Chapter 2

Vectors in R” and C”, Spatial Vectors

21 INTRODUCTION

In various physical applications there appear certain quantities, such as temperature and speed,
which possess only “magnitude.” These can be represented by real numbers and are called scalars. On
the other hand, there are also quantities, such as force and velocity, which possess both “magnitude”
and “direction.” These guantities can be represented by arrows (having appropriate lengths and direc-
tions and emanating from some given reference point 0) and are called vectors.

We begin by considering the following operations on vectors.

(i) Addition: The resultant u + v of two vectors u and v is obtained by the so-called parallelogram
law, i.e., u + v is the diagonal of the parallelogram formed by u and v as shown in Fig. 2-1(a).

(i) Scalar multiplication: The product ku of a vector u by a real number k is obtained by multiplying

the magnitude of u by k and retaining the same direction if k > 0 or the opposite direction if k < 0,
as shown in Fig. 2-1(d).

(b)
Fig. 21

Now we assume the reader is familiar with the representation of the points in the plane by ordered
pairs of real numbers. If the origin of the axes is chosen at the reference point O above, then every
vector is uniquely determined by the coordinates of its endpoint. The relationship between the above
operations and endpoints follows.

(1) Addition: If (a, b) and (c, d) are the endpoints of the vectors u and v, then (a + ¢, b + d) will be the
endpoint of u + v, as shown in Fig. 2-2(a).

(ii) Scalar multiplication: If (a, b} is the endpoint of the vector w, then (ka, kb) will be the endpoint of
the vector ku, as shown in Fig. 2-2(b).

Mathematically, we identify the vector u with its endpoint (a, b) and write u = (g, b). In addition we
call the ordered pair (a, b) of real numbers a point or vector depending upon its interpretation. We
generalize this notion and call an n-tuple (4,, a,, ..., a,) of real numbers a vector. However, special
notation may be used for spatial vectors in R?* (Section 2.8).
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{a+c, b+ d)

ku (ka, kb)

(a, b)
u (e, b)

(a) (b)
Fig. 22

We assume the reader is familiar with the elementary properties of the real number field which we
denote by R.

22 VECTORS IN R”

The set of all n-tuples of real numbers, denoted by R, is called n-space. A particular n-tuple in R",
say

u:(ulsull"'i u)

is called a point or vector; the real numbers u; are called the components (or coordinates) of the vector u.
Moreover, when discussing the space R" we use the term scalar for the elements of R.

Two vectors u and v are equal, written u = v, if they have the same number of components, ie.,
belong to the same space, and if corresponding components are equal. The vectors (1, 2, 3) and (2, 3, 1)
are not equal, since corresponding elements are not equal.

Example 2.1

(@) Consider the following vectors

©n (IL-3 (1,234 (-5540mn

The first two vectors have two components and so are points in R?; the last two vectors have four components
and so are points in R®.

() Suppose(x — y,x + y,z — 1) = (4, 2, 3). Then, by definition of equality of vectors,

x—y=4
x+y=2
z—1=3
Solving the above system of equations gives x = 3, y = —l,andz = 4.

Sometimes vectors in n-space are written vertically as columns rather than horizontally as rows, as
above. Such vectors are called column vectors. For example,

| 12
6 ) () (=
-8 28

are column vectors with 2, 2, 3, and 3 components, respectively.
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23 VECTOR ADDITION AND SCALAR MULTIPLICATION
Let u and v be vectors in R":
w=(uptig.ont)  and o=@ 05 .., 0,)
The sum of u and v, written u + v, is the vector obtained by adding corresponding components:
utv=@m +v,u +vy,...,u,+0,)

The product of the vector u by a real number k, written ku, is the vector obtained by multiplying each
component of u by k:

ku = (kuy, ku,, ..., ku,)
Observe that ¥ + v and ku are also vectors in R™. We also define
—u=—1lu and u—v=u+(—v)

The sum of vectors with different numbers of components is not defined.
Basic properties of the vectors in R" under vector addition and scalar multiplication are described
in the following theorem (proved in Problem 2.4). In the theorem, 0 = (0,0, ..., 0), the zero vector of R™.

Theorem 2.1: For any vectors u, v, w € R" and any scalars k, k' € R,

i) w+vy+w=u+(@+w) (v) ku+v)=ku+kv
i) u+0=u (vi) (k+kwu=ku+k'u
(i) u4+(—uw)=0 (vii) (kk')yu = k(k'u)

(iv u+v=v+4+u (viil) lu=u

Suppose u and v are vectors in R" for which 4 = kv for some nonzero scalar k € R. Then u is called
a muliiple of v; and u is said to be in the same direction as v if k > 0, and in the opposite direction if
k<O.

24 VECTORS AND LINEAR EQUATIONS

Two important concepts, linear combinations and linear dependence, are closely related to systems
of linear equations as follows.

Linear Combinations
Consider a nonhomogeneous system of m equations in n unknowns:
ay, Xy + agax; + 0+ ag,x, = by
Ay Xy + Az Xy + 7" + A3,X, = by
Ay X1 + Gz Xa + " + Gy Xy =bm
This system is equivalent to the following vector equation
ayy a2 ay, b,

a; asz a b,
X 2 + x; 2 + -+ x o=

[<]
o ...

Ay A2
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that is, the vector equation
XUy + XUy + o+ XU, =0

where u,, u,, ..., u,, v are the above column vectors, respectively.

Now if the above system has a solution, then v is said to be a linear combination of the vectors u;.
We state this important concept formally.

Definition: A vector v is a linear combination of vectors u,, u,, ..., u, if there exist scalars k,, k,,
k. such that

swey

v=kyu, + ku, + - +k,u,
that is, if the vector equation
V= XUy +Xqllyg + + XU,

has a solution where the x; are unknown scalars.

The above definition applies to both column vectors and row vectors, although our illustration was
in terms of column vectors.

Example 2.2. Suppose

o]

p—
—
.

v= 3, u, =1}, u, =|1 and u, =10
—4 1 0 0

Then v is a linear combination of u,, u,, u; since the vector equation (or system)

2 1 1 1 2=x+y+z
3l=x{1]+M1]+20 or 3=x+y
-4 1 0 0 —4=x
has a solution x = —4, y =7, z = — 1. In other words,
v=—4u, + Tu; —u,

Linear Dependence

Consider a homogeneous system of m equations in n unknowns:

Ay Xy +aypx;+ 0+ ay,x, =0
A1 Xy + Ay X2+ -+ dgex, =0

Ay Xy +am2x2+ I o amnxnz(}

This system is equivalent to the following vector equation:

a“ alz al" 0

as, [0} a 0
Xl THlex| T4 x) =

Ay Qo2 a 0

that is, the vector equation

Xy Uy + Xotly + - + x,u,=0

where uy, u,, ..., u, are the above column vectors, respectively.
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Now, if the above homogeneous system has a nonzero solution, the vectors u,, u,, ..., u, are said to
be linearly dependent; on the other hand, if the equation has only the zero solution, then the vectors are
said to be linearly independent. We state this important concept formally.

Definition: Vectors u,, u,, ..., u, in R” are linearly dependeni if there exist scalars k,, k,, ..., k,,
all zero, such that

not
kou, +kyu, +---+k,u,=0
that is, if the vector equation
Xyuy +xu; 4+ x,u,=0
has a nonzero solution where the x; are unknown scalars. Otherwise, the vectors are said
to be linearly independent.

The above definition applies to both column vectors and row vectors, although our illustration was
in terms of column vectors.

Example 2.3

(@) The only solution to

1 1 1 0 x+y+z=0
1]+l ]+20)=|0 or x+y =0
1 0 0 0 x =0

is the zero solution x = 0, y = 0, z = 0. Hence the three vectors are linearly independent.
(b) The vector equation (or system of linear equations)

1 2 1 0 xX+2y+ z=0
1]+ —-1}+2] =5]=|0 or x— y—52=0
1 3 3 0 XxX+3y+3z=0

has a nonzero solution (3, —2, 1),i.e, x = 3, y = —2, z = 1. Thus the three vectors are linearly dependent.

2S5 DOT (SCALAR) PRODUCT
Let u and v be vectors in R":
uz(“p“Za"'!un) and UZ(Ul,Uz,...,U”)

The dot, scalar, or inner product of u and v, denoted by u * v, is the scalar obtained by multiplying
corresponding components and adding the resulting products:

UV=u,0, +U Uy + -+ U,
The vectors u and v are said to be orthogonal (or perpendicular) if their dot product is zero, that 1s, if
urv=0.
Example 24. letu=(l.-2,3, —4),v=(6.7.1, -2}, and w = (5, —4, 5, 7). Then
usp=1+6+(—2)*T+3*14(—4)*(-2)=6—-14+3+8=3
urw=154(—2) (=8 +3-5+(~8)-T=5+8+15-28=0

Thus u and w are orthogonal.

Basic properties of the dot product in R” (proved in Problem 2.17) follow.
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Theorem 2.2: For any vectors , v, w € R” and any scalar k € R,
i) wW+v)ysw=uswt+ovw (i) usv=vsu
(i) (ku) ~v=k(u-v) (iv uru>0,anduu=0iffu=0

Remark: The space R" with the above operations of vector addition, scalar
multiplication, and dot product is usually called Euclidean n-space.

26 NORM OF A VECTOR

Let u = (u,, 45, ..., u,) be a vector in R". The norm (or length) of the vector u, written [|«|, is defined
to be the nonnegative square root of u * u:

lul = Ju-u=Ju? +ud+ - +u

Since u * u = 0, the square root exists. Also, if u # 0, then |«| > 0; and |0f| = 0.

