Chapter 3

Matrices

3.1 INTRODUCTION

Matrices were first introduced in Chapter | and their elements were related to the coefficients of
systerns of linear equations. Here we will reintroduce these matrices and we will study certain algebraic
operations defined on them. The material here is mainly computational. However, as with linear equa-
tions, the abstract treatment presented later on will give us new insight into the structure of matrices.

The entries in our matrices shall come from some arbitrary, but fixed, field K. The elements of K
are called scalars. Nothing essential is lost if the reader assumes that K is the real field R or the complex
field C.

Last, we remark that the elements of R" or C" are conveniently represented by “row vectors™ or
“column vectors,” which are special cases of matrices.

3.2 MATRICES

A matrix over a field K (or simply a matrix if K is implicit) is a rectangular array of scalars a;; of the
form

ayy dy; Qyp
azy 4z as,
aml aml am

The above matrix is also denoted by (a;;), i = 1, ..., m, j = 1, ..., n, or simply by (a;;). The m horizontal
n-tuples

@11, G124 o0os Q1) (G210 225 - o0 G24)s s (Gp1a Bz s o e ey Oiy)

are the rows of the matrix, and the n vertical m-tuples

tyy s a4,

dzy L5 ¥] Azn
H] =2

aml am! amﬂ

are its columns. Note that the element a;;, called the ij-entry or ij-component, appears in the ith row and
the jth column. A matrix with m rows and n columns is called an m by n matrix, or m x n matrix; the
pair of numbers (m, n) is called its size or shape.

Matrices will usually be denoted by capital letters A, B, ..., and the elements of the field K by lower-
case letters a, b, .... Two matrices A and B are equal, written A = B, if they have the same shape and if
corresponding elements are equal. Thus the equality of two m x n matrices is equivalent to a system of
mn equalities, one for each pair of elements.

Example 3.1

1 -3 4
The following is 4 2 x 3 matrix: .
(a) e following is a 2 x 3 matrix (0 s _ 2)

74
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Its rows are (1, —3, 4) and (0, 5, —2); its columns are (é) (_ 2) and ( :)

2 3 5)\. . . .
(b) The statement (x ty w) = ( ) 1s equivalent to the following system of equations:

X—y z-—Ww 1 4
x+y=3
x—y=1
2Z24+w=2>5
z—w=4¢
The solution of the systemisx =2, y=1,z=3,w= —1,

Remark: A matrix with one row is also referred to as a row vector, and with one
column as a column vector. In particular, an element in the field K can be viewed as a
1 x 1 matrix,

33 MATRIX ADDITION AND SCALAR MULTIPLICATION

Let 4 and B be two matrices with the same size, i.e., the same number of rows and of columns, say,
m X n matrices:

4y, 413 ... Gy by, by, ... by,
A=|%2 G2 - G2a and B— bz by, b
a’ml amz .- a bmt bmz bmn'

The sum of A and B, written 4 + B, is the matrix obtained by adding corresponding entries:

aj +by ap+by, ... a,+by,
A+ B~= a3, + by ay +by; ... a3, + by,
4y, + by a,,+b,, ... a,+b

The product of a matrix A by the scalar k, written k* A or simply kA, is the matrix obtained by
multiplying each entry of A by k:

ka“ kalz . kal,,
kA = ka,, kay; ... kay,
lkaml k“mz kamﬂ

QObserve that A + B and kA are also m x n matrices. We also define
—A=-1"-4 and A—B=A+(—B)
The sum of matrices with different sizes is not defined.

| 3 3 0 2
—6) and B= (_7 i B)' Then

Example 3.2. Let A= (

-2
s s
aen-(23 50 -0 )
G G
24—3B= (: _12)+(21 -3 :22) (_2; _: ‘32)
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The m x n matrix whose entries are all zero is called the zero matrix; for example, the 2 x 3 zero matrix is
0 00
000
The zero matrix is similar to the scalar 0, and the same symbol will be used for both. For any matrix A,

‘A+0=0+4=4

Basic properties of matrices under the operations of matrix addition and scalar multiplication follow.

