X = (¥, Z]is —mi times the identity. Exponentiating, we sec that e'” acts
on a function f by multiplying it by the function (cos tx + i-sin tx); e'% sends

f to the function F, where F(x) = f(t + x), and ¢'* sends / to the scalar
multiple e 1.

§10.3. Dimension Three, Rank 2

ommiitator subaigebra Pa < g as the span of iwo

elements ¥ and Z. The commutator of Y and Z can then be written
[Y,Z] =Y  f2Z.

But now the endomorphism ad(Y) of g carries g into D, kills Y, and sends Z
toaY + fZ,and so has trace f5; on the other hand, since ad(¥)is a commutator
in End(g), it must have trace 0. Thus, ff, and similarly &, must be zero; i.e., the
subalgebra 2 must be abelian. It follows from this that for anyelement X € g
not in 2g, the map

adi VY. & Y
adiA): Zg - Ja

must be an isomorphism. We may now distinguish two possibilities: either
ad(X} is diagonalizible or it is not.

(Note that for the first time we see a case where the classification of the

real Lie aloebra will he more comnlicated than that af tha narmba: i 6l o conl
13 ! be more complicated than that of the complex: in the real

case we will have to deal with the third possibility that ad(X) is diagonalizible
over € but not over R, i.e, that it has two complex conjugate eigenvalues.
'_Though we have not seen it much in these low-dimensional examples, in fact
itis generally the case that the real picture is substantially more complicated

dho o

than the complex one, for essentially just this reason.)

Possibility A: ad(X) is diagonalizable. Tn this case it is natural to use as a basis
for Pg a pair of eigenvectors ¥, Z fot ad (X); and by multiplying X by a suitable
scalar we can assume that one of the eigenvalues (both of which are nonzero)
is 1. We thus have the equations for g i

X, YI=Y, [X,Z]=wZ, [¥,Z]=0 (10.5)

for some a € C*.

Exercise 10.6. Show thattwo Liealgebrasg,, 0, corresponding to two different

scalars in the structure equations (10.5) are isomorphic if and only if & = & or
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o = 1/a. Observe that we have for the first time a continuously varying family
of nonisomorphic complex Lie algebras.

To find the groups with these Lie algebras we go to ihe adj(z!nt r?qrf?sel;
tation, which here is faithful. Explicitly, adA(Y) carries X to —Y ;nu xrnll ’
and Z; ad(Z) carries X to —aZ and also kills ¥ and Z; and ad( )cra‘rh esLie
Lo itself, Z to 6Z, and kills X. A general member c{X —bY — ch ol be e
algebra is thus represented (with respect to the basis {Y, Z, X} for g) by

a 0 b
0 oa oc|
0 0 0
Exponentiating, we find that a group with Lie aigebra g is
e 0 u
G= 0 e* v, t,uveC}y c GL,C
0 0 1

Here we run across a very interesting circumstance. If the complex numhber o
is not rational, then the exponential map I'rmp g to G is one-to-one, al;]d elli':cc
a homeomorphism; thus, in particular, G'is simply connected. I, 01{\ the oth;zsr
hand, « is rational, G will have nontrivial [“"da,mf[l_‘?igm“p' 0 see 3
observe that we aiways have an exaci sequence 0f Broups

1+B->GoA-1,

where
f{ef 0 0} ]
A= (0 e OJ,teCj
0 0 t
and
({1t 0 u ]
B=4{0 1 v|mveC} =CxC.
001

Now when & ¢ Q, the group A = C is simply connected; bl'll when a € QZ—
whatever its denominator—we have A = €* and correspondingly n,(G) = 2.

Exercise 10.7. Show that G has no center, and hence when.a <0, il. is lht;
unique connected group with Lie algebra g. For o € Q, describe the universal-

covering of G and classify all groups with Lie algebra q.

1g of {r and class

. Observe that in this case, even though we have a con(i.nuously varying
famity of Lie algebras q,, we have no corresponding continuously varying
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family of the adjoint (linear) Lie groups; the simply-connected forms do form
a family, however,

Possibility B: ad(X) is not diagonalizable. In this case the natura

ine to da
thing to do

1y
is to choose a basis {Y, Z) of @g with respect to which ad(X) is in Jordan

normal form; replacing X by a multiple, we may assume both its eigenvalues
are 1 so that we will have the Lie algebra

X, Y]=Y, [X.Z]=Y+Z [v.Z]l=0 (10.8)

With respect to the basis {¥. Z, X}for g, then, the adjoint action of the general
element aX — bY — cZ of the Lie algebra is tepresented by the matrix

[ror
oo o

and exponentiating we [ind that the corresponding group is

{ g

e te u

]
c:“g f)' .;},t,u,uscjk.

Exercise 10.9. Show that this grou,

connected complex Lie group wi

as no center, and hence is the unique
5 its Lie algebra.

=]
@ o
I3

Note that the real Lic groups obtained by exponentiating the adjoint action
of the Lie algebras given by (10.5) and (10.8) are all liomeomorphic to R? and
have no center, and so are the only connected real Lie groups with these Lie

algebras.

Exercise 10.10. Complete the analysis of real Lie groups in Case 2 by con-
sidering the third possibility mentioned above: that ad(X) acts on 2q with
distinct complex conjugate eigenvalues. Observe that in this way we arrive
at our first example of two nonisomorphic real Lie algebras whose tensor
products with C are isomorphic.

hree, Rank 2

'§10.4. Dimension

, I
Our analysis of this final case begins, as in the preceding one, by looking for
igenvectors of the adjoint action of a suitable element X € g. Specifically, we
claim that we can find an element H e @ such that ad(H): g - g has an

envecior with nonzero eicenval

W
th nonzere eigenvalue,

1o see this, observe first that for any
Bonzere X e g, the rank of ad(X) must be 2; in particular, we must have
Ker(ad(X)) = CX. Now start with any X e g. Either ad(X) has an eigenvector
.- with nonzero cigenvalue or it is nilpotent; if it is nilpotent, then there exists a
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. '
vector ¥ € g, not in the kernel of ad(X) but in the kernel ofl?d(l\’)f m:]l::;
is, such that ad(X)(Y) = aX for some nonzero a;EC. (lli(uyt)(;ir:hononzem

d = X is an eigenvector for a

ad(Y)(X) = —aX, so that
eig(;[:)"lzll::;se Hand X e gsothat X is an eigenvector with nonzero eigen val\.u:
for a(i(H) and write [H, X] = aX. Since H € g, ad(H) is 2 ?omljnutatort:rl
End(g). ar'ld 50 has trace 0; it follows that ad(H) must have a third eigenvec

i c letely it now
i i —o. To describe the structure of g compl v
i oo the com or of X and Y; but this follows from the Jacobi

identity. We have
[H,[X, Y11= —[X,[Y, H1] - [Y. [H, X]]
= —[X,a¥] - [V, aX]
=0,

from which we deduce that [X, Y] must be; mullifletof:;i:?t:elusw:ﬁ;:;
iple, we can multiply X or Y by a scalar to .
? n?.‘?f?r:‘z.:u:lhk?, a scalar we can assume 4 is | or any other nonzero scalar.

multiplying H by a scal € can assu

Thus, there is only one possible complex Lie algebra g of this type. One could

look for endomorphisms H, X, and Y whose' commutators sa}isfy :h::le
relations, as we did before. Or we may simply realize that ﬂ:le three-dln;n;'rlx.slo el
Lie algel;ra sl;€ has not yet been seen, so it must be this last possibility.

fact, a natural basis for si,C is
0 1 - 0 o)
X=\o o) o

[x,Y]=H (10.11)

[H,¥1=-2¥,
What groups other than SL,C have Lie algebra sl,C? To begizn wit(l(l), g;?
group SL,C is simply connected: for example, the m:;p S=L2]C ACE §E {C ,as )
i i i ses the topological space SL,
sending a matrix to its first row expresses the pological space SLaC s 4
ith fiber C over C2 — {(0, 0)}. Also, itis not har
2?2;{,‘6&”:5 just the subgroup {41} of scalar matrices, sosgug thes?n(l:);(oihle}r
2 ¢ X . ‘
ith Li [,€ is the quotient PSL, LC/{ &
connected group with Lie algebra s 2 g Rl
in the eding case, the analysis of real three-dimens i
9 w/:,“;ge_p:‘elc‘::,?:es one additional possibility. At the ou(;ct (;)(f};l;; aég:o
‘v i i H e g and said that if a 2
ment above, we started with an arbitrary ¢ h O o
i itsell, then it would have to be niipotent. < 3
eigenvector other than H IIS'C 8 ¢ e
in the real case it is also possible that ad(H) has two distinct comp! jug: e

. AT g YD s a commutator in B
cigenvalues A and 4. Sinice ad{H) is a com

0, A will have to be purely imaginary in this case; ar}d 50 mLfluplryllrl\g“Z tbhy‘;
rc;al scalar we can assume that its eigenvalues are i and i 1t follo

that we can find X, Y e g with
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[H,X]1=Y and [H,Y]=—-X.
Using the Jacobi identity as before we may conclude that the commutator of
X and Y is a multiple of H; after multiplying each of X and ¥ by a real scalar
we can assuine that it is cither H or — i, Finally, if [X, Y] = —H, then
we observe that we are in the case we considered before: ad(¥) will have
X + H asan eigenvector with nonzero eigenvalue, and following our previous
analysis we may conclude that 9 = sl,R. Thus, we are left with the sole
additional possibility that g has structure equations

W, X]1=Y, [HY]=-X, (X, v]=AH {10.12)
This, finally, we may recognize as the Lie algebra su, of the real Lie group
SU(2) (as you may recall, the isomorphism sn, ® C sI,C was used in the
last lecture),

What are the real Lie groups with Lie algebras sl; R and su,? To start, the
center of the group SL, R is again just the scalar matrices {4+ 1}, so the only
group dominated by SL,R is the quotient PSL,R. On the other hand, unlike
the complex case SL, R is not simply connected: now the map associating to
a 2 x 2 matrix its first row expresses SL,R as a bundle with fiber R over
R? ~ {(0, 0)}, 50 that ,(SL,R) = 7. More precisely PSL, R maps to the reat
projective line P'R, which is homeomorphic to the circle, with fiber homeo-
morphicto B2 so n, (PSL,R) = Z. We thus have a tower of covering spaces of

PSL,R, consisting of the simply-connected group § with center 7 and its

Sl £ 4 {43
quotients §, = §/nZ (not all of these are covers of SL, R, despite the diagram
below).

A note: In §10.2 we encountered a real Lie group with no faithful finite-
dimensional representations; only its universal cover could be represented as
a matrii group. Here we find in some sense the opposite phenomenon: the
groups § and §, have no faithful finit ional representations, all finite-
dimensional representations factoring through SL, R or PSL,®. This fact wilt
be proved as a consequence of our discussion of the representations of the Lie
algebra sl,C in the next lecture,

What about groups with Lie algebra su,? To begin with, there js SWH2),
which (again via the map sending a matrix to its first row vector) is homeo-
morphic to §* and thus simply connected. The center of this group is again
{1}, so that the quotient PSU(2) is the only other group with Lie algebra
si;. (Alternatively, we may realize SU(2) as the group of unit quaternions, cf.
Exercise 7.15))

Finally, we remark that therc are other representations of the real and
complex Lie groups discussed above, As we will see, the Lie algebra so,C is
isomorphic to sl,C, which induces an isomorphism between the correspond-
ing adjoint forms PSL,C O3 C (and between the simply-connecicd forms
SL,C and the spin group Spiny ). This in turn suggests two more real forms
of this group: SO,R and SO* {2, 1). In fact, it is not hard to see that SO,R =
PSU(2), while SO*(2, 1) = PSL,R. Lastly the isomorphism sn, , @ C &

331800 cetween the si
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su, ®C = s1,C implies that the real Lie omorphic to either
s, or sl,R; in fact, the latter is the case nd this induces an isomorphism of
groups SU, , = SL,R. We summarize the isomorphisms mentioned in the

diagram below:

ie alo
algebr

g

g

Spin,C SpinsR

SU@, 1) = SL,R < SL,C —> SU(2) = {unit quaternions}

!

PSL,R = PSL,€ o PSU(2) = {unit quaternions}/+
l ‘

I

SO'2 Dy S0,C = SOR 10.13)

Note also the coincidences:
SpaC) =SLy(0),  Sp,(R) = SLa(R), {i0.14)

which follow [rom the fact that Sp refers to presetving a skew-symmetric
bilinear form, and for 2 % 2 matrices the determinant is such a form.
Exercise 10.15. identify the Lie aigcbras so,, sii,, st y, 58,,,, and verify the
assertions made abot the corresponding Lie groups in the diagram.

Exercise 10.16. For each of the Lic algebras encountered in this lecture,
compute the lower central series and the derived series, and say whether the
algebra is nilpotent, solvable, simple, or semisimple.

Exercise 10.17. The following are Lie groups of dimension two or three, so
must appear on our list. Find them: (i) the group of affine transformations of
the line {x+—ax + b, under composition); (ii} the group of upper-triangular

2 x 2 matrices; (iif) the group of orientation preserving Euclidean transforma-
tions of the plane (compositions of translations and rotations).

Exercise 10.18. Locate R® with the usual cross-product on our list of Lie

aigebras, Moré generatly, consider ihe family of Lic algebras parametrized by

reat quadruples (a, b, ¢, d), each with basis X, ¥, Z with bracket given by
[X, Y] =aZ +dY, [y, Z] =bX, (Z,X] =cY —dZ.
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Classily this Lie algebra as (q, b, c, d) varies in R®, i
L 8 (@, b, c, ) varies in R*, showing in particular th
every three-dimensional Lie algebra can be wrilt&;n in this way'.) "

Exercise 10.19, Reali: i i . .

them with the gia.-l:f :l:efiTgtpl}'ST of SU(1, 1) with SL, R by identifying
< BTOUPS Oi Compiek automorphisms of if it disk i t}

upper half-planc, respectively, P! 8 of ihe wnit disk and the

Exe{cise 10.20. Classily all Lie algebras of dimension four and rank 1; in
particular, show that they are all direct sums of Lie algebras described abov;.

l?xemse 10.21. Show more generally that there exists a Lie algebra of dimen-
isrl(::'m a(;\c(‘! |:ank | that is not a direct sum of smaller Lie algebras if and only
im is odd; in case m is odd show that this Lie al is uni i

itas a Lio subalacbre of ie algebra is unique and realize
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V=@V,
of Vinto eigenspaces for the action of 1; the commutation relations satisfied
by the remaining elements o of the group with respect to 7 implied that such ¢
simply permuted these subspaces V., so that the representation was in effect
determined by the collection of eigenvalues of t.

Of course, circumstanices in the case of Lie algebra representations are quite
different: to name two, it is no longer the case that the action of an abelian
object on any vector space admits such a decomposition; and even if such a
decomposition exists we certainly cannot expect that the remaining elements
of our Lie algebra will simply permute its summands. Nevertheless, the idea
remains essentially a good one, as we shall now see.

To begin with, we choose the basis for the Lie algebra s1,C from the last

lecture:
1 0 0 1 00
=) =G ()

rH
H

LECTURE 1!
Representations of s[,C

ino elements

satisfying

rise in some sense the heart of
the anatogous parts
| .

X1=12X
x]

g v
2X, L, ¥

o g Bt of foue leoturas—81 1o 14—ty A
This is the firs

t of four lectures—§!1--14 o
the book. In particular, the naive analysis of §11.1, }-ogelhf_r with
i the study of finit T
of §12 and §13, form the paradigm for 0 tsto on
(il] semisimple Lie algebras and groups. §11.2 is less central; in it we show how :[ :
anlys explicitly describe the tensor products of -
portant; it indicates how we can mterpre; 3
i : eding section. The discussions in §11.1 and -
ometrically some of the results of the p sec c

g:l 2are oon{plelely elementary (we do use the notion ofsymmem: p]nw.crslofa vecllisz 4
' i i involves a fair amount of classical projeci 3
ave, bul in a non-threatening way). §11.3 invol ica ) ;

sgz:melry and can be skimmed or skipped by those not already familiar with the
notions from algebraic geometry. 1

(ii.D)
These seem like a perfectly natural basis to choose, but in fact the choice is
dictated by more than aesthetics; there is, as we will see, a nearly canonical
way of choosing a basis of a semisimple Lie algebra (up to conjugation), which
will yield this basis in the present circumstance and which will share many of
the properties we describe below.

In any event, let ¥ be an irreducible finite-dimensional representation of
s1,C. We start by trotting out one of the facts that we quoted in Lecture 9,

the preservation of Jordan decomposition; in the present circumstances it
implies that

relevant has

§11.1: The irreducible representations
§1L2 A little plethysm
§11.3: A little geometric plethysm

The action of H on V is diagonalizable. (it.2)

We thus have, as indicated, a decomposition
V@, (113)

where the o run over a collection of complex numbers, such that for any vector
ve V, we have

§11.1. The Irreducible Representations

le Lie algebras with the :

o exhibis oo
does not exhibitar

We start our di ion of repr _ufinns of" nis;

simplest case, that of s1,C. As we wiil see, while tnis ase )

of llljle complexity of the more general case, the basic idea that informs the
i i d here.

whole approach is clearly illustrate: ; ) . )

This approach is one already mentioned above, in conn.ecuqn \;uh the'
representations of the symmetric group on three letters. The idea in Vt a: cﬁa[ssc( g
was (hat given a representation of our group on a vector space }w e
testrict the representation to the abelian subgroup generated by a 3-cycle t.;
We obtain a decompuosition

H{v)=o-v.

The next question is obviousty how X and Y act on the various spaces
Ye- We claim that X and ¥ must each carty the subspaces V, into other sub-
spaces V,.. In fact, we can be more specific: if we want to know where the
image of a given vector ve Ve under the action of X sits in relation to the

decomposition (11.3), we have to know how H acts on X (v); this is given by
the
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Fundamental Calculation ( first time):
H(X(v)) = X(H(v)) + [H, X]()
= X(o-v) + 2X(v)
=(x+2) X(}

ie.,if visaneig Sfor H with ei {ue o, then X (v) is also an eigenvector
for H, with eigenvalue « + 2. In other words, we have

Xi V= Viea,
The action of ¥ on each V, is similarly calculated; we have Y(V,) = V,_,.
Observe that as an immediate consequence of this and the irreducibility of
V, all the complex numbers o that appear in the decomposition (11.3) must be

yiie anather mod 2: for any ¢, that actually occurs, the subspace

@D Vagraa
neZ

would be invariant under sl,C and hence equal to ail of ¥. Moreover, by the
! ), the V, that appear must form an unbroken string of numbers of
theform §,f + 2,..., 8 + 2k. We denote by n the last clement in this sequence;
at this point we just know n is a complex number, but we will soon see that
it must be an integer.

To proceed with our analysis, we have the following picture of the action

£ on tha vasinr o 0 .
C on the vector space V2

cangrient

X X X
TN T T T

—— Vau — Vaa -~ Va
¥ PN RN RN
H " H

Choose any nonzero vector v € V,; since V,,, = (0), we must have X(v) =0.
Y

: .
We ask now what hiappens when we & to the vecter . To begin

with, we have
Ciaim 11.4. The vectors {, Y(v), Y*(v), ...} span V.

Proor. From the irreducibility of V it is enough to show that the subspace
W < ¥ spanned by these vectors is carried into itseif under the action of s1,C.
Clearly, Y preserves W, since it simply carries the vector Y™(v) into Y™ ().
Likewise, since the vector Y™(v) is in V,_,,, We have H(Y™(v)) = (n — 2m)*

¥™(1), so H preserves the subspace W. Thus, it suffices to check that X(W) <

W. i.c., that for each m, X carries Y™(v) into a linear combination of the Yi(y).
We check this in turn form =0, 1, 2, etc.
To begin with, we have X(v) = 0 € W. To see what X does to Y(v), we use
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the commutation relations for s, C: we have
X(Y(©) = [X, Y1) + Y(X(v)
= H(v) + Y(0)
=n-u
Next, we see that
X(Y2@) =X, YI(Y() + ¥X(Y()
= H(Y(v)) + Y(n'v)
=0~2) Yo} + n-Y().

Thle pattern now is clear: X carries each vector in the sequence v, Y(v),
... into a multiple of the previous vector, Explic ’

ecto Pl

T3),

XN =+ (1 =2+ (1= 4+ 4 (1= 2+ ) Yo,

or

X(Y™0)) =m(n —m + 1)- Y™ (), (115
as can readily be verified by induction.

O

There are a number of corollarie fon i
re are s of the calculation in the above Clai
To begin with, we make the observation that e Claim.

all the eigenspaces V, of H are one dimensional. (11.6)

Se:onq, since we have in the course of the proof written down a basis for v
and said exactly where each of H, X, and Y takes each basis vector, the

ath . e .
p tion V.IS i y determined by the one complex number i that
- we started with; in particular, of course, we have that

v i_stéeée;/mined by the collection of & occurring in the decomposition
- (1L7)

To complete our analysis, we have 1o use orie more e the Fnit 1
950, L VR L0 USC O Mot Uing toe fnife dimen-

4 :;ionali(y of V. This tells us that there is a lower bound on the « for which
« # (0) as well as an upper one, so that we must have YXuy =0 for sufficiently

ige ut now if m is the smallest power o annthilating v, then from the
Ia kB( ( p {Y hilating v, t fr th

0= X(V"@) = min —m + 1)- Y™,

and the fact that Y™ "}(v) # 0, we conclude that n — m + | = O in particular,
L follows that n is a non-negative integer. The picture is thus t,hat the ei en:
Anlues. u'of'H on ¥ formn a string of integers differing by 2 and symm. "

he origin in Z. In sum, then, we see that there is awur;iqucﬁrre;r-e;c-;]tativo:l!;;';
fo.r each non-negative integer n; the representation ¥’ is (1 + 1)-dimensional,
with H having eigenvatues n, n — 2, =+ 2, —n o

c ahout

AN
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Note tliat the existence part of this statement may be deduced by checking
(hat the actions of H, X, and Y as given above in terms of the basis v, Yv,
Y2(v),..., Y"(v)for ¥ do indeed satisfy all the commutation relations for sl C.
Alternatively, we will exhibit them in a moment. Note also that by the
symmetry of the eigenvalues we may deduce the usefui fact that any represeii-
tation V of s1,C such that the eigenvatues of H all have the same parity and
oceur with multiplicity one is necessarily irreducible; more generally, the number
of irreducible factors in an arbitrary representation V/ of s1,C is exactly the sum
of the multiplicities of 0 and 1 as eigenvalues of H.

We can identify in these terms some of the standard representations of sl,C.
To begin with, the trivial one-dimensional representation C is clearly just V.
As for the standard representation of s(,C on ¥ = ©2?, if x and y are the
standard basis for C2, then we have H(x) = x and H(y) = —, $0 that ¥ =
C-x@C-y= V., @ V,isjust the representation V") above. Similarly, a basis
fot the symmetric square W = Sym*V = Sym*C? is given by {x*, xy, y*},and
we have

Hix-x)=x"H{x) + H(x}-x = 2x"x,

Hix-
Hlx

NS

dy=x"H(»+Hix)y=0,

H(y-p) =y H(y)+ H(p) y= =2yy,
so the representation W =C x> @ C xy @ C)* = W, ® Wo @ W, is the
representation V'? above. More generally, the nth symmetric power Sym"V
of ¥ inas basis {x*, x""'y, ..., y"}, and we have
Hx" ™yt = (0 — R HE- X"yt ke H(p) "yt
=(n—2W)-x"*
E the eigenvalues of H on Sym"V are exactly m,n — 2, ..., —n. By the
observation above that a representation for which ail eigenvalues of If occur
with multiplicity 1 must be irreducible, it follows that Sym"¥ is irreducible,
and hence that
V™ = Sym"V.

In sum then, we can say simply that

Any irreducible representation of s1,C is a symmetric power of the

standard representation V = C?. (11.8)

Observe that when we exponentiate the image of 51, C under the embedding

ol,C — sl,,, C corresponding to the representation Sym"V, we arrive at the

group SL,C when n is odd and PGL,C when n is even. Thus, the represen
tations of the group PGL,C are exactly the even powers Sym?"V.

Exercise 11.9. Use the analysis of the representations of sl,C to prove the
statement made in the previous lecture that the universal cover S of SL, R has

no finite-dimensional representations.

_ Sym'V @ Sym*V.
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§11.2. A Little Plethysm

Clearlyz knowing the eigenspace decomposition of given representations tells
us the eigenspace decomposition of all their tensor, symmetric, and alternating
products and powers: for example, if ¥ = PV, and W= @ W;, then ¥ ® W=
[G{A) W,) and ¥, @ W, is an eigenspace for H with eigenvalue « + f. We
can use this to describe the decomposition of these products and powers into
irreducible representations of the algebra sl,C.

For example, let V >~ C? be the standard resresentation of st and
= ne e stancarc representation of si,C; and

sup]?ose we want to study the representation Sym?F @ Sym?*V; we ask in
particular whether if it irreducible and, if not, how it decomposes. We have
seen that the eigenvalues of Sym?V are 2,0, and —2, and those of Sym?V are
31, - 1,and —3. The 12 eigenvalues of the tensor product Sym?*F @ Sym®V
are thus 5and 5,3 and — 3 (iaken twice), and 1 and — 1 (taken three times);
we may represent them by the diagram

B e O O

The eigenvector with eigenvalue $ will generate a subrepresentation of the
tensor product isomorphic to Sym*¥, which will account for one occurrence
of each of the eigenvalues 5,3,1, —1, —3 and —5.§

3,a5d —5.§i

o bl AL
of Sym*¥ in the tensor product will have eigenvalues 3 a;;i‘TJW&;‘r;Zwl"::c;
- I. (taken twice), and so will contain a copy of the represenml,ion Sym3V,
which wiil account for one occurrence of the eigenvalues 3, 1, — 1 and 733
and the complement of these two subrepresentations will he’sir,nply a copy o}

YV We b Yo
¥. Y€ nave, thus,

Sym?¥ @ Sym*V/ = Sym*V @ Sym*V @ V.
Note that the projection map

on the first factor is just multiplication of polynomials; the other two projec-
tions do not admit such obvious interpretations.

Exercise 11.10. Find, in a similar way, the

Exercise 11.11* Show, in general, that for a > h we have

Sym*V ® Sym®V = Sym™*V @ Sym*** 2V @ - - @ Sym* V.

As mdlcfntcd, we can also look at symmetric and exterior powers of given
fepresentations; in many ways this is more interesting. For example, fet
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¥ = C2 be as above the standard representation of s(,C, and let W = Sym:zl,/
be its symmetric sqitare; i.c., in the notation introduced abpve, take' W=y
We ask now whether the symmetric square of W is irreduclb!e, and if not what
its decomposition is. To answer this, observe that W has elgex:vil,uesm—LZ, 0,
and 2, each occutring once, so ihat the symmetric square of W will bave
eigenvalues the pairwise sums of these numhcrs—thgt is, —4, —2,0(occurring
twice), 2, and 4. We may represent Sym*V by the diagram:

e I o | @f—eo | o
4 3 2 a4 0 1 2 3 4

From this, it is clear that the representation Sym>W must decompose _in.to
one copy of the representation V' = Sym*¥, plus one copy of the trivial
(one-dimensional) representation:

Sym*(Sym?*V)) = Sym*¥ & Sym°V. (11.12)
Indeed, we can see this directly: we have a natural map

Sym?*(Sym?V)) - Sym*V

obtained simply by evaluation; this will have a one-dimensional kernel (if'x
and y are as above the standard basis for ¥ we can write a generator of this
kernel as (x2)-(y?) — (x* y)?).

Exercise 11.13. Show that the exterior square A*W is isomor;;hic to W itstalf.
Observe that this, together with the above description of Sym>W, agrees with
the decomposition of W ® W given in Exercise 11.11 above,

We can, in a similar way, describe the decomposition of all !_hc symmetric
powers of the representation W = Sym?V. For example, the third symmetric
power Sym3W has eigenvalues given by the triple sums of the set {—2,0,2};

theseare —6, —4, — 2 (twice), 0 (twice), 2 (twice), 4, and 6; diagrammatically,

,_._FA-——;—©—~+—{?——!—~(?—Q—‘* e
3 -4 2

Again, there is no ambiguity about the decomposition; this coll:ction of
eigenspaces can only come from the direct sum of Sym®V with Sym?V, so we

must have
6
Sym?(Sym?V) = Sym®V @ Sym
As before, we can see at least part of this directly: we b

Sym*(Sym?V) - Sym¢V,

§11.3. A Little Geometric Plethysm 153

and the eigenspace decomposition telis us that the kernel is the irreducible
representation Sym?V.

Exercise 11.14. Use the eigenspace decomposition to establish the formula
to2]
Sym*(Sym?V) = () Sym?>*~4=y’
=0

for all n.

§11.3. A Little Geometric Plethysm

We want to give some geometric interpretations of these and similar decom-
positions of igher tensor powers of representations of sl, C. One big difference
is that instead of looking at the action of either the Lic algebra s1,C or the
groups SL,C or PGL,C on a representation W, we look at the action of the
group PGL, € on the associated projective space® PW. In this context, it is
natural to look at various geometric objects associated to the action: f

ple, we look at cl of orbits of the action, which all turn out to be
algebraic varieties, i.e., definable by polynomial equations. In particular, our
goal in the following will be to describe the symumetric and exterior powers of
W in terms of the action of PGL,C on the projective spaces PW and various
loci in PW.

The main point is that while the action of PGL,C on the projective space
PV 2 P! associated to the standard p ation ¥ is transitive, its action
on the spaces P(Sym" V) = P* forn > 1 is not. Rather, the action will preserve
various orbits whose closures are algebraic subvarjeties of P"—for example,

the locus of points

C={lvv...v)veV}cPSymV)

corresponding o nth powers in Sym"V will be an algebraic curve in
P(Sym"V) = P, called the rational normal curve; and this curve will be carried
into itseil by any element of PGL,C acting on P (more about this in a
moment). Thus, a knowledge of the geometry of these subvarieties of PW may
illuminate the representation W, and vice versa. This approach is particularly
useful in describing the symmetric powers of W, since these powers can be
viewed as the vector spaces of homogeneous polynomials on the projective
space P(W*} (or, mod scalars, as hypersurfaces in that projective space).
Decomposing these symmetric powers should therefore correspond to some
interesting projective geometry.

LW here de

PO
thi

€ projeciive space of lines through the origin in W, or the quotient space of
W\{0} by multiplication by nonzero scalars; we write [w]for the point in PW determined by the
fonzero vector w. For W = C™*), [z, .., 2,] is the point in P™ = PW determined by a paint

ltor ... 2,0 in O,
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Digression on Projective Geometry

First, as we have indicated, we want to describe representations of Lie groups
in terms of the corresponding actions on projective spaces. The following fact

fraum aloobrain sanmatry in therafore of some moral fif not logical imnortance:
IT0IT AIECOIRIC gEOMSHTY 15 {NCreiore Ot 50me morar (1 Dot i0gican) importance:

Fact 1115, The group of automorphisms of projective space P"—either as
atgebraic variety or as complex manifold—is just the group PGL,,,; C.

For a proof, see [Ha]. (For the Riemann sphere P! at least, this should be
a familiar fact [rom complex analysis.)

For any vector space W of dimension n + 1, Sym*W* is the space of
homogeneous polynomiats of degree k on the projective space P* = PIW of
lines in W; dually, Sym*W will be the space of homogencous polynomials of
degree k on the projective space P" = P(W*) of lines in W*, or of hyperplanes
in W. Thus, the projective space P(Sym*W) is the space of hypersurfaces of
degree k in P" = P(W*).{Because of this duality, we usuaily work with objects
in the projective space P (W *) rather than the dual space PW in order to derive
results about symmetric powers Sym*W; this may seem initially more con-

firgisg bt wwa balia,
1UsiNng, ol We peiiew

For any vector space V and any positive integer », we have a natural map,
called the Veronese embedding

PV* < P(Sym"V*)
that maps the line spanned by v € ¥* to the line spanned by v" € Sym"V*. We
will encounter the Veronese embedding of higher-dimensionat vector spaces

in later lectures; here we are concerned just with the case where V is two
dimensional, so PV* = P'. In this case we have a map

Toos 503 )

stat
ately less 50

PREPRE N
et is i

Lm
»

whose image is called the rational normal curve C = C, of degree n. Choosing
bases {«, i} for V* and {...[n!/k!(n — k)!]u"[i""‘...} for Sym"V* and cx-
panding out (xa + yp)" we see that in coordinates this map may be given as
[X, y_l s [X", xn'/ly, xn»iyi, s .‘(y"“i, )‘"]-
From the definition, the action of PGL,C on P" preserves C,; conversely,
since any automorphism ol I fixing C, pointwise is the identity, from Fact
11.15 it follows that the group G of automorphisms of P" that preserve C, is
precisely PGL,C. (Note that converseiy if W is any (1 + i}-dimensionai
representation of SL,C and PW = P" contains a rational normat curve of
degree n preserved by the action of PGL,C, then we must have W = Sym"V;
we leave this as an exercise.?)
When n = 2, C is the plane conic defined by the equation

* Note that any confusion between BW and BW* is relatively harmless for us here, since the
representations Sym”V are isomorphic lo their duals.
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F(Zg, Z\, Z3) = ZoZy — Z2 =D,

Forn =3, Cis the twisted cubic curve in P2, and is defined by three quadratic
polynomials

zZzZ 72 7z 7

7 -
ZoZy — 23, ZyZy—Z,2,, and

Z,Z,— Z3.
More generally, the rational normal curve is the common zero locus of the
2 x 2 minors of the matrix

M= (Z0Zy..-Z,1
\2,2,... 2, /’
that is, the locus where the rank of M is 1.

Back to Plethysm

We start with Example (11.12). We can interpret the decomposition given

there (or rather the decomposition of the representation of the corresponding

Lie group SL,C) ge: ly via the Veronese embedding 1,: P' <» P2 As

noted, 5L, C acts on P (Sym>¥*) as the group of motions of P cartying

the conic curve C, into itself. Its action on the space Sym?*(Sym*V)) of

quadratic polynomials on P? thus must preserve the one-dimensional sub-
space C- F spanned by the polynomial F above that defines the conic C,. At
the same time, we see that puiiback via 1, defines a map from the space of
quadratic polynomials on P to the space of quartic polynomials on P, which
has kernel C- F; thus, we have an exact sequence

0— C = Sym°V - Sym?(Sym?¥’)) -+ Sym*V — 0,

which implies the decomposition of Sym2(Sym?¥')) desctibed above.

Note that what comes to us at first glance is not actually the direct sum
decomposition (11.12) of Sym?(Sym?¥’)), but just the exact sequence above.
The splitting of this sequence of SL,C-modules, guaranteed by the general
theory, is less obvious. For example, we are saying that given a coniccurve C
in the plane P, there is a subspace U of the space of all conics in P2,
?omplemeniary to the one-dimensional subspace spanned by C jtseil and
invariant under the action of the group of motions of the plane P2 carrying

. Cinto itself. Is there a geometric description of this space? Yes: the following .

Proposition 11.16. The subrepresentation Sym*V Sym?(Sym?V) is the space
of conics spanned by the family of double lines tangent to the conic C = C,,

Ptnuor. \")ne way 1o prove this is to simply write out this subspace in coor-
dinates: in terms of homogeneous coordinates Z; on P2 as above, the tangent
line to the conic C at the point {1, &, #2] is the line
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Ly ={Z:0%Zy — 20Z, + Z, = U}.
The double line 2L is, thus, the conic with equation
072 — 4P ZyZ, + 202 ZyZ, + 4022 — 4aZ,Z, + 2 = 0.

The subspace these conics generate is thus spanned by 22,2,2,,Z,2,, 73,
and Z,Z, + 2Z}. By construction, this is invariant under the action of SL, €,
and it is visibly complementary to the trivial subrepresentation C-F =
C-(Zo2Z, — Z2).

For ihiose fai
to write all this down in coordinates: we could just observe that the map from
the conic curve C to the projective space P(Sym*(Sym?V)) of conics in p?
sending each point p e C to the square of the tangent fine to C at p is the
restriction to C of the quadratic Veronese map P* — P*, and so has image a
quartic rational normal curve. This spans a four-dimensional projeciive sub-
space of P(Sym?(Sym?¥)), which must correspond (o a subrepresentation
isomorphic to Sym* V. O

jith some algebraic geometry, it may not be necessary

We will return to this notion in Exercise 11.26 below.

We can, in a similat way, describe the decomposition of ail the symmetric
powers of the representation W = Sym?V; in the general setting, the geo-
metric interpretation becomes quite hiandy. For example, we have seen that
the third symmetric power decomposes

,,,,, - e om?
V) = Sym®V @ Sym?¥.

This is immediate from the geometric description: the space of cubics in the
plane P? naturally decomposes into the space of cubics vanishing on the cotic
C = C,, plus a complementary space isomorphic (via the pullback map %) to
the space of sextic pelynomials on P'; moreover, since a cubic vanishing on
C, factors into the quadratic polynomial ¥ and a linear factor, the space of
cubics vanishing on the conic curve C < P2 may be identified with the space
of tines in 12,
One more special case: from the general formula (11.14), we have

Sym*(Sym?V) = Sym®V @ Sym*V ® Sym°®V.
Y ¥

Again, this is easy to see [rom the geometric picture: the space of quartic
polynomials on P2 consists of the one-dimensional space of quartics spanned
by the square of the defining equation F of C itsell, plus the space of quartics
vanishing on C modulo multiples of F?, plus the space of quartics moduio
those vanishing on C. (We use the word “plus,” suggesting a direct sum, but
as before only an exact sequence is apparent).