The above definition of the norm of a vector conforms to that of the length of a vector (arrow) in
(Euclidean) geometry. Specifically, suppose u is a vector (arrow) in the plane R? with endpoint P(a, b) as
shown in Fig. 2-3. Then |a| and |b| are the lengths of the sides of the right triangle formed by w and the
horizontal and vertical directions. By the Pythagorean Theorem, the length |u| of uis

lu| = /a? + b2

This value is the same as the norm of u defined above.

P(u. b)

———————

0 ldl

Fig. 2-3

Example 2.5. Suppose u = (3, —12, —4). To find |lul, we first find |u||? = u - u by squaring the components of u
and adding:

full? =32+ (=12 + (—4)* =9 + 144 + 16 = 169
Then |lu|| = /169 = 13.
A vector ¢ is a unit vector if |lul| = 1 or, equivalently, if u= u = 1. Now if v 18 any nonzero vector,
then

1 v
T V=
[iwll flol

D

is a unit vector in the same direction as v. (The process of finding ¥ is called normalizing v.) For example,

v (2 -3 8 -5
"7 ol (./102’,/102',/102',/102)

is the unit vector in the direction of the vector v = (2, —3, 8, —5).
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We now state a fundamental relationship (proved in Problem 2.22) known as the Cauchy-Schwarz
inequality.

Theorem 2.3 (Cauchy—Schwarz): For any vectors u, v in R”, |u * v| < [lu| |lv].

Using the above inequality, we prove (Problem 2.33) the following result known as the triangle
inequality or as Minkowski’s inequality.

Theorem 2.4 (Minkowski): For any vectors u, vin R”, |lu + v|| < |lu] + liv].

Distance, Angles, Projections

Let u = (u,, uy, ..., 4,) and v=(v,, v,, ..., v,) be vectors in R". The distance between u and v,
denoted by d(, v), is defined as

diu, v) = flu—vll = S(uy, — 0> + Uy — 02 + - + (U, — v,)

We show that this definition corresponds to the usual notion of Euclidean distance in the plane R%
Consider u = (a, b) and v = (¢, d) in R%. As shown in Fig. 2-4, the distance between the points P(a, b)
and Q(c, d) is

d=Jla—c+(b-dy?
On the other hand, by the above definition,
du, v) = |lu—vll = l(a—c¢, b—d) = /la—c)? + (b —d)?

Both give the same value.

Fig. 2-4

Using the Cauchy-Schwarz inequality, we can define the angle § between any two nonzero vectors
u,vin R" by
u-v
0 =
Nl vl

Note that if u* v = 0, then 8 = 90° (or 6 = n/2). This then agrees with our previous definition of orthog-
onality.

Example 2.6. Supposeu =(1, —2,3)and v =(3, —5, —7). Then
diu, )= S =3+ (=2+ 5+ B3+ 7P =/4+9+100= /113

To find cos 0, where @ is the angle between u and v, we first find

urv=3+10-21= -8 ul?>=1+4+9=14 lvf? =9 + 25+ 49 =83
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Then
u*v -8

el ~ /14 /83

Let # and v # 0 be vectors in R". The (vector) projection of u onto v is the vector

cos f =

proj (4 ©) = 1| “2

We show how this definition conforms to the notion of vector projection in physics. Consider the
vectors u and v in Fig. 2-5. The (perpendicular) projection of u onto v is the vector u*, of magnitude

u-v _Il'\"
lallvl vl

To obtain u*, we multiply its magnitude by the unit vector in the direction of v:

|u*| = |ul cos 6 = |u|

¥ * c!
L8 s

Fig. 2-5

Example 2.7. Supposeu=(1, —2,3)and v = (2, 5, 4). To find proj (u, v), we first find
u-p=2-10+12=4 and lof|?=4+25+16 =45

uv 4( )_(s 20 16) if!ﬂ’)
H Iz 45 45'45'a5) " \45' 9’45

27 LOCATED VECTORS, HYPERPLANES, AND LINES IN R"

Then

proj (u, v) =

This section distinguishes between an n-tuple P(a,, a,, ..., a,) = P(a;) viewed as a point in R" and
an n-tuple v = [¢y, ¢4, -.., ¢,] viewed as a vector (arrow) from the origin O to the point C(c, ¢5, ..., ¢,)-
Any pair of pomts P =(a;) and Q = (b;) in R" defines the located vector or directed line segment from P
to Q, written PQ We identify PQ with the vector

=Q-P=[b, —ay,b,—a;,....5,—a,]
since FQ’ and v have the same magnitude and direction as shown in Fig. 2-6.
A hyperplane H in R" is the set of points (x,, x,, ..., x,) that satisfy a nondegenerate linear
equation
ayx, +a;x; + - +a,x,=b

In particular, a hyperplane H in R? is a line; and a hyperplane H in R*® is a plane. The vector
u=[a,a,,...,a,] #0is called a normal to H. This terminology is justified by the fact (Problem 2.33)
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Y

Fig. 2-6

that any directed line segment i_’é, where P, Q belong to H, is orthogonal to the normal vector u. This
fact in R? is shown in Fig. 2-7.

Fig. 2-7

The line L in R” passing through the point P(a,, a,, ..., a,) and in the direction of the nonzero
vector u = [u,, 45, ..., 4,] consists of the points X(x,, x,, ..., x,) which satisfy
xl = al + ult
X9 = dy + Uyt
X=P+tu or 2T

..............

where the parameter t takes on all real numbers. (See Fig. 2-8.)

P+tu

P-t,u

Fig. 2-8
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Exampie 2.8

(a) Consider the hyperplane H in R* which passes through the point P(1, 3, —4, 2) and is normal to the vector
u = [4, —2, 5, 6]. Its equation must be of the form

A4x —2y + 5z + 6t =k
Substituting P into this equation, we obtain
41)—-23)+ (—4)+6(2)=k or 4-6—-20+12=k or k=-10
Thus 4x — 2y + 5z + 6t = —10 is the equation of H.

(b) Consider the line L in R* passing through the point P(1, 2, 3, —4) in the direction of u =[5, 6, —7, 8]. A
parametric representation of L is as follows:

x,=1+5t

=2+ 6t
*2 M or  (14+5,2+6,3—7t, —4+8)
x3=3_7[

Note t = 0 yields the point P on L.

Curves in R"

Let D be an interval (finite or infinite) in the real line R. A continuous function F: D — R" is a curve
in R". Thus to each t € D there is assigned the following point (vector) in R":

F(t) = [F,(@), Fy), ..., F )]
Moreover, the derivative (if it exists) of F(r) yields the vector
V(t) = dF(t)/dt = [dF (t)/dt, dF J0)/dt, ..., dF(8)/dt]

which is tangent to the curve. Normalizing V(t) yields
Vi)
IVl

which is the unit tangent vector to the curve. [Unit vectors with geometrical significance are often
notated in bold type; compare Section 2.8.]

T() =

Example 2.8. Consider the following curve C in R3:

F(t)=[sint, cos t, ]
Taking the derivative of F(t) [or each component of F(t)] yields

V(t) = [cos t, —sin t, 1]
which is a vector tangent to the curve. We normalize V(t). First we obtain
IV@Ol? =cos?t +sint+1=14+1=2

Then

1 4(3) cost —sint |

T“’=||V(r)||=[ﬁ' 2 ’75]

which is the unit tangent vector to the curve.
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28 SPATIAL VECTORS, ijk NOTATION IN R?

Vectors in R?, called spatial vectors, appear in many applications, especially in physics. In fact, a
special notation is frequently used for such vectors as follows:

i = (1, 0, 0) denotes the unit vector in the x direction,
Jj = (0, 1, 0) denotes the unit vector in the y direction,
k = (0, 0, 1) denotes the unit vector in the z direction.

Then any vector u = (g, b, ¢) in R? can be expressed uniquely in the form
u=(a b, c)=a + bj+ ck
Since 1, j, k are unit vectors and are mutually orthogonal, we have
iti=1, ii=\, k-k=1 and i-j=0, i-k=0, j-k=0

The various vector operations discussed previously may be expressed in the above notation as
follows. Suppose u = a,i + a,j + a;kand v = b,i + b, j + b3 k. Then

utv=(ay +b)i +(ay + b)j +(a; + by)k u*v=a,b, +ay;b, +azbs

cu = cayi + ca,j + ca k lull = u-u=./a?+ a2 + a?

where c is a scalar.

Example 2.10. Suppose u = 3i + 5j — 2k and v = 4i — 3j + 7k.
(a) To find u + v, add corresponding components yielding
ut+v=Ti+2j+ 5k

(b) To find 3u — 2v, first multiply the vectors by the scalars, and then add:
3u— 2v = (% + 15j — 6k} + (—8i + 6j — 14k) = 4i + 21j — 20k
(¢) To find u - v, multiply corresponding components and then add:
uv=12-15-14=-17
(d) To find Jull, square each component and then add to get ||u||*. That is,
lul*=9 +2544=38 andhence |[u] =./38

Cross Product
There is a special operation for vectors u, v in R?, called the cross product and denoted by u x v.
Specifically, suppose
u=ai+a,j+ak and v=b,i+ b,j+ b;k
Then
uxv=_(a,by —ayby)i + (a3b;, — ab,)j+ (a,b, — az b))k
Note u x vis a vector; hence u x v is also called vector preduct or outer product of u and v.

b
Using determinant notation (Chapter 7), where “ d = ad — bc, the cross product may also be
[

expressed as follows:

a, 4a,
b, b,

a, aif.
b, by

a, a,
by b,

k

UXD=
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or, equivalently,

i j k
uxv=|a, a; a,
bl bZ bl

Two important properties of the cross product follow (see Problem 2.56).

