Chapter 4

Square Matrices, Elementary Matrices

4.1 INTRODUCTION

Matrices with the same number of rows as columns are called square martrices. These matrices play
a major role in lincar algebra and will be used throughout the text. This chapter introduces us to these
matrices and certain of their elementary properties.

This chapter also introduces us to the elementary matrices which are closely related to the elemen-
tary row operations in Chapter 1. We use these matrices to justify two algorithms—one which finds the
inverse of a matrix, and the other which diagonalizes a quadratic form.

The scalars in this chapter are real numbers unless otherwise stated or implied. However, we will
discuss the special case of complex matrices and some of their properties.

4.2 SQUARE MATRICES

A square matrix is a matrix with the same number of rows as columns. An n x n square matrix is
said to be of order n and is called an n-square matrix.

Recall that not cvery two matrices can be added or multiplied. However, if we only consider square
matrices of some given order n, then this inconvenience disappears. Specifically, the operations of addi-
tion, multiplication, scalar multiplication, and transpose can be performed on any n x n matrices and
the result is again an n x n matrix.

1 2 3 2 -5 1
Example 4.1. LetA=| -4 —4 —4|andB=|0 3 —2|. Then A and B are square matrices of order 3.
5 6 7 1 2 -4
Also,
3 -3 4 2 4 6 1 —4 5
A+B=]-4 -1 -6 24={ -8 -8 -8 AT=|2 -4
6 8 3 10 12 14 3 -4 7
and
24043 —5+6+6 1—4-—-12 5 7 —15
AB=| —-8+0-4 20—12-8 -4 +8+16)=| —12 0 20
10+04+7 -25+18+14 5—-12-28 17 7 -35

are matrices of order 3.

Remark: A nonempty collection A of matrices is called an algebra (of matrices) if
A is closed under the operations of matrix addition, scalar multiplication of a matrix,
and matrix multiplication. Thus the collection M,, of all n-square matrices forms an
algebra of matrices.

Square Matrices as Functions

Let A4 be any n-square matrix. Then A may be viewed as a function 4 : R" = R" in two different
ways:

89
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(1) A(u) = Au where u is a column vector;
(2) A(u) = uA where u is a row vector.

This book adopts the first meaning of A(u), that is, that the function defined by the matrix A will be
A(y) = Au. Accordingly, unless otherwise stated or implied, vectors u in R" are assumed to be column
vectors (not row vectors). However, for typographical convenience, such column vectors u will often be
presented as transposed row vectors.

1 -2 3
Example 4.2. Let4 =14 5 —6}1.Hu=(1,-3,77" then
2 0 —1
1 =2 3 1 1 +6+21 28
Alu)=Au=1|4 5 -6 -3}=14-15—-421=| —53
2 0 -1 7 24+40-—-7 -5
Ifw = (2, — 1,47, then
1 -2 3 2 2+2+12 16
Aw)=Aw={4 5 —6f —1|={8-5-24]={-21
2 0 —tf\ a 44+40—4 0

Commuting Matrices

Matrices 4 and B are said to commute if AB = BA, a condition that applies only for square matrices
of the same order. For example, suppose

1 2 5 4
’4=(3 4) and B=(6 11)
AB — 5+12 4+22\ (17 26

S \15+424 12 +44) \39 56

BA_(5+12 10+ 16\ (17 26
“\6+33 12444/ \39 56

Since AB = BA, the matrices commute.

Then

and

4.3 DIAGONAL AND TRACE, IDENTITY MATRIX

Let A = (q;;) be an n-square matrix. The diagonal (or main diagonal) of A consists of the elements
a;y, Gys, ..., 4,,- The trace of A, written tr A, is the sum of the diagonal elements, that is,

n
trd=a,+a,+ " +a,= Za,-,-
i=1
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The n-square matrix with 1’s on the diagonal and O’s elsewhere, denoted by [, or simply [, is called
the identity (or unit) matrix. The matrix I is similar to the scalar 1 in that, for any matrix A (of the same

order),
Al=1A=A

More generally, if B is an m % n matrix, then BI, = B and I,, B = B (Problem 4.9).
For any scalar k € K, the matrix kI which contains ks on the diagonal and 0's elsewhere is called
the scalar matrix corresponding to the scalar k.

Example 4.3.
(a) The Kronecker delta d;; is defined by

0., =

L

0 ifi#j
1 ifi=j

Thus the identity matrix may be defined by I = (J;;).

(b) The scalar matrices of orders 2, 3, and 4 corresponding to the scalar k = 5 are, respectively,

6 |

(It is commeon practice to omit blocks or patterns of (s as in the third matrix.)

o S W
o wm o
v o o

5

The following theorem is proved in Problem 4.10.

Theorem 4.1: Suppose A = (a;;) and B = (b)) are n-square matrices and k is a scalar. Then
(i) tr(A+ B)y=1tr A + tr B, () trkA="Fk-tr A, (iii) tr AB=tr BA

44 POWERS OF MATRICES, POLYNOMIALS IN MATRICES
Let A be an n-square matrix over a field K. Powers of A are defined as follows:
A? = AA A =A%A,..., A" ' =A4"4,... and A°=1
Polynomials in the matrix A are also defined. Specifically, for any polynomial
f=as+a;x +a,x*+- +a,x"
where the g; are scalars, f(A4) is defined to be the matrix
f(Ay=agl+a,A+a,A* 4+ --- + a, A"

[Note that f(A) is obtained from f(x) by substituting the matrix A for the variable x and substituting
the scalar matrix a, I for the scalar ¢, .] In the case that f(A) is the zero matrix, the matrix A is called a
zero or root of the polynomial f(x).

1 2
Example 4.4. Lect A = ( 3 4). Then

oot YU A7 -6 AJ_AZA_(TV—GI 2\ /-1 33)
B a3 -4/ 9 22 AT e 23 —a) T\ 5T 106

Iff(x) = 2x* — 3x + 5, then

_of T O\ _4ft 2 5(1 0)_( 16 ~18)
S =2 g 22)_ 3 —4) N0 1JT\~2z7 el
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If g(x) = x* + 3x — 10, then

(4) = 7 -6 +1I 2_l 1 0y (0 O
FA=\~9 22/7\3 -a 0 1) \0o o
Thus 4 is a zero of the polynomial g(x).

The above map from the ring K[x] of polynomials over K into the algebra M, of n-square matrices
defined by

J(x) = f(A)
is called the evaluation map ar A.

The following theorem (proved in Problem 4.11) applies.

Theorem 4.2: Let f(x) and g(x) be polynomials and let A be an n-square matrix (all over K). Then
() (f + glA) = f(A) + g(A),
(i) (fghA4) = f(A)g(A),
(i) f(A)g(A) = glA) f(A).

In other words, (i) and (ii) state that if we first add (multiply) the polynomials f(x} and ¢(x) and then
evaluate the sum (product) at the matrix A, we get the same result as if we first evaluated f(x) and g(x)
at A and then added (multiplied) the matrices f(4) and ¢(A4). Part (iii) states that any two polynomials in
A commute.

45 INVERTIBLE (NONSINGULAR) MATRICES

A square matrix A 1s said Lo be invertible (or nonsingular) if there exists a matrix B with the property
that

AB = BA =1
where [ is the identity matrix. Such a matrix B is unique; for
AB, =B,A=1Iand AB, =B,A=1  implies B, = B,I = B,(AB,) = (B,A)B, = IB, = B,

We call such a matrix B the inverse of A and denote it by 4~ '. Observe that the above relation is
symmectric; that is, if B is the inverse of A, then A is the inverse of B.

Example 4.5

25 3 -5
(@) Suppose 4 = (I 3) and B = ( 1 2). Then

2 5 3 -5 6—-5 =10+ 10 1 0
AB"-’ = — —
(1 3)( 1 2) (3 3 —S+6) (0 l) !
3 —-5\y/2 5 6—5 151
BA—( ) = S5 (1 0)=1
-1t 21 3 ~242 -54+6 0 1

Thus A4 and B are invertible and are inverses of each other.

1 0 2 ~11 2 2
{b) Supposc A=|2 -1 Jland B=| —4 0 1}. Then
4 1 8 6 —1 -1

—-11+0+12 240—-2 2+0-2 1 00
AB=|-224+4+18 440—-3 4—-1-3]|=|0 1| 0)=1
—44 -4+48 8+0—8 8+1-8 0 0 1
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By Problem 4.21, AB = I if and only if BA = I; hence we do not need to test if BA = [. Thus 4 and B are

inverses of each other.
a b
A=
(c %)

We are able to determine when A is invertible and, in such a case, to give a formula for its inverse. First
of all, we seek scalars x, y, z, t such that

(a b\(x y\ (1 O or ax+bz ay+bt\ (1 0
¢ d)\z 1) \0 1 ex+dz cy+d) \0 1
which reduces to solving the following two systems

ax + bz =1 ay + bt =0
ex+dz=0 cy+dt=1

Consider now a general 2 x 2 matrix

where the original matrix A is the coefficient matrix of each system. Set | A| = ad — bc (the determinant
of A). By Problems 1.60 and 1.61, the two systems are solvable, and A4 is invertible, if and only if
|A| # 0. In that case, the first system has the unique solution x = d/| 4|, z = —c¢/| A}, and the second
system has the unique solution y = - bf| A|, t = af| A|. Accordingly,

y .2( dilA| —b;’[AI)=L( d —b)
—c/lAl affAl] 1Al\-c a

In words: When | A| # 0, the inverse of a 2 x 2 matrix A4 is obtained by (i) interchanging the elements
on the main diagonal, (ii) taking the negatives of the other elements, and (iii) multiplying the matrix by
1] A|.

Remark 1: The above property that A is invertible if and only if its determinant
| A| # 0 is true for square matrices of any order. (See Chapter 7.)

Remark 2: Suppose A and B are invertible, then AB is invertible and
(AB)"' = B 'A~!', More generally, if 4,, 4,, ..., A, are invertible, then their product
is invertible and

(A Ay AY ' =A A AT

the product of the inverses in the reverse order.

4.6 SPECIAL TYPES OF SQUARE MATRICES

This section describes a number of special kinds of square matrices which play an important role in
linear algebra.

Diagonal Matrices

A square matrix D = (d;)) is diagonal if its nondiagonal entries are all zero. Such a matrix is fre-

quently notated as D = diag (d,,, d;, ..., d,,), where some or all of the d;; may be zero. For example,
6 \
3 00 a 0 0
0 -7 0 0 —5 —9
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are diagonal matrices which may be represented, respectively, by
diag 3. - 7. 2) diag (4. —5) and diag (6,0, —9, 1)
(Observe that patterns of Os in the third matrix have been omitted.)
Clearly, the sum, scalar product, and product of diagonal matrices are again diagonal. Thus all the

n x n diagonal matrices form an algebra of matrices. In fact, the diagonal matrices form a commutative
algebra since any two n x n diagonal matrices commute.

Triangular Matrices

A square matrix A = (a;;) iS an upper triangular matrix or simply a triangular matrix if all entries
below the main diagonal are equal to zero; that is, if a;; = 0 for 1 > j. Generic upper triangular
matrices of orders 2, 3, and 4 are, respectively,

Cyy €12 Cpy Cyq

b b b
11 12 13
(an alz) b b Caz C23 Ca4
22 23 .
0 ap b Caz Cag
33 Caa

(As in diagonal matrices, it is common practice to omit patterns of 0s.)
The upper triangular matrices also form an algebra of matrices. In fact,

Theorem 4.3: Suppose 4 =(q;;) and B = (b;;) are n x n upper triangular matrices. Then
(i) A + B is upper triangular, with diagonal (a,, + b,,, a3, + by, ..., a,, +b,).

(i) kA is upper triangular, with diagonal (ka,,. ka,,, ..., ka

n)-

(i) AB is upper triangular, with diagonal (a,,b,,, @305, ..., a,,b,,).

* AR T hn

(iv) For any polynomial f(x), the matrix f(A) is upper triangular with diagonal (f{(a,,),
.ﬂ“zz}- SRR ] jI(ann”-

(v) A is invertible if and only if each diagonal element ¢; # 0.

Analogously, a lower triangular matrix is a square matrix whose entries above the diagonal are all
zero. and a theorem analogous to Theorem 4.3 holds for such matrices.

Symmetric Matrices

A real matrix A4 is symmetric if AT = A. Equivalently, A = (g;)) is symmetric if symmetric ele-
ments (mirror images in the diagonal) arc equal, ie., if each q;=a;. (Note that A must be
square in order for AT = A4)

A real matrix A is skew-symmetric if A" = — A. Equivalently, A = (a;;) is skew-symmetric if each
a;; = —a;;. Clearly, the diagonal clements of a skew-symmetric matrix must be zero since a; = —a;
implies a;; = 0.

Example 4.6. Consider the following matrices:

2 =3 5 0 3 —4 { 0 0
A=1-3 6 7 B=|-3 0 5 C=(0 0 I)
5 7 -8 4 -5 0

(@) By inspection, the symmetric clements in 4 are equal, or A" = A. Thus A is symmetric.
Y Inspec Y q
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(b) By inspection, the diagonal clements of B are 0 and symmetric clements are negatives of cach other. Thus B is
skew-symmetric.

(c) Since C is not square, C is neither symmetric nor skew-symmetric.

If A and B arc symmetric matrices, then A + B and kA are symmetric. However, AB need not be
symmetric. For example,

1 2 4
A= (2 3) and B = (5 2) are symmetric, but AB = (;; g) is not symmetric.

Thus the symmetric matrices do not form an algebra of matrices.
The following theorem is proved in Problem 4.29.

Theorem 4.4: If A is a square matrix, then (i) A + A" is symmetric; (ii) A — A" is skew-symmetric;
(iii) A = B + C, for some symmetric matrix B and some skew-symmetric matrix C.

Orthogonal Matrices

A real matrix A is said to be orthogonal if AA” = ATA = I. Observe that an orthogonal matrix A is
necessarily square and invertible, with inverse A ' = A"

5 8 -3
Example4.7. Let A=(2% % _—2| Then
8 1 4
5 3 B
3 $ -3 3 3 | 1464416 4-32428 8§4+8-16
aaT={3 -5 -3 & -8 )= (4-32428 16416449 32-4-28
s z‘s % -5 -3 3 8+ 8—~16 32— 4-28 64+1416
1 0 0
=3 0 8l 0 0]=1
0 0o 8] 0 1
This means A" = A "' andso A”4 = I as well. Thus A is orthogonal.

