Chapter 5

Vector Spaces

5.1 INTRODUCTION

This chapter introduces the underlying algebraic structure of linear algebra —that of a finite-
dimensional vector space. The definition of a vector space involves an arbitrary field whose elements are
called scalars. The following notation will be used (unless otherwise stated or implied):

K the field of scalars
a b, cork the elements of K
V the given vector space
u, v, w the elements of V
Nothing essential is lost if the reader assumes that K is the real field R or the complex field C.
Length and orthogonality are not covered in this chapter since they are not considered as part

of the fundamental structure of a vector space. They will be included as an additional structure in
Chapter 6.

5.2 VECTOR SPACES

The following defines the notion of a vector space or linear space.

Definition: Let K be a given field and let V be a nonempty set with rules of addition and scalar
multiplication which assigns to any u,ve V asumu+veV andtoanyue V, ke K a
product ku € V. Then V is called a vector space over K (and the elements of V are called
vectors) if the following axioms hold (see Problem 5.3).

[A,] Foranyvectorsu,o,we V,(u+0v)+w=u+(v+ w).

[4,] Thereis a vector in V, denoted by O and called the zero vector, for whichu + 0 = u
for any vectoru € V.

[A;] For each vector u€ V there is a vector in V, denoted by —u, for which
u+(—u)=0.

[A,] Foranyvectorsu,ve V,u+v=0v+u

[M,] Foranyscalar k € K and any vectors u, v € V, Ku + v) = ku + kv.
[M,] For any scalars a, b € K and any vector u € V, (a + b)u = au + bu.
[M;] For any scalars a, b € K and any vector u € V, (abju = a(bu).

[M,] For the unitscalar | € K, lu = u for any vectoru e V.

The above axioms naturally split into two sets. The first four are only concerned with the additive
structure of V and can be summarized by saying that V is a commutative group under addition. It
follows that any sum of vectors of the form

vy + v+ 40,
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142 VECTOR SPACES [CHAP. 5

requires no parentheses and does not depend upon the order of the summands, the zero vector 0 is
unique, the negative —u of u is unique, and the cancellation law holds; that is, for any vectors u, v,

we V.
Uu+w=ov+w implies u=vo

Also, subtraction is defined by
u—v=u+(-v)

On the other hand, the remaining four axioms are concerned with the “action” of the field K on V.
Observe that the labelling of the axioms reflects this splitting. Using these additional axioms we prove
(Problem 5.1) the following simple properties of a vector space.

Theorem 5.1: Let V be a vector space over a field K.
(i) Foranyscalarke KandOe V, k0O = 0.
(i) For0e K and any vectorue V,0u = 0.
(iii) Ifku=0,whereke Kandue V,thenk=0o0ru=20.
(iv) Foranyke Kandanyue V,(—Kku = k—u)= —ku

5.3 EXAMPLES OF VECTOR SPACES

This section lists a number of important examples of vector spaces which will be used throughout
the text.

Space K*

Let K be an arbitrary field. The notation K" is frequently used to denote the set of all n-tuples of
elements in K. Here K" i1s viewed as a vector space over K where vector addition and scalar multiplica-
tion are defined by

(@y, @z, .oosa) + (b by ..., b)y=(a, + b,a, +b,,...,a,+b,)
and
kia,, ay, ..., a,) = (kay, ka,, ..., ka,)
The zero vector in K” is the n-tuple of zeros,
0=(,0,...,0)
and the negative of a vector is defined by
—(ay. 4z, - a)=(—a,, —dy,.... —a,)

The proof that K" is a vector space is identical to the proof of Theorem 2.1, which we now regard as
stating that R" with the operations defined there is a vector space over R.

Matrix Space M, ,

The notation M,, ,, or simply M, will be used to denote the set of all m x n matrices over an
arbitrary field K. Then M,, , is a vector space over K with respect to the usual operations of matrix

addition and scalar multiplication. (See Theorem 3.1.)
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Polynomial Space P(z)

Let P() denote the set of all polynomials
g +ait +a,t* +-- +a,;t* (s=012..)

with coefficients a, in some field K. Then P(z) is vector space over K with respect to the usual operations
of addition of polynomials and multiplication of a polynomial by a constant.

Function Space F(X)

Let X be any nonempty set and let K be an arbitrary field. Consider the set F(X) of all functions
from X into K. [Note that F(X) i1s nonempty since X is nonempty.] The sum of two functions f,
g € F(X)1s the function f 4 g € F(X) defined by

+ax) =flx)+glx) VYxeX
and the product of a scalar k € K and a function f € F(X) is the function kf € F(X) defined by
(K Xx) =kf(x) VxeX

(The symbol ¥ means “for every.”) Then F(X) with the above operations is a vector space over K
(Problem 5.5).
The zero vector in F(X) 1s the zero function 0 which maps each x € X into 0 € K, that is,

x)=0 Vxe X
Also, for any function f € F(X), the function —f defined by
(—x) = —f(x) Vxe X

is the negative of the function f.

Fields and Subfields

Suppose E is a field which contains a subfield K. Then E may be viewed as a vector space over K as
follows. Let the usual addition in E be the vector addition, and let the scalar product kv of k € K and
v € E be the product of k and v as elements of the field E. Then E is a vector space over K, that is, the
above eight axioms of a vector space are satisfied by E and K.

54 SUBSPACES

Let W be a subset of a vector space V over a field K. W is called a subspace of V if W is itself a
vector space over K with respect to the operations of vector addition and scalar multiplication on V.
Simple criteria for identifying subspaces follow (see Problem 5.4 for proof).

Theorem 5.2: Suppose W is a subset of a vector space V. Then W is a subspace of V if and only if the
following hold:
(i) Oew

(i) W is closed under vector addition, that is:
Forevery u,ve W,thesumu +ve W.

ity W is closed under scalar multiplication, that is:
For every u € W, k € K, the multiple ku € W.
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Conditions (ii) and (iii) may be combined into one condition as in (ii) below (see Problem 5.5 for
proof).

Corollary 5.3: W is a subspace of V if and only if:
(i Oew
(1) au+ bve Wiloreveryu,ve Wanda,be K.

Example 5.1

(a) Let V be any vector space. Then the set {0} consisting of the zero vector alone, and also the entire space V are
subspaces of V.

(b)) Let W be the xy plane in R* consisting of those vectors whose third component is 0; or, in other words
W = {(a, b, 0): a, b € R}. Note 0 = (0, 0, 0) € W since the third component of 0 is 0. Further, for any vectors
u = (a, b,0) and v = (¢, d, 0) in W and any scalar k € R, we have

u+v=(a+c b+d 0) and ku = (ka, kb, 0)
belong to W. Thus W is a subspace of V.

(c) Let V=M, ,thespace of n x n matrices. Then the subset W, of (upper) triangular matrices and the subset W,
of symmetric matrices are subspaces of V since they are nonempty and closed under matrix addition and
scalar multiplication.

(d) Recall that P(t) denotes the vector space of polynomials. Let P,(t) denote the subset of P{t) that consists of all
polynomials of degree <n, for a fixed n. Then P,(t) is a subspace of P(r). This vector space P,(r) will occur very
often in our examples.

Example 5.2. Let U and W be subspaces of a vector space V. We show that t1  tersection U n W is also a
subspace of V. Clearly 0e U and O e W since U and W are subspaces; whe 0e U n W. Now suppose
wvel m W.Then u,ve U and u, v € W and, since U and W are subspaces,

u+uv kue U and u+uv kueWw
for any scalar k. Thusu + v, ku € U n W and hence U n W is a subspace of V.

The result in the preceding example generalizes as follows.
Theorem 5.4: The intersection of any number of subspaces of a vector space V is a subspace of V.

Recall that any solution u of a system AX = B of linear equations in n unknowns may be viewed as
a point in K", and thus the solution set of such a system is a subset of K”. Suppose the system is
homogeneous, i.e., suppose the system has the form AX = 0. Let W denote its solution set. Since
A0 = 0, the zero vector 0 € W. Moreover, if ¥ and v belong to W, ie, if u and v are solutions of
AX =0, then Au = 0 and Av = 0. Therefore, for any scalars a and b in K, we have

Alau + bv) = aAu + bAv = a0 + b0=04+0=0
Thus au + by is also a solution of AX = 0 or, in other words, au + bv € W. Accordingly, by the above
Corollary 5.3, we have proved:

Theorem 5.5: The solution set W of a homogenous system AX = 0 in n unknowns is a subspace of K".

We emphasize that the solution set of a nonhomogenous system 4X = B is not a subspace of K". In
fact, the zero vector 0 does not belong to its solution set.
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55 LINEAR COMBINATIONS, LINEAR SPANS
Let V be a vector space over a field K and let v, v,, ..., v, € V. Any vector in V of the form
av, +a,v; + +a,v,

where the a; € K, is called a linear combination of v, v,, ..., v,,- The set of all such linear combinations,
denoted by

span (Ul; U3y -0y Um’
is called the linear spanof vy, v,, ..., 0,
Generally, for any subset S of V, span S = {0} when S is empty and span S consists of all the linear
combinations of vectors in S.
The following theorem is proved in Problem 5.16.
Theorem 5.6: Let S be a subset of a vector space V.
(i) Thenspan S is a subspace of ¥ which contains S.
(ii)) If W is a subspace of V containing 8, then span S < W.
On the other hand, given a vector space V, the vectors u, u,, ..., u, are said to span or generate or
to form a spanning set of V if
V= span (uh Uz oeoy “r)
In other words, u,, u,, ..., 4, span V if, for every v € V, there exist scalars a,, a,,..., @, such that
v=a,u, +a,u, + -+ au,

that is, if v is a linear combination of u, u,, ..., u,.

Example 5.3

(a) Consider the vector space R*. The linear span of any nonzero vector 1 € R? consists of all scalar multiples of
u; geometrically, span u is the line through the origin and the endpoint of u as shown in Fig. 5-1(a). Also, for
any two vectors u, v € R? which are not multiples of each other, span (u, v) is the plane through the origin and
the endpoints of u and v as shown in Fig. 5-1(b).

(b) The vectors e, =(1, 0, 0), e, = (0, 1, 0) and e, = (0, 0, 1) span the vector space R>. Specifically, for any vector
u = (a, b, ¢) in R3, we have

u=(a b c)=al, 0,0+ 50, 1,0 + A0, 0, 1) = ae, + be, + ce,

That is, u is a linear combination of e, e;, €, .

(a) (]

Fig. 5
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(¢) The polynomials 1,1, 2, t%, ... span the vector space P(t) of all polynomials, that is,
P(t) =span (1,1, 1% 1% ..)

In other words, any polynomial is a linear combination of 1 and powers of t. Similarly, the polynomials
1,t,1%, ..., 1" span the vector space P,(t) of all polynomials of degree <n.

Row Space of a Matrix

Let A be an arbitrary m x n matrix over a field K:

G Gz ... Gy
A= Gy, azz A2n
Omi G2 a
The rows of A,
Ry =(a11, 812425 G1p)s o0 Ry = (Gpys Cpz s - o5 Q)

may be viewed as vectors in K" and hence they span a subspace of K" called the row space of A and
denoted by rowsp A. That is,

rowsp A =span (R,, R,, ..., R,)

Analogously, the columns of A may be viewed as vectors in K™ and hence span a subspace of K™ called
the column space of A and denoted by colsp A. Alternatively, colsp A = rowsp A".
Now suppose we apply an elementary row operation on A,

(i) Ri—R,, (i) kR,—-R;,k#0, or (i) kR; + R;— R;

and obtain a matrix B. Then each row of B is clearly a row of 4 or a linear combination of rows of A.
Hence the row space of B is contained in the row space of A. On the other hand, we can apply the
inverse elementary row operation on B and obtain A; hence the row space of A is contained in the row
space of B. Accordingly, 4 and B have the same row space. This leads us to the following theorem.

Theorem 5.7: Row equivalent matrices have the same row space.

In particular, we prove the following fundamental results about row equivalent matrices (proved in
Problems 5.51 and 5.52, respectively).

Theorem 5.8: Row canonical matrices have the same row space if and only if they have the same
NONZEero rows.

Theorem 5.9: Every matrix is row equivalent to a unique matrix in row canonical form.

We apply the above results in the next example.

Example 5.4. Show that the subspace U of R* spanned by the vectors
u, =(1,2, —1,3) u, =(2.4. 1. =2 and uy; =(3,6,3, —7)
and the subspace W of R* spanned by the vectors
v, =(1,2, —4,11) and v, =(2,4, =5, 14)

are equal; that is, U = W,
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Method 1. Show that each u; is a linear combination of v, and v, , and show that each v, is a
linear combination of u,, u,, and u,. Observe that we have to show that six systems of linear
equations are consistent.

Method 2. Form the matrix A whose rows are the u;, and row reduce 4 to row canonical

form:
1 2 -1 3 1 2 -1 3 1 2 0 1
A=|2 4 1 =2|~10 0 3 —-8]~10 0 1 —-%
3 6 3 -7 0 0 6 -—16 0 0 0 0

Now form the matrix B whose rows are v, and v,, and row reduce B to row canonical form:

B= 1 2 —4 ll) | 2 -4 11 1 2 0 i
\2 4 -5 14/ \o o 3 -8/ \0o o 1 -%
Since the nonzero rows of the reduced matrices are identical, the row spaces of 4 and B are

equaland so U = W,

56 LINEAR DEPENDENCE AND INDEPENDENCE
The following defines the notion of linear dependence and independence. This concept plays an
essential role in the theory of linear algebra and in mathematics in general.