Theorem 2.5: Let u, v, w be vectors in R>.
(i) The vector u x vis orthogonal to both u and v.

(i) The absolute value of the “triple product” u ¢ v x w represents the volume of the
parallelepiped formed by the vectors u, v, and w (as shown in Fig. 2-9).

Fig. 29
Example 2.11
(a) Suppose u = 4i + 3j + 6k and v = 2i + 5§ — 3k. Then
uxv=|c 2‘1—13 §j+|; :|k=—39i+24j+14k
) @, I.S)xm.?,s):("; zli Zl; _il)”*‘""" 17)

(Here we find the cross product without using the ijk notation.)
(c) The cross products of the vectors i, j, k are as follows:
ixj=k, ixk=i, kxi=j, and ixi=—k, k xj= —i, ixk=—j

In other words, if we view the triple (i, j, k) as a cyclic permutation, i.e., as arranged around a circle in the
counterclockwise direction as in Fig. 2-10, then the product of two of them in the given direction is the third
one but the product of two of them in the opposite direction is the negative of the third one.

Fig. 2-10
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29 COMPLEX NUMBERS

The set of complex numbers is denoted by C. Formally, a complex number is an ordered pair (a, b)
of real numbers; equality, addition, and multiplication of complex numbers are defined as follows:

(a, b) = (c, d) iff a=cand b=d
@aby+(c,dy=(@+c,b+d
(a, b)c, d) = (ac — bd, ad + bc)
We identify the real number a with the complex number (a, 0):
a+(a, 0)

This is possible since the operations of addition and multiplication of real numbers are preserved under
the correspondence

@0 +(b,0=(@+b0 and (a O}b, 0) = (ab, 0)

Thus we view R as a subset of C and replace (a, 0) by a whenever convenient and possible.
The complex number (0, 1), denoted by i, has the important property that

Z=ii=00,1)00,1)=(-1,0=—-1 o i=./-1
Furthermore, using the fact
(a, b) = (a, 0) + (0, b) and (0, b) = (b, OX0, 1)
we have
(a, b) ={(a, 0) + (b, OX0, 1) =a + bi

The notation z = a + bi, where a = Re z and b = Im z are called, respectively, the real and imaginary
parts of the complex number z, is more convenient than (a, b). For example, the sum and product of two
complex numbers z = a + bi and w = ¢ + di can be obtained by simply using the commutative and
distributive laws and i = —1:

z+w=la+b)+(c+diy=a+c+bi+di=(@a+c)+ (b +d)i
2w = (a + bi)(c + di) = ac + bci + adi + bdi* = (ac — bd) + (bc + ad)i

Warning: The above use of the letter i for ./ —1 has no relationship whatsoever
to the vector notation i = (1, 0, 0) introduced in Section 2.8.

The conjugate of the complex number z = (a, b) = a + bi is denoted and defined by

z=a+bi=a-bi

Then 2z = (a + bifa — bi) = a®> — b%i? = a® + b%. If, in addition, z # 0, then the inverse z~' of z and
division of w by z are given, respectively, by

z“—i*- a —b and E—wz“
zz a*+b* at+ bt z
where w € C. We also define
—z= -1z and w—z=w+(—2)

Just as the real numbers can be represented by the points on a line, the complex numbers can be
represented by the points in the plane. Specifically, we let the point (a, b) in the plane represent the
complex number z = a + bi, i.e., whose real part is ¢ and whose imaginary part is b. (See Fig. 2-11.) The
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absolute value of z, written | z{, is defined as the distance from z to the origin:
|z| = /a* + b?

Note that | z| is equal to the norm of the vector (a, b). Also, | z| = \/zz.

bb———————#2=a+bi

12|

aF———

Fig. 2-11

Example 2.12. Supposez =2 + 3iand w = 5 — 2i. Then
z4+W=2+3)+5-200=2+5+4+3i—-2i=T+i
2w =2+ 35— 2i) =10 + 15 — 4i — 62 =16 + 11i
z=2+43i=2-3 and Ww=S-2i=5+2
woS5—2i (5-2)2—3) 4-19% 4 19

z 2430 (24 3iK2—3i) 13 13 13

Iz =/4+9=/13 and |w|=./25+4=/29

Remark: We emphasize that the set C of complex numbers with the above oper-
ations of addition and multiplication is a field, like R.

2.10 VECTORS IN C

The set of all n-tuples of complex numbers, denoted by C", is called complex n-space. Just as in the
real case, the elements of C" are called points or vectors, the elements of C are called scalars, and vector
addition in C" and scalar multiplication on C" are given by

(Zps 22, a2 F Wy, Wy, oW =(z, + Wy, 2+ Wa, ..., Z,+ W,,)
Z(Zl, 23,041 Z")= (zzh ZZ94 «uny ZZn)

where z;,, w;, z € C.

Example 2.13
@ Q+3i,4—i3)+(3—2i5,4—6)=(5+1i4 +4i,7— 6i)
(b) 2i(2 + 3i,4 — i, 3) = (—6 + 4i, 2 + 8i, 6i)

Now let 4 and v be arbitrary vectors in C":
U=1(2y, 232-.-. 2,) U=(wy, wy, ..., W,) z;,w;€C
The dot, or inner, product of u and v is defined as follows:

H v=2,w +2Za3W; +---F 2, W
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Note that this definition reduces to the previous one in the real case, since w; = w; when w; is real. The
norm of u is defined by

lull = Ju-u= /22 + 2,2, + - + 2.2y =12 P+ 12,2 + - + |z, [

Observe that u * u and so | u|| are real and positive when u # 0and O when u = 0.

Example 2.14. Letu =(2 + 3i,4 —i, 2)and v = (3 — 24, 5, 4 — 6i). Then

urv=(2+ 33 — 2i) + @ — iX5) + (2iK4 — 6i)
= (24 33 + 2) + (4 — iX5) + (2004 + 6i)
=13 +20-5 - 12+ 8i =8 + 16i

wew=(2+ 3K2 + 3) + (4 — N4 — i) + (2iX20)
= (2 + 3iK2 = 3i) + (4 — N4 + i) + (2i) ~20)
=13417+4=34

lull = u-u=/3¢

The space C” with the above operations of vector addition, scalar multiplication, and dot product,
is called complex Euclidean n-space.

Remark: If u* v were defined by u*v=2z,w, +--- + z,w,, then it is possible
for u * u = 0 even though u # 0,e.g., if u = (1, i. 0). In fact, u * ¥ may not even be real.

Solved Problems

VECTORS IN R"
21. Letu=(2, —-7,1),v=(—3,04),w=(0,5, —8). Find (a) 3u — 4v, (b) 2u + 3v — 5w.
First perform the scalar multiplication and then the vector addition.

(@) 3u—4v=32 =7, 1)—4-3,04) =6 —21,3)+ (12,0, —16) = (18, —21, —13)
(B) 2u+ 30— 5w=22 —7, 1)+ 3=3,0,4)— 50, 5 —8)

=(4, —14,2) + (=9, 0, 12) + (0. —25, 40)

—@—-940, —144+0—12524 12 4+ 40) = (—5, — 39, 54)

22. Compute:

1 2 5 -1 3
@ 2| —-1]-3 3} b)) -2 3]+4 5]-3] -1
3 -4 -4 2 —1
First perform the scalar multiplication and then the vector addition.
1 2 2 -6 -4
(@ 2| —1})-31 3|=|-2)+]-9)=]-11
3 -4 6 12 18
5 -1 3 —10 —4 -9 -23
b -2 3}+ 51=31 —-1)1=| —-6]+{ 20|+ 3= 17

-4 2 —1 8 8 3 19
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23, Findxandyif(a)(x, 3) =(2, x + y); (b) (4, y) = x(2, 3).
(@) Since the two vectors are equal, the corresponding components are equal to each other:
x=2 I=x+y

Substitute x = 2 into the second equation to obtain y=1. Thusx=2and y = 1.

(b)) Multiply by the scalar x to obtain (4, y) = x(2, 3) = (2x, 3x). Set the corresponding components equal
to each other:
4 =2x y=3x

Solve the linear equations for x and y: x =2 and y = 6.

24. Prove Theorem 2.1.
Let u;, v;, and w; be the ith components of u, v, and w, respectively.

(i) By definition, u; + v; is the ith component of u + v and so (u; + v) + w; is the ith component of
{u + v) + w. On the other hand, v; + w; is the ith component of v + w and so u; + (v; + w;} is the ith
component of u + (v + w). But u;, v;, and w; are real numbers for which the associative law holds,
that is,

(u; +p) +w,=uy; + (v; +w) for i=1,...,n

Accordingly, (u + v) + w = u + (v + w) since their corresponding components are equal.

(i) Here,0 =(0,0, ..., 0); hence
u+ 0 = {uh uZl LR | un)+{0l 0, rasy 0)
=(ul +01 Uz +Oa ceeq Uy + 0) =(uhu2! e un)=u
(i) Since —u= —Lu,, uy, ..., u) = (1, —tiy,..., 1)
u +(—l.[l = (ulv Uz, --ey uw) + (_ul' Uz, iy _un)
=(U; — U, Uy — Uy, ..., 14, —u)=(0,0,...,00=0

(iv) By definition, u; + v, is the ith component of u + v, and v; + u; is the ith component of v + u. But y;

and v, are real numbers for which the commutative law holds, that is,

u,-+v.-=vl-+u,- llzl....,n

Hence u + v = v + u since their corresponding components are equal.