Exercise 11.17. Show that, in general, the order of vanishing on C defines a
filtration on the space of polynomials of degree » in P2, whose successive
quotients are the direct sum factors on the right hand side of the decomposi-
tion of Exercise 11.14.
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We can similarly analyze symmetric powers of the representation U =
Sym®V. For example, since U haseigenvalues —3, —1, 1,and 3, the syminetric
square of U has eigenvalues —6, —4, —2 (twice), 0 (twice), 2 (twice), 4, and 6;
diagrammatically, we have

et @ OO et—e—

This implies that
Sym%(Sym?¥V) = SymSV @ Sym2V. (11.18)

We can interpret this in terms of the twisted cubic C = C, = P? as follows:
the space of quadratic polynomials on IP® contains, as a subrepresentation, the
l!xree»dimensional vector space of quadrics containing the cnrve C itself; and
the quotient is isomorphic, via the pullback map 1%, to the space of sextic
poiynomials on P*.

Exercise 11.19*. By the above, the action of SL,C on the space of quadric
surfaces containing the twisted cubic curve C is the same as its action on
P(Sysz") = P2 Make this caplicit by associating to every quadric con-
taining C a polynomial of degree 2 on P, up to scalars.

Exercise 11.20%. The direct sum decomposition (11.18) says that there is a
linear space of qua P? preserved under the action of SL,C and
complementary to the space of quadrics containing C. Describe this space.

Exercise 11.21. The projection map from Sym?(Sym*¥) to Sym?*V given by

the decomposition (11.18) above may be viewed as a quadratic map from the

» Qui 31 ) a2l A e
vector space Sym*V. Show that it may be given in

yin-y io
these terms as the Hessian, that is, by associating to a homogeneous cubic

poly'ml)mial in two varjables the determinant of the 2 x 2 matrix of its second
partials.

Exercise £1.22. The map in the preceding exercise may be viewed as associating
to an unordered triple of points {p, g, 7} in P! an unordered pair of points
{s,1} = P'. Show that this pair of points is the pair of fixed points of the
automorphism of P! permuting the three points p, g, and r cyclically.

Exercise 11.23*, Show that
Sym*(Sym?V) = Sym*V @ Sym*V @ Sym*V,

and interpret this in terms of the geometry of the twisted cubic curve. In
narticular show that tha cosoc of ote e o
paricuar, siow tnal tne space of cubic surfaces coniaining the curve is the
direct sum of the last two factors, and identify the subspace of cubics corre-
sponding 1o the last factor.
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Exercise 11.24. Analyze the representation Sym*(Sym*V) simitarly. Tn par-
ticular, show that it contains a trivial one-dimensional subrepresentation.

The trivial subrepresentation of Sym*(Sym*¥) found in the last exercise
ing interpretation, To say that Sym*(Sym?V) has such an
invariant one-dimensional subspace is to say that there exists a quartic surface
in P* preserved under all motions of P* carrying the rational normal curve
C = Cy into itself. What is this surface? The answer is simpie: it is the tangent
developable to the twisted cubic, that is, the surface given as the union of the
iangeni iines io C.

Exercise 11.25%. Show that the representation Sym?*(Sym*V’} contains a trivial
subrepresentation, and interpret this geometricaily.

Problem 11.26. Another way of interpreting the direct sum decomposition of
Sym?(Sym* I} geometrically is to say that given a conic curve C < P2 and
given four points on C, we can find a conic C'=C'(C;p,,...,ps) = p?
intersecting C in exactly these points, in a way that is preserved by the action
of the group PGL,C of all motions of P2 (i.e., for any motion A: P? — P2 of
the plane, we have A{C'(C; py, ..., Pa)) = C'(AC; Apy, ..., Ap,)). What is a
description of this process? In particular, show that the cross-ratio of the four
points p; on the curve C’ must be a function of the cross-ratio of the p; on C,
and find this function. Observe also that this process gives an endomorphism
of the pencil

{CePhp,,...,peClxP!

of conics passing through any four points p, € P2. What is the degree of this
endomorphism?

The above questions have alt dealt with the symmetric powers of Sym"V.
There are also interesting questions about the exterior powers of Sym"V.
To start with, consider the exterior square A*(Sym? V). The eigenvalues of this
representation are just the pairwise sums of distinct elements of {3, 1, — 1, —3},
that is, 4, 2, 0 (twice), —2, and —4; we deduce that

A*Sym?V) = Sym*V & Sym°V. (1127

Observe in particular that according to this there is a skew-symmetric bilinear
form on the space U = Sym3V preserved (up to scalars) by the action of SL,C.
What is this form? One way of describing it would be in terms of the twisted
cubic: the map from C to the dual projective space (P*}* sending each point
p e C to the osculating plane to C at p extends to a skew-symmetric linear

isomorphism of P? with (P?)*,

Exercise 11.28. Show that a line in P? is isotropic for this form if and only if,
viewed as an element of P(A2U), it lies in the linear span of the locus of tangent
liues to the twisted cubic.
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E:xercise 11.29. Show that the projection on the first factor in the decomposi-
tion (11.27) is given explicitly by the map

FAGF-dG—G-dF

and say precisely what this means.

Exercise 11.30. Show that, in general, the representation AX(Sym”¥) has as a
direct sum factor the representation Sym®*~2¥, and that the projection on this
factor is given as in the preceding exercise. Find the remaining factors of
AHSym"V), and interpret them

More on Rational Normal Curves

Exercise 11.31. Analyze in general the representat
uvsing eigenvalues, that we have

Sym*(Sym"V) = () Sym2" -4y,
az0

Exercise 11.212%_ Intarmeat the cocoe Quin2 Qoo alry el :
SASIUISY X o AIRETPICU LIE Space SYmiT(oYin v') O 1ne preceding exercise

as the space of quadrics in the projective space P, and use the geometry of
the rauonal_ normal curve C = C, < P" to interpret the decomposition of this
tep ion into irreducible factors. In particular, show that direct sum

is the space of quadratic polynomials vanishing on the rational normal curve;
and that the direct sum

(_B Symz"““V
a2

is the space of quadrics containing the tangential developable of the rational
normal curve, that is, the union of the tangent fines to C. Can you intetpret
the sums for o > k for k > 27

. Exercise 11.33. Note that by Exercise 11.11, the tensor power

Sym"V ® Sym"V

" always contains a copy of the trivial representation; and that by Exercises

11,30 and 11.31, this trivial subres

regamiation il U Gl ol 2e0.
LSty 1 Susiepresentation

in Sym*(Sym"¥}if n is
cvenand in A*(Sym"V) if n is odd. Show that in either case, the bilinear form
on Sym"V preserved by SL,C may be described as the isomorphism of P* with
(P"y* carrying each point p of the rational normal curve C < P into the
osculating hyperplane to C at p.

Comparing Exercises 11.14 and 11,31, we see that Sym?(Sym"V)

Sym"(Sym*V); apparently coincidentaily. This is in fact a speciat case of a

more general theorem (cf. Exercise 6.18):
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Exercise 11.34. (Hermite Reciprocity). Use the eigenvalues ol H to prove the
isomotphism

Sym*(Sym"V) = Sym™(Sym*¥).

it explicitly a map between these two?

Note that in the examples of Hermite reciprocity we have seen, it
seems completely coincidental: for example, the fact that the representations
Sym’(Sym‘V) and Sym‘(Sym3 ¥) both contain a trivial representation cor-
responds (o the facis ihat the tangential developable of the twisted cubic in
P3 has degree 4, while the chordal variety of the rational normal quartic in

P* has degree 3.
Exercise 11.35*% Show that A"(Sym"V) = Sym™(Sym™**™"V).

We will sec in Lecture 23 that there is a unique closed orbit in IP(W)' for any
irreducible representation W. For now, we can do the following special case.

Exercise 11.36. Show that the unique closed orbit of the action of SL,C Ol‘)
the projectivization of any irreducible representation is isomorphic to P
(these are the rational normal curves introduced above).

LECTURE 12

Representations of sl;C, Part I

This lecture develops results for sl € analogous to those of §11.1 (though not in exactly
the saine order). This invoives generajizing some of the basic terms of §i1 (e.g., the
notions of eigenvalue and eig or have to be redefined), but the basic ideas are in
some sense already in §11. Certainly no techniques are involved beyond those of §11.1.

We come now to a second important stage in the development of the theory:
in the following, we will take our analysis of the representations of sl,C and
sec how it goes over in the next case, the algebra s, C. As we will see, a number
of the basic constructions need to be modified, or at least rethought. There
are, however, two pieces of good news that should be borne in mind. First,

we will arrive. by the end of the followine leciure at a cla
we Wil arnve, oy the end of the loll g iecturg, ata Ga

cation of the
representations of s1;C that is every bit as detailed and explicit as the classifi-
cation we arrived at previously for sl,C. Second, once we have redone our
analysis in this context, we will need to introduce no further concepts te carry
out the classification of the finite-dimensional representations of all remaining
semisimpie Lie aigebras.

We will proceed by analogy with the previous lecture. To begin with, we
started out our analysis of sI,C with the basis {H, X, Y} for the Lie algebra;
we then proceeded to decompose an arbitrary reptesentation V of si,C into
a direct sum of eigenspaces for the action of H. What element of sl,C in
pasticular wili play the role of H? The answer-——and this is the first and
perhaps most wrenching change [rom the previous case—is that no one
element really allows us to see what is going on.! Instead, we have to replace

s from the following analysis, if 1 is any dis
whose entries are in(lependenl over Q, then (he action of } on any representation V' o[ #1;C
determines the representation (i.e., if we know the eigenvalues of If we know V). But (as we will

also see) trying to carsy (his out in practice would be sheer perversity.
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the single element H € si,C with a subspace b < sl3C, namely, the two-
dimensional subspace of all diagonal matrices. The idea is 2 basic one; it
comes down to the observation that commuting diagonalizable matrices are
sintul, ly diagonalizable. This transl in the present circumstances to
the statement that any finite-dimensional representation ¥ of si,C admits a
decomposition V = @V,, wheteevery vectorve b, is an eigenvector for every
element H €,

At this point some terminology is clearly in order, since we wiil be dealing
ith the action not of a single matrix H but rather a vector space |) of them.
To begin with, by an eigenvector for i we will mean, reasonably enough, a
vector v € V that is an eigenvector for every H e ). For such a vector v we can
write

H(v) = a(H) v, (12.1y

whete a(H) is a scatar depending linearly on H, ie, a e h*. This leads to our
second notion: by an eigenvalue for the action of y we will mean an element
o € b* such that there exists a nonzero element v € ¥ satislying (12.1); and by
the eigenspace associated to the eigenvalue o we will mean the subspace of all

vectors v € ¥ satisfying (12.1). Thus we may phrase the statement above as

(12.2) Any finite-dimensional representation V. of s13C has a decomposition

where V, is ari eigeé

Thisis, in fact, a special case of a more general st for any p
Lie algcbra g, we will be able to find an abelian subalgebra ) c g. such that
the action of y on any g-module V will be diagonalizable, i.e., we will have a
direct sum decomposition of ¥ into eigenspaces V; for b.

Having decided what the analogue for st,C of H €¢l,C is, let us now
consider what will play the role of X and Y. The key here is to ook at the
commutation relations

[H,X]=2X and [H,Y]=-2Y

in &1,C. The correct way to interpret these is as saying that X and Y are
eigenvectors for the adjoint action of H on sl,C. In our present circumstances,
then, we want to look for eigenvectors (in the new sense) for the adjoint action
of ) on sl,C. In other words, we apply (12.2) to the adjoint representation of
1, C to obtain a decomposition

o€ = h @ (Do.) (123
where o ranges over a finite subset of h* and b acts on each space g, by scalar

multiplicatio:

[H, Y] =ad(H}(Y)=a(H) Y.

This is probably easier Lo carry out in practice than it is to say; we are being
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longwinded here because once this process is understood it will be straight-
fqrward to apply it to the other Lie algebras. In any case, to do it in the present
circumstances, we just observe that multiplication of a matrix M on the left
by a diagonal matrix D with entries a, multiplies the ith row of M by a,, while
multipiication on the right multiplies the ith column by a;; if the entries of M
are my,j, the entries of the commutator [D, M] are thus (a; — a))m, ;. We see
fhen that the commutator [D, M] will be a multiple of M for all D if and only
if all but one entry of M are zero. Thus, if we let E; ; be the 3 x 3 matrix whose
(i, thentry is | and all of whose other entries are 0, we see that the £, ; exactly
generale the eigenspaces for the adjoint action of § on g. " '
Explicitly, we have

h=[{(:)l z:), g\:a.+a.+a.—nl
BN AU Y

and so we can write

b* = C{Ly, Ly, Ly}/(Ly + Ly + Ly = 0)},

where
aq 0 0
L0 a 0l=a.
0 0 a,

The linear fun.ctionals. o € h* appearing in the direct sum decomposition (12.3)
are thus the six functionals L, — L;; the space 91,1, Will be generated by the
element E, ;. To draw a picture

NN/

The virtue of thlis decomposition and the corresponding picture is that we
can read off from it pretty much the entire structure of the Lie algebra. Of
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course, the action of | on g is clear from the picture: Iy carries each o'f the
subspaces g, into itself, acting on each g, by scalar multiplication by the linear
functional repr d by the corresponding dot. Beyond that, though, we can
also see, much as in the case of representations of s1,C, how the rest of the Lie
algebra acts. Basically, we let X be any element of g, and ask wil'cre ad({X})
sends a given vector Y € g,; the answer as before comes from knowing how b
acts on ad(X)(Y). Explicitly, we let H be an arbitrary element of h and as on
page 148 we make the

Fundamental Calculation (second time):
(H.[X, Y11 = [X.(H, Y]] + ({H, X]. Y]
=X, B(H) Y] + [a(H) X, Y]
= (a(H) + B(D)-[X, Y]

In other words, [X, Y] = ad(X)(Y) is again an eigenvector Sor b, with eigen-
value o + f. Thus,

in particular, the action of ad(g,) preserves the decompositipn (12.3) in' t}}e
sense that it carries each eigenspace g, into another. We can interpret this in
terms of the diagram (12.4) of eigenspaces by saying that each g, acts, so to
speak, by “translation”; that is, it carries each space g, corresponding to a dot
in the diagram into the subspace g,, , corresponding to that dot translated by
2. For example, the action of gy, _,, may be pictured as

0
el

L:'Ls/
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jie, itcarries gy, _;, int0 9z, p; 8z, into i hinto gy, 1, 0,1, iNtO 9y -1,
and kills 0,,1,. 81, -1,,, and 8;, -1, Of course, not all the data can be read off
of the diagram, at least on the basis on what we have said so far. For example,
we do not at present see [rom the diagram the kernel of ad(g,, _, ) on ), though
we will see later how to read this off as well. We do, however, have at least a
pretty good idea of who is doing what to whom.

Pretty much the same picture applies to any representation ¥ of sl,: we
start from the eigenspace decomposition V = @V, for the action of § that we
saw in (12.2). Next, the commutation relations for s, C tell us exactly how the
remaining ds of the d position (12.3) of s1,C act on the space V]
and again we will see that each of the spaces g, acts by carrying one eigenspace
V, into another. As usual, for any X € g, and v € ¥y we can tell where X will
send v if we know how an arbitrary element H e 1) will act on X(v). This we

foa by aabing the
i€ Uy Mmaxing the

Fundamental Calculation (third time):

H(X(v)) = X(H(v)) + [H, X](0)
= X(B(H) v) + (2(H) X)(®)
= (e(H) + f(H)- X(0).

We see from this that Yo\ is again an o

We see from this that X{} is again an tor for the action of b, with

! ion of b, with
eigenvalue o -+ f; in other words, the action of g, carries Vy to ¥, ;. We can
thus represent the eigenspaces V, of ¥ by dots in a plane diagram so that each
q, acts again “by translation,” as we did for representations of sl,C in the
preceding lecture and the adjoint representation of sl,C above. Just as in the
case of g1, T (page 148), we have

Observation 12.6. The eigenvalues o occurring in an irreducible representation
of slyC differ from one other by integral linear combinations of the vectors
L—Lieh*

Note that these vectors L; — L; generate a lattice in h*, which we will denote
by Ag, and that all the  lie in some translate of this lattice.

At this point, we should begin to introduce some of the terminology that
appears in this subject. The basic object here, the eigenvalue o € b* of the
action of ) on a representation V of g, is called a weiglit of the representation;
the corresponding eigenvectors in ¥, are called, naturally enough, weight
vectors and the spaces ¥, themselves weight spaces. Clearly, the weights that
occur in the adjoint representation are special; these are cailed the roots of
the Lie algebra and the corresponding subspaces g, = g root spaces; by

i
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convention, zero is not a root. The Jattice Ag = §* generated by the rools «
is called the root lattice.

To sec what the next step should be, we go back to the analysis of represen-
tations of sl,C. There, at this siage we continued our analysis by going to an
extremal eigenspace ¥, and taking a vector v € V,. The point was that since v,
was extremal, the operator X, which would carry V, 10 V,4,, would have to
kill v; so that v would be then both an eigenvector for H and in the kernel ol
X. We then saw that these two facts allowed us to completely describe the
representation ¥ in torms of images of v.

What would be the appropriately analogous setup in the case of st,C? To
start at the beginning, there is the question of what we mean by extremal: in
the case of s!,C, since we knew that all the eigenvalues were scalars differing
by integral multiples of 2, there was not much ambiguity about what we meant
by this. In the present circumstance this does involve a prioti a choice (theugh
as we shall see the choice does not affect the outcome): we have to choose a
direction, and look for the farthest o in that direction appearing in the
decomposition (12.3). What this means is that we should choose a linear
functional

EAR— R,

extend it by lipearity to a linear functional I: j* - C, and then for any
representation V wi 1ld go to the eigenspace ¥, for which the real part of
I{a) is maximal.> Of course, 10 avoid aumbiguity we should choose I to be
itrational with respect to the lattice Ag, that is, to have no kerncl.

What is the point of this? The answor is that, just as in the case of a
representation V of sf,C we found in this way a vector veV that was
simuitaneousiy in the kerne! of the operater X and an eigenvector for H, in
the present case what we will find is a vectot v € V, that is an cigenvector for
b, and at the same time in the kernel of the action of o, for every £ suich that
i(p) > O—that is, that is killed by half the root spaces gz (specilically, the root
spaces corresponding to dots in the diagram (12.4) lying ina half plane). This
will likewisc give us a nearly complete description of the representation V.

To carry this out explicitly, choose our functional { to be given by

Ha L, +aL; + ayL;) = aa, + ba, + cas,
where a + b + ¢ =0 and a > b > ¢, so that the spaces g, = § for which we
have i) > 0 are then exactly gz, -, Or,-15 and g;,-1,; they correspond to
matrices with one nonizero enitry above the diagonal.

2 The real-versus-complex business is a red herring since (it will turn out very shortly) ol! the
cigenvalues « actually occurring in any representation will in fact be in the real (in fact, the
rational} linear span of Ag.
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Ly- Ly
AV /\
Ly- Ly Ly-ty
9 - (12.7)

O

pVAA \\,/

Thus, for i < j, the matrices E, ; generate the positive roat spaces, and the E;;
generate the negative root spaces. We'set '

H; = (&, Ej‘i] =E,—E,

(12.8)

onal representation of si,C.

Lemma 12.9. There is a ector v e V with the properties that

cigenvector for b, ie. v € V, for some o; and

is killed by Ey 4, E( 3, and E3 3.

For any representation V of s1,C, a vector v € V with these properties is
called a highest weight vector.

In the case of si,C, having found an eigenvector v for H killed by X, we
argued that the images of v under successive applications of Y generated the

:‘epresen(atim\. The situation here is the same: analogous to Claim 1.4 we
ave

Cln.im 12.10. Let V be an irveducible representation of s1,C, and v € V a highest
\\fe;ght vector. Then V is generated by the images of v under successive applica-
tions of the three operators Ey , E; 1, and Ey 5.

. Before we check the claim, we note three immediate consequences. First,
it says that all the cigenvalues f € h* occurring in ¥ lie in a sost of {-plane
with corner at «: ‘
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Second, we sce that the dimension of ¥, itself is 1, so that v is' the unique
eigenvector with this eigenvaluc (up to scalars, of comrsc'); (We will selc below
that in fact v is the unique highest weight vector of V up 0 scaaars; se¢
Proposition 12.11.) Lastly, it says that the spaces ¥ wir,-1y and V,pui,-y
are all at most one dimensional, since they must be spanned by (E; ;)"(v) and
(E,,,)"(v), respectively.

Proor oF Crain 12,10, This is |
sponding statemenit for s(,C: we argue that the subspace W of ¥ spanned l?y
images of v under the subalgebra of s{,C generated by E; 1, E5 1, an.d E,.'z is,
i fact, preserved by ail of sl,C and hence must be all of V. _To do 'lhlns we just
have to check that E, 5, E, 5, and E, 5 carry W into itself (in fact it Islﬁl'l‘?.\lg'h
to do this for the first two, the third being their comimutator), and this is
straightforward. To begin with, v itself is in the kernel of E,_z,' E;qand Ep,
so there is 10 problem there. Next we check that E, (v} is kept in W: we have

Ey (Ey 1 (0) = (B3, 1 (Eq 2(0)) + (Ev2, B, 10)
= a([E, 5 B, Do
since E, ,(v) = 0and [E,;, E;,,] € h: and
Ej 3(E2, () = (Eq,1 (B2 5(0) + [Ey,3, Ea,,1(0)
=0

<
K

same as the proof of the corre-

since E, 4(t) = 0 and [E, 5, Eq, ] =0. A similar computation shows that
E, (v} is also carried into V' by E, 5 and E; 5.

More generally, we may argue the claim by a sort of induction: we let w,

. N otk s i looo to tho lattane B and B and take W
denote any word ol Iengin 7 OF ISSS il 1S IEUCHS Ly ¢ 814 L3 5 & "

to be the vector space spanned by the vectors w,(v) for all such words; note
that W is the union of the spaces W,, since E,_, is the commutator ong_z and
Eyy- We claim that E, , and E, , carry W, into W,_;. To see this, we can
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write w, as either E; ; o w,_, or E; ; o w,_,; in either case w,_, (v} will be an
eigenvector for b with eigenvalue f for some B. In the former case we have
Ey;(w,(0) = E 5(E; (w, (1))
= E (B 2(¥a i (O)) + LBy 3, Ep ;1 (v (0)
€ Ey ((W,-3) + BLE; 3, B2 1 1) waey(V)
< Wy
since [E, ,, E;,,J € b; and
Ey,3(0(0)) = E;,3(Ez 1 (W1 (0)))
= E; (Ey, 300y ()) + [E; 35, E3 { 1(W,_, (0))
€ B, i(W.-2)
=W,

since [E 3, E,, ;] = 0. Essentially the same calculation covers the latter case
w, = E, ; o w,_,, establishing the claim. O

This argument shows a little more; in fact, it proves

Proposition 12.11. If V¥ is any representation of sl,C and ve V is a highest
weight vector, then the subrepresentation W of V generated by the images
of v by successive applications of the three operators E; s Exy,and E,y 4 is
irreducible.

PROOF. Let « be the weight of v. The above shows that W is a subrepresenta-
tion, and it is clear that W, is onc dimensional. If W were not irfeducible, we
would have W= W' @ W" for some representations W’ and W”. But since
projection to W’ and W” commute with the action of ), we have W, =
W. @ W;. This shows that onc of these spaces is zero, which implies that v
belongs to W’ or W”, and hence that W is W’ or W". O

Asacorollary of this proposition we see that any irreducible representation
of sl;C has a unique highest weight vector, up to scalars; more generally, the
set of highest weight vectors in ¥ forms a union of linear subspaces ‘¥,
corresponding to the irreducible subrepresentations W of V, with the dimen-
sion of ¥y equal to the number of times W appears in the direct sum
decompositiori of V into irreducibles. :

What do we do next? Well, Ict us continue to look at the border vectors
(E,,1)"(v). We call these border vectors because they live in (and, as we saw,

pan) a collection of eigenspaces g,, Guir, -1, Gesapy-1 --- that -.:_arrespcnd
: to points on the boundary of the diagram above of possible eigenvalues
of V. We also know that they span an uninterrupted string of nonzero eigen-

BPACES Qpynqr,-ry) = C, k=0, I, ..., until we get lo the first m such that
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(F2.1)"(0) = 0 after that we have g,eip,-r, = (O for all k = m. The picture
is thus:

(12.12)

where we have no dots above/to the right of the bold line, and no dots on that
Jine other than the ones marked.

The obvious question now is how long the string of dots along this line is.
One way to answer this would be to make a caleulation analogou ne
in the preceding lecture: use the computation madc above to say explicitly for
any k what multiple of (E, ) (¢v) the image of (E;, (v} under the map E, ,
is, and use the fact that (E, ,y"(v) =0 to determine m. It will be simpler—
and more useful in general—if instead we just use what we have already
learned about representations of st, €. The point is, the elements Eyand By 4,
together with their commutator [Ey 3, E; 11 = Hy 3, spana subalgebra of s1;C
isomorphic to s1,C via an isomorphism carrying Ey 3, E3 and H, , to the
elements X, Y and H. We will denote this subalgebra by s, ., (the notation
may appear awkward, but this is a special case of a general construction). By
the description we have already given of the action of s1,C on the represenita-
tion ¥ in terms of the decomposition ¥ = ) V,,, we sec that the subalgebra
5y, -1, will shift cigenspaces V, only in the direction of L, — L,;in particular,
the direct sum of the eigenspaces in question, namely the subspace

W= @ [IETRTS Y izi3

of ¥ will be preserved by the action of s,,.;,. In other words, W is a
representation of s;, ;, = sl,C and we may deduce from this that the eigen-
values of H, , on W are integral, and symmetric with respeci to zero. Leaving
aside the integrality for the moment, this says that the string of dots in diagram
(12.12) must be symmetric with respect to the line {H, ,, LY = Q in the plane
1*. Happily (though by no means coincidentally, as we shall see), this line is
perpendicular to the line sp i by L, — L, in the picture we have drawn;
50 we can say simply that the string of dots occurring in diagram (1217} is
preserved under reflection in the line (Hy 3, L) = 0.

In peneral, for any i #j the elements E,; and E;,, together with their
commutator [E, ;, ;] = Hy;, span a subalgebra s, of sl,C isomorphic
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to 3[,{? via an isormorphism carrying E, ; E; i, and H, ; to the elements X, ¥,
and H, (Note. that IT; ;= —H; ) Analyzing the action of the subalgebra
51,1, D particular then shows that the string of dots corresponding to the
eigenspaces g,,,(L; — is likewi ion i i

ol pL> =% ;:‘([‘2 Tl‘l;,.)‘fhl‘lie:\:n'sc preserved under reflection in the line

23, in b* The pictureis ¢

is

(Hyp k=0

Kyl >=0

Let us now take a look at the last eigenspace in the first string, that is, ¥,
where m is as before the smallest integer such that (B3, )"(v) =6 and [} =ﬂ
o+ (m’ — L, — ‘L,). If v' € V; is any vector, then, by'dcfmilion we have
E; 1 (v) = 0; and since there are no eigenspaces V, corresponding t’o above
the bold line in diagram (12.12), we have as well L;!at E, 0"\ =E ,2"\ =0,
Thus, v', like » itself, satisfies the statement of Lemm;.JI‘l;.é cx‘;éi;l\}o‘r‘lh‘;
exchénge of the indices 2 and I; or in other words, if we had cl’wsen the linear
functional [ above differently—precisely, with coeflicients b > a > c— then
the vector whose existence is implied by Lemma 12.9 would have turned out

to be v’ rather than 4. If indeed we had carried o .
an p. 1, indeed, we had cairied out the above anaiysis with

. Tespect (o the vector v’ instead of v, we would find tht all eigenvalues of V

occur below or to the right of the lines through f in the directions of L, — L,
and Ly — L, a‘nd that the strings of eigenvalues occurring on these twlo Iine;
v.vere symmetric about the lines <H, ,, LY = 0 and (H, ;3 L) =0, re:
tively. The picture now is ' LB TR ke

<y L>=0 CHypb>=0

N _a VA
AN \VAVAVA

CHyaL>=0




172 12. Representations of st,C, Part §

Needless to say, we can conitinue to play the same game all the way around:
at the end of the string of eigenvalues {f + k(Ly — L)} we will arrive at 2
vector v that is an eigenvector for hand kilied by Es ; and E; 1, and to which
therefore the same analysis applies. In sum, then, we sce that the set of
eigenvalues in ¥ will be bounded by a hexagon symmetric with respect to the
lines (I, ;, LY =0 and with one vertex at «; indeed, this characterizes the
hexagon as the convex hull of the union of the images of a under the group
of isometries of the plane gencrated by reflections in these three lines.

Hyplr=0 gLy =0
AN /
N\ /\
\/ \/ VNV,
AN /NN NN ari=o (1219
7 /\ -
NN N _
) S .

We will see in a moment that the set of eigenvalues will include ali the points
congruent to o modulo the lattice Ap generated by the L, — L, lying on the
boundary of this hexagon, and that each of these eigenvalues will occur with
multiplicity one.

The use of the subalgebras s, _;, does not stop here. For one thing, observe
that as an immediate consequence of our analysis of sI,C, all the eigenvalues
of ifie elemenis H, ; must be integers; it is not hard to see that this means that
all the eigenvalues occurring in (12.2) must be integral linear combinations of
the L;, i.c, in terms of the diagrams above, ail dots must lic in the lattice Ay
of interstices (as indeed we have been drawing them). Thus, we have

Proposition 12.15. All the ¢i fues of any irreducibie finit
representation of s1,€ must lie in the lattice Aw < b* generated by the L, and
be congruent modulo the lattice Aq < b* generated bythe L, — L,

This is exactly analogous to he situation of the previous lecture: theré we

tucible. finite-di 1

saw that the cigenvalues of H in any irr

e
tion of sl,C lay in the lattice Ay = Z of linear forms on CH integral on H,
and were congrucnt to one another modulo the sublattice Ag = 2 Z generated 2
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by the eigenvalues of H under the adjoint representation. Note that in the case
:fe SI;“?[ we h]a\:c AIW/A z & Z/2, while in the present case we have Ay /A = 7/3;

ill see Jater how this reflects a general pattern. T i is c i
e el e | p . The lattice Ay, is called

Exercise 12.16. Show that the two conditions that the eigenvalues of V are
congruent to one another modulo Ax and are preserved under reflection in

the three lines (H; ;, L) = 0 imply that th ie i [
e res fies <1 /'\JW ply cy all tic in Ay, and that, in fact,

To continue, we can go into the interior of the di i
L ¢ diagram (12.14) of eigen-
values of ¥ by observing that the direct sums (12.13) are not the only visible
subspaces of ¥ prescrved under the action of the subalgebras $y,-1,; More
generally, for any § € h* appearing in the decomposition (12.2) and ;xn;' i,j the

direct sum
W= @ Bp+ k(L L

will ‘be a rf:presentation of s, (not necessarily irreducible, of course); in
particular it follows that the values of k for which V,,,., _, . # () fo
LRI PRal R

unbroken string of integers, Observing that if £ is any of the “cxtremal-‘:

;.. eigenvalues pictured in diagram (12.14), then this steing will include another;

so that all cigenvalues congrucnt to the dots pictured in diagram (12.14) and

- lying in their convex hull must aiso occur. Thus, the complete diagram of

eigenvalues will look like

We can summarize this description in

‘l,;n;fo(s:m;)“l; 1218. Let V be any irreducible, finite-dimensional representation
o sh,C. hen for some a € Ay < b*, the set of eigenvatues accurring in V is
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exactly the set of linear functionals congruent to & modtlo the lattice Ay and
lying in the hexagon with vertices the images of = under the group generated by
reflections in the lines (Hi p, LY = 0.

LECTURE 13

Representations of sl;C, Part II:
Remark, We did, in the analysis thus far, make one apparesntly arbitrary choice :

when we defined the notion of “oxtremal” eigenvalue by choosing a linear Malnly LOLS Of Examples
functional { on H* We remark here that, in fact, the choice was not as broad
as might at first have appeared. Indeed, given the fact that the configuration
of eigenvalues occurring in any irreducibl finite-di ionaj represcntation
of sl;C is always either a triangle or a hexagon, the “extremal” eigenvaluc
picked out by [ will always turn out to be one of the three or six vertices of
this figure; in other words, if we define the linear functional { to take a,L; +
ayL; +ajly to ag + ba, + cas, then only the ordering of the three real
numbers a, b, and ¢ matters. Indeed, in hindsight this choice was completeiy
analogous to the choice we made (impficitly) in the case of sl,C in choosing
one of the two directions along the real line.

Y I

We said at the ouisei of ihis tecture that our goal was (o arrive at a ;
description of representations of 51, C as complete as that for si,C. We have
now, certainly, as complete a description of the possible configurations of ]
cigenvalues; but clearly much more is needed. Specifically, we should have

(l;:]::“il:ﬂ];::‘(u‘m v{e c(m?plele the analysis of the irreducible representations of sf,C,
i 1,,0.%,::,3,3'2 W|.ll'1 the answers to all ghree of the questions raised at the end u’(
et welght. atlz“t;x'phmllylccmslrucl thelum‘que irreducible representation with given
highest et . in par(lcult?r determine its multiplicities. The latter two sections

espond to §11.2 and §11.3 in the lecture on sI,C. In particular, §13.4, like §11.3,

involves some projective algebrai i
oy some pr gebraic geometry and may be skipped by those to whom

an existence and uniqueness theorent; E
an explicit construction ofeach represcnlations,analogous to thestatement 5
{hat every representation of sl;C is a symmetric power of the standard; and
for the purpose of analyzing tensor praducts of representations of sl3C, we
ntion not just of the set of gigenvalues, but of the multiplicities
with which they oecur.

§13.1: Examples

§13.2: Description of the irreducible representations
§12.3; A little more plethysm
more plethysm

§13.4: A little more geometric plethysm

(Note that the last gquestion is one that has no analogue in the case of sl,C:
in both cases, any irreducible represenitation is generated by taking a single

eigenvectorve V, and pushing it around by elements of g,; but whereas in the %
previous case there was only one way to get from V to ¥ is, by applying

§13.1. Examples

» OF 3PP
Y over and over again—in the present circumstance there will be more than
one way of getting, for example, from V, to Visr,-1,: and these may yield
independent cigenvectors.) This has been, however, already too long a lecture,
and so we will defer these questions, along with all examples, to the next.

..... q

: Tllnslccturewillbclargelyconwmedwi(hs(udyingexamples giving construs
: :(0)::; :r;dbanat])l'zing tensor products of representations of’ s[‘Cch sta:t.
v at least stati ic exil i the t
pmvgdcs’ué CCM&;;{?::::&;Z:}E;:;; existence and uniqueness theorem that
dil;l:‘:it:;:lt?;s, recall ftr‘om the pr;cvious Iecture than any irreducible, finite-
ﬂmu“\ o ] presentation of sl,C has a vector, unique up to scalars, that is
o aneously an eigenvector for the subaigebra 1y and killed by the three
) l)msopra(l:)t;s'4;51? ;;x,rgh_,d, fmd O,y We §a}lefl s'uch a vector a highest weight
pector oF the h;[es\sn}ﬂ}lxon V', its associated eigenvaiue wiil, of course, be
mpmse“ummg”/,./ k ;:ugt of V. More gcnc.rally, in any finite-dimensional
: Iepresentatior of sl :z\ny vectorv e Wwﬂh these propertics will be called
ghest weight vector; we saw that it will generate an irreducible sub-
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representation ¥ of W. Finally, ltom the description given in the last lecture
of the possible cotifigurations of cigenvalues for a representation of i, C, we
sec that any highest weight vector must lie in the (4)-plane described by the
inequalitics {(H, 1 L2 20 and (H,5 > 20, ie, it must be of the form
(@a+b)L, +bLy=al; — bL, for some pair of non-negative integors a and
b. We can now state

Theorem 13.1. For any pair of natural numbers a, b there exists a tnique
irreducible, finite-dimensional represeniati t weight

aL, — bL,.

wit,

on T,y of 5,€ with

We will defer the proof of this theorem untif the sccond section of this
not so much because it is in any way difficult but simply because it is
time to get Lo some cxamples. We will remark, however, that whereas in the
case of sl,C the analysis that led to the concept of highest weight vector
immediatcly gave the unig part of the logous theorem, here to
establish uniqueness we will be forced to resort to a more indirect trick. The
proof of existenice, by ce ill be very much like that of the corresponding
statement for sl,C: we will construct the representations T, out of the
standard representation by multilinear algebra.

For the time being, though, we would like to apply the analysis of the
previous lecture to some of the obvious representations of sl,C, partly to gain
some familiarity with what goes ot and partly hopes of seeing a general
multilinear-ajgebraic construction.