Definition: Let V be a vector space over a field K. The vectors vy, ..., v,, € V are said to be linearly
dependent over K, or simply dependent, if there exist scalars a,, ..., a,, € K, not all of them
0, such that

av, +a;v,+ 0 +a,v, =0 (*)
Otherwise, the vectors are said to be linearly independent over K, or simply independent.
Observe that the relation (=) will always hold if the a’s are all 0. If this relation holds only in this
case, that is,
a,vy, +av; + - +4a,0,=0 implies a,=0...,a,=0

then the vectors are linearly independent. On the other hand, if the relation (+) also holds when one of
the a’s is not 0, then the vectors are linearly dependent.

A set {v,, vy..... v,} of vectors is said to be linearly dependent or independent according as the
vectors vy, Uy, .... U, are linearly dependent or independent. An infinite set S of vectors is linearly
dependent if there exist vectors u,, ..., u, in § which are linearly dependent; otherwise S is linearly
independent.

The following remarks follow from the above definitions.

Remark 1: If O is one of the vectors vy, ..., v,,, say v; = 0, then the vectors must
be linearly dependent; for

o, +00,+---+00,=1"04+0+---+0=0

and the coefficient of v, is not 0.

Remark 2: Any nonzero vector v is, by itself, linearly independent; for

k=0, v#£0 implies k=0
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Example 5.5
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Remark 3: If two of the vectors v,, v, , ..., v,, are equal or one is a scalar multiple
of the other, say v, = kr,, then the vectors are linearly dependent. For

UI—kD1+0E‘3+"'+0[',ﬂ=O

and the coefficient of ¢, 15 not 0.

Remark 4: Two vectors v, and v, are linearly dependent if and only if one of
them is a multiple of the other.

Remark 5: If the set {¢,, ..., v,,} is linearly independent, then any rearrangement
of the vectors {v;,, v;,,..., t; } is also linearly independent.

Remark 6: If a set S of vectors is linearly independent, then any subset of S is
lincarly independent. Alternatively, if S contains a linearly dependent subset, then S is
linearly dependent.

Remark 7: In the real space R’ linear dependence of vectors can be described
geometrically as follows: (a) Any two vectors u and v are linearly dependent if and only
if they lic on the same line through the origin as shown in Fig. 5-2(a). (b) Any three
vectors u. v, and w are linearly dependent if and only if they lie on the same plane
through the origin as shown in Fig. 5-2(b).

g l
0 /
(@) u and v are linearly dependent {b) u, v, and w are lincarly dependent

Fig. 52

Other examples of linearly dependent and independent vectors follow.

(@) The vectors u = (1, —1,0), v = (1,3, —1),and w = (5, 3, —2) are linearly dependent since

(b)

HL, —1L0)+2(1,3 —1)—(53, -2)=(0,0,0)

Thatis, 3Ju+ 2v — w=0,

We show that the vectors u = (6, 2, 3, 4). r = (0, 5, —3. 1), and w = (0. 0, 7. —2) are linearly independent. For
suppose xu + yr + zw = 0 where x, y and = are unknown scalars. Then

(0,0,0,0) = x(6.2,3,4) + 10,5, ~3, 1)+ 20,0, 7, —2)
={0x,2x +5p. 3x =3y + 7z, 4x + y — 22)

and so, by the equality of the corresponding components,

6x =0
2x + S5y =0
3x—=3y+7z=0
4x+ y—22=0
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The first equation yields x = 0; the second equation with x = 0 yields y = 0; and the third equation with
x =0, y = 0vields z = 0. Thus

xutyr+zw=0 implies x=0,y=02z=0

Accordingly u, v, and w are linearly independent.

Linear Combinations and Linear Dependence

The notions of linear combinations and linear dependence are closely related. Specifically, for more
than one vector, we show that the vectors vy, v,, ..., v,, are linearly dependent if and only if one of them
is a linear combination of the others.

For suppose, say, v; is a linear combination of the others:

v;=a 0t + 0 Uiy F Gy + 000 + 4,0,
Then by adding — v; to both sides, we obtain
ary + 0+ @i Uiy — U+ Gy + o+ 8,0, =0

where the coefficient of v; is not 0; hence the vectors are linearly dependent. Conversely, suppose the
vectors are linearly dependent, say,

b|U1+"'+ijj+”'+bmvm=0 where b}?“o
Then
v; = _bj_lblvl -t = b;‘_lbj—l"’j 1 — b lbiﬂvfﬂ - _bf_lbm"'"'

and so v, is a linear combination of the other vectors.
We now formally state a shightly stronger statement than that above (see Problem 5.36 for the
proof); this result has many important consequences,

Lemma 5.10: Suppose two or more nonzero vectors v,, v,, ..., ¢, are linearly dependent. Then one of
the vectors is a linear combination of the preceding vectors, that is, there exists a k > 1
such that

Uy =C Uy +Ca 4+ "4+ Cp Uy

Example 5.6. Consider the following matrix in echelon form:

o 2 3 4 5 6 17
0 0 4 -4 4 -4 4
A=lo o o o 7 & 9
0 0 0O 0 0 6 —6
0O 0 0 0 0 o0 0

Observe that rows R,, R,, and R, have Os in the second column (below the pivot element in R,) and hence any
linear combination of R,, R,, and R, must have a 0 as its second component. Thus R, cannot be a linear
combination of the nonzero rows below it. Similarly, rows R, and R, have Os in the third column below the pivot
element in R,; hence R, cannot be a linear combination of the nonzero rows below it. Finally, R, cannot be a
multiple of R, since R, has a 0 in the fifth column below the pivot in R;. Viewing the nonzero rows from the
bottom up. R,. R;, R,, R,, no row is a linear combination of the previous rows. Thus the rows are linearly
independent by Lemma 5.10.
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The argument in the above example can be used for the nonzero rows of any echelon matrix. Thus
we have the following very useful result (proved in Problem 5.37).

Theorem 5.11: The nonzero rows of a matrix in echelon form are linearly independent.

5.7 BASIS AND DIMENSION

First we state two equivalent ways (Problem 5.30) to define a basis of a vector space V.

Definition A: A set S = {u,, u,,..., u,} of vectors is a basis of V if the following two conditions hold:
(1) wuy,u,,...,u,are linearly independent,
(2) uliu2’---sun5pan V.

Definition B: A set S = {u,, u,, ..., u,} of vectors is a basis of V if every vector v € V can be written
uniquely as a linear combination of the basis vectors.

A vector space V is said to be of finite dimension n or to be n-dimensional, written
dimV =n
if ¥ has such a basis with n elements. This definition of dimension is well defined in view of the

following theorem (proved in Problem 5.40).

Theorem 5.12: Let V be a finite-dimensional vector space. Then every basis of ¥ has the same number
of elements.

The vector space {0} is defined to have dimension 0. When a vector space is not of finite dimension,
it is said to be of infinite dimension,

Example 5.7

(a) Consider the vector space M, , of all 2 x 3 matrices over a field K. Then the following six matrices form a

basisof M, ;:
(000 000 000
1 00 010 0 0 1

1 00 010 0 01

0 00 0 0 0 0 00
More generally, in the vector space M, , of r x s matrices let E;; be the matrix with ij-entry 1 and 0 elsewhere.
Then all such matrices E;; form a basis of M, ,, called the usual basis of M, ,. Then dim M, ;=rs. In

particular, e, =(1,0,...,0),e,=(0,1,0,...,0),...,e,=1(0,0,...,0, 1) form the usual basis for K".

(b) Consider the vector space P,(t) of polynomials of degree <n. The polynomials 1, ¢, ¢, ..., 1" form a basis of
Pt),and sodim P (t)=n + .

Theorem 5.12, the fundamental theorem on dimension, is a consequence of the following
“replacement lemma ” (proved in Problem 5.39):
Lemma 5.13: Suppose {v,, v,, ..., v,} spans V, and suppose {w;, w,, ..., w,} is linearly independent.
Thenm < n, and V is spanned by a set of the form
{Wis ooy Wis Uiy oo U, )

Thus, in particular, any n + 1 or more vectors in V are lincarly dependent.

Observe in the above lemma that we have replaced m of the vectors in the spanning set by the m
independent vectors and still retained a spanning set.
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The following theorems (proved in Problems 5.41, 5.42, and 5.43, respectively) will be frequently
used.
Theorem 5.14: Let V be a vector space of finite dimension n.
(i) Anyn + 1 or more vectors in V are linearly dependent.
(i1) Any linearly independent set § = {u,, u,, ..., u,} with n elements is a basis of V.

(i) Any spanningset T = {v,,v,, ..., ,} of ¥V with n elements is a basis of V.

Theorem 5.15: Suppose S spans a vector space V.
() Any maximum number of linearly independent vectors in S form a basis of V.,
(i) Suppose one deletes from S each vector which is a linear combination of preced-

ing vectors in S. Then the remaining vectors form a basis of V.

Theorem 5.16: Let V be a vector space of finite dimension and let S = {u,, u,, ..., u,} be a set of
linearly independent vectors in V. Then § is part of a basis of V, that is, S may be
extended to a basis of V.

Example 5.8
{a) Consider the following four vectors in R*:
(LLLI 1,1, 1) (0,0,1, 1) 0,0,0,1)

Note that the vector will form a matrix in echelon form; hence the vectors are linearly independent. Further-
more, since dim R* = 4, the vectors form a basis of R*.

{b) Consider the following n + 1 polynomials in P (1):
Le—=L{@=13% ..., @=1)"

The degree of (r — 1)* is k; hence no polynomial can be a linear combination of preceding polynomials. Thus
the polynomials are linearly independent. Furthermore, they form a basis of P,(t) since dim P (t) = n + 1.

Dimension and Subspaces

The following theorem (proved in Problem 5.44) gives the basic relationship between the dimension
of a vector space and the dimension of a subspace.

Theorem 5.17: Let W be a subspace of an n-dimensional vector space V. Then dim W < n. In particu-
lar f dim W =n, then W = V,

Example 5.9. Let W be a subspace of the real space R>. Now dim R? = 3; hence by Theorem 5.17 the dimension
of W can only be 0, 1, 2, or 3. The following cases apply:

(i) dim W =0, then W = {0}, a point;
(i) dim W = 1, then W is a line through the origin;
(i) dim W = 2, then W is a plane through the origin;

(iv) dim W = 3, then W is the entire space R>.

Rank of a Matrix

Let A be an arbitrary m x n matrix over a field K. Recall that the row space of A4 is the subspace of
K" spanned by its rows, and the column space of A is the subspace of K™ spanned by its columns.
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The row rank of the matrix A is equal to the maximum number of linearly independent rows or,
equivalently, to the dimension of the row space of A. Analogously, the column rank of A is equal to the
maximum number of linearly independent columns or, equivalently, to the dimension of the column
space of A.

Although rowsp A is a subspace of K", and colsp A is a subspace of K™, where n may not equal m, we
have the following important result (proved in Problem 5.53).

Theorem 5.18: The row rank and the column rank of any matrix A are equal.

Definition: The rank of the matrix A4, written rank A, is the common value of its row rank and column
rank.

The rank of a matrix may be easily found by using row reduction as illustrated in the next example.

Example 5.10. Suppose we want to find a basis and the dimension of the row space of

1 2 0 -1
A=|2 6 -3 -3
3 10 -6 -5

We reduce A to echelon form using the elementary row operations:
1 2 0 -1 1 2 0 -1
A~|0 2 =3 —-1}~10 2 -3 -1
0 4 -6 -2 0 0 0 0

Recall that row equivalent matrices have the same row space. Thus the nonzero rows of the echelon matrix, which
are independent by Theorem 5.11, form a basis of the row space of A. Thus dim rowsp A =2 and so rank A = 2.

58 LINEAR EQUATIONS AND VECTOR SPACES
Consider a system of m linear equations in n unknowns x,, ..., X, over a field K:

ap x, +a,;%x, + - +a,,x,=b,
G3X) + 023X, + - + Ay, X, = b, .0

Ay Xy + Qry Xy + -+ a,,x, =b,

mn-"n

or the equivalent matrix equation
AX =B

where A = (g;)) is the coefficient matrix, and X = (x;) and B = (b;) are the column vectors consisting of
the unknowns and of the constants, respectively. Recall that the augmented matrix of the system is
defined to be the matrix

ayy, a2 a,, b,
(A, B) = a3y Gaz2 a;, b,
aml amz amn b

Remark 1: The linear equations (5./) are said to be dependent or independent
according as the corresponding vectors, ie., the rows of the augmented matrix, are
dependent or independent.
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Remark 2: Two systems of linear equations are equivalent if and only if the cor-
responding augmented matrices are row equivalent, i.e., have the same row space.

Remark 3: We can always replace a system of equations by a system of indepen-
dent equations, such as a system in echelon form. The number of independent equa-
tions will always be equal to the rank of the augmented matrix.

Observe that the system (5.7) is also equivalent to the vector equation

ayy ay, a, b,
a a a b
ol B 4 B2 | 4 x | B | 2| 72
aml amz amj b

The above comment gives us the following basic existence theorem,

Theorem 5.19: The following three statements are equivalent.
(@) The system of linear equations AX = B has a solution.
(b) B is a linear combination of the columns of A.

(c) The coefficient matrix A and the augmented matrix (4, B) have the same rank.

Recall that an m x n matrix A may be viewed as a function A : K" - K™ Thus a vector B belongs
to the image of A if and only if the equation AX = B has a solution. This means that the image (range)
of the function A, written Im A, is precisely the column space of A. Accordingly,

dim (Im A) = dim (colsp A) = rank A

We use this fact to prove (Problem 5.59) the following basic result on homogeneous systems of linear
equations.

Theorem 5.20: The dimension of the solution space W of the homogeneous system of linear equations
AX = 01s n — r where n is the number of unknowns and r is the rank of the coefficient
matrix A.

In case the system AX = O is in echelon form, then it has precisely n — r free variables, say, x;, x,,,
.- X;,_.. Let v; be the solution obtained by setting x; = 1 (or any nonzero constant) and the remaining

free variables equal to 0. Then the solutions v,, ..., v,_, are linearly independent (Problem 5.58) and
hence they form a basis for the solution space.