(v) Since y; + v; is the ith component of u + v, k{u; + v)) is the ith component of k(u + v). Since ku; and
kv, are the ith components of ku and kv, respectively, ku; + kv, is the ith component of ku + kv. But k,
u;, and v; are real numbers; hence

klu; + v)) = ku; + ko, i=1,...,n

Thus k(u + v) = ku + kv, as corresponding components are equal.

(v} Observe that the first plus sign refers to the addition of the two scalars k and k” whereas the second
plus sign refers to the vector addition of the two vectors ku and k'u.
By definition, (k + k')u; is the ith component of the vector (k + k). Since ku; and k'y; are the ith
components of ku and k'u, respectively, ku; + K'u; is the ith component of ku + k'u. But k, k', and u;
are real numbers; hence

(k + K = ku; + K'u, i=1...,n
Thus (k + k)Ju = ku + k'u, as corresponding components are equal.

(vi1) Since k'u; i1s the ith component of k'u, k(k'w;} is the ith component of k{k'u). But (kk)u; is the ith
component of (kk")u and, since k, k' and u; are real numbers,

(ki'yu, = k(k'u)) i=1..n
Hence (kk')u = k(k'u), as corresponding components are equal.

Vi) 1= u=uy,uy,...,u) =(luy, lugy, o L) = (U, 0y, .., 1) =1,
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VECTORS AND LINEAR EQUATIONS

25. Convert the following vector equation to an equivalent system of linear equations and solve:

1 1 2 3
~6)l=x2)+y5]|+=22
5 3 8 3

Multiply the vectors on the right by the unknown scalars and then add:

1 x 2y 3z x+2y+3z
—6)=|2x|+|5y)+{2z|=|2x+ 5y + 2z
5 3x 8y 3z 3x+ 8y + 3z

Set corresponding components of the vectors equal to each other, and reduce the system to echelon form:

x+2p+3z= 1 x+2y+3z= 1 x+2y+3z= 1
2x+ 5y +2z2=—-6 y—4z=—8 y—4z= —8
Ix+8y+3z= 5§ 2y —6z= 2 2z = 18

The system is triangular, and back-substitution yields the unique solution x = —82,y =28,z =90.

26. Write the vector v = (1, —2, 5) as a linear combination of the vectorsu, = (1, 1, 1), u, = (1, 2, 3),
and u; = (2, —1, 1).

We want to express v in the form v = xu, + yu, + zu, with x, y, and z as yet unknown. Thus we have

1 1 1 2 x+ y+2z
=2)=x{l)+M2)+ -1]={x+2y— 2
5 1 3 1 x+3y+ z

(It is more convenient to write the vectors as columns than as rows when forming linear combinations.)
Setting corresponding components equal to each other we obtain:

x+y+2z= 1 x+y+2z= 1 x+y+2z= 1

xX+2y— z=-2 or y—3z=-3 or y—3z=-3

x+3y+ z= 5 2y — z= 4 52= 10
The unique solution of the triangular formis x = —6, y = 3,z = 2; thus v = —6u, + 3u, + 2u,.

27.  Write the vector v = (2, 3, —5) as a linear combination of u, = (1, 2, —3), u, =(2, — 1, —4), and
U3 - (l, ?, _5)

Find the equivalent system of equations and then solve. First:

2 1 2 1 X+2y+ z
3= 21+ -1+ 7= 2x— y+7z
-5 -3 -4 -5 —3x—4y—-5z

Setting corresponding components equal to each other we obtain

x+2y+ z= 2 x+2y+ z= 2 x+2y+z= 2
2x— y+Tz= 3 or —Sy+5z2=—1 or —Sy+5z2=—1
—3x—4y—5z= -5 2y—2z= 1 0= 3

The third equation, 0 = 3, indicates that the system has no solution. Thus v cannot be written as a linear
combination of the vectors u,, u, and u;.
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2.9.

2.10.

211
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Determine whether the vectors u, =(1, 1, 1), u, = (2, —1, 3), and u; = (1, —5, 3) are linearly
dependent or linearly independent.

Recall that u,, u,, u, are linearly dependent or linearly independent according as the vector equation
XU, + yu, + zu, = 0 has a nonzero solution or only the zero solution. Thus first set a linear combination of
the vectors equal to the zero vector:

0 1 2 1 x+2y+ z
Ol=x 1)+ —-1)+z] -S5)={x— y—3z
0 1 3 3 x+3y+ 3z

Set corresponding components equal to each other, and reduce the system to echelon form:

x+2y+ z=0 x+2y+ z=0 x42y4+ z=0
x— y—5=0 or —3y—6z=0 or y+2z=0
x+3y+32=0 y+2z=0

The system in echelon form has a free variable; hence the system has a nonzero solution. Thus the original
vectors are linearly dependent. (We do not need to solve the system to determine linear dependence or
independence; we only need to know if a nonzero solution exists.)

Determine whether or not the vectors (1, —2, —3),(2, 3, — 1), and (3, 2, 1) are linearly dependent.

Set a linear combination (with coefficients x, y, z) of the vectors equal to the zero vector:

0 1 2 3 x+2y+3z
0)=x -2 )+ 3)+z12)=|—-2x+3y+2:
0 -3 —1 1 —Ix— y+ z

Set corresponding components equal to each other, and reduce the system to echelon form:

x+2y+3z=0 x+2y+ 3z=0 xX+2p+32=0 x+2y+32=0
—2x+3y+2z=0 or Ty + Szzoky+22=0 or y+2z=0
—3x— y+ z=0 S5y+10z=0 Ty+8=0 —6z=10

The homogeneous system is in triangular form, with no free variables; hence it has only the zero solution.
Thus the original vectors are linearly independent.

Prove: Any n + 1 or more vectors in R* are linearly dependent.
Suppose u,, U, ..., u, are vectors in R" and g > n. The vector equation
Xpty + Uy + -+ xu,=0

is equivalent to a homogeneous system of n equations in g > n unknowns. By Theorem 1.9, this system has
a nonzero solution. Therefore u,,u,, ..., u, are linearly dependent.

Show that any set of g vectors that includes the zero vector is linearly dependent.

Denoting the vectors as 0, u, , u3, ... u,, we have 1{0) + Ouy + Ouy + -+ + Ou, = 0.

DOT (INNER) PRODUCT, ORTHOGONALITY

2.12.

2.13.

Compute u *vwhereu = (1, —2,3, —4)andv =(6,7, 1, —2).
Multiply corresponding components and add: u * v = (IX6) + (—2X7) + (3X1) + (—4X—2) = 3.

Supposeu=(3,2,1),v=(5 —3,4,w= (1,6, —7).Find: @ (u+v)*w,D)u-w+r-w
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(a) First calculate u + v by adding corresponding components:
u+v=03+52-3,1+4)=8, —1,5)

Then compute (u + v)* w = (BX1) + (— IX6) + SN\—TN =8 —6— 35= —133.

(b) Firstfindu-w=3+12—-7=8andv*w=5—18 — 28 = —41. Then
u*w+v-w=8-41=-33
[Note: As expected from Theorem 2.2(j), the two values are equal.]

214. letu=(1,23 —4),v=(5 —6,7 8),and k = 3. Find: (a) k(u - v), (b) (ku) * v, (¢) u * (kv).
(@) Firstfindurv=5—-12421—-32= —18 Thenk(u+v)=3—18) = —54.
(b) First find ku = (3(1), 3(2), 3(3), 3(—4)) = (3, 6,9, —12), Then
(k) * v = (3KS) + (6X—6) + (OKT) + (— 12X8) = 15 — 36 + 63 — 96 = — 54
() First find ke = (15, —18, 21, 24). Then
us (ko) =(I15) + A —18) + X2 + (—4)24)=15—36 + 63 — 96 = — 54

215. letu=(541),v=(3, —4, 1), and w=(1, —2, 3). Which pair of these vectors, if any, are
perpendicular?

Find the dot product of each pair of vectors:
urv=15—-16+1=0 v-w=3+8+3=14 u-w=5-8+3=0

Hence vectors u and v and vectors u and w are orthogonal, but vectors v and w are not.

2.16. Determine k so that the vectors u and v are orthogonal where u = (1, k, —3)and v = (2, —5, 4).

Compute u * v, set it equal to 0, and solve for k. u=v = (1X2) + (KK—5) + (=344) =2 — 5k — 12 =,
or —5k — 10 = 0. Solving, k = —2.

2.17. Prove Theorem 2.2.
Letu=(u,ty,...,40), 0 =(;,0;,...,0,), w=(w,w,,..., w)
(i) Sinceu + v=(uy + v, u, +v;,...,u, + 1),

@+v)cw=(u, +vw, +u, +v)w, + - +(u, +v)w,
=uw, + 0w, U Wy W, o U W, U, W,
=(uyywy+u;w + - +u,w)+(vyw, +vaw, + - +v,w)
=u-wH+ov-w

(i) Since ku = (ku,, ku,, ..., ku,),
(k) * v = kuyv, + kuyvy, +--- + ku, v, = kupy + 405 + - + u,v,) = k(u* v)
(i) u-v=up, +uv+---+uv,=vu +vu,+ -+ u=v-v
(iv) Since u? is nonnegative for each i, and since the sum of nonnegative real numbers is nonnegative,
uru=ul+ul+ +ul>0

Furthermore, u = u = 0 iff u, = Ofor each i, that is, if u = 0.

NORM (LENGTH) IN R
218. Find |wllifw=(—31, —2,4, -5).
Wil =(=32+12+ (=22 + 42 + (=52 =9+ 1 +4 + 16 + 25 = 55; hence ||w| = /55.
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2.19.

2.20.

2.21.

2.23.