Consider now an arbitrary 3 x 3 matrix

A=|b, b, b,

If A is orthogonal, then

a, a; az\fa, by ¢, 1 00
AA"=|b, b, bylla, b, c;]=[0 1 0O|=1
€y € c3f\az by c; 0 0 1
This yields
al +ai+adi=1 a,b, + a,b, +a3by =0 a,c, + aycy +ayc3 =0

c,a, + c,a; +c3a3 =0 by + b, +c3by =0 cd4cttei=1
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or, in other words,

u tuy =1 Uy *u; =0 u s u3 =0
t; *u, =0 U; *uy, =1 U;*uy; =0
uy*u =0 Uy * Uy = Uz Uy =1

where u, = (a,. az. as) 4, = {by, ba. b3), u3 = (¢4, €3, ;) are the rows of A. Thus the rows u,, u,, and u,
are orthogonal to each other and have unit lengths. or, in other words, u,, u,, u; form an orthonormal
set of vectors. The condition AT A = I similarly shows that the columns of A form an orthonormal set of
vectors. Furthermore, since each step is reversible, the converse is true.

The above result for 3 x 3 matrices is true in general. That is,

Theorem 4.5;: Let A be a real matrix. Then the following are equivalent: (a) A is orthogonal; (b) the
rows of A form an orthonormal set; (¢) the columns of A form an orthonormal set.

For n = 2, we have the following result, proved in Problem 4.33.

. cos§ sin@ cos 0 sin 0
Theorem 4.6: Every 2 x 2 orthogonal matrix has the form ) or{ . for
—sin@ cos 0 sin @ —cos 0

some treal number 6.

Remark: The condition that vectors u,, u,, ..., u,, form an orthonormal set may
be described simply by u; * u; = J;;, where 9;; is the Kronecker delta [Example 4.3(a)].

Normal Matrices

A real matrix A is normal if A commutes with its transpose, that is, if AAT = ATA. Clearly, if A is
symmetric, orthogonal or skew-symmetric, then A4 is normal. These, however, are not the only normal
matrices.

6 —3
Example 48. Let 4 = (3 6)' Then

AA,Z(« —3)( 6 3):(45 0) and ATA:( 6 3)(6 —3)=(45 0)
3 6/\-3 6 0 45 -3 6/\3 6 0 45

Since AAT = AT A, the matrix A is normal.

The following theorem, proved in Problem 4.35, completely characterizes real 2 x 2 normal
matrices.

Theorem 4.7: Let A be a real 2 x 2 normal matrix. Then A is either symmetric or the sum of a
scalar matrix and a skew-symmetric matrix.

4.7 COMPLEX MATRICES

Let A be a complex matrix, i.e., a matrix whose entries are complex numbers. Recall (Section 2.9)
that if z = a + bi is 2 complex number, then z = a — bi is its conjugate. The conjugate of the complex
matrix A, written A4, is the matrix obtained from A by taking the conjugate of each entry in A, that is, if
A = (a;;) then A= (b;;) where b;; = a;; [We denote this fact by writing A= (a;;)]

The two operations of transpose and conjugation commute for any complex matrix A, that is,
(A)T = (A"). In fact, the special notation A¥ is used for the conjugate transpose of A. (Note that if 4 is
real then A% = A7)
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248 5-3i 4—7i
Example 4.9. let A = _l J l_.Thcn
6i 1—4i 3+ 2i
2+8 6 2—8  —6i

AR =|5-3i 1 —-4i|=|5+3i 1 +4i
4—-71 3+ 2i 447 3-2

Hermitian, Unitary, and Normal Complex Matrices

A square complex matrix A is said to be Hermitian or skew-Hermitian according as
At =4 or A= —4

If A = (q;;) is Hermitian, then q;; = a; and hence each diagonal element a; must be real. Similarly, if A
is skew-Hermitian then each diagonal element a;; = 0.
A square complex matrix A is said to be unitary if

A" = 47"

A complex matrix A is unitary if and only if its rows (columns) form an orthonormal set of vectors
relative to the inner product of complex vectors. (See Problem 4.39)

Note that when A is real, Hermitian is the same as symmetric, and unitary is the same as
orthogonal.

A square complex matrix A is said to be normal if

AA" = A% 4

This definition reduces to the one for real matrices when A is real.

Example 4.10. Consider the following matrices:

I i i 3 1-2 4+7 .
A= I 14i B={14+2 -4 -2 c=( +a ]'2‘)
Z\1+i —1+i 0 4-7 2 2 y +ta

(@) Ais unitary if A" = A7 orif AA¥ = A" A = I. As noted previously, we need only show that A4" = I:

' 1 —i ~1 4+ 1 —i I —i

AA":AA’T=Z i 1 L+ i 1 —1—i
1+i —1+1i 0 —1—i 1—i 0
1+1+4+2 —i—i+2i 1—i+i—1+4+0 ] 0 0
=% i+i—2i 14142 i+1—-1-—i =|0 1 0]=1
l+i—i—14+0 —i+1—-14+i4+0 2+2+0 0 0 1

Accordingly, A is unitary.

(b) B is Hermitian since its diagonal elements 3, —4, and 2 are real, and the symmetric elements, 1 — 2i and
1+ 2i,4 + 7iand 4 — 7i, and —2i and 2i, are conjugates.

{¢) To show that € is normal, evaluate CC* and C"C:

_ 24+ 3i 1 2-3i —i 14 4—4

¢ ¢ ( i l+2iX 1 l—Zi) (4+4i 6 )

~ 2-3i —i \2+3 1 14 4—4i
H~ _ AT —
CC*CC”( 1 l—-2i)( i 1+2i) (4+4i 6 )

Since CCY = CHC, the complex matrix C is normal,

]
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48 SQUARE BLOCK MATRICES

A block matrix A is called a square block martrix if (i) A is a square matrix, (ii) the blocks form a
square matrix, and (iii) the diagonal blocks are also square matrices. The latter two conditions will
occur il and only if there are the same number of horizontal and vertical lines and they are placed
symmetrically.

Consider the following two block matrices:

1 2.3 4.5 1 2.3 4.5
TS A B B T U T US|
A=]l9 87 6 's B=|9 8' 7 65
4 414 44 4 4.4 44
3 513 53 3 513 53

Block matrix 4 is not a square block matrix since the second and third diagonal blocks are not square
matrices. On the other hand, block matrix B is a square block matrix.

A block diagonal matrix M is a square block matrix where the nondiagonal blocks are all zero
matrices. The importance of block diagonal matrices is that the algebra of the block matrix is frequently
reduced to the algebra of the individual blocks. Specifically, suppose M is a block diagonal matrix and
f{x) is any polynomial. Then M and f(M) have the following form:

AII _f(All)

AZZ AZ?.
o (M) = f(A4,2)

A, 4,,)

(As usual, we use blank spaces for patterns of zeros or zero blocks.)

Analogously, a square block matrix is called a block upper triangular matrix if the blocks below the
diagonal are zero matrices, and a block lower triangular matrix if the blocks above the diagonal are zero
matrices.

49 ELEMENTARY MATRICES AND APPLICATIONS
First recall (Section 1.8) the following operations on a matrix A, called elementary row operations:
[E,] (Row-interchange} Interchange the ith row and the jth row:
R, R;
[E,] (Row-scaling) Multiply the ith row by a nonzero scalar k:
kR, -+ R; (k+#0)

[E;] (Row-addition) Replace the ith row by k times the jth row plus the ith row:

kR; + R; = R;
Each of the above operations has an inverse operation of the same type. Specifically (Problem 4.19):

(1) R;— R;is its own inverse.
(2) kR, — R;and k" 'R; — R, are inverses.
(3) kR; + R;— R;and —kR; + R; — R; are inverses.
Also recall (Section 1.8) that a matrix B is said to be row eguivalent to a matrix A, written A ~ B, if

B can be obtained from A by a finite sequence of elementary row operations. Since the elementary row
operations are reversible, row equivalence is an equivalence relation; that is, (a) A ~ A; (b) if A ~ B, then
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B~ A;(c)if A~ Band B~ C, then A ~ C. We also restate the following basic result on row equiva-
lence:

Theorem 4.8: Every matrix 4 is row equivalent to a unique matrix in row canonical form.

Elementary Matrices

Let e denote an elementary row opetration and let e A) denote the result of applying the operation e
to a matrix A. The matrix E obtained by applying e to the identity matrix,
E=el)

is called the elementary matrix corresponding to the elementary row operation e.

Example 4.11. The 3-square elementary matrices corresponding to the elementary row operations R,« R,,
—6R, = R, and —4R, + R; = R, are, respectively,

1 0 o 1 0 0 1 0 0
E,={0 0 1 E,=[0 —6 © Ey={ 0 1 o0
0 1 0 0 0 1 -4 0 1

The following theorem, proved in Problem 4.18, shows the fundamental relationship between the
elementary row operations and their corresponding elementary matrices.

Theorem 4.9: Let e be an elementary row operation and E the corresponding m-square elementary
matrix, i.., E = e(l,,). Then, for any m x n matrix A, e(A) = EA.

That is, the result of applying an elementary row operation e to a matrix A can be obtained by
premultiplying 4 by the corresponding elementary matrix E.

Now suppose €’ is the inverse of an elementary row operation e. Let E' and E be the corresponding
matrices. We prove in Problem 4.19 that F is invertible and E’ is its inverse. This means, in particular,
that any product

of elementary matrices is nonsingular.
Using Theorem 4.9, we are also able to prove (Problem 4.20) the following fundamental result on
invertible matrices.
Theorem 4.10: Let A be a square matrix. Then the following are equivalent:
(i) A is invertible (nonsingular);
fii) A is row equivalent to the identity matrix /;

(iii) A is a product of elementary matrices.
We also use Theorem 4.9 to prove the following theorems.
Theorem 4.11: 1f AB = I, then BA = I and hence B = A~ ".

Theorem 4.12: B is row equivalent to A if and only if there exists a nonsingular matrix P such that
B = PA,
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Application to Finding Inverses

Suppose a matrix A is invertible and, say, it is row reducible to the identity matrix I by the
sequence of elementary operations e, e,, ..., .. Let E; be the elementary matrix corresponding to the
operation ¢;. Then, by Theorem 4.9,

E,---EyE,A=1 or (E,~—EEDA=1 so A ‘'=E, - EE|l

In other words, A™' can be obtained by applying the elementary row operations e,, e,, ..., €, to the
identity matrix 1.

The above discussion leads us to the following (Gaussian elimination) algorithm which either finds
the inverse of an n-square matrix A or determines that A is not invertible.

Algorithm 4.9: Inverse of a matrix 4
Step I. Form the n x 2n [block] matrix M = (A il); that is, A is in the left half of M and the identity
matrix [ is in the right half of M.

Step 2. Row reduce M to echelon form. If the process generates a zero row in the A-half of M, STOP
(4 is not invertible). Otherwise, the A-half will assume triangular form.

Step 3. Further row reduce M to the row canonical form (/i B), where I has replaced A in the left haif
of the matrix.

Step 4. Set A~' =B

1 0 2
Example 4.12. Suppose we want to find the inverse of A =| 2 —1 3 ). First we form the block matrix
4 1 8
M = (A il) and reduce M to echelon form:
1 0 2 1 0 0 1 0 21 0 0 1 0 2 1 0 0
M=12 -1 370 I 0j~10 -1 -1 -2 1 O)~10 -1 -1 -2 1 0
4 1 8 '0o o 1f W0 1 o0 -4 o0 1/ \0 0 —-1'-6 1 1

In echelon form, the left half of M is in triangular form; hence 4 is invertible. Next we further reduce M to its row
canonical form:

1 0 0' -1 2 2 10 0 -1 2 2
M~{o -1 o 4 0 —1)~fo 1 0! -4 o
0o o0 1" 6 —1 -1 0 0 1 6 —1 -—1

The identity matrix is in the left half of the final matrix; hence the right half is A . In other words,

—11 2 2
A '=| -4 0 1
6 -1 -1

410 ELEMENTARY COLUMN OPERATIONS, MATRIX EQUIVALENCE

This section repeats some of the discussion of the preceding section using the columns of a matrix
instead of the rows. (The choice of first using rows comes from the fact that the row operations are
closely related to the operations with linear equations.) We also show the relationship between the row
and column operations and their elementary matrices.

The elementary column operations which are analogous to the elementary row operations are as
follows:
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[F,] (Column-interchange) Interchange the ith column and the jth column:
CiC;
[F,] (Column-scaling) Multiply the ith column by a nonzero scalar k:
kC;— C; (k#0)
[F;] (Column-addition}) Replace the ith column by k times the jth column plus the ith column:
kC;+ C;—» C,

Each of the above operations has an inverse operation of the same type just like the corresponding
row operations.

Let f denote an elementary column operation. The matrix F, obtained by applying f to the identity
matrix I, that is,

F=f

is called the elementary matrix corresponding to the elementary column operation /.

Example 4.13. The 3-square elementary matrices corresponding to the elementary column operations C; < C,,
—2C, = C,,and —5C,; + C; — C, are, respectively,

0 0 1 1 0 0 I 0 1
F,=|lo 1 o0 F,=[l0 1 0 F,=lo 1 -5
I 0 O 0 0 -2 0 0 1

Throughout the discussion below, e and f will denote, respectively, corresponding elementary row
and column operations, and E and F will denote the corresponding elementary matrices.

Lemma 4.13: Suppose A is any matrix. Then
f(A) = [e(A")]"

that is, applying the column operation f to a matrix A gives the same result as applying
the corresponding row operation e to A” and then taking the transpose.

The proof of the lemma follows directly from the fact that the columns of A are the rows of A7, and
vice versa. The lemma shows that

F=fu)= (eI = [«D)]" = E

In other words,

Corollary 4.14: F is the transpose of E.