Example 5.11. Suppose we want to find the dimension and a basis of the solution space W of the following
system:

xX+2y+22—5+3t=0

x+2y+3z4s5+ =0

Ix+6y+8z+s+5t=0

First reduce the system to echelon form:

x+2y+2z2—- s+3t=0
z4+25—=2t=0
2z4+45—4t=0

x+2y+2z— s+3t=0
z4+2s—2t=0

The system in echelon form has 2 (nonzero) equations in 5 unknowns; and hence the system has 5 — 2 =3 free
variables which are y, s and t. Thus dim W = 3. To obtain a basis for W, set:

(i) y=1,5=0,7=0toobtain the solution vy =(—-2,1, 0,0, 0),
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(ii) y=0,s=1,t=0to obtain the solution v, = (5,0, —2, 1, 0),
(i) y=0,5s =0,t = 1 to obtain the solution v, =(—7,0,2,0, 1).

The set {v,, v, v} is a basis of the solution space W.

Two Basis-Finding Algorithms

Suppose we are given vectors u,, u,,..., u, in K" Let
W =span (u,, 4y, ..., 1)

the subspace of K" spanned by the given vectors. Each algorithm below finds a basis (and hence the
dimension) of W.

Algorithm 5.8A (Row space algorithm)

Step 1. Form the matrix A whose rows are the given vectors.
Step 2. Row reduce A to an echelon form.

Step 3. Output the nonzero rows of the echelon matrix.

The above algorithm essentially already appeared in Example 5.10. The next algorithm is illustrated
in Example 5.12 and uses the above result on nonhomogeneous systems of linear equations.

Algorithm 5.8B (Casting-Out algorithm)

Step 1. Form the matrix M whose columns are the given vectors,
Step 2. Row reduce M to echelon form.

Step 3. For each column C, in the echelon matrix without a pivot, delete (cast-out) the vector v, from
the given vectors.

Step 4. Output the remaining vectors (Which correspond to columns with pivots).

Example 5.12. Let W be the subspace of R* spanned by the following vectors:
vlz(l,za lv _2|3) le{znse_la 3| _2) 03=(1s3| _2|5‘ _5)
ve=(3,1,2 —4.1) vs =561 -1, —1)

We use Algorithm 5.8B to find the dimension and a basis of W.
First form the matrix M whose columns are the given vectors, and reduce the matrix to echelon form:

| 2 1 3 5 1 2 1 3 5
2 5 3 1 6 0 1 1 -5 —4
M= 1 -1 =2 2 1 ~{0 -3 -3 -1 -4
-2 3 5 -4 -1 0 7 7 2 9
-2 -5 1 —1 0 -8 -8 -8 -—16
1 2 1 3 5 1 2 L 3 5
0 1 1 7 -4 0 1 1 7 —4
~10 0 0 —16 —16 |~|0 0 0 1 1
0 0 0 37 37 0 0 0 0 0
0 0 0 —48 —48 0 0 0 0 0
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Observe that the pivots in the echelon matrix appear in columns C,, C,, and C, . The fact that column C, does not
have a pivot means that the system xv, + yr, = v, has a solution and hence v, is a linear combination of v, and v,.
Similarly, the fact that column C does not have a pivot means that v is a linear combination of preceding vectors.
Accordingly, the vectors v,, v, and »,, which correspond to the columns in the echelon matrix with pivots, form a
basis of W and dim W = 3.

59 SUMS AND DIRECT SUMS

Let U and W be subsets of a vector space V. The sum of U and W, written U + W, consists of all
sums u + w where u € U and w € W. That is,

U+W={u+wuelU we W}

Now suppose U and W are subspaces of a vector space V. Note that 0=0+0¢ U + W, since
0 e U, 0 e W. Furthermore, suppose u + w and v’ + w belong to U + W, withu, ' e Uand w,w € W.
Then

wW+rw+@W+w)=w+u)+w+w)elU+ W
and, for any scalar k,
ku+wy=ku+kweU+ W

Thus we have proven the following theorem.
Theorem 5.21: The sum U + W of the subspaces U and W of V is also a subspace of V.

Recall that the intersection U n W is also a subspace of V. The following theorem, proved in
Problem 5.69, relates the dimensions of these subspaces.

Theorem 5.22: Let U and W be finite-dimensional subspaces of a vector space V. Then U + W has
finite dimension and

dim (U + W) =dim U + dim W — dim (U n W)

Example 5.13. Suppose U and W are the xy and yz planes, respectively, in R®. That is,
U ={(a b, O)} and W ={(0, b, ¢)}
Note R?* = U + W; hence dim (U + W) = 3. Also dim U = 2 and dim W = 2. By Theorem 5.22,
3=242—-dm(UnW) o dmU~nW)=1
This agrees with the facts that U ~ W is the y axis (Fig. 5-3) and the y axis has dimension 1.

§z

- A UNW
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Direct Sums

The vector space V is said to be the direct sum of its subspaces U and W, denoted by
Vv=U@W

if every vector v € V can be written in one and only one wayas v = u + wwhereue Uandwe W.
The following theorem, proved in Problem 5.70, characterizes such a decomposition.

Theorem 5.23: The vector space V is the direct sum of its subspaces U and W if and only if
WV =U+Wand (i) U n W= {0}.

Example 5.14
(@) In the vector space R?, let U be the xy plane and let W be the yz plane:
U={ab0:abeR} and W=1{0 b )b, ceR}

Then R® = U + W since every vector in R? is the sum of a vector in U and a vector in W. However, R? is not
the direct sum of U and W since such sums are not unique; for example,

357=3L0+(047 andalso (3,57 =3 -4,0+(0.9,7
(b) InR3, let U be the xy plane and let W be the z axis:
U= |la, b,0):a beR} and W ={0,0,¢):ceR}

Now any vector (a, b, ¢} € R? can be written as the sum of a vector in U and a vector in V in one and only one
way':

(a,b,c)=(a, b,0)+ (0,0, ¢)

Accordingly, R® is the direct sum of U and W, that is. R* = U @ W. Alternatively, R* = U@ W since
R*'=U+Wand U n W ={0}.

General Direct Sums

The notion of a direct sum is extended to more than one factor in the obvious way. That is, V is the
direct sum of subspaces W,, W, , ..., W, written

V=WeWwe W,
if every vector v € V can be written in one and only one way as

V=W, 4+ Wy e+ W,
where w, e W, w,e W,,...,w, e W,.

The following theorems apply.

Theorem 5.24: Suppose V =W, @ W, ®--- ® W,. Also, for each i, suppose S, is a linearly indepen-
dent subset of W,. Then

(a) The union S = | J; §; is linearly independent in V.
(b) 1fS;is a basis of W, then S = | J; S; is a basis of V.
(¢ dmV=dmW, +dmW,+ - +dim W,
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Theorem 5.25: Suppose V = W, + W, + -+ + W, (where V has finite dimension) and suppose
dim V = dim W, + dim W, + --- + dim W,
ThenV=W,®dW,® - ®W,.

5.10 COORDINATES
Let V be an n-dimensional vector space over a field K, and suppose
S={u,uz,-.., u,)

is a basis of V. Then any vector v € V can be expressed uniquely as a linear combination of the basis
vectors in S, say

v=aiuy +ayu; + -+ agu,

These n scalars a,, a,, ..., a, are called the coordinates of v relative to the basis S; and they form the
n-tuple [a,, a,, ..., a,] in K", called the coordinate vector of v relative to S. We denote this vector by
[v]s, or simply [v], when S is understood. Thus

[v]ls = [41, a3, ..., a,]

Observe that brackets [...], not parentheses (...), are used to denote the coordinate vector.

Example 5.15
(@) Consider the vector space P,(r) of polynomials of degree <2. The polynomials
p, =1 p.=t—1 pi=@—1PF=0*—2t+1

form a basis S of P,(t). Let v = 212 — 5t + 6. The coordinate vector of v relative to the basis § is obtained as
follows.
Set v = xp, + yp, + zp, using unknown scalars x, y, z and simplify:

AP —5St+6=x(1)+yr—)+z*—2r+1)
=x+yt—y+zt? =2zt 4z
=zl +(y—22)t +(x — ¥y +2)

Then set the coefficients of the same powers of t equal to each other:

x—y+ z= 6

y—2z= -5
z= 2
The solution of the above system is x = 3, y = —1,z = 2. Thus

v=13p, — py + 2p, and so fv1=1(3,—-112]
(b) Consider real space R>. The vectors
u, = (1, —1, 0) uy = (1, 1, 0) uy,=(0,1,1)

form a basis S of R3. Let v = (5, 3, 4). The coordinates of v relative to the basis S are obtained as follows.
Set v = xu, + yu, + zu,, that is, set v as a linear combination of the basis vectors using unknown scalars
X, ¥, Z:

(53,49 =x(1, —1,00 + 1{1,1,0) + 2(0, 1, 1)
(xs — X 0) + (y| » 0] + (09 z, z}

=(x+y,—x+y+232

Then set the corresponding components equal to each other to obtain the equivalent system of linear equa-
tions

x+y=35 —~x+y+z=3 z=4
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The solution of the system is x = 3, y = 2, z = 4. Thus

v=3u, + 2u, + 4u, and so fvle =13, 2, 4]

Remark: There is a geometrical interpretation of the coordinates of a vector v
relative to a basis S for real space R”. We illustrate this by using the following basis of
R? appearing in Example 5.15.

S={u, =(1, —1,0), up =(1, 1,0), uy = (0, 1, 1)}

First consider the space R® with the usual x, y, and z axes. Then the basis vectors
determine a new coordinate system of R3, say with x', y/, and z' axes, as shown in

Fig. 5-4. That is:

(1) The x' axis is in the direction of u,.

(2) The y' axis is in the direction of u, .

(3) The 2’ axis is in the direction of u,.

Furthermore, the unit length in each of the axes will be equal, respectively, to the
length of the corresponding basis vector. Then each vector v = (a, b, c) or, equivalently,
the point P(a, b, ¢) in R? will have new coordinates with respect to the new x, V., z

axes. These new coordinates are precisely the coordinates of » with respect to the basis
S.

-

v=(5349=[324]

Fig. 5-4

Isomorphism of V with K™

Consider a basis S = {u,, u,, .

.., u,} of a vector space V over a field K. We have shown above that

to each vector v € V¥ there corresponds a unique n-tuple [v]s in K". On the other hand, for any n-tuple
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[cy, €3, ..., ¢,] € K", there corresponds the vector c,u, + ¢4, + -+ + ¢, 4, in V. Thus the basis S
induces a one-to-one correspondence between the vectors in V and the n-tuples in K". Furthermore,

suppose
v=au, +axt; + " +a,u, and w=bu, +byu, + -+ b,u,
Then
v+ w=(a, +bu, +(@a, +bu, +---+(a,+ b,
kv = (kay)u, + (kazdu; + --- + (kayu,
where k is a scalar. Accordingly,
[v+wls=[a,+ by ...,a,+b]=1[ay,...,a])+[by,.... ] =[v]s + [W]s
and
[kv]s = [ka,, ka,, ..., ka,] = k[a,, a;, ..., ka,] = k[v]s

Thus the above one-to-one correspondence between V and K" preserves the vector space operations of
vector addition and scalar multiplication; we then say that V and K" are isomorphic, written V = K".
We state this result formally.

Theorem 5.26: Let V be an n-dimensional vector space over a field K. Then V and K" are isomorphic.

The next example gives a practical application of the above result.

Example 5.16. Suppose we want to determine whether or not the following matrices are linearly independent:

1 2 =3 1 3 —4 3 g8 —11
A_(4 0 1) B_(o 5 4) C“(lﬁ 10 9)
The coordinate vectors of the above matrices relative to the usual basis { Example 5.7(a)] of M,_; are as follows:
[A]1=(1,2,—-3,4,0, 1) [B]=(1,3,-4,6,549) [C]1=(,8, —11,16, 10,9
Form the matrix M whose rows are the above coordinate vectors:
1 2 -3 4 0 1
M=]1 3 -4 6 S5 4
3 g8 —11 16 10 9

Row reduce M to echelon form:

t 2 -3 4 0 1 1 2 -3 4 0 1
M~\|0 T -1 2 5 3]~10 1 -1 2 5 3
0 2 =2 4 10 6 0 0 0 0 0 0

Since the echelon matrix has only two nonzero rows, the coordinate vectors [ A], [B], and [C] span a subspace of
dimension 2 and so are linearly dependent. Accordingly, the original matrices A4, B, and C are linearly dependent.

S.11 CHANGE OF BASIS

Section 5.10 showed that we can represent each vector in a vector space V by means of an n-tuple
once we have selected a basis S of V. We ask the following natural question: How does our representa-
tion change if we select another basis? For the answer, we must first redefine some terms. Specifically,
suppose d,, 4, ..., G, are the coordinates of a vector v relative to a basis S of V. Then we will represent
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v by its coordinate column vector, denoted and defined by

a,
s
[U]S = = (al) Aryveey an)r

a,

We emphasize that in this section [v]s is an n x 1 matrix, not simply an element of K". (The meaning of
[v]s will always be clear by its context.)

Suppose S = {u,, U, ..., u,} is a basis of a vector space V and suppose S’ = {v,, U3, ..., U,} is
another basis. Since S is a basis, each vector in §' can be written uniquely as a linear combination of the
elements in S. Say

v, =C“u1 +clzu2 +--- +C|_un
Uy = Cqliy +Cpldy + " + €y, U,

€11 €2 Cn1

2 € c
P= 1 22 nl

Cln Czn (.nn

That is, P = (p;;) where p;; = c;;. Then P is called the change-of-basis matrix (or transition matrix) from
the “old basis™ § to the “new basis™ §".