VECTORS IN R" AND C", SPATIAL VECTORS [CHAP. 2

Determine k such that |lu| = /39 where u = (1, k, —2, 5).
lul? = 1% + k* + (—2)* + 5% = k? + 30. Now solve k? + 30 = 39 and obtain k = 3, —3.

Normalize w = (4, —2, —3, 8).

First find w2 =w-w=4* 4+ (=22 +(—=3)*+8 =16 + 4 + 9 + 64 = 93. Divide each component
of w by ||w| = /93 to obtain

ﬁr=1=( 4 -2 -3 8 )
iwl  \ /93" /93" /93" /93
Normalize v = (3, 4, —3).

Note that v and any positive multiple of v will have the same normalized form. Hence, first multiply v
by 12 to “clear™ fractions: 12v = (6, 8, —3). Then

12
l/z\v_ v

6 8 -3
2o =(m’\/ﬁ’ ﬁ)

[120]> =36 + 64 + 9 = 109 and b=

Prove Theorem 2.3 (Cauchy—Schwarz). |u - v| < |luf ||v|.

We shall prove the following stronger statement: |u - v| < z |u;v;] < |ul|lv|l- First, if u =0 or v =0,
i=1
then the inequality reduces to 0 < 0 < 0 and is therefore true. Hence we need only consider the case in
which u # 0 and v # 0, i.e., where jju|| # 0 and ||v|| # 0. Furthermore, because

lu-vi =Y wp;l <3 1y

we need only prove the second inequality.
Now, for any real numbers x, y € R, 0 < (x — y)* = x* — 2xy + y* or, equivalently,

2xy < x2 4+ y? (n
Set x = |;|/fju]| and y = |v;[/lv}l in (J) to obtain, for any i,

Iual |"1| |""iiz 1”1’2
LB 2
lall ol = ful® * ol @

But, by definition of the norm of a vector, |ufl =} u? =Y |u;|* and |v|| = Y v = ¥ |v;}%. Thus summing
(2) with respect to i and using | u; v;] = |u;]| v;], we have

2 2 2 2
PP 21 CULTI9 28 1 2 T L i
el = al® T el ol

that is,

Z | 4;v;] <
flullllel

Multiplying both sides by [fuf ||v|l, we obtain the required inequality.

Prove Theorem 2.4 (Minkowski). ||u + v| < |u| + ||l
By the Cauchy-Schwarz inequality (Problem 2.22) and the other properties of the inner product,

lu+v|?P=@@+v) (u+v)=u-u+2u-v)y+v-v
< lull® + 2)ullliol + (lol* = (lull + lvll)

Taking the square roots of both sides yields the desired inequality.
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2.24. Prove that the norm in R" satisfies the following laws:
(@) [N,] Forany vectoru, ||ul| = 0;and [jul| =0iffu=0.
(b)) [N,] Forany vector u and any scalar k, |\ku| = | k| ||ul.
(¢) [N,] Foranyvectorsuand o, |u+ v] < lull + |lv].
(@ By Theorem 2.2,u+u>0,and u *u = 0iffu = 0. Since lu|| = \/u - u, [N,]follows.
(b) Suppose u = (u, u,,..., 4,) and so ku = (ku,, ku,, ..., ku,). Then
lkull® = (ku,)* + (kuz)* + -+ + (ku,)* = k*(uf + uj + -~ + u?) = k*||ull?
Taking square roots gives [N,].
(¢) [N,] was proved in Problem 2.23.

225, Letu=(1,2 —2),v=(3 —12 4), and k= —3. (a) Find |ul, ||v], and [ku|. () Verify that
llkull = jk|ljull and Jlu + o] < flulf + |ofi.

(@) |lull =/1 +4+4=ﬁ=3, floll = /9 + 144 + 16 = /169 = 13, ku=(—3, —6, 6), and [ku| =
9+36+36=,./81=09.
(b) Since|k|=|—3|=3,wehave |k||ull =33 =9 = |ku|. Also u + v =(4, — 10, 2). Thus

lu+vll =/16+ 100+ 4= ./120< 16 =3 + 13 = [lu] + ||

DISTANCE, ANGLES, PROJECTIONS

2.26. Find the distance d(u, v) between the vectors u and v where
@ u=(,7,v=(6 —-35),
(b) u= (3’ "59 4): v= (6’ 21 - l)v
€© u=(5,3-2,—4, —-1),v=(2,-1,0,-7,2).
In each case use the formula d(u, v) = ||u — v]| = \/[ul — ) + -+ (u, — )%
(@ du,v)=J(1 — 67+ (T + 57 =/25+ 144 = /169 = 13
B) duv)=/G—6F +(—5—2F +(@+ 1) =./9+49+25= /83
© du)=/E-2+@+12+(—2+0P +(—4+ 77 +(—1—27= /a7

2.27. Find k such that d(u, v) = 6 whereu = (2, k, 1, —4)and v = (3, — 1, 6, —3).
First find
[du, ) ]*=Q2 -3 +k+12+(1—62+(—44+3 =k +2k+28

Now solve k? + 2k + 28 = 6% to obtain k = 2, —4.

2.28. From Problem 2.24, prove that the distance function d(u, v) satisfies the following:
[M,] duv)=>0;and d(u, v)=0iff u=v.
[M,] d(u,v)=d(v, u).
[M;] du, v) < d(u, w) + d(w, v) (triangle inequality).
[M,] follows directly from [N,]. By [N,],
du, v)=lu—vll = [(~=1)v —w)l| = | —=1]]lv — ul = [lv — ull = d(v, v)
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which is [M,]. By [N,],
d(y, v) = llu— vl = (s — W) + (w — 0)ll < [lu— wil + llw — vl = d(u, w) + dw, v)
which is [M,].

Find cos 8, where 8 is the angle between u = (1, 2, —5)and v = (2, 4, 3).
First find
uv=2+8-15= -5 lul?=1+4+25=130 o> =4+ 16 +9 =29
Then

v

u 5
lullel — /30,/29

cos 0 =

Find proj (4, v) where u = (1, —3,4)and v = (3,4, 7).
First indu v =3 — 12 + 28 = 19.and ||v]|2 = 9 + 16 + 49 = 74, Then

o)l e 195 4 g (37 76 133) _ (57 38 133
Proy Ut 0= o =244 N=\nun) "\

POINTS, LINES, AND HYPERPLANES

This section distinguishes between an n-tuple P(a,, a;, ..., a,) = P(a;) viewed as a point in R" and
an n-tuple v = [c;, ¢, -.., ¢,] viewed as a vector (arrow) from the origin O to the point C(c,, ¢,,-.., C,).

2.31.

2.32.

2.33.

Find the vector v that is identified with the directed line segment P_é for the points (a) P(2, 5) and
Q(—3,4)in R? (b) P(1, —2,4) and Q(6, 0, —3)in R*.

(@ v=Q—-P=[-3—-24-5]=[-5,—1)
B v=0-P=[6-1,0+2 —3—4]=[5.2, —T]

Consider points P(3, k, —2) and Q(5, 3, 4) in R*. Find k so that P_Q' is orthogonal to the vector
u=1[4, —-32]

Firstfindv=0Q — P=[5—3,3 — k, 4 4+ 2] = [2, 3 — k. 6). Next compute
U v=42D-33-k)+26) =8 -9 + 3k + 12 = 3k + 11

Lastly, set u-v=00r 3k + 11 =0, from which k = —11/3.

Consider the hyperplane H in R” which is the solution set of the linear equation
alxl+0112+"'+anx”=b (1]

where u = [a,, 4,, ..., a,] # 0. Show that the directed line segment Fé of any pair of points P,
Q € H is orthogonal to the coefficient vector u; the vector u is said to be normal to the hyper-
plane H.

Let w, = OP and w, = OQ; hence v = w, — w, = PQ. By (1), 4 - w, = band u * w, = b. But then
urv=u(w,—w)=u*wy—u*w,=b—b=0

Thus v = PQ is orthogonal to the normal vector u.
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2.35.

2.36.

2.37.

2.38.

Find an equation of the hyperplane H in R* which passes through P(3, —2, 1, —4) and is normal
tou=1[275 -6, —2].

An equation of H is of the form 2x + 5y — 6z — 2w = k since it is normal to u. Substitute P into this
equation to obtain k = —2. Thus an equation of H is 2x + Sy — 6z — 2w = —2,

Find an equation of the plane H in R* which contains P(1, —5, 2) and is parallel to the plane H’
determined by 3x — 7y + 4z = 5.

H and H’ are parallel if and only if their normals are parallel or antiparallel. Hence an equation of H is
of the form 3x — 7y + 4z = k. Substitute P(1, — 35, 2) into this equation to obtain k = 46. Thus the required
equation is 3x — Ty + 4z = 46.

Find a parametric representation of the line in R* passing through P(4, —2, 3, 1) in the direction
u=1[275 -1711].

The line L in R" passing through the point P(g;) and in the direction of the nonzero vector u = [u;]
consists of the points X = (x,) which satisfy the equation

X=P+41tu or X; = a; + u;t (fori=1,2,...,n) (N

where the parameter r takes on all real values. Thus we obtain

x= 4+ 2
= — t
¥ 2+ 5 or 4+2t, -245,3-7t,1+ 119
z= 3— Tt
w= 1+4+11t

Find a parametric equation of the line in R? passing through the points P(5, 4, —3) and
o, —3,2).

First compute u = }TQ. =[1-5 -3—-4,2—-(-3)] =[—4, —7, 5] Then use Problem 2.36 to obtain
x=5—-4 y=4—-Tt z=—345t

Give a nonparametric representation for the line of Problem 2.37.