(Thus F is invertible since E is invertible.) Also, by the above lemma,

J(4)y = [aAM)" = [EAT)" = (A")'ET = AF
This proves the following theorem (which is analogous to Theorem 4.9 for the elementary row
operations):

Theorem 4.15: For any matrix A, f(A) = AF.

That is, the result of applying an elementary column operation f on a matrix 4 can be obtained by
postmultiplying A by the corresponding elementary matrix F.
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A matrix B is said to be column equivalent to a matrix A4 if B can be obtained from A by a sequence
of elementary column operations. Using the argument that is analogous to that for Theorem 4.12
yields:

Theorem 4.16: B is column equivalent to A if and only if there exists a nonsingular matrix { such that
B = AQ.

Matrix Equivalence

A matrix B is said to be equivalent to a matrix A if B can be obtained from A by a finite sequence of
elementary row and column operations. Alternatively (Problem 4.23), B is equivalent to A if there exist
nonsingular matrices P and Q such that B = PAQ. Just like row equivalence and column equivalence,
equivalence of matrices is an equivalence relation.

The main result of this subsection, proved in Problem 4.25, is as follows:

Theorem 4.17: Every m x n matrix A is equivalent to a unique block matrix of the form

(i)" : 'g)

where 1, is the r x r identity matrix. (The nonnegative integer r is called the rank of A.)

411 CONGRUENT SYMMETRIC MATRICES, LAW OF INERTIA

A matrix B is said to be congruent to a matrix A if there exists a nonsingular (invertible) matrix P
such that

B=PTAP
By Problem 4.123, congruence is an equivalence relation. Suppose A is symmetric, i.e., AT = A. Then
BT = (PTAP)" = PTATP™T = PTAP=B
and so B is symmetric. Since diagonal matrices are special symmetric matrices, it follows that only

symmetric matrices are congruent to diagonal matrices.
The next theorem plays an important role in linear algebra.

Theorem 4.18 (Law of Inertia): Let A be a real symmetric matrix. Then there exists a nonsingular
matrix P such that B= PTAP is diagonal. Moreover, every such
diagonal matrix B has the same number p of positive entries and the
same number n of negative entries.

The rank and signature of the above real symmetric matrix A are denoted and defined, respectively,
by
rank A=p+n and sigA=p—n

These are uniquely defined by Theorem 4.18. [The notion of rank is actually defined for any matrix
(Section 5.7), and the above definition agrees with the general definition.]

Diagonalization Algorithm

The following i1s an algorithm which diagonalizes (under congruence) a real symmetric matrix
A - (al‘j).
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Algorithm 4.11: Congruence diagonalization of a symmetric matrix

Step 1. Form the n x 2n [block] matrix M = (A i1); that is, A is the left half of M and the identity
matrix I is the right half of M.

Step 2. Examine the entry a,,.

CaseI:  a,, # 0. Apply the row operations —a,,R, + a,,R; = R,, i=2. ..., n, and then
apply the corresponding column operations —a;,C, + a,,C; — C; (to the left half
of M) to reduce the matrix M to the form

a 0 ! = »
M = 11 :
( 0 B  » *) l!)
Case II: a,, =0 but g; # 0, for some i > 1. Apply the row operation R, «= R; and then the

corresponding column operation C, «+ C; to bring a; into the first diagonal posi-
tion. This reduces the matrix to Case I.

Case III: All diagonal entries g; = 0. Choose i, j such that a;; # 0 and apply the row oper-
ations R; + R, — R, and the corresponding column operation C; + C; — C; o
bring 2a;; # Ointo the ith diagonal position. This reduces the matrix to Case IL

In each of the cases, we finally reduce M to the form (I} where B is a symmetric matrix of
order less than A.

Remark: The row operations will change both halves of M, but the column oper-
ations will only change the left half of M.

Step 3. Repeat Step 2 with each new matrix (neglecting the first row and column of the preceding
matrix) until A is diagonalized, that is, until M is transformed into the form M’ = (D, Q) where
D is diagonal.

Step 4. Set P = Q7. Then D = PTAP.

The justification of the above algorithm is as follows. Let e, e,, ..., & be all the elementary row
operations in the algorithm and let [, 13, ..., f; be the corresponding elementary column operations.
Suppose E; and F, are the corresponding elementary matrices. By Corollary 4.14,

F,=ET
By the above algorithm,
Q=E,--E,E\l=E, - E,E,
since the right half I of M is only changed by the row operations. On the other hand, the left half A of
M is changed by both the row and column operations; therefore,
D=E, -+ E,E,AFF, --- F,
=(Ey - E;ED)A(E, -+~ EIEI)T

= QAQ" = PTAP
where P = Q7.
1 2 -3
Example 4.14. Suppose A = 2 5 —4|, a symmetric matrix. To find a nonsingular matrix P such that

-3 -4 8
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B = PT AP is diagonal, first form the block matrix (4 i I):
1 2 -3 1 0 0
Ain=| 2 5 -4 0o 1 0
-3 —4 8 0 ] 1

Apply the operations —2R, + R, = R, and 3R, + R, » R, to (4 i I) and then the corresponding operations
—2C, + C; =+ Cyand 3C, + C3— C, to A to obtain

1 2 -3 1 0 0 1 0 0 1 0 0
0 1 2 -2 1 0 and then 0 1 2 -2 1 0
0O 2 -1 3 0 1 0 2 -1"3 0 1
Next apply the operation —2R, + R, —+ R, and then the corresponding operation —2C, + C, — C, to obtain
1 0 0 1 0 0 1 0 0 1 0 0
0 1 2 -2 1 0 and then 0 1 0 -2 1 0
0 o0 5" 7 -2 1 0 0 -5 7 -2 1

Now A has been diagonalized. Set

1 -2 7 1 0 0
P=|0 1 -2 and then B=Prap=|0 1 0
0 0 1 0 0 -5

Note that B has p = 2 positive entries and n = | negative entry.

412 QUADRATIC FORMS
A quadratic form g in variables x,, x,, ..., x, is a polynomial

Xy Xy oeny Xp) = 3Cii Xi X; 4.1
i<j
(where each term has degree two). The quadratic form g is said to be diagonalized if
glxys Xgs-eon X)) = €1 Xt 4+ €2 X5 + 0 4 Cpn Xt

that is, if g has no cross product terms x; X; (where i # j).
The quadratic form (4.7) may be expressed uniquely in the matrix form

gX)= XTAX 4.2)

where X = (x, x5, ..., x,)' and 4 = (a;) is a symmetric matrix. The entries of A can be obtained from
(4.1) by setting

d.. = (,'l-.- and ﬂi-j; = aj" = CU/Z [fﬂf i #J’)

ii

that is, A has diagonal entry g, equal to the coefficient of x? and has entries q,; and aj; each equal to
half the coefficient of x; x;. Thus

Ay Az ... Gy X
A3y dzp ... dzu || X3
GX) = (51 oen X, :
anl an2 e ann xl‘l

= Z ﬂijxl'x.i = ﬂllxi + azzxg + -+ a'"'x: + 2 E au-(RXJ
ij i<j
The above symmetric matrix A is called the matrix representation of the quadratic form g. Although
many matrices A in (4.2) will yield the same quadratic form g, only one such matrix is symmetric.
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Conversely, any symmetric matrix A defines a quadratic form g by (4.2). Thus there is a one-to-one
correspondence between quadratic forms g and symmetric matrices A. Furthermore, a quadratic form ¢
is diagonalized if and only if the corresponding symmetric matrix A is diagonal.

Example 4.15
(a) The guadratic form
@x. ¥, z) = x> — 6xy + 8y? — 4xz + Syz + 722

may be expressed in the matrix form

1 -3 -—-2\/x
ax,y,21=(x, 528 =3 8 3|y
-2 3 7/ \z

where the defining matrix is symmetric. The quadratic form may also be expressed in the matrix form

I -6 —4\/x
qx, y, 2)=(x,y,240 8 S|y
0 0 7/ \z

where the defining matrix is upper triangular.

(2
(b) The symmetric matrix (

3 ;) determines the quadratic form

2 3
q(x, y) = (x, yb( )(x) = 2x* + 6xy + 5)?
3 Sy

Remark: For theoretical reasons, we will always assume a quadratic form g is
represented by a symmetric matrix A. Since A is obtained from g by division by 2, we
must also assume | + 1 # 0 in our field K. This is always true when K is the real field
R or the complex field C.

Change-of-Variable Matrix

Consider a change of variables, say from x,, x5, ..., x, t0 ¥y, ¥2, ..., ¥,, by means of an invertible
linear substitution of the form

Xi=Pu¥1 v P2¥z+ "+ Pindn i=12..n

(Here invertible means that one can solve for each of the y’s uniquely in terms of the x’s)) Such a linear
substitution can be expressed in the matrix form

X =PY 4.3)
where
X =(x xl!--'ixn}r Y=, }'2‘---rynj'T and P“_‘{p:‘j)

The matrix P is called the change-of-variable matrix; it is nonsingular since the linear substitution is
invertible.

Conversely, any nonsingular matrix P defines an invertible linear substitution of variables, X = PY.
Furthermore,

Y=P'X

yields the formula for the y’s in terms of the x’s,
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There is a geometrical interpretation of the change-of-variable matrix P which is illustrated in the
next example.

Example 4.16. Consider the cartesian plane R? with the usual x and p axes, and consider the 2 x 2 nonsingular

matrix
2 -1
P=
The columns u, = (2, T and u, = (—1, )7 of P determine a new coordinate system of the plane, say with s and ¢
axes, as shown in Fig. 4-1. That 1s
(1) The s axis is in the direction of u, and its unit length is the length of u,.

(2) The 1 axis is in the direction of u, and its unit length is the length of u, .

Any point Q in the plane will have coordinates relative to each coordinate system, say Q(a, b) relative to the x and y
axes and Q(a’. b’) relative to the s and t axes. These coordinate vectors are related by the matrix P. Specifically,

()-C 7)) o x-m

where X = (a, b)" and Y = (d, b)".

Fig. 4-1

Diagonalizing a Quadratic Form

Consider a quadratic form ¢ in variables x,, x,, ..., X,, say g(X) = XTAX (where A is a symmetric
matrix). Suppose a change of variables is made in ¢ using the linear substitution (4.3). Setting X = PY
in g yields the quadratic form ¢(Y) = (PY)TA(PY) = Y/ (PTAP)Y. Thus B = PTAP is the matrix repre-
sentation of the quadratic form in the new variables y,, y,, ..., y,. Observe that the new matrix B is
congruent to the original matrix A4 representing g.

The above linear substitution X = PY is said to diagonalize the quadratic form ¢(X) if g(Y) is
diagonal, i.e, if B = PTAP is a diagonal matrix. Since B is congruent to 4 and A is a symmetric matrix,
Theorem 4.18 may be restated as follows.

Theorem 4,19 (Law of Inertia): Let g(X) = X"4X be a real quadratic form. Then there exists an
invertible linear substitution ¥ = PX which diagonalizes q. Moreover,
every such diagonal representation of ¢ has the same number p of
positive entries and the same number n of negative entries.
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The rank and signature of a real quadratic form g are denoted and defined by
rank g=p+n and sigg=p—n

These are uniquely defined by Theorem 4.19.
Since diagonalizing a quadratic form is the same as diagonalizing under congruence a symmetric
matrix, Algorithm 4.11 may be used here.

Example 4.17. Consider the quadratic form
gix, y, z) = x? + 4xy + 5y* — 6xz — 8yz + Bz? f))

The (symmetric) matrix 4 which represents g is as follows:

1 2 -3
A= 2 5 -a
-3 -4 8

From Example 4.14, the following nonsingular matrix P diagonalizes the matrix A under congruence:

1 -2 7 1 0 0
P=|0 1 =2 and B=PlaAP={0 1 0
0O 0 1 0O 0 -5

Accordingly, g may be diagonalized by the following linear substitution:

r—2s+Tt
s—2t
t

X
y
z

Specifically, substituting for x, y, and z in (/) yields the quadratic form
qgir,s, ) =r*+ s> —51* (2)
Here p=2andn = 1: hence

rank g =3 and sigg=1

Remark: There is a geometrical interpretation of the Law of Inertia (Theorem
4.19) which we give here using the quadratic form ¢ in Example 4.17. Consider the
following surface S in R*:

q(x, y, 2) = x* + 4xy + 5y® — 6xz — 8yz + 8z =25

Under the change of variables,

x=r—25s+Tt

y=s5s—2

z=t
or, equivalently, relative to a new coordinate system with r, s, and t axes, the equation
of $ becomes

gir.s,)=r* + s~ 52 =125

Accordingly, S is a hyperboloid of one sheet, since there are two positive and one
negative entry on the diagonal. Furthermore, § will always be a hyperboloid of one
sheet regardless of the coordinate system. Thus any diagonal representation of the
quadratic form q(x, y, z) will contain two positive and one negative entries on the
diagonal.
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Positive Definite Symmetric Matrices and Quadratic Forms

A real symmetric matrix A4 is said to be positive definite if
XT4AX >0

for every nonzero (column) vector X in R". Analogously, a quadratic form q is said to be positive definite
if g(v) > 0 for every nonzero vector in R".

Alternatively, a real symmetric matrix A or its quadratic form g is positive definite if any diagonal
representation has only positive diagonal entries. Such matrices and quadratic forms play a very impor-
tant role in linear algebra. They are considered in Problems 4.54 4.60.

4.13 SIMILARITY

A function f: R" — R" may be viewed geometrically as “sending” or “mapping” each point Q into a
point f(Q) in the space R". Suppose the function fcan be represented in the form

J(Q)=AQ

where A is an n x n matrix and the coordinates of Q are written as a column vector. Furthermore,
suppose P is a nonsingular matrix which may be viewed as introducing a new coordinate system in the
space R, (See Example 4.16.) Relative to this new coordinate system, we prove that f is represented by
the matrix

B=P AP
that is,
[1Q) = BQ’

where Q' denotes the column vector of the coordinates of Q relative to the new coordinate system.