Remark: Since the vectors vy, v,, ..., 1, in §' are linearly independent, the matrix
P is invertible (Problem 5.84). In fact (Problem 5.80), its inverse P~! is the change-of-
basis matrix from the basis S’ back to the basis S.

Example 5.17. Consider the following two bases of R2:
S={u, =(1,2.u,=(3.5} E={e; =(1,0),e,=(0 1)}
Fromu, = e, + 2e,, u, = 3e, + Se, it follows that

e, = —5u, + 2u,

e;= 3u,— u,

Writing the coefficients of u, and u, as columns gives us the change-of-basis matrix P from the basis § to the usual

basis E:
P__(—S 3)
2 -1

ul =(I.| 2)= e, + 281
u, = (3. 5) = 3¢, + Se,

Furthermore, since E is the usual basis,

Writing the coeflicients of e, and e, as columns gives us the change-of-basis matrix Q from the basis E back to the

basis S:
1 3
°-( 3)
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Observe that P and Q are inverses:
-5 3y 1 3 I 0
P = = =
Q ( 2 - l)(2 5) (0 I) !

The next theorem (proved in Problem 5.19) tells us how the coordinate (column) vectors are affected
by a change of basis.

Theorem 5.27: Let P be the change-of-basis matrix from a basis § to a basis §' in a vector space V.
Then, for any vector v € V, we have

Plv]s = [v]s and hence P '[v]ls = [v]s

Remark: Although P is called the change-of-basis matrix from the old basis S to
the new basis §', it is P~ ! which transforms the coordinates of » relative to the original
basis § into the coordinates of v relative to the new basis §'.

We illustrate the above theorem in the case dim V = 3. Suppose P is the change-of-basis matrix
from the basis S = {u,, u,, u3} to the basis §' = {v,, v,, v5}; say
l':]. = dyu, + aj sy + aJ u:’_
Uz=b1u| +b2u2 +b3ﬂ3
U3 =Ciy + Caly '{'(33“3

Hence
a b, ¢
P=la, b; c,
ay by ¢,

Now suppose v € V and, say v = k,vy + kv, + k5 v3. Then, substituting for v,, v,, v4 from above, we
obtain
V= kl(alul + 01 ul + a_-; HJ) + k:{blul + bz Ua + b3 ug) + k3(clul -+ {.'2 Ua + 63 u3)
= (a,k, + bk, + ¢ ka)u, +(azky + baky + ¢ k3)uy + (ask, + byk, + c3ks3)uy

Thus
k, ak, + bk, + ¢k,
[v]s =| Kk, and (Vls={a2k, + byk; + c3ky
ks ask, + b3k, + ¢k,
Accordingly,
a, by c,\[k ak, + bk, + ¢k,
Plvls =\az2 by ca|\ ka|=|azk, +byky +Crky | =[v]s
ay by c3/ \k; asky + bk, + ¢4k,

Also, multiplying the above equation by P!, we have
P '[v]s = P 'Plv]s = I[v]s = [v]s

Remark: Suppose S = {u,, u,, ..., u,} is a basis of a vector space V over a field
K, and suppose P = (p;)) is any nonsingular matrix over K. Then the n vectors

U; = Pritdy + Pl + -0 + Py, i=12...,n
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are linearly independent (Problem 5.84) and hence form another basis §’ of V. More-
over, P will be the change-of-basis matrix from § to the new basis §'.

Solved Problems

VECTOR SPACES

5.1.

5.2,

5‘3‘

Prove Theorem 5.1.
(i) By axiom [A4,], with u = 0, we have 0 + 0 = 0. Hence by axiom [M,],
kO = k(0 + 0) = kO + kO

Adding — k0 to both sides gives the desired result.

(i) By a property of K, 0 + 0 = 0. Hence by axiom [M,], Ou = (0 + O)Ju = Ou + Ou. Adding —Ou to both
sides yields the required result.

(iii) Suppose ku = 0 and k # 0. Then there exists a scalar k™' such that k~*k = 1; hence
u=lu=(k '"Ku=k (ku)=k '0=0

(iv) Using u + (—u) = 0, we obtain 0 = k0 = k(u + (—u)) = ku + k(—u). Adding —ku to both sides gives
—ku = k(—u).
Using k + (—k) = 0, we obtain 0 = Ou = (k + (—k)u = ku + (—k)u. Adding —ku to both sides
yields —ku = (—kju. Thus (— Ku = k(—u) = —ku.

Show that for any scalar k and any vectors u and v, k(u — v) = ku — kv.
Use the definition of subtraction, u — v = u + (—v), and the result k(—v) = — kv to obtain:

kiu—v)=kiu + (—v)) = ku + k(—v) = ku + (—kv) = ku — ko

Let ¥ be the set of all functions from a nonempty set X into a field K. For any functions f,g e V
and any scalar k € K, let f + g and kf be the functions in V defined as follows:

(f+agx)=f(x)+g(x) and  (kf)x) = kf(x) Vxe X
Prove that V is a vector space over K.

Since X is nonempty, V is also nonempty. We now need to show that all the axioms of a vector space
hold.

[A,] Letf, g, he V. To show that (f+ g} + h =+ (g + h), it is necessary to show that the function
(f + g) + h and the function f + (g + h) both assign the same value to each x € X. Now,

((f + 9) + hXx) = (f + gXx) + h(x) = (f(x} + g(x)) + h(x) Vxe X
(f+ (g + hXx) = f(x) + (g + h)x) = f(x) + (glx) + h(x)) Vxe X
But f(x), g{x), and k(x) are scalars in the field K where addition of scalars is associative; hence
((x) + g(x)) + h(x) = f(x) + (g(x} + k(x})
Accordingly,(f+ g} + h=f+ (g + h).
[A;] Let 0 denote the zero function: @(x) = 0, V¥x € X. Then for any function f € V,
(f + 0Xx) = f(x) + O(x) = f(x) + 0 = f(x) Vxe X
Thus f + 0 = and 0 is the zero vector in V.



CHAP. 5} VECTOR SPACES 163

[A;] For any function f € V, let —f be the function defined by (—f)x) = —f(x). Then,
U+ (=NNx) = f(x) + (—/Xx) = f(x) — f(x) = 0 = ©x) Vxe X
Hencef + (—f) = 0.
[A,] Letf,geV.Then
U+ g)x) =f(x) + g(x) = g(x) + f(x) = (g + /}x) Vxe X

Hence f + g = g + /. [Note that f{x) + g(x) = g(x) + f(x) follows from the fact that f(x) and g(x) are
scalars in the field K where addition is commutative.]

[M,] Letf ge K. Then

(k(f + gx) = k([ + g¥x)) = K f(x) + g(x)} = kf(x) + kg(x)
= (kf){x) + kgXx) = (kf + kg)x) Vxe X

Hence k(f + g) = kf + kg. (Note that k(f(x) + g{x)) = kf(x) + kg(x) follows from the fact that k, f(x)
and g(x) are scalars in the field K where multiplication is distributive over addition.)

[M;] LetfeVanda be K. Then

((a + b)fXx) = (a + b}f(x) = af(x) + bf(x) = (af Nx) + bf (x)
= {af + bf Kx), vxe X

Hence (a + b)f = af + bf.
[M;] Letfe Vanda be K. Then,
((ab)f )x) = (ab) f(x) = a(bf (x)) = a(bf Nx) = (a(bf)Kx) Vxe X
Hence (ab)f = a(bf).
[M,] Letfe V. Then,for theunit | € K, (If)}x) = 1f(x)) =f(x), Yx € X. Hence If = [.

Since all the axioms are satisfied, V is a vector space over K.

SUBSPACES

54.

Prove Theorem 5.2.

For W to be a subspace, conditions (i), (ii), and (ii1) are clearly necessary; we now show them to be
sufficient. By (i), W is nonempty; and by (ii) and (iii), the operations of vector addition and scalar multipli-
cation are well defined for W. Moreover, the axioms [4,], [4,]. [M,], [M.], [M,] and [M,] hold in W
since the vectors in W belong to V. Hence we need only show that [4,] and [4,] also hold in W. Now,
[A,] obviously holds, because the zero vector of V is also the zero vector of W. Finally, if v € W, then
(—Yp= —ve Wandv +(—v)=0;ie, [4,] holds.

Prove Corollary 5.3.

Suppose W satisfies (i) and (ii). Then, by (i), W is nonempty. Furthermore, if v, w € W then, by (ii),
v+w=1Iv+ lwe W;and if v € W and k € K then, by (ii), kv = kv + Ov € W. Thus by Theorem 5.2, W is
a subspace of V.

Conversely, if W is a subspace of V then clearly (i) and (ii) hold in W.

Show that W is a subspace of R® where W = {(a. b, ¢): a + b + ¢ = 0}, i.e., W consists of those
vectors each with the property that the sum of its components is zero.

0=(, 0, )e W since 0 +0+0=0. Suppose v=1(a, b, o), w=(a, b, ¢) belong 10 W, ie,
a+b+c=0anda + b + ¢ =0. Then for any scalars k and k',

kv + k'w = kia. b, ¢} + K'(@', &', ¢) = (ka, kb, ke) + (K'd’, K'Y, K'c’) = (ka + K'da', kb + K'Y, ke + K'c')
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and furthermore
(ka + K@) + (kb + Kb)+ (ke + Kc)=kla+ b+ )+ k(@ + b +¢)=k0 + k0O=0
Thus kv + k'w € W, and so W is a subspace of R>.
Let V be the vector space of all square n x n matrices over a field K. Show that W is a subspace
of V where:

(@ W consists of the symmetric matrices, i.c., all matrices A = (a;;) for which a; = a
(b) W consists of all matrices which commute with a given matrix T’; that is

W={AeV: AT = TA}.

ij

(@) 0e W since all entries of O are 0 and hence equal. Now suppose 4 = (a;;) and B = (b;)) belong to W,
ie, a; = a;;and b;; = by;. For any scalars a, b € K, aA + bB is the matrix whose jj-entry is aa;; + bb;;.
But aa; + bbj; = aa;; + bb;;. Thus aA + bB is also symmetric, and so W is a subspace of V.

() 0e€ W since 0T = 0 = TO. Now suppose A, Be W; thatis, AT = TA and BT = TB. For any scalars
abe K,

(@A + bB)T = (aA)T + (bB)T = a(AT) + b(BT) = a(T A) + KTB)
= T(aA) + T(bB) = T(aA + bB)

Thus a4 + bB commutes with T, i.e., belongs to W; hence W is a subspace of V.

Let V be the vector space of all 2 x 2 matrices over the real field R. Show that W is not a
subspace of V where:

(@) W consists of all matrices with zero determinant;
(b)) W consists of all matrices A for which A% = A.

b 1 0 0
(@ |Recall that det (¢ °) = ad — be. | The matrices 4 = and B =
c d 00 0

0
l) belong to W since

1
det(A)=0and det (B)=0. But A + B= (0

0
I) does not belong to W since det (A + B) = L. Hence

W is not a subspace of V.

1
(b) The unit matrix | = ( 0) belongs to W since

01
oV OY O\_(1 0\ _,
o 1o 1)\ 1)

20
But 21 = (0 2) does not belong to W since

211_(2 0)(2 0)_(4 0) 51
”_0202‘04#

Hence W is not a subspace of V.

Let V be the vector space of all functions from the real field R into R. Show that W is a subspace
of ¥V where W consists of the odd functions, i.e.,, those functions f for which f{—x) = —f(x).

Let 0 denote the zero function: &(x) =0, for every x e R. 0 € W since )(—x)=0= —0= —0(x).
Suppose f, g € W, ie, f(—x) = —f(x) and g(— x) = —g(x). Then for any real numbers @ and b,

(af + bg¥ —x) = af(—x) + bg(—x) = —af(x) — bg(x) = —(af(x) + bg(x)} = —(af + bg)x)
Hence af + bg € W, and so W is a subspace of V.
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5.10. Let V be the vector space of polynomials g, + a,t + a,t*> + --- + a,t° (s = 0,1,2, ...), with coef-
ficients g; € R. Determine whether or not W is a subspace of V where:

(a) W consists of all polynomials with integral coefficients;

(b) W consists of all polynomials with degree <3;

(¢) W consists of all polynomials with only even powers of t.

(d) W consists of all polynomials having ./ —1 as a root.

(a) No, since scalar multiples of vectors in W do not always belong to W. For example,
v=3+5t+77eW but tv=%3+%+3P¢wW

(Observe that W is “ closed ” under vector addition, i.e., sums of elements in W belong to W)

(b), {c), and (d). Yes. For, in each case, W is nonempiy, the sum of elements in W belong to W, and the
scalar multiples of any element in W belong to W.

S.11  Prove Theorem 54.

Let {W,:ie I} be a collection of subspaces of V and let W = (") (W,: i € I). Since each W, is a sub-
space, 0 € W, for every i € I. Hence 0 € W. Suppose u, v € W. Then u, v € W, for every i € I. Since each W, is
a subspace, au + bv € W, for each i € 1. Hence au + bv € W. Thus W is a subspace of V.

LINEAR COMBINATIONS, LINEAR SPANS

5.12. Express v=(1, =2, 5) in R® as a linear combination of the vectors u,, u,, u; where
u, =(1, =3,2),u; =(2, =4, — 1), u; = (1, =5,7).

First set
(1, =2,5)=x{1, =3, 2) + W2, —4, — 1)+ (1, =5, =(x+ 2y +z, —3x —4y — 5z, 2x — y + 72)

Form the equivalent system of equations and reduce to echelon form:

x+2y+ z= 1 x+2y+ z=1 x+2y+ z=1
—3Ix—4y—5z=-2 or 2y—2z=1 or y—2z=1
2x— y+7z= 5 —Sy+5z=3 0 =11

The system does not have a solution. Thus v is not a linear combination of u,, u, , u,.