We begin with the standard representation of sl,C on ¥ = C3. Of course,
the eigenvectors for the action of [y are just the standard basis vectors ey, €3,
and e,; they have eigenvalues Ly, L, and Ly, respectively. The weight diagram
for V is thus

Alternatively, of course, we can j i
NN Eigemalucsn—]l]xds‘t. observe that the dual basis vectors e} are
Note t'hat while in the case of sI,C the weights of any representation were
'symmetn? about the origin, and correspondingly each representation was
|s<imorph|c 10 its dual, the same is not true here ztimt the di::lgrams for ¥V and
14 l‘ook. the same is a reflection of the fact that the two representations are
; Camcd. into one another by an automorphism of s{,C, namely, the z;uto-
., morphism X+ —'X). Observe also that V* is also isémorphic ((; the repre-
sentation AV, whose weights are the pairwise sums of the distinet wei i
V; and that likewise V is isomorphic as representation to /\ZV.‘.M o
Next, consider the degree 2 tensor products of ¥ and V*. Since the weights
ofthe sy'm‘metric square of a representation are the pairwise sums of he weigh(l
of he original, the weight diagram of Sym?V will look like e

fexistence by con

Next, consider the dual representation V*. The eigenvalues of the dual of
a representation of a Lie algebra are just the ncgatives of the eigenvalues of

and likewise the symmetric s 2 i
5 square Sym?*V * has weights { — =L =
the original, so the diagram of V*is T

=20~ 2Ly, Ly =
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&

We sce immediately from these diagrams that Sym"V and Sym’V".are
iereducible, since neither collection of weights is the union of two collections
isi i sl,C.
a"s‘""lg"'f‘rfo:-?': e'l::e‘fﬂ p— c’fV (;:\LV’; its weights are just the sums of the
welré;lt‘squ,};f;/ with those { — L} of V*, that s, the linear runc'tiona!shL, —l:i,f
(each occurring once, with weight vector ¢, ® e}')and 0{occurring wn. ::u "
plicity three, with weight vectors e, @ e?). We can represent these weights by

the diagram
f\>

where the triple citcle is intended to convey the fact that the we.ight space ¥
is three dimensional. By contrast with the Jast two examples, this representa-
tion is not irreducible: there is a linear map

Vevs-C

(or, in terms of the identification ¥ ® ¥* = Hom(V, V), by the trace) that is
a map of sl,C-modules (with C the trivial representation, of course). The
kernet of this map is then the subspace of ¥ ® V* of traceless matrices, which
is just the adjoint representation of the Lie algebra sl,C and is irreducible (we

can teaithar fenm e awaliode 3.
can see this cither from our explicit des

AFah

ption of the adjoini representation—
for example, £, , is the unique weight vector for [ killed by BLi-1y OLy-Lys
and g,,_, —or, if we take as known the fact that SL,C is simple, from the
fact that a subrepresentation of the adjoint representation is an ideal in a Lie
algebra, and exponentiates to a normal subgroup, cf. Exercise 8.43)

(Physicists call this adjoint representation of sl,C (or SU(3)) the “eightfold
way,” and relate its decomposition to mesons and baryons. The standard
representation V is related to “quarks” and V* to “antiquarks.” See [S-W],
[Mack].)

(We note that, in general, if V is any faithful representation of a Lie algebra,
the adjoint representation will appear as a subrepresentation of the tensor
Ve r*)

Let us continue now with some of the triple tensor products of ¥V and V*,
which will be the last specific cases we look at. To begin with, we have the

s Sym®V and Sym?V*, with weight diagrams

given simply by the contraction

v @ ur (v, u*) = u*(v)
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respectively. In general it is clear that, in terms of the description given in
the preceding lecture of the possible weight diagrams of irreducible repre-
sentations of s1,C, the symmetric powers of ¥ and V* will bo exactly the
rcpresemauons wnlh triangular, as opposed to hexagonal, diagrams.

it also follows from the above description and the fact that the weights of
the symmetric powers Sym"¥ occur with multiplicity 1 that Sym"V and
Sym"V* are all irreducible, i.e., we have, in the notation of Theorem 13.1,

Sym"V =T,, and Sym'V*=1I,,.

By way of notation, we will often write Sym"V in place of T,

Consider now the mixed tensor Sym*V ® V*. Its welghts are the sums of
the weights of Sym?V—that is, the pairwise sums of the L,—with the weights
of V*; explicitly, these are L, + L, — L, and 2L; — L; (each occurring once}
and the L, themselves (each occurring three times, as L; + L, — L;}. Dia-
grammaticaily, the representation looks like

Now, we know right off the bat that this is not irreducible: we have a natural
map

ESymivVe@ Vi - v
given again by contraction, that is, by the map
ow @ u*ts {0, u*D W 4 {w, u*) 0,

which is 2 map of s1,C-modules.” What does the kernel of this map look Like?
Of course, its weight diagram is

1At o see {hat Sym2V @ V* is nat lrred hserve that if a representation

Anather way {o see {hat Sym®V is nat i tatior
W is generated by a highest welghl vector v of weight 2L, 1, a8 Sym*V @ ¥ * must be il itis
irreducible, the eigenvalue L, can be taken with multiplicity at most 2, the corresponding

cigenspace being generated by £, ;o E s and Ez 50 E, ()
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— L;—that is to say, of course, any multinle of the vector ¢2
to say, ol course, any mulliple of the vector e} @ e —is

ed by O1y-1p 81,-1, A0d @p, ;50 that the kernel of 1 will contain an
irreducible representation I' = T, ) with 2L, — L, as its highest weight. Since
" must then assume every weight of Ker(r), there are exactly two possibilities:
either Ker(1) = T, which assuines the weights L, with multiplicity 2; or all the
weights of I occur with muitiplicity one and Ker(g = T @ V.

How do we scttlc this issue? Thero are at least three ways, To begin with,
we can try to analyze directly the structure of the kernel of 1. An alternative
approach would be to determine a priori with what multnplluues the weights
of I, , are taken. Certainly it is clear that a formula giving us the latter
information will be tremendously valuable—it would for one thing clear up
the present confusion instantly—and indecd there exist several such, one of
which, the Weyl character formula, we will prove later in the book. (We will
also prove the Kostant multiplicity formula, which can be applied to deduce
directly the independence statement we arrive at below. }As a third possi
wecan identify the representations T, , as Weyl modules and appeal to Lecture
6. Rather than invoke such gencra) formulas at present, however, we will take
the first approach here. This is straighiforward: in terms of the potation
we have been using, the highest wclgh( vector for the represemdtlon
T 8ym?V @ V* is the vector ¢ ® e3, and 50 the e
cigenvalue L, will be spanned by the images of this vector under the two
compositions E; , o E; , and E; ;, o E, ,. These are, respectively,

Eyyo Elz(ﬁ@‘f;) Bz (Ey o(e]) @ et + e} ® Ej 5(€3)
=Bz (—ei®@ef)
=—2ee)®@cf + e} @et

EypoEy (e} ®ef) = Es5(E, 1 (6}) @ e} + el ® E, \let))
= E; 3((2¢, ¢;)® e})
=2e e} @€t —2e;e;) ek
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Since these are independent, we conclude that the weight L, does occur in I”
with multiplicity 2, and hence that the kernel of 1 is itreducible, i.e.,

SymV@V*=T,,®V.

§13.2. Description of the Irreducible Representations

At this point, rather than go on with more cxamples we should state some of
the general principles that have emerged so far. The first and most important
(though pretty obvious) is iiic basic

Observation 13.2. If the represemations V. and W have highest weight vectors
v and w with weights o and f, respectively, then the vector v@we V@ Wis
a highest weight vector of weiglt « + f.

Of course, there are numerous generalizations of this: the vector v" € Sym"V
is a highest weight vector of weight not, etc.2 Just the basic statement above,
however, enables us to give the

Proor oF Treores 1.1, Fi nt follows immediately

from the observation: the representation Sym' v @ Sym®¥* will contain an
itreducible subrepresentation I, , with highest weight aL, — bL;.

The uniqueness part is only slightly harder (if less explicit): Given
irreducible representations ¥ and W with highest weighta,letve Vandwe w
be highest weight vectors with weight a. Then (v, wj is again a highest weight
vector in the representation V @ W with highest weight «; let U = Vvaew
be the irreducible subrepresentation generated by (v, w). The projection
maps 7,2 U -V and n: U > W, being nonzero maps between irreducible
representations of sl;C, must be isomorphisms, and we deduce that ¥ = w.

U

Exercise 13.3% Let S, be the Schur furictor intreduced in Lecture 6. What
can you say about the highest weight vectors in the representation SV}
obtained by applying it to a given representation V7

To continue our discussion of tensor products like Sym*V @ Sym*V*in

general, as we indicated we would like to make more explicit the construction
of the representation I, ,, which we know to be lying in Sym*V ® Sym"V*.
To begin with, we have in general a contraction map

1o.: SyM*V ® Sym" V'* — Sym* Ly @ Sym* IV
analogous to the map 1 introduced above; we can describe this map either
(in fancy language) as the dual of the map [rom Sym"”'V® Symb T v*
to Sym"V ® Sym°V* given by multiplication by the identity element in

2 One slightly less obvious statement is this: if the weighis of Vare ay, &y, a5 ... with fa,) > a2} > ;
.., then A"V passesscs a highest weight vector weighta, + -7+ + &, Note that since the ordering
of the g, may in fact depend on Ihe choice of {{even with the restrictiona > b > con the cacfficients ©

of I as above), this may in some cases imply Lhe exi of several T ions of AV,
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Ve U - HomiV UV oo oo
¥ & ¥V = nioimi{¥, V}; o, conc

)@Y

, ¢ the target does not have eisenvalue
t have eigenvalue

aly — bL,, the subrepresentation I, , < Syr}1"lb/® ym?V* must lie in the
kernel, In fact, we have, just as in the case of Sym? ¥V ® V* above,

Claim 13.4. The kernel of the map 1,y is the irreducible representation T, ,.

We will defer the proof of this for a moment and consider some of its
:‘oonsequen.m's, To begin with, we can deduce from this assertion the complete
ecomposition of Sym®V @ Sym® V*: we must have (if, say, b < a)

b
Sym*V @ Sym*V* = (DT, .. (13.5)
i=0

Since we know, a priori, all the multiplicities of the eigen values of the tensor
product Sym”V @ Sym"V*, this will, in turn, determine (inductively at least)
all the multiplicities of the representations T, ,. In fact, the answer turns
out to be'very nice. To express 1t, observe first iulxat ifa z b, the weight dia-
gram of lelhcr T, of Sym’V @ Sym®V* looks like a sequence of b shrinking
concentric (ot in general regular) hexagons H; with vertices at the points

. @=Ly —(b—iLyfori=0,1,...,b — |, followed (after the shorter three

eidon Al tha havaan
sides of the hexagon have s

ﬁk {(‘l andtnta) b o canirarna 8 0 JAYS & BT

N < poiiiis) 0y a sequen 1 — 1
triangles ’l}'wxlh vertices at the points {a — b —‘1‘3j)l:c \floru; = 6”? * !
[(1_1 — b)/3] (it will be convenient notationally 1o refer to T, as H, occasion,ally)T
Diagram (13.6) shows the picture of the weights of Sym® ¥ @ Sym? V%

(13.6)
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(Note that by the decomposition (13.5), the weights of the highest weighit
vectors in Sym”V @ Sym® V* will be aL, — BLy, (a— Ly —(b— ULy, ..y
(a — b}, as shown in the diagram.)

An examination of the representation Sym’V ® Sym®V'* shows that it has
plicity (i + 1) + 2)/2 on the hexagon H,, and then a constant multi-
plicity (b + 1)(b + 2)/2 on all the triangles Tj; and it follows from the decom-
position (13.5), in general, that the representation I, , has multiplicity (i + 1)
on H, and b on T,. In English, the multiplicities of T, , increase by one on each
of the concentric hexagons of the eigenvalue diagram and are constant on the
triangles. Note in particuiar that the description of I, in the preceding
section is a special case of this.

PRoOF OF CLAIM 13.4. We remark first that the claim will be implied by the
Weyl character formula or by the description via WeyP’s construction in
Lecture 15; so the reader who wishes to can skip the following without dire
consequences to the logical structure of the book. Otherwise, observe
first that the claim is equivalent to asserting the decomposition (13.5
is equivalent to the statement that the representation
W = Sym’V @ Sym’V* has exactly b+ 1 irreducible components (still
assuming a > b). The irreducible factors in a represcntation correspond
to the highest weight vectors in the representation up to scalars; so in
sum the claim is equivalent to the assertion that the eigenspace W, o
Sym?V @ Sym*¥'* coniains a wiique highest weight vecter (up to scalars) if a
is of the form(a — i)Ly — (b — D)L; for i < b, and none otherwise; this is what
we shall prove.

To begin with, the “none otherwise” part of the statement follows (given
the other) just from looking at the diagram: if, for example, any of the
cigenspaces W, corresponding to a point « on a hexagon H, {other than the
vertex {a — /)L, — (b — i)L, of H,) possessed a highest weight vector, the
multiplicity of a in W would be strictly greater than of (a — iYL, — (b — HL;,

which we know is not the case; similarly, the fact that the multipticities of W 2

in the triangular part of the eigenvalue diagram are constant implies that there
can be no highest weight vectors with sigenvalue on a T for j > i. Thus, we

just have to check that the weight spaces W for a=(a—~i})Ly— (b~ i)L., 3
conitain only the one highest weight vector we know is there; and we do this |

by explicit calculation.

M et £ any oo ein)
To start, fof aiy MONOMiar GCX

lindex I = (i, iy, i3) of degree Y i, = i, we denote

Fiy f2

by e’ € Sym'¥ the corresponding monomial [1(ey) and define (e*) € Sym'V* :
similarly. We can then write any element of the weight space Wa_qr.,-p-ots

of Sym*V @ Sym"V* as

v=3 e @D (e

In these terms, it is easy to write down the action of the two operators E,,

_ components of that decomposition, as follows:
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and E, ;. First, Ey , kills both e, € V and ef € V'*, so that we have
B (el e @((et) (%))
- iz(etiﬁbﬂ . el') ® ((e;)b—i .(es)l)

— (e ® (et )h—l.(e*)l”),

where l" =0 +1,i,~ Liz)and I" = (}, — 1, i, + 1,i,) (and we adopt the
(.;On'\lcl'l(lﬂn ,lhs:t e’ = 0ifi, < O for any y). It follows that the vector v above is
iri the kernel of E, , if and only if the coefficients ¢; satisfy i¢, = (5, + ey
z.md by the analogous calculation that v is in the kernel of E, , if and only if
facy = {iz + 1)c; whenever the indices f and J are related b'); h=iLj=
i + 1, and J, =13 — 1. These conditions are equivalent to saying th;ltztl1e
1\}xmbers iyliylizle; are independent of I. We see, in other words, that v is a
highest weight vector if and only if all the coeflicients c; are equal to cfiyliyliy!
for some constant c. o El

§13.3. A Little More Plethysm

We would like to consider here, as we did in the case of s1,C in Lecture I |

I?uw the tensor products and powers of the representations we have describeci
u'ecompose. We start with one general remark: given our knowledge of the
engeAn‘valuc diagrams of the irreducible representations of st,C (with multi-
phicities), there can be no possible ambiguity about the decomposition of any
mpresef\lation U given as the tensor product of representations whose eigen-
value diagrams are known. Indeed, we have an algorithmn for determining the

VYrite down the cigenvalue decomposition of U.
Find the cigenvalue o = aL, — bL, appearing in this diagram for which
the value of l{a) is maximal

V_Ve now k_now that U will contain a copy of the irreducible representation
]? =T, ie, U =T, ® U forsome U". Since we also know the eigenvalue
diagram o'fl‘,, we can thus write down the eigenvalue diagram of U’ as well.
Repeat this process for U’

N

[

Ead

Tosee how this goes in practice, consider some examples of tensor products
of the basic irreducible representations described so far. We have already see;l
hm'v the tensor products of the symmetric powers of the standard represen-
tation V of sl,C and symmetric powers of its dual decompose; let us look now
atan example of a more general tensor product of irreducible }cpresemu(ions:

- say Vitself and the representation I, ;. We start by writing down the weights
¥ of the tensor product: since I', | has weights 2L, — Ly L+ Ly — Ly, and L;
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(taken twice) and V' has weights L, the tensor product will have weights
Ay — Ly 2L+ L= s (taken twice), 2L, (taken four times), and L; + L,
(taken five times). The diagram is thus

(One thing we may deduce from this diagram is that we are soon going to

need a better system for presenting the data of the weights of a representation.

In the future, we may simply draw one sector of the plane, and label weights g

with numbers to indicate multiplicities.)

We know tight off the bat that the tensor product V®T; contains a copy :

of the irreducible representation Ty , with highest weight 3L, — L. By what
we have said, the weight diagram of Ty ; is

so the complement of T ; in the tensor product V @ Iy, will look like
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. One obvious highest weight in this representation is 2L, 4+ [, — Ly =
g — 2L,, 50 ll\‘at the tensor product will contain a copy of the irreducible
tepresentation I, , as well; since this has weight diagram
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Sym?(Sym?V)) = Sym*V @ Sym? V'*,

Indeed, the presence of the Sym* ¥V factor is clear: there is an obvious map

@: Sym?*(Sym?¥)) — Sym*V

AVAYAY
\VAVAVAVAVAVAVAVAV/

obtained simply by muitipiying ovi. The ideniification of the kernel of ihis

map with the representation Sym? v'* is certainly less obvious, but can still be

made explicit. We can identify ¥* with A2V as we saw, and then define a map
7: Sym?(A2V) - Sym?(Sym? V)

by sending the generator (u A v)(w A z)& Sym*(A?V) to the element
(- w) (v-2) — (u-2) (v w) € Sym2(Sym? V'), which is clearly in the kernel of ¢.

Exercise 13.9. Verify that this map is well defined and that it extends linearly
to an isomorphism of Sym?(A\? V) with Ker(g).

which we recognize as the weight diagram of the symmetric square Sym?V =
Ty of the standard representation. We have, thus,

VR, =T, @1, ® 10

Exercise 13.10. Apply the techniques above to show that the representation

(37 A2(Sym? V) is isomorphic to ;.

tod the irreducible factor
to determine tng irregucioie iacior

W

Fyarciea 1111 Annluthaea tact
Exercise 15.11. Apply the same lec)

)
of the representation A*(Sym? V). Note: we will return to this example in
Exercise 13.22.

Exercise 13.8*. Find the decomposition into irreducible representations of the me
tensor products V@ T, ;, V@I ; and V®Tj,,. Can you find a general
pattern to the outcomes?

Exercise 13.12. Find the decomposition into irreducibles of the representa-
tions Sym?(Sym?* V) and Sym?*(Sym* V) (observe in particular that Hermite
reciprocity has bitten the dust). Describe the projection maps to the various
factors. Note: we will describe these examples further in the following section.

As in the case of s1,C, the next thing to look at are the tensor powers—
symmetric and exterior—of representations other than the standard;_w:
Jook first at tensors of the symmetric square W = Sym”V. First, consider
the symmetric square Sym? W = Sym*(Sym* V). We know the diagram for

Sym2W; it is

§13.4. A Little More Geometric Plethysm

Just as in the case of sl,€, some of these identifications can also be seen in
geometric terms. To do this, recall from §11.3 the definition of the Veronese
embedding: if °2 — PV# is the projective space of one-dimensional subspaces
of V*, thete is then a natural embedding of P? in the projective space P* =
P(Sym?V'*), obtained simply by sending the point [v*] & P? corresponding
. to the vector v* € V* to the point [v*2] € P(Sym?2V*) associated to the vector
v*2 = v*-p* € Sym2V*. The image § = P is called the Veronese surface. As
in the case of the rational normal curves discussed in Lecture 1, it is not hard
to see that the group of automorphisms of P* carrying S into itseif is exactly
the group PGL,C of automorphisms of § = P2,

Now, a quadratic polynomial in the homogeneous coordinates of the space
PSym? V*) = P will restrict to a quartic pol { on the Veronese surface
§ = PV*, which corresponds to the natural evaluation map ¢ of the preceding
section; the kernel of this map is thus the vector space of quadratic poly-

Now, there is only one possible decomposition of a representation whose
cigenvalue diagram looks like this: we must have
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nomials in P5 vanishing on the Veronese sutface 5, on which the group of
automorphisms of P3 carrying S to itseil obviously acts. Now, for any pair of
points P = [1*], @ = [v*] €5, it is not_hard to see that the cone over the
Veronese_surface with vertex the line PQ = IP5 (that is, thc union of the
2-planes PQR as R varies over the surlace §) be a quadr

in P? containing the Veronese surrace, sending ‘he generatoru" v’ p Sym v
to this quadric hypersutface will then define an 1som0rphlsm of the space of
such quadrics with the projective space associated to Sym?y*,

Foxercise 13.13. Verily the staiemenis made in ihe lasi paragraph: that the
union of the PQR is a quadric hypersurface and that this extends to a linear
isomorphism P{Sym2V*) & P(Ker(p)). Verify also that this isomorphism
coincides with the one given in Exercise 13.9.

There is another way of representing the Veronese surface that will shed
some light on this kernel. If, in terms of some coordinates e, on V*, we think
of Sym? V* as the vector space of symmetric3 x 3 matrices, then the Veronese
surface is just the locus, in the associated projective space, of rank | matrices
up to scalars, ie., in terms of homogeneous coordinates Z, ; = ¢;"¢;on Ps,

Ziy Ziy Zyy
S=<[Z} mank| Z,, Z,, Zy5]|=1
Ziy Zys Zss

The vector space of quadratic polynomiais vanishing on § is then generated
by the 2 x 2 minors of the matrix (Z, )); in particular, for any pair of linear
combinations of the rows and pair of linear combinations of the columns we
get a2 x 2 matrix whose determinant vanishes on 5.

Exercise 13.14. Show that this is exactly the isomorphism Symi(A2V) =
Ket(p) described above,

We note in passing that if indeed the space of quadrics containing the
Veronese surface, with the action of the group PGL4C of motions of P*
preserving 8, is the projectivization of the representation Sym?2V*, then it must
contain its own Veronese surface, i.c., there must be a surface T = P(V*)
P(Ker(¢)) invariant under this action, This turns out to be just the set of
quadrics of rank 3 containing the Veronese, that is, the quadrics whose singular
locus is a 2-plane. In fact, the 2-plane will be the tangent plane to § at a point,
giving the identilication T = S.

Let us consider one more example of this type, namely, the symmetric cube
Sym*(Sym? V)). (We promise we will stop after this one.) As before, it is easy
to write down the eigenvalues of this represenla:ion lhey are just the triple
sums of the eigenvaiues {2L, L, + L} of Sym?¥. The diagram (we will draw
hete only one-sixth of the plane and indicate multiplicities with numbers
rather than rings) thus looks like
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XXX

from which we see what the decomposition must be; as representations we
have

Sym*(Sym*Vv)) x Sym*V @ T, , B C. (13.15)

As before, the map to the first faclor is just the obvious one; it is the identifica-
tion of the kernel that is intriguing, and especially the identification of the last
factor.

To see what is going on here, we should look again at the geometry of the

Veronese surface § « P5 = Dmuml V*). The space Sy mUSym?V ) is iust the
he space Sym (Sym*V)) is just the

space of homogeneous cubic polynommls on the ambient space P%, and as
before the map to the first factor of the right-hand side of (13.15) is just the
restriction, so that the last two factors of (13.15) represent the vector space
I(S), of cubic polynomials vanishing on §. Note that we could in fact prove
{13.15) without recourse to eigenvaiue diagrams from this: since the ideai of
the Veronese surface is generated by the vector space I(5), of quadratic
polynomials vanishing on it, we have a surjective map

1(S), ® W = Sym?V* @ Sym?V — I(S)s.
But we already know how the left hand side decomposes: we have
Sym*V* @ Sym?V =T,,® I, , B, {13.16)

so that I(S)3 must be a parlml direct sum of these three irreducible represen-
lmi\‘)ﬁs; uy dimension considerations it can omy be l; 1 ® C.
This, in turn, tells us how to make the isomorphism (13.15) explicit (assum-

ing we want to} we can define a map
Sym?(A?V) ® Sym?V — Sym>(Sym?2V)
by sending
WAV (WAZIBD(S (e w) (v-z)—(u-2)(0-w)(st)
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and then just check that this gives an isomorphism of I,,68Cc
Sym?p* ® Sym? ¥ with the kernel of projection on the first factor of the
right-hand side of (13.15).

What is really most interesting in this whole situation, though, is the trivial
summand in the expression (13.15). To say that there is such a summand is to
say that there exists a cubic hypersutface X in P3 preserved under all anto-
morphisus of B3 carrying S to itself. Of course, we have already run into this
one: it is the determinant of the 3 x 3 matrix (Z; ;) introduced above. To
express this more intrinsically, if we think of the Veronese as the set of rank
1 tensors in Sym? ¥'*, it is just the set of tensors of rank 2 or less. This, in turn,
yields another description of X: since a rank 2 tensor is just one that can be
exp d as a linear combination of two rank | tensors, we sce that X is the
famous chordal variety of the Veronese surface: it is the union of the chords
to S, and at the same time the union of all the tangent planes to S.

Exercise 13.17. Show that the only symmetric powers of Sym?V that possess
trivial summands are the powers Sym**(Sym?2¥)) divisible by 3, and that the
unique trivial summand in this is just the kth power of the trivial summand
of Sym*(Sym?V)).

Exercise 13.18. Given the isomorphism of the projectivization of the vector
space J(S);—that is, the projective space of quadric hypersurfaces containing
the Veronese surface—with P(Sym2¥*), find the unique cubic hypersurface
i t under the action of PGL,C.

Exercise 13.19. Analyze the representation Sym?(Sym®V)) of sl,C. Interpret

the direct sum factors in terms of the geometry of the Veronesc embeddingof

PV* = P%in P(Sym*V*) = P°.

Exercise 1320%. Show thal the representations Sym*(Sym*V)) and
Sym®(Sym®V)) contain trivial summands, and that the representation
Sym'?(Sym?V)) contains two. Interpret these.

Exercise 13.21. Apply the techniques above to show that the rép'resern
A2(Sym?V) is isomorphic to Iy ;.

Exercise 13.22*. Apply the techniques above to analyze the representation
A3(Sym2V), and in particulat to interpret its decomposition into irreducible
representations.

Exercise 13.23. If P® = P(Sym?V*) is the ambient space of the Veronese
surface, the Grassmannian G(2, 5) of 2-planes in P* naturally embeds in the
projective space P A3(Qun2) Dascribe, in terms of the decom

in the preceding exercise, the span of the locus of tangent 2-planes to the

ve space PN} (Sym?¥)). Describe, in ter ecomp
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Veranece and the s af i3 P .
Veronese, and the span of the locus of 2-pianes in P* spanned by the images
in S of lines in PV*.

Exercise 13.24'.. Show that the unique closed orbit of the action of SL,C on
the representation I, , is either isomorphic to P? (embedded as the Veronese
surface) il either a or b is zero, or to the incidence correspondence

E={(pl)ypel}cP?x P

il neither a or b is zero.
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As we indicated at the outset, the analysis we ha
structure of s1,C and si,C and their representations carries over to other
semisimple complex Lie algebras. In Lecture 14 we codify this structure, using
the pattern of the examples we have worked out so far to give a model for
the analysis of arbitrary semisimple Lie algebras and stating some of the most
facts that are true in general. As usual, we postpone proofs of many
of these facts until Part 1V and the Appendices, the main point here being to
introduce a unilying approach and language. The facts themselves will all be
seen explicitly on a case-by-case basis for the classical Lie algebras s1,C, sp,,C,
and so,C, which are studied in some detail in Lectures 15-20.

Most of the development follows the outline we developed in Lectures
11-13, the main goal being to describe the irreducible representations as
explicitly as we can, and o see the decomposition of naturally accurring
representations, both algebraically and geometrically. While most of the
representations are found inside tensor powers of the standard representations,
for the orthogonal Lie algebras this only gives half of them, and one needs
new methods to construct the other “spin” representations. This is carried out
using Clifford algebras in Lecture 20.

We also make the tie with Weyl’s construction of representations of GL,C
from Lecture 6, which arose from the representation theory of the symmetric
groups. We slmw in Lecture 15 that these are the irreducible representations
of s,,C; in Lecture 17 we show how to use them to construct the irreducible
representations of the symplectic Lie algebras, and in Lecture 19 to give the
nonspin representation of the orthogonal Lie algebras. These give uscful
descriptions of the irreducibie representations, and powerul methods for
decomposing other representations, but they are not necessary for the logical
progression of the book, and many of these decompositions can also be
deduced from the Wey! chiaracter formula which we will discuss in Part 1V,

imoporta
unportay
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the body of it, §14.1, we extract from the

examples of §11-13 the basic algorithm for analyzing a general semisimple Lic algebra
and its representations. It is this algorithm that we will spend the remainder of Part
1K carrying out for the classical algebras, and the reader who finds the general setup
confusing may wish to read this lecture in paraltet with, for exnmple,' Lectures 15 and
16. In particular, §14.2 is less clearly motivated by what we have worked out so far;
the reader may wish to skim it for now and defer a more thorough reading until after
going through some more of the examples of Lectures 15-20,

ntral lectures;

§14.1: Analyzing simple Lie algebras in general
§14.2: About the Killing form

§14.1. Analyzing Simple Lie Algebras in General

Wesaid at the outset of Lecture 12 that once the analysis of the representations
of s1, € was understood, the analysis of the rey ations of any semi I

Lie algebra would be clear, at least in broad outline. Here we would Jike to
indicate how that analysis will go in general, by providing an essentially
algorithmic procedure for describing the representations of an arbitrary com-
plex semisimple Lie algebra g. The process we give here is directiy anaiogous,
step for step, to that carried out in Lecture 12 for sty C; the only difference is
one change in the order of steps: having seen in the case of st,C the importance
of the “distinguished” subalgebras s, 2 sI,C < g and the corresponding dis-
tinguished elements H, € s, < b, we will introduce them earlier here.

Step 0. Verify that your Lie algebra is semisimple; if not, none of the
following will work (but see Remark 14.3). If your Lie algebra is not semi-
simple, pass as indicated in Lecture 9 to its semisimple part; a knowledge of
the representations of this quotient algebra inay not tell you everything about
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the representations of the original, but it will at least tell you about the
irreducible representations.

Step 1. Find an abelian subalgebray < g acting diagonally. This is of course
the analogue of looking at the specific element H in sl,€ and the subalgebra
Iy of diagonal matrices in the case of sk, T; in general, to serve an anaiogous
function it should be an abelian subalgebra that acts diagonally on one faithful
(and hence, by Theorem 9.20, on any) representation of g. Moreover, in order
that the restriction of a representation ¥ of g to I carry the greatest possible
information about ¥, ) should clearly be maximal among abelian, diagonali-
zable subalgebras; such a subalgebra is called a Cartan subalgebra.

Nole that while this step would seem to be somewhat less than algorithmic
(in particular, while it is certainly possible to tell when a subalgebra of a given

Lie algebra is abelian, and when it is diagonalizable, it is not clear how to tell
whether it is maximal with respect to these properties). This defect will,
however, be largely cleared up in the next step (see Remark 14.3).

Step 2. Let Iy act on g by the adjoint representation, and decompose §
accordingly. By the choice of b, its action on any representation of g will be
diagonalizable; applying this to the adjoint representation we arrive at a direct
sum decomposition, calied a Cartan decomposiiion,

=@ (D) (14.1)

where the action of ) preserves each g, and acts on it by scalar multiplication
by the linear functional « € h*; that is, for any H € ) and X € g, we will have

ad(H)(X) = a(H)" X.

The second direct sum in the expression (14.1) is over a finite set of eigenvalues
o € l*; these eigenvalues—in the language of Lecture 12, the weights of the
adjoint representation—are called the roots of the Lie algebra and the corre-
sponding subspaces g, are called the root spaces. Of course, b itself is just the
eigenspace for the action of h corresponding to the eigenvalue 0 {see Remark
14.3 below); so that in some contexts—such as the following paragraph, for
example-—it will be convenient to adopt the convention that go = by but we
do not usually count 0 € h* as a root. The set of all roots is usually denoted
R bh*,

As in the previous cases, we can pictute the structure of the Lie algebra in
terms of the diagram of its roots: by the fundamental calculation of §11.1 and
Lecture 12 (whlch we will not reproduce here for the fourth hme) we see that
the adjoint action of g, carries the eigenspace g, into another CiEENSPAcE Gaspe

There are a couple of things we can anticipate about how the configuration
of roots (and the corresponding root spaces) will look. We will simply state
them here as

Facis 14.2

(i) each root space g, will be one dimensional.
(i)} R will generate a lattice Ag < b* of rank equal to the dimension of b.
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(iii) R is symmetric about the origin, ie., if @€ R is a root, then —a e R is
a root as well,

These facts will all be proved in general in due course; for the time being,
they are just things we will observe as we do the analysis of each simple Lie
algebra in turn. We mention them here simply because some of what follows
will make sense only given these facts. Note in particular that by (ii), the roots

all lie in (and span) a real subspace of ly*; all our pictures clearly will be of this
real subspace.

Remark 14.3. If indeed 0 does appear as an eigenvalue of the action of [ on
9/b, then we may conclude from this that h was not maximal to begin with:
by the above, anything in the O-elgempace of the action of [y commutes with

I and {oiven the fact that the o ar,

G and (given the fact that the g, are 1) acts diagona

ululullaluunl) acts diagonally on g, so
that if it not already in b, then b could be enlarged while still retaining the
properties of being abelian and diagonalizable. Similarly, the assertion in (i1)
that the roots span )* follows from the fact that an element of b in the
annihilator of all of them would be in the center of g.

From what we have done so far, we get our first picture of the structure of
an arbitrary irreducible finite-dimensional representation ¥ of g. Specifically,
V will admit a direct sum decomposition

V=@V (ia 4

=V, {i4.4)

where the direct sum runs over a finite set of « € h* and Iy acts diagonally on

each ¥, by multiplication by the eigenvalue «, i.c., for any /f e hand v e ¥, we
will have

H(v) = a{H)-».

The eigenvalues o € h* that appear in this direct sum decomposition are called
the weights of ¥, the ¥, themselves are called weight spaces; and the dimnension
of a weight space ¥, will be called the multmlxcrly of the weighit o in V. We will
often represent V by drawing a picture of the set of its weights and thinking
of each dot as representing a subspace; this picture (often with some annota-
tion to denote the multiplicity ofeach weight) is called the weight diagram of V.

The action of the rest of the Lie algebra on V can be described in these
terms: for any root f, we have

9 Vo Voups
so we can think of the action of 6y o0 V as a translation in the weight diagram,
shifting each of the dots over by § and mapping the weight spaces
correspondingly.
Observe next that all the weights of an irreducible representation are
congruent to one another modulo the root lattice Ag: otherwise, for any
weight « of ¥ the subspace



200 14. The General Set-up: Analyzing the Structure
Vi= @ Vaus
Pehx

would be a proper subrepresentation of V. In particular, in view of Fact 14.2(i),
this means that the weights all lie in a translate of the real subspace spanned
by the roots, so that it is not so unreasonable to draw a picture of them.
Step 3. Find the distinguished subalgebras s, = s1,C < 9. As we saw in the
example of 51, C, 2 crucial ingredient in the analysis of an arbitrary irreducible
finite-dimensional representation is the restriction of the representation to
certain special copies of the algebra s1,C contained in g, and the application
of what we know from Lecture 11 about such representations. To generalize
this to our arbitrary Lie algebra g, let g, = g be a root space, one dimensional
by (i) of Fact 14.2. Then by (jii) of Fact 14.2, there is another rootspace g, < 8;
and their commutator [g,, 9-,] must be a subspace of go = b, of dimension

at most one. The adjoint action of the commutator {g,, 9_,] thus carr ies each
of g, and g_, into itsell; so that the direct sum

5 = G, D 0, D 90, 821 (14.5)
bra of a. structure of s, is not hard to describe, given two

further facts that we will state here, verily in cases, and prove in general in
Appendix D.

Facts 14.6.

(i) (e 5o #0; and
(if) ([ 9-e)s 8] # O

Given these, it follows that the subalgebra s, is isomorphic to s[,C. In
particular, we can pick a basis X, €g,, Y, €9.,,and H, e[, -] satisfying
the standard commutation relations (9.1) for s1,C; X, and Y, are not deter-
mined by this, but H, is, being the unique element of (8, §-.] having eigen-
values 2and —2 on g, and g_,, respectively [ie., H, is uniquely characterized
by the requirements that H, € [g,, 9-.] and a(H,) = 2.]

Step 4. Use the integraiity of the eigenvaiues of ihe H,. The distinguished
elements H, € § found above are important first of all because, by the analysis
of the representations of si,C carried out in Lecture 9, in any representation
of 5,—and hence in any representation of g—alt elgenvalues of the action of
H, must be integers. Thus, every eigenvalue f € ij* of every representation of
g must assume integer values on ail the H,. We correspondingly let Ay be
the set of linear functionals § € b* that are integer valued on all the H; Ay
will be a lattice, called the weight lattice of g, with the property that

all weights of all representations of g will lie in Ay.

Note, in particular, that R © Ay and hence Ag = Ay; in fact, the root
fattice will in general be a sublattice of finite index in the weight lattice.
Step 5. Use the symmetry of the eigenvalues of the H,. The integrality of the

§14.1. Analyzing Simple Lie Algebras in General 201

cigenvalues of the H, under any representation is only half the story; it is also
true: that they are §ymmetric about the origin in Z. To express this, for any «
we introduce the involution W, on the vector space §j* with + J-eigenspace
the hyperplane

Q= {feh* (H, B> =0} (14.7)

and m_inu§ 1 eigenspace the line sﬁénned by « itself.! In English, W, is the
reflection in the plane 0, with axis the line spanned by o:

2p001,)
Al © = P (148)

By =B—

Let I3 b.e the group generated by these involutions; W is called the Weyl group
of the Lie algebra g.

) Now suppose that Vis any representation of g, with eigenspace decompos
tion ¥ = @ V- Th:: weights f# appearing in this decomposition.can then be
broken up into equivalence classes mod &, and the direct sum

Vg = ’@ Vitna (14.9)

of the cigenspaces in a given equivalence class will be a subrepresentation of
V for s,. It. follows then that the set of weights of ¥ congruent to any given
f mod « will be invariant under the involution W,; in particular,

The set of wéights of any representation of g is invariant under the Weyl
group.

To make.lhis more explicit, the string of weights that correspond to nonzero
summands in (14.9) are, possibly alter replacing ff by a translate by a multiple

- of

BB+ f+ 2., f+ma, withms= —p(H,) (14.10)

gNo!g that by our analysis of 51, € this must be an uninterrupted string.) Indeed
ifwe choos«-:ﬂ and m > 0so that (14.10) is the string corresponding to nonzero
summands in (14.9), then the string of integers

BHL), (B + 0)(H,) = BUH,) + 2, .., (B + mo)(H,) = B(H,) + 2m

© must be symmetric about zero, so f(H,) = ~m. In particular,

W + k) = B + (— B(H,) — by = B + (m — K)o
'No‘e_also that by the same analysis the multiplicities of the weights are
invariant under the Weyl group.

We should mention one other fact about the Weyl group, whose proof we
also postpone:

" Note that by the nondegeneracy assertion (i) of Fact 14.6, the line C-a does not li¢ in the
hyperplane £3,. Recall that { , ) is the pairing between § and b*, so (f,, I} = A(H,).
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Fact 14.11. Every element of the Weyl group is induced by an automorphism
of the Lie algebra g carrying § to itself.