Theorem 3.1: Let V be the set of all m x n matrices over a field K. Then for any matrices 4, B,C e V
and any scalars k, k, € K,

i) A+B+C=A+(B+0) (v) k(A+ B)=k,A+k,B
i) A+0=4 i) (k, +k)A=k,A+k, A
(i) A+(—A)=0 (vii) (k.ky)A = ky(ky A)

(ivv A+ B=B+ A (vi) 1-A=4

Using (vi) and (viii) above, we also havethat A + A =24, A+ A+ A=3A

.....

Remark: Suppose vectors in R" are represented by row vectors (or by column vectors); say,
u=(a,a,,...,a) and vt=(b,b,,....b)
Then viewed as matrices, the sum u + v and the scalar product ku are as follows:
u+v=(a, +b,a,+b,,....,a,+h) and ku = (kay, ka,, ..., ka,)

But this corresponds precisely to the sum and scalar product as defined in Chapter 2. In other words,
the above operations on matrices may be viewed as a generalization of the corresponding operations
defined in Chapter 2.

3.4 MATRIX MULTIPLICATION

The product of matrices A and B, written 4B, is somewhat complicated. For this reason, we first
begin with a special case.
The product A * B of a row matrix A = (g;) and a column matrix B = (b,) with the same number of
elements is defined as follows:
b,
b, "
(a,, a,, ..., =a,b, + ayb, +--- +a,b,= Y a b,
aee k=1
b,

Note that A * B is a scalar (or a 1 x 1 matrix). The product A * B is not defined when A and B have
different numbers of elements.

Example 3.3

3
B —4,5 2)=8-34(—4)-2+5-(-1)=24—8-5=11
~1

Using the above definition, we now define matrix multiplication in general.
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Suppose A4 = (a;;) and B = (b;;) are matrices such that the number of columns of A is equal
to the number of rows of B; say, A is an m x p matrix and B is a p x n matrix. Then the
product AB is the m x n matrix whose ij-entry is obtained by multiplying the ith row A4; of
A by the jth column B’ of B:

A, B! A,-B? ... A,-B"
AB = A, - B! A1°Bz ... A,-B"
A, B' A, -B? A, ' B"
That is,
a,, a,, by, bu by, Ci Cin
a; ﬂ‘p . = . C‘-j
Qpy .. Gup/ \b,, b,; b,. Cre1 Conn

P
where ¢;; = a,-,b“- + a; b;j + -+ ﬂ.-,,bp,- = z ayby;.
k=1

We emphasize that the product AB is not defined if A is an m x p matrix and B is a ¢ X n matrix,

where p # q.

Example 3.4

r s\fa, a, ay\ {ra, + sb, ra, + sh, ra,+sb3)
(@) t uf\b, b, b,) \ta, +ub, ta, +ub, tay+ ub,

1 2\/1

&) (3 4X0
(1 1)(1

0 2/\3

N [t 1420 1-1+2-2Y) (1 5
2) \3-14+4-0 3-144-2/ \3 11

)
2\ (1-14+1-3 1-2+41-4) (4 6
4/ \01+2-3 0:2+2-4) \6 B8

The above example shows that matrix multiplication is not commutative, i.e., the products AB and
BA of matrices need not be equal.
Matrix multiplication does, however, satisfy the following properties:

Theorem 3.2:

(1) (AB)C = A(BC)(associative law)

(i) A(B + C) = AB + AC (left distributive law)
(iii) (B + C)A = BA + CA (right distributive law)
(iv) k(AB) = (kA)B = A(kB), where k is a scalar

We assume that the sums and products in the above theorem are defined.
We remark that 04 = 0 and BO = 0 where O is the zero matrix.

35 TRANSPOSE OF A MATRIX

The transpose of a matrix A, denoted A7, is the matrix obtained by writing the rows of A, in order,

as columns:

T
a,, G2 -.. Gy gy az ... 4

3y Q33 ... Gy @2 Qzz --- Gy
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In other words, if A = (a;)) is an m x n matrix, then A" = (a{j) is the n x m matrix where aj; = a;, for all
iandj.

Note that the transpose of a row vector is a column vector and vice versa.

The transpose operation on matrices satisfies the following properties:

Theorem 3.3: (i) (4 + B)T = AT + BT (i) (kA)T = kAT (k a scalar)
(i) (ADT=4 {ivy (AB)T = BTAT

Observe in (iv) that the transpose of a product is the product of transposes, but in the reverse order.