5.13. Express the polynomial v =1t? 4+ 4t — 3 over R as a linear combination of the polynomials
1 41 =l’2—2I+5,p2=2!2—3[,p3=f+3.

Set v as a linear combination of p,, p,, p; using unknowns x, y, z:

Crar—3=x(*-UA+9)+ M 2*-3) +z(t+ 3)
=xt2 —2xt 4+ Sx +2yt? — 3yt + 2t + 3z
=(x 4+ 2% + (—2x — 3y + 2)t + (5x + 32)

Set coefficients of the same powers of t equal to each other, and reduce the system to echelon form:

x+ 2y = 1 X + 2y = 1 x + 2y = 1
—2x—3y+ z= 4 or y+ z= 6 or y+z= 6
5x +3z=-3 —10y +3z= —8 13z =52
The system is in triangular form and has a solution. Solving by back-substitution yields x = —3, y = 2,

z=4 Thusv = —3p, + 2p, + 4p;.
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3 1 ) . .
5.14. Write the matrix E = (l l) as a linear combination of the matrices

1 1 0 0 0 2
A= B = and C=
(1 0) (1 1) (0 - l)
Set E as a linear combination of A, B, C using the unknowns x, y, z: E = xA + yB + zC.
3 n _ (1 1 + 0 0 0 2
1 1)1 o 1) 0 -
(x x) (U 0) (0 22) ( x x + 22)
X 0 y y 0 - x+y y—z
Form the equivalent system of equations by setting corresponding entries equal to each other:

x=73 x+y=1 x+2z=1 y—z=—1

Substitute x = 3 in the second and third equations to obtain y = —2 and z = — 1. Since these values also
satisfy the last equation, they form a solution of the system. Hence E =34 — 2B — C.

5.15. Find a condition on a, b, ¢ so that w = (g, b, ¢) is a linear combination of u = (1, —3, 2) and
v =(2, —1, 1), that is, so that w belongs to span (u, v).

Set w = xu + yv using unknowns x and y:
abo=x(1, =3, 2+ 2, -1, D=(x+2y, —3x—y,2x+ )

Form the equivalent system and reduce to echelon form:

x+2y=a x+2y= a x+2y= a
—3x— y=b or Sy=3a+ b or Sy=3a+b
2x+ y=c —3y=—-2a+c 0= —a+3b+5¢

The system is consistent if and only if a — 3b — 5¢ = 0 and hence w is a linear combination of u and v when
a—3b—-5=0.

5.16. Prove Theorem 5.6.

Suppose § is empty. By definition span § = {0}. Hence span § = {0} is a subspace and § < span §.
Suppose S is not empty, and v € S. Then 1v = v € span §; hence § is a subset of span S. Thus span § is not
empty since S is not empty. Now suppose v, w € span §, say

v=aw +- - +a,u, and w=bw +-+bw,

where v;, w; € § and g;, b; are scalars. Then

v+rw=av, + - +a, v, +byw, +--+bw,
and, for any scalar k,
kv = klayv, + -~ + a,,v,) = ka,v, + -+ + ka,, v,

belong to span § since each is a linear combination of vectors in S. Thus span § is a subspace of V.

Now suppose W is a subspace of V containing § and suppose v,, ..., v, € § € W. Then all multiples
avy, ..., 6,0, € W, where g; € K, and hence the sum a,v, + - + @, v,, € W. That is, W contains all linear
combinations of elements of S. Consequently, span § is a subspace of W, as claimed.

LINEAR DEPENDENCE
5.17. Determine whetheru =1 — 3t + 2t — 3> and v = —3 + 91 — 61 + 9¢> are linearly dependent.

Two vectors are linearly dependent if and only if one is a multiple of the other. In this case, v = —3u.
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5.18.

5.19.

5.20.

Determine whether or not the following vectors in R? are linearly dependent:

u=(l, =2, ), o=2. 1, =), w=(7, —4, 1).

Method 1. Set a linear combination of the vectors equal to the zero vector using unknown scalars x, y,
and z:

x(1, =2, 1)+ 2, 1, = 1)+ z(7, —4, 1) = (0,0, 0)
Then

(x, —=2x, x) + (2y, ¥, —y) + (72, —4z, z) = (0, 0, 0)
or

(x+2y+7z, =2x + y—4z, x —y +2)=(0,0,0)

Set corresponding components equal to each other to obtain the equivalent homogeneous system, and
reduce to echelon form:

x+2y+7z=0 x+2y+ 7z=0
x+2y+T7z=0
—2x+ y—4z=0 or Sy +10z2=0 or 2220
x— y+ z=0 —~3y— 6z=0 y¥ &=

The system, in echelon form, has only two nonzero equations in the three unknowns; hence the system has
a nonzero solution. Thus the original vectors are linearly dependent.

Method 2. Form the matrix whose rows are the given vectors, and reduce to echelon form using the
clementary row operations:

1 -2 1 1 -2 1 1 =2 1
2 1 —-1]~{0 5 =3]|~{0 5 -3
7 —4 1 0 10 -6 0 0 0

Since the echelon matrix has a zero row, the vectors are linearly dependent. (The three given vectors span a
space of dimension 2.)

Consider the vector space P(r) of polynomials over R. Determine whether the polynomials
u, v, and w are linearly dependent where u = 2 +42—2t04+3, v=3+612—1t+44,
w=3+8—8t+ 7.

Set a linear combination of the polynomials t, v and w equal to the zero polynomial using unknown
scalars x, y, and z; that is, set xu + yv + zw = 0. Thus

P+ =2+ N+ WP+ 62—t + N+ 23 + 82— 8t +T)=0
or xt3 + 4xt? — 2xt + 3x + ytd + 6yt — yt + 4y + 3247 + Bzt — 8Bzt + 7z =0
or x+y+323 +@x+6y+ B2 4+ (—2x —y— 8z +3x+4y +72)=0

Set the coefficients of the powers of t each equal to 0 and reduce the system to echelon form:

x+ y+3z=0 X+ y+3z=0
4x +6y+8=0 2y —4z=0 x+y+3z=0
ot or finally
~2x— y—8z=0 y—2z2=0 y—2z=0
3x+4y+T7z2=0 y—2z=0

The system in echelon form has a free variable and hence a nonzero solution. We have shown that
xu + yv + zw = 0 does not imply that x = 0, y = 0, z = 0; hence the polynomials are linearly dependent.

Let V be the vector space of functions from R into R. Show that f] g, h € V are linearly indepen-
dent, where f(t) = sin t, g(t) = cos t, h(t) = t.
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Set a linear combination of the functions equal to the zero function 0 using unknown scalars x, y, and
2: x{ + yg + zh = 0; and then show that x =0, y = 0, z = 0. We emphasize that xf + yg + zh = 0 means
that, for every value of t, xf(t) + yg(t) + zh(t) = 0.

Thus, in the equation x sin ¢ + y cos { + zt = 0, substitute

t=0 to obtain x*0+y-14+2z:0=0 or y=0
t=mnf2 to obtain x1+y*0+zn/2=0 or x+nzf2=0
t=m to obtain x- 0+ -1)+z-w=0 or —y+nz=0

The last three equations have only the zero solution: x =0, y =0, z = 0. Hence f, g and h are linearly
independent.

Let V be the vector space of 2 x 2 matrices over R. Determine whether the matrices 4, B,C e V
are linearly dependent, where:

=G =60 el

Set a linear combination of the matrices A, B, and C equal to the zero matrix using unknown scalars x,
y, and z; that is, set xA + yB + zC = 0. Thus

{120l Do o)-6 o)
(2 )-6)

Set corresponding entries equal to each other to obtain the following equivalent system of linear equations:

or

x+y+z=0 x+z=0 x=0 x+y=0

Solving the above system we obtain only the zero solution, x =0, y =0, z=0. We have shown that
xA + yB + zC = 0 implies x =0, y = 0, z = 0; hence the matrices A, B, and C are linearly independent.

Suppose u, v, and w are linearly independent vectors. Show that u + v, u — v, and u — 2v + w are
also linearly independent.

Suppose x(u + v) + Yu — v) + z{u — 2v + w) = 0 where x, y, and z are scalars. Then
x4+ x4 yu—yv4zu—2w+zw=0
or (x+y+2utx—-y—2z2v+2w=0
But u, v, and w are linearly independent; hence the coefficients in the above relation are each 0:

x+y+ z=0
x—y—2z=0
z=10

The only solution to the above system is x =0, y=0, z=0. Hence u+ v, u—v, and u— 2v + w are
linearly independent.

Show that the vectors v = (1 4+ i, 2i) and w = (1, 1 + i) in C? are linearly dependent over the
complex field C but are linearly independent over the real field R.
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Recall that two vectors are linearly dependent (over a field K) if and only if one of them is a multiple of
the other (by an element in K). Since
T+ipw=>0+iXl.1+D=(1+i,2)=v

v and w are linearly dependent over C. On the other hand, v and w are linearly independent over R since no
real multiple of w can equal v. Specifically, when k is real, the first component of kw = (k, k + ki) is real and
it can never equal the first component | + i of v which is complex.

BASIS AND DIMENSION

5.24.

5.25.

5.26.

5.27.

5,28.

Determine whether (1, 1, 1), (1, 2, 3), and (2, — 1, 1) form a basis for the vector space R,

The three vectors form a basis if and only if they are linearly independent. Thus form the matrix A
whose rows are the given vectors, and row reduce to echelon form:

1 1 1 1 1 1 1 1 1
A=11 2 3]~10 1 21~10 1 2
2 -1 1 0 -3 -1 0 0 5

The echelon matrix has no zero rows; hence the three vectors are linearly independent and so they form a
basis for R?.

Determine whether (1, 1, 1, 1), (1, 2, 3, 2), (2, 5, 6, 4), (2, 6, 8, 5) form a basis of R*.

Form the matrix whose rows are the given vectors, and row reduce to echelon form:

S D T U B B S T T S B B
1 2 3 2 0 1 2 1 0 1 2 1 0o 1 2 1
B=l2 s 6 4|7lo 3 4 2]7lo 0o -2 <1|7lo o 2 1
2 6 8 5 0 4 6 3 0 0 -2 -1 0 0 0 o

The echelon matrix has a zero row; hence the four vectors are linearly dependent and do not form a basis
of R*.

Consider the vector space P,(t) of polynomials in ¢t of degree <n. Determine whether or not
V4t 4+ 202+ 03...,1" ! 4 " form a basis of P,(t).

The polynomials are linearly independent since each one is of degree higher than the preceding ones.
However, there are only n polynomials and dim P,(t) = n + 1. Thus the polynomials do not form a basis of
P(1).

Let V be the vector space of real 2 x 2 matrices. Determine whether

o) 0o (D) ()

form a basis for V.
The coordinate vectors (see Section 5.10) of the matrices relative to the usual basis are, respectively,
[A] =(1, 1,0, 0) [B]=(0, 1, 1,0) [C]1=(0,0,1,1) [D]1=(0,0,01)

The coordinate vectors form a matrix in echelon form and hence they are linearly independent. Thus the
four corresponding matrices are linearly independent. Moreover, since dim V = 4, they form a basis for V.

Let V be the vector space of 2 x 2 symmetric matrices over K. Show that dim V = 3. [Recall
that A = (g;;) is symmetric iff 4 = A" or, equivalently, a; = a;;.
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. a b
An arbitrary 2 x 2 symmetric matrix is of the form A = (b ) where a, b, ¢ € K. (Note that there are
C

three " variables.”) Setting

(i) a=1,b=0,c=0, (i) a=0,b=1,c=0, (iii) a=0,b=0,c=1

we obtain the respective matrices

O I I

We show that {E,, E,, E,} is a basis of V, that is, that (a) it spans V, and (b) it is linearly independent.

(a)

(b)

For the above arbitrary matrix 4 in V, we have

b
Az(z C)——-aE,+bEz+cE_-,

Thus {E,, E,, E,} spans V.
Suppose xE, + yE, + zE, = 0, where x, y, z are unknown scalars. That is, suppose

1 0 01 00 00 x y 00
+ + Z = or =
00 1 0 0 1 00 y z 00
Setting corresponding entries equal to each other, we obtain x = 0, y = 0, z = 0. In other words,

xE, + yE, + zE; = implies x=0,y=0z=0
Accordingly, {E,, E,, E,} is linearly independent.

Thus {E,, E,, E;} is a basis of V and so the dimension of V is 3.

Consider the complex field C which contains the real field R which contains the rational field Q.
(Thus C is a vector space over R, and R is a vector space over Q.)

(a)
(b)

(a)

()

Show that C is a vector space of dimension 2 over R.

Show that R is a vector space of infinite dimension over Q.

We claim that {1, i} is a basis of Cover R. Forifve C,thenv=a+ bhi=a-1+ b+iwherea beR;
that is, {1, i} spans C over R. Furthermore, if x -1+ y-i =0 or x + yi =0, where x, y € R, then
x =0and y = 0; that is, {1, i} is linearly independent over R. Thus {1, i} is a basis of C over R, and so
C is of dimension 2 over R.

We claim that, for any n, the set {1, =, =%, ..., 7"} is linearly independent over Q. For suppose

ag 1 + a,n + ayn’ + -+ + a,n" = 0, where the g, € Q, and not all the g; are 0. Then r is a root of a
nonzero polynomial over Q: g, + a,x + a, x> 4+ --- + 4, x". But it can be shown that = is a transcen-
dental number, i.e., that r is not a root of any nonzero polynomial over Q. Accordingly, the n + | real
numbers 1, n, n?, ..., =" are linearly independent over Q. Thus. for any finite n, R cannot be of dimen-
sion n over Q; R 1s of infinite dimension over Q).