Example 4.18. Consider the function f: R? - R? defined by
S(x, ) = (3x — 4y, 5x + 2y)

()=A) e 4= 7)

Suppose a new coordinate system with s and t axes is introduced in R? by means of the nonsingular matrix

() e (] )

(See Fig. 4-1.) Relative to this new coordinate system of R2, the function /' may be represented as
5 s

)=o)

Y3 —4y2 -1y (% -k

iINS 20 1)\ i

S5, 0 =(4s — ¥, ¥s + %)

or, equivalently,

|

=

where

B=P"'AP=(

o

In other words,

The above discussion leads us to the following:
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Definition: A matrix B is similar to a matrix A if there exists a nonsingular matrix P such that
B=P 4P

Similarity, like congruence, 1s an equivalence relation (Problem 4.125); hence we say that A and B
are similar matrices when B = P~ 'AP.

A matrix A is said to be diagonalizable if there exists a nonsingular matrix P such that B= P! AP
is a diagonal matrix. The question of whether or not a given matrix A4 is diagonalizable and of finding
the matrix P when A is diagonalizable plays an important role in linear algebra. These questions will be
addressed in Chapter 8.

414 LU FACTORIZATION

Suppose A4 is a nonsingular matrix which can be brought into (upper) triangular form U without
using any row-interchange operations, that is. suppose 4 can be triangularized by the following algo-
rithm which we write using computer algorithmic notation.

Algorithm 4.14: Triangularizing matrix A = (q,))

Step I. Repeatfori=1,2,...,n—1;

Step 2. Repeatforj=i+1,...,n
(a) Setm,= aij/aii
(b) Set Rj:==m; R; + R;
[End of Step 2 inner loop.]
[End of Step 1 outer loop.]

Step 3. Exit.

The numbers m;; are called multipliers. Sometimes we keep track of these multipliers by means of
the following lower triangular matrix L:

1 0 0 0 0

—m,, 1 0 0 0

L= —m3| —Myy 1 0 0
— — M, My3 My n-1 1

That is, L has Is on the diagonal, 0s above the diagonal, and the negative of m,; as its ij-entry below the
diagonal.

The above lower triangular matrix L may be alternatively described as follows. Let e, e,, ..., ¢
denotc the sequence of elementary row operations in the above algorithm. The inverses of these oper-
ations are as follows. Fori= 1,2, ..., n — 1, we have
Applying thesc inverse operations in reverse order to the identity matrix [ yields the matrix L Thus

L=E'E; - EJU

where E,, ..., E, are the elementary matrices corresponding to the clementary operations ¢y, ..., €.
On the other hand, the elementary operations e, ..., ¢, transform the original matrix A into the
upper triangular matrix U. Thus E, --- E; E;A = U. Accordingly,

A=(E{'E;" - E;2W =(E{'E;" - E.'DU =LU
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This gives us the classical LU factorization of such a matrix A. We formally state this result as a
theorem.

Theorem 4.20: Let A be a matrix as above. Then 4 = LU where L is a lower triangular matrix with 1s
on the diagonal and U is an upper triangular matrix with no Os on the diagonal.

Remark: We emphasize that the above theorem only applies to nonsingular
matrices A which can be brought into triangular form without any row interchanges.
Such matrices are said to be LU-factorable or to have an LU factorization.

1 2 -3
Example 419. LetA=|-3 -4 13 ). Then A may be reduced to triangular form by the operations 3R, + R,
2 1 -5

— Ryand — 2R, + R, — R;, and then ()R, + R, — Ry:

1 2 =3 1
A~10 2 41~10
0 -3 1 "} 0 7

NN
|
i

This gives us the factorization 4 = LU where

™~
I
|
[ o5 B S I
|
e = O
-0 o
<
il
(=
D NN
|
~1 b W

Note that the entries —3, 2, and —3 in L come from the above elementary row operations, and that U is the
triangular form of A.

Applications to Linear Equations

Consider a computer algorithm M. Let C(n) denote the running time of the algorithm as a function
of the size n of the input data. [The function C(n) is sometimes called the time complexity or simply the
complexity of the algorithm M.] Frequently, C(n) simply counts the number of multiplications and
divisions executed by M, but does not count the number of additions and subtractions since they take
much less time to execute.

Now consider a square system of linear equations

AX =B
where A = (g;;) has an LU factorization and
X =(xg, -0 %) and B=(b,....,b)"

Then the system may be brought into triangular form (in order to apply back-substitution) by applying
the above algorithm to the augmented matrix M = (A4, b) of the system, The time complexity of the
above algorithm and back-substitution are, respectively,

C(n) = n*/2 and C(n) = n?)2
where n is the number of equations.
On the other hand, suppose we already have the factorization 4 = LU, Then to triangularize the

system we need only apply the row operations in the algorithm (retained by the matrix L) to the column
vector B. In this case, the time complexity is

Cn) =~ n?/2
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Of course, to obtain the factorization A = LU requires the original algorithm where C(n) & n*/2. Thus
nothing may be gained by first finding the LU factorization when a single system is involved. However,
there are situations, illustrated below, where the LU factorization is useful.

Suppose that for a given matrix 4 we need to solve the system

AX =B

repeatedly for a sequence of different constant vectors, say B,, B,, ..., B,. Also, suppose some of the B;
depend upon the solution of the system obtained while using preceding vectors B;. In such a case, it is
more efficient to first find the LU factorization of A, and then to use this factorization to solve the
system for each new B.

Example 4.20. Consider the system

x— 2y— z=k

2x— Sy— z=k, or AX=B )
—3x + 10y — 3z =k,
1 -2 -1 k,
where A=| 2 -5 —1l)and B=|k,].
-3 10 -3 ky

Suppose we want to solve the system for B,, B,, B, B,, where B, = (1, 2, 3)" and
B;,,=B; + X; fforj>1)

where X; is the solution of (/) obtained using B;. Here it is more efficient to first obtain the LU factorization for A
and then to use the LU factorization to solve the system for each of the B’s. (See Problem 4.73))

Solved Problems

ALGEBRA OF SQUARE MATRICES

1 3 6
41, letA=|2 -5 8 |. Find: (a) the diagonal and trace of A;(b) A(u) where u = (2, =3, 5)7;
4 -2 7

(c) A(v) where v = (1, 7, —2).

(a) The diagonal consists of the elements from the upper left corner to the lower right corner of the matrix,
that is, the elements a,,, a,;, ;3. Thus the diagonal of A consists of the scalars 1, —5, and 7. The
trace of A is the sum of the diagonal elements; hencetr A=1—-547=3.

1 3 6 2 2-9+30 23
(b) Aw)=Au=}2 -5 Bl —3]=({4+15+40)=]59
4 -2 7 5 8+6+35 49

(c) By our convention, A(v) is not defined for a row vector v.

42. LetA= (i i) (a) Find 42 and A4°. (b) Find f(A4), where f(x) = 2x> — 4x + 5.
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1 2\/1 2 1+8 2-6 9 4
2 __ _ — =
(a) A7 =44 (4 —3)(4 _3) (4—12 8+9) (—s n)
. , (1 2y 9 -4 9—16 —4+438\ (-7 30
A = AA" = s =
4 —-3/\-—8 17 36 +24 —16—51 60 —67
(b) To find f(A), first substitute A for x and 5I for the constant 5 in the given polynomial
Jx)=2x% —4x + 5:

-7 30 1 2 1 0
= 3 —_— = —
f(A)y =243 — 44 + 51 2( P __67) 4(4 _ 3) + 5(0 1)

Then multiply each matrix by its respective scalar:

A_(_M 60) (——4 —8)+(5 0)
A=\ 120 —138) "\ 16 12/ 0 5

Lastly, add the corresponding elements in the matrices:

o ~14—-445 60-8+0 | [—13 52
A= 120—164+0 —1344+124+5/ L 104 —117

2 2
43 Let A= (3 l)' Find g(A), where g(x) = x% — x — 8.

R AR N
s a-a-(4 ) )
-(5 95 )% 96 o)

Thus A is a zero of g(x).

44. Given A = (

: ;) Find a nonzero column vector u = (x) such that A(u) = 3u.
- ¥

First set up the matrix equation Au = 3u:
(e -20)=0)
=3
4 -3\y y
Write each side as a single matrix (column vector):
x+3y\  (3x
4x —3y)  \3y

Set corresponding elements equal to each other to obtain the system of equations, and reduce it to echelon

form:
x + 3y =3x 2x—3y=0} {2x—3y=0}
4x—3y=3y} {4x—6y=0 o=0f " ¥

The system reduces to one homogeneous equation in two unknowns, and so has an infinite number of
solutions. To obtain a nonzero solution let, say, y = 2; then x = 3. That is, u = (3, 2)7 has the desired

property.
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4.7.

48.

1 2 -3
Let A={2 5 —1. Find all vectors u = (x, y, z)" such that A(u) = 0.
5 12 -5
Set up the equation Au = 0 and then write cach side as a single matrix:
1 2 -3\/x 0 x+ 2y—3z 0
2 S —-1)fyj=10 or 2x + Sy— z}=10
5 12 -5/\z 0 5x + 12y — 5z 0

Set corresponding elements equal to each other to obtain a homogeneous system, and reduce the system to
echelon form:

x+2y—32=0

2 Sy— z=0p— 52=0
x4+ Yy I y+ Jz -~ y+52=0

X+ 2y—3z=0 x+2y— 3z=0 {
5x + 12y —5z2=0 2y +10z=0

In the echelon form, z is the free variable. To obtain the general solution, set z = @, where a is a parameter.
Back-substitution yields y = —5a, and then x = 13a. Thus, u = (13a, —5a, a)7 represents all vectors such
that Au=0.

t
Show that the collection M of all 2 x 2 matrices of the form (': ) is a commutative algebra of
s

matrices.

b d
Clearly, M is nonempty. If A = (: a) and B = (; C) belong to M, then
a+c d+b ka kb ac + bd ad + be
A+B=(b+d a+c) kA:(kb ka) AB_(bc+ad bd+ac)

also belong to M. Thus M is an algebra of matrices. Furthermore,

ca+db cb+da
HA"_(da+cb db+m)

Thus BA = AB and so M is a commutative algebra of matrices.

Find all matrices M = (x f) that commute with 4 = ((I) :)
z

First find

X+ z + x x+
AM=( ¥ ) and M.4=( ”)
z t z z+t
Then set AM = MA to obtain the four equations
X+z=x y+t=x+y z=2z t=z+1

From the first or last equation, z = 0; from the second equation, x = t. Thus M is any matrix of the form
Xy
0 x/

Let ¢,=(0,..., 1,...,0)7, where i =1, ..., n, be the (column) vector in R" with 1 in the ith
position and O elsewhere, and let A and B be m x n matrices.

(a) Show that Ae; is the ith column of A.
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(b) Suppose Ae; = Be, for each i. Show that 4 = B.
(c) Suppose Au = Bu for every vector u in R". Show that A = B.
(@) Let A4 = (a;)and let Ae; = (b,, ..., h,)". Then
by=R.e.=(tys .... a X0, ..., 1,..., 00" = a,
where R, is the kth row of A. Thus
T

Ae; = (ay;, ay, ..., a,)

the ith column of A.
() Ae; = Be; means A and B have the same ith column for each i. Thus A = B.
(¢) If Au= Bu for every vector u in R”, then Ae; = Be; for each i. Thus A = B.

49. Suppose A is an m x n matrix. Show that: (a) 1,4 = A, (b) Al, = A. (Thus Al =14 = 4 when A
is a square matrix.)

We use the fact that I = (§;;) where §;; is the Kronecker delta (Example 4.3).
(@) Suppose I, A =(f;). Then

Jfi= Z Oyt = 0;a;;= ay
k=1

Thus I,, A = A, since corresponding entries are equal.
(b) Suppose Al, = (g;)). Then

h
gij = 2, audy; = a;;0;; = &
k=1

Thus Al, = A, since corresponding entries are equal.

4.10. Prove Theorem 4.1. (i) tr (A + B) =tr (A) + tr (B), (11) tr (kA) = k tr (A), (i11) tr (AB) = tr (BA).

(i) Let A + B =(c;) Then¢;; = a; + b, so that

n n n n
tr (4 + B)= Z"u: Z{an*‘bn): E“n"‘ Ebn:trA+trB
k-1 k=1 k=1 k=1

(i) Let kA = (c;;). Then ¢;; = kq;;, and

trkA=Ekaﬁ=kZaﬁ=k'trA

(i) Let AB = (c;)and BA =(d;). Thenc; = Y a,b,;and d;; = ¥ b, q,;, whence

k=1 k=1

trAB= ) ¢;= ). Eaikbh= Y 2buay= ) dy=tr BA
k=1

i=1 i=l k=1 k=1 i=1

4.11. Prove Theorem 4.2. (i) (f + 2)(A) = f(A) + g(A), (ii) f(A)g(A) = (fg)(A). (iil) f(A)g(A) = g(A)f(A).

Suppose f(x) = 3 a;x'and g(x) = Y b;x".
< =

(i) We can assume r = s = n by adding powers of x with 0 as their coefficients. Then

S(x) + gx) = ¥ (a; + b)x*
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Hence

(f+0hA) = Fa +b)A = T oA+ T b A = f(A) + glA)

i=1 i=1 i=1

(i) We have f(x)g(x) = z a; bjx”". Then
ij
f(A)g(A) = (Z a, A‘)(): b,A’) =2 ;b A = (fgKA)
i i ij

(iii) Using f(x)g(x) = g(x)f(x), we have

J(A)(A) = (JgKA) = (gfXA) = g(A) f(4)

4.12. Let D, = kI, the scalar matrix belonging to the scalar k. Show that (a¢) D, A = kA, (b) BD, = kB,
(¢) Dy + Dy = Dy 4, and (d) D Dy = Dy
(@) D A= (kA = K1A) = kA
(b) BD, = B(kl) = k(BI) = kB
() Dy+ Dy =kl +KkI=(k+k) =D,,,
(d) DD, =(kIXKT) = kk(IT) = kK'I = D,,.