36 MATRICES AND SYSTEMS OF LINEAR EQUATIONS
Consider again a system of m linear equations in n unknowns:

Ay Xy + Ayax; + -+ ag,x, = b,
Ay Xy + 8y,%; + -7+ Ay, %, = by 3.1)

Ay Xy + QX7 + -0+ Qpux, = b,

The above system is equivalent to the following matrix equation:

x
Ay Gz .0 Qyp ! b,

X2
y; 43 ... Qg b .

x3 |= 2 or simply AX =B
A amZ a,, b

where A = (a;;) is the matrix of coeflicients, called the coefficient matrix, X = (x;) is the column of
unknowns, and B = (b,) is the column of constants. The statement that they are equivalent means that
every solution of the system (3./) is a solution of the matrix equation, and vice versa.

The augmented matrix of the system (3.1) is the following matrix:

ayy dyy a;, by
y; daz; a, b,
aml arﬂZ .- amn b

That is, the augmented matrix of the system AX = B is the matrix which consists of the matrix 4 of
coefficients followed by the column B of constants. Observe that the system (3./) is completely deter-
mined by its augmented matrix.

Example 3.5. The following are, respectively, a system of linear equations and its equivalent matrix equation:
4dy—dz=7 (2 3 - *\ (7

Xx—2y—5z=3 1 -2 -s\YITs
z

(Note that the size of the column of unknowns is not equal to the size of the column of constants.)
The augmented matrix of the system is
2 3 —4 7
1 -2 -5 3

In studying linear equations it is usually simpler to use the language and theory of matrices, as
indicated by the following theorems.
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Theorem 3.4: Suppose u,, u,,..., 4, are solutions of a homogeneous system of linear equations
AX = 0. Then every linear combination of the u; of the form k,u, + k,u, + - + k,u,
where the k; are scalars, is also a solution of AX = 0. Thus, in particular, every multiple
ku of any solution u of AX = 0is also a solution of AX = 0.

Proof. We are given that Au, =0, Au, =0, ..., Au, = 0. Hence
A(kuy + kuy + -+ ku,) = k,Au, + ky Au, + -+ + k, Au,
=k0+k, 04 - +k,0=0

Accordingly, k,u, + - + k,u, is a solution of the homogeneous system AX = 0.

Theorem 3.5: The general solution of a nonhomogeneous system AX = B may be obtained by adding
the solution space W of the homogeneous system AX = 0 to a particular solution v, of
the nonhomogeneous system AX = B. (That is, v, + W is the general solution of
AX = B)

Proof. Let w be any solution of AX = 0. Then
Ay + w) = Alvg) + AW =B +0=B

That is, the sum v, + w is a solution of AX = B.
On the other hand, suppose v is any solution of AX = B (which may be distinct from v,). Then

Alv —vg)=Av— Avy=B—-—B =0
That is, the difference v — v, is a solution of the homogeneous system AX = 0. But
v=1ug+ (v — vg)

Thus any solution of AX = B can be obtained by adding a solution of AX = 0 to the particular solu-
tion vy of AX = B.

Theorem 3.6: Suppose the field K is infinite (e.g, K is the real field R or the complex field C). Then
the system AX = B has no solution, a unique solution, or an infinite number of
solutions.

Proof. 1t suffices to show that if AX = B has more than one solution, then it has infinitely many.
Suppose u and v are distinct solutions of AX = B; that is, Au = Band Av = B. Then, for any k € K,

Alu + klu — v)] = Au + k(Au — Av)=B+ kB— B)=B

In other words, for each k € K, u + k(u — v) is a solution of AX = B. Since all such solutions are
distinct (Problem 3.21), AX = B has an infinite number of solutions as claimed.

3.7 BLOCK MATRICES

Using a system of horizontal and vertical (dashed) lines, we can partition a matrix 4 into smaller
matrices called blocks (or cells) of A. The matrix A is then called a block matrix. Clearly, a given matrix
may be divided into blocks in different ways; for example,

1t -2 0 1 3 1 -2 0 1! 3 1 -2 0.1 3
2 3 s 7 =2)=(2 3.5 7.-2|={2 3 5.7 -2
3 1 4 5 9 3 1'4 59 3 1 4' 5 9
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The convenience of the partition into blocks is that the result of operations on block matrices can be
obtained by carrying out the computation with the blocks, just as if they were the actual elements of the
matrices. This is illustrated below.