We can even say what automorphism of g does the trick: to get the involution
W, take the adjoint action of the exponential exp(niU,) € G, where G is any
group with Lie algebra g and U, is a suitable element of the direct sum of the
root spaces g, and g.,. To prove that Ad{exp(ri U,)) actually does this requires
more knowledge of g than we currently possess; but it would be an excellent
exercise to verify this assertion directly in each of the cases studied below.
{For ihe general case see (23.20) and (26.15))
Step 6. Draw the picture (optional). While there is no logical need to do so
at this point, it wilt be much easier to think about what is going on in b* if
we introduce the appropriate inner product, called the Killing Jorm, on g
(hence by restriction on b, and hence on 1)*). Since the introduction of the
Killing form is, logically, a digression, we wili defer until tater in this kecture
a discussion of its various definitions and properties. It will suffice for now to
mention the characteristic property of the induced inner product on bh*: uplo
scalars it is the unique inner product on h* preserved by the Weyl group, ie.,
in terms of which the Weyl group acts as a group of orthogonal transforma-
tions, Equivalently, it is the unique inner product (up to scalars) such that the
Jine spanned by each root a € h*is actually perpendicular to the plane €, (so
{hiat the involution W, is just a reflection in that hyperplane). Indeed, in
practice this is most often how we will compute it. In terms of the Killing form,
then, we can say that the Weyl group is just the group generated by the
reflections in the hyperplanes perpendicular to the roots of the Lie algebra.
Step 7. Choose a direction in h*. By this we mean a real linear functional |
on the lattice Ay irrational with respect to this lattice. This gives us a

decomposition of the set

R=R*uUR", (14,12
where R* = {o: I(a) > 0} (the x e R* are called the positive roots, those in R™
negative); this decomposition is calied an ordering of the roots. For most
purposes, the only aspect of I that matters is the associated ordering of the

roots.
The point of choosing a direction—and thereby an ordering of the roots

R = R* u R™—is, of course, to mimic the notion of highest weight vector that
was so crucial in the cases of si,C and sl,C. Specifically, we make the

Definition. Let V be any representation of g. A nonzero vecior € ¥ that
both an eigenvector for the action of § and in the kernel of g, for all x e R
is called a highest weight vector of V.

Just as in the previous cases, we then have

Proposition 14.13. For any semisimple complex Lie algebra g,

(i) every finite-di ional repri ation V of g p

vector;

. Is not crucial but will be useful later on in estimatin,

a highest weight
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(i) '1‘7::1 :;tiipace W of Vlgenerated by the images of a highest weight vector v
ccessive applications of root spaces =R isani il

i e P 9p for f € R™ is an irreducible

(iii) an irreducible representation

0sses: i .
scalars, possesses a unique highest weight vector up to

;1:0‘:\:;0}]’:\:}:8({) is] im;;)t:)qiate: we just take a to be the weight appearing in V
value I(e) is maximal and choose v an i

; u Yy nonzero vector in the
:’fl;%h}ipff,‘f'{ Since Vesp = (O)forall f e R*, such a vector v will necessarily
be ;- LG KEriiel 01 ail root spaces g, corresponding to positive roots B.

e e:jrt (I!) may be proved by the same argument as in the two cases we have
a eg yf(;llscussed: we let W,, be the subspace spanned by alf W, v where w, is a
; ord of e'nglh at most 1 in elements of 8, for negative fi. We then claim"lhat
(;r;‘l/n'y Xhm any positive root space, X « W, < W,. To see this, write a generator
> X,,'m theform Y w,we W{,:l, and use the commutation relation )\? ¥ w=
i 1\:;‘+ [X, Y]-w; the clalm.follows by induction, since [X, Y7 is always
rcpr.e n: :.ubsl:ace VI;C V which is a union of all the W,’s is thus a sub-

sentation; to see that it is irreducible; not i ite 4 ”,
then sither 1 o e ot s ; note that if we write W = W' @ w' s
W,, and 50 will have to equal W,
rouzl:ves ﬂr;gx;;eislo[ t‘I;e highest weight vector of an irreducible representation
ately: if v e ¥, and w e V; were two such, not scal i
of each other, we would have I() > I(ﬂ)’and vice versa.’ o "‘UHIP"S

tain the on:
ontan the one-dir

iisional weight space

E:femse 14.14. Slrow that in (ii) one need only apply those g, for which
g: v#0 fNote:.thh W, defined using only these gp-2and X in any’root space,
e e same mductwe: argument shows that X+ W, c W,,,. On the other hand’
;o:: l;se;;\ll g,b\:d}:: il ne%ativcband primitive, as in Observation 14,16, then

,, Vot e cannot combine these, however; erated
by successively applying those 05 with § negative ;;:m'i/tir:::);lﬂsl bﬁ ;geﬂ;mled
the standard representation of sl,C.) ’ ' frvzoce.

The weight « of the highest weight vector of an irreducible renresent

. ; reducible representation
will be Cal-led, not .unre:asonably, the highest weight of that representation; the
term dominant weight is also common. '

We can refine part (ii) of this proposition slightly in another direction; this
g multiplicities of various

renresantations Thic r=fa PR 1+
prvstnduGils, Lls Teiinement s pased on

Exercise 14.15*, (a) Let 1, -+, % be roots of a semisimple Lic algebra q and

9, © § the corresponding root
paces. Show that the subalgebra of g gene-
rated by the Cartan subalgebra D) together with the g, is exactly \h:dgirect

z(r:::) &F (k—fj. ?:). where' the direct sum is over the intersection of the set R of
(1;) Osig\‘i’]l:l ﬂ:e‘semlgroup Nfay, -y @} < Iy generated by the e,

. Ir y, let o, . S O be negative roots of a semisimple Lie algebra g

e, < g the corresponding root spaces. Show that the subalgebra of g gené—



04 14, The General Set-up: Analyzing the Structuse
2 3

it i th
rated by the g, is exactly the direct sum @ O where. the direct sum is (;veirc ;
intersection of. the set R of roots of g with the semigroup N{a,, ..., o

B o oy 1+ joi i Lie algebra on itselfl
ipti adjoint action of a Lie alge
(Note that‘byA tﬁe dESCrl?lIOI{Sf tj‘imim o aeeen the facts
we have an obvious

ion, tné proviim Nere 1510 §
above—that if & + f € R, then [g,, 051 # 0)

i i a
From this exercise, it is clear that gen_erat.mg a subrepresemau?:r ;VEQ’Iz a
given representation V by successive appllcatlons_ol' rf)ot spaces g, for ek
to a highest weight vector v is inefficient; we need n;ly apply the 'r;rzlusppawa
) i - a semi .
ing to a sct of roots f generating as v
A i f inology: that a positive
i i terminology: we say
accordingly introduce another piece of T lo e s
i is primitive or simple if it cannot be ep:

resp., negative) root ¢ € R is primi 0

(mmpnr two positive (resp. negative) roots. (Note that, since there are only
of two posilive (resp. neg

finitely many roots, every positive root can be written as a sum of primitive
positive roots.) We then have

Observation 14.16. Any irreducible representation V is generated by the images

¢ applications of root spaces gz

£ Lakoch suaiahs nactor u under succe.
of 1§ migniesi weiguii PeCior v unGe

where 8 ranges over the primitive negative roots.

We have already seen one example of this in the case of z‘l:,tli,z wher;‘v;':
observed (in the proof of Claim 12.10 and in the analysis of‘SLym V|® in
irreducibi tation was generaied by applying the
Lecture 13) that any irreducible representation was generaicd
two elements E, , € g,—r, and E; , € [N toa l\'lghest \fvellght vecsic:lrl.aﬁon
To return to our description of the weights of an irreducible repn;; tion
V. we observe next that in fact every vertex of the convex .hull of tle lw;zg‘he
o} V must be conjugate to o under the Weyl group. To see l!l_ls, note t! l(g_ iZ (e
above the set of weights is contained in the cone « + €, where0 .,th‘a‘ "
positive real cone spanned by the roots fle R™ such 'that g,(v{) séh ‘l ha 0}
such that a(f,) # 0. Conversely, the weights of ¥V will contain the string
weights - o
o4 fo+ 2B, .0+ (—a(H NP {14.1%)
for any § € R™. Thus, any vertex of the convex hull of the set of weights of ¥
adjacent to & must be of the form
o — o(Hy)f = Wy@)
for some f3; applying the same analysis to each successive veriex gives the
H
statement. . o
; aFrom the above, we deduce that the set of weights of ¥ will lie in the col:‘ll‘:);
hull of the images of « under the Weyl group. Since, moreover, we kn‘ow'ii "
the intersection of this set with any set of weight§ of the form-{lllb+ ny} :'."l o
a connected string, it follows that the set of we:ghls_ of V will be ex;{c ly the
weights that are congruent to o modulo the root lattice Ag and that lie in
convex hull of the images of « under the Weyl group.
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One more bit of terminology, and then we are done, By what we have secn
{cl. (14.17)), the highest weight of any Tepresentation of ¥ will be a weight
satisfying «(H,) > 0 for every y e R*. The locus W, in the real span of the
roots, of points satisfying these inequalities—in terms of the Killing form,
making an acute or right angle with each of the positive roots—is called the
(closed) Weyl chamber associated to the ordering of the roots. A Weyl chamber
could also be described as the closure of a connected component of the
complement of the union of the hyperplanes Q,. The Weyl group acts simply
x transitively on the set of Weyl chambers and likewise on the set of orderings
§  oftheroots. As usual, these statements will be casy to see in the cases we study,
while the abstract proofs are postponed (to Appendix D).
Step 8. Classify the irreducible, finite-dimensional representations of g.
Where all the above is leading should be pretty clear; it is expressed in the
fundamental existence and uniqueness theorem:

Theorem 14.18. For any o in the intersection of the Weyl chamber W associated
to the ordertng of the roots with the weight lattice Ay, there exisis a unique
irreducible, finite-dimensional representation T, of g with highest weight o; this
gives a bijection between W A, he set of irreducible representations of
9. The weights of T, will consist of those elements of the weight lattice congruent
to o modulo the root lattice Ay and lying in the convex hull of the set of points
in Y* conjugate to « under the Weyl group.

15t the nroof of ¢

ust the proof of uniquencss, which is easy.

HALF-PROOF. We wil
The existence part we will demonstrale explicitly in each example in turn; and
later on we will sketch some of the constructions that can be made in general.
The uniqueness part is exactly the same as for sl;C. If ¥ and W are two
irreducible, finite-dimensional representations of g with highest weight vectors
v and w, fesp v, b having weight o, then the vector (v, we V@ W
will again be a highest weight vector of weight o in that representation. Let
U< V@ W be the subrepresentation generated by (v, w); since U will again
be irreducible the projection maps 72 U — Vand ny: U - W, being nonzero,
will have to be isomorphismns. I}

f

Another fact which we will see as we go along—and eventually prove in
general-—is that there are always fundamental weights oy, ..., m, with the
. property that any dominant weight can be expressed uniquely as a non-
. negative integral linear combination of them. They can be characterized
. geometrically as the first weights met along the edges of the Weyl cham-
. ber, or algebraically as those elements @y in h* such that w(H,) = 0, ;, where

..., &, are the simple roots (in some order). When we have found them,

we often write T, o, 10t the irreducible representation with highest weight
€.,

=T,

Aoyt b auum,

As with most of the material in this section, general proofs will be found in
Lecture 21 and Appendix D.
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One basic peint we want to repeat here (and. that we tzope to de.monsm?le
in succeeding lectures) s this: that actually carrying cut this process in prac:c;
is completely elementary and straightforward. Any m.a.themauman,.stran ]f
on a desert island with only these ideas and (hg definition of a particular | ie
algebra g such as si,C, $0,C, or 5p,,C, wou!d in short order hav:;la cl:){mp ete
description of all the objects defined abcv.e in the case of g. We sl O'uh sz(xy as
well, however, that at the conclusion of this procte'du re \}I;are“:;l':”\;l(w;il;ho;:

i jece of information about the representations ol g, Wi
::itﬁlbz unabie to analyze completely, for example, !CnSQ!.p{Ofi!JC(S of knov&tn
representations; this is, of course,a dcscrip.tion of the mu.lnphcmes ol the bz;\sw
representations I, As we said, we will, in fa'ct,_descnbe and prove such a
formula (the Weyl character formula); but it is of a mulc}! less straight-
forward character (our hypothetical shipwrecked math'er.natlf:lan wou-li ha\f
to have what could only be described as a pretty good day 1o Some up Wit
the idea) and will be left untit later. For now, we will conclude this lecture v_vlth

the promised introduction to the Killing form.

§14.2. About the Killing Form

e said, the Killing form is an inner product (symmetric bilinear [orn.1) on
ﬁ;“{je alg;bra s ahugsing our notation, we will denote by B both t!fe Killing
form and the induced inner products onl) and b*. B can be defined in several
ways; the most common is by associating to a pair of .elemems X, Yegthe
trace of the composition of their adjoint actions on g, 1.e.,

Y VY — Telad(X) o ad( VY a - q). (14.19)
B(X, Y) = Tr{ad ad(Y) g

As we will see, the Killing form may be computed it practice either from this
definition, or (up to scalars) by using its invariance under the group of

automorphisms of g. We remark that this definition is not as opaque as it may

<cem at first. For one thing, the description of the adjoint action of the root

seem at first, Forone th

space g, a5 a “translation” of the root diagram-—that is, cgrrying each reo: :
space g into g,4p—tells us immediately that g, is perpendicular to gg forall

f other than —e; in other words, the decomposition

S N
0=b®| B 6.94-J)

i cti is i btle, but it is not
is orthogonal. As for the restriction of B to b, this is more subtle,

hard to write down:if X, Y arein b, and Z, generates gq, then ad(X)o .ad('Y)(Z,,) ;
= a(X)(Y)Z,,50 B(X, Y) = Y a(X)a(Y), the sum over the roots; viewing Bl =

as an element of the symmetric square Sym?()*), we have

!
Bh—t 5, (1421)
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A.key facAt fellowing from this—one that, if nothing else, makes picturing
b* with the inner product B involve less eyestrain-—is

(14.22) B s positive definite on the real subspace of Yy spanned by the vectors

frr. . . m
Vg G € l\]
Indeed, all roots take on real values on this space (since all a(Hy) e Z < R),
so for H in this real SL!bsp‘aCe of b, B(H, H) is non-negative, and is zero only
when all a(H) = 0, which implies H = 0, since the roots span h*.

To see that the Killing for;
identity:

B([X,Y).2)= B(X,[Y,Z}) (14.23)
for all X, Y, Z in g. This follows from the identity

Trace(X¥ ~ ¥X)Z) = Trace(X(¥Z — ZF))

l{or any endomotphisms X, ¥, Z of a vector space. And this, in turn, follows
rom :

Trace(YXZ — XZ¥) = Trace([ ¥, XZ]) = 0.

An immediate consequence of (14.23} is that if a is any ideal in a Lie algebra

[ then its orthogonal complement a* with respect to B is also an ideal. In

particular, if g is simple, the kernel of B is zero (note that the kernel cannot

beg si:lc? it dn.c-:s not contain b). Since the Killing form of a direct sum is the

sume the Kifling forms of the factors, it follows that he Killing farm is
generate on a imple Lie algebra g.

b()()lle of the reasons the Killing form helps to picture B* is the fact mentioned
above:

A'—’.fv:-pu ition 14.24. With respect 10 B, the line spanned by each raot o is perpen-
dicular to the hyperplane Q,.

As: we observed, this is equivalent to saying that the involutions W, above
?‘r’e s‘lmply rt':ﬂcc!i‘ons in pyyerplanes, and in turn to saying that the whole
Yveyl group is orihogonal. Note also that Proposition 14.24 thereby follows
immediately from the Fact 14.11: from the definition of B above, it is clearly

invariant under any automorphism of g, Nevertheless, we would prefer not to

. rely on this fact; and anyway giving'a direct proof of the proposition is not

hard, in terms of the picture we have of the adjoint action of g on jtself. To
prove th('é assertion a £ €2, it suffices to prove the dual assertion that # 1 H,
forall H in the annihilator of «. But now by construction H, is the commutator

[X,, Y,] of an element X, ¢ g, and an element Y, € g_,. Using (14.23) we have

: forany Hin b,

(X, L0, H) = BX,, [Y,, H])
= B(X,, () Y,) = o(H) B(X,, Y,), (14.25)
which vanishes since a(H) = 0,
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Note that as a censequence of this, we can characterize lhe.WeyI chamber
associated to an ordering of the roots as exactly tho_se vectors in the .real span
of the roots forming an acute angle with all the positive roots (or, cquwalemly,
with all the primitive ones); the Weyl chamber is thus the cone whose faces lie
i i imiti itive roots.
in the hyperplanes perpendicular to the pnmmvc‘posl ~ ) .

Equation (14.25) leads to a formula for the 1somorph|_sm .of b with b
determined by the Killing form. First note that for H = H, it gives

B(H,, H,) = 2B(X,, Y.} # 0,

for if B(X,, Y,) were zero we would have B(H,, H) = .() forall H, conlradicﬁng
the nondegeneracy ol B on b. The element T, of ) which cqrrcsponds toce |15
by the Killing form is by definition the element of b that satisfies the condition

B(T,, H)= a(H) forallHeb. (14.26)
Looking at (14.25), we see that T, = H,/B(X,, ¥,) = 2H/B(H,, H,). This
proves

Corollary 14.27. The isomorphism of h* and §) determined by the Kiiling form
B carries o to T, = (3/B(H,, H,))- H,.

The Killing form on h* is defined by B(a, B) = B(T,, Tp).
Exercise 14.28. Show that the inverse isomorphism from b to h* takes H, te
(2/B(ex, )} .

The orthogonality of W, can be expressed by the formuia

2B(f, «} @

W) =B~ g

Comparing with (14.8) this says:
Corollary 14.29. If « and f are roots, then

2B(fl, )/ B(x, &) = (H,)
is an integer.

By the above identification of § with h*, (14.22) translates to

Corollary 14.30. The Killing form B is positive definite on the real vector space
spanned by the root lattice Ag.

llows immediately from (14.22) that the Weyl group B is
finite, being simultaneously discrete (218 preserves the set R of roots of g and
hence the lattice Ag; it follows that 98 can be realized as a subgroup of GL,Z)
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and compact (28 preserves the Killing form, and hence is a subgroup of the
orthogonal group O,R) Alternatively, 1B is a subgroup of the permutation
group of the set of roots.

As we observed, the Killing form on )* is preserved by the Weyl group. In
fact, in case g is simple, the Killing form is, up 1o scalars, the unique inner
product preserved by the Weyl group. This will follow from

Proposition 14.31. The space b* is an irreducible representation of the Weyl
group 1B,

PROOE. Suppose that 3  h* were preserved by the action of I8, This means
that every root « € j* of g will either lic in the subspace 3 or be perpendicular
toit, i.e, for every a € 3 and f ¢ 3 we will have B(H,) = 0. We claim then that
the subspace §' of g spanned by the subalgebras 8.} aey will be an ideal in .
Clearly it will be a subalgebra; the space sp d by the distinguished sub-
algebras s, corresponding to the set of roots lying in any subspace of i* will
be. To see that it is in fact an ideal, let ¥ ¢ g5 be an element of a root space.
Then for any « € 3, we have

[Y.Z]e Burp =0
since o + fis neither in 3 nor perpendicular to it, and so cannot be a root; and
[ H]=~[H,Y]=pH)Y=0

Thus, ad(Y) kills ¢’; since, of course, all of H itsell will preserve ¢, it follows
that g’ is an ideal. Thus, either all the roots lie in 3 and 50 3 = §*, or all roots
are perpendicular to 3 and correspondingly 3 = (0). O

Note that given Fact 14.11, we can also express the last statement by saying
that (in case g is simple) the Killing form on b is the unique form preserved
by every automorphism of the Lie algebra g carrying I to itself. As we will
see, in practice this is most often how we will first describe the Killing form.
Exerpcice 14123 Find

the @t
axercise 4.5% rinu tne K

n the Lie aigebras si,C and s1,C by
explicit computation, and verify the statements made above in these cases.

Exercise 14.33* If a semisimple Lie algebra is a direct sum of simple sub-
algebras, then its Killing form is the orthogenal sum of the Killing forms of
the factors. Show that, conversely, if the roots of 2 semisimple Lie algebra lie
in a collection of Ity perpendicul then the Lic algebra
decomposes accordingly.

Exercise 14.34*. Suppose g is a Lie algebra that h Ig
b such that g has a decomposition (14.1), satisfying the conditions of Facts
14.2 and 14.6. Show that g is semisimple, and [ is a Cartan subalgebra.




210 14. The General Set-up: Analyzing the Structure

The preceding exercise can be used instead of Weyl’s unitary trick or any
abstract theory to verify that the algebras we meet in the next few lcc!u'rcs are
all semisimple. Tt is tempting to call such a Lie algebra “visibly semlsunple:

The discussion of the geometry of the roots of a semisimple Lie algebra will
be continued in Lecture 21 and completed in Appendix D. The Killing form
becomes particularly useful in the general theory; for example, solvability and
semisimplicity can both be characterized by properties of the Kiiling form (sce
Appendix C).

Exercise 14.35* Show thatb = H ® (‘Bv ° g,_is a maximal soivabie subaigcbra
of g, bis calied a Borel subalgebra. Show that (B, g, is a maximal nilpotent
subaigebra of g. These will be discussed in Lecture 25.

Exercise 14.36*

the forinula

ra gi,, is given by

B(X, Y} =2mTr(X o Y} — 2 Tr(X) Tr(Y).

Find similar formulas for sl,,, s0,,, and sp,,, showing in each case that B(X, Y)
is & constant muitipie of Tr(X o ¥).

Exercise 14.37. If G is a real Lie group, the Killing form on its Lie algebra
g = T,G may not be positive definite. When it is, it determines, by left trans-
lation, a Riemannian metric on G. Show that the Killing form is positive
definite for G = SO,R, but not for SL,R.

LECTURE 15
sl,C and sl,C

In this lecture, we will illustrate the general paradigm of the previous lecture by
applying it to the Lie algebras o), C; this is typical of the analyses of specific Lie algebras
carried out in this Part, We start in §15.1 by describing the Cartan subalgebra,
T00ts, root spaces, etc., for ol,C in general. We then give in §15.2 a detaited account of
the representations of sf,C, which generalizes directly to s, C; in particular, we deduce
ihe existence part of Theorem 14.18 for sl,C.

In §15.3 we give an explicit construction of the irreducible representations of s,
using the Weyl construction introduced in Lecture 6; analogous constructions of the
itreducible rey ions of the ining classical Lie algebras will be given in §17.3
and §19.5. This section presupposes familiarity with Lecture 6 and Appendix A, but
can be skipped by ihose wiiling to forego §17.3 and 19.5 as well. Section 15.4 requires
essentially the same degree of knowledge of classical algebraic geometry as §§11.3 and
134 (it does not presuppose §15.3), but can alse be skipped. Finally, §15.5 describes
representations of GL,C; this appears to invelve the Weyl construction but in fact the
main statement, Proposition 15.47 (and even its proof) can be understood without the

preceding two sections,

§15.1: Analyzing sl,C

§15.2: Representations of s[,C and sl,C

§15.3: Weyl’s construction and tenser products
§154: Some more geometry

§15.5: Representations of GL,C

§15.1. Analyzing sl,C

To begin with, we have to locate a Cartan subalgebra, and this is not hard;
as in the case of s1,C and sl, C the subalgebra of diagonal matrices will work
fine. Writing H, for the diagonal matrix E;  that takes e, to itsell and kills ¢
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for j # i, we have
b={a;H,+aH, ++aH:a +a+ +a=0};
note that H; is not in ). We can correspondingly write
W= C{Ll, L,, .“,L,l}/(L! + L+ + L, =0),

where L,(H;) = ¢, ;. We often write L, for the image of L, in h*.

We have already seen how the diagonal matrices act on the space of aii
traceless matrices: if E; ; is the endomorphism of C" carrying ¢; to ¢, and killing
e, for ali k # j, ihen we have

ad(a Hy + aHy + -+ a,HL)E ;) =0, —a)-E; (15.1)

or, in other words, E, ; is an eigenvector for the action of § with eigenvalue
L; — Ly;in particular, the roots of sl,C are just the pairwise differences of the L;.

Before we try to visualize anything taking piace in §) or bh*, let us take a
moment out and describe the Killing form. To this end, note that the auto-
morphism ¢ of C" sending ¢, 10 ¢), ¢;t0 —e, and fixing e, forall k + 1, jinduces
an automorphism Ad(y) of the Lie algebra sl,C (or even gl,(C)) that carries
b to itsell, exchanges H; and H, and fixes all the other H,. Since the Killing
form on § must be invariant under all these automorphisms, it must satisfy
B(L,, L} = B(L;, Lj} for all i and j and B(L;, L,) = B(Ly, L,} for all , j and
k # 1, j; it follows that on b it must be a linear combination of the forms

B(Y, a;H, Y. bH) = E ab;
and
BH(Z aH,, Z bH) = Zl#i albj'

On the space {} a;H;: ) a;=0}, however, we have 0= (Y a)(} b) =
Y.ab + ¥, a,by, so in fact these twe forms are dependent; and hence we can
write the Killing form simply as a multiple of B'. Similarly, the Killing form
on b* must be a linear combination of the forms B'(Y. a,L,, Y. h L) =Y ab,
and B'(Y. a;L;, Y, b,L)) = ¥, 41a:b;; the condition that B(Y.a;L;, Y. b,L;) =0
whenever a; =a, =---=a, or by = b, =--- = b, implies that it must be a
multiple of

-1 ]
B(Z aly, Z hlL)= (nT—) E’:a,b, ~ iz aly
! (152)

3. aly.
[

- t
=Y ab —~
Fab—;

‘We may, of course, also calculate the Killing form directly from the defini-
tion. By (14.21), since the roots of sl,C are {L; — L;},,;, we have
E(Z aH, Z bH) = ZHI (a; — a})(ﬁl - i’j)
=3 Ve lad + b — aby— aby).
Noting that Z,g,a, = —a;and, similarly, 3", ., b, = —b;, this simplifies to
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B aH, Y. bH)=2n} ab, (15.3)

1t follows with a little calculation that the dual form on b* is
B(Y, ayLy, 3. biLy) = (1/20) (L, arhy — (1/m) Zi,] aby). (154)
it is probably simpier just to think of this as the form, unique up io scaiars,
invariant under the symmetric group &, of permutations of {I, 2,..., n}. The
L,, therefore, all have the same length, and the angles between all pairs are
the same. To picture the roots in h*, then, we should think of the points L, as
situated at the vertices of a regular (n — 1)-simplex A, with the origin located
at the barycenter of that simplex. This picture is eastest to visualize in the
special case n = 4, where the L, will be located at every other vertex of a unit

cube centered at the origin:

Ly
Ly

(15.5)

* — ——|—
15

|

1

Ly

Now, as we said, the roots of s(,C are now just the pairwise differences of
the L,. The root lattice A, they gerierate can thus be described as

Ar={Y aliaeZY a=0}) L,=0).
Both the roots and the root lattice can be drawn in the case of sl C: if we think
of the vectors L, € i* as four of the vertices of a cube centered at the origin,

the roots will comprise ail the midpoints of the edges of a second cube whose
linear dimensions are twice the dimensions of the first: '

Ly-Ly

(15.6)
Ly-l@
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The next step, finding the distinguished subalgebras s, is also very easy.
The root space gy, -,, corresponding to the root L, — L, is generated by E, ,
s0 the subalgebra 1ty is generated by

E,, E and [E.,E]=H—H,.

The eigenvalue o[H, H_, acung on E; ;is(L; — Ly)(H; — H) = 2, 50 that the
correspondi 1 Hy-p, in b must be just H,— H;. The
annlhllamr of course, is the hyperplane nL 1, = {L &Ly a, = a;}; note that
this is indeed perpendicular to the root L, — L, with respect to the Killing
form B as described above.

Knowing the H, we know the weight lattice: in order for a linear functional
YalLeh* to have integral values on all the distinguished elements, it is
clearly necessary and sufficient that ail the a; be congruent to one another
modulo Z. Since . L; = 0 in h*, this means that the weight lattice is given as

Ay =Z{Lys..., L} L, =0)

In sum, then, the weight lattice of sl,C may be realized as the lattice generated
by the vertices of a regular (n — 1)-simplex A centered at the origin; and the
roots as the pairwise differences of these vertices.

‘While we are at it, having determined Az and Ay we might as well compute
the quotient Ay /Ap. This is pretty easy: since the lattice A,y can be generated
by Ay together with any of the vertices L, of our simplex, the quotient Ay /Ag
will be cyclic, generated by any L;; since, modulo Ag,

0=Y,(Li~L)=nl, -}, L;=nL,.
we see that L, has order dividing nin Ag /Ag.

Exercise 15.7. Show that L, has order exactly n in Ay/Ag, so that Ay /Ap =
ZjnZ.

From the above we can also say what the Weyl group is: the reflection in
the hyperplane perpendicular to the root L, — L, will exchange L, and L, € h*
and leave the other L, alone, so that the Weyl group T is just the group S,
acting as the symmetric group on the generators L, of h*. Note that we have
already verified that these automorphisms of h* do come from automorphisms
of the whole Lie algebra sl,C preserving b.

To continue, let us choose a direction, and describe the corresponding Weyl
chamber. We can write our linear functional [ as

I(Z al) =73 ca

with Y.¢, = 0; let us suppose that ¢, >¢; >~ > ¢, The corresponding

ordering of the roots will then be
={L - Lyi<j}

and
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- R ={L,—Lpj<i}.

The primitive negative roots for this ordering are simply the roots L;,, — L,.
(Note that the ordering of the roots depends only on the relative sizes of the
c;, $o that the Weyl group acts simply transitively on the set of orderings.) The
(closed) Weyl chamber associated to this ordering will then be the sct

W ={Yalia 2a,>" 2a,}.

One way to describe this geometrically is to say that if we take the barycentric
subdivision of the faces of the simplex A, the Weyl chamber will be the cone
over otie (n — 2)-simplex of the barycentric subdivision: e.g., in the case n = 4

Tt mav haanciar 3 H P H Rt . H .
It may be easier ated cuby

in terms of the ¢
chamber as

(15.8)




oo A M 5 LN 51

15. s1,C and sl C
216 JLn " §15.2. Representations of #1,C and sl,C 217

Alternatively, in terms of the slightly larger cube with vertices at the points

representation T, st teoboct waight ¥
+ 2L, we can draw ¥ as P! apeann WILDL L gl al

rep: ghest weight ),
inside the tensor product of symmetric powers

-+ 4 L) will occur

/ Sym" V(n ® Symazylzl @ @ Sym"""V""”

f)f these representations. Thus, the existence part of the basic Theorem 14.18
is reduced to finding the basic representations v we will do this in dve
course, though at this point it is probably not too hard an exercise to guess

—® what they are.
1

(159)

§15.2. Representations of s1,C and s[,C

We begin as usual with the standard representation of sl,kConV = C*. The
St.andard basis vectors e of C* are eigenvectors for the action of b, with
eigenvalues Ly, so that the weight diagram looks like

From the first of these pictures we se¢ that the edges of the Weyl chamber are
the rays generated by the vectors Ly, Ly + L2, and L; + Ly + L,; and that
the faces of the Weyl chamber are the planes orthogonai to the primitive
negative roots L,— Ly iy — Ly, and Ls— L,. The picture in general is
analogous: for ¢l,C, the Wey! chamber wiii be ilie cone over an (n—2
simplex, with edges generated by the vectors

Ly, Li+La Li# Ly+ Ly Le 0t Loy = =L
The faces of # will thus be the hyperplanes
Qv = Lk a= A}

perpendicular to the primitive negative roots Liv — L.

Note the important phenomenon: the intersection of the closed Weyl
chamber with the lattice Ay Will be a free semigroup Nt generated by the
fundamental weightsw; = Ly++ L;occurringalong the edges of the Weyl
chamber. One aspect of its signilicance that is immediate is that it allows us
to index the irreducible representations 51,C nicely: for an arbitrary (1 — 1)
tuple of natural numbers (a4, ---» T-1) € N1 we will denote by Tuy, .a,s the
irreducible representation of 1, with highest weight a, Ly + ay(Ly + Ly +
BRI Lyp) = (@t F Qg Flaa +a, )+
ot By Lt

or, with the reference cube drawn as well,

."’—-—%lﬂ

| D ra.L.mleLm---+a,..-|L.+-~-+Lmr

This also has the nice consequence that once we have located the irreducible
representations V0 with highest weight Ly + -+ L,, the general irreducible
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The dual representation ¥* of course has weights — L, corrr:sponding to l!’lc
vectors of the dual basis e} for V*, so that the weight diagram, with its
reference cube, looks like

Note that the highest weight for this representation is —L,, which lies along
the bottom edge of the Wey! . N
that the weights of the representation A’V—the lnple{ sums .L, + Ly + L,
Ly+ L+ Ly Ly + Ly+ Ly, and Ly + Ly + L, of distinct weights of Vfarc
(he same as those of V'*, reflecting the isomorphism of these two reprcsenlatlon.&
This suggests that we look next at the second exterior power {\W. This is
a six-dimensional representation, with weights L, + L, the pairwise sums of
distinct weights of V; its weight diagram, in its reference cube, looks like

The diagram shows clearly that A2V is irreducible since it is not the nontrivial
union of two configurations invariant under the Weyl group &, (and a.ll
weights occur with multiplicity 1). Note also that the weights are symmetric
about the origin, reflecting the isomorphism of A2V with (A2V)* = AX(V'*),

Note that the highest weight L + L, of the representation A2V is (l.\e
primitive vector along the front edge of the Weyl chamber 1/’ as pictured in
Diagram (15.8). Now, we have already seen that the intersection of (he closed
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Weyl chamber with the weight lattice is a free semigroup generated by the
primitive vectors along the three edges of W' —that is, every vector in %" ~ Ay
is a non-negative integral linear combination of the three vectors L, L; + L,,
and Ly + L, + L,. As we remarked at the end of the first section of this
lecture, it follows that we have proved the existence half of the general existence
and uniqueness theorem (14.18) In the case of the Lie algebra sI,C. Explicitly,
since ¥, A2V, and AV = ¥* have highest weight vectors with weights L,,
Li+Lyand Ly + L, + L,, tespectively, it follows that the representation

SymV ® Sym*(A?V) @ Sym(A*Y)

contains a highest weight vector with weight alL, + b(L( + L,) +
¢(Ly + L, + Ly), and hence a copy of the irreducible representation T, 5. with
this highest weight.

Let us continue our examination of representations of s{,C with a pair of
tensor products of the three basic representations: ¥ ® A’V and v @ A3V,
As for the first of these, its weights are casy to find: they consist of the sums
2L, + L; (which occur once, as the sum of Liand L+ L)and L, + L+ L,
(which occur three times).

iagram of these weights looks like

(We have drawn only the vertices of the convex hull of this diagram, thus
omitting the weights L, + L; + Ly; they are located at the centers of the
hexagonal faces of this polyhedron.)

Now, the representation V® A’V cannot be irreducible, for at least a
souple of reasoms. Firsi off, just by looking at weights, we see that the
irreducible representation W = T,1,0 with highest weight 2L, + L, can have
multiplicity at most 2 on the weight L, + L, + L,: by Observation 14.16, the
weight space Wi, 41,41, 18 generated by the images of the highest weight vector
V€ Wiy, 41, by successive applications of the primitive negative root spaces
SLy—i1s Qy-pp-and g, o ButL, + L, + L is uniquely expressible as a sum
of 2L; + L, and the primitive negative roots:

Lyt Ly+Ly=2L, 4+ Ly+(L, — L)+ (Ly — Ly
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5o that V) .4, is generated by the subspaces !h,]—:.,‘(m,_.q(v)) and
ar,-£,(82,-1, (). We can in fact check that the representation I, , , takes
on the weight L; + L, + L, with multiplicity 2 by writing out these
generators explicitly and checking that they are independent: for example, we
have

ﬂL,—L,(ﬂL,—L,(")) =CEy ((E5 s(e; ®(er A e3}))
=C-E;, (e, ® (e, A e3))
=Crie, ®{ey A e3) + e, Biey A €a))
This is in fact what is called for in Exercise 15.10. .
Alternatively, forgetting weights entirely, we can sce from standard muiti-
linear algebra that the representation ¥ ® AV cannot be irreducible: we have

a natural map of representations

@ VRNV - NV
which is obviousiy surjective. The kernel of this map is a representation with
the same set of weights as ¥ @ A*V (but taking on the weights L, + L; + L,
with muitipticity 2 rather than 3}, and sc musi contain the irreducible represen-
tation Iy, ¢ with highest weight 2L, + L,.

Exercise 15.10. Prove that the kernel of g is indeed the irreducible represen-
tation Iy, o.

Finally, consider the tensor product V@AV, This has weights
2L; + Ly 4 Ly = L — Lj,each occurring once, and 0, occurring four times. Iis
weight diagrams thus look like

This we may recognize as simply a direct sum of the adjoint representation
with a copy of the trivial; this corresponds to the kernel and image of the
obvious contraction (or trace) map
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VOAY =V@V*=Hom(V, V) C.
(Note that the adjoint representation is the irreducible representation with

highest weight 2L, + L, + L, or in other words the representation I'y , ;.)

Exercise 15.11. Describe the weights of the representations Sym"V, and deduce
that they are all irreducibie.