INVERTIBLE MATRICES, INVERSES

4.13. Find the inverse of (; ;)

Method 1. We seek scalars x, y, z, and w for which
3 5\x ¥y 1 0 3x + 52 3y + 5w 1 0
2 3z w 0 1 2x + 32 2y + 3w 01

or which satisfy

3x+5z2=1 and 3y+5w=0
2x+32=0 2y +3Iw=1
The solution of the first system is x = —3, z =2, and of the second system is y = 5, w = —3. Thus the

-3 5
inverse of the given matrix is ( 5 3).

b
Method 2. The general formula for the inverse of the 2 x 2 matrix 4 = (a d) is
¢

A1 = d1Al —b/IA| =—-!— d —b where |Al=ad — bc
—¢/|A]l  a/|Al) |AI\-¢c a

Thus if A = C g) then first find | A| = (3X3) — (5X2) = — 1 # 0. Next interchange the diagonal elements,

take the negatives of the other elements, and multiply by 1/[ A|:
3 -5 -3 5
A 1 = —l =
(2 73)-5 2)

1 2 -4 1 3 -4

4.14. Find the inverseof (a) A =| -1 -1 S)and (b)) B=|1 5 -1
2 7 =3 3 13 -6
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{a) Form the block matrix M = (A : I) and row reduce M to echelon form:

1 2 -4 1 0 O I 2 -4; 1 0 O
M=[-1t -1 5 0o 1t oO]~[0 1 1,1 1 O
2 7 -3 0 0 | \0 3 §5.-2 0 1

1 2 -4 1 0 0
~10 1 L, 1 0
0 0 1 -5 -3 1

The left half of M is now in triangular form; hence 4 has an inverse. Further row reduce M to row
canonical form:

12 0 -9 6 2 I 0 0'-16 —11 3
M~{0o 1t 0 3 3% —-if~10 t 0 = 3 —il=uiAa)
o o 1, -3 -3 4 o o 1" -3 -3 4
—16 - 11 3
Thus A ' = 3 3 -1
-3 _ 3 1
2 2 2

(b) Form the block matrix M = (B i I) and row reduce to echelon form:

1 3 —4 | 0 0 | 3 -4 1 0 0

1 5 —1 0 1 o]~{o0 2 3!-—1 | 0

3 13 —-6.0 O 1 0 4 6 —3 0 1
1 3 -4 1 0 0

~10 2 3 -1 1 0
0 0 0 -1 -2 1

In echelon form, M has a zero row in its left half; that is, B is not row reducible to triangular form,
Accordingly, B is not invertible.

4.15. Prove the following:
(a) If A and B are invertible, then AB is invertible and (AB) '=B '4 '
(b) IfA,, A,,..., A,arcinvertible, then (4,4, --- A,) '=A,"'--- A, A, "
() Aisinvertible if and only if A" is invertible.
(d) The operations of inversion and transposing commute: (A7) ™! = (4~ "7,
(@) We have
(ABKB 'A" Y)Y = ABB YA '=AlA" ' = A4 ' =1
(B"'A '“WABY=B NA 'AB=B 'IB=B 'B=1
Thus B 'A" ' is the inverse of AB.
(b) By induction on n and using Part (¢), we have
(Ay Ay g A) P = 1A A DAL = A A A ) = A A A
(c) If Ais invertible, then there exists a matrix B such that AB = BA = [. Then
(ABY =(BAY =1" andso B'AT = ATB" = |

Hence A7 is invertible, with inverse B”. The converse follows from the fact that (A7)T = A.
(d) By Part(c), BT is the inverse of AT; thatis BT = (A4") ' ButB=A ';hence(4 ") = (A" L

4.16. Show that, if A has a zero row or a zero column, then A is not invertible.
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By Problem 3.20, if A has a zero row, then AB would have a zero row. Thus if A4 were invertible, then
AA™ ' = I would imply that I has a zero row. Therefore, A4 is not invertible. On the other hand, if 4 has a
zero column, then A would have a zero row; and so A” would not be invertible. Thus, again, 4 is not

invertible.

ELEMENTARY MATRICES

4.17. Find the 3-square eclementary matrices E,, E,, E; which correspond, respectively, to the row
operations R, +R,, —7R; > R;and —3R, + R, > R,.

0 0

0] to obtain

1

|
Apply the operations to the identity matrix I, ={ 0 1
00
010 1 0 0 1 0 0
E,={1 0 0 E,=l0 1 o0 Eyz={-3 1 o0
0 0 1 0 0 -7 0 0 |

4.18. Prove Theorem 4.9.

Let R; be the ith row of A; we denote this by writing A =(R,, ..., R,,). If B is a matrix for which AB is
defined, then 1t follows directly from the definition of matrix multiplication that AB = (R,B, ..., R,, B). We

also let
6=0....0,T1,0,..,0, =i
Here ™ =i means that 1 is the ith component. By Problem 4.8, e;4A=R;,. We also remark that
I =(ey, ..., e,)is the identity matrix.
(i) Let e be the elementary row operation R;«+ R;. Then, for ™ = i and A=,
E= 8[1) = {elr R ] 2\;; EEEEN L I em]
and
—~
e(A}=('R]' ] RJ') L |
Thus
o~ E . F2
EA=(e\A ...,&,A, ..., A, ..., e, A)=(R,...,R,, ..., R, ..., R,) = el A)
(il Now let e be the elementary row operation kR, — R, k # 0. Then, for = i,
E=ell)=(e,.. . ke,....e,) and  e(A)=(R,,...,kR,, ..., R)
Thus
e T
EA=(e,A,....ke;A, .... e, A)=(R,. ..., kR;, ..., R,) = e(A)
(iii) Last, let e be the elementary row operation kR; + R, — R;. Then, for = =i,
T — T
E=el)=(e,....ke;+¢,....e,) and  eA)=(R,,...,kR; + R, ..., R,)
Using (ke, + e)A = k(e; A) + e, A = kR; + R;, we have
P N P N
EA = (€A, ..., (ke; + €)A, ..., e, A) = (R, ..., kR, + R,, ..., R,) = €(A)

Thus we have proven the theorem.

4.19. Prove each of the following:
(a) Each of the following elementary row operations has an inverse operation of the same type.

[E,] Interchange the ith row and the jth row: R; <> R;.
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4.20.

4.21.

4.22.

4.23.

4.24.

SQUARE MATRICES, ELEMENTARY MATRICES [CHAP. 4

[E,] Multiply the ith row by a nonzero scalar k: kR; - R;, k # 0.
[E;] Replace the ith row by k times the jth row plus the ith row: kR; + R; - R;.

(b) Every elementary matrix E is invertible, and its inverse is an elementary matrix.

(a) Each operation is treated separately.
(1) Interchanging the same two rows twice, we obtain the original matrix; that is, this operation is its
own Inverse.
(2) Multiplying the ith row by k and then by k™', or by k™' and then by k, we obtain the original
matrix. In other words, the operations kR; — R, and k' R; - R, arc inverses.
(3) Applying the operation kR; + R; — R, and then the operation —kR; + R; —» R;, or applying the
operation —kR; + R;— R; and then the operation kR, + R; — R;, we obtain the original matrix.
In other words, the operations kR; + R; = R; and —kR; + R; — R, are inverses.
(b) Let E be the elementary matrix corresponding to the elementary row operation e: e{I) = E. Let €' be
the inverse operation of e and let E’ be its corresponding elementary matrix. Then

[=éel)=€(E)=EE and [ =ele(l))=eFE)=EFE

Therefore E' is the inverse of E.

Prove Theorem 4.10.

Suppose 4 is invertible and suppose A4 is row equivalent to a matrix B in row canonical form. Then
there exist elementary matrices E,. E,, ..., E, such that E, --- E, E,A = B. Since 4 is invertible and each
elementary matrix E, is invertible, B is invertible. But if B # I, then B has a zero row; hence B is not
invertible. Thus B = I, and (a) implies (b).

If (b) holds, then there exist elementary matrices E,, E,, ..., E; such that E,--- E,E,A =1, and so
A=(E,--- E,E\) ' = E;/'E," --- E; ' But the E; " are also clementary matrices. Thus (b) implies ().

If (c) holds, then A = E,E, --- E,. The E; are invertible matrices; hence their product, 4, is also
invertible. Thus (¢} implies (a). Accordingly, the theorem is proved.

Prove Theorem 4.11. If AB = I, then BA = I and hence B = A-.

Suppose A is not invertible. Then A4 is not row equivalent to the identity matrix [, and so A is row
equivalent to a matrix with a zero row. In other words. there exist elementary matrices E, ..., E, such that
E, -+ E,E A has a zero row. Hence E, --- E,E,AB=E, - E, E,, an invertible matrix, also has a zero
row. But invertible matrices cannot have zero rows: hence 4 is invertible, with inverse 4 ~'. Then also,

B=IB=(4 '"AdB=A4 (AB)=A"'"I=4""

Prove Theorem 4.12. B ~ A iff there exists nonsingular P such that B = PA.

If B~ A, then B=e[..(e)e(A))..)=E,--- E;E,A=PA, where P=E_---E,E, is non-
singular. Conversely, suppose B = PA where P is nonsingular. By Theorem 4.10, P is a product of elemen-
tary matrices and hence B can be obtained from A by a sequence of elementary row operations, i.e., B ~ A.
Thus the theorem is proved.

Show that B is equivalent to A if and only if there exist invertible matrices P and Q such that
B=PAQ.

If B is equivalent to A, then B=E_ --- E,E AF,F,--- F,= PAQ, where P=E_,--- E;E, and Q =
F,F, --- F, are invertible. The converse follows from the fact that each step is reversible.

Show that equivalence of matrices, written =, is an equivalence relation: (a) A = 4, (b)) If A = B,
then Bx A, (c)IfA >~ Band B= C,then A = C.

(a) A = ]AI where I is nonsingular; hence 4 > 4.
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(b) 1f A= Bthen A= PBQ where P and Q are nonsingular. Then B= P 'AQ ' where P~ ' and Q' are
nonsingular. Hence B = A.

(¢) IfAx~Band B=C,then A = PBQ and B = P'CQ’ where P, Q, P’, Q' are nonsingular. Then

A = P(P'CQ)Q = (PP)C(QQ)
where PP and Q@' are nonsingular. Hence A =~ C.

4.25. Prove Theorem 4.17.
The proof is constructive, in the form of an algorithm.
Step 1. Row reduce A to row canonical form, with leading nonzero entries a,,, a,;,, .

ver Gy

Step 2. Interchange C, and C;,, interchange C, and C;,. ..., and interchange C, and C; . This gives a

I,'B
matrix in the form (6—: 0), with leading nonzero entries a,,, 433, ..-, 4,,-
1
Step 3. Use column operations, with the a; as pivots, to replace each entry in B with a zero; ie., for
i=1,2,...,r and j=r+ 1, r+2
apply the operation —b;;C; + C;— C;.

1.'0
The final matrix has the desired form (—C:—;—- 6)

SPECIAL TYPES OF MATRICES
. . . 3 8 57
4.26. Find an upper triangular matrix 4 such that 4° = 0 27 )

i

Set A=(" ¥) Then 4° has the form [
0 =z 0

calculate A3 using x =2 and z = 3:
2 yW2 ¥ 4 Sy) 2 y\/4 Sy 8 19y
A= - and Al = =
(0 3)(0 3) (0 9) " 0 3Mo 9/ \o 27

2 -3
Thus 19y = —57, or y = — 3. Accordingly, A = (0 3)_

.3). Thus x® =8, so x =2: z8 =27, so z=3. Next
F

4.27. Prove Theorem 4.3(iii).
Let AB = (c;)) Then

Gy = Z ayby; and Cy = Z ap by
k=1

k=1

Suppose i > j. Then, for any k, either i > k or k > j, so that either a; = 0 or b; = 0. Thus, ¢;; = 0, and 4B
is upper triangular. Suppose i = j. Then, for k < i, a; = 0; and, for k > i, b,; = 0. Hence c; = a;b;;, as
claimed.

4.28. What kinds of matrices are both upper triangular and lower triangular?

If A is both upper and lower triangular, then every entry off the main diagonal must be zero. Hence A
is diagonal.
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429, Prove Theorem 4.4.
i) A+ANV =AT+ AN =4"T+ A=A+ A7
(i) (A—ANV =AT—-(AV =4T—-4=—-(4— 47
{iti) Choose B=4(A + AT and C = {(4 — A7), and appeal to (i) and (ii). Observe that no other choice is

possible.
2
430. Write A = (? 8) as the sum of a symmetric matrix B and a skew-symmetric matrix C.
2 7 4 10 . {0 —4
K T= A+ AT = and A — AT = .
Calculate 4 (3 8)' + (IO lﬁ)’ and A (4 0) Then
1 25 1 0 -2
B==(A+ AN = C=z(A-AN)=
> A+ A" ( s 8) 5 ( ) (2 0)

Wik

431. Find x, y, z, 5 1if A= y | is orthogonal.

t

1 whe
N L

Let R,, R;, R, denote the rows of 4, and let C,, C,, C, denote the columns of A. Since R, is a unit
vector, x2 + 2+ 2 =1,0or x = +1. Since R, is a unit vector,$ + §+ y>=l,ory= +2 Since R, - R, =

0, we get 2x/3 + 2 + 2y/3 = 0, 0or 3x + 3y = — 1. The only possibility is that x = § and y = —%. Thus
S B
a={3 4 -3
Z s t

Since the columns are unit vectors,
s+8+28=1 +3+s7=1 t+8+17=1

Thusz= +%,s=+%and1= +1.

Case (i): z = %. Since C, and C, are orthogonal, s = —%;since C, and C, are orthogonal, 1 = }.

Case (ii): z = —4%.Since C, and C, are orthogonal, s = %;since C, and C, are orthogonal, t = — 1.

Hence there are exactly two possible solutions:

2 2}

3 3

i -3 and

_% 1 —
3 3

A-:

[ INRE TR

et Wik el

Lt tules tulra
I

e Lol (P

b
432, Supposec 4 = (? ) is orthogonal. Show that a¢? + b* = 1 and

d
a b a b
A= or A=
(b - a) ( -b a)
Since A is orthogonal. the rows of A form an orthonormal set. Hence
a*+br=1 i+ d*=1 ac+bd=0
Similarly, the columns form an orthonormal set, so

at+e?=1 b2y d?=1 ab+c¢d=0

Therefore, ¢? = 1 — a? = b?, whence ¢ = +b.
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—da

Case (i): ¢ = +b. Then b{a + d) = 0, or d = — a; the corresponding matrix is (ab b).