Let S = {u,, u,, ..., u,} be a subset of a vector space V. Show that the following two conditions
are equivalent: (a) S is linearly independent and spans V, and (b) every vector v € V can be
written uniquely as a linear combination of the vectors in §.

Suppose (a) holds. Since S spans V, the vector v is a linear combination of the ;; say,

U=ty + at; + -+ a,u,

Suppose we also have

v=bw + by, +--- +b,u,



CHAP. 5] VECTOR SPACES 171

Subtracting, we get
O=v-v=(a, = bJu, +a; ~ bJu; + -+ +(a, — bu,

But the v; are linearly independent; hence the coeflicients in the above relation are each 0:
a] 7bl. -——'-0,02 7b2=0,...,a"fb"=0
Therefore, a, = b,, a; = b,, ..., a,= b, ; hence the representation of v as a linear combination of the u; is

unique. Thus {(a) implies ().
Suppose (b) holds. Then S spans V. Suppose

O=cuy +cuy +--- +c,u,

However, we do have
0 =0u, + Ou, + -+ + Ou,

By hypothesis, the representation of 0 as a linear combination of the v, is unique. Hence each ¢; = 0 and the
u; are linearly independent. Thus (b) implies ().

DIMENSION AND SUBSPACES
5.31. Find a basis and the dimension of the subspace W of R* where:
(@ W={abo:a+b+c=0} b)) W={ab, c:a=b=c}
(€0 W =(a,b,c):c=3a}

(@) Note W 3 R? since, eg., (1, 2, 3) ¢ W. Thus dim W < 3. Note u, =(1, 0, —1) and u, = (0, 1, —1) are
two independent vectors in W. Thus dim W = 2 and so u, and i, form a basis of W.

(6 The vector u = (1, 1, 1) € W. Any vector w € W has the form w = (k, k, k). Hence w = ku. Thus u spans
Wanddim W = L.

(6 W # Risince eg, (1,1, 1) ¢ W. Thus dim W < 3. The vectors 1, = (1, 0, 3) and u, = (0, 1, 0) belong
to W and are linearly independent. Thus dim W = 2 and u,, u, form a basis of W,

5.32. Find a basis and the dimension of the subspace W of R* spanned by
ul =(l, _49 _2» l)! H2=(l, _39 —1! 2)‘ u3=(3» _—8; _2, 7)-
Apply the Row Space Algorithm 5.84. Form a matrix where the rows are the given vectors, and row
reduce it to echelon form:
1 —4 -2 1 1 -4 -2 1 1 —4 -2 1
I -3 -1 2{~t0 1 1 1]~{0 1 I 1
3 -8 -2 7 0 4 4 4 0 0 0 0

The nonzero rows in the echelon matrix form a basis of W and so dim W = 2. In particular, this means that
the original three vectors are linearly dependent,

533. Let W be the subspace of R* spanned by the vectors
u, =(1, -2,5 -3), u;=(2,3,1, —-4) u3=(38, -3, —95).
(a) Find a basis and the dimension of W. (b) Extend the basis of W to a basis of the whole space
R*.
(@) Form the matrix A whose rows are the given vectors, and row reduce it to echelon form:
1 -2 5 -3 -2 5 -3 1 -2 5 -3

1
A=1[2 3 1 —-4]~10 7 -9 2]~10 7 -9 2
3 g8 -3 -5 0 14 -—18 4 0 0 0 0,

The nonzero rows (1, —2, 5, —3) and (0, 7, —9, 2) of the echelon matrix form a basis of the row space
of A and hence of W. Thus, in particular, dim W = 2.
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() We seek four linearly independent vectors which include the above two vectors. The four vectors
(1, =2, 5, —3),(0, 7, =9, 2), (0, 0, 1, 0), and (0, 0, 0, 1) are linearly independent (since they form an
echelon matrix), and so they form a basis of R* which is an extension of the basis of W.

Let W be the subspace of R® spanned by the vectorsu, = (1, 2, —1, 3, 4, u, =(2, 4, -2, 6, 8),
u;=(1,3,2,2,6),u, =(1,4,5 1, 8,and us =(2, 7, 3, 3, 9). Find a subset of the vectors which
form a basis of W.

Method 1. Here we use the Casting-Out Algorithm 5.8B. Form the matrix whose columns are the given
vectors and reduce it to echelon form:
1 2 1 1 2 1 2 1 1 2 1 2 1 1 2
2 4 3 4 7 0 0 1 2 3 0 0 L 2 3
-1 =2 2 5 3|~|0 0 3 6 5{~|0 0 0 0 -4
3 6 2 1 3 0 0O -1 -2 -3 0 0 0 0 0
4 8 6 8 9 0 0 2 4 1 0 0 0 0 -5
1 2 1 1 2
0 0 1 2 3
~10 0 0 0 -4
0 0 0 0 0
0 0 0 0 0

The pivot positions are in columns C,, C,, C,. Hence the corresponding vectors u,, u,, us form a basis of
W and dim W = 3.

Method 2. Here we use a slight modification of the Row Reduction Algorithm 5.84. Form the matrix
whose rows are the given vectors and reduce it to an “echelon” form but without interchanging any zero
FOWS:

1 2 -1 3 4 1 2 -1 3 4 1 2 -1 3 4
2 4 -2 6 8 0 0 0 0 0 0 0 0 0 0
i 3 2 2 6|~|0 1 3 -1 21~|0 1 3 -1 2
i 4 5 1 8 0 2 6 -2 4 0 0 0 0 0
2 7 3 3 9 0 3 5 -3 1 0 0 -4 0 -5

The nonzero rows are the first, third, and fifth rows; hence u,, u,, us form a basis of W. Thus, in particular,
dim W =3,

Let V be the vector space of real 2 x 2 matrices. Find the dimension and a basis of the subspace
W of V spanned by

e )

L4

The coordinate vectors (see Section 5.10) of the given matrices relative to the usual basis of V are as
follows:

[A1=[12 —-1,3] [Bl1=[25.1 —1] [Cl=[5 12 1 1] [P1=1[3.4, -2 5]
Form a matrix whose rows are the coordinate vectors, and reduce it to echelon form:
1 2 -1 3 't 2 -1 3 1 2 -1 3
2 5 I -1 0 1 3 -7 0 1 3 -7
5 12 1 1 0 2 6 —14 0 0 0 0
3 4 -2 5 0 -2 1 —4 0 0 7 —18
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The nonzero rows are linearly independent, hence the corresponding matriczs( i ;), (2 ,17), and

0 0
(7 18) form a basis of W and dim W = 3. (Note also that the matrices A, B, and D form a basis of W.)

THEOREMS ON LINEAR DEPENDENCE, BASIS, AND DIMENSION

5.36.

5.39.

Prove Lemma 5.10.

Since the v, are linearly dependent, there exist scalars a,, ..., a,. not all 0, such that
aw, + - + a,rv, = 0. Let k be the largest integer such that g, # 0. Then

ﬂ]Ul+"'+ﬂkvk+ovk+l+"'+0b'“=0 or ﬂlvl+"'+a*l?*=0
Suppose k = 1; then a,v, = 0, g, # 0 and so v, = 0. But the v, are nonzero vectors; hence k > 1 and
U= —q 'aw, — - —ay'a_ v,

That is, v, is a linear combination of the preceding vectors.

Prove Theorem 5.11.

Suppose R,, R,_,, ..., R, are linearly dependent. Then one of the rows, say R,,, is a linear com-
bination of the preceding rows:

Rm=au*lRm*l+am*2Rm42+”'+aan ("}

Now suppose the kth component of R,, is its first nonzero entry. Then, since the matrix is in echelon form,
the kth components of R, ; , ..., R, are all 0, and so the kth component of () is

am+l-0+am+2'0+"'+an'0=0

But this contradicts the assumption that the kth component of R,, is not 0. Thus R, ..., R, are linearly
independent.

Suppose {v,, ..., v,,} spans a vector space V. Prove:

(@) we V,then{w,uv,,...,v,} is linearly dependent and spans V.
(b) 1f v, is a linear combination of vectors (vy, v, .... v, ;), then {v,, ..., v;_, v; 4y, ..., 0,)
spans V.

(a) The vector w is a linear combination of the v; since {v;} spans V. Accordingly, {w, vy, ..., v,} is lincarly
dependent. Clearly, w with the v; span V since the v; by themselves span V. That is, {w, v, ..., 1,}
spans V.

(5 Suppose v; =k, + -+ + k;_,v;_,. Let u e V. Since {r;} spans V, u is a linear combination of the v,,
say, u = a,v, + ' + a, U, Substituting for y;, we obtain

u=aw, +- " +a;_ b+ afkywy + -+ ki o) @y iy + 000+ 4y, v,
=(a, +ak)v, + - +(a;-, +aki_ o, + a0, + - + a0y

Thus {0y, ..., ¥ s Vis s ---» Up} SPans V. In other words, we can delete v; from the spanning set and
still retain a spanning set.

Prove Lemma 35.13.

It suffices to prove the theorem in the case that the v; are all not 0. (Prove!) Since {v;} spans V, we have
by Problem 5.38 that

{Wy, gy eena 0} )]



174

5.40.

5.41.

5.42.

5.43.
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is linearly dependent and also spans V. By Lemma 5.10, one of the vectors in (/) is a linear combination of
the preceding vectors. This vector cannot be w,, so it must be one of the t’s, say v;. Thus by Problem 5.38
we can delete v; from the spanning set (/) and obtain the spanning set

{w’;l’l...-. !}J 1 Ujage -ane ﬂ"} (2)
Now we repeat the argument with the vector w,. That is, since (2) spans V, the set

(Wi Wo, Dgy ee s Uy O gy oeea U,) (1]

is linearly dependent and also spans V. Again by Lemma 5.10. one of the vectors in (3) is a linear com-
bination of the preceding vectors. We emphasize that this vector cannot be w, or w, since {w, ..., w_} is
independent; hence it must be one of the ¢'s, say v,. Thus by the preceding problem we can delete ¢, from
the spanning set (3) and obtain the spanning set

(Wi Waa O B s s - Ug—1s gy 1y -- s U}
We repeat the argument with w, and so forth. At each step we are able to add one of the w’s and delete
one of the ¢s in the spanning set. If m < n, then we finally obtain a spanning set of the required form:

{Wis ooy Wos Uiy oo UL}

Last, we show that m > n is not possible. Otherwise, after n of the above steps, we obtain the spanning
set {w,, ..., w,}. This implies that w,_, | is a linear combination of w, ..., w, which contradicts the hypothe-
sis that {w;} is linearly independent.

Prove Theorem 5.12.

Suppose {u,, u,, ..., u,} is a basis of V, and suppose {v,, v,, -..} is another basis of V. Since {u;} spans
V, the basis {v,, v;, ...} must contain n or less vectors, or else it is linearly dependent by Problem 5.39
(Lemma 5.13). On the other hand, if the basis {v,, v,, ...} contains less than n elements, then {u,, u,, ..., u,}

***%n

is linearly dependent by Problem 5.39. Thus the basis {v,, v,, ...} contains exactly n vectors, and so the
theorem is true.

Prove Theorem 5.14.

Suppose B = {w,,w,,...,w,} is a basis of V.
(i) Since B spans V, any n + 1 or more vectors are linearly dependent by Lemma 5.13.

(i) By Lemma 5.13, elements from B can be adjoined to § to form a spanning set of V with n elements.
Since § already has n elements, § itself is a spanning set of V. Thus § is a basis of V.

(iii) Suppose T is linearly dependent. Then some v; is a linear combination of the preceding vectors. By
Problem 5.38, V is spanned by the vectors in T without v; and there are n — | of them. By Lemma
5.13, the independent set B cannot have more than n — 1 elements. This contradicts the fact that B
has n elements. Thus T is linearly independent and hence T is a basis of V.

Prove Theorem 5.15.

(iy Swppose {v,, ..., 1,} is a maximal linearly independent subset of §, and suppose w € S. Accordingly
{vy, ---, U, w} is linearly dependent. No v, can be a linear combination of preceding vectors; hence w
15 a linear combination of the v;. Thus w € span v; and hence § < span v;. This leads to

V =span SSspanp, SV

Thus {v;} spans V and, since it is linearly independent, it is a basis of V.
(i) The remaining vectors form a maximal linearly independent subset of S and hence by part (i) it is a

basis of V.
Prove Theorem 5.16.
Suppose B = {w,, w,,....w,} is a basis of V. Then B spans V and hence V is spanned by

SUB={u,,uz, ..., u, w,w,,....w}
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By Theorem 5.15, we can delete from S u B each vector which is a linear combination of preceding vectors
to obtain a basis B’ for V. Since § is linearly independent, no u, is a linear combination of preceding
vectors. Thus B’ contains every vector in S. Thus S is part of the basis B’ for V.

5.44. Prove Theorem 5.17.

Since V is of dimension n, any n + 1 or more vectors are linearly dependent. Furthermore, since a
basis of W consists of linearly independent vectors, it cannot contain more than n elements. Accordingly,
dim W <n.

In particular, if {w,, ..., w,} is a basis of W, then, since it is an independent set with n elements, it is
also a basis of V. Thus W = V whendim W = n.

ROW SPACE AND RANK OF A MATRIX

5.45. Determine whether the following matrices have the same row space:

. 1 -1 -1

1 1 5 1 -1 =2
A=( ) B=( ) C=|4 -3 -1
2 3 13 3 -2 -3 3 1 3

Matrices have the same row space if and only if their row canonical forms have the same nonzero
rows: hence row reduce each matrix to row canonical form:

TR
O e I (i I (A

o
5]
R

1 -1 -1 1 -1 —1 1 -1 -1 1 0
C={4 -3 -—-1}]~}|0 1 3|~10 1 3 to 0 1 3
3 -1 3 0 2 6 0 0 0 0 0 0

Since the nonzero rows of the reduced form of A and of the reduced form of C are the same, A and C
have the same row space. On the other hand, the nonzero rows of the reduced form of B are not the same
as the others, and so B has a different row space.