Suppose A is partitioned into blocks; say

AII AIZ s Aln

A A .. A
A= 21 22 2n

Aml Amz .- Amﬂ

Multiplying each block by a scalar k, multiplies each element of A by k; thus

kAll kAlz o kAl"
kA,, kA, ... kA,

kA =

Bll Blz Bln

B B B
B = 21 22 2n

Bml Bmz B

Furthermore, suppose the corresponding blocks of A and B have the same size. Adding these corre-
sponding blocks adds the corresponding elements of A and B. Accordingly,

A+B= Azs + By Az +Bz; ... Az, By,
A+ B,, A+ B,, ... A,.+ B

The case of matrix multiplication is less obvious but still true. That is, suppose matrices U and V
are partitioned into blocks as follows

Ull Ulz Ulp Vll Vlz Vln
U= Uy Up Uz and vV Vo Van
Uml Um2 e Ump l/pl. I/IZ '/pu

such that the number of columns of each block Uy is equal to the number of rows of each block ¥;;.
Then

"Vl 1 "‘Vll LA w.ll!

UV = WZI l"VZZ R WZH

where
mj= U“th“" Ulz V2j+ R Uip'/;?j

The proof of the above formula for UV is straightforward, but detailed and lengthy. It is left for
Problem 3.31.
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Solved Problems

MATRIX ADDITION AND SCALAR MULTIPLICATION

3.1

3.2

3.3.

34.

Compute:

1 2 3 I -1 2
(a) A+.BforA=(4 5 ﬁ)andB—-(D 3 —S)'

1 -2 3
(b)) 3Aand —54,where A = (4 5 —6)'

(@) Add corresponding elements:
1+1 24(=1) 342 215
A+B_(4+n 5+3 6+(—S})_(4 8 1)
(b) Muitiply each entry by the given scalar:
34 = 3-1 3:(-2» 3-3\ (3 -6 9
“\3:4 3-5 3-(-6)/ \U2 15 —18
sA- —5-1 —-5+(-2) —5-3 _( -5 10 ~15
\-54 -5-5 —5-.(—6¢) \-20 ~-25 30

. 1 -2 3 3 0 2
FdeA—3B,whcreA—(4 s __‘S)zmdﬁ—-(_‘_‘,r ) 8)'

First perform the scalar multiplications, and then a matrix addition:

2 -4 6 -9 0 - -7 -4 0
2 - B = ==
4-3 (8 10 —12)+( 21 -3 —24) (29 7 ~36)
(Note that we multiply B by —3 and then add, rather than multiplying B by 3 and subtracting. This usually
avoids errors.)

- ) x y\_ x 6 4 x+y
Fmdx.y.z.andwnH(Z w)_(—l 2w)+(z+w 3 )

First write each side as a single matrix:
3x 3y\ x+4 XxX+y+6
3z 3w/ \z+w—1 2w+3

Set corresponding entries equal to each other to obtain the system of four equations,

Ix=x+4 2x =4
Jy=x+y+6 2y =6+x
3z=z4+w~—1 or 2z =w-—1
3w=2w+3 w=13

Thesolutionis: x=2,y=4,z=1Lw=13.

Prove Theorem 3.1(v): Let A and B be m x n matrices and k a scalar. Then k(4 + B) = kA + kB.

Suppose 4 = (a;) and B = (b;)). Then a,; + b, is the ij-entry of A + B, and so kig;; + b,)) is the ij-entry
of k{4 + B). On the other hand, ka,; and kb,; are the ij-entries of k4 and kB, respectively, and so ka,, + kb,
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is the ij-entry of k4 + kB. But k, a;; and b;; are scalars in a field; hence
kia; + b;;) = ka;; + kb;; for every i, j
Thus k(A + B) = kA + kB, as corresponding entries are equal.

MATRIX MULTIPLICATION

5
35. Calculate: (@) (3,8, —2, 4) —1 (B) (1,8,3,4)6, 1, —3, 5)
6

(@) The product is not defined when the row matrix and column matrix have different numbers of
elements.

() The product of a row matrix and a row matrix is not defined.