Case (i1): ¢= —b. Then b = (d — a) =0, or d = a; the corresponding matrix is ( ; b)
—b a
4.33. Prove Theorem 4.6.

Let a and b be any real numbers such that a2 + b? = 1. Then there exists a real number 8 such that
a = cos ) and b = sin 0. The result now follows from Problem 4.32.

434, Find a 3 x 3 orthogonal matrix P whose first row is a multiple of u, = (1, I, 1) and whose
second row is a multiple of u, = (0, —1, 1).

First find a vector u, orthogonal to u, and u,, say (cross product) uy = u, x u; =(2, —1, —1). Let A
be the matrix whose rows are u,, ¥, , uy; and let P be the matrix obtained from A by normalizing the rows
of A. Thus

ror i W3 IL3
A=[0 -1 1 and P=| 0 —1,/2 1/2
2 -1 -1 26 —11/6 —1/./6

4.35. Prove Theorem 4.7.

b
Suppose 4 =(a ) Then

c d
AAT - a b(a c _(az+b1 ac + bd
“\e dNb d) \ac+bd S+
ara—(® c(a b\ (a*+c* ab+ed
“\b d\c d) \ab+cd b+ 4°

Since AAT = AT A, we get

a + b =a+¢? v+ dr=p+d ac + bd=ab + cd

The first equation yields b> = ¢*; hence b=corb = —c.

b d
Case (ii): b= —c # 0. Then ac + bd = K{d — a) and ab + cd = bla — d). Thus b{d — a) = b(a — d), and so
2b{d — a) = 0. Since b # 0, we get a = d. Thus A has the form

(i SR R G

which is the sum of a scalar matrix and a skew-symmetric matrix.

b
Case (1): b = ¢ (which includes the case b = —¢ = 0). Then we obtain the symmetric matrix 4 = (a )

COMPLEX MATRICES

2+i 3—-5i 4+ 8i
6—i 2—9i 5+6i)

4.36. Find the conjugate of the matrix 4 = (

Take the conjugate of each element of the matrix (where a + bi = a — bi):

G2t 35T a+E) _(2-0 3450 4-8i
“\6—i 2-9i S+6i) \6+i 2+9 5—6i
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4.37.

4.38.

4.39.

4.40.

SQUARE MATRICES, ELEMENTARY MATRICES [CHAP. 4

2—-3i S5+8i
Find A" when A = —4 3-Ti}.
—6—i Si

A" = A7 the conjugate transpose of 4. Hence,

e 23 -4 —6-i\_[2+43 -4 —6+i
“\5+8 3-7i 5i ) \5-8i 3+7i =5i

. 2460 5+ 3\ . . ..
Write A =(9 4 2_) in the form 4 = B + C, where B is Hermitian and C is skew-
— i — 2i
Hermitian.
First find
2—6i 9+i 4 14 + 4i 12i —4 4+ 2i
A = A+ Af = — A =
(S—3i 4+2i) + (14—41‘ 8 ) a-4 (4+2i —ai )

Then the required matrices are

1 2 7+ 2 1 6i —2+i
B=-(A+ A" = d C=-(4—- A% =
A+ A0 (7-2:' 4 ) an 3! ) (2+s —2.')

Define an orthonormal set of vectors in C" and prove the following complex analogue of
Theorem 4.5:

Theorem: Let A be a complex matrix. Then the following are equivalent: (¢) A is unitary;
(b) the rows of A form an orthonormal set; (c) the columns of A form an orthonormal set.

The vectors u,, u, ..., 4, in C" form an orthonormal set if u; - u; = d;; where the dot product in C" is
defined by

(@, @zy.ona) by, by, ....b)=ab, +a;b; + -~ +a,b,

and §;; is the Kronecker delta [see Example 4.3(a)].

Let R,, ..., R, denote the rows of A4; then RY,..., R] are the columns of A". Let AA" = (c;). By
matrix multiplication, ¢; = RyR] = R;* R;. Then AA" =1iffR;- R, = 5,-1‘ iff R, R,,..., R, form an
orthonormal set. Thus (a) and (b) are equivalent. Similarly, A is unitary iff A" is unitary iff the rows of A%
are orthonormal iff the conjugates of the columns of 4 are orthonormal iff the columns of A are orthonor-
mal, Thus (a) and (c) are equivalent, and the theorem is proved.

1-4%i 4 N
Show that 4 = 2 1z 1S unitary.
3 3 3

The rows form an orthonormal set:;

Thus A is unitary.
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SQUARE BLOCK MATRICES

4.41.

4.42.

4.43.

4.44.

Determine which matrix is a square block matrix:

1 2!3:4 5 1 2,3'4 5
1 1:1:1 1 11111
A=]98.76 5 B={9 817:6 5
3 .3:3!3 3 3 313,33
1 3.5.7 9 1 315'7 9

Although A is a 5 x 5 square matrix and is a 3 x 3 block matrix, the sccond and third diagonal blocks
are not square matrices. Thus A is not a square block matrix.
B is a square block matrix.

1 2 3 45
111 1 1
Complete the partitioning of C = 9 8 7 6 5|intoa square block matrix.
333133
135 709,

One horizontal line is between the second and third rows; hence add a vertical line between the second
and third columns. The other horizontal line is between the fourth and fifth rows; hence add a vertical line
between the fourth and fifth columns. [ The horizontal lines and the vertical lines must be symmetrically
placed to obtain a square block matrix.] This yields the square block matrix

1 2:3 45
S
c=|9 817 6's
3 3:3 3.3
1 3579

Determine which of the following square block matrices are lower triangular, upper triangular,
or diagonal:

1 20 1,0 0.0 1:0 0 1 2.0

a=3 ais| B={22 %9 c=[023] bp=(34ls

0 06 _5_=_[.]._§_..(.].| 0:4 5 0 6.7
077 879

A is upper triangular since the block below the diagonal is a zero block.

B is lower triangular since all blocks above the diagonal are zero blocks.

C is diagonal since the blocks above and below the diagonal are zero blocks.

D is neither upper triangular nor lower triangular. Furthermore, no other partitioning of D will make
it into either a block upper triangular matrix or a block lower triangular matrix.

Consider the following block diagonal matrices of which corresponding diagonal blocks have the
same size:

M = diag (A,, A;,..., A,) and .N =diag (B,, B,, ..., B)
Find: (@) M + N, (b) kM, (c) MN, (d) f(M) for a given polynomial f(x).
(a) Simply add the diagonal blocks: M + N = diag (4, + B,. 4, + B,, ..., A, + B,).

(b) Simply multiply the diagonal blocks by k: kM = diag (kA,. kA,, ..., kA,).
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(¢) Simply multiply corresponding diagonal blocks: MN = diag (4,B,, A, B,, ..., A,B,).
(d) Find f(A,) for each diagonal block A4,. Then f(M) = diag (f(A,),f(A4;), ..., f(A,).

445. Find M? where M =
Since M is block diagonal, square each block:

G 96 2)-(5 =)

(5X5) = (23)

(o )0 &)

CONGRUENT SYMMETRIC MATRICES, QUADRATIC FORMS

1 -3 2
446. lLetd=| -3 7 =5, asymmetric matrix. Find (¢) a nonsingular matrix P such that PTAP
2 -5 R

is diagonal, i.e., the diagonal matrix B = P" AP, and (b) the signature of A.

(a) First form the block matrix (4:1):
1 -3 2'1 0 0
@ain={-3 7 -5 0o 1 o
2 -5 B 0 0 1
Apply the row operations 3R, + R, = R, and —2R, + R; — R, to (A4 1) and then the corresponding
column operations 3C, + C, - C,and —2C, + C, — C, 10 A to obtain

1 -3 2' 1 0 o0 1 o 0 1t o0 0
0 -2 1, 3 1 0 and then 0 -2 1, 3 t 0
0O 1 4.:-2 0 1 0 I 4:-2 0 1

Next apply the row operation R, + 2Ry — R, and then the corresponding column operation
C, + 2C; — C, to obtain

1 0 0+ 1 0 0 1 0 0 1 0 0
0 -2 I3 1 0 and then 0 -2 0 3 1 0
0 0 9'—1 1 2 0 0 18 -1 1 2
Now A has been diagonalized. Set
13 - 1 0 0
P=10 1 ] and then B=PTAP=|0 -2 0
0 0 2 0 0 18

(h) B has p = 2 positive and n = | negative diagonal elements. Hencesig A =2 — | = 1,
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QUADRATIC FORMS

5 —
4.47. Find the quadratic form g(x, y) corresponding to the symmetric matrix 4 = ( 3 ;)

glx, ) = (x. y)( > ‘3)(")=(5x—3y,—3x+8y(")
-3 8\y y

= 5x? — 3xy — Ixy + 8y? = 5x? — bxy + 8y?

4.48. Find the symmetric matrix 4 which corresponds to the quadratic form
q(x, y, z) = 3x* + 4xy — y* + 8xz — 6yz + z?

The symmetric matrix A = (a;)) representing g(x,, ..., x,) has the diagonal entry g;; equal to the coeffi-
cient of x; and has the entries a;; and aj; each equal to half the coefficient of x; x;. Thus

3 2 4
A=|2 -1 -3
4 -3 1

4.49. Find the symmetric matrix B which corresponds to the quadratic forms

(@ q(x, y)=ax*+ 5xy — 7)? (B) qlx, y, z) = 4xy + 5)*

5

4
(a) Here B = (5 17). (Division by 2 may introduce fractions even though the coeflicients in g are

2
integers.)

(h) Even though only x and y appears in the polynomial, the expression g(x, y, z) indicates that there are
three variables. In other words,

glx, ¥, z) = Ox? + 4xy + Sy* + Oxz + Oyz + 0z?

Thus
0 20
B=|2 5 0
0 0 0

4.50. Consider the quadratic form g(x, y) = 3x? + 2xy — y* and the linear substitution, x = s — 3t,
y=2s+1.
(a) Rewrite g(x, y) in matrix notation, and find the matrix 4 representing the quadratic form.
(b) Rewrite the linear substitution using matrix notation, and find the matrix P corresponding
to the substitution.
(¢) Find ¢(s, t) using direct substitution.
(d) Find g(s, t) using matrix notation.

(a) Here g(x, y) = (x, y)(? _ :X;) Hence A = (:: B :) and g(X) = XTAX where X = (x, y)".

1 —3Y/: 1 -3
(b) We have (x) = (2 IX:) Thus P = (2 I) and X = PY,where X = (x, )" and Y = (s, 1)".
y
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4'51.

4.52.
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(¢) Substitute for x and y in g to obtain

as, 1)y = 3(s — 31 + 2(s — {25 + 1) — (2s + 1)?
= ¥(s? — 6st + 912) + 2(25% — Sst — 3t2) — (s + 4st + 12) = 352 — 325t + 20¢2

(d Here gq(X)= XTAX and X = PY. Thus X7 = YTP". Therefore,

. 1 2\/3 1N 1 —3\(s
;. — — T 1 — b
qs, ) =g(Y)=Y ' P'APY = (s r)(_} l)(l -1)(2 l)(t)
_ 3 o—16\(s\ ., ] 2
= (s, 1)(_ 16 ZDXr) =135 32st + 20t

[As expected, the results in (c) and (d) are equal.]

Let L be a linear substitution X = PY, as in Problem 4.50. (a) When is L nonsingular? orthog-
onal? (b) Describe one main advantage of an orthogonal substitution over a nonsingular substi-
tution. (c) Is the linear substitution in Problem 4.50 nonsingular? orthogonal?

(@) L is said to be nonsingular or orthogonal according as the matrix P representing the substitution is
nonsingular or orthogonal.

(b) Recall that the columns of the matrix P representing the linear substitution introduces a new coordi-
nate system. If P is orthogonal, then the new axes are perpendicular and have the same unit lengths as
the original axes.

1 -3y . . .
5 l) 1s nonsingular, but not orthogonal; hence the linear substitution is non-

singular, but not orthogonal.

(¢) The matrix P = (

Let g(x, y,z) = x* + 4xy + 3y — 8xz — 12yz + 9z%. Find a nonsingular linear substitution
expressing the variables x, y, z in terms of the variables r, s, t so that g(r, s, t) is diagonal. Also
find the signature of q.

Form the block matrix (A | I) where A is the matrix which corresponds to the quadratic form:
| 2 -4 1 0 o
Ain=| 2 3 -6 "0 1 ©
-4 -6 9.0 0 1

Apply -2R, + R, — R, and 4R, + R; — R, and the corresponding column operations, and then
2R, + R; — R, and the corresponding column operation to obtain

1 0 o' 1 0 0 1 0 0 1 0 o
0 -1 2, -2 1 0 and then 0 -1 0 -2 1 0
0 2 -7 4 0 1 0 0 -3 0 2 1

Thus the linear substitution x = r — 25, y = s + 21, z = t will yield the quadratic form
qr,s, ) =r> —s* —3?

By inspection,sigg = 1 — 2= —1,

4.53. Diagonalize the following quadratic form g by the method known as “completing the square™:

glx, y) = 2x* — 12xy + 5)*
First factor out the coefficient of x? from the x? term and the xy term to get

alx, y) = 2(x? — 6xy ) + 5y
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Next complete the square inside the parentheses by adding an appropriate multiple of y* and then subtract
the corresponding amount outside the parentheses to get

q(x, y) = Ax* — 6xy + 9y?) + 5p% — 18y = 2(x — 3y)* — 13y?

(The — 18 comes from the fact that the 9y? inside the parentheses is multiplied by 2) Let s = x — 3y, t = .
Then x = s + 31, y = r. This linear substitution yields the quadratic form gis, 1) = 25> — 13r>.

POSITIVE DEFINITE QUADRATIC FORMS
454, Letg(x, y, z2) = x2 + 2y* — 4xz — 4yz + 772, Is q positive definite?

Diagonalize (under congruence) the symmetric matrix A corresponding to g (by applying
2Ry + Ry > Ry;and 2C, + C;» Cy,and then R, + Ry » Ryand C, + C;, —» Cy):

1 0 -2 1 0 0 1 0 0
A= 0 2 -2}|-|0 2 -2]-|o0 2 0
-2 =2 7 0 -2 3 0 0 1

The diagonal representation of g only contains positive entries, 1, 2, and 1, on the diagonal; hence g is
positive definite.