Exercise 15.12. Describe the weights of the representations Sym"(A?V), and
deduce that they are not le

@ Sym™(A?V) - Sym"2(A2V)

and show that the kernel of g, is the irreducible representation with highest
weight n(L, + L,).

irredy caoriba oo
irred . Describe maps

Exercise 15.13. The irreducible representation Iy, 1. with highest weight
3Ly 4+ 2L, + Ly occurs as a subrepresentation of the tensor product
V ® A2V @ AW lying in the kernel of each of the three maps

Ve %7 @ A3V LAY & Ay

VANV @AY s AV @AWY = A2V
VONVRNYV 2 VQAV*QV* S V@AV VeV

by wedging two of the ihree faciors. is it equai to the intersection of
these kernels? To test your graphic abilities, draw a diagram of the weights
(ignoring multiplicities) of this representation.

Representations of sI,C

Once the case of [, C is digested, the case of the special linear group in general
offers no surprises; the main difference in the general case is just the absence
of pictures, Ofcourse, the standard representation ¥ of sI, € has highest weight
L, and similarly the exterior power A*F is irreducible with highest weight
Ly + -+ + L. It follows that the irreducible representation L.,....o.., With
highest weight (a; + - + a, )L, + - + a, L, ; will appear inside the
tensor product

Sym™ ¥V @ Sym™(A2V) @ --- @ Sym™ (A Y),
demonstrating the existence theorem (14.18) for representations of sf,C

Exercise 15.14. Verily that the exterior powers of the standard representations
of s1,C are indeed irreducible (though this is not necessary for the truth of the
last sentence),
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§15.3. Weyl’s Construction and Tensor Products

At the end of the preceding section, we saw that the irreducibie representation
T.,....a, Ofsl,C with highest weight (a, + - + a,_()L;y + - + @, L,_, will

appear as a subspace of the tensor product
Sym™V @ Sym**(A?V) ® -+ ® Sym™ (A" V),

or equivalently as a subspace of the dth tensor power V® of the standard
representation V. The natural question is, how can we describe this subspace?
We have seen the answer in one case already (two cases, if you count the trivial
answer T, = SymV in the case n = 2): the representation I, , of s1,C can be

realized as the kernel of the contraction map

Sym?V @ SymP(A2V) - Sym 'V ® SymPLAZV),
This raises the question of whether the representation I', can in general be
described as a subspace of the tensor power ®(Sym“‘(/\'V)) by intersecting

kernels of such contraction/wedge product maps. Specifically, for i and j with
i+j<n in d

Sym™V @ Sym=(A?V) @ -+ @ Sym ™ (A""'V)
SAV@AY@SYMTTV @ @ Sym* ' Ny @ -
®Sym* ' (NV) @ @ Sym* (A1)

and we have similar maps for i < jwithi + j > nand ieven with 2 > a; there
are likewise analogously defined maps in which we split off three or more
factors. The representation I, _, is in the kernel of all such maps; and we
may ask whether the intersection of all such kernels is equal to T,.

The answer, it turns out, is no. (It is a worthwhile exercise to find an example
of a representation I, that cannot be realized in this way.) There is, however,
another way of describing T, as a subspacc of ¥'®%: in fact, we have already
met these representations in Lecture 6, under the guise of Schur functors or
Weyl modules. In fact, at the end of this lecture we will see how to describe
them explicitly as subspaces of the above spaces () (Sym*(/\'V)). Recall that
for ¥ = C" an n-dimensional vector space, and any partition

Adhizl,> =220,

we can apply the Schur functor S; to ¥V to obtain a representation
S,V = Si(C) of GL(V) = GL,(C). [ d = . 2, this was realized as

SV =V, = V®Q¢q, Vi
where c, is the Young symmetrizer corresponding to A, and V, is the irreducible
representation of &, corresponding to 4.

We saw in Lecture 6 that S,V is an irreducible representation of GL,C. It
follows immediately that S, V remains irreducible as a representation of SL,,C,
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since any element of GL,C is a scalar multiple of an element of SL,C. In
particular, it determines an irreducible representation of the Lie algebra s, €.

17

‘"’"g he 2 Alul + l\zhl +o+ AL

In particular, $,(C") and S,(C") are isomorphic representations of ¢1,C if
and only il 4, — p, is constant, independent of i. To relate this to our earlier
notation, we may say that the irreducible representation I, _, of sl,C with
highest weighta, Ly + ay(Ly + Ly)+ -~ + a, (L, + - + L,_)is obtained
by applying the Schur functor S, to the standard representation V, where

T R R TRy M 1)

(If we want a unique Schur functor for each representation, we can restrict to
those 1 with 2, = 0.) In terms of the Young diagram for 4, the coefficients
@y = A; — A, are the differences of lengths of rows. For example, if n = 6,

- a4

as

is the Young diagram corresponding to Iy ; 9,5, ;-

PROOF OF THE PROPOSITION, In Theorem 6.3 we calculated that the trace ol a
diagonal matrix with entries x,, ..., x, on S$,(C"} is the Schur polynomial
Si(x;, .-, x,). By Equation (A.19), when the Schur polynomial is written out
it takes the form

iy e X = My + F KM, (15.16)
<4

where M, is the sum of the monomial X* = x{'x§-... x/~ and all distinct
monomlals obtained from it by pcrmulmg the vanables and the K,‘x are

negative iniegers called Kosika numbers. When §,{C") is
diagonalized with respect to the group of diagonal matrices in GL,(C), it
is also dlagonallzcd with respect to ) = sl,(C). There is one monomial in
the displayed equation for each one-dimensional eigenspace. The weights of
S;(C") as a representation of si,(C) therefore consist of all

Ly + gLy + o 4Ly,

each occurring as often as it does in the monomial X* in the polynomial
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Si(xy, .., x,). Since the sum is over those partitions y for which the first
nonzero A; — p, is positive, the highest weight that appearsis 4, L, + 4,L; +
-+ + A,L,, which concludes the proof. [In fact one can describe an explicit
basis of eigenvectors for S,(C") which correspond to the monomials that

appear in (15.16), cf. Problem 6.15 or Proposition 15.55.] [n]

In particular, we have (by Theorem 6.3) formulas for the dimension of the
representation with given highest weight. Explicitly, one formula says that

rm @+ +a

15}<]sn j-i

-
gt ) =

As we saw in the proof, this proposition also gives the muitiplicities of all
weight spaces as the integers K, that appear in (15.16), which have a simple
combinatorial description (p. 456): the dimension of the weight space with
weight p in the representation S,(C") is the number of ways one can fill the
Young diagram of 2 with gy s, pty 2's, ..., p, 0's, in such a way that the entries
in each row are nandecreasing and those in each column are strictly increasing.

Exercise 15.18. Use the formula in case n = 4 to calculate the dimensions of
the irreducible representations I,y ¢ and T ; ; of sl,C. In the former case,
use this to redo Exercise 15.10; in the latter case, te do Exercise 15.13.

Exercise 15.19*. Use this formula to show that the dimension of the irreducible
representation I, , of sl, with highest weight al, + 5{L, + L,) is

(@+ b+ 1)(a+ 1)(b + 1)/2. This is the same as the dimension of the kernel
of the contraction map

1,5: Sym*V ® Sym*V* - Sym°~ 'V @ Sym*~'V*.
Use this to give another proof of the assertion madeinCiaim 13.4 that L,
this kernel.
Exercise 15.20*. As an application of the above formula, show that if V is the
standard representation of s{,C, then the kernel of the wedge product map
V@AY s Nty
is the irreducible representation T\ o1.0... With highest weight

2Ly + Ly + -+ + Ly; and that the irreducible representation T_, o, with

highest weight k- L; + L, is the kernel of the product map

V ® Sym*V o Sym**1y,
Exercise 15.21*. Show that the only nontrivial irreducible representations of
sl,C of dimension less than or equal to n are ¥ and V'*.

One important consequence of the fact that the irreducible representations
of s{,C are obtained by applying Schur functors to the standard representation
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is that identities among the Schur—Weyl functors give rise to identities among
represetitations of GL, (and hence SL, and sl,), as we saw in Lecture 6. For
example, the representation

1 4. ~
Sym (V@ Sym S(V)®.<.Q\S\lm1n{!/} “5.2“

is a direct sum of representations S,(V) ® . K,18,(V), where K, is the
ceefficient described above. The particular application of this principle that
we will use most frequently in the sequel, however, is the consequence that
one knows the decomposition of a tensor product of any twa irreducibl
tations of sl,C: specifically, the tensor power S,(V) ® S,.(V) decomposes into
a direct sum of irreducible representations

S$1(V)® S, (V) = (B Ny, S,(V), (1523)

le represen-

where the coefficients Ny are given by the Littlewood—Richardson rule, which
is a formula in terms of the number of ways to fill the Young diagram between
Aand v with p, s, g, 25, .., p, w's, satisfying a certain combinatorial
condition described in (A.8).

Exercise 15.24. Use the Littlewood-Richardson rule to show that the
represemtation I, 4, . 4 ocours exactly once in the tensor product
Larnnt ®Th -

| case of this is

/ ogue of Pieri’s formula, which allows us
to decompose the tensor product of an arbitrary irreducible representation
with either Sym*¥ =T, , , or the fundamental representation AV =
To.... 1,0,....0. (Where the I occurs in the kth place):

1€ Al

Pio i5.25.
a

decomposes into

{i) The tensor product of | DA
direct sum:

Farins ® o= DT,
the sum over all (b, b,_;) for which there are non-negative integers
whose sum is k, with ¢y, < a, for 1 <i<n— |, and with bi=a,+¢;— ¢y
Jorlgi<n—1.

(i) The tensor product of T,,
into a direct sum:

r:n....,u,,q @ ru....‘o.x.o...,.o = @rh
the sum over all (b, ..., byr) for which there is a subset 5 of {L,....n} of
cardinality k, such that if i¢ S and i + 1 € S, then a;> 0, with
(a,—1 ifi¢Sandi+1es
h=<{a+1 ifieSandi+ 1¢S5

a; otherwise.

with Sym*V =1, , o

stege

oy WIRR AV =13 oo o decomposes

ot
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PROOF. This is simply a matter of translating the prescriptions of (6.8) and
(6.9), which describe the decompositions in terms of adding boxes to the Young
diagrams. In (i), the ¢; are the number of boxes added to the ith row, and in
(ii), § is the set of rows to which a box is added. a

Exercise 15.26. Verify the descriptions in Section 2 of this lecture of V ® NV
and ¥ ® AV, where V is the standard representation of s1,C.

Exercise 15.27. Use Pieri’s formula (with n = 4) twice to find the decomposition

of =1, C. Use this to redo Exercise 15.13.

Exercise 15.28. Use Pieri’s formula to prove (13.5). You may also want to look
around in Lecture 13 to see which other of the decompositions found there
by hand may be deduced from thesc formulas.

Exercise 15.29. Verify that the statement of Exercise 15.20 follows directly
from Pieri’s formula.

1n the following exercises, ¥ = C" is the standard representation of sl,C.

Exercise 15.30. Consider now tensor products of the form AV ® NV, with,
say, k > I. Show that there is a natural map

ANV @AV - Ay @ A1y

given by contraction with the element “trace” {or “identity”) in V@ V* =
End(V). Explicitly, this map may be given by

Wy A A BB (W A A W)

[
Y (=D A AR AWy A AW A A W)
=i

What is the image of this map? Show that the kernel is the irreducible
representation Ty o 1.0...0,1,0.... With highest weight 2L, + - + 2L+
Lyyg + -+ Ly

Exercise 15..
tie m

31*, Carry out an analysis similar to that of the preceding exercise
naps

i€

for
Sym*V @ Sym'V — Sym**'V @ Sym'~'V
defined analogously.

Exercise 15.32%, As a special case of Pieri’s formula, we see that if ¥ is the
standard representation of s1,C, the tensor product
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Ny ® Ny = 6‘) s(z....vl, l,....1,o....)( 4]

= @ ro,....e.1,0“..,0.1.\)....,

Ylje_r:::r{ Ef\f}ll}rfzfm{ Fhe l‘.s occur in the (k — i)th and (k + i)th places. A1
e 5aiiE Wing, ol Course, we know ihat

NV @ NV = Sym2AY) @ A AY).

If we denote the ith term on the right-hand side of the first di i
g irst d
for AV @ AV by ©,, show that v isplayed equation

Sym*A\ V) =@ 8, and NNV =D O,,,.

Exercise 15.33". As another special case of Pieri's formula, we see that the
tensor product

Sym*V ® Sym*V = @ Ssiu-a(V)
= @ rzurnn...o-
At the same time, of course, we know that
Sym*V @ Sym*V = Sym?(Sym*V) @ AYSym*¥).

Which of the factors appearing in the first deco ition lie i 2 K
and which b Aoty mposition lie in Sym*(Sym*V),

it foliows from the Littlewood—Richardson rule that if A, #t, and v all have
at mOst two rows, then the coefficient Ny is zero or one (and it is easy to
say whlch' f)ccurs). In particular, for the Lie algebras s,C and sl,C, the
decomposition of the tensor product of two irreducible representa:ioils is
alw;tys r;ll;l(lzi;)lécity free. Groups whose repr tions have this prop y
such as , SU(3), and SO(3) whi i i ics, are called
ried redu(;ible,’(' i{ [Mackg ‘) ich are so important in physics, are called

ed4e 4 [ g i
g15.4. Some More Geometry

Let V be an fl-dimeﬂsional vector space, and G(k, n) = G(k, V) = Grass, V the
Gra'ssrr.xanman of k-planes in V. Grass, V is embedded as a subvariety of the
projective space P(A*V) by the Pliicker embedding:

p: Grass, V < P(A*Y)

:  sending the planc’W spanned by vectors vy, ..., v, to the alternating tensor
vy A - A . Equivalently, noting that if W < V is a k-dimensional subspace,

AR fo o Yina in ARV e cooc oot ant oy
AV IS a8 ane in /VY, we may wrile this simply as

p: Wi Nw,
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This embedding is compatible with the action of the general linear group:
PSL,C = Aut(P(V)) = {a € Aut(PAV)): o{GLk, V) = Gk, V)}°.

This follows from a fact in algebraic geometry ([Ha]): all automorphisms
of ihe Grassmannian are induced by automorphisims of V, unless i = 2%,
in which case we can choose an arbitrary isomorphism of ¥ with V*
and compose these with the automorphism that takes W to (C"/W)*. Here
the superscript ° denotes the connected component of the identity. As in
previous lectures, if we want symmetric powers to correspond to homo-
geneous polynomials on projective space, we should consider the dual situa-
tion: G = Grass*V is the Grassmannian of k-dimensional guotient spaces of
V, and the Pliicker embedding embeds G in the projective space PN V*) of
one-dimensional quotients of A*V.

The space of all homogeneous polynomials of degree m on P(AV*) is
naturally the symmetric power Sym™(A*V). Let I(G),, denote the subspace of
those polynomials of degree m on P(A*V'*) that vanish on G. Each I(G),,is a
representation of sl,C:

0> 1{G)y = Sym"(AV) - W, -0,
where W, denotes the restrictions to G of the potynomials of degree m on
the ambient space P(A*V'*). We shall see later that W, is the irreducible
reptesentation To o uo,.. Wilh highest weight m(L, + -+ + L) (the casc
m = 2 will be dealt with below). In the following discussion, we consider the

problem of describing the quadratic part I{G), of the ideal as a representation

of s1,C.

Exercise 15.34. Consider the first case of a Grassmannian that is not a
projective space, that is, 2. The ideal of the Grassmannian G(2, V) of
2-planes in a vector space i escribe: a iefisor € A7V is decomposable

io describe: a tensor ¢ € A?Y is decomposable
if and only if p A @ = 0 (equivalently, if we think of ¢ as given by a skew-
symmetric# x #nmatrix, if and only il the Pfaflians of symmetric 4 x 4 minors
all vanish); and indeed the quadratic relations we get in this way generate the
ideal of the Grassmannian. We, thus, have an isomorphism

I(G), 2 AV

and correspondingly a decomposition into irreducibles
Sym?> (A V)2 AN V@ 20,00

where T ;0.0 IS, @s above, the irreducible representation with highest
weight 2(L, + L,), cf. Exercise 15.32.

Exercise 1535, When k = 2 and n = 4, G is a quadric hypersurface in P%, so

il emantoliions e 7 s aleanle ann Aloiatida o anadeatio nale,
als vanishing on G are simply those divisible the quadratic poly-

polynomi
nomial that defines G. Deduce an isomorphism.

HG)y, = Sym™ 2(A2V).

§15.4. Some More Geometry 229

‘ The first case of a Grassmannian that is not a projeclive space or of the
orm G(2, V) is, of course, G(3, 6), and this yields an interesting example.

Exercise 15.36. Let V be six dimensional By exmeinioe watot e .
X ¢imenstonal, By ex ning weights, show that

21(; sl;z)lce I(G);l of quadratic polynomials on the Gr i
, V) = P(A*V) is isomorphic t joi e i ie.
ot we e n g pl o the adjoint representation of slsC, ie.,

@:Sym*(NV)» v @ v+
with image the space of traceless matrices,
Exercise 15.37. Find explicitly the map ¢ of the preceding exercise.
Exercise 15.38. Again, let ¥ be six dimensional. Show that the representation

Sym*(A®¥) has a trivial direct summ: i
§ and, corresponding to the h
in P(A’V*) dual to the Grassmannian G — G(3, l:/) < P’%/\")V).e ypetsurface

In gener: deal IO = (DHE i< oe PRI
) = G 1{U), 15 generated by the famous Plicker

eql{ﬂ[iﬂlls. These are homogeneous polynomials of degree two, and ma

wnm?n df)wn exphc:?ly, f:f. (.15.53), [H-P], or [Ha]. In the rollow;ing exercli,s:se
we W]!I Bive & more intrinsic description of these relations, which will allowy
:xitgldﬁe_n—t{Q ‘lhe space 1(G), they span as a represenlatiozl on sl,C (and to
v Hie general patiern of which the above are special cases). S i

Exercise 15.39. For a giv
el en X . i
subspaces: g ensor A e A'V, we introduce two associated

W={veV:v/\A=0}cV

and

W¥={v*eV*v* A A* =0} c v,
ing notatios clita. aw s o A ui
(1 Amkin D LOMWUOR Slightly, A” is the tensor A viewed as an element of
N Vk— A" "Vf‘ Show thal the dimensions of W and W* are at most & and
;(r - V,yrfspecllyely, a.nd that A is decomposable if and only if W has dimension
kor h.as' dimension n — k; and deduce that A js decomposable if and ont
if the annihilator W’ of W* is equal to W, !

Exercise 15.40. Now let 5 e A1y + — prt-ty, Wedge product gives a map

1 NV S Ny = s

Using the prec.

iow that A is decomposable if and only if
=HAVAA=0e 1Y
for all Z e AF+t e,
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Exercise 15.41. Observe that in the preceding exercise we construct a map
AP+ @ Sym2AY) » A1V,
or, by duality, a map
NFTY* @ NIV ® o SymA A YY) (15.42)

whose image is a vector space of quadrics on P(A'V) whose common 7eros
are exactly the locus of decomposable vectors, that is, the Grassmannian
Gk, V). Show that this image is exactly the span of the Pliicker relations

above.

Exercise 15.43. Show that the map (15.42) of the preceding exercise is just the
dual of the map constructed in Exercise 15.30, with k = land restricted to the

symmetric product, Combining this with the result of Exercise 15.32 (and

assuming the statement that the Plicker relations do indeed span 1(G);),

deduce that in terms of the description
Sym?*(NV) =P 0y
of the symmetric square of ARV, we have
W, =8, =0, .,0,20..

(the irreducible representation with highest weight 2(L, + - + L)), and
HG) = (D O
=1

Hard Exercise 15.44. Show that in the last equation the sub-direct sum
N=@Pe,
=008y

izl
is just the quadratic part of the ideal of the restricted chordal variety of the
Grassmannian: that is, the union of the chords LM joining pairs of points
in G corresponding to pairs of planes L and M meeting in a subspace of
dimension atjeast k — 2{ + i. (Question: What is the actual zero locus of these
quadrics?)

Exercise 15.45. Carry out an analysis similar to the above to relate the
ideal of a Veronese variety PV* < P(Sym*V*) to the decomposition given in
Exercise 15.33 of Sym2(Sym*¥). For which k do the quadratic polynomiais
vanishing the Veronese give an irreducible representation?

Exercise 15.46. (For algebraic geometers and/or commutative algebraists.)
Just as the group PGL, € acts on the ring § of polynomials on projective space
PV, preserving the ideal of the Veronese variety, so it acts on that spacc of
relations on the ideal (that is, inasmuch as the ideal is generated by quadrics,
the kernel of the multiplication map I4(2} ® S — S), and likewise on the entire
minimal resolution of the ideal of X. Show that this resolution has the form
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R ®S R @S+ 1B,

where all the R, are finite-di ionat r i
] t nat rep ions of PGL,C, and identi
the representations R, in the specific cases of "

(i) the rational normal curve in P3,
(ii) the rational normal curve in P4, and
{iti) the Veronese surface in P%.

§15.5. Representations of GL,C

WZ }tx:ve saridhthal there is little difference belween representations of GL,C
and those of the subgroup SL,C of matrices of determina; j :

2 ! C nt 1. Our object here
is to re??:d the :T':.ﬂerence, which, naturally enough, comes from the deter-
:u:n;nhg[l"z CS :s‘the standard representation, A"V is trivial for SL,C but

ot for GL,C. Simitarly, V and A""'V* are isom i

e A orphic for SL,C but not
,A,,T,O, fel.atﬁ repre'se’r‘llalions of SL,C and GL,C, we first need to define some
representaiions of GL,C. To begin with, let D, denote the one-dimensional
'representatlc'm of GL,C given by the kth power of the determinant. When k
is non-negative, D, = ({\"V)Q‘; D_, is the dual (D)* of D,. Next, note that the
3rreduclble represenlations of SL,C may be lifted to representations of GL,C
in two ways. First, for any index a = (ay, ..., a,) of length n we may take :IL
to be the subrepresentation of the tensor product - o7

SyMV® - ® Sym®1(A"! V) ® Sym(A"V)

spanned by the highest weight vector with wei
ght a, L, + a,(L L
A a (L 4o 4 LV —that s, the vector it by

v={(e;)" (e, A e)) (e, A A g
(11:5 resdl_rl«:[cts to 5L, C to give the representation I',., where a’ = @y, ....a, )%
aking different va i ion with
,q:m,f... Hlerent m,]_“lf_sn?.f.g" al{l‘l‘O"l'J’l'fEﬂ to tensoring the representation with

serent jaciors Sym{\\'yV) = {A'V)®* = D, . In particular, we have
Dy.nit =9, . ®D,
which allows us to extend the definition of ®, to indices a with a, < 0: we

" simply set

d)an“,va, = fb_‘ ..... Atk ® D—k
for large k.

Alternatively, we may consider the Schur functo i
s t S, applied t
representation V of GL,C, where »oppled (0 the tandard

A=)+ + A+ @y, Gy + ay, a,).
We will denote this representation S, ¥ of GL,C by ¥, note that

AV i}
Vit tex = Wa,, 2, ® D,
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which Tikewise allows us to define ¥, for any index 2 with 2, 2 A, >+ 2 Ay
even if some of the 1, are negative: we simply take

Wida = Witk datt ® D

for any sufficiently large k.

As is not hard to see, the two representations ©, and ¥, are isomorphic as
representations of GL,C: by §15.3 their restrictions to SL,C agree, so it suffices
to check their restrictions to the center C* = GL,C, where each acts by

plicationbyz2 =z fa) 1t is even clearer that there are no coincidences
among the P, (ie, O, will be isomorphic to @, if and only if a = a') if
&, ~ b,., we must have a; = agjfori=1,...,n— 1, so the statement follows
from the nontriviality of D, for k # 0. Thus, to complete our description of the
irreducible finite-di jonal rep ions of GL,C, we just have to check
that we hiave found them aii. We may th the completed result as

Tiehi €Xpress Lic Compicies fCSUR as

Proposition 1547. Every irreducible complex representation of GL,C is iso-
morphic to ¥, for a unique index 2= 1y, ..., Aywith Ay = 2, >+ = 4, (equiv-
alently, to ®, for a unique index a = a,, ..., a, withay, ..., a,- 2 0).

ProoF. We start by going back to the corresponding Lie algebras. The scalar
matrices form a one-dimensional idea! € in gl,C, and in fact g1,C is a product
of Lie algebras:

gi,C =i, C x C. {
In particular, C is the radical of gl,C, and sl,C is the semisimple part. It follows
from Proposition 9.17 that every irreducible representation of g1, C is a tensor
product of an irreducible representation of s1,C and a one-dimensional repre-
sentation. More fet W, = S,{C") be the representation of s|, C deter-
mined by the partition A {extended to s[,C x C by making the second factor
act lrivially). For w e C, let L{(w) be the one-dimensional representation of
&l,C x C which is zero on the first factor and multiplication by w on the
second; the proof of Proposition 9.17 shows that any irreducible representa-
tion of sl,C x C is isomorphic to a tensor product W, ® L{w). The same i
therefore true for the simply connected! group SL,C x C with this Lie
aigebra.

i

We write GL,C as a quotient modulo a discrete subgroup of the center of

SL,C x C:

{ = Ker(p) »SL,C x C HGL,C— 1, (15.49)
where p(g x z) = e g, 50 the kernel of g is generated by e*- I x (—3), where
s = 2mifn.

Gur task is simply to see which of the representations W, ® L(w) of

O 58T Wil P
he represe
-

13 it
SL,C x C are trivia

' For a proof that SL,C is simply connected, see §23.1.

how S,V sits in ¥®4, We want to realize S,

Y
on the kernel of p. Now e’ I acts on S,C" by multi-
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" ” .
(l;;l’?;&f‘"::h‘;é:céx;::g =C"Z’&l,;(|‘ndeed, this is true on the entire representation
¢ 147 And —sacts on L(w) by multiplication by e™**
Ie)mld x : .—s::ctsron the tensor product by multiplication b[; erimm Tzeeten;Z?
uct is, the; ivi i i
progudt i refore, trivial on the kernel of p precisely when sd

— sw € 2niZ,

w=Y Al +kn
for some integer k.

“n:\:'chlgl“xx‘lﬂi'ilr‘\jﬂly“t;l:al a:—xy representation W, ® L(w) satisfying this condi-
ton Is the pulivack via g of a representation ¥ on GL,T. In fact, it i

to see that it is the pultback of the representation W . " the two ety
restrict to the same representation on SL,C, and
just multiplication by e"* — e(ZActmoz

A4k, 4,4 the two clearly
their restrictions to € are

]

Exercise 15.50. Show that the dual of the re

§ ) resentati ich is i
morphic to S,(V *}is the representation ‘l’(,lnp o Wi which is fso-

=gy
Exercise 15.51*, Show that if p: GL,C - GL(W

to be holomorphic), then W decomposes
representations, )

)is a representation (assumed

ot gum of frradioitl.
<t sum of irreducible

Exercise 15.52*, Show thal the Hermi i
i .52%, v ermite reciprocity isomorphi i
11.34 is an isomorphism over GL,C, not just overySLz(:. rpam of Brercie

More Remarks on Weyl's Construction
::;I: closer out thn Iectuhre;by look?rig once more at the Weyl construction of
s relmiresen’:anons of (sL.{¥). This wilt include a realization “by generators
o rela q:;s,v as w.ell asgivinga _nalural basis for each representation. Firq[

y oe iluminating—and it will he useful fater—to Jook more closely ‘al'

V as a subspace of the subspace

Symm I AV @ Svinits-1{ AF1 15 o <@
YRUAY] @ Sym™ AT ® -+ ® Sym®i(V) ¢ 84
’\:':1::;:, is ﬂf nurrnber of columns of the Young diagram of A of length i (and
number of rows). This space is embedded in V®1
b ; in the natural way:
from left to right, a factor Sym*(APV} is embedded in the corresponding V:Z"

by mapping a symmetric product of exterior sroduct
A3C PIOCUCT 01 SXICTior proaucis

W AV A A 1) 01,2 Ay A A Dy,
(v
o Oranvzan-Auy,)
sgnig)(v,
Z g0 (q)( . pi1) @ ®”q.(b),p(u)@"‘@(%mp,,«.,@"'®U

2atb). ple ))s
1hesumoverps(5,,andq=(q,,...,q,,)eGbx~-- .

x &,. In other words, one
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first symmetrizes by permuting columns of the same length, and thef PEroHE
i metrizer ofl each column. )
an ]il[f: nagt;ng s():n ay), let A%(V) denote this tensor product of symmetric
etting a = (@y, -1 6>

< of exterior pOWers, j.e., set
pOWEIS Tt D .

AV = Sym™=NV)® Sym*™* (N ® ® sym (V)

i he construc
i f A*V. To do this we use U stru
to realize S,V as 3 subspace 0} this e
\"Y:n‘)::fg yasV®- clA, where ¢, is a Young symmetrizer; L0 fett;:;;ﬂpiti)hica
lith lhclembedding of A'V we have just made, we use ht' e
¥ S aoe o rigl
numbers the columns from top (o bottom, then feit £0 e

the conjugate of 1. The symmetrizef
We'takeii =d ';:t ay” b the?e‘:z’,zogcej:,wih; sumj c%.'er all p in the subgroup
o2 éprz U X A@ ‘;)( Sy preselving the rows, b, = ngn(q)q, the sufr‘; c;ve;
l:h:sui;lgrOUp Q =ll("‘:';,,l x - % By, preserving the cq\umns, as :e::r[noﬁov:s'
Lecture 4. The symmetrizing by rows can be done in two step’

There is a SubBF!

¥={n

R=6, % %%q

of P, which consists of permutations that move all entr!
’ .

iti colum!
to the same position 1 some h "
fetermit s W

permulations in R are detel ned by permuting colum

tength. (In the illustration, R

= {1, (46)(57)}.) Set
a=Y e i 8,

1eR
fine a3 to B¢ is over any set
Now if we define @3 10 be Y. e where the sum e er{l Lol
in P for the \eft cosets P/R, then the row symmetrzet & P

and ay. So
S, (V) = (& a) by
The point is that, by what we have just seen;

yei. gy b, = A"V

es of each columd

n of the same length; in other wotds,
hich have the same

of represemal'wes
< the product of 61

§15.5. Representations of GL,C 235

Since V- is a subspace of V4 its image S;(V) by ai by isa subspace of
AMV), as we claimed.

There is a simple way to construct all the representations S,V of GL(V)
at once. In fact, the direct sum of all the representations S, V, over all (non-
negative) partitions 4, can be made into a commutative, graded ring, which
we denote by " or S'(V), with simple generators and relations. This is similar
to the fact that the symmetric algebra Syw’V = @Sym*if' and the exterior
algebra NV = @/\"V are easier to describe than the individual graded pieces,
and it has some of the similar advantages for studying all the represen-
tations at once. This algebra has appeared and reappeared frequently, of.
[H-PY; the coastruction we give is essentially that of Towber [Tow1].

To construct $'(V), start with the symmetric algebra on the sum of ail the
positive exterior products of V:set

A(Y)=Sym(VONVS NV NV)
= @ Sym (AN ® Syma(A2V) @ Sym™ (V).
LIS
the sum over all n-tuples a,, ..., @, of non-negative integers. So A'(V) is the
direct sum of the A*(V) just considered. The ring §' = S'(¥) is defined 1o be

the quotient of this ring A'(V) modulo the graded, two-sided ideal I’ generated
by all elements (“Plicker refations™ of the form

(o0 8 A )0y A AW

2

(g A0 A Dy AWy A Uiy A AG) AW ATTA w,)

(15.53)

=1

forall pz g tandall vy, ... 0 Wi, .o weV.(fp=2a this is an ele-
ment of Sym*(\P¥), if p > g, it is in AV @AY = Sym' (A V)@ Sym'(A*V).
Note that the multiplication in S'(V) comes entirely from its being a symmetric
algebra and does not involve the wedge products in A'V)
Exercise 15.54%, Show that I’ contains all elements of the form
Wy A NG (WA A w,)

— T A AW AT A AT Up)

(o, Ao, AN B AWy ATTA w,)

orallp=g=r>1 and alt vy, ..., Uy Wis oo W € ¥, where the sum is over
Ml << <isp and the elements w,, ..., W, are inseried at the

corresponding places in vy A" A Uy

Remark. You can avoid this exercise by simply taking the elements in the
exercise as defining generators for the ideal I'. When p = q =7, the calcula-
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tion of Exercise 15.54 shows that the relation (v, A =** A 0) (W A" A w,)
=(w A AW A AL follows from the generating equations for .
In particular, this commutativity shows that one could define §'(V) to be the
full tensor algebra on V@AV @+ @ A"V modulo the ideal generated by
the same generators.

The algebra S'(V) is the direc: sum of the images S$*(V) of the summands
AM(V). Letey, ..., e, be a basis for V. We will construct a basis for S*(¥), with
a basis element ey for every semistandard tableau T on the partition A which
cortesponds to a. Recaii that a semi ndard tableau is a numbering of the
boxes of the Young diagram with the integers L, ..., #, in such a way that the
entries in each row are nondecreasing, and the entries in each column are
strictly increasing. Let T(, j) be the entry of T in the ith row and the jth
column. Define e to be the image in S*(V) of the element

!
JI:[l erag A eragp NN e € Sym™(A'V)® -+ @ Sym™(V),

., wedge together the basis elements corresponding to the entries in the
and multiply the results in S'(V).

ie
col

Proposition 15.55. (1) The projection from A*(V) to 8*(V) maps the subspace

S,(V) isomorphically onto §*(V).
(2) The ey for T a semistandard tableau on A form a basis for S*(V).

PROOF, We show first that the elements ey span S*(V). It is clear that the ey
span if we allow alt tableaux T that number the boxes of 4 with integers
between [ and nwith strictly increasing columns, for such elements span before

dividing by the ideat I'. We order such tableaux by fisting their entries column I

by column, from ieft to righi and iop io bottom, and using the reverse

lexicographic order: T* > T if the last entry where they differ has a jarger entry
for T than for T If T is not semistandard, there witl be two successive columus
of T, say the jth and (j + 1)st, in which we have T{r, §) > T(r,j + 1) for some
+ It suflices to show how to use relations in I' to Write ey as a lincar
combination of elements ey, with T' > T. For this we use the relation in

Exercise 15.54, with v, = ez for 1 <i<p=g, and w =er; for

| S i<q=fy, tointerchange the first r of the {w,} with subsets of r of the
{1;}. The terms on the right-hand side of the relation will all correspond to
tableaux T’ in which the r firstentriesin the(j + 1)st column of T are replaced
by r of the enties in the jth column, and are not otherwise changed beyond
the jth coturn. Al of these are lagger than T'in the ordering, which proves the
assertion.

1t is possible to give a direct proof that the e, corresponding tosemi-
standard tableaux T are linearly independent {scc [Tow1]), but we can get by
with less. Among the semistandard tableaux on 1 there is a smallest one T,
whose ith tow is filled with the integer i. We need to know that ey, is not zero

. column of T has length 1,

. subspace of Clx; ;] spann
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in S". This is easy 10 see direct}
I'n A%(V) are spanned by those
some column of some T 10 an earl
Such will never involve the gener:

in this cage. the resu
age, the resyl

y. ln. fact, the relations among the e, in
f)btamed by substituting r elements I':om
lier column, as in the preceding paragraph
ator ey unless the T that is used js Ts, ar;l(i

el e o
g Ciement of £ 15 zero. Since e, oceurs in no nontrivial

relat'ion, its image in S’ cannot vanish.
Since e, comes from S,(V),

. it foltows that th jecti
Sy I !  follows e projection from S
SL((V)) ‘151 r':,(;]to:f;?{, Sné(,:.e this projection is a mapping of repre;r:lat;g:s) ::;
b S, PR at S*(V) must contain a copy of the irreducible representa-
o (él) is. e nml;':rom Thgorem 6.3 and Exercise A.31 that the d;'m-eun-sxon
thalthe dimens[i‘::ln 1_é:)(l‘vs)e!-nlstandard tableaux on 1. Since we have proved
[ is at most this numb, jecti

o IS% " cr, the projection fi

(V) must be surjective, and since S,(V)is irre(}ucible, {t must t::imnjesgt(i:e)

as well, and the ey for T a semistandard tableau on 1 must form a basis, a
IRUSL I0TM & vasis, as

m}

Note that this proposition gives another de:
"5;(}’), as the quotient of the s;
Pliicker” relations (15.53),

scription of the representations
pace A(V) by the subspace generated by the

Exercise 15.56. Show that, if the factor e

the resulting algebra is the di
irect
SL(V) =SL,C. ome

Vis o‘mitted from the construction,
I all irreducible representations of

It is remarkable that ali the representations $,(C") of GL,C were written

down by Deruyis (followi
owing Clebsch i
theory was born, asin the following eiearc(i:::.mry 780, before representation

Exercise 15.57%, Let X — (%, ;) be i
X5 an n x #1 matrix of indetermi
o ! ) erminants,
Igomp—C; GL(,,}(iacts on the polynomial ring CLx; ;1byg-x, ;= Yiaa Zhe
o the_inl:;/) € ; ~C.For any ta.bleau Ton the Yoﬁngdiagra'r]n of 2 ,é:)llls;éllir,;'j
gers from 1 to a, strictly increasing in the columns, let .. be thg
"y T

product of minors constructed from X, one for each column as fuh i
s one for each columin, as foliows: if the

form the minor using the first

' #i; columns, and u
d by the entries of the column éf T. Let D, be !l::
by 1 S L] ; ed by these e, where d is the number partitioned
X at: (i) D, is preserved by GL,C; (ii) the e;, where T js semi

standard, form a hasis for D.-7in B to: R
s & 0asis 107 Py; (iii) D, 1s isomorphic to S,(C7).

the rows that are numbere
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Symplectic Lie Algebras

o Ao foup thie curaslactin 1 ia alnohrae

in this ieciure we do {or the symplectic Lic algebras for the special
linear ones in §15.1 and most of §15.2: we will first describe in generat the structure of
a symplectic Lie algebra (that is, give a Cartan subalgebra, ﬁnt:! the roots, descrfbc the
Killing form, and so on). We will then work out in some de_lml the rel.)resenlatlonsluf
the specific algebra sp,C. As in the case of the corresponding analysis of the special

tgebras, this is completel y.
5

FHNE nt
finear Lic P y eleme Y

§16.1; The structure of Sp,,C and sp,,C
§16.2 Representations of sp,C

§16.1. The Structure of Sp,,C and 5P,,C

Let V be a 2n-dimensional complex vector space, and
PV x VoL,

a nondegenerate, skew-symmetric bilinear form on V. The sy.mplectic Lie

group Sp;,C is then defined to be the group of automorphisms Aof ¥V

preserving Q—that is, such that 0(4v, Aw) = Q(v, w)forallo,w € V——anq the

sympieciic Lie algebra 5p,,C correspondingly consists of endomorphisms
n

A: V - V satisfying
0(4v, w) + Q(v, AW) =0

for all vand w € V. Clearly, the isomorphism classes of the abstract group and

our discussion, take @ to be the bilinear form given, in terms of a basis e;,..