3 -2 6
(a) Since Ais2 x 2 and Bis 2 x 3, the product AB is defined and is a 2 x 3 matrix. To obtain the entries
in the first row of AB, multiply the first row (1, 3) of A by the columns (;2), (__g). and(_:) of B,
respectively:

1 3\/2 0 -4\ (1-2+4+3-3 1°0+3-(=2) 1-(-4)+3-6
2 —-1A3 -2 e
w(2+9 0-6 —4+m)_(u -6 m)
To obtain the entries in the second row of 4B, multiply the second row (2, — 1) of 4 by the columns of
B, respectively:
1 3y2 0 -4\ [ 1 -6 14
2 —1A3 -2 6/ \4-3 0+2 -8-6

1 -6 14
Th AB =
i (1 2 —M)

36. Let A= (; T) and B = (2 0 "4). Find (a) AB, (b) BA.

(b) Note that Bis 2 x 3 and 4 is 2 x 2. Since the inner numbers 3 and 2 are not equal, the product BA is
not defined.

2 -1 1 -2 -5
37. Given A = 1 O0)land B = (3 4 0). find (a) AB, (b) BA.
-3 4

(@) Since Ais 3 x 2 and Bis 2 x 3, the product AB s defined and is a 3 x 3 matrix. To obtain the first
row of 4B, multiply the first row of 4 by each column of B, respectively:

2 -1 - —4-— — - -8 -
| —9 —s 2-3 4—4 10+0 1 8 10
Loy . )= _
-3 4
To obtain the second row of AB, multiply the second row of A by each column of B, respectively:
2 —1 — — - -1 -8B -
{ -2 —s 1 B 10 1 B 10
1 0 =l1+0 —-2+0 —-5+0]|= 1 -2 -5

3 4
-3 0
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To obtain the third row of AB, multiply the third row of 4 by each column of B, respectively:

2 -1 —1 -8 —10 -1 -8 —10

1 0(' -2 *5)= 1 -2 -5 J=l 1 =2 =5

3 g3 40 ~3+12 6+16 15+0 9 2 15
-1 -8 —10
Thus AB=| 1 -2 -5
9 2 15

(k) Since Bis 2 x 3 and A is 3 x 2, the product BA is defined and is a 2 x 2 matrix. To obtain the first
row of BA, multiply the first row of B by each column of A, respectively:

2 -1
(1 —2 _s) L o _(2—2+15 —1+o—20)_(15 —2|)
34 o\,

To obtain the second row of B4, multiply the second row of B by each column of A, respectively:

b =2 -5 f "{’) (15 -21 )_(15 ~21

3 4 0 i 4 “\6+4+0 —-3+0+0/ \10 -3
Thus BA :(]5 _2])
10 -3

Remark: Observe that in this problem both AB and BA are defined, but they are
not equal; in fact they do not even have the same shape.

38. Find AB, where

) 3 1 2 -1 0 6
A=( - ‘) B=|1 3 -5 1
4 1 -2 2

Since Ais 2 x 3and Bis 3 x 4. the product is defined as a 2 x 4 matrix. Multiply the rows of 4 by the
columns of B to obtain:

4+3—4 -249—-1 0-—-15+2 12+3+2)_(3 6 —13 13)
“\8-2420 —-4-6+5 04+10—10 24—-2+10/ \26 -5 0 32

39. Refer to Problem 3.8. Suppose that only the third column of the product AB were of interest.
How could it be computed independently?

By the rule for matrix multiplication, the jth column of a product is equal to the first factor times the
jth column vector of the second. Thus

0
23 -1\ | _(0-15+2)_(-13
4 -2 5'2_0+10—10_ 0
Similarly, the ith row of a product is equal to the ith row vector of the first factor times the second
factor.

310. Let A be an m x n matrix, with m > 1 and n > 1. Assuming u and v are vectors, discuss the
conditions under which (a) Au, (b) vA is defined.

(@) The product Au is defined only when u is a column vector with n components, i.., an # x | matrix. In
such case, Au is a column vector with m components.
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3.11.

3.12.

3.13.
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(b) The product v4 is defined only when v is a row vector with m components, i.e,,a 1 x m matrix. In such
case, vA is a row vector with n components.