455. Letg(x, y, 2) = x% + y?* + 2xz + dyz + 322 Is ¢ positive definite?
Diagonalize (under congruence) the symmetric matrix A corresponding to g:
1 0 1 1 0 0 1 0 0
A=1|0 1 21|10 1 21|10 1 0
1 2 3 0 2 2 0 0 -2

There is a4 negative entry — 2 in the diagonal representation of g; hence g is not positive definite.

4.56. Show that g(x, y) = ax2 + bxy + ¢y? is positive definite if and only if a > 0 and the discriminant
D =b2~4ac <0.

Suppose v = (x, y) # 0,say y # 0. Let t = x/y. Then
qv) = y*[alx/y)* + b(x/y) + ] = yat® + bt + ¢)

However, s = at? + bt + ¢ lies above the f axis, i.e., is positive for every value of ¢ if and only if @ > 0 and
D = b? — 4ac < 0. Thus g is positive definite if and only if a > O and D < 0.

4.57. Determine which quadratic form g is positive definite:
(@ qx,y) =x*—4xy+5)? (b) q(x, y) = x* + 6xy + 3)?
(1) Method 1. Diagonalize by completing the square:
gx, V) =x2—Aaxy + 4y’ + S5y =4yl = (x = 2P + P =5t + 12
where s = x — 2y, t = y. Thus g is positive definite.

Method 2. Compute the discriminant D = b? — 4ac = 16 — 20 = —4. Since D <0, g is positive
definite.

(b) Method 1. Diagonalize by completing the square:
glx, y) = x* + 6xy + 9y + 3y —9p? = (x + 3§)® — 6y = 5* — 612
where s = x + 3y, { = y. Since — 6 is negative, g is not positive definite.

Method 2. Compute D = b* — 4ac = 36 — 12 = 24. Since D > 0, g is not positive definite.
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4.60.
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Let B be any nonsingular matrix, and let M = B"B. Show that (a) M is symmetric, and (b) M is
positive definite.

(@) MT =(BTB)T = BTBTT = BTB = M, hence M is symmetric.

(b) Since B is nonsingular, BX # 0 for any nonzero X € R". Hence the dot product of BX with itself.
BX * BX = (BX)"(BX), is positive. Thus

glX) = XTMX = XT(BTB)X = (X"BTYBX) = (BX)"(BX) > 0

Thus M is positive definite.

Show that g(X) = || X |I2, the square of the norm of a vector X, is a positive definite quadratic
form.

For X =(x,, x,, ..., X,), we have g(X) = x] + x + -~ + x}. Now g is a polynomial with each term
of degree two, and g is in diagonal form where all diagonal entries are positive. Thus g 15 a positive definite
quadratic form.

Prove that the following two definitions of a positive definite quadratic form are equivalent:

(@) The diagonal entries are all positive in any diagonal representation of g.
(b) ¢q(Y) > 0, for any nonzero vector Y in R".

Suppose g(Y) = a,y; + a,y3 + -+ + a,y2 If all the coefficients a; are positive, then clearly g(¥) > 0
for any nonzero vector Y. Thus (a) implies (b). Conversely, suppose g, < 0. Let ¢, = (0, ..., 1, ..., 0) be the
vector whose entries are all O except 1 in the kth position. Then g(e,) = g, < 0 for ¢, # 0, Thus not = (a)
implies not = (b). Accordingly, (a) and (b) are equivalent.

SIMILARITY OF MATRICES

4.61.

4.62.

Consider the cartesian plane R? with the usual x and y axes. The 2 x 2 nonsingular matrix

r-(11)

determines a new coordinate system of the plane, say with s and t axes. (See Example 4.16.)

(@) Plot the new s and ¢ axis in the plane R2.
(b) Find the coordinates of Q(1, 5) in the new system.
(a) Plot the s axis in the direction of the first column u, = (1, —1)" of P with unit length equal to the

length u,. Similarly, plot the t axis in the direction of the second column u, = (3, 2)" of P with unit
length equal to the length of u, . See Fig. 4-2.

1
3

coordinate (column) vector of Q by P ':

ro-(t -

Thus Q'(—132, &) represents Q in the new system.

2 _3
() Find P '= (g ;) say by using the formula for the inverse of a 2 x 2 matrix. Then multiply the

Let f: R? - R? be defined by f(x, y) = (2x — 5y, 3x + 4y).

(@) Using X = (x, y)*, write f in matrix notation, i.., find the matrix A4 such that f(X) = AX.

(b) Referring to the new coordinate s and t axes of R? introduced in Problem 4.61, and using
Y = (s, 1), find (s, t) by first finding the matrix B such that f(Y) = BY.
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Fig. 4-2

o () Y=
(b) FindB=P"AP=(§ _i)(: _:)(L: ;)=(1‘; "i’i).nwn

5

(0)-(% 780

Thus f(s, 1) = (s — 321, §s + L),

4.63. Consider the space R* with the usual x, y, z axes. The 3 x 3 nonsingular matrix

1 3 -2
P=|-2 -5 2
1 2 1

determines a new coordinate system for R?, say with r, s, t axes. [Alternatively, P defines the

linear substitution X = PY, where X = (x, y, )" and Y = (r, s, 1)".] Find the coordinates of the
point Q(1, 2, 3) in the new system.

First find P~ '. Form the block matrix M = (P } I) and reduce M to row canonical form:

1 3 -2 11 0 0 1 3 -2 1 0 0

M=|-2 -5 2,0 1 o0]~l0 1 -2 2 1 o

1 2 1.0 0O 1 0 —1 3.1 0 1

1 3 =2'1 0 O 1 3 0'3 2 2

~0 1 -2 .2 1 o]~|l0O 1 0,4 3 2

0o 0 1.1 1 1 0o o 1! 1 1 1
1 0 0'-9 -7 -4
~l0 1 o, 4 3 2
0 0 1, 1 11
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Accordingly,
-9 -7 -4 -9 -7 —-4\/1 —47
P 1= 4 3 2 and P 0= 4 3 2)12)= 16
1 1 1 1 1 1/\3 6

Thus Q'(—47, 16, 6) represents Q in the new system.

Let f: R®* - R? be defined by
Jx, v, 2)=(x+2y—32,2x 4+ 2z, x — 3y + 2)

and let P be the nonsingular change-of-variable matrix in Problem 4.63. [Thus, X = PY where
X =(x,y 2T and Y = (r, 5, t)7.] Find: (a) the matrix 4 such that f(X) = AX, (b) the matrix B
such that f(Y) = BY, and (c) f{(r, s, t).

(@) The coeficients of x, y and z give the matrix A:

X 1 2 =3\/x 1 2 -3
flyl=12 0 1)y and so A=]|2 0 1
z 1 -3 1/\z 1 -3 1

(b) Here Bis similar to A with respect to P, that is,

-9 -7 —4\/l 2 -3 1 3 -2 1 —19 58
B=P 'AP = 4 3 242 0 -2 -5 2]1=1|1 12 =27
1 1 1I/A\1 -3 1 1 2 | 5 15 —11

(c) Use the matrix B to obtain

fir,s,t)=(r— 19s + 58¢t,r + 125 — 2T, 5r + 155 — 1 11)

Suppose B is similar to 4. Prove tr B = tr A.

Since B is similar to A, there exists a nonsingular matrix P such that B = P~'AP. Then, using
Theorem 4.1,
trB=tr P"'"AP=tu PP 'A=tr 4

LU FACTORIZATION

1 3 2
4.66. Find the LU factorization of A = 2 5 6].
-3 -2 7

Reduce A to triangular form by the operations —2R, + R, =+ R, and 3R, + Ry = R,, and then
TR, + Ry —» Ry
1 3 2 1 3 2
A~|0 -1 2{~10 -1 2
0 7 13 0 o 27

Use the negatives of the multipliers —2, 3, and 7 in the above row operations to form the matrix L, and use
the triangular form of A4 to obtain the matrix U that is,

1 0 0 1 3 2
L= 2 1 0 and vu=(0 -1 2
-3 =7 1 0 0o 27

(As a check, multiply L. and U to verify that A = LU )
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4.67.

4.68.

4.69.

Find the LDU factorization of the matrix A4 in Problem 4.66.

The A = LDU factorization refers to the situation where L is a lower triangular matrix with 1s on the
diagonal (as in the LU factorization of A), D is a diagonal matrix, and U is an upper triangular matrix with
s on the diagonal. Thus simply factor out the diagonal entries in the matrix U in the above LU factor-
ization of A to obtain the matrices D and L. Hence

1 (1] 0 1 0 (] | 3 2

L= 2 1 0 D=|0 -1 0 U=|0 |

-3 -7 1 0 0 0 0 1
1 4 -3
Find the LU factorization of B = 2 8 1
-5 -9 7

Reduce B to triangular form by first applying the operations —2R, + R, = R, and 5R, + Ry = R;:

1 4 -3
B~10 0 7
o 11 -8

Observe that the second diagonal entry is 0. Thus B cannot be brought into triangular form without row
interchange operations. In other words, B is not LU-factorable.

1 2 -3
. o 2 3 -8 .

Find the LU factorization of A = ] 3 i by a direct method.

3 8 —-1 13

First form the following matrices I. and U:

1 0 00 [y iy Wy U
I = ‘2‘ 1 0 0 and U= 0 Uyy Uy Ugy
ly, &, 1 0O 0 0 uyy uy
lag 1y gy 1 \ 0 0 0 ug,

That part of the product LU which determines the first row of A yields the four equations
u, =1 U, =2 Uy = —3 u,=4
and that part of the product I.U which determines the first column of A yieids the equations
Lty =2, lyu,=1, lu, =13 or I, =2 I, =1, I, =3

Thus, at this point, the matrices L and U have the form

1 0 ¢ © 1 2 -3 4
L= 2 0 0 o and U= 0 u,, uy; Uy,

1 5, 1 0 0 O 3y uy,

3 0, Iy 1 0 0 0 ug,

That part of the product LU which determines the remaining entries in the second row of A yields the
equations

4+u,,= 3 —6 4 uy; = —8 B+u,,= 5
_2 u24=_3

or Uy = — 1 Uas
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and that part of the product LU which determines the remaining entries in the second column of A yields
the equations

2+ u =3, 6+ lu;, =8 or Iy, = —1, ly;= -2

Thus L and U now have the form

1 0 Y] 0 | 2 -3 4

2 1 0 0 0 -1 -2 -3
L= and U=

1 -1 1 0 0 0 uy Uy,

3 -2 1, 1 0 0 0 o,

Continuing, using the third row, third column, and fourth row of A, we get

Uy =2, Uz, = — 1, then li3=2, and lastly Uge=3
Thus
1 0 0 © 1 2 -3 4
2 1 0 0 o -1 -2 -
L= and U= 3
1 -1 1 0 o 0o 2 -
3 -2 2 1 0o ¢ o 3

Find the LDU factorization of matrix A in the Problem 4.69.

Here U should have 1s on the diagonal and D is a diagonal matrix. Thus, using the above LU factor-
ization of A, factor out the diagonal entries in that U to obtain

1 | 2 -3 4
-1 1 2 3
D= d =
2 an U I
3 1

The matrix I. is the same as in Problem 4.69.

Given the factorization 4 = LU, where L = (I;) and U = (u;;). Consider the system AX = B.
Determine (a) the algorithm to find L™ 'B, and (b) the algorithm that solves UX = B by back-
substitution.

(a) The entry l; in the matrix L corresponds to the elementary row operation —/;; R; + R; — R;. Thus the
algorithm which transforms B into B' is as follows:

Algorithm P4.71A: Evaluating L' 'B
Step 1. Repeatforj=1ton—1:

Step 2. Repeat fori=j + 1 ton:
bj== —l;b; + b;
[End of Step 2 inner loop.]
[End of Step 1 outer loop.]

Step 3. Exit.
[The complexity of this algorithm is C(n) &= n%/2.]
(b)) The back-substitution algorithm follows:
Algorithm P4.71B: Back-substitution for system UX = B
Step 1. x, = b fu,,

Step 2. Repeatforj=n—-1,n—2,...,1
X;=(b; =t jo Xjer — 0 — U XU
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Step 3. Exit.
[The complexity here is also C(n) & n?/2.]

1 2 1
472, Find the LU factorization of the matrix 4 = 2 3 3
-3 -10 2
Reduce A to triangular form by the operations
(1) —2R, +R,—R,, (2) 3R, + Ry —+R,, (3} —4R; + Ry;—+ R,
1 2 1 1 2 1

A~10 -1 1]~]10 —1 1
0 —4 5 0 o 1

1 0 0 1 2 1
Thus L= 2 1 0 and U=|0 -1 1
-3 4 1 0 0 1

The entries 2, —3, and 4 in L are the negatives of the multipliers in the above row operations.

4.73. Solve the system AX = B for B,, B,, By, where A is the matrix in Problem 4.72 and where
B, =(, 1, 1),B, =B, + X,, By = B, + X, (here X is the solution when B = B)).

(@ Find L 'B, or, equivalently, apply the row operations (1), (2), and (3} to B, to yield
1 1 1

(1) and (2) 3)
B, = ahaiuhll [N ) LA |

1 4 8

Solve UX = Bfor B = (1, —1, 8) by back-substitution to obtain X, = (—-25, 9, 8).

(b) Find B, =B, + X, =(1, I, I) + (—25, 9, B) = (—24, 10, 9). Apply the operations (1), (2), and (3) to B,
to obtain (—24, 58, —63), and then B = (—24, 58, —295).
Solve UX = B by back-substitution to obtain X, = (943, —353, —295).
(c) Find By = B; + X, =(—24, 10, 9) + (943, — 353, —295) -= (919, —343, —286). Apply the operations
(1), (2), and (3) to B, to obtain (919, —2181, 2671), and then B = (919, 2181, 11395).
Solve UX = B by back-substitution to obtain X, = (--37.628, 13,576, 11,395).

Supplementary Problems
ALGEBRA OF MATRICES

1 2
4.74. LetA:(O ]). Find A"

. ko
4.75. Suppose the 2 x 2 matrix B commutes with every 2 x 2 matrix A. Show that B = (0 k) for some scalar k,

ie., B is a scalar matrix.