Solve each coordinate equation for ¢ and equate the results

x—5 y—4 z+3
-4 -7 5

or the pair of linear equations 7x — 4y = 19 and 5x + 4z = 13.

Find a parametric equation of the line in R* perpendicular to the plane 2x — 3y + 7z = 4 and
intersecting the plane at the point P(6, 5, 1).

Since the line is perpendicular to the plane, the line must be in the direction of the normal vector
u = [2, —3, 7] of the plane. Hence

=64+ 2t y=5-3t z=1+T

Consider the following curve C in R* where 0 <t < 4:
Fy=@% 3t -2, 1* +5)

Find the unit tangent vector T when ¢ = 2.
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Take the derivative of (each component of) F(r) to obtain a vector V which is tangent to the curve:

dF(t
V(= are =(2t, 3, 3%, 21)
dt
Now find V when t = 2: V = (4, 3, 12, 4). Normalize V to get the unit tangent vector T to the curve when
t =2. We have
IVIP=16 +9 + 144 + 16 = 185 or Vil = /185
Thus

4 3 12 4
T= ' . '
[JISS /185 /185 ,/185]

2.41. Let T(t) be the unit tangent vector to a curve C in R". Show that dT(t)/dt is orthogonal to T(t).
We have T(t) * T(t) = 1. Using the rule for differentiating a dot product, along with d(1)/dt = 0, we have
d[T(r) - T())/dt = T(t) * dT(t)/dt + dT(t)/de = T(1) = 2T(¢t) * dT(t)/dt = 0
Thus dT(t)/dt is orthogonal to T(t).

SPATIAL VECTORS (VECTORS IN R%), PLANES, LINES, CURVES, AND
SURFACES IN R?

The following formulas will be used in Problems 2.42-2.53.
The equation of a plane through the point Py(x,, y,, z,) with normal direction N = ai + bj + ck is
alx — xo) + by — yo) + elx — xo) =0 2.1

The parametric equation of a line L through a point Py(xq, yo. Zo) in the direction of the vector
v=ai+ bj + ckis

x=at+ x, y=>bt + y, z=ct+z,
or, equivalently,

f(t) = (at + xgh + (bt + yo)i + (ct + zp)k (2.2)

The equation of a normal vector N to a surface F(x, y,z) =0is

N =F,i+F,j+F.k (2.3)

2.42. Find the equation of the plane with normal direction N = 5i — 6j + 7k and containing the point
P(3,4, —2).

Substitute P and N in equation (2.7) to get
5x—3)—6y—4)+TNz+2)=0 or Sx —6y+T7z=-23

243. Find a normal vector N to the plane 4x + 7y — 12z = 3.

The coefficients of x, y, z give a normal direction; hence N = 4i + 7j — 12k. (Any multiple of N also is
normal to the plane.)

2.44. Find the plane H parallel to 4x + 7y — 12z = 3 and containing the point P(2, 3, —1).
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H and the given plane have the same normal direction; that is, N = 4i + 7j — 12k is normal to H.
Substitute P and N in equation (a) to get

x —2)+Ty—3)—12z+ 1)=0 or 4x + Ty — 12z = 41

245. Let H and K be, respectively, the planes x + 2y — 4z = 5and 2x — y + 3z = 7. Find cos 0 where
6 is the angle between planes H and K.

The angle € between H and K is the same as the angle between a normal N to H and a normal N’ to

K. We have
N=i+2—4k and N =2i—j+3k
Then
N*N=2-2—-12=-12 INI?=1+44+16=21 INIP=4+4+1+9=14
Thus

N-N’ 12

12
B= = = = =
INIANT 21 /18 1./6

2.46. Derive equation (2.1).
Let P(x, y, z) be an arbitrary point in the plane. The vector v from Py to P is
v="P—Po=(x—Xoi +(y— yoli +(z —zo)k
Since v is orthogonal to N = ai + bj + ck (Fig. 2-12), we get the required formula
alx — xo) + oy — yo) + ez — z9) = 0

P4

Fig. 2-12

2.47. Derive equation (2.2).
Let P(x, y, z) be an arbitrary point on the line L. The vector w from P, to P is
w=P—P,=(x—Xp)i +(y —yol) +(z—zp)k V)]
Since w and v have the same direction (Fig. 2-13),
w=tv = Hai + bj + ck) = ati + btj + ctk (2)

Equations (1) and (2) give us our result.
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Fig. 2-13

248. Find the (parametric) equation of the line L through:
(@) Point P(3, 4, —2) and in the direction of v = 5i — j + 3k,
(b) Points P(1, 3,2) and Q(2, 5, —6).
(a) Substitute in equation (2.2) to get
SO =05t + i+ (~t+ 4+ (3t -2k

(p) First find the vector v from P to Q: v=Q — P =i+ 2j — 8k. Then use (2.2) with v and one of the
given points, say P, to get

SO =@+ i+ (2t +3)j +(—8t + 2k

2.49. Let H be the plane 3x + 5y + 7z = 15. Find the equation of the line L perpendicular to H and
containing the point P(1, —2, 4).

Since L is perpendicular to the plane H, L must be in the same direction as the normal
N = 3i + 5j + 7k to H. Thus use (2.2) with N and P to get

() =03t + Di + (5t — 2)j + (7t + 4)k

250. Consider a moving body B whose position at time t is given by R(t) = % + 2t%j + 3tk. [Then
V(t) = dR(t)/dt denotes the velocity of B and A(f) = dV/(t)/dt denotes the acceleration of B.]
(@) Find the position of Bwhent=1. (¢) Find the speed s of B when t = 1.
(b) Find the velocity v of Bwhent= 1. (d) Find the acceleration a of B when t = 1.

(a) Substitute t = 1 into R(t) to get R(1) =i + 2j + 3k.
(b) Take the derivative of R(f) to get

Vit) = ? = 3t% + 4t + 3k

Substitute ¢t = 1in V(t) to get v = V(1) = 3i + 4j + 3k
(c) The speed s is the magnitude of the velocity v. Thus

s=|vf?=94+16+9=34 andhence s=.34
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(d) Take the second derivative of R(f) or, in other words, the derivative of ¥(t) to get

A(r)=~{:—,fﬂ=6ri+4j

Substitute ¢ = 1 in A(f) to get a = A(1) = 6i + 4j.

251. Consider the surface xy? + 2yz = 16 in R>. Find (a) a normal vector N(x, y, z) to the surface and
(b) the tangent plane H to the surface at point P(1, 2, 3).

(a) Find the partial derivatives F, F,, F_ where F(x, y, z) = xy* 4 2yz — 16. We have
F, =) F,=2xy+ 2z F, =2y

Thus, from equation (2.3), N(x, y, 2) = y%i + (2xy + 22)] + 2)k.
() A normal to the surface at point P is

N(P) = N(1, 2, 3) = 4i + 10§ + 4k
Thus N = 2i + 5j + 2k is also a normal vector at P. Substitute P and N into equation (2./) to get
Ax—-D+Sy—-2+2z—3)=0 or 2x + 5y +2z=18

2.52. Consider the ellipsoid x* + 2y? + 3z? = 15. Find the tangent plane H at point P(2, 2, 1).
First find a normal vector [from equation (2.3)]
N(x, y, 2} = F, i+ F,j + F k = 2xi + 4yj + 6zk
Evaluate the normal vector N(x, y. z) at P to get .
N(P) = N(2, 2, 1) = 4i + 8j + 6k
Thus N = 2i + 4j + 3k is normal to the ellipsoid at P. Substitute P and N into (2,) to obtain H:
2Ax—D+4y—2+3z~-1)=0 or 2x +dy 4+ 3z2=15

2.53. Consider the equation F(x, y, z) = x> + y*> — z = 0, whose solution set z = x? + y? represents a
surface S in R>. Find () a normal vector N to the surface S when x =2, y = 3; and (b) the
tangent plane H to the surface S when x = 2, y = 3.

(@) Use the fact that, when F(x, y,z2) =f(x,y) —z,wehave F, = f, ,F = f, ,and F, = — 1. Then
N=(f.f,, -D=2i+2)j—k=4i+ 6] — k

(b)) Ifx=2 y=3, then z=4 + 9 = 13; hence P(2, 3, 13) is the point on the surface S. Substitute P and
N = 4i + 6j — k into equation (2.1) to obtain H.

Hx -2 +6(y~3)—(z~13)=0 or 4x + 6y —z=13

CROSS PRODUCT
The cross product is defined only for vectors in R>.
254. Find u xv where (@) u=(1, 2, 3) and v=(4, 5, 6), (b)) u=(7, 3, 1) and v=(1, 1, 1),
(c)u=(—4,12 2)and » = (6, — 18, 3).

The cross product of u = (a,, a;, a,) and v = (b,, b;, b;) may be obtained as follows. Put the vector
v = (by, b, , b;) under the vector u = (a,, a,, a,) to form the array

(“l a, ﬂa)
b, b, by
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VECTORS IN R” AND C", SPATIAL VECTORS [CHAP. 2

a, (4] a,
b, |by| b,

WX D= a, 4, a, a4
- b, byl b, b,

That is, cover the first column of the array and take the determinant to obtain the first component of
u x v; cover the second column and take the determinant backwards [compute a,b, — a,b, instead of
—(a, by — ay b,)] to obtain the second component; and cover the third column and take the determinant to
obtain the third component.

