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1. INTRODUCTION 

This paper contains a short proof of a formula by Frame, Robinson, and 
Thrall [I] h h w ic counts the number of Young tableaux of a given shape. 

Let X = {X, >, X, > ..’ 2 X,} be a partition of R. The Ferrers diagram of h is 
an array of cells doubly indexed by pairs (i, j) with 1 < i < m, 1 <j < A( . A 
Young tableau of shape h (sometimes called a standard tableau) is an arrangement 
of the integers 1, 2,..., n in the cells of the Ferrers diagram of A such that all 
rows and columns form increasing sequences. The total number of Young 
tableaux of shape h will be denoted by fA . 

For each cell (i, j) define the hook Hii to be the collection of cells (a, b) such 
that a = i and b 3 j or a > i and b = j. Define the hook length hij to be the 
number of cells in Hi, . 

THEOREM 1 (Frame-Robinson-Thrall [l]). If h is a partition of rz, then 

where the product is over all cells in the Ferrers diagram of A. 

For example, if h = (3, 2) and n = 5, the hook lengths of each cell in the 
Ferrer-s diagram of h are as shown: 

43 1 

2 I 

According to Theorem 1, the number of Young tableaux of shape h is 5!/4 * 3 . 1 . 
2 . 1 = 5, a result which can be checked easily. 

Surprisingly, in view of the simplicity of the formula, it is difficult to explain 
why the hook lengths hjj appear. They do not seem to be involved naturally in 
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any direct combinatorial correspondence. In the original proof [l] hook lengths 
appear in the course of rearranging terms in another formula forf, due indepen- 
dently to Young [7] and to Frobenius [2]. The original proofs of the latter 
formula use complicated algebraic methods (group characters, symmetric 
polynomials). Another proof of the Young-Frobenius formula was found by 
MacMahon [S], using difference methods. The reader is referred to [4] for a 
good exposition of these arguments. A more recent proof, due to Hillman and 
Grass1 [3] gives perhaps the best combinatorial “explanation” of hooks to date. 
Their proof uses hooks in a natural way to derive a combinatorial correspondence 
involving plane partitions, from which the Frame-Robinson-Thrall formula 
can be derived by an asymptotic argument. 

In this paper, we give a short direct proof. The key step is based on a probabilis- 
tic model in which hooks appear in an essential way. The method also yields an 
algorithm which chooses, uniformly at random, a Young tableau of given shape. 

2. PROOF OF THE FORMULA 

The first steps are the same as those found in [5]. (See [4].) Define a function 

= 0, otherwise. 

In any standard tableau, the integer n must appear at a “corner,” i.e., a cell 
which is at the end of some row and, simultaneously, at the end of a column. 
Removing this cell leaves a Young tableau of smaller shape. Thus the Frame- 
Robinson-Thrall formula follows by induction if it can be shown that 

which we abbreviate 

(Note that the summation is, in effect, over all corners, since terms for which 
A,+, > h, - 1 are zero.) Our proof consists of verifying the identity 

by giving it a probabilistic interpretation. 
Consider the following experiment: A cell (i, j) in the Ferrers diagram of h is 

chosen at random, with uniform probability l/n. Another cell (i’, j’) # (i, j) is 
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chosen at random from among the remaining cells in the hook Hij , with uniform 
probability 1 /(hij - 1). A new cell is chosen at random from the remaining cells 
in the hook H,pj, , and so on. The process continues until a corner cell (01, is) 
is reached, where the process stops. This completes a single trial. The cell 
(LU, /3) where the process stops will be called the terminal cell of the trial. 

Any corner cell (OL, ,8) can be the terminal cell of a trial. Let p(a, /3) denote the 

probability that a random trial terminates in cell (01, fl). 

THEOREM 2. Let ((Y, ,B) be a comer cell. Then 

Proof. An easy calculation shows that 

(with the convention that empty products are equal to 1). Our object will be to 
interpret each term in the expansion of these products. 

Let P: (ab) = (a,b,) + (a&,) -+ ... -+ (a,&,) = ($3) be the path determined 
by a trial which begins at (ab) and ends at (a/I). Define the vertical and horizontal 
projections of P to be the sets A = {a, , a2 ,..., a,} and B = (4 , b, ,..., b,}. Let 
p(A, B 1 a, b) denote the probability that a random trial which begins at (ab) has 
vertical and horizontal projections A and B. We need the following: 

LEMMA 3. 

Proof of Lemma. Trivially, 

By induction on m we may assume that 

p(A--a,,BIa,,b,)=(ha,s--1).n 

and 
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where JJ is the right-hand side of the statement of Lemma 3. Thus 

1 
PM B I a, @ = h,, _ 1 wQ3 - 1) + vbbl - 1)) . JJ. 

But h,, - 1 = (hn10 - 1) + (habl - I), as an easy argument shows. Thus 
p(A, B 1 a, 6) =n, as desired. 

Continuing with the proof of Theorem 3, the probability p($) can be 
computed by summing the conditional probabilities with respect to the first cell 
chosen, and then, for each such first cell, summing over all possible vertical 
and horizontal projections. Thus 

~(4 = ; C ~(4 B I a, @, 

where the sum is over all A, B, a, b for which A C { 1,2 ,.,., CY} and B C (1,2 ,..., fl}, 
and a = min A and b = min B. By Lemma 3, this is the same as expanding 
the products which appear on the right side of (I), and the proof is complete. 

COROLLARY 4. x,JF,/F) = 1. 

Proof. Every trial stops at some terminal cell. Thus the probabilities p(+) 

must add up to 1. 
As noted before, this completes the proof of Theorem 1. 

3. FURTHER REMARKS 

(i) The random process described here gives a very efficient method for 
constructing random Young tableaux of a given shape h. If  h is a partition of n, 
consider a sequence of n trials, in which the terminal cell has been removed 
after each trial (and the probabilities l/(/z,, - 1) revised according to the new 

shape). Label the first cell removed with the integer n, the next with the integer 
n - 1, and so on. Trivially, the result is a Young tableau of shape h, and it is 
not hard to see (by induction, using Theorem 2) that all tableaux of shape h 
appear with equal probability. 

The reader is referred to [6] for further discussion of this and related results. 

(ii) It is interesting to calculate the probability p(c@ 1 ab) that cell (c$) 
will be the terminal cell, given that (ub) is the initial cell. Evidently 

~(43 I ab) = c &‘% B I a, b) 
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summed over all A C {a, a + I,..., CX} and B C {b, b + I,..., /3> such that a = 
min A and b = min B. By Lemma 3, this can be expressed as 

provided that a < (y. and b < p. (If a = ol the first factor is omitted, and similarly 
the second is omitted if b = /?). Interestingly, this formula can be written as 

a fact for which we have no obvious direct explanation. 

(iii) Our results imply that ~($1 ab) “depends” only on A, and A$, 
(where A* denotes the partition conjugate to A). More precisely, p(c@ 1 ab) = 
(p(a$ ( a’b’) if X, = A, ’ and A$ = A$ , This shows that if one groups parts and 
conjugate parts of equal size then one has partitioned the Ferrers diagram of h 
into “zones” of equal probability (of reaching (a/?)). For example, the following 
diagram shows the probabilities of reaching cell (4, 5) from all possible initial 
cells: 

Q Q 8 -& + 0 0 

* + * ?j fr 0 0 

Q Q g11 

Q sg11 

0 0 0 

0 0 0 

0 0 0 
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