476. Let A= ({5} i) Find all numbers k for which A is a root of the polynomial

@ f)=x*—Tx+10, (b)) g)=x*—25 () hx)=x'-4
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4.77.

4.78.

4.79.
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Let B = o Find a matrix A such that A* = B
“\26 21/ o

Let A = Find: (a) A" and (b) B", for all positive integers n.

o o o
oo o -
o

Find conditions on matrices 4 and B so that A2 — B? = (A + B}A — B).

INVERTIBLE MATRICES, INVERSES, ELEMENTARY MATRICES

4.80.

4.82.

4.83.

4.84.

4.85.

4.86.

1 3 =2 2 1 -1 1 =2 0
Find the inverse of each matrix: (a) | 2 g8 3.5 2 -3l.olz -3 1
1 7 | 0 2 1 1 1 5
1 1 1 1 1 2 1 0
0 1 | 1 0 1 -1 1
Find the inverse of each matrix: (a) 0 0 i e h) 1 3 1 2
0 0 0 1 1 4 -2 4

1 2 } -6
Express each matrix as a product of elementary matrices: (@) (3 4) (b) ( 5 4).
1 2 0
Express A={0 1 3 Jas a product of elementary matrices.
3 8 7

Suppose 4 is invertible. Show that if AB = AC then B = C. Give an example of a nonzero matrix A such
that AB= AC but B # C.

If A is invertible, show that kA is invertible when k # 0, with inverse k™14 1,

Suppose A and B are invertible and A + B # 0. Show, by an example, that A + B need not be invertible.

SPECIAL TYPES OF SQUARE MATRICES

4.87.

4.88.

4.89.

4.90.

491.

Using only the elements 0 and 1, find all 3 x 3 nonsingular upper triangular matrices.
Using only the elements 0 and 1, find the number of: (a) 4 x 4 diagonal matrices, (b) 4 x 4 upper triangular

matrices, () 4 % 4 nonsingular upper triangular matrices. Generalize to n * n matrices.

1 1 4
Find all real matrices A such that A> = B where (a) B = (; ;5), () B= (0 3 9).

1
Let B=|0 . Find a matrix A with positive diagonal entries such that A% = B.
0

S v e
& oW

Suppose AB = C where A and C are upper triangular.
(a) Show, by an example, that B need not be upper triangular even when A and C are nonzero matrices.
(b) Show that B is upper triangular when A is invertible.
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492. Show that AB need not be symmetric, even though A and B are symmetric.
493. Let A and B be symmetric matrices. Show that AB is symmetric il and only if A and B commute.

494. Suppose A is a symmetric matrix. Show that (a) A% and, in general, A" is symmetric; (b) f(A) is symmetric
for any polynomial f(x); (c) P AP is symmetric.

495. Find a 2 x 2 orthogonal matrix P whose first row is (a) (2/,/29, 5/,/ 29), (b} a multiple of (3, 4).

496. Find a 3 x 3 orthogonal matrix P whose first two rows are multiples of (@) (1, 2, 3) and (0, —2, 3), respec-
tively; (b) (1, 3, 1) and (1, O, — 1), respectively.

497. Suppose 4 and B are orthogonal. Show that A7, A™", and AB are also orthogonal.

498. Which of the following matrices are normal?

a=(® 2 B—I_2C(l]:]D ?ﬁl}
\4 3/ “\2 3 - ! - 2 1
0 0 1 -3 -1 2
499. Suppose A is a normal matrix. Show that: (a) A7, (b) A% and, in general A", (c) B = kI + A are also normal.
2 -2 -4
4.100. A matrix E is idempotent if E* = E. Show that E =| —1 3 4 | is idempotent.
1 -2 -3

4.101. Show that if AB = A and BA = B, then A and B are idempotent.

1 1 3
4102 A matrix A is nilpotent of class p if A" =0but AP~' #0.Showthat A=| 5 2 6
-2 -1 -3

is nilpotent of class 3.

4.103. Suppose A is nilpotent of class p. Show that 49 = 0for g > pbut A7 # O for g < p.

4.104. A square matrix is tridiagonal if the nonzero entries occur only on the diagonal directly above the main
diagonal (on the superdiagonal), or directly below the main diagonal (on the subdiagonal). Display the

generic tridiagonal matrices of orders 4 and 5.

4.105. Show that the product of tridiagonal matrices need not be tridiagonal.

COMPLEX MATRICES
4.106, Find real numbers x, y, and z so that A is Hermitian, where

Xty 3 3 x+2i yi
(@ A=(3+:i 0), B={3-2 0 14z

yi l—xi -1
4.107. Suppose A is any complex matrix. Show that A4" and A®A are both Hermitian.

4.108. Suppose A is any complex square matrix. Show that A + A" is Hermitian and A — A" is skew-Hermitian.
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4.109.

4.110.

4.111.

4112,

4.113.

SQUARE MATRICES, ELEMENTARY MATRICES [CHAP. 4

Which of the following matrices are unitary?

_ _ _ 1 —i =1+
A:(uz —,/5;2), B:l(l+r 1—.)’ oo . | e

VG/Z —if2 2\ —i 1 +i L4i —14i 0

B2 -

Suppose A and B are unitary matrices. Show that: (a) A" is unitary, (b} A™ ! is unitary, (¢) AB is unitary.

. . . . 3+4i 1 t 0
Determine which of the following matrices are normal: A = ) 243 B = 1—i i}
] I — 1

Suppose A is a normal matrix and U is a unitary matrix- Show that B = UM AU is also normal.

Recall the following elementary row operations:
[E,] R;—R;. [E,] kR;,—R;, k#0, [E;] kR;+R,—R;

For complex matrices, the respective corresponding Hermitian column operations are as follows:
[G,] Ci—Cj [Gy] kC,—»Ciy k#0. [Gy] kC; + C,—C;

Show that the elementary matrix corresponding to [G;] is the conjugate transpose of the elementary matrix
corresponding to [E;].

SQUARE BLOCK MATRICES

4.114.

4.118.

4.116.

4.117.

Using vertical lines, complete the partitioning of each matrix so that it is a square block matrix:

1 23 45 1 23 45
I O I O LLno1
A=[9 8 7 6 5], B=|9 8 7 6 5
2222 2 222 22
33333 33333

Partition each of the following matrices so that it becomes a block diagonal matrix with as many diagonal
blocks as possible:

b S

i

[=R =T
o oo
wMC!.

X

Il
= e T e R
S w A o O
o0 000
o O O o O

™~

It
oo O
O -
==l ]

Find M?* and M? for each matrix M:

_______ )
(@@ M= ) M= -[3]'
0

C O -

r

b -0 O
(T N

Let M = diag (4,. ..., 4,) and N = diag (B,, ..., B,) be block diagonal matrices where each pair of blocks
A;. B, have the same size. Prove MN is block diagonal and

MN = diag (A,BI, Az Bz, [ AkBk)
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REAL SYMMETRIC MATRICES AND QUADRATIC FORMS

1 1 -2 -3
1 2 -5 -1 . . . o
4118. Let A= ) 5 6 ol Find a nonsingular matrix P such that B = PTAP is diagonal. Also, find
-3 -1 9 11
B and sig A.

4.119. For each quadratic form g(x, y, 2), find a nonsingular linear substitution expressing the variables x, y, z in
terms of variables r, s, t such that g(r, s, ) is diagonal.
(@ qlx, y, 2) = x? + bxy + 8y? —4dxz + 2yz — 92?
() qix, v, 2) = 2x% — 3y + 8xz + 12yz + 2522

4.120. Find those values of k so that the given quadratic form is positive definite:
(@ g(x.y)= 2x% — 5xy + ky*

(B) qlx, y) = 3x* — kxy + 12)?
(© q(x, y,2)=x2+ 2xy + 2y + 2xz + 6yz + kz?

4,121. Give an example of a quadratic form g(x, y) such that g(u) = 0 and g(v) = O but g(u + v) # 0.

4.122. Show that any real symmetric matrix A4 is congruent to a diagonal matrix with only 1s, — 1s, and 0s on the
diagonal.

4.123. Show that congruence of matrices is an equivalence relation.

SIMILARITY OF MATRICES

1 -2 -2
4.124. Consider the space R? with the usual x, y, z axes. The nonsingular matrix P ={2 —3 —6|determinesa
1 1 -7

new coordinate system for R?, say with r, s, 1 axes. Find:

(a) The coordinates of the point Q(1, I, 1) in the new system,
(b) flr,s,p)whenf(x,y,z)=(x+ y.y + 22, x — 2),

() glr.s.t)wheng(x,y,z)=(x+ y—z.x — 3z, 2x + y).

4.125. Show that similarity of matrices is an equivalence relation.

LU FACTORIZATION

4.126. Find the LU and LDU factorization of each matrix:

1 3 -l 2 3 6
@ a={2 5 1|, ®» B=|4a 7 9]
3 4 2 305 4

I -1 -1
4127. letA={3 -4 -2}|.
2 =3 =2

(a) Find the LU factorization of A.
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474.

4.76.

477.

4.78.

4.79.

4.81.

4.82.

4.83.

4.87.

SQUARE MATRICES, ELEMENTARY MATRICES [CHAP. 4

Let X, denote the solution of AX = B,. Find X,, X,, X5, X, when B, =(1, 1, 1)7 and
B,.,=B, + X, fork > 0.

(b)

Answers to Supplementary Problems

(@) k=2, by k= -5, (¢) None
1 0
2 3
o e e
(@) A= 0 . A= , AA=0fork>3 by B"=10 1 n
0000 00 00
0 0 1
0 0 00 0000
AB = BA
r g 3 8§ -3 —1 —8 5 —1
(@ | —3 3 —% m1-s 2 1), ©@\|-37 3 -3
3 =2 1 100 —4 -1 3 -3 1
| | 0 0 —10 -20 4 7
0 1 -1 0 3 6 -t =2
b
@ lg o 1 —qfp © s 8§ -2 —3
0 0 0 1 2 3 -1 -1
—1
{a) (; ?)(é I)((l) _g) or (; g)(:) —{2))(:) ;:), (b)) No product: matrix has no inverse.
t 0 0O\/1 0 O\/t O O\/1 2 O
01 OJJO 1t OO 1 340 1 O
3 0 1/\O0 2 tJ\0O O 1/\O0 O 1

(Yo

All diagonal entries must be 1 to be nonsingular. There are eight possible choices for the entries above the

eI
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(C] 20[2»{.» -1 },'2]

-3
_ 5), (h) None

TNATINE YN/ TR TNAT)

¥/13 . ® | 112 0 -14/2

/2 -2/ S

bss bas bus

b)) x=3,y=0,z=3

CHAP. 4]
488. (o) 2027, (b) 2'°[2riR,
23 (2 -N (=2 7\ (-2
4.389. . )
(a) (0 5)' 0 —5)( 0 5)( 0
1 21
490, 31
2
11 1 2 4 6
491. A= | B = ,C =
. (g (U 0) (3 4) ¢ (0 0)
1 2\/3 3 9 5
492 (2 2)(3 1)2(12 8)
49. (a) ( 2/./29 5;,/29) ® ( b ;)
—~51./29 2/./29) -% 3
1//14 2/ /14 3//14
496. (a) 0 -2,./13
12/ /151 -3/ /151 =2, /157
498. AC
a a bll hZI
all aZl . bz], bzz
4‘104 21 22 32 b.ﬂ.
Q33 A3z Qa3
Qa3 Qg4
11 0\/t 10 2 21
4105. {1 1t tffr 1t 1)={2 3 2
01 1/\o 1t 1 1 2 2
4.106. (a) x = a(parameter), y =0,z = 0;
4109. A, B, C
4111. A
/1,2 3,4 5 1 2,
1i1 1.1 1 11,
4114 A=19.8 7.6 S|.B=|9 8:
2:2 212 2 292y
3:3 313 3 3 3
1 2'0 0 0O
1,0 0 3010 0 0
4115. A=(0!0 2}.,B=|0 0.4 0 0
0,0 3 001500
0 00 0 6

(C, itself, is a block diagonal matrix; no further partitioning of C is possible.)

139
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4.116.

4118,

4.119.

4.120.

4.121.

4122,

4.124.

4.126.

4.127.

P=

(a)
(]
()

()

(@

SQUARE MATRICES, ELEMENTARY MATRICES

4 8
8 25
M? = J M=
9 M 22
9
3 4 11
M2 — 8 11 M = 30
9 12/
24 33
1 -1 -1 26 1
0o 1 3 13 B 1
0o 0 1 ') M
0O 0 0 7

x=r—3—19yv=s+Tt,z=1,

25
27

15

41
57 718
156 213

LSig A =2

469

glr,s.ty=r* —s* + 36t%, rank g = 3.sigg = 1

x=r—2,y=s5+2t,z=1t,

gir,s, 1) = 2r* — 3s% + 291%, rank g = 3,sigg = |

x=r—2s+ 18, y=5s—-Tt,z=1,

gir.s.ty =r® + s> — 62>, rank g = 3, sigg = 1

X=r—§—ty=s—1z=1,

qix,y,2) = r* +2s% rank g = 2, sig g = 2

k> 22,

glx,y)=x*—y L u=(,1)o=(1, -1

() k< —120rk> 12;

(©) k>5

Suppose A has been diagonalized to PTAP = diag (a;). Let Q = diag (b)) be defined by

b, =

(a)
(c)

(@

(b)

(a)

(b)

. Then B = QTPTAPQ = (PQ)T A(PQ) has the required form.

(B) f(r,s, 1) =(17r — 61s + 134¢, 4r — 415 + 461, 3r — 255 + 251),

t)\/lgl ifa;#0
1 ifa,=0
0(17, 5, 3),
gr.s, 1) = (61r + s — 330, 16r + 35 — 91t, 9r — 4s — 41)
1 I
A={2 1 -1
35 1 -10
t 2 “
B=(2 1 1
3 1 l _z
2z 2 Z
1 o o\/t -1 -
A=[3 1 offo -1 1
2 1 1y\0o 0 -

X, =

|
=)
=

t 3 -1
-3
1
1 3 3
1 -3
1
8 22 30
s=|6],x,={ 16|,B,={ 22}, x,=
0 -2 -2

[CHAP. 4