1 3 5 1 2 3
5.46. Show that A= |1 4 3]and B=| —2 —3 —4] have the same column space.
1 1 9 7 12 17

Observe that A and B have the same column space if and only if the transposes AT and BT have the
same row space. Thus reduce AT and B” to row canonical form:

1 1 1 1 1 1 1 1 1 1 0 3
AT =13 4 1]~10 1 =2]~{0 1 -2 to 0 1 -2
5 3 9 0 -2 4 0 0 0 0 0 0
t -2 7 1 -2 7 1 -2 7 1 0 3
B"=12 -3 12]~|{0 1 -21~{0 1 =2 to 0 1 =2
j -4 17 0 2 —4 0 0 0 0 0 0

Since AT and BT have the same row space, A and B have the same column space.
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5.47. Consider the subspace U = span (u,, u,, u;) and W = span (w,, w,, w3) of R? where:
u, =(1,1, —1), u, =1(2,3, =1, u; =(3, 1, =95)
w, =(1, =1, =3), wy =(3, -2, —8), wy=(21,-3)
Show that U = W.

Form the matrix A whose rows are the u,, and row reduce A to row canonical form:
1 I -1 1 | Q| | 0 =2
A=|2 3 —1]~]0 1 1]~10 i 1
3 I -5 0 -2 -2 0 0 0
Next form the matrix B whose rows are the w, and row reduce B to row canonical form:
1 -1 -3 1 -1 -3 1 0 -2
B={3 -2 _—g8]~|0 1 1]~{0 1 {
2 i -3 0 3 3 0 0 0

Since A and B have the same row canonical form, the row spaces of A and B are equal and so U = W.

5§.48. Find the rank of the matrix A where:

1 2 -3 13

2 1 0 0 -2

@ A=) 5, . 3 O A= s
-1 4 -2 -2 3

(a) Since row rank equals column rank, it is easier to form the transpose of A and then row reduce to
echelon form:

1 2 -2 -1 1 2 -2 -1 1 2 -2 -1
At = 2 1 -1 4]~{0 -3 3 6]~10 -3 3 6
-3 0 j -2 0 6 -3 -5 0 0 3 7

Thus rank 4 = 3.
(b) The two columns are linearly independent since one is not a muitiple of the other. Thus rank 4 = 2,

5.49. Consider an arbitrary matrix A = (a;;). Suppose u = (by, ..., b,) is a linear combination of the
rows R,,..., R, of A;sayu =k, R, + -+ + k. R,,. Show that

b =kiay; + kyay + - + kpa,, i=12..,n)
where a,;, ..., a,; are the entries of the ith column of A.
We are given u = k,R; + --- + k_, R,, ; hence

(bl: '--7b|]’=k](allv i | alg) + ne + ku(amlr R | am]
=(ka,,+--+k,8u ..., kya, +-- +k,a,.)

Setting corresponding components equal to each other, we obtain the desired result.

5.50. Suppose 4 = (g;;) and B = (b;;) are echelon matrices with pivot entries:

Qyjs Qajys ovey Gy, and bikys baxys oo os by.
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ayj, * % * % blht*ttttt

Qgj * » * * bnztttt-

A: .................... , B= .......................
a, = = bn"

Suppose A and B have the same row space. Prove that the pivot entries of A and B are in the
same positions, that is, prove that j, =k, j, = k;,...,j, =k,,and r = s.

Clearly A = 0 if and only if B = 0, and so we need only prove the theorem when r > 1 and s > 1. We
first show that j, = k,. Suppose j, < k;. Then the j,th column of B is zero. Since the first row of A is in the
row space of B, we have by the preceding problem,

0, =¢,0+c;04--4¢,0=0

for scalars c;. But this contradicts the fact that the pivot element a,;, # 0. Hence j, > k,, and similarly
ky = j,. Thus j; = k,.

Now let A’ be the submatrix of 4 obtained by deleting the first row of A4, and let B be the submatrix of
B obtained by deleting the first row of B. We prove that A" and B’ have the same row space. The theorem
will then follow by induction since A’ and B’ are also echelon matrices.

Let R = (a,, 4, -.., a,) be any row of A’ and let R,, ..., R,, be the rows of B. Since R is in the row
space of B, there exist scalars d,, ..., 4, such that R =d,R, + d;R; +--- +d,R,,. Since A is in echelon
form and R is not the first row of A, the j,th entry of R is zero: g, = 0 for i = j, = k,. Furthermore, since B
is in echelon form, all the entries in the k,th column of B are 0 except the first: b,, # 0, but by, =0, ...,
by, = 0. Thus

0= ﬂh =d1bl*. +d20+ e +dm0= dlblk|

Now b,,, # 0 and so d, = 0. Thus R is a linear combination of R, ..., R,, and so is in the row space of B'.
Since R was any row of A’, the row space of A" is contained in the row space of B'. Similarly, the row space
of B’ is contained in the row space of A’. Thus A" and B’ have the same row space, and so the theorem is
proved.

Prove Theorem 5.8.

Obviously, if 4 and B have the same nonzero rows then they have the same row space. Thus we only
have to prove the converse.

Suppose A and B have the same row space, and suppose R # 0 is the ith row of 4. Then there exist
scalars ¢y, ..., ¢, such that

R'—"CIR|+L‘2R2+"'+C,R‘ (f)

where the R, are the nonzero rows of B. The theorem is proved if we show that R = R,. or¢; = 1 bute, =0
for k # i.
Let a;;, be the pivot entry in R, i.e., the first nonzero entry of R. By (1) and Problem 5.49,

a;, = by +eaby + - + o, by, (2)

But by the preceding problem b, is a pivot entry of B and, since B is row reduced, it is the only nonzero
entry in the jth column of B. Thus from (2) we obtain a;;, = ¢, b,;,. However, g;;, = 1 and b;;, = 1 since 4 and
B are row reduced; hence ¢; = 1.

Now suppose k # i, and b, is the pivot entry in R, . By (/) and Problem 5.49,

bt

ay, = by + by + - + ¢, by, 3

Since B is row reduced, b,; is the only nonzero entry in the jith column of B; hence by (3), a;;, = ¢, by, .
Furthermore, by the preceding problem a,, is a pivot entry of A and, since A is row reduced, a;;, = 0. Thus
¢y by;, = Oand. since by, = 1, ¢, = 0. Accordingly R = R; and the theorem is proved.
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Prove Theorem 5.9.

Suppose A is row equivalent to matrices A, and A, where A, and A, are in row canonical form. Then
rowsp A = rowsp A, and rowsp A = rowsp A,. Hence rowsp A, = rowsp A,. Since A, and A, are in row
canonical form, A, = A, by Theorem 5.8. Thus the theorem is proved.

Prove Theorem 5.18.

Let A be an arbitrary m x n matrix:

Qyy Oy a,

a;; 4aiz Az
A s

Qi G2 Cn

Let Ry, R,,..., R, denote its rows:
Ry =(a,y, 813, .-, Gy,), ..., Ry = (Gpy, Oz, -\ )
Suppose the row rank is r and that the following r vectors form a basis for the row space:
Sy = (b1 byas s by S3 = (byy byys o by, oo, S, = by, oy o b,)
Then each of the row vectors is a linear combination of the §; :
R, =k, S, +k; ;8 +---+k,8S,

Rz =k:lsl +kzzsl +---+ kz'sr

R,=k.,S +k, S, + - +k,S,

where the k;; are scalars. Setting the ith components of each of the above vector equations equal to each
other, we obtain the following system of equations, each valid fori=1,...,n:

a,;, = k]]b“ + k]jb]i + -+ klrbri
a; = knbli + kag by + - + ko by,

Thus, fori=1,...,n,

ay; K1 ky2 ky,

a k k k
2| _ by, 2, b, 22 +b, 2r

A, kml kml kmr

In other words, each of the columns of A is a linear combination of the r vectors

kll kl! klr
kZI kZZ er
kml kml kmr

Thus the column space of the matrix A has dimension at most r, i.c,, column rank <r. Hence, column
rank < row rank.

Similarly (or considering the transpose matrix AT) we obtain row rank < column rank. Thus the row
rank and column rank are equal.

Suppose R is a row vector and A and B are matrices such that RB and AB are defined. Prove:

(a) RBis a linear combination of the rows of B.
() Row space of AB is contained in the row space of B.
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(¢) Column space of AB is contained in the column space of A.
(d) rank AB < rank B and rank AB < rank A.
(@) Suppose R = (a,, a, ..., 6,) and B = (b;). Let B, ..., B, denote the rows of B and B!, ..., B" its
columns. Then
RB=(R-B.R-B? ...,R-B")
= (ayby, + aybyy + -~ +a,b,y, a1bys + aybyy + - + a,b,,,....a,b, +ayby, + - +a,b,)
=aybyy, byyy ooy b))+ aglbyy, bayy o, b)) + 0 + @iy, byas ooy by)
=aB +a,B,+-+a,B,
Thus RB is a linear combination of the rows of B, as claimed.

(b) The rows of AB are R; B where R, is the ith row of A. Thus, by part (a), each row of AB is in the row
space of B. Thus rowsp AB < rowsp B, as claimed.

(c) Using part (b), we have:
colsp AB = rowsp (AB)” = rowsp BTAT < rowsp A7 = colsp A
(d) The row space of AB is contained in the row space of B; hence rank AB < rank B. Furthermore, the
column space of AB is contained in the column space of A; hence rank AB < rank A.
5.55. Let A be an n-square matrix. Show that A is invertible if and only if rank 4 = n.

Note that the rows of the n-square identity matrix I, are linearly independent since [, is in echelon
form; hence rank I, = n. Now if A is invertible then A is row equivalent to 1, ; hence rank A = n. But if A is
not invertible then 4 is row equivalent to a matrix with a zero row; hence rank 4 <n. That is, A4 is
invertible if and only if rank A = n,

APPLICATIONS TO LINEAR EQUATIONS
5.56. Find the dimension and a basis of the solution space W of the system

X+2y+ z2—-3t=0
2x +4y+ 4z — =0
Ix+6y+7z+ =0

Reduce the system to echelon form:

x+2y4+ z— 3t=0 x+2y+ z—-3t=0
224 5t=0 or 2z24+5t=0
4z + 10t =0

The free variables are y and ¢, and dim W = 2, Set:

(i) y =1,z =0 to obtain the solutionu, = (—2,1,0,0)

(i) y=0,t = 2to obtain the solution u, = (11,0, —5, 2)

Then {u,, u,} is a basis of W. [The choice y = 0, t = 1 in (ii). would introduce fractions in the solution.]

5.57. Find a homogeneous system whose solution set W is spanned by

{1, —=2,0,3),(1, —1, — 1, 4), (1,0, —2, 5)}

Let v = (x, y, z, t). Form the matrix M whose first rows are the given vectors and whose last row is v:
and then row reduce to echelon form:

1 -2 0 3 1 -2 0 3 1 -2 0 3
M= 1 -1 —1 41 10 | -1 1 10 1 -1 1

1 0o -2 5 0 2 =2 2 0 0 2x+y+z —Sx—y+1t

x y z t 0 2x+y z =3Ix+t 0 0 0 0
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The original first three rows show that W has dimension 2. Thus v € W if and only if the additional row
does not increase the dimension of the row space. Hence we set the last two entries in the third row on the
right equal to 0 to obtain the required homogeneous system

xX+y+z =0
5x +y —t=0

Let x;,, X;,, ..., X; be the free variables of a homogeneous system of linear equations with n
unknowns. Let v; be the solution for which x; = 1, and all other free variables = 0. Show that
the solutions v, v,, ..., v, are linearly independent.

Let A be the matrix whose rows are the v;, respectively. We interchange column 1 and column i), then
column 2 and column i, ..., and then column k and column i, ; and obtain the & x n matrix

1 0 0 ... 0 0 ¢, 44y --- Cyp
B=(,C)= 01 0 ... 0 0 ¢34y ... Capy
000 ... 01 Cayy - Cay

The above matrix B is in echelon form and so its rows are independent; hence rank B = k. Since A and B
are column equivalent, they have the same rank, i.e., rank A = k. But A has k rows; hence these rows, i.c.,
the v;, are linearly independent, as claimed.

Prove Theorem 5.20.
Suppose u,, u,, ..., u, form a basis for the column space of A (There are r such vectors since rank
A = r.) By Theorem 5.19, each system AX = y, has a solution, say v;. Hence

Av,=u,,Av1=u,,._.,Av,=u, (i}
Suppose dim W = sand w,, w,, ..., w, form a basis of W. Let
B={v, 0y, ...,0,, W, Wy, ..., W,}

We claim that B is a basis of K". Thus we need to prove that B spans K" and that B is linearly independent.

(@) Proof that B spans K". Suppose v € K" and Av = u. Then u = Av belongs to the column space of 4 and
hence Av is a linear combination of the u;. Say

Av=ku, + kyu, + - + k,u, (2)
Letv =v— kv, — kv, — -+ — k,v,. Then, using (1) and (2),
A) = Al — kyo, — kav, — - — k,v,)
= Av— k,Av, — k; Av, — -+ — k, Av,
=Av—kwu, — kyu; — -+ —k,u,=Av— Av=0

Thus v" belongs to the solution W and hence v’ is a linear combination of the w;. Say
vV =cyw, +Caw, + -+ +c,w,. Then

v="0+ ik,—v, = )ikiv,- + ic,w,.
i=1 i=1 j=1
Thus v is a linear combination of the elements in B, and hence B spans K".
(b) Proofthat B is linearly independent. Suppose
010y + a0, + - + a0, + byw, + bywy +--- + bw, =0 )
Since w; € W, each Aw; = 0. Using this fact and (/) and (3), we obtain
0= A0 = A( E': ;v + i‘b_,wj) = ia,-Avi + i b;Aw,
= i=1

i=1 i=1
r

3
= Yau+ Y b0=au +au,+ - +a,u,
i=1 i=1
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Since u,, ..., u, are linearly independent, each a, = 0. Substituting this in (3) yields
blwl + b2w2 + - +baws = 0

However, w,, ..., w, are linearly independent. Thus each b; = 0. Therefore, B is linearly independent.
Accordingly B is a basis of K”. Since B has r + s elemnents, we have r + s = n. Consequently,
dim W = s = n —r, as claimed.