2 2
Compute: (a) 36, —4,5) and (b) (6, —4,5 3
-1 -1

(a) The first factor is 3 x 1 and the second factor is 1 x 3, so the product is defined as a 3 x 3 matrix:

2 x6) (2X—4 (25 12 -8 10
3ke, -4, 5= 3K6) (3—4) (X5 |=| 18 —12 15
-1 (—1)X6) (—1XK—4) (—1K9) -6 4 -5

(b) The first factor is 1| x 3 and the second factor is 3 x I, so the product is defined as a 1 x 1 matrix,
which we frequently write as a scalar.

2
6 ~45 3|=012-12-5=(-5=-5
—1

Prove Theorem 3.2(i): (AB)C = A(BC).
Let A = (a;)), B = (by), and C = (¢,,). Furthermore, let AB = § = (s} and BC = T = (;,). Then

S = Qb+ @by + -+ @by = Z a.ijbﬂt
i=
i =bjcy+bpcy+ b= Y byey
k=1
Now multiplying S by C, i.e., (4B) by C, the element in the ith row and Ith column of the matrix (AB)C is

SpCuy+ Sl t -+ S0y = Esik"tl: Z z(aijbﬁ)('m
k=1

k=1 =1

On the other hand, multiplying A4 by T, ic., A by BC, the element in the ith row and Ith column of the
matrix A(BC) is

agty+apty+ - +al, = z Aty = Z z aiﬂbjt Cor)
=1 J=1 k=1

Since the above sums are equal, the theorem is proven.

Prove Theorem 3.2(ii): A(B + C) = AB + AC.

Let A=(qy), B=(by), and C =(cy). Furthermore, let D=B 4+ C =(d,), £ = AB =(e,), and
F = AC = (f,). Then

dj& = hj* + C;.*

m
ey =a,b, +a; bzk ++ al'mbmk = Zﬂubﬁ
i=1

m
S =8l + GiaCo + 4 Qi Cos = Zaijcjk
. fa

Hence the element in the ith row and kth column of the matrix AB + AC is

e +fu= Yagby + Y ajeu= Y ayfb + cy)
ji=1 j=1 =1
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On the other hand, the element in the ith row and kth column of the matrix AD = A(B + C)is

Gdyy + Gdy + - + 6, dyy = E a;;dy = Y by + ¢zl
J=1 j=1

Thus A(B + C') = 4B + AC since the corresponding elements are equal.

TRANSPOSE

1 3

3.14. G:venA=(6 _7

—-z)’ find A" and (A7)".

Rewrite the rows of A as columns to obtain A7, and then rewrite the rows of AT as columns to obtain

(AN
! 6 1 3 5
AT: —_ nr_
3 =7 (4%) (6 _1 _3)
5 —8

[As expected from Theorem 3.3(ii), (47)" = A.]

3.15. Show that the matrices AA™ and A" A are defined for any matrix A.

If A4 is an m x n matrix, then A7 is an n x m matrix. Hence AA” is defined as an m x m matrix, and
AT A is defined as an n x n matrix.

1 2 0
3.16. Find AA" and A" 4, where 4 = ( 3 ; 4).

Obtain AT by rewriting the rows of 4 as columns:

1 3 1 3
AT=1(2 —1 whence AA":(1 2 0) 2 —1 =(5 1
0 4 3 -1 4 o 4 1 26
1 3 i 2 0 149 2-3 0412 10 -1 12
ATaA=|2 -1 (3 ) 4)= 2—-3 441 0-—-41}=| -1 5 —4
0 4 0+12 0—4 0+ 16 12 -4 16

3.17. Prove Theorem 3.3(iv): (AB)" = BT A'.
If A = (a;) and B = (b)), the ij-entry of AB is
a“blj+ ﬂizsz‘f R aimbw (1}

Thus (/) is the ji-entry (reverse order) of (AB)".
On the other hand, column j of B becomes row j of B”, and row i of A becomes column i of A,
Consequently, the ji-entry of BT A7 is
a;
2]
(byjs bzjs -5 by = by;a;, + by;0, + - + b,,0,,
aim

Thus, (4B)" == B AT, since corresponding entries are equal.
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BLOCK MATRICES
3.18. Compute AB using block multiplication, where

1 2 1 1 2 3 1
A=|3 40 and B=[4 5 6 1
0 0 |2 0 0 0 .1

E F R h)
Here 4 = (0 )and B= (0 T)' where E, F, G, R, S, and T are the given blocks. Hence
1x2 1=3