2 1 [2) 3] |1 2 [3
(@) uxv:( s :,—}4 6|’[4 s I):(IZ—15,12—6.5—8)=(-3,6. -3)
1 7 1|7 3
(&) uxu=(ﬂ :: ll’_|' m 1H1 1 ml)—ﬂ—l,l—7,7—3}—(2,-6,4)
2 —4

( (7R e 2] 2| |-4 12 [2
€) uxv= 6l —18 3| 6 |—18] 3] 6 —18 |—3

=(36+3612+12,72-72)=(72,24,0)

Consider the vectors u=2i —3j+4k, v=3i+j—2k, w=i+ 5+ 3k Find: (@ u x»,
B)u x w,{(c)v x w.

Use
i 3 k
S O e R S
wherev, = a,i + a,j + a,k and v, = byi+ b,j + b, k.
i i k
@ uxv=[2 -3 4|=(6-4i+(12+4j+2+9k=2i+16+ 11k
3 1 -2

(Remark : Observe that the j component is obtained by taking the determinant backwards.)

i j k

(B) uxw=|2 — 4| =(~9 ~ 20)i + (& - 6)j + (10 + 3}k = —29i — 2j + 13k
1 3
i §j K

(@ vxw=(3 1 —2[=@+10fi+(—2—9)j+ (15— k= 13i— 11j + 14k
15 3

Prove Theorem 2.5(i): The vector ¥ x v is orthogonal to both u and ».
Suppose u = (a,, a,, a;) and v = (b,, b,, by). Then

us(uxuv)=a,la;b; —ayby) +ayasb, — a,by) + ayla,h, — a; b,)
= a,a,by; — a,ayb, + ayayb, — aya, by + ayay by —aya3b, =0

Thus u x v is orthogonal to u. Similarly, u x v is orthogonal to v,
Find a unit vector u orthogonalto» = (1,3, 4 and w = (2, —6, 5).

First find v x w which is orthogonal to v and w. The array (; _z :) gives

vxw=(=15+248 +5 —6—6)=(9, 13, —12)

Now normalize u x w to get u = (9/, /394, 13/,/394, — 12/, /394).
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2.58.

Prove Lagrange’s identity, lu x v||* = (u* ufv * v) — (u * v)%.
Ifu = (a,,a,,as)and v = (b,, b;, b,), then
lu x v||* = (agby — a3 b;)* + (a3 b, — a,by)? + (a,b, — a, b,)? 7))
(u=ufp v) —(u-v)? = (a] + @} + ad)b? + b} + b3) — (a,b, + a, b, + a3 by)? )

Expansion of the right-hand sides of (7) and (2) establishes the identity.

COMPLEX NUMBERS

2.59.

2.60.

2.61.

2.62.

2.63.

2.64.

Supposez =5+ 3iandw=2—4i. Find: (@) z + w, (b) z — w, (c) zw.
Use the ordinary rules of algebra together with i* = — I to obtain a result in the standard form a + bi.
(@ z4+w=(05+3+2-4)=7—-1i
b)) z—w=05+3)-2—-4)=5+3i—-2+4i=3+T7
(©) zw=(5+3N2—4)=10— 14i — 12i* =10 — 14i + 12 =22 — 14i

Simplify: (¢) (5 + 3iX2 — 7i), (b) (4 — 3i)%, (c) (1 + 2i)>.

(@ (5 + 32 — 7i) = 10 + 6i — 35i — 21i* = 31 — 29i

M) 4-3)r=16—24i + 92 =7 — 24i

() A +2P =1 4+6i+1224+8P=14+6i—12—-8i=—11-2

Simplify: (a) i% 3, i*, (b) i3, 8%, i7, i%, (c) i*%, i'74, i%%2, 37,

(@ =1, =)=(-1)=—Li* =) =(-I—-H=1

B L= =)=ii® =D === —-1i"=P=—-iid ==L

(¢) Usingi* = 1andi" =i**" = (i*)}% = 19" = i, divide the exponent n by 4 to obtain the remainder r:

l—39 — I-M‘)ll 3 _ (i4}9£3 - 19!'3 _ l-l = —j '-114 = I-J. = —1 iZSZ — ft) =1 ;317 il

Find the complex conjugate of each of the following:

@) 6 +4i,7—5i,4+i,—3—i; (b)6, —3,4i, —9i

(@ 6+4i=6—4i, 7—5i=7+5i, 4+i=4—i, —3—i=—3+i
() 6=6 —3=-3, 4i=—4, —9 =09

(Note that the conjugate of a real number is the original number, but the conjugate of a pure imagjnary
number is the negative of the original number.)

Find zz and | z| when z = 3 + 4i.

Forz=a+bi,uscz5:a1+h‘andz:\/z_":,faz+bz.

27=9+16=25 lz]=+/25=5

27
54 3i

Simplify
To simplify a fraction z/w of complex numbers, multiply both numerator and denominator by w, the
conjugate of the denominator.

2—71‘_(2-—7:‘){5—3&)_—11—4““ 11 41
5+3i (5+3)5-3) 34 34 314
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2.65.

2.66.

2‘67’

2.68.

VECTORS IN R" AND C", SPATIAL VECTORS [CHAP. 2

Prove: For any complex numbersz,we C,(i))z+ w=2 + W, (ii);v =zw, (i) Z =z

Suppose z=a + biand w=c + di wherea, b, c,d e R.
D) z+4w=@+b)+(c+dy=@+cy+h+di
=fa+c)—b+di=a+c—bi—di
=(@a—-b)+(c—d)y=z+w
(i) zw = (a + bi)c + di) = (ac — bd) + (ad + bo)i
= (ac — bd) — (ad + bo)i = (a — bi)c — di) = zw

(i) Z=a+bi=a—bi=a—(-bi=a+bi=:

Prove: For any complex numbers z, w € C, | zw| = | z| | w].

By (ii) of Problem 2.65,

|zw|? = (zwlzwW) = (zw)izw)

= (22l ww) = | z|*|w|?

The square root of both sides gives us the desired resutt.

Prove: For any complex numbersz,w e C, |z + w| < |z| + |w].
Suppose z = a + bi and w = ¢ + di where a, b, ¢, d € R. Consider the vectors u = (a, b) and v = (¢, d) in
R2 Note that
|zl = /@ + b = |lull lwl=/c* + d* = |jvl
and

lz4+wl=l(@a+d+b+dil=Jla+c)+b+d =l(a+cb+dl=lu+v|
By Minkowski’s inequality (Problem 2.23), flu + vl < [lu] + 2]l and so

lz+wl=llu+oll < llul + vl =|z] + |w]|

Find the dot products u-v and v *u where (@) u=(1 —2i, 3+1i), v=04+ 2i, 5— 6i), and
B)u=03—-2i,4i, 1 +6i),v=(5+1i2—3i,7 + 2i).

Recall that the conjugates of the second vector appear in the dot product
(Zen 0 2 "Wy s W) =2,y 4 42, W,

@ wu-v=(1—2)4+ 2)+ (3 + X5 — 60)
=(1—2K4— 20+ +i)5+6)= —10i +9+23i=9 + 13
vou=(4+ 2l — 2i) + (5 — 6i)3 + )
=(4+ 201 + 20) + (5 — 6if3 — i) = 10i + 9 — 23i = 9 — 13i
(B) wev=(3—2)5 + i) + (@)2 — 3i) + (1 + 6i}7 + 2i)
=(3— 205 — i) + (N2 + 3i) + (1 + 6i)7 — 2i) = 20 + 35i
veou=(54+iK3— 20) + (2 — 3i)4i) + (7 + 21 + 6i)
=(5+ )3 + 20) + (2 — 3iN—4i) + (7 + 201 — 6i) = 20 — 35i

In both cases, v * u = u - v. This holds true in general, as seen in Problem 2.70.
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269, letu=(7—2i,2+5)andv=(141i, —3 — 6i). Find:
@u+v;, (b)2iu; ()3 —ip; (du-v; (e)lul and |o|.
(@ u4+v=(T—2i+1+i2+5i~3—6)=@8—1i, —1—i)
(b) 2iu = (18i — 4%, 4i + 10i%) = (4 + 14i, —10 + 4i)
(© G—iw=0C+3i—i—i% —9— 18 + 3i + 6i>) = (4 + 2i, —15 — 15i)
(d) wu-v=(7—2ilI + 1) + (2 + 5i—3 — 6})
=(7—2)1 —)+ Q2+ 5H—3+6)=5—9—36—3i=—31— 12
(@ full = /7> + (=27 +22 + 52 = /82, ol = /12 + 1 +(=3) + (-6 = /a7

2.70. Prove: For any vectors ¥, v € C" and any scalar ze C, (Ju-v=v-u, (ii) (zv)* v = z(u * v),
(1) u = (z0) = 2(u * v).
Suppose u = (z,, 23, ..., zyand v = (wy, wy, ..., W)
{i} Using the properties of the conjugate,

PTU=W,Z, FWaZ ot WL, =W E W2+ W,
=Wz, + Wz, + AW, =W bWy, W, = U D
(i) Since zu = (zz,, 225, ..., 22,),
(zu) v =zz , Wy + 2z, W, + -+ + zZ, W, = 2(z, W, + 2, W, + - + z, W) = z{u*v)
(Compare with Theorem 2.2 on vectors in R")
(iii) Method 1.  Since zv = (zw,, zw,, ..., zw,),
u-(zv)=z,zw, + z;z_wz +oordzpzw, =z 2wy + Z,Ew, 4 - 4 Z,ZW,

=Zz,W, + z,W, + - + Z, W) =Z(u"v)

Method 2. Using (i) and (ii),

u-(zv)=(zv)*u=2zv - ) = Z{v * u) = z(u * v)

Supplementary Problems

VECTORS IN R"

271, Let u=(2 -1, 0, =3 v=(1, -1, ~1, 3), w=(1, 3, ~2, 2). Find: (@) 2u — 3v; (b) Su— 3v — 4w;
(€) —u+ 2v—2w;(d)u"v,u-wand v - w;(e)} uf, v, and [w].