Lie algebra do not depend on the particular choice of Q; but in ordf,r to be
able to write down elements of both explicitly we will, for the remainder of
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e,, for 1, by
Qe e =1,
Qerin ) = —1,
and
Qle,e)=0 ifjs#itn
The bilinear form Q may be expressed as
My o\t ar
¥ = Xy,

where M is the 21 x 2n matrix given in block form as

M= (—01" :))

the group Sp,,C is thus the group of 2# x 25 matrices A satisfying

M="4 M- A
and the Li i i
g,?a m}:ﬁl;; algebra sp,,C correspondingly the space of matrices X satisfying
'X-M+M-X=0 {16.1)
Writing a 2n x 2n matrix X in block form as
(A B\
X =
{c o
we have
t
-y =f7C A
\ D B /
and

M-X=( c D)
—4 -8

zo t?a;this relation is equivalent to saying that the off-diagonal blocks B and
o) are symmetric, and the diagonal blocks A and D i

transposes of each other. of X e negative
With thi i i i i i

_, With ¢ is said, ihere is certainly an obvious candidate for Cartan sub-

21geora §) in sp,,C, nar_nely the subalgebra of matrices diagonal in this

representation; in fact, this works, as we shall see shortly. The subalgebra b is

thus spanned by the n 21 x 2n matrices H, = E;, — E,\; .. whose action on

Vis t!:y fix ¢;, send €rei t0 its negative, and kill ail the remaining basis vectors;
we }vxll correspondingly take as basis for the dual vector spave B* the daal
basis L, where (L, H;) =, 7

¢ dual vector space hi* the dual

We have already seen how the diagonal matrices act on the algebra of afl

matrices, so that it is easy to describe the action of § on g. For example, for
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{ <i,j < nthematrix E; ;€ 915, Cis carried into itself under the adjoint acliog
or_H,, into minus itsell by the action of H), and to 0 by all the other Hj; an
the same is true of the matrix E,. ,+;- The element

(]

. 3 r csun
A= E,', T ek f Al S V20

is thus an eigenvector for the action of b, with eigenvalue.L, - Lj.:lmllalrly;
for i # j we see that the matrices E; ., and E]‘,,ﬂ'are f:atned mm:j ;msel ::e
by H, and H, and killed by all the other H,; and hke.wwe Envig anlh M!]"Ihus
eachi carried into their negatives by H; and H; and kitled by the others. 5
the elements

Yi;= Einas+ Epnsi

and

L E
2= Byt B

are eigenvectors for the action of ), with eigenvalue§ L+ Ljand —L;— L!,
respectively. Finally, when i = j the same calcula('mn shovys that E,,,,f, is
doubled by H, and killed by all other H;; and likewise E,;; is sent to minus

twina iteall hy H. and to 0 by th . Thus, the elements
twice itsell by H, and to O by
L( LI,nH

and
Vi=Epiig

are cigenvectors with eigenvalues 2L, and —2L,, respeclively.’ln sum, then,

the roots of the Lie algebra sp,,C are the vectors +L; i Lyeb*. ich
In the first case n = L, of course we just get the root dlagram of 51, C, whi

is the same algebra as sp,C. In case n = 2, we have the diagram

(162)

As in the case of the special linear Lic algebras, probably the 'easiest w%»
to determine the Killing form on sp,,C (at least up to scalars) is to use i
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invariance under the automorphisms of sp,,C preserving . For example, w
have the automorphisms of sp,,C induced by permutations of the basi
veclors ¢, of V: for any permutation o of {1,2,...,n} we can define a;
automorphism of V preserving Q by sending e, to €, and e, 10 ¢, ¢, anc
this induces an automorphism of sp,,C preserving |y and carrying H; to I,
Also, for any i we can define an involution of V—and thereby of sp,,C—b;
sending ¢, 10 e,,,, €,,; to —e,, and ali the other basis vectors to themsclves
this will have the effect of sending H; to — H; and preserving all the other H;
Now, the Killing form on § must be invariant under these automorphisms
from the first batch it follows that for some pair of constants @ and # we mus
have

BH, H) =«

»
2
[=%

B{H, H)=F fori#j;

from the second batch it foltows that, in fact, # = 0. Thus, B is just a muitiple
of the standard quadratic form B(H,, H)) = &, ;,and the dualform correspond-
ingly a muitipie of B{L,, L,) = &, so that the angles in the diagram above are
correct,

Also as in the case of st,C, one can also compule the Killing form directty
from the definition: B(H, H') = Y a(H)a(H"), the sum over all roots a. Foi
H =Y a;H and H' = Y b,H,, this gives B(H, H')as a sum

;;Z, (ar + a)(by + by) + 2 5'_‘ (2a,)(2bi) + E‘; (e, — a)(by — by)
which simplifies to

BH, H'

)=Un+ QT ok (63

Our next job is (o locate the distinguished copies s, of s1,C, and the
corresponding elements H, € b. This is completely straightforward. We start

with the eigenvalues L, — L;and L, — L; corresponding to the elements X, ;
and X, ;; we have

DX X300 = (Bry = Enagmet Bpi = Bosinng]
=[E;, B+ [En+].n+b [ |
=Ei 1~ Ejj+ Epijni;— Entinni
=H,—H,

Thus, the distinguished element Hy,-y, is 2 multiple of H;, — H,. To see what
multiple, recalt that Hy,-1, should act on X; , by multiplication by 2 and on
X,.. by multiplication by —2; since we have

ad(H; — H)(X,,,) = (Ly ~ Ly(H; - H))- X,
=2X.p
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we conclude that
Hy_y = H,— H,.

Next consider the pair of opposite eigenvalues L; + L; and —L; — L,
corresponding to the eigenvectors ¥ ;and Z, ;. We have

[Yop Zigd = Evars + Epnens Eppig+ Enipid
= tEv,nur Epijid + LEjnees Ensis]

=B = Eprpnes + By — Ensinnt
=H + H,.
We calculate then
ad(H, + H)Y, ) = (L + L)}H, + H)) Y, ;
=2Y,
s0 we have
HL,H., = Hi + H)

and simifarly
Hepy = —H—H,
Finally, we look at the pair of eigenvalues + 2L, coming from the eigen-
vectors U,and ¥;. To compiete the span of U, and ¥, o a copy of si, C we add
[U, Wi= [El.n+h Enﬂ,i]
=E,;— E~+:.n+r
- i
=H,
Since
ad(H)(U}) = AL(H))- U;
=2-U, .
we conclude that the distinguished element H,; is H;, and likewise H_,;,, =
— H,. Thus, the distinguished elements {H,} < | are {+ H, + H,, + H}; in

particular, the weight lattice Ay of linear forms on | integrai on alt the H,is 7

exactly the lattice of integral linear combinations of the L. In Diagram (16.2):
for example, this is just the lattice of intersections of the horizontal and verticat
lines drawn; observe that for all n the index [Ay : Ag] of the root lattice in the
weight lattice is just 2.

Next we consider the group of symmetries of the weights of an arbitrary

representation of sp,,C. For each root « we let W, be the involution in ;

h* fixing the hyperplane Q, given by <H,, L) = 0 and acting as —/ on the

line spanned by «; we observe in this case that, as we claimed will be truein

general, the linc generated by  is perpendicular to the hyperplane £2,, so that
the involution is just a reflection in this plane. In the case n = 2, for example,
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we get the dihedral group generated by reflections around the four lines drawn
through the origin:

so that t'he weight diagram of a representation of sp,C will look like an
octagon in general,

o i o

or {inl some casesj a square,

In general, reflection in the plane Q,,, given by (H;, L) = 0 will simply
reverse the sign of L, while leaving the other L, fixed; reflection in the plane
(H; ~ H,;, Ly = 0 will exchange L, and L and leave the remaining L, alone.
:Ihg.We-yl group !!]J acts as the full automorphism group of the lines spanned
Dy the L, and hits into a sequence )

1~ Z2Z > B, - 1.

Not.e ‘that the. sequence splits: I8 is a semidirect product of &, and (2/22)".
(This is a special case of a wreath product.) In particular the order of M is 2!,
We can choose a positive direction as before:

’(Z“ll'r) =¢1ay + -+ (.0,
The positive roots are then

Cp >y > >¢, >0l

R =L+ Ly)igyv L — Ly)iey, (164)

with primitive positive roots {L; — L,,, hi=t.....n—1 and 2L, The corresponding
(closed) Weyt chamber is

W={aLi+ayly+- +al,a
note that the walls of this chamber——the cones
, {ZH,L,:H,>'-->n,=a”,>~'->an>0}
and
Yalia; >a,>

~lie in the ‘hyperplanes Q1. and Q,;perpendicular to the primitive positive
© or negative roots, as expected.

> a,=0)

b
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§16.2. Representations of sp,C

Let us consider now the representations of the algebra sp,C spgciﬁcz‘dly. Re'call
that, with the choice of Weyl chamber as above, there is a unique irreducible

S ST SN IY

representation I, of sp,C with highest weight o for any « in the fiter section
of the closed Weyl chamber % with the weight lattice: that is, for each laltice
vector in the shaded region in the diagram

Any such highest weight vector can be written as a non-i < r
tinear combination of L, and L, + L,; for simplicity we will just write
I, for the irreducible representation I, .su,+1, With highest weight
aLy + b(Ly + L,) = (a+ b)L, + bL,.

To begin with, we have the standard representation as t!\e algebrfl of
endomorphisms of the four-dimensional vector space V; the four standard
basis veclors e, e,, e, and e, are eigenvectors with eigenvalues L, L,, — L,
and — L,, respectively, so that the weight diagram of V is
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V is just the representation I, ; in the notation above. Note that the dual of
this representation is isomorphic to it, which we can see either from the
symmetry of the weight diagram, or directly from the fact that the correspond-
ing group representation preserves a bilinear form V x V ¢ giving an
identification of ¥ with V'*,

The nexl representation to consider is the exterior square A*V, The weights
of A2V, the pairwise sums of distinct weights of ¥, are just the linear forms
+Li+ L (each appearing once) and O (appearing twice, as L, — L, and
L, — L,), so that its weight diagram looks like

Clearly this representation is not irreducible. We can see this from the weight
diagram, using Observation 14.16: there is only one way of getting to the
weight space 0 from the highest weight L, + L, by successive applications of
the primitive negative root spaces 8-1,41, (Spanned by X, , = E, , — E, ,)
and g_,,, (spanned by V, = E, ,)—that is, by applying first V,, which takes
you to the weight space of L, — L,, and then X,.,-—and so the dimension of
the zero weight space in the irreducible representation T, with highest weight
Ly + L, must be one. Of course, we know in any event that AV cannot be
irreducible: the corresponding group action of Sp,C on V by definition
preserves the skew form Q € A?V* = A%V, Either way, we conclude that we
have a direct sum decomposition

NV =WeaC,

where W is the irreducible, five-dimensional representation of sp,C with
highest weight L, + L,—in our notatjon, Ty, ;—-and weight diagram
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Let

can write down the weight diagram for the representation Sym?V; the weights
being just the pairwise sums of the weights of ¥, the diagram is

s consider next some degree 2 tensors in ¥ and W To begin with, we

NP2 VRN

This looks like the weight diagram of the adjoint representation, and indeed
that is what it is: in terms of the identification of V and V'* given by the skew
form @, the relation (16.1) defining the symplectic Lie algebra says that the
subspace

spCc Hom(V, V)=V@RV*=VQ@RV
is just the subspace Sym?V < ¥ @ V. In particular, Sym?V is the irreducible

representation I, ; with highest weight 2L,. ) )
Next, consider the symmetric square Sym?*W, which has weight diagram
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%

s irreducible we first ook at the weight diagram: this time there

are three ways of getting from the weight space with highest weight 2L, + 2L,
to the space of weight 0 by successively applying X, , = E, , — E; 4, and
V3 = E, ,, 50 if we want to proceed by this method we are forced to do a little
calculation, which we leave as Exercise 16.7.

Alternatively, we can see directly that Sy W decomposes: the natural map
given by wedge product

To gee if th

ANV @AV N =C
is symmetric, and so factors to give a map
Sym2(A*V)) » C.

Moreover, since this map is well defined up to scalars—in particular, it does
not depend on the choice of skew form Q—it cannot contain the subspace
Sym?W < Sym*(A?V)) in its Kernel, so that it restricts to give a surjection

@: Sym?W - C.

This approach would appear to leave two possibilities open: either the
kernel of this map is irreducible, or it is the direct sum of an irreducible
represenitation and a further iriviai summand. In fact, however, from the
principle that an irreducible representation cannot have two independent
invariant bilinear forms, we see that Sym?W can contain at most one trivial
summand, and so the former alternative must hold, ie., we have

Sym*W =T, ,&C. (166

Exercise 16.7*. Prove (16.6) directly, by showing that if v is a highest
weight vector, then the three vectors X2V X210 Va0, X5 1 X, VaVay, and

V2X3,1X,,, V20 span a two-dimensional subspace of the kernel of .

. Exercise 16.8. Verify that A*W = Sym2V. The significance of this isomor-

phism will be developed further in Lecture 18,
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Lastly, consider the tensor product ¥ @ W. First, its weight diagram:

SN O

This obviously must contain the irreducible representation Iy, with bighest
weight 2L, + L,; but it cannot be irreducible, for either of two reasons. First,
looking at the w
4+ L, with multlphclty at most 2, so that V ® W must contain at least one copy
of the representation V. Alternatively, we have a natural map given by wedge

product

ght diagram, we sce that T, ; can take on the eigenv

AVRAV SNV =V*=V;

and since this map does not depend on the choice of skew form @, it must
restrict (o give a nonzero (and hence surjective) map

VW V.

Exercise 16.9. Show that the kernel of this map is irreducible, and hence that
we have

vew=I,,eV

What about more gereral tensors? To begin with, note that we have
established the existence half of the standard existence and uniqueness theotem
(14.18) in the case of sp,C: the irreducible representation I, , may be found
somewhere in the tensor product Sym®V & Sym®W. The question that remains
is, where? 15 other .'.‘.G{ds we would like to be able to say how these tensor
products decompose. This will be, as it was in the case of sI;C, nearly
tantamount (modulo the combinatorics needed to count the multiplicity with
which the tensor product Sym"V @ Sym®W assumes each of its eigenvalues)
to specifying the multiplicities of the irreducible representations I7, 5.

Let us start with the simplest case, namely, tihe representations Sym*V.
These have weight diagram a sequence of nested di ds D; with vertices at
al,,(a — 2)L, etc:
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Moreover, it is not hard to calculate t

jas of Quendl/. sl o
ues ol wym®y: the m

plicity on the outer diamond D, is one, of course; and then the mulupllcmes
will increase by one on successive rings, so that the multiplicity along the
diamond D, will be i.

he multip!

Exercise 16.18. Using ihe techniques of Lecture 13, show that the representa-
tions Sym“V are irreducible.

The next simplest representations, naturally enough, are the symmetric
powers Sym*W of W. These have eigenvalue diagrams in the shape of a
sequence of squares S; with vertices at b(L, + L,), (5 — I)(L, + L), and so
on:

Here, however, the multiplicities increase in a rather strange way: they grow

quadratically, but only on every other ring. Explicitly, the multiplicity will be

one on the outer (wo rings, then 3 on the next two rings, 6 on 'lhe n::xl two;

;1 general, it will be i(i + 1)/2 on the (2i — [)st and (2i)th squares §,, , and
20
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Exercise 16.11. Show that contraction with the skew form ¢ e Sym*Ww*
introduced in the discussion of Sym?W above determines a surjection from
Sym*W onto Sym®~?W, and that the kernel of this map is the irreducible
representation Iy, with highest weight b(L, + L,). Show that the multi-
plicities of Iy, , are i on the squares S5, ; and §,; described above.

We will finish by analyzing, naively and in detail, one example of a represen-
tation I, , with a and b both nonzero, namely, I;,,; one thing we may observe
th ilarly simple pattern to

the multlpllcltles of the representations I, ,, wlth general a and b To carry out
our analysis, we start of course with the product Sym?*V ® W. We can readily
draw the weight diagram for this representation; drawing only one-eighth of
the plane and indicating multiplicities by numbers, it is

6 3
TWal oo ~ o H Qurena cantaing o anmu o o ireadiaihla
We know that the rep n Sym?V @ W contains a copy of the irreducible

representation I, , with highest weight 2L, + (L + L,); and we can se¢
immediately from the diagram that it cannot equal this: for example, I'; , can
take the weight 2L, with multiplicity at most 2 (if v € [, , is its highest weight
vector, the corresponding weight space (I, ), < I, ; will be spanned by the
two vectors X, ,(V,(v)) and 1,(X, ,(v))); since it cannot contain a copy of
the representation Iy , (the multiplicity of the weight 2(L, + L,) being just
one} it follows that Sym?V ® W must contain a copy of the representation
T,.0 = Sym*V.

We can, in this way, narrow down the list of possibilities a good deal. For
example, I’ cannot have multiplicity just one at each of the weights 2L, and
L, + Ly if it did, Sym*V ® W would have to contain two copies of Sym*V
and a further two copies of W to make up the multiplicity at L, + L; but
since 0 must appear as a weight of I', ,, this would give a total multiplicity of
at least 7 for the weisht 0 in § cnmll/m w. S

at least 7 for the weight 0
plicity I at 2L, and 2at L, + L1 we would then have two copies of Sym: V
and one of W in Sym*V’ @ W: and since the multiplicity of 0 in I, , will in
this case be at least 2 (being greater than or equal to the multiplicity of
Ly + L,), this would again imply a multiplicity of at least 7 for the weight 0
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in Sym?V @ W. 1t follows that Sym®V ® W must contain exactly one copy of
Sym?V; and since the multiplicity of L, + L, in I, , is at most 3, it follows
that Sym*V @ W will contain at least one copy of Iy ; = W as well.

Exercise 16.12. Prove, independently of the above analysis, that Sym?V @ W
must contain a copy of Sym*V and a copy of W by looking at the map

O:Sym*V@W VeV

wr®(wAD-u@GL Awaz)+ s @ A w A 2),
where we arte identifying A3V with the dual space V* and denoting by
@: V* - V the isomorphism induced by the skew form Q on V. Speciﬁcally,
show that the image of this map s ¢ tary to the line spanned by the
element Qe N2 V* =NV V@V :

The above leaves us with exactly two possibilities for the weights of I ;:
we know that the multiplicity of 2L, in T}, is exactly 2; so either the
multiplicities of L, 4- L, and 0in I, , are both 3 and we have

Sym*’ VW =TI, ,®Sym*’V e W,
or the multiplicities of L, + L, and 0 in T,  are both 2 and we have
Sym*V @ W =T,, ® Sym*V & w?
Exercise 16.13. Show that the former of these two possibilities actually occurs,
by
(a) Showing that if v is the highest weight vector in T, , = Sym*V @ W,
then the images (X,1)2Vy(v), X, 1 V3 X3,,(v), and V5(X, ,)*v are independent;
and (redundantly)

(b) Showing that the representation Sym* V @ W contains only one highest
weight vector of weight L, + L.

The weight diagram of I'; | is therefore
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We see from all this that, in particular, the weights of the irreducible
representations of sp, C are not constant on the rings of their weight diagrams,

Exercise 16.14. Analyze the representation ¥V ® Sym*W of sp,C. Find in
particuiar the multipiicities of the representation I’} ;.

Exercise 16.15. Analyze the representation Sym?*V ® Sym?>W of sp,C. Find
in particular the multiplicities of the representation I ;.

LECTURE 17

speC and sp,,C

In the first two sections of this lecture we complete our ¢! ¢
tions of the symplectic Lic algebras; we describe in detail the example of spgC, thea
sketch the repr ion theory of symplectic Lie algebras in general, in particular
proving the existence part of Theorem 14.18 for sp,, €. u the final section we describe
an analog for the symplectic algebras of the construction given in §15.3 of the irreduc-
ible representations of the special linear algebras via Weyl’s construction, though we
postpone giving analogous formulas for the decomposition of tensor prod; of
irteducible representations. Sections 17.1 and 17.2 are completely elermentary, given
the by now standard multilinear algebra of Appendix B. Section 17.3, like §15.3,
requires familiarity with the contents of Lecture 6 and Appendix A; but, like that
section, it can be skipped without affecting most of the rest of the book.

§17.1: Representations of spsC
§17.2: Rep: ions of the sy ic Lic algebras in general
§17.3: Weyl's construction for symplectic groups

§17.1. Representations of sp,C

As we have seen, the Cartan algebra §) of spgC is three-dimensional, with the
linear functionals L, L,, and L, forming an orthonormal basis in terms of
the Killing form; and the roots of spsC are then the 18 vectors +L, + L, We
can draw this in terms of a “reference cube” in i* with faces centered at the
points +L; the vectors & L, + L; with i # j are then the midpoints of edges
of this reference cube and the vectors + 2L, the midpoints of the faces of a
cube twice as large. Alternatively, we can draw a reference octahedron with
vertices at the vectors +2L; the roots +L, + L; with i # j will then be the
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‘midpoints of the edges of this octahedron:

2L

(7.1

This last diagram, however ineptly drawn, suggests a comparison with the
toot diagram of 81, C; in fact the {2 roots of spsC of the form + 4, + L for
i # j are congruent to the 12 roots of s, C. In particular, the Weyl group of
spsC will be generated by the Weyl group of sl,C, plus any of the additional
three reflections in the planes perpendicular to the L, (i.e., the planes parallel
to the faces of the reference cube in the root diagram of either Lie algebra).
We can indicate the planes perpendicular to the roots of spC by drawing
where they cross the visible part of the reference cube:
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We see from this that the effect of the additional reflections in the Weyl
group of spsC on the Weyl chamber of s1,C is simply to cut it in hall; whereas
the Weyl chamber of s1,C looked like

L

in terms of the reference octahedron, this is the cone over one part ol the
barycentric subdivision of a face:
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or, if we rotate 90° around the verticat axis in an attempt to make the picture
clearer,

(112)

%:

<

We should remark before proceeding that the comparison between the root
systems of the special linear algebra sl,C and the symplectic algebra spsC is
peculiar to this case; in general, the root systems of sl,;, C and sp,,C will bear

As we saw in]the preceding lecture, the weight lattice of spsC consists
simply of the integral linear combinations of the weights L,. In particular, the
intersection of the weight lattice with the closed Weyl chamber chosen above
will consist exactly of integral linear combinations a, L, + a,L, + a, L, with
a, > a, > ay 2 0. By our general existence and uniqueness theorem, then,
for every triple (g, b, ) of non-negative integers there will exist a unique
irreducible representation of spsC with highest weight aL, -+ (L, + L) +
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oLy + Ly + Ly) = (a + b + )Ly + (b + )L, + cL,; we will denote this re
resentation by T, , . and will demonstrate its existence in the following.

We start by considering the dard rep ion of speC on V = (
The eigenvectors of the action of § on ¥ are just the standard basis vecto
e, and these have eigenvalues + L,, so that the weight diagram of V looks lii
the midpoints of the faces of the reference cube (or the vertices of :
octahedron one-half the size of the reference octahedron):

In particular, V is the representation 0.0

Since we are going to te find a representation with highest weigh
L, + L,, the natural thing to look at next is the second exterior power \?
of the standard representation. This will have weights the pairwise sum
distinct weights of ¥, or in other words the 12 weights +L; 4 L, with i 5
and the weight 0 taken three times. This is not irreducible: by definition th
action of spC on the standard representation preserves a skew form, so th:
the representation on A*V will have a trivial summand. On the other hanc
the skew form on V preserved by sp,C, and hence that trivial summand <
AV, is unique; and since all the nonzero weights of A*V occur with mult
plicity 1 and are conjugate under the Weyl group, it follows that the comple
ment W of the trivial representation in A%V is irreducible. So W = o0

As in previous examples, we can also see that A*V is not irreducible b
using the fact (Observation 14.16) that the irreducible representation [y
with highest weight L, + L, will be generated by applying to a single highes
weight vector v the root spaces 8t,-24s 8541y 204 85, corresponding t
primitive negative roots. We can then verify that in the irreducible representa
tion W with highest weight L, -+ L, there are only three ways of going [ron
the highest weight space to the zero weight space by successive application o
these roots spaces: we can go

Ly+Ly—sLy+ Ly~ L —Ly~»L,~L,

Lyt Ly—Ly—1L; — 0
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Exercise 17.3. Verify this, and also verify that the lower two routes to the
zero-weight space in A2V yield the same nonzero vector, afxd that the upper
route yields an independent element of A?¥; so that 0 does indeed occur with
multiplicity 2 as a weight of I'g ; o.

To continue, we look next at the third exterior power A*V of the stand?rd
representation; we know that this will contain a copy of thg irreducﬂ))le
representation Ty o, with highest weight L, + L, + L. The weights o'f/\ 14
are of two kinds: we have the eight sums +L, + L, + L, correspopdmg to
the vertices of the reference cube and each occurring once; and we have the
weights +L; each occurring twice (as +L; + Ly — Lyand + L, + L, — Ly).
The weight diagram thus looks like the vertices of the reference cube together
with the midpoints of its faces:

Ly+Ly+ly

Now, the weights + L, must occur in the representation Iy o, with highest
weight L, + L, + L3, since they are congruent to L, + L, + L; modulo the
rool lattice and fie in the convex hull of the transtates of L, + L, -+ L under
the Weyl group (that is, they lie in the closed reference cube). But they cannot
occur with muitiplicity greater than 1: for example, the only way to get from
the point L, + L, + L, to the point L, by translations by the basllc vectors
Ly, — Ly, Ly — Ly,and — 2L, pictured in Diagram (17.1) above (while staying
inside the reference cube)is by translation by — 2L, first, and then by Ly — L,.
it follows that the multiplicities of the weights +L; in Iy o, are I. On the
other hand, we have a natural map

NV-V

obtained by contracting with the element of A*V* preserved by the action of
psC, and the kernel of this map, which must contain the representation
I‘:,:,v 1,, wilt have exactly these weights. The kernel of ¢ ?s thus tl}e irreducible
representation with highest weight L, + L, + Lj; we will call this representa-
tion U for now.

At this point, we have established the existence theorem for repre-

: + tho frsadiuoible ransssantatioe 7 with highest weight
sentations of speC: the itreducible representation I, , . with highes gl

(@a+ b+ c)L, +{a + h)L, + cL, will occur inside the representation
Sym?V @ Sym*W & SymU.
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For example, suppose we want to find the irreducible representation | ST
with highest weight 2L, + L,. The weights of this representation will be the
24 weights +2L, + L;, each taken with multiplicity 1; the § weights + L, +
L, * L,, taken with a multiplicity we do nota priori know (but that the reader
can verify must be either 1 or 2), and the weights + L, taken with some
other multiplicity. At the same time, the representation ¥ @ W, which contains
T',1.0, will take on these weights, with multiplicities I, 3, and 6, respectively.
In particular, it follows that ¥ ® W will contain a copy of the irreducible
representation U with highest weight L, + L, + L, as well; alternatively, we

<can see this directly by observing that the wedge product map
Ve AV - A3V
factors to give a map
Vew-uU

and that T , o must lie in the kernel of this map. To say more about the
location of I , o inside ¥V ® W, and its exact weights, would require either
explicit calculation or something like the Weyl character formula. We will see
in Lecture 24 how ihe latter can be used to solve the problem; for the time
being we leave this as

Exercise 174. Verify by direct calculation that the multiplicities of the weights
ofIy 1, 0are 1,2,and 5, and hence that the kernel of the map ¢ above is exactly
the representation I ; o.

§17.2. Representations of sp,,C in General
The general picture for representations of the symplectic Lie algebras offers
no further surprises. As we have seen, the weight lattice consists simply of
integral linear combinations of the L,. And our typical Weyl chamber is a cone

simulex it soemacs with ol

simplex in ri-space, with edges the rays defined by

P

G=d=""=qg>aqy="=a,=0

The primitive lattice element on the ith ray is the weightw, =L, 4+ 4 L,,

- and we may observe that, similarly to the case of the special linear Lie algebras,

these n undamental weights generate as a semigroup the intersection of
the closed Weyl chamber with the Jattice. Thus, our basic existence and
uniqueness theorem asserts that for an arbitrary n-tuple of natural numbers
(ay, ..., a,) € N" there will be a unique irreducible representation with highest
weight

ayuy + @05+ 0 + 4,0,

=@+ @)Ly + @+ + a4 4 L,
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As before, we denote this by Iy, 0,0
]",,h'm,,n = Do p, tagtl #0004 o Hadlot o +La)

These exhaust all irreducible representations of sp3,C.

We can find the irreducible representation VR =T,
weight L, + =+ Ly casily enough. Clearly, it will be contained in the kth
exterior powet AV of the standard representation. Moreover, we have a
natural contraction map

with highest

with highest

kvr k—.
g NV - A2V

defined by
Qo AT A= Y Q(v,,v,)(—l)‘”“‘v, A AB AT A AT AT
<)
(see §B.3 of Appendix B for an intrinsic definition and explanation). Since the
representation A2V does not have the weight L, + *** + Ly, the irreducible

representation with this highest weight will have to be contained in the kernel
of this map. We claim now that conversely

Theorem 17.5. For 1 < k < n, the kernel of the map ¢, is exactly the irreducible
representation V™ =Ty o.1.0,....0 With highest weight L + - + Ly,

Proor. Clearly, oh to show that the kernel of ¢y is an irreducible
representation of 5p,,C. We wilt do this by restricting to a subalgebra of sp2,C
isomorphic Lo s1,C, and using what we have learned about representations of
1,C.

To describe this copy of sl,C inside sp,,C, consider the subgroup G < 5p;,C
of transformations of the ¥ = C" preserving the skew form @ introduced
in Lecture 16 and preserving as well the decomposition V=Cle,,.... e} ®
C{€us1s---» €20} These can act arbitrarify on the first factor, as Jong as they
do the opposite on the second; in coordinates, they are the matrices

(/x o\ . ...
G=ILKO ,X,,),XE(JL,,«.;I.
We have, correspondingly, a subalgebra

A 0N L,
o —a)tes

isomorphic to si,C.
Now, denote by W the standard representation of s1,C. The restriction of
the representation V of sp,,C to the subalgebra s then splits

V=waow*

into a direct sum of W and its dual; and we have, correspondingly,
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NV =B NWRNW*).

+h=k

H[ovlv does the tensor product A°W @ A"W* decompose as a representation
of st,C? We know the answer to this from the discussion in Lecture 15 (see

Exercise 15.30) we have contraction
.30): we have contraction maps

¥, AW RQAW* o Al @ A fwrs,

;nd the kernel of "l',:,, is the irreducible representation W =
_o....,o,1,0....,9,1‘0,;;\’lth (ll,rsay,a < n — b)highest weight 2L, + -+ +2L, +
Lysy + - + L, The restriction of A*V to s is thus given by ’

Ny = wiah
2,
atb=k2)
and by the same token,

Ker(p) = @x web,

Notethat the actuat 1ghest wei, ht facto; e summand W@ < Ke <
highest t in th
A g su (o)

WD —
L AT A A Ly AN By,
=g, At
1A A A Cgpepagry AT A €y

Exercise 17.6. Show that mor i
.6. ¢ generally the highest wei i
summand W = AV is the vector Bhest Welght vector in any

loh) _
WO =g A A€, A Cgiigar AT A By, A QRTOTHR
T A TTACA Cppigry N AEy A (Z (ei A e"”))(k—a—byul

G By the above, any subspace of Ker(y,) invariant under sp,,C must be a
Blrecl sum, over a subset of pairs (a, b) with a + b = k, of subspaces W9
ut now (supposing for the moment that k < n) we observe that the element.

Zan-b= Eznpa+ Epion-b€592,C

carries the vector w® into w 1**V and, likewise,
5 5

Yoitinebit = vt n-ps1 + Eucprronrars € 592,C
i (a,b) b
carries w™ to w***"_In case a + b = k = n, we see similarly that
Vo= Eyra,0 € 592,C
carries () § —Lb
the vector w*? into wt*~1:**1) and

Upsr = Earinrarr €5924C

. g -

carries w®? to w*%"1) Thus, any repr ion of sp,,C ined in
"

Ker(¢,) and containing any one of the [actors W will contain them all, and
we are done. O
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Exercise 17.7. Another way to conclude this proof would be to remark that,
inasmuch as all the w® above are eigenvectors of different weights, any
highest weight vector for the action of sp,,C on ker(p) < AV would have
to be (up to scalars) one of the w1t would thus be sufficient to find, for each
(a, b) with a + b = k other than (a, ) = (k, 0), a positive root a such that
G (W) 5 0. Do this.

Note that, having found the irreducible representations VO =T, 1.0
with highest weight L, + -+ + L,, any other representation of sp,,C will
occur in a tensor product of these; specifically, the irreducible representation
L,,.....a, With highest weight a,L, + - + a,(L, + - + L,) will eccur in the
product Sym™ ¥ @ Sym“ VP @ - ® Sym* V.

One further remark is that there exist geometric interpretations of the
action of #l,,C on the fund: tai rep tations ¥™. We have said before
that the group PSp,,C may be characterized as the subgroup of PGL,,C
carrying isotropic subspaces of V into isotropic subspaces. At the same time,
PGL,,C acts on the projective space P(A*V') as the connected component of
the identity in the group of motions of this space carrying the Grassmannian
G = Gk, V) = P(AV) into itsell. Now, the subset G, = G of k-dimensionai
isotropic subspaces of V is exactly the intersection of the Grassmannian G
with the subspace P(V'®) associated to the kernel of the map ¢ above; so that
PSp,,C will act on P(V'®) carrying G, into itselfl and indeed when 1 <k <n
ted component of the identity in the group

of motions of P(V'™) preserving the variety G,.

iohost waioht 1

Exercise 17.8. Show that if k > n the contraction ¢, is injective.

§17.3. Weyl’s Construction for Symplectic Groups

We have just seen how the basic representations for sp,,C can be obtained
by taking certain basic representations of the larger Lie algebra l,,C- —in this
case, AV for k < n—and intersecting with the kernef of a contraction con-
structed from the symplectic form. In fact, all the representations of the
symplectic Lie algebras can be given a similar conrete realization, by inter-
secting certain of the irreducible representations of sf,,C with the intersections
of the kernels of all such contractions.

Recall from Lectures 6 and 15 that the irreducible representations of sl,,C
are given by Schur functors S, ¥, where A = (4, 2 +*~ = 44, > 0)is a partition

of some integer d = 3. 4, and V = C™. This represcntation is realized as the

image of a corresponding Young symmetrizer c, acting on the d-fold tensor

I N i Lar anch natir J — I n i
product space V®. For each pair I = {p < ¢} of integers between | and 4

the symplectic form @ determines a contraction
B, VO U,

0, ® BV 0, )0, @ BB B0, B,

}This follows 4 classical notation of wsiny

orthogonat group (altho! E i i {
Py P ugh we have omitled the corresponding notation { } for Lhe general

179

§17.3. Weyl's Construction for Symplectic Groups 263

> @d i i
_Ir,le]l V& ey qenole the intersection of the kernels of all these contractions.
ese subsgz;ces is mapped to itself by permntations, so V% is a subreprescn-
tation of ¥®¢ as a representation of the symmetric group S,. Now let!

S V. s
SV =V S,V (17.10)

This space is a rep ation of the sy ic group Sp,,C of g, since V<
and S,(V) are subrepresentations of F®! over Sp2.C.
:fhio;em V.10, The space S (V) is nonzero if and aitly if the Young diagram
as at most n rows, f.e, Ay = 0. In this case, Scas(V) is the irreducible
representation of sp,,C with highest weight 1, L, + - + 1L,
n L

In other words, for an n-tuple (ay, ..., a,) of non-negative integers
Lta =Sy ¥,
where 1 is the partition (@, + a, + - + G, 0+ +a, )
Tth proof follows the patle.rn for the general linear group giv;n in §6.2, but
we will have to call on a basic result from invariant theory in place of the

simple Lemma 6.23. We first show how to find a corpl @ in ped
For example, if d = 2, then complement to V% in V=

where y is the el correspo;
terms of our canonical basis, y = e ®r e
I={p < ¢} define

W, peu-D_, e

by inserting y in the p, g factors. Note that
2n =dim V on V®¥ D, We claim that

Ve =y gy, W (veu-), (17.12)
To prove thii, put the standard Hermitian metric( , Jon V = C?" using the
givenegasa b o that {ae,, be,) = 6,db. Thi i i ! iti
; ae;, be; yab. 11is extends to give a Hermitian
metric on each' V®.. We claim that the displayed equation is a perpendicular
direct sum. This follows from the following exercise.

Exe:{'cigg 17.13. (i) Verify that for v, w e ¥, W, v @ w) = Q(v, w).
(11} Use (i) to show that Ker(®,) = Im{¥,)! for each J.

Now define F¥ < ¥®? to be the intersection of the kernels of all r-fold

contractions ®;, o -++ o @, , and set

V&L =T W, o0 oW, (VOE-ID) (17.14)

g () for the symplectic group and [ ] for the
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Lemma 17.15. The tensor power V' decomposes into a direct sumit
yoi = VOBV D Vi D@ |25
with p = [d/2], and, for alr>1,
H=VOBVSe O VEL

that there is a perpendi-

Exercise 17.16. (i) Show as ifi
cular decomposition
yot — F@ YW, 0 0 W, (VO
(i) Verify that YUF ) < F:”_.' o o
iii) Show by induction that ¥®¢ is the sum of tiie Spaces 7¢- 2,
Eiv; Finish the proof of the lemma, using (i) and (ii) to deduce that bcg
sums are orthogonal splittings.