> 2P ()4 (! 9 12 15 4
AB_(ER ES+FT)_ 19 26 33/ \7/ \o/| _

— TE
© 0 0 2
3.19. Compute CD by block multiplication, where
— 0
1 2 .0 0 0 2 i g 0
3 4.0 0 © - .
C=|-"- =Tl ' and D=|0 0. 1 2
0 0 5 1 2 0 0 5 3
0O 0 3 4 1 '
0 0 .—-4 1
1 23 -2
(3 4X2 4) O2.2
CD = s 1 af ! 2
0242 (3 4 l) 2 -3
-4 1
3+4 —-2+8 0 7 6 0 0
[\9+8 —6+16 22 17 10 0 O
0 (5+2—8 0-3+2\] {0 0 -1 9
zx2 3+48—-4 6-—12+1 0 0 7 -5

MISCELLANEOUS PROBLEMS

3.20. Show: (a) If A has a zero row, then AB has a zero row. (b) If B has a zero column, then AB has a
zero column.

(@) Let R; be the zero row of 4, and B', ..., B" the columns of B. Then the ith row of AB is
(R,*B.R,-B% ... ,R,-B")=(0,0,...,0)

(b) Let C; be the zero column of B, and A4,, ..., 4,, the rows of A. Then the jth column of AB is
A, *C; 0
A,_ - Cj _ 0
A, C; 0

3.21. Letu and v be distinct vectors. Show that, for distinct scalars k € K, the vectors u + k(u — v) are
distinct.
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It suffices to show that if
u+ku—v)=u+kyu—0o 0]
then k, = k, . Suppose (/) holds. Then
ki (u—v)=kyu—r) or (k, —ku—v)=0

Since u and v are distinct, u — v # 0. Hence k, — k, = 0and k, = k,.

Supplementary Problems

MATRIX OPERATIONS

Problems 3.22-3.25 refer to the following matrices:
5 0 -3 4
=) el ) oG )
3.22. Find 54 — 2B and 24 + 3B.
3.23. Find:(a) AB and (AB)C, (b) BC and A(BC). [Note (AB)C = A(BC).]
3.24. Find A7, B”, and A"B”. [Note A"B” # (4AB)"]
325. Find A4 = A% and AC.

a; Q3 ay a
3.26. Supposce, =(1,0,0),e,=(0,0,1),e5=(0,0,1),and A=|b, b, by b,] Find e A4, e, A and e; A,
€, €3 Cy €,

327. lete;=(0,...,0,1,0,..., 0) where | is the ith component. Show the following:

(a) €A = A, theith row of a matrix A.
(b) Be] = B, the jth column of B.

() Ife;A=¢;Bforeachi, then A =B.
(d) If Ae] = Be] for eachj, then A = B.

1 2
328. LetA= (3 6)' Find a 2 x 3 matrix B with distinct entries such that AB = (.

3.29. Prove Theorem 3.2(iii): (B + C)4 = BA + CA; (iv) k(AB) = (kA)B = A(kB), where k is a scalar. [Parts (i)
and (ii) were proven in Problems 3.12 and 3.13, respectively.]

3.30. Prove Theorem 3.3: (i) (4 + B)Y = AT + BT (ii) (AT)" = A; (iii) (kA)" = kA", for k scalar. [Part (iv) was
proven in Problem 3.17.]

3.31. Suppose A = (A,) and B = (B,;) are block matrices for which AB is defined and the number of columns
of each block 4,, is equal to the number of rows of each block B,;. Show that

AB = (CU)' wht‘.l’t‘. Cu = Z A“._ Btj'
k
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322

3.23.

3.24.

3.26.

3.28.

(

—7
(@) ( 39

(
(

-5
27

1
2

7
-9

ol
a)

—28

1

3\ /5 -6
—4f\0 7

—6
2

M

5

-5

MATRICES

Answers to Supplementary Problems

21
-17

)’ (1(5)

9
-33

7 4
—12 13

105
—285

15
—40

—6
32

)

296

—98); ®

(s

—15

60

-39

(ay, a3, a3, 0,),(by, by, by, by), (¢4, €3, €3, C4), the rows of A.

(

2
—1

4
-2

6
-3

)

)

21
-17

105
—285

—98
296

)
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