2.72. Determine x and y if: (@) x(3, 2) = 2(y, —1); (B) (2, y) = A1, —2).

2.73. Find d(u, v) and proj (u, v} when (@) u = (1, =3}, v = (4, Dand (Bu=(2, - L0, ) v=(1, -1, 1,2).

LINEAR COMBINATIONS, LINEAR INDEPENDENCE

2.74. Let
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Express v as a linear combination of u,, u, , u, where

1 1 a
(ﬂ} v=\) -2 » (b, v=13) (C) v={b
4 5 c

275. Determine whether the following vectors u, v, w are linearly independent and, if not, express one of them as
a linear combination of the others.

@ u=(101v=(,23w=3275;
B u=(101v=(,1L1)w=(011)

@ u=(,2,0=(1,—1),w=(25);

d u=(1,0,01,v=(0121),w=(1,234):
€ u=(1,0,0,1),v=(0,1,21),w=(1,243)

2.76. Prove that Theorem 2.3 holds with equality iff u and v are linearly dependent.

LOCATED VECTORS, HYPERPLANES, LINES, CURVES
2.77. Find the (located) vector v from (a) P(2, 3, — 7} to Q(1, — 6, —5); (b) P(1, —8, —4, 6) to (3, —5, 2, —4).

2.78. Find an equation of the hyperplane in R* which:
(a) Passes through(2, —7, 1)and is normal to (3, 1, —11);
(b} Contains (1, —2, 2),(0, 1, 3),and (0, 2, —1);
(c) Contains (1, —S5, 2) and is parallel to 3x — 7y + 4z = 5.

2.79. Find a parametric representation of the line which:

(a) Passes through (7, — 1, 8) in the direction of (1, 3, —5);
(b) Passes through (1.9, —4, 5)and (2, —3, 0, 4);
(c) Passes through (4, — 1, 9) and is perpendicular to the plane 3x — 2y + z = 18.

SPATIAL VECTORS (VECTORS IN R?%; PLANES, LINES, CURVES, AND
SURFACES IN R?
280. Find the equation of the plane H:

(@) With normal N = 3i — 4j + 5k and containing the point P(1, 2, —3);
(b) Parallel to 4x + 3y — 22z = 11 and containing the point P(1, 2, —3).

281. Find a unit vector u which is normal to the plane:

(@ 3x—4dy—12z=11; B) 2x—y—2z="1.

2.82. Find cos 8 where 8 is the angle between the planes:

(@) 3x—2y—4z=5andx+ 2y — 6z =4;
(b) 2x+Sy—4z=landd4x 4+ 3y+2z=1.

2.83. Find the (parametric) equation of the line L:
(a) Through the point P(2, 5, — 3) and in the direction of v = 4i — 5j + 7k;
(b} Through the points P(1, 2, —4) and Q(3, —7, 2);
(¢) Perpendicular to the plane 2x — 3y + 7z = 4 and containing P(1, —5, 7).
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284. Consider the following curve where 0 < ¢t < 5:
Ft) = i — %) + (2t - 3)k
(@) Find F(t) when 1 = 2.
(b) Find the endpoints of the curve.
(c) Find the unit tangent vector T to the curve when 1 = 2.

2.85. Consider the curve F(t) = (cos i + (sin 1)j + tk.

(a) Find the unit tangent vector T(¢) to the curve.
(b) Find the unit normal vector N(t) to the curve by normalizing U(t) = dT(t)/dr.
(¢} Find the unit binormal vector B(t) to the curve using B =T x N.

2.86. Consider a moving body B whose position at time ¢ is given by R(t) = t%i + t%j + 2tk. [Then V(1) = dR(t)/dt
denotes the velocity of B and A(t) = dV/(t)/dt denotes the acceleration of B.]

(a) Find the position of Bwhen t = I.

(b) Find the velocity v of B when ¢ = 1.

(¢) Find the speed s of B whenr = 1.

(d) Find the acceleration a of B when t = 1.

2.87. Find a normal vector N and the tangent plane H to the surface at the given point:
(@) Surface: x*y + 3yz = 20 and point P(1, 3, 2);
(b) Sutface: x* + 3y* — 5z% = 16 and point P(3, —2, 1).

288. Given the surface z = f(x, y) = x? + 2xy. Find a normal vector N and the tangent plane H when x = 3,
y=L

CROSS PRODUCT
The cross product is defined only for vectors in R?,
289. Givenu=3i—-4j+2kv=2+35—3Kkw=4i+7j+2k. Find:(@u x v,(Bu x w,(c)v x w,(d)v x u.

290. Find a unit vector w orthogonal to (@) u=(1, 2, 3) and v=(1, —1, 2); (b)) u=3i~j+ 2k and
v=4i—-2j-k

291. Prove the following properties of the cross product :

(@ uxv=—(@ xu d ux+w=@Uxr)+@uxw
() u x u= 0 for any vector u € w+wxu=@xu+(wxu
(€) (ku) x v = kiu x v) = u x (kv) (f) wxv)xw=(@u-wpv—(v-whu

COMPLEX NUMBERS

9+ 2 a3
@@ -

292. Simplify: (a) (4 — 7iX9 + 2i); (B) (3 — 5i)*; (.c-)4 =

243
7=3i

2
293.  Simplify: (0)2%  (B) s (0) '3, 35,74 (d) (___3 '_ l_) )
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2.94.

2.95.

2.96.

2.97.

VECTORS IN R" AND C", SPATIAL VECTORS [CHAP. 2

Letz =2 — Siand w = 7 4 3i. Find: (@) z + w; (b) zw; (c) z/w; (d) Z, w; (€) | z|, | W]
Letz =2 + i and w = 6 — 5i. Find: (@) z/w; (B) Z, w; (¢) | 2], | w].
Show that (a) Re z = §{z + 2);: (b) Im z = (z — 2)/2i.

Show that zw = O implies z = O or w = 0.

VECTORS IN C”

2.98.

2.99.

2.7

2.72.

2.73.

2.74.

275.

2.77.

2.78.

2.79.

Prove: For any vectors u, v, w e C™:

) wW+ov)ysw=u-w+rove+w; (i welu+v)=wu+w-o.

Prove that the norm in C" satisfies the following laws:

[N,] For any vector u, [luff > 0; and |uf = 01ffu =0.
[N.] Forany vector u and any complex number z, ||zu|l = |z| ||ul|.
[N;] Forany vectors uand o, |ju + ¢| < |lu|| + ||z|-

Answers to Supplementary Problems

(@ 2u=3v=(11,3, =15 d) uv=—-6u-w=-Tv-w=6

(b) Su—3v—aw=(3, 14,11, =32) (o lull =/14, ol = 2,/3, |wll = 3,/2
(¢) —u+2v—2w=(-2-7,275)

@ x=-Ly=-3 () x=0,y=0 or x=-2,y=—4
@ d=35proj(w, ) =(i5. %) (B} d= /1L projwv)=(3 —% 3 %)

(@ v=3u, —Su, + (3u;
(b) v=u;+ 2u,
(¢ v=[{a—2b+ c)/2Ju, + (a + b — cu; + [{c — a)/2]u,

(@) dependent; (b) independent; (c) dependent; (d) independent; (e) dependent.
(@ v=(-1,-972); () v=(23,6, —-10)
@ 3x+y—1lz=—12; by 3Ix+4y+z=1,; () 3Ix—Ty+4z=46

@ x=74+ty=—-1+3,z=8—5
B) x,=14+8t,x;=9—- 12, x3= -4+ 4, x,=5—1
©) x=443,y=~-1 -2, z=9+41

@ 3x—4y+ 5z=-20; (b)) 4x+3y—2z=16
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2.81.

(@

282. (a)

2.83.

2.85.

5 R

290.

292

293.

294

295.

(a)
b)
()

(a)

(@)
)
()

(a)

(a)
(b

(a)
®)

(@)
(a)
(a)

(@
(&)
()

(@)

VECTORS IN R" AND C", SPATIAL VECTORS

u=0i—4—12k/13; () u=Qi—j—2K/3

2//29/41); (B 15/(,/45/29)

x=24+4,y=5-5z=-34+T
x=142,y=2—-9,z= -4+ 6
x=142%y==5-3,z=T74+Tt

Si—4i+k; (b)) —3kand125i—25i+7k; (0 T =(6i—2j+k//al

T(t) = (— sin )i + (cos 1)j + k)/\/2
IN(t) = (— cos t)i — (sin 1)j

B(t) = (sin 1)i — (cos 1)j + k)/y/2
i+j+2%; () 2i+3+2k (@ V1T (@ 2+ 6

N=6i+74+9k 6x+7y+9z=45
N =6i — 12j — 10k, 3x — 6y — Sz =16

Bi+6j—k 8x+6y—z=15

2i + 13j + 23k (© 31i— 16§ — 6k
—22%i+2%+3k () —2i-13—23k

(1,1, =3/59; (B (5i+ 11j— 2Ky, /150
SO—SSi: () —16—30i: () (A+7)65; @ (1+302: (& —2-2i
—4; (b)) (5+27)S8; (9 —ii,—1; (d) @4+ 35/50

z4+w=9-2i d z=2+5i,w=7-3i
zw = 29 — 29{ (e |zl =29 Iw|=./58
z/fw=(—1—41i)/58

Zfw=(T+160)/61; (B) 2=2—iiw=6+5i; (3 lzl=./5 |wl=,/61

If zw =0, then | zw| = |z||w| = |0l =0.Hence |z]| = 0or |w| =0:andsoz=0o0r w = (.
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