All the subspaces in these splittings are invariant by the action of the

symplectic gr;)up §p3.C, as well as the action of the symmetric group Sq. in
particular, we see that
SV =Va= Im(c,: V& = V). (17.47)

ASL7 @ R

Exerclse 17.18*, (i) Show that if s >, ihen AV Ve is cot
Y W, (V®4-2), and deduce that SW'(V) = 0if A, is not 0.
(i) Show that S, (V) is not zero if 4,4 = 0.

For any pair of integers from {1,...,d}, define
3 =¥, 0dp Ve Ve

From what we have seen, V< is the intersection of the kernels' of all these
endomorphisms. Note that the endomorphism of V®¢ determined l?y any
symplectic auiomorphism of V not only commutes with all permutations of
the factors S, but also commutes with the operators 8;. We need a fact which

is proved in Appendix F.2:

Invariant Theory Fact 17.19. Any endomorphism of V' that commutes w.l'th
all permutations in S, and ail the operators 8y is a finlte C-linear combination

of operators of the form A® - ® A, for A €8py,C.

Now let B be the algebra of all endomorphisms of the space V< that
are C-linear combinations of operators of theform A® - ® A,for A€ SpaaC.

Proposition 17.20. The algebra B is precisely the algebra of all endomorphisms
of V4 commuting with all permutations in &,.
o0, 16 F is an endomorphism of ¥ > commuting with all permutations of

is an endomorphism f

S it tha amdamarnhism F of ® that is F on the factor V< and g
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zero on the complementary summand Y, W,(V®¥“"?) is an endomorphism
that commutes with all permutations and all operators ;. The fact that F
is a linear combination of operators from the symplectic group (which we
know from Fact 17.19) implies the same for F. ]

Corollary 17.21. The representations S (,,(V} are irreducible representations of
Sp,.C.

PROOF. Since B is the commutatoy algebra to A = C[&,] acting on the space
V<@, Lemma 6.22 implies that (V) ¢, is an irreducible B-module. But we
have seen that (V*)c, = S, ¥, and the proposition shows that being
irreducible over B is the same as being irreducible over Sp,,C. [}

Exercise 17.22*, Show that the multiplicity with which $ (,,(V) occurs in V ¢
is the dimension m, of the corresponding representation V, of &,.

As was the case for the Weyl construction over GL,C, there are general
formuias for decomposing iensor produets of these representations, as well as
restrictions to subgroups Sp,,-,C, and for their dimensions and multiplicities
of weight spaces. We postpone these questions to Lecture 25, when we will
bhave the Weyl character formula at our disposal.

As we saw in Lecture 15 for GL,C, it is possible to make a commutative
algebra which we denote by §¢ = §¢(¥) out of the sum of all the irreducible
representations of Sp,,C, where ¥ = C*"is the standard representation. Prob-
ably the simplest way to do this, given what we have proved so far, is to start
with the ring

crr e A2 Azrr o Anrr

AWV ) =Sym{VOA VBNV @ QN
= @ Sym(\V)@® - @ Sym NV} @ Sym”(V),

the sum over all n-tuples a = (a,, ..., a,) of non-negative integers. Define a
sing §'(¥, n) to be the quotient of A'(Y, #) by the ideal generated by the same
relations as in (15.53). By the argument in §15.5, the ring S°(V, n) is the direct
sum of all the representations S (V) of GL(¥), as 1 varies over all partitions
with at most n parts.

The decomposition V® = V> @ W of (17.12) determines a decom-
position V® ¢, = V@ ., & W ¢, which is a decomposition

Sl(V) = S(A)(V) ®J<A)(V)

of representations of Sp,,C. We claim that the sum J< = (B, J¢;,(V) is an
ideal in S'(V, n) = €D, S,(V). This is easy to see using weights, since J.,(V)

" is the sum of all the representations in $,(V) whose highest weight is strictly

smaller than A This implies that the image of J¢;,(V) ® S,(V) in §,,(V} is
a sum of representations whose highest weights are less than A + g, so they
must be in J;4,5(V).

The quotient ring is, therefore, the ring S“X(V) we were looking for:

=

&
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S =8V, nI= @Sw(")'

i

In fact, the ideal J < is generated by elements of the form x A r, where x & Ay,

i<n z 2,and ¢ is the el in AV corresponding to the skew fom'\ Q.An

i o tha aroof is sketched at the end of Lecture 25. The calculations, as
outline of the proof is sketched at the

well as other constructions of the ring, can .be found in [L-T], -Whe;f ox;,e c::
also find a discussion of functorial properties of the construction. For bases,

see [DC-P}, {L-M-§], and [M-S].

LECTURE 18

Orthogonal Lie Algebras

In this and the following two lectures we carry out for the orthegon Igebrag
what we have already done in the special linear and symplectic cases. As in those cases,
we start by working out in general the structure of the orthogonal Lie algebras,
describing the roots, root spaces, Weyl group, etc, and then go to work on low-
dimensional examples. There is one new phenomenon here: as it turns out, all three of
the Lie algebras we deal with in §18.2 are isomorphic to symplectic or speci r
Lie algebras we have already analyzed (this will be true of svg C as well, but of no other
orth I Lie algebra). As in the p cases, the analysis of the Lie algebras and
their representation theory will be completely elementary. Algebraic geometry does
intrude into the discussion, however: we have described the isomorphisms between the
orthogonal Lie algebras discussed and special linear and symplectic ones in terms of
projective geometry, since that is what seems to us most natural, This should not be
a problem; there are many other ways of describing these isomorphisms, and readers
who disagree with our choice can substitute their own,

§18.1: 5O,,C and s0,,C
§18.2: Representations of s0,C, $0,C, and s0,C

-§18.1. 8O,,C and so,,C

. We will take up now the analysis of the Lie algebras of orthogonal groups.
Here there is, as we will see very shortly, a very big difference in behavior
 between the so-called “even” orthogonal Lie algebras s0,,C and the “odd”
rthogonal Lie algebras so,,,, C. Interestingly enough, the latter seem at first
lance to be more complicated, especiaily in terms of notation; but when we
-analyze their representations we see that in fact they behave more regularly
han the even ones. in any event, we will try to carry out the analysis in paralle]
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In fact, the ideal J < is generated by elements of the form x A 7, where x € AV,
i <n —2,and ¢ is the element in A2V corresponding to the skew form Q. An
P Y T R J PP PR T RS At By o PR L-Jle af MOUPUIS DRSPS P
Uuwiine ol e pI'UUI IS SKEICNEd dl LIIE €HU Ul LECLUIT Lo, 1HE LallUlatiuils, ad
well,as other constructions of the ring, can be found in [L-T], where one can
also find a discussion of functorial properties of the construction. For bases,

see [DC-P], [L-M-S], and [M-S].

Orthogonal Lie Algebras

In this and the following 1w lectures we carry out for the orthogonal Lie algebras
what we have already done it- the special linear and symplectic cases. As in those cases,
we start by working out iis general the structure of the orthogonal Lie algebras,
describing the roots, root spaces, Weyl group, etc., and then go to work on low-
dimensional ex: ere 3 of
the Lie algebras we deal with in §18.2 are isomorphic to symplectic or special linea
Lie algebras we have already analyzed (this will be true of so, C as well, but of no other
orthogonal Lic algebra). As in the previous cases, the analysis of the Lie algebras and
their representation theory will be completely elementary. Algebraic geometry does

oo batwaan tha

ussion however:

intrude into the di sion, however: w

intrude into the di sms between the
orthogonal Lie algebras discussed and special lincar and symplectic ones in terms of
projective geomeltry, since that is what seems 1o us most natural. This shoutd not be
a problem; there are many other ways of describing these isomorphisms, and readers
who disagree with our choice can substitute their own.

have described the isomor;

§18.1: 80,,C and 50, C
§18.2: Representarions of s0,C, s0,L, and susC

§18.1. §0,,C and s0,,C

We will take up now the analysis of the Lic algebras of orthogonal groups.
Here there is. as we will see very shortly, a very big difference in behavior
between the so-called “even” orthogonal Lic algcbias $0,,C and the “odd”
orthogonal Lie algebras vo,, ., C. Interestingly enough, the latter seem at first
glance to be more cowphicated, especially in terms of notation; but when we
analyze their represeniations we see “hat in fact the y behave more regularly

an o aunn nnag [n ; rant o T fevtn cneee b tha naalocio in masalll
than the even ones. | t, we w:il try to carry out the analysis in parallel
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fashion for as long as is feasible; when it becomes necessary to split up into
cases, we will usually look at the even orthogonal Lie algebras first and then

consider the odd.
Let V be a m-dimensional complex vector space, and

g VxvV-C
a nondegenerate, symmetric bilinear forin on V. The orthogonal group SO,,C
is then defined to be the group of automorphisms A of ¥ of detcrminant 1
preserving 0—that is, such that Q(Av, Aw) = Q(v, w)forallo,we Vfanc! the
orthogonai Lie aigebra sv,,C correspondingiy consists of endomorphisms
A: V — V satislying

Q(Av, w) + Q(o, Aw) =0 (18.1)

R N T s in the case of the !
for all v and w e V. As in the case of the symple ie al

¢
our analysis we want to write Q explicitly in terms of a basis for V, and here
is where the cases of even and odd m first separate. In case m = 291» is even, we
will choose a basis for V in terms of which the quadratic form Q is given by

ebras, to carry out

and
Ole ) =0 ifj#itn
The bilinear form ¢ may be expressed as
Qlx, y)="x" M-y,

where M is the 2n x 2n matrix given in block form as

M= (0 1)

i, of

the group SO,,C is thus the group of 2n x 2n matrices 4 satisfying

M="4-MA

and the Lie algebra so0,,C cotrespondingly the space of matrices X satisfying
the relation

XM+M-X=0

Writing a 2n X 2n matrix X in block form as
¥ A B
“\c D

c
'X‘Mz('o 'B)

we have

and
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/C D\
M-X=
\ )
so that this relation is equivalent to saying that the off-diagonal blocks B and

C of X are skew-symmetric, and the diagonal blocks A and D of X are negative
transposes of each other.

Exercise 18.2. Show that with this choice of basis,

s0,0={(* °Vaes
o a/f
and s0,C = C.
Thesituation in case the dimension m of V is odd is similar, if a little messier.
To haoin with wa will talka ) ta he aynragcikla armeo afa hacic 2 a
To begin with, we will take Q to be expressible, in terms of a basise;,..., €341
for V, by :

Ole;, e,,,) = Ole,, €) - 1 fori<ixn

Oeani1s €2001) = 1;

and
Qlei, ) = 0 for all other pairs i, j.

The bilinear form Q may be expressed as

Qe y)="x"M-y,
where M is the (2n + 1) x (2n + 1) matrix
0(1,]0 \

M={ I,jo]o0
k001}

(the diagonal blocks here having widths n, n, and 1). The Lie algebra so0,,,,C
is correspondingly the space of matrices X satisfying the relation ‘X -M +
M- X = 0;if we write X in block form as

A|B|E
x=|c|p|F |
\VGiHIT J

then this is equivalent to saying that, as in the previous case, B and C are
skew-symmetric and A and D negative transposes of ecch other; and in addition
E=—'H F=—-'G,and J = 0.

With these choices, we may take as Cartan subalgzbra—in both the even
and odd cases—the subalgebra of matrices diagonal in this representation.’

! Note that if we had taken the simpler choice of 0, with M the identity matrix, the Lie algebra
would have isted of skew-symmetric matrices, and there would have been no nonzero
diagonal matrices in the Lie aleebra.
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The subalgebra | is thus generated by the n 2n x 2n matrices H, = E, ;-
E,11,n4+; Whose action on V is to fix e;, send e, to its negative, and kill all the
remaining basis vectors; note that this is the same whether m = 2n or 2n + 1.
We will correspondingly take as basis for the dual vector space b* the dual
basis L;, where {L;, H,) = §, ;.

ii that the Cartar aigebra of s0,,C coincides, as a subspace of si,,,C,
with the Cartan subalgebra of sp,,C, we can use much of the description of
the roots of sp,,C to help locate the roots and root spaces of s0,,C. For
example, we saw in Lecture 16 that the endomorphism

v . ~
Apj= Ly — Bpgjati €5P2a0L

is an eigenvector for the action of h with eigenvalue L, — L;. Since X, ; is also
an element of so0,,C, we see that L; — L is likewise a root of s0,,C, with root
space generated by X; ;. Less directly but using the same analysis, we find that
the endomorphisms

Y= Einey— B

and
Zi,j = En—r [ Enlj,l'

are eigenvectors for the action of b, with eigenvalues L, + Ljand —L; - L,
respectively (note that Y, ; and Z, ; do not coincide with their definitions in
Lecture 16). In sum, then, the roots of the Lie algebra sv,,C are the vectors
a1 o410 c e
{£Li 4+ L}, < b®

The case of the algebra so,,,, C is similar; indeed, ail the eigenvectors for
the action of ly found above in s0,,C, viewed as endomorphisms of C2*! are

likewise eigenvectors for the action of ) on 0,,,, C. In addition, we have the
endomorphisms

Ui = Ei.2n+l - Ezu+1,n+1

and

V.=E . . E, . .

"t nti, Zntl e 2ntl,E
which are eigenvectors with eigenvalues +L;and — L,, respectively. The roots
of 50,,,;C are thus the roots + L; + L; of s0,,C, together with additional
roots +L;.

We note that we could have

ements without decompos-
f the orthogonal Lie algebra
may be interpreted as saying that, in terms of the identification of ¥V with V*
given by the form g, s0,,C is just the Lie algebra of skew-symmetric endo-
morphisms of V' (an endomarphism being skew-symmetric if it is equal to
minus its transpose). That is, the adjoint representation of s0,,C is isomorphic
to the wedge product A*V, In the even case m = 2u, since the weights of V are
+ L, (inasmuch as the subalgebras ) < End(V) coincide, the weights of ¥ must
likewise be the same for s0,,C as for sp,,C), it follows that the roots of 50,,C

o
=]
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) B
see that e,,,, € V is an eigenvector for the action of Iy with eigenvalue 0, so
that the weights of the standard representation ¥ are {+L;} U {0} and the
weights of the adjoint representation correspondingly {+L; + L;} u {+L;}.

+l+1

Exercise 18.3. Use a similar analysis to find the roots of sp,,,C without explicit
calculation.

To make a comparison with the Lie algebra sp,,C, we can say that the root
iagram of s0,,C looks like that of sp,,C with the roots +2L; removed,
whereas the root diagram of s0,,.,, C looks like that of sp,,C with the roots
+2L, replaced by + L;. Note that this immediately tells us what the Weyl
groups are: first, in the case of s0,,.,; C, the Weyl group is the same as that of

5p2C:
1=(Z/2 =W

In the case of s0,,C, the Weyl group is the subgroup of the Weyl group of
sp,,C generated by reflection in the hyperplanes perpendicular to the roots

LT T withaut tha additionn! oonarator civen hy reflection in the roots
To; T Ly, witnOul Ine adaitiona: grneralor given oy reueclion in (e rodls

+ L,. This subgroup still acts as the full symmetric group on the set of
coordinate axes in i*; but the kernel of this action, instead of acting as +1I on
each of the coordinate axes independently, will consist of transformations of
determinant 1;i.e., will act as — | on an even number of axes. (That every such
transformation is indeed in the Weyl group is easy to sce: for example,
reflection in the plane perpendicular to L; + L; followed by reflection in the
plane perpendicular to L; — L; will send Ly to —L;, Ljto — L;, and Ly to Ly
for k # i, j.) Another way to say this is that the Weyl group is the subgroup
of the Weyl group of sp,,C consisting of iransformatious whose determinant
agrees with the sign of the induced permutation of the coordinate axes; so that
while the Weyl grot:p ol sp,,C fits into the exact sequence

1 (Z/2y -

[ i &, -1

5p3,C S,-1,
the Weyl group of sv,,C has instead the sequence

12/ B, c>S,— L

We can likewise describe the Weyl chambers of so0,,C and so,,,,C by
direct comparison with sp,,C. To siart, to choose an ordering of the roois
we take as linear functional on h* a form != ¢, H, + - + c,f,, where
¢y > ¢y >+ > ¢, > 0. The positive roots in the case of $0,,., C are then
RY = {L + Lj};c;u {Li = Li}ic; 9 {Li}s»

whereas in the case of so,,C we have

R™ ={Li+ L}ic; v {Li — L}y

The primitive positive roots are
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Ly-L,L,—L;,....,L,,~L,L, for s0,,,,C;
Ly—L,,Ly—L;,...,L,y — L, L, + L, forso,,C.

In the first case, the Weyl chamber is exactly the same as for sp,,C, namely,
form=2n+1,

={alia 20> 2420

since the roots are the same except for the factor of 2 on some. In the case of
$0,,C, since there is no root along the line spanned by the L,, the equality
a, = 0 does not describe a face of the Weyl chamber; however, since L,_, + L,
is still a root (and a positive one) we still have the inequality a,_; + 4, > 0in
W, so that we can write, for m = 2n,

=Zaliaza 220, 2}

(Note that in the case of s0,,C we could have chosen our linear functional
I=c H + " +¢H, with ¢, >, > > —c,>0; the ordering of the

roots, and consequently the Weyl chamber, would still be the same.)
As for the Killing form, the same considerations as for the symplectic case
show that it must be, up to scalars, the standard quadratic form: B(H,, H) =
j- (This was impli Weyl group) The explicit

calculauon is no more dlﬂ"cult and we leave it as an exercise:

@n—2)Y ab, ifm=2n+1
B H. H) = '
Qa3 biH) {(4n ~ Y ab, itm=2n

Next, to describe the representations of the orthogonal Lie algebras we
have to determine the weight lattice in i*; and to do this we must, as before,
locate the copies s, of sl,C corresponding to the root pairs +o, and the
corrcsponding distinguished elements H, of . This is so similar to the case of
5P2,C that we will leave the actuai caicuiations as an exercise; we will simply
state here the results that in s0,,C for any m,

(i) the distinguished copy 5.,-1, Of s, associated to the root L, — L,
is the span of the root spaces 91, =C X}, 9 -1, = C'X;; and their
commutator [ X ; X, = E, — Iz i+ E..; ., with d tinguished
element H, _ -, =Hi— H; ([hls is exactly asin the case of sp,,C);

(ii) the distinguished copy s, 1, Of s1,C associated to the root L, + L,
is the span of the root spaces g, ,, =C- Yip 811, = C-Z; ; and their
commutator [¥;;, Z,;] = — = Epjnii + Eupinrt = —H; — H,
with distinguished eiement Hy, +1, = H, -+ H;(so that we have also H_ P
~H; — H;}; and in the case of 501,,,,,(3

{iii) the distinguished copy s, of sl, € associated to the root L, is the span
of the root spaces g;, = C- U, g-,, = C- ¥, and their commutator [U, V] =
—E E —E .1 = — H,, with distinguished element

2atl,a+iv Snti, Indi intiia 1, Wi aistinguisaed

2H (so that H_ L, = —2H; as well).

Exercise 18.4. Verify the computations made here.
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Again, the confgurahon of distinguished elements resembles that of sp,, C
it by the substitui‘on of +2 A for L H

H Dy thesubstituion of L2410 £ H,

whereas that of su,,C dm‘ers by the removal of the 4- H,. The effect on the
weight lattice is the same in either case: for both even and odd orthogonal Lie
algebras, the weight laitice A, is the lattice generated by the L; together with
the element (L + -+ + L,)/2.

Exercise 18.5. Show that

J’Z/2 ifm=2n+1
Aw/Ag =< Z/4 if m = 2nand nis odd
Z[2@®2/2 ifm=2nandniseven.

S0

C
50

To give some examples, start with the case n = . Of course, s0,C & C is not
semisimple. The root system of s0,C, on the other hand, looks like that of st, C:

This is because, in fact, the two Lie algebras are isomorphic. Indeed, like the
symplectic group, the quotient PSO,,C of the orthogonal group by its center
can be realized as the motions of the projective space PV preserving isotropic
subspaces for the quadratic form Q; in particular, this means we can real-
ize PSO,C as the group of motions of PV = P™* carrying the quadric
hypcrsurﬁce

0 = {[v]: Q(v, v} =0}
into itself. Tn the first case of this, we see that the group PSO,C is the group
of motions of the projective plane P? carrying a conic curve C < P2 into itself.
But we have seen before that this group is also PGL,C (the conic curve is
itself isomorphic to P!, and the group acts as its full group of automorphisms),
giving us the isomorphism s0,C = s[,C. One thing to note here is that the
“standard” representation of s0,C is not the standard representation of st,C,
but rather its symmetric square. In fact, the irreducible representation with
highest weight £ L, is not contained in tensor powers of the standard represen-
tation of so,C. This will turn out to be significant: the standard representation

of ¢l C, viewed as a representation of so;C, is the first example of a spin

representation of an orthogonal Lie algebra.
The next examples involve two-dimensional Cartan algebras. First we have
s0,C, whose root diagram looks like
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TLytiy Litl,
_ 0
“Ly- L, Ly-Ly

S 0N TN

Note one thing about this diagram: the roots are located on the union of
two complementary lines. This says, by Exercise 14.33, that the I.ie aigebra
s0,C is decomposable, and in fact should be the sum of two algebras each of
whose root diagrams looks like that of s(,C; explicitly, s0,C is the direct sum
of the two algebras s,, for & = L, + L, and & = L, — L,. In fact, we can see
this isomorphism

s0,C = sl,C x s(,C, (18.6)

as in the previous example, geometrically. Precisely, we may realize the group
PSO,C =SO,C/{ 1} as the connected component of the identity in the
group of motions of projective three-space P* carrying a quadric hyper-
surface @ into itself. But a quadric hypersurface in P? has two rulings by
lines, and these two rulings give an isomorphism of Q with a product P! » p!

\Jizainy

PSO,C thus acts on the product P! x P*; and since the connected component
of the identity in the automorphism group of this variety is just the product
PG1.,C x PGL,C, we get an inclusion

PSO,C - PGL,C x PGL,C.

Another way of saying this is to remark that PSO,C acts on the variety of
isotropic 2-planes for the quadratic form Q on V; and this variety is just the
disjoint union of two copies of P!. To see in this case that the map is an
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isomorphism, consider the tensor product ¥V =U® W of the pullbacks to
s, C x sI,€ of the standard representations of the two factors. Clearly the
acztion on P{U ® W) will preserve the points corresponding to decompqsabl_e
tensors {that is, points of the form [u ® w]);' but lhe.locus_ of such pomés is
just a quadric hypersurface, giving us the inverse inclusion of PGL,C x
PGL,C in PSO,C. N o I

In fact, all of this will fall out of the analysis of the representations o1 50, L,
if we just pursue it as usual. To begin with, the Weyl chamber we have select«?d

looks like

|/ |/
N .

SN

t L. (note that the highest weight of the standard fepresen-
{atlon lies in this casel i‘n the interior of the Weyl ch_amber, something of an
anomaly). Its second exterior power will have weights +L, + [, and 0
(occurting with multiplicity 2), i.e., diagram
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NN

Litly

4 AN

Al
Y I N IR

We.see One thing about this representation right away, namely, that it cannot
be irreducible. Indeed, the images of the highest weight L, + L, under the

Weyl group consfstjust of (L + L,), so that the diagram of the irreducible
representation with this highest weight is

AT NN

We see 'from this that the second exterior power A%V of the standard
representation of so,C must be the direct sum of the irreducible represen-
tations W1.= Fpir, and W, = T -1, with highest weights L, + L, and
L, ~ L;. Since A2V is at the same time the adjoint representation, this says
that 50, C itself must be a product of Lie algebras with adjoint representations
Iy ep, and |

One way to derive the picture of the ruling of the quadric in P from this
decomposition is to view 50, as a subalgebra of s1,C, and the action of
PSO“C. on P(A?V) as a subgroup of the group of motions of P(A2V) = P
preserving the Grassmannian G = G(2, V) of lines in P> In fact, we see from
the ahave that the action of PSO, on P* will preserve a pair orcofnplemcnla;};
2-planes PW, and PW,; it follows that this action must carry into themselves
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the intersections of these 2-planes with the Grassmannian. These intersections
are conic curves, corresponding to one-parameter families of lines sweeping
out a quadric surface (necessarily the same quadric, since the action of 80,C
on V preserves a unique quadratic form); thus, the two rulings of the quadric.

PW, W,

G=GEW

-

spect of this example: as in the case of s0;C = s1,C, the
weights of the standard representation of s0,C do not generate the weight
lattice, but rather a sublattice Z{L,, L,} ol index 2 in Ay. Thus, there is no
way of constructing all the representations of so,C by applying linear- or
multilinear-algebraic constructions to the standard representation; it is only
after we are aware of the isomorphism so,C X sl,C x s[,C that we can
construct, for example, the representation Ty .p,. with highest weight
(Ly + L,)2 (of course, this is just the pullback from the first factor of
s1,C x sl,C of the standard representaticn of sl,C).

We come now to the case of se;C, which is more interesting. The root
diagram in this case looks like
AN AN / S
Ly+L,y

N
N\

NN
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(as in the preceding example, the weight lattice is the lattice of intersections
of all the lines drawn). The first thing we should notice about this diagram is

that it is isomorphic to the weight diagram of the Lie algebra sp,C; the

diagram just appears here rotated through an angle of /4. Indeed, this is not -

accidental; the two Lic algebras sp,C and so,C are isomorphic, and it is
not hard to construct this isomorphism explicitly. To see the isomorphism
geometrically, we simply have to recall the identification, made in Lecture
14, of the group PSp,C with a group of motions of P* There, we saw
that the larger group PGL,C could be identified with the automorphisms
of the projective space PA2Y) = p3 preserving the Grassmannian G =
G(2, 4 = P(A’V). The subgroup PSp,C = PGL,€ thus preserves hoth the
Grassmannian G, which is a quadric hypersurface in P2, and the decomposi-
tion of A%V into the span C- Q of the skew form Qe NV* = A2V and its
complement W, and so acts on PW carrying the intersection G, = G ~ PW
into itself. We thus saw that PSp,C was a subgroup of the group of motions
of projective space P* preserving a quadric hypersuiface, and asserted that in
fact it was the whole group.

(To see the reverse inclusion directly, we can invoke a little algebraic
geometry, which tells us that the locus of isotropic fines for a quadric in P* is
isomorphic to I3, so that PSO,C acts on P2, Moreover, this action preserves
the subset of pairs of points in P? whose corresponding lines in P* intersect,
which, for a suitably defined skew-symmetric bilinear form g, is exactly the
set of pairs ([], [w]) such that O, w) =0, so that we have an inclusion of
PSO,C in PSp,C)

Let us proceed fo anaiyze the fepresentations of so,C as we would
ordinarily, bearing in mind the isomorphism with 5p4C. To begin with, we
draw the Weyl chamber picked out above in h*:

As for the representations of 505 C, we have {o begin with the standard, which
has weight diagram
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NN

/

S AN ™~

This we sce corresponds to the representation W = /\_2 V/C-Q of sp,C. Next,
the second exterior power of the standard representation of so; C has weights

This is of course the adjoint representation of so,C;_it is the \rrgducl:?hlc
representation with highest weight L, + L,. Note tl}at it corrc‘spom;zs to the
symmetric square Sym?V of the standard representation of sp, C (see Exercise

16.8).

; e Aol 20
Exercise i8.7, Show that coniraction wiih the quadratic form ¢ € Sym*V
preserved by the action of so5C induces maps

2

@: Sym°V — Sym®~*V.

: . " .
Show that the kernel of this contraction is exactly the irre r
:ill;\r;v:ﬂilh highest weight a-L,. Compare this with the analysis in Exercise
16.11.
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Exercise 18.8. Examine the symmetric power Sym“(A?V) of the representation
A?V. This will contain a ¢ pyoft

he irreducible representation Toe, 11,; what

I
else will it contain? Interpret these other factors in light of the isomorphism
505C = 6p,C.

Exercise 18.9. For an example of a “mixed” tensor, consider the irreducible

representation I, , +L,- Show that this is contained in the kernels of the wedge
product map

@ VRN .- By
and the composition
P VINV V@AV v,

where the first map is induced by the isomorphism 0: V — V* and the second
is the contraction V*@ A’V 5, v Is it equal to the intersection of these

kerneis? Show that the Wweight diagram of this representation is

After you are done with this analysis, compare with the analysis given of the
corresponding representation in Lecture 16,

Note that, as in the case of the other orthogonal Lie algel,ras studied so
far (and as is the case for all 50,,C), the weights of the standard representation
do not generare the weight lattice, but only the sublattice of index two generated
by the L,. Thus, the tensor algebra of the standard representation wiil contain
only one-half of all the irreducible representations of so; C. Now, we do know
that there are others, and even something about them-—for example, we see
in the following exercise that the irreducible representation of s0,C with
highest weight (L, + L,)/2 is a sort of “symmetric square root” of the adjoint
representation:

Exercise 18.10. Show, using only root and weight diagrams for s0,C, that the
exterior square A2V of the standard tepresentation of so,C is actually the
symmetric square of an irreducible representation.

, 281
§18.2. Representations of s0,C, s0,C, and so,C

:We

do not at this point have, however, a way of constrqcting this reprmen(l.almor}
without invoking the isomorphism. This represcntatfon, the represgx;]t:‘;l ?olr]) o
s0,C with highest weighi L,/2, and the reprf.serntat‘lon of s0,C wit u? tehe
weight (L, + L,)/2 discussed above arte callec‘S spin representatxons28
corresponding Lie algebras and will be the subject matter of Lecture 20,



LECTURE 19

504C, s0,C, and so, C

This Iecturt? is aqalognus in content (and prerequisites) to Lecturc 17: we do some
mote low-dimensionat examples and then describe the general picture of the repr

tations of tlfne orthogonal Lie algebras. One difference is that enly half the ;"Bg‘isen-
representations uf'somt lie in the tensor algebra of the stan(ia;l:d; loJcor‘;Iplet; .tll;:;)ictur.;
:Lf the lx;;presematmn theory we I?ave to construct the spin representations, which is

e subject matter of the following lecture. The first four sections are completel

elementary (excep} possibly for the discussion of the isomorphism so,C = sl,C o
§19.1); the last section assumes a knowledge of Lecture 6 and §15.2 Lt 5' 1 o
by those who did not read those seclionsj, ST

§19.1: Representations of 50,C

§19.2: Representations of the even orthogonal algebras
3: Representations of so,C

§ : Representations of the odd orthogonal algebras

§19.5: Weyl's construction for orthogonal groups

IS )

$15.1. Representations of so,C

We continue our discussion of or| i i
tinue thogonal Lie algebras with i
s0sC. First, its root diagram: ¢ the example of
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LytLl,
® -
| Li+ls
{®
|
® L+L,
i
] | ]
|
e ———
4 Li-Ly
L

Once more (and for the last time), we notice a coincidence between this and
the root diagram of a Lie algebra already studied, namely, sI,C. In fact, the
two Lie algebras are isomorphic, The isomorphism is one we have already
observed, in a sense: in the preceding lecture we noted that if V is a four-
dimensional vector space, then the group PGL,C may be realized as the

connected component of the identity in the group of motions of P(\?V) = P*
earrving the Grassmannian G = G(2. 4) = P{A2V) int d

carrying the Grassmannian G = G{(2,4) = PIA*V} is
PGL,C the subgroup fixing a hyperplane PW = P* = P*, We used this to
identify the subgroup PSp, C with the orthogonal group PSO,C; at the same
time it gives an identification of the larger group PGL,C with the orthogonal
group PSO4C.

Even though so4C is isomorphic to a Lie algebra we have already examined,
it is worth going through the analysis of its representations for what amounts
to a second time, partly so as to understand the isomorphism better, but
mainly because we will see clearly in the case of s0,C a number of phenomena

noeal Taatart wa draw
iefal 10 star, we araw

ST e

o SR IR
11 AGIG ifiie O in

the Weyl chamber in h*:

Ly*Lytly
3

As usual, we begin with the standard representation, which has weights
+ L,, corresponding to the centers of the faces of the cube:
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Note that th? hlgl?es( weight L, once more lies on anedge of the Weyl chamber

:(ar;dard rePresentation of s05C corresponds, as we have already pointed out,
0 ;\;e exlen(l»r square of the standard representation of 51, C ’
ext, we look at the exterior s 2 ]
quare A’V of the standard i
o 50, Ty o the exterior are /A’ st representation
505 s w. have weights + L, + Lj{ol course, it is the adjoint represen-
tation) and so will have weight diagram

lIi\io:: that :jhe highest weight vector Ly + L, of this representation does not
n an edge of the Weyl chamber, but rather in the inferior of 4 fara {the

Back fara fore o ar o0 CHAIMDEL, but rather in the interior of a face {the
back lace, in the diagram above). In order to generate all the representations,

we still need to find the irreducible i i
eeC representations with highe: i
the remaining two edges of the Weyl chamber. st weight along

We look next at the exterior cube A3V of the standard representation. The

weights here are the eight weights +L, + [.. + [
BIL WCIBINS 1Ly + L, + L,, each taken with mulj-

plicity one, and the six wei ; i i iplici
ingrann ights + L, each taken with multiplicity 2, as in the

@ L +L,+L
! (@) /Tl e
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NMow, we notice something very interesting: this cannot be an irreducible
representation. We can see this in a number of ways: the images of the weight
L; + L, -+ Ly under the Weyl group, for example, consist of every other vertex
of the reference cube; in particular, their convex hull does not contain the

remaining four vertices including L, + L, — L. Equivalently, there is no way
togo from L, + L; + L to L; + L, — L; by translation by negative root
vectors. The representation AV will thus contain copies of the irreducible
representations Iy, .p .y, and Ty, ., ;, with highest weights L, + Ly+ Ly

and L, + L, — L, with weight diagiams

Ly+Ly+L;

Ly+Ly-Ly

Since the weight diagram of each of these is a tetrahedron containing the
weights + L, we have accounted for all the weights of A’V and so must have
a direct sum decomposition

NV =T. AL

Thy Loty DAL L, -Ly
We can relate this direct sum decomposition to a geometric feature of a
quadric hypersurface in P*, analogous to the presence of two rulings on a

quadric in P3. We saw before that the locus of lines lying on a quadric

aiirface in M3 furae gut to disconnected, consistine of two components
surface in PP° turns cut to be disconnected, consisting of two componenis
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each isomorphic to P! (and embedded, via the Pliicker embedding of the
Grassmaanian G = G(2, 4) of lines in P? in P(A’C) = P%, as a pair of conic
curves lying in complementary 2-planes in P°). In a sitmilar fashion, the variety
of 2-planes lying on a quadric hypersurface in P* turns out to be disconnected,
consisting of two components that, under the Pliicker embedding of G(3, 6)
in PIA’CS) = P'°, span two complementary 9-planes P, and PW,; these
two planes give the direct sum decompositicn of AV as an 50,C-module,

In fact, if we think of a quadric hypersurface in P° as the Grassmannian
G = G(2, 4 of lines in P3, we can see explicitly what these two families of
2-planes are: for every point p € P? the locus of lines passing through p forms
a 2-plane on G, and for every planc H < P? the locus of lines lyingin His a
2-plane in G. These are the two families; indeed, in this case we can g0 two
steps further. First, we sce from this that each of these families is para-
metrized by P3, so that the connected component PSO4C of the identity
in the group of motions of P° preserving ihe Grassmannian acts on P3,
giving us the inverse inclusion PSO,C < PGL,C. Second, under the Pliicker
embedding each of these families is carried iuto a copy of the quadratic
Veronese embedding of P? into P9, giving us the identification of the direct
sum factors of the third exterior power of the standard repr
with the symmetric square of the standard representation of s[,C,

Excrcise 19.1. Verify, without using the isomorphism with s0,C and the
analysis above, that the standard representation V of sl, C satisfies

N(A*Y) = Sym?V @ Sym?2v*,

Note that we have now identified, in terms of tensor powers of the standard
one, irreducible representations of s0sC with highest weight vectors L,
Li+ L+ Lyand Ly + L, — L, lying along the edge of the Weyl chamber,
as well as one with highest weight £, + L, lying in a face. We can thus find
irreducible representations with highest weight y, if not for every y in Ay W,
at least for every weight ¥ in the intersection of % with a sublattice of index
2in Ay.

§19.2. Representations of the Even
Orthogonal Algebras

We will not examine any further representations of so,C per se, leaving it as
anexercise 1o do so (and to compare te results to the corresponding analysis
for s1,€). Instead, we can now describe the general pattern for representations
of the even orthogonal Lie algebras s0,,C. The complete story will have to
wait until the following lecture, since at present we cannot construct all the
fepresentations of so,,C (as we have pointed out, we have been able to do so
in the cases n = 2 and 3 studied so far only by virtue of isomorphisms with
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other Lie algebras; and there are no more such isomorphisms from this point
i ive 2 icture as we can.
n). We will nonetheless give as much of the pic ;
° )To begin with, recall that the weight lattice. of sv,,C is generated by
L,,.--, L, together with the further vector (L; -+ --- + L,)/2. The Weyl cham-
ber, on the other hand, is the cone

W ={Yalia, a2 = ta,}

Note that the Weyl chamber is a simplicial cone, with faces corresponrdul\lg
to the n planes a, = ay, ..., @, = a, and a,_ = —a,; the edgesLo the
Weyl chaniber ure thus the rays generated by the vectors Ly, L, : 2[,‘ ey
Lyt 4 Loy Lyt +L,and Ly 4+ L, — L, (noteu:_a:h . +
---+ L,_y is not on an edge of the Weyl chamber). We see fron.1h n: c';lo,st
in every pravious case, the intersection of the weight latucsf v'vln .t fh‘s osed
Weyl cone is a free semigroup generaled })y funda&n:ental ‘we|g! ts, in thi
the vectors L, Ly + L,, ..., ., + -+ + L,_, and ihe vectors
a=(Ly+ "+ L)2 and B=(L+ "+ Loy~ L2

As before, the obvious place to start to look for irreducible representations

is among the exterior powers of the standard representatio

works: we have

=

Theorem 19.2. (i) The exterior powers NV of the standard representation V of

- . "
irreducible for k = 1,2 n — 1; and (i) The exterior power NV
50,,C are irreducible for k=1,2,...,n - 1; (i1)

has exactly two irreducible factors.

Proor. The proof will follow the same lines as that of t_he aﬂalogOL}Sl theorebm
for the symplectic Lie algebras in Lecture 17; in part.lcular, we W{l stag y
considering the restriction to the same subalgebra as in the case of sp,, S
Recall that the group Sp,,C = SL;,C of autqmorphlsms preservmgf
the skew form Q introduced in Lecture 16 conle.xms the subgroup G o
womorphisms of the space V =C?" preserving the decumpos:t.lon
o c! P Yo Cle, ¢,,), acting as an arbitrary automorphism
i =Cley, ., € @ ChEayys oo, €, BCUDE 28 arb !
on the ﬁrls,l faétc:r and as the inverse transpose of that automorphism on the
second factor; in matrices

0
G= {(i ’X’")’ Xe GL,,C}A

In fact, the subgroup SQ,,C < SL,,C also contains the same subgroup; we
s
have, correspondingly a subalgebra
- d
: i ith simplc roots &, = L, - Ly, for t 1< n— 1, an
! To conform tu standard conventions, with simpl 4 Jortstsn b
a, = L,y + L, to have o(H, )} = & ;» the fundamental weights w, shou P
ay =L+ + Lifor1<i<n—2uand
Oy = f= Lyt F gy = L)f2, wg=a=(L+ 0+ L2
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Isomorphic to si,C.
Denote by W the standard representation of si,C. As in the previous case,

¢ restriction of the sta Id representation V of so to the sub
th trict ndard i 2
t: P t 4 . .C to the s algebra s

V=WoWwk*
into a direct sum of W and its dual; and we have, correspondingly,

NV = @ (W W,

We
dec;llso can say how each l:actor on the right-hand side of this expressiol
Poses as a representation of sl,C: we have contraction maps< "

. Aa < 1
TNW @ AW

w 1 Ae—tyy o Ab-1
Y T NTWRNTIWE
and th i i i

the kernel of W, , is the irreducible representation WY with highest

weight 20) + - + 2L, + L, s .
thus given by ¢ a1 + 7' + L,_,. The restriction of A*V to s is

Nv= @ we»
athsh ’
at+Lzk(2)

where the actual highest weigh: i
Where gl ight factor in the summand Wb = At is the

(a,b)
Wb — o A ...
1 NN €y Ao A2y, A QFEDR

e A .
PATTINC N iy A A ey A (Y (6 A gy )00

e
No
i

177 anl;ehvi;?o:s w"f'”” have distinct weights; and it follows, asin Excrcise
-1 iest weight vector ti I

sealar muliple of one of rJhe e nﬁ:;illlhfhamm;r()f 503, on AV wifl ve a

AV isitreducby ) o us suffice, in order to show ihat

€ as representation of so,, C for k ibi .

with 2 < 2L l0r k < 1, to exhibit for each (a, b

[i! (\v‘“-b)—;: 5”](“]1(" Oi-her ﬂm." {k’ 0) ap 1001  such that the i:1382
i iy, s i simplest in the case a + b = k < n (so there is no fact

Q in wYY: jus as in the case of 5p,,C we have cror

Yort,noper (WD)

= (E _

( at i, 2n-b+i Erbﬂ,m art)Eg A A €a N8y pi1 AT AR,

= pletlb=) - !

#0

an? Y, ;is the generator of the positive root space q,
L+ Lyt
neasea + b < k < n, we observe first that for an,y ijandj
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Y, 40) = (Einii— Eins) (L (€5 A i)
=2-¢; A&
#0
so that whenevera < i, j<n—b,
Yr.j(W(a'bi)

—a-b
=Y e A A€ A ey AN B A QU=
k~a—b)2
=E AN A g AN g A Yl.j((Z(ep A enp))( a-hfz)
—(k—a—b)(e, A ACAEGACACH b ATTAE, A Qiab22)

#0.

It is always possible to find a pair (i, j) satisfying the conditionsa < i,j<n—b
since we are assuming a + b < k < n; this concludes the proof of part (i).
The proof of part (ii) requires only one further step: we have to check the
vectors W with a -+ b = k = n to see i any of them might be highest weight
vectors for s0,,C. In fact (as the statement of the theorem implies), two of them
are: It is not hard to check that, in fact, w®® and w*~*-") are killed by every
positive root space g,z To see that no other vector w*~ s, look ai the

action of Y,, i 442 € Oz, +L,.,- WE have

Yort,ar 2 (W el

{E —FE Mo e
(Esttntarz = Larz,nrati 81 A

€ AN €A oy A Cuigrr A Catary AT A €20

—€y A TN A gy N Eppgra AT N €y

[m]

u.

*

Remarks, (i) This theorem will be a consequcnce of the Weyl character
formula, which will tell us a priori that the dimension of the irreducible
hag dimension 2“\

- ++ L, hasdimension \k)

representation of 50,,C witl: highest

if k < n, and half that if k = n.

{ii) Note also that by the above, NV is
representations I, and I, with highest weights 20 =L, +*
28=L, + - +L,, — L, Indeed, the inclusion T, @ Iy < A"V can be
seen just from the weight diagram: 737 possesses a highest weight vector with

.+ L. and so contains a copy of I,,; but this repre-

highest weight L, + - -
sentation does not possess the weight 28, and so A"V must contain ;g as

well (Alternatively, we observed in the preceding lecture that in choos-

well. (Alternatively, we ODSEI

ing an ordering of the roots we could have chosen our linear functional | =
e Hy + 4+ ¢, Hywithey > e >0 > —6, > 0 without altering the positive

the direct sum of the two irreducible
-+ L, and
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roots or the Weyl chamber; in this case the weight 4 of AV with /(1) maximal
would be 28, showing that Iy c A'V)

(iii) If we want to avoid weight diagrams altogether, we can still see that
AV must be reducible, because the action of 50,,C preserves two bilinear
forms: first, we have the bilinear form induced on A"V by the form QonV;
and second we have the wedge product .

@AV X NV Ny = C,

the last map takinge, A --- A €z, to L. It follows that A" is reducible; indeed,
if we want to see the direct sum decomposition asserted in the statement of
the theorem we can look at the compaosition

Ie compos
T AV S NVE LAY,

where the first map is the isomorphism given by Q and the second is

the isomorphism given by o. The square of this map is the identity, and

decomposing A"V into +1 and - [ eigenspaces for this map gives two
subrepresentations.

Exercise 19.3*. Part (i) of Theorem 19.2 can also be proved by sh

Owring thas
proved oy sho ]

wing taat
for any nonzero vector we AV, the linear span of the vectors X (w), for
X €50,,C, is all of A'V. For these purposes take, instead of the basis we have

been using, an orthonormal basis Uiy, U, for V= C™ m = 2n, 50 Qlv;, v)) =

i
0, ;. The vectors v, = i A Ao, D= {ip <o+ <4y}, form a basis for AV,
and so,,C has a basis consisting of endomorphisms Vo.u» b < g, which takes
ttov,, v, to — Oy, and takes the other v, to zero. Compute the images V,.4(vr),
and prove the claim, first, when w = v, for some I, and then by induction on
the number of nonzero coefficients in the expression w = Y. a,v,. For (i) a

similar argument shows that A"V is an irreducible representation of the group

O,C, and the ideas of §5.1 (cf. §19.5) can be used to see how it decomposes over
the subgroup SO, C of index two.

We return now to our analysis of the representa s0,,C. By the
theorem, the exterior powers V, \*V, .., A 2y provide us with the irreduc-
ible representations with highest weight the fundamenial weight along the first
n—2 edges of the Weyl chamber (of course, the exterior power A1y s
irreducible as well, but as we have observed, L, + - + L,_, is not onan edge
of the Weyl chamber, and 10 A"V is not as useful for our purposes). For the
remaining two edges, we have found irreducible representations with highest
weights located there, namely the two direct sum factors of A*V; but the
highest weights of these two representations are not primitive ones; they are
divisible by 2. Thus, given the theorem above, we see that we have constructed
exactly onc-half the irreducible representations of s0,,C, n.mely, those whose
highest weight lies in the sublattice Z{1.,, ..., L} < by, Explicitly, any

weight y in the closed Weylchamber can bee -pressed (uniquely) in the form

ations of sp, € By the

1
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y=a L+ +a, Ly ++ L)
+ @py(Ly + 7+ Loy — La)f2 4 ay(Ly 4+ + Ly)/2

with a; € N. If a,_, + a, is even, with a,_, > a, we se¢ that the representation

Sym™V ® -+ ® Sym**(A""2¥) @ Sym™(\"'V) @ Symn-1=a/4(T, )
will contain an irreducible representation T, with highest weight y; whereas if
a, = a,-,, we will find T, inside

n= "]

Sym*V ® -+ ® Sym™-2(A\""2V) @ Sym“ (A" V) @ Sym - 2(T,).

There remains the problem of constructing irreducible representatio.ns T,
whose highest weight y involves an odd number. of o’s and f’s. To d: lhh'lsﬁr;:
clearly have to exhibit irreducible representations I, and l"ﬂ'wn ; ig s
weights @ and B. These exist, and are called the spin represent:muns”rf sn::n,
we will study them in detail in the foilo‘w*i‘ng leciure. We see :ro;.;. }lluc guu::
that once we exhibit the two representations I, and F‘,,.we will | 1::\;:3. (;](;st
structed all the representations of so%"C. The representation I, with hig
weight 7 written above will be found in the tensor product

SEAR=2T7% o r

Sym* ¥V ®--- ® Sym™2{(A"7*¥) @ Sym™i{T,} @ Sym™{
For the time being, we will assume the existence of the spin repn:escn?auons
of $0,,C; there is a good deal we can say about these representations just on
2 > it
the basis of their weight diagrams.

Exercise 19.4*. Find the weights (with multiplicitics) of the representations
AV, and also of Ty, Fyp, T, and Ty,

Exercise 19.5. Using the above, show that I, and .r” are dual to one another
when n is odd, and that they are seif-dual when # is even.

Exercise 19.6. Give the complete decomposition into irreducible representa-
tions of Sym? T, and A?T,. Show that

LOL=TON VO VON Ve .

Exercise 19.7. Show that
l“,® Fy - /\n'lVe/\n—SV®7\n—5V®“. .

Exercise 19.8. Verify directly the above statements in the case of svC, using
the isomorphism with st,C.
Exercise 19.9. Show that the automorphism of C?" that in‘terchanges é,, ::;c:
5, leaving the other e; fixed, determines an automorphism of so,,

2ny

preserves the n—2 roots Ly — Ly, ..., L, 5~ L, and imel:chax;/gtes
L,.. — L,and L,_; + L,. This automorphism takes the representation ¥ to
‘n—1 'n = ‘n*

itself, but interchanges I, and I',.
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§19.3. Representations of so,C

While we might reasonably be a
tl,hlzral!;e:\:nras even more strangely behaved than the even orthogonal algebras,
! eis some good news: even though the roots systems of the odd Lie algebras’
: é)pea‘r‘mloreA comphca[ed than those of the even, the representation theory of
ihe odd algebras is somewhat tamer. We will describe these rcpresentati(;n;;

starting with the example of Wi i i i
g h | p 50, C; we begin, as always, with a picture of the

Lytiyhiy

As we said, this looks like the root dia; ram for sp exc at the roo
s 1 h d
" g O] 6C, ex ept that the roots

tened to -+ L;. Unlike the case of s0,C, |
the 10|.1g and short roots could be 'confused and the (r):):? il[i;g‘:;’r‘::e:v?s’ (‘;Z:T'::e
Z?:nilxl:\gliz congr.uep‘t to that of sp,C, in thz_z present circumstance the root
diag, s not similar to any other; the Lie algebra so,C, in fact, is not
isomorphic to any of the others we have studied. Nexi. 1he7 “;r-'vl chamber:
, the Weyl chamber:

LitLy+i,
Tz TN

Again, the Weyl chamber itself I i
! n, 1 yhe ooks just like that of sp,C: the di
in this picture is in the weight lattice, which contains th:6 ’ iference

A additional vector

pprehensive about the prospect of a family of
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As usual, we start our study of the representations of so;C with the
standard representation, whose weights are + L, and 0:

Note that the highest weight L, of this representation lies along the front edge
of the Weyl chamber. Next, the weights of the exterior square AV are
+L;+ L;, L, and O (taken three times); this, of course, is just the adjoint
representation. Note that the highest weight L, + L, of this representation is
the same as that of the exterior square of the standard representation for s0sC,
but because of the smaller Weyl chamber this weight does indeed lie on an
edge of the chamber.

Next, consider the third exterior power A3V of the standard. This has
weights + L, + L, + Ls, +L; + L;, +L; (with multiplicity 2) and 0 (with
multiplicity 3), i, at the midpoints of all the vertices, edges, and faces of the
cube:

I e

1t is not obvious, from the weight diagram alone, that this is an irreducible
representation; it could be that A*¥ contains a copy of the standard represen-
tation V and that the irreducible representation Iy, , tius has muitiplicity
| on the weights + L; and multiplicity 2 (or 1) at 0. We can rule out this
possibility by direct calculation: for example, if this were the case, then A*V
would contain a highest weight vector with weight L,. The weight space with
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eigenyy in AV i
hogwezalueL, ml/\ V'is spanned by the tensors i Ae; nesande, ne, e
~ er’} and '11' we apply to these the generators X, , = E. j g, .
L23 =By~ Egs,and U, = B, , — E of ti ces corresponding
o .3 g 7.6 1€ 1001t Spaces correspondin,

¢ positive roots L, — L,, L, -~ L, and Ly, we see that ¥ y

X2,3(e1 Aey Aeg) = €1 ne N e,
Us(e; A ey A g)=¢ Aesne, #0;

Xoaley ney A

®

s)=e, Ay A g,
Usley ney neg)=0.

There is thus no linear combination of e, A g, A e and i
by both Uy and X33, showing that A3 10 highe. o A €3 eg killed

> V has no highest weight vector of weight

Exercise 19.10, Verify that AV does not contain the trivial re,

\‘Ne halve thus found irreducible representations of so,
vectors along the three edges of the Wey ¢ i
: 'yl chamber, and as in the c; 5
we have thereby established the existence of the irreduci cntanS

4 € ble re; i
- d : presentations o
7C with highest w ght in the sublattice Z{L, L,, L3}. To complete ther

descring

0(e_s~c(r[|‘pt1‘c:nl,‘ winze;i/ztu k.now that the representation T, with highest weight

a=(L, 2 3}/ exists, and what it looks like, and his ti i

1somorphism to provide this; we will h i until the Tollou o 10
! tis; ave to wait until the followi

In the meantime, we can still have fun playing around both e o

with a1

vUUl Will the represen-

tdiions we do know exist and also with those whose e tence is simpt
s hose existenc s simply

C with highest weight

Exercise 1 i ition into i
foere Dwz.::; f/ll(‘l\d /t\}zlf/dfecomp'osmon Into irreducible representations of the
I He ¥ ATV in particular find the multiplicities of the irreducigl;

representation Doy, 41, with highest weight 2L, + L,.

Exercise 19.12. Show that the symmetri uare epresentation §
h Y1 etric squa otherpre ntatior a

decomposes intoacopyof A3y and a trivia One-Gimensiona resentation.
py of A vialg <nsionat rep: 1)

Exercise 1913, Find th ition i i i
e e decomposition into irreducible representations of

z-

§19.4. Representations of the
Odd Orthogonal Algebras

We will now describe .o .
© 48 much as we can of the gcneral pattern for representa-

describ

ti i

Ozrllli);)i;l;le Efid ;)rtlbwgunal Lie algebras 592,41 C. As in the case of the even
1€ algebras, the proof of (he exi i

rih : ) 1€ existence part of the basic th

(14.18) (that is, the construction of the irreducible representation withe;il;/ee:rj
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highest weight) will not be complete until the following lecture, but we can
work around this pretty well.

To begin with, recall that the weight lattice of sv,,,, C is, like that of s0,,C,
generated by L, ..., L, together with t].¢ further vector (L, + -+~ 4 L,)/2. The
Weyl chamber, on the other hand, is tiie cone

‘ 7""”={Eﬂ-‘i~i:ﬂl2“22"'2‘1»-2()}'

The Weyl chamber is as we have pointed out the same as for sp,,C, that is,
it is a simplicial cone with faces corresponding to the n planes a, = a,, ...,
a,y = a, and a, = 0. The edges of the Weyl chamber are thus the rays
generaied by the vectors Ly, Ly + Ly, ..., Ly + -+ [ _yand L, + - + L,
(note that L, 4 - + L,_, is on an edge of the Weyl chamber). Again, the
intersection of the weight lattice with the closed Weyl cone is a free semigroup,
in this case generated by the fundamental weights @, = L;, w, = L, + L,
vees Wyoy =L+ + L, and the weight o, =a=(L, 4+ L2
Moreover, as we saw in the cases of s0,C and sv,C, the exterior powers of
the standard representation do serve to generate all the irreducible representa-
tions whose highest weights are in the sublattice Z{L,, ..., L,}: in general we
have the following theorem.

Theorem 19.14. For k =1, ..., n, the exterior power NV of the standard
representation V of $0,,.,., C is the irreducible representation with highest weight
L+ + Ly

Proor. We wiil leave this as an exercise; the proof is essentially the same as in
the case of sv,,C, with enough of 1 difference to make it interesting. ]

We have thus constructed one-half of the irreducible representations of
50,,.,C: any weight y in the closed Weyl chamber can be written

y=a Ly +ay(Li+ L)+ +a, (L + 4+ L)+ a{ly +- + L,)2
with g; € N; and if a, is even, the representation
Sym™V ® -+ ® Sym®™ (A1) @ Sym™2(A"V)

will contain an irreducible representation I, with highest weight y. We are still
missing, however, any representation whose weights involve odd multiples of
a; to construct these, we clearly ha e to exhibit an irreducible representation
T, with highest weight o. This exists and is called (as in the case of the even
orthogonal Lie algebras) the spin representation of sv,,,, C. We see from the
above that once we exhibit the spin representation I',, we will have constructed
all the representations of so,,,,C; for any y as above the tensor

NIy R Sym™(T )
vV

Sym™{i.)

Sym*V -+ @ Sym®1(/

will contain a copy of I,.
As in the case of the spin representation T, of the even orthiogonal Lie
algebras, we can say some things about T, even in advance of its explicit

i N v nla wa nan dn tha fallawing avarsicss
construction; for example, we can do the following exercises.
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Exercise 19.15, Find the weights

NV and alse of T
V,and also of T,.

(with multiplicities) of the representations

Exercise 19.16. Give the complete decomposition into irreducibl

tions of Sym?I, and AT, Show that Crepresenta:

resr
ta iy

=AVON VRN VO @AV NV,

xercise 19.17, Verify direcy ly he above statements in the case of 505C, usin,
he i 1 C
E 19.17. Verify d t. the a n O N g

s .
§19.5. Weyl’s Construction for Orthogonal Groups
The same proce 1 in th
repreasae.;tuaﬁ; c:;.scuru:lt: we saw In the symplectic case can be used to construct
Gipessniation of the orthogonal groups, this time generalizing what we s;
mrec y for AV in §§19.2 and 19.4. For the symmetric form Q on ¥ = é’?
[h: sizrl]rtr;e formula(l7.9) determines contractions from V®¢ o p®@-2) D_ ;
intersection of the kernels of all these contractions by V4! &, Ty
partition 4 o s s 0 of 4 let vitiaciions oy V. For any

SV = V9ASs, V. (19.18)
As before, this is a representation of the orthogonal group O,.C of 0
Theorem 19.19. The space Sy, V is an irreducib

nonzero .if and only if the sum of the leng
Young diagram of 1 is at most m.

le representation of G,.C; SV
ths of the first two columns of the

The tensor power ¥ # decom i
_ ¢ poses exactly asin Lemma 17.15, wi
thing the same but teplacing the symbol (d by [d]. In parlicula,rw"h e

SV = V-¢; = Im(c,: ¥, .

E . . . 5
ﬁ;frtc‘:,se I9l.20. Vgrlfy that S,V is zero when the sum of the lengths of the
Comain&;gq urins\{:s(grgz:}eg than m by showing that NV @NY g pu-a-b g
m) WV "Dy when a + b > m. Si i
. Show that S,V i
when the sum of the lengths of the first two coltmns is a(t mel:'] m ot rero

Exercise 19.21%, (i) Show that the kernel of

Sym? 2V is the irreducible representation S,
dL,. ‘
(i

the contraction from Sym?V to
¥ ol s0,C with highest weight

hat
1at

Sym'V = S V@S, ,Ve--@s
where p is the largest integer < d/2.

o
d-2pj s
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The proof of the theorem proceeds exactly as in §17.3. The fundamental
fact from invariant theory is the same statement as (17.19), with, of course, the
operators 8; = ‘¥, o @, defined using the given symmetric form, and the group

Sp,,C replaced by O,C (and the same reference to Appendix F.2 for the

: proof). The theorem then follows from Lemma 6.22 in exactly the same way

as for the symplectic group.

To find the irreducible representations over SO,,C one can proceed as in
§5.1. Weyl calls two partitions (each with the sum of the first two column
lengths at most m) associated if the sum of the lengths of their first columns is
m and the other columns of their Young diagrams have the same lengths.
Representations of associated partitions restrict to isomorphic representa-
tions of SO,,C. Note that at least one of each pair of associated partitions will
have a Young diagram with at most 4m rows. If m = 2n -+ 1 is odd, no Ais
associated to itself, but if m = 2n is even, any A with a Young diagram with n
ill be associated to itsclf, and its restriction will be the sum of

vin o€ a550C1aiCG 10 1I8CL s restncliorn

TIonZe

two conjugate representations of SO,,C of the same dimension. The final resuit
is:

Theorem 19.22. () If m = 2n + Land A = (1, = --- = 4, > 0), then S,y V is the
irreducible representation of 59,,C with highest weight ALy + =+ + 4, L,

@iy If m=2n,and 1= (A4 = = A, = 0), then SV is the irreducible
representation of sv,,C. with highest weight A Ly + - -+ 4,L,.

i) If m=2nand A = (A = - = Ay = 4, > 0), then SV is the sum of
two irreducible representations of so,,C with highest weights A, L, + - + 2,L,
and ALy + - + Ayy Lyoy — ALy

Exercise 19.23. When m is odd, show that 0,,C = 8O, C x { +I}. Show that
if A and p are associated, then 1 = A ® ¢, where ¢ is the sign of the detcrminant.

We postpone to Lecture 25 all discussion of multiplicities of weigh! spaces,
or decomposing tensor products of restrictions to subgroups.

As we saw in Lecture 15 for GL,C and in Lecture 17 for Sp,,C, it is possible
to make a commutative algebra S'!1= SI(V) out of the sum of ol the
irreducible representations of SO,,C, where V' = C™ is the standard repre-
sentation. First suppose m = 2n -+ 1 is odd. Define the ring S'(V, n)as in§15.5,
which is a sum of all the representations S,(V) of GL(V) where 4 runs over
all partitions with at most n parts. As in the symplectic case, there is a
canonical decomposition

S, (V)= §[A]( V@ Jm( Vi,
and the direct sum JU = (P, Jy;)(V} is an ideal in S'(V, n). The quoticnt ring
SUY) = AW, n)/ i = P Sp(V)
A
is a commutative graded ring which contains each irreducible representation
of SO,,,, € once.
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If m = 2n is even, the above quotient will contain each representation
Syy(V) twice if A has n rows. To cut it down so there v one of each, one
can add to JT relations of the form x — t(x), for x € A"V, where ©: A"V - AV
is the isomorphism described in the remark (iii) after the proof of Theorem
19.2. For a detailed discussion, with explicit generators for the ideas, see {L-T].

LECTURE 20

Spin Representations of so,,C

In this lecture we complete the picture of the repiesentations of the orthogonal Lie
algebras by constructing the spin representations St of so,,C; this also yields a
description of the spin groups Spin,,C. Since the representation-theoretic analysis of
the spaces §* was carried out in the preceding lecture, we ate concerned here primarily
with the algebra involved in their construction. Thus, §20.1 and §20.2, while elementary,
involve some fairly serious algebra. Section 20.3, where we briefly sketch the notion of
triality, muy seem mysterious to the reader (this is at least in part because it is so to
the authors); if so, it may be skipped. Finally, we should say that the subject of the spin
representations of so,,C is a very rich one, and one that accommodates many different
points of view; the reader who is interested is encouraged to try some of the other
approaches that may be found in the literature.

§20.1: Clifford algebras and spin representations of so,,C
§20.2: The spin groups Spin,,C and Spin,, R
§20.3: SpingC and triatity

§20.1. Clifford Algebras and Spin Representations
of s0,,C

We begin this section by trying to motivalte the definition of Clifford algebras.
We may begin by asking, why were we able to find all the representations of
SL,C or Sp,,C inside tensor powers of the standard representation, but only
half the representations of SO,,C arise this way? One difference that points in
this direction lies in the topoiogy of these groups: SL,C and Sp,, C are simply
connected, while SO,,C has fundamental group Z/2 for m > 2 (for proofs
see §23.1). Therefore SO, C has a double covering, the spin group Spin,,C.
(For m < 6, these covering? could also be extracted from our identifications
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of the adjoint group PSO,,C with the adjoint group of other simply connected
groups; e.g. the double cover of SO;C is SL,C.) We will see that thc missing
representations are those representations of Spin,,C that do not come from
representations of SO,,C.

This double covering may be most readily visible, and probably familiar,
for the case of the real subgroup SO, R of rotations: a rotation is specified by
an axis to rotate about, given by a unit vector u, and an angle of rotation
about u; the two choices +u of unit vector give a two-shected covering, In
other words, if D* is the unit ball in R, there is a double covering

§% = D*/0D? - SO,4R,

which sends a vector v in D to rotation by the angle 2n{lv| about the unit

vector v/||vff (the origin and the unit sphere dD° are sent to the identity
transformation).

Thlg covering is even easier to see for the entire orthogonal group O,R
which is generated by reflections R, in unit vectors v (with +v delermininé
the same reflection): we can describe the double cover of O;R as the group
generated by unit vectors v, with relations

U =L,

whenever the compositions of the corresponding reflections are equal, ie.,
whenever

and also relations

(=) (—w=vw
for all pairs of unit vectors v and w. (Note that if we restricted ourselves to
products of cven numbers of the generators v € 9D® we would get back the
double cover of the special orthogonal group SO,;C)

Hovy should we generalize this? The answer is not obvious. For one thing,
‘f(:r val:x‘ous rea‘sons we .will not try to construct directly a group that covers
ine orthogonai group in general. Instead, given a vector space V (real or
complex) and a quadratic form Q on ¥, we will first construct an algebra
CHIi(V, Q), called the Clifford algebra. The algebra Cliff(V; Q) will then turn
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out to contain in its multiplicative group a subgroup which is a double cover
of the orthogonal group O(¥, Q) of automorphisms of V prescrving Q.

By analogy with the construction of the double cover of SO3R, the Clifford
algebra Cliff(¥, Q) associated to the pair (¥, ) is an associative algebra
containing and generated by V. (When we want to describe the spin group
inside CLff(V, Q) we will restrict ourse'ves to products of even numbers of
elements of ¥ having a fixed norm (v, v); if odd producis are allowed as well,
we get a group called “Pin” which is a double covering of the whole orthogonal
group.) To motivate the definition, we would like CHff(¥, Q) to be the algebra
generated by ¥ subject to relations analogous to those above for the double
cover of the orthogonal group. In particular, for any vector v with Q(v, v) = 1,
since the reflection R, in the hyperplane perpendicular to v is an involution,
we want

in CHIf(V, Q). By polarization, this is the same as imposing the reiation
vew -+ weo=20(v, w)

for all v and w in V. In particular, w-v = —v-w il v and w are perpendicular.
Infact, the Cliffor Ly ssociative algebra
generated by ¥ and subject to the equation v-v = .

Looking ahead, we will see later in this section that each complex Clifford
algebra contains an orthogonal Lie algebra as a subalgebra. The key theorem
is then that CLff(V, Q) is isomorphic either to amatrix algebra or to a sum of two
matrix algebras. This in turn determines either one or two representations of
the orthogonal Lie algebras, which turn out to be the representations which
were needed to complete the story in the last lecture. Just as in the special linear
and symplectic cases, the corresponding Lie groups are not really needed to

construct the representations; they can be written down directly from the Lie

algebra. In this section we do this, using the Clifford algebras to construct
these representations of so,,C directly, and verify that they give the missing
spin representations. In the second section of this lecture we will show how
the spin groups sit as subgroups in their multiplicative groups.

Clifford Algebras

rm Q on a vector space V, the Clifford algebra

m{)onavy

ssociative algebra with unit 1, which contains

the equation

o, w), Q0.1

vew L wep =201
T XA

! The mathematical world seems to be about evenly divided about the choice of signs here, and
one must translats from Q to —Q to go from one side to the other.
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for all v and w in ¥. The Clifford algebra can be detined to be the universal
algebra with this property: if E is any associative algebra with unit, and a
linear mapping j: V - E is given such that j(v)* = Q(v, v)- 1 for all ve V, or
equivalently

J@)JW) + j(w) - j(v) = 2Q(v, w)- 1 (202)

foraltv, w € ¥, then there should be a unique homomorphism of algebras from

C(Q) to E extending j. The Clifford algebra can be constructed Quickly by
taking the tensor algebra
T =Pr*=Covereneoreree
n20

and setting C(Q) = T(V)/1{(), where Q) is the two-sided ideal generated by
all elements of the form V& v~ Qv,v)-1. It is automatic that this [8{{0)]
salisfies the required universal property.

The facts that the dimension of C is 2", where m = dim(V), and that the
¢canonical mapping from V to C is an embedding, are part of the following
femma:

Lemma 203. If ¢, ..., e, form a basis for V, then the products ¢, =
) By <@ <o <y, and with ey = i, jorm a hasis for

Proor. From the equations € ¢+ ¢-e; = 20(e;, ¢)) it follows immediately
that the elements e, generate C(Q). Their independence is not hard to verify
directly; it also follows by secing that the images in the matrix algebras under
the mappings constructed below are independent. For another proof, note
that when @ =0, the Clifford algebra is just the exterior algebra AV, In
general, the Clifford algebra can be filtered by subspaces F,, consisting of those
elements which can be written as sums of ai most k products of elements in
V; one checks that the associated graded space F,/F,,, is AV, For a third
proof, one can verify that the Clifford algebra of the direct sum of two
orthogonal spaces is the skew commutative tensor product of the Clifford
algebras of the two spaces (cf. Exercise B.9), which reduces one to the trivial

case wherc dim ¥ = 1. a

Since the ideal I(Q) = T(V) is generated by clements of even degree, the

Clifford algebra inherits a Z{2Z grading:
C=C"@ (=t C,

withC* - C* < C*,C*-C cC, ¢ C* C™,C™-C™ =C*;C* is spanned
by products of an even number of elementsin ¥ and C- isspanned by products
of an odd number. In particular, C***" js a subalgebra of dimension 2m~F,

Since C(Q) is an associative algebra, it determines a Lie algebra, with
bracket {a, b] = a* b — b- a. From now on we assume { is nondegenerate. The
new representations of so,,C will be found in two steps:
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(i) embedding the Lie algebra so(¢} = sv,,C inside the Lie algebra of the even

ifaed algahon S0
part of the Clifford algebra C(();

(ii) identifying the Clifford algebras with one or two copies of matrix algebras.
To carry out the first step we make explicit the isomorphism of A2V with
s0(Q) that we have discussed before. Recall that
50(Q) = { ¥ € End(V): Q(Xv, w) + Q(v, Xw) = Ofor all v, win V}. .
The isomorphism is given by

ANVZeo(Q) cind(V), anbigp,.,,

for a and b in V, where g,,, is defined by
Pars(t) = 2(0(b, v)a — Q(a, v)b).

It is a simple verification that ¢,,, is in s0(Q). On
correspond up to scalars, e.g, ¢ A ¢,,; maps to 2(E;; — E,\j,eih 50 the map
is an isomorphism. (The choice of scalar factor is unimportant here; it was
chosen to simplify later formufas.) One calculates what the bracket on A2V
must be to make this an isomorphism of Lie algebras:

[0anss Penad(9) = @unp © PenalVt) = Pena © Pannlt)
= 20405(Qd, v)c — O(c, 1)d) — 20, 4(Q(b, v)a — Qlg, v)b)
= 40(d, v)(Q(, c)a — Q(a, c)b)
— 4Q(c, v{(Q(b, d)a — Qla. d)b)
—40(b, 0} Q(d, a)c  Q(c, a)d)
+ 4Q(a, )(Q(d, b)c — Q(c, b)d)
= 20(b, €)@,u0) — 20(b, d)p, . (0)
20(a, d)@enp(v) + 20(a, ) @s04(0)-
This gives an explicit formula for the bracket on A’V
lanbecandl=200b,cand-200danc
—20(ad)c A b+ 20, dd A b (205

algebra satisfies
=Q2Qb,c)a-d~a-c'b-d)— (2Q(a,d)c'b—c-a-d-b)
=20, cjad — 2Qib,dya c—a-c-d-b

—2Q(a, d)c-b + (2Q(a, c)-d-b—a-c-d-b)
=20, c)a-d — 2{b,d)a-c — 2Q(a, d)c-b + 20(a, c)-d-b.
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It follows that the map y: A2V - CIiff(V, Q) defined by

Ylanrb)=Hab—b-a)=ab—Qab) £:0.6)

isamap? of Lie algebras, and by looking at basis elements again one sees that
itis an embedding. This proves:

Lemma 20.7. The mapping s o ¢™1: $0(Q) — C(Q)™™ embeds s0(Q) as a Lie
subalgebra of C(Q)™*"

Exercise 20.8. Show that the image of Vis
F, n C(Q)™™  Ker(trace),

where F, is the subspace of C(Q) spanned by products of at most two elements
of ¥, and the trace of an element of C(Q) is the trace of left multiplication by
that element on C(Q).

We consider first the even case: write V = W@ W, where Wand W' are
n-dimensional isotropic spaces for Q. (Recall that a space is isotropic when
restricts to the zero form on it) With our choice of standard QonV=C?>

Weonn hatolran +

¥ can be taken to be the space spanned by the first # basis vectors, W’ by the
last n.

Lemma 20.9. The decomposition V = W@ W' determines an isomorphism of
algebras

C(Q) = End(A'W),
where N\W = N°W@--- @ N'W.
Proor. Mapping C(Q) to the algebra E = Find{(A'W) is the same as defining

a linear mapping from V to E, satisfying (20,2). We must construct maps
LW Eand I': W - F such that

Iw? =0, Irw)=o, (20.10)
and
I(w) o (W) + I'(w’) o Il{w) = 20(w, W)l

for any we W, w' e W', For each w & W, let L, € E be left multiplication by
w on the exterior algebra A'W:

Liy=wnrl fenlw

For 8 e W*, let Dy e E be the derivation of A'W such that Dy(1) = 0, Dy(w) =
MW eN’W =Clorwe W =A'W and

Llo = /\"¥, ana

* Note that the bilinear form ¥ given by (20.6) is alternating since Y(a A a} = 0, 50 it defines a
linear map on A2y,
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Dyl A &) = Do) A & + (= 1390 A Dy(().

Explicitly, Dg{wy A - A W)= 3 (— 171 9(w)lwy A - A Ao A W) Now
set

Iw) =L, V'(w'y = Dy, (20.11)

A Y s ho roo

where 3 € W#* is defined by the ideniity 3{w) = 200w, w Yiorallwe W. T:u\. .;.
quired equations (20.10) are straightforward verifications: one checks dlrectk);
on elements in W = A'W, and then that, if they hold on 4 z?nd £, lhe_y hob
on { A & Finally, one may see that the resulting map is an isomorphism S
looking at what happens to a basis.

i ‘Wisi hic to a left ideal in C(Q).
Exercise 20.12. The left C(Q)-module A'W is isomorp )
Sl’:;l\.:lthat if fis a generator for A"W’, then C(Q)- f = AW- f, and the map
{rs{ f gives an isomorphism
AWSAW-f=CQ) f
of left C(Q)-modules.

Now we have a decomposiiion AW = /A\"“W'@/AEM“V/. into the Zu.é, of
even and odd exterior powers, and C{(W)™*" respects this splitting. We deduce
from Lemma 20.9 an isomorphism

C(Q)™" = End(A™*"W) ® End(/\°%W). (20.13)
Combining with Lemma 20.7, we now have an embedding of Lie algebras:
$0(Q) = C(OF*™ = gl(A"" W) ® ol W), (20.14)
which wedenote by
and hence we have iwo representations of so(Q) = $0,,C, which wedenote by

Proposition 20.15. The representations S* are th\e irrJez[i’ucilil;etre;)lrefs‘e?niat'ions lif
50,,C with highest weights « = ${L, + -+ Lyjand § = 3Ly + - + Ly
L,). More precisely,

St =T, and S5~ =T ifniseven,

§* =T, and 8 =T, ifnisodd
i =e Ao gy for NW
Proor. We show that the natural basns‘ vectors ;= ¢, A" 3
are weight vectors, Tracing through the isomorphisms cstz:bhshcd ab?vc/,\ :v;
see that H, = E; ; — E,4; 1 in b < 80,,C corresponds to e A epe)in .
which corresponds to i(e;-e,., — 1) in C{Q}, which maps io
(L, 0 Dyep — 1) = L, 0 Dy — 31 € End(AW).

A simple calculation shows that