SUMS, DIRECT SUMS, INTERSECTIONS

5.60.

5.62.

Let U and W be subspaces of a vector space V. Show that: (@) U and W are each contained in
V;(b) U + W is the smallest subspace of V containing U and W, that is, U + W = span (U, W),
the linear spanof Uand Wi (c) W + W = W.

(@) Letu e U. By hypothesis W is a subspace of ¥V and so 0 € W. Henceu = u + 0 € U + W. Accordingly,
U is contained in U + W. Similarly, W is contained in U + W.

() Since U + W is a subspace of V containing both U and W, it must also contain the linear span of U
and W, that is, span (U, W) = U + W.
On the other hand, ifve U + Wthenv=u+w=1u + Ilw where u € U and w € W; hence v is

a linear combination of elements in U v W and so belongs to span (U, W). Consequently
U + W < span (U, W).

(¢) Since W is a subspace of V, we have that W is closed under vector addition; hence W + W = W. By
part(a) W< W + W. Hence W + W = W.

Give an example of a subset S of R? such that: (a) § + § < S (properly contained); (b)) S< S + §
(properly contained); (c) S + S = S but S is not a subspace of RZ.

(@ LetS={(0,5).(0,6),(0,7),...}. ThenS + S S.
(B) LetS={(0,0),(0,1)}.ThenS < S + .
(0 LetS={(0,0),(0,1),(0,2),(0,3),...}. Then S + S = .

Suppose U and W are distinct 4-dimensional subspaces of a vector space ¥V where dim V = 6.
Find the possible dimensions of U n W.

Since U and W are distinct, U + W properly contains U and W; consequently dim (U + W) > 4.
But dim (U + W) cannot be greater than 6, since dim V :=6. Hence we have two possibilities:
(1) dim (U + W) = 5, or (ii)) dim (U + W) = 6. By Theorem 5.22,

dim (U n W) = dim U + dim W — dim (U + W) =8 —dim (U + W)
Thus (i) dim (U n W) =3, or (i)dim (U n W)= 2.

Consider the following subspaces of R*:
U= span {(I! 19 0! - 1)1 (ls 2! 3! 0)! (2; 31 3) - l)}
W= span {(l, 21 2! *2)\! (2: 3: 23 *3]s (l) 3’ 49 _3)}
Find (@) dim (U + W) and (b) dim (U ~ W).

(a) U + W is the space spanned by all six vectors. Hence form the matrix whose rows are the given six
vectors, and then row reduce to echelon form:

1 1 0 -1 1 | 0 -1 1 1 0 -1
1 2 3 0 0 1 3 1 0 1 3 1
2 3 3 —-1}_|0 1 3 ry 1o 1 2 -1
1 2 2 =2 0 1 2 -~ 0 0 0 0
2 3 2 -3 0 1 2 -1 0 0 0 0
1 3 4 -3 0 2 4 =2 0 0 0 0
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1 1 0 -1
0 1 3 1
10 o -1 =2
0 0 0 0
0 0 0 0
0 0 0 0

Since the echelon matrix has three nonzero rows, dim (U + W) = 3.

(b) First find dim U and dim W. Form the two matrices whose rows are the generators of U and W,
respectively, and then row reduce each to echelon form:

1 1 0 -1 1 1 0 -1 1 1 0 -1

1 2 3 0]~10 1 3 1]~10 1 3 1

2 3 3 —1 0 1 3 1 0 0 0 0
and

1 2 2 =2 1 2 2 2 1 2 2 -2

2 3 2 —3]~|0 -1 -2 1]~{0 -1 =2 1

1 3 4 -3 (1} 1 2 -1 0 0 0 0

Since each of the echelon matrices has two nonzero rows, dim U = 2 and dim W = 2. Using Theorem
522, ie,dim(U + W) =dim U + dim W — dim (U ~ W), we have

1=2+4+2—-dim(U n W) or dim (U~ W)=1

5.64. Let U and W be the following subspaces of R*:
U={(a b, c,d):b+c+d=0} W={@abcd:a+b=0c=2d}
Find a basis and the dimension of: (a) U, (b)) W, (c) U n W,(d) U + W.
{a) We seck a basis of the set of solutions (a, b, ¢, d) of the equation
b+c+d=0 or O-a+b+c+d=0

The free variables are a, ¢, and d. Set:
(1) a=1,c=0,d =0 to obtain the solution v, = (1,0, 0, 0)
(2) a=0,c=1,d=0to obtain the solution v, = (0, —1,1,0)
(3) a=0,c=0,d=1 to obtain the solution vy = (0, —1,0, 1)
The set {v,,v,, v,} is a basis of U, and dim U = 3.
(b) We seek a basis of the set of solutions (a, b, ¢, d) of the system

a+b=0 or a+ b=0
c=2d c—2d=0

The free variables are b and d. Set
(1) b= 1,d = 0to obtain the solution v, =(—1,1,0,0)
(2) b=0,d=1to obtain the solution v, = (0,0, 2, 1)
The set {v,, v,} is a basis of W, and dim W = 2.

(¢} U n W consists of those vectors (a, b, c, d) which satisfy the conditions defining U and the conditions
defining W, i.e., the three equations

b+c+d=0 a+b =0
a+b =0 or b+c+ d=0
c =2d c—2d=0
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The free variable is d. Set d = | to obtain the solution v = (3, —3, 2, 1). Thus {v} is a basisof U n W,
and dim (U n W)= 1.

(dy By Theorem 5.22,
dm (U + W)=dim U +dm W —dm (U n W)=34+2-1=4

Thus U + W = R*. Accordingly any basis of R*, say the usual basis, will be a basis of U + W.

5.65. Consider the following subspaces of R3:

U=span{(1,3, —=2,2,3).(1,4, —3,4,2), (2.3, —1, —2, 9)}
W =span {(1§ 3’ 0! 21 l)v (lb 5! _69 6) 3)’ ‘2, Ss 3; 2! 1)}

Find a basis and dimensionof (a) U + W, (b)) U n W.

(a) U + W is the space spanned by all six vectors. Hence form the matrix whose rows are the given six
vectors, and then row reduce to echelon form:

1 3 -2 2 3%\ /1 3 -2 2 3\ [t 3 -2 2 3
1 4 -3 4 2 0 1 -1 2 -1 0 1 -1 2 —1
2 3 -1 -2 9 0 -3 3 -6 3 0 0 0 0 0
t 3 0o 2 1/ lo o 2 o -2]lo o 2 o -2
1 5 -6 6 3 0 2 -4 4 0 0 0 -2 0 2
2 5 3 2 1 0 -1 7 -2 -5 0 0 6 0 —6

1 3 -2 2 3

0 1 -1 2 -t

0o 0 2 0 -2

"o 0o o o o

0 0 0 0 0

0o 0 0 0 0

The set of nonzero rows of the echelon matrix,
{(1,3, -2,2,3),(0,1, —1,2, —1), (0,0, 2, 0, —2)}
is a basis of U + W thus dim (U + W) = 3.

(b) First find homogeneous systems whose solution sets are U and W, respectively. Form the matrix
whose first three rows span U and whose last row is (x, y, 2, s, t) and then row reduce to an echelon

form:

1 3 =2 2 3 1 3 -2 2 3

1 4 -3 4 2 0 1 -1 2 -1

2 3 -1 =2 9 0 -3 3 —6 3

x y z s t 0 —-3x+y 2x+z —2x+s —3x+1t
1 3 -2 2 3
0 1 -1 2 -1
0 0 —x+y+z d4x—-2y+s5 —6x+y+t
0 0 0 0 0

Set the entries of the third row equal to 0 to obtain the homogeneous system whose solution space
isU:

—x+y+z=0 4x -2y +5=0 —6x+y+t=0



184 VECTOR SPACES [CHAP. 5

Now form the matrix whose first rows span W and whose last row is (x, y, z, s, t) and then row
reduce to an echelon form:

| 3 0 2 1 1 3 0 2 1

| 5 —6 6 3 0 -6 4 2

2 s 3 2 1]/ {0 -1 3 =2 ~1

x y z s t 0 —3x+y z —2x+s5 —x+1t
13 0 2 {
0 1 -3 2 1

“lo 0 —9%x+3y+z 4x—2y+s 2x—y+t

0 0 0 0 0

Set the entries of the third row equal to 0 to obtain the homogeneous system whose solution space
is W:
-9 +3y+z=0 Ax -2y +5=0 2xx—y+t=0

Combine both of the above systems to obtain a homogeneous system whose solution space is
U n W, and then solve:

X+ y+z =0 (—x + y+ z =0
4x — 2y +s =0 2y +4z + s =0
< —6x + y +t=0 or 4 —5}7—62 +t=0
-9 +3y+z =0 —6y — 8z =0
4x — 2y +s =0 2y +4z4+s =0
. 2x— y +t=0 \ y+ 2z +t=0
—x+y+ =0
Y z —x+ y+ z =0
dy4+4z 4 s =0
2y+4z+ s =
or Bz+55+2t=0 or
8z+5+2u=0
4z + 3s =0
s—2t=0
s—2=0
There is one free variable, which is ¢; hence dim (U ~ W) = 1. Setting ¢ = 2, we obtain the solution

x=1,y=4,2z=—3,s=4,t=2 Thus {(1,4, —3,4,2)} is a basis of U n W.

5.66. Let U and W be the subspaces of R* defined by
U={ab,c):a=b=c} and W = {(0, b, ¢)}

(Note that W is the yz plane) Show that R* = U@ W.

Note first that U n W = {0}, for v = (a, b, ¢) € U n W implies that

a=b=c and a=0 which implies a=0,b=0,c=0
We also claim that R* = U + W.For if v = (a, b, ¢} € R3, then
v=(gaa+(0,b—-ac—a) where (a,a,a)e U and O.b—ac—aeW

Both conditions, U n W = {0} and R* = U + W,imply R*=U @ W.

5.67. Let ¥ be the vector space of n-square matrices over a field K.
(@) Show that ¥V = U @ W where U and W are the subspaces of symmetric and antisymmetric
matrices, respectively. (Recall M is symmetric iff M = M7, and M is antisymmetric iff
MT = —M)
(b) Show that V # U @ W where U and W are the subspaces of upper and lower triangular
matrices, respectively. (Note ¥ = U + W)
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5.68.

5.69.

(a) We first show that V = U + W. Let A be any arbitrary n-square matrix. Note that
A=HA+ AT+ HA - AT
We claim that 4(4 + A™) € U and that (4 — A") € W.For
GA+ AN =3A+ AT =4AT+ ATT) = A4 + 4A)
that is, $(4 + A7) is symmetric. Furthermore,
FHA-AN' =HA - AT =HA" - A)= —HA - A")

that is, #{A — A7) is antisymmetric.
We next show that U n W = {0}. Suppose M e U n W. Then M = M™ and M" = —M, which
implies M = —M and hence M = 0. Thus U n W = {0}. Accordingly, V = U @ W.

(b)) U n W # {0} since U n W consists of all the diagonal matrices. Thus the sum cannot be direct.

Suppose U and W are subspaces of a vector space V, and suppose that § = {u,} spans U and
S’ = {w;} spans W. Show that S U §" spans U + W. (Accordingly, by induction, if §; spans W, for
i=1,2,...,nthenS, u--- u S spans W, +--- + W,))

Letve U+ W.Thenv =u + w where u € U and w € W. Since S spans U, u is a linear combination of
the u;’s, and since §’ spans W, w is a linear combination of the w;’s:

u=a.u +adu, + -+ a,u, ag;e K
w=bw, +byw, + - +b,w, b,e K
Thus
v=u+w=aw, +au, + - +au +bw, +byw, +---+b, w,_

Accordingly, S U §’ = {u;, v;} spans U + W.

Prove Theorem 5.22.

Observe that U n W is a subspace of both U and W. Suppose dim U =m, dim W = p, and dim
(U n W) =r. Suppose {v,, ..., v,} is a basis of U n W. By Theorem 5.16, we can extend {v;} to a basis of
U and to a basis of W; say,

{vl""svﬂuls"" um—r} and {Ul'---y Upy wlt“‘vwn—r}
are bases of U and W, respectively. Let
B={01 ees Upy Uy eary Uppy Wiy eeey Wy p)

Note that B has exactly m + n — r elements. Thus the theorem is proved if we can show that B is a basis of
U + W. Since {v;, u;} spans U and {v;, w,} spans W, the union B = {v;, u;, w,} spans U + W. Thus it
suffices to show that B is independent.

Suppose
av +-+av,+bu +-+b, U, +ew ++c,_w,_,=0 V)]
where g;, b;, c, are scalars. Let
v=auv, + - +ayv, +bu + - +b, ,u,, 2)
By (1), we also have that
V= —OiWp — 777 = Cpp Wy, (&5}

Since {v;, u;} < U, ve U by (2); and since {w,} = W, ve W by (3). Accordingly, ve U n W. Now {v;} is a
basis of U n W and so there exist scalars d,, ..., d, for which v == d,v, + --- + d,v,. Thus by (3) we have

dlvl + - +drvr+ Cywy + - +cu—rwn-r:0
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5.70.

5.71.
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But {v;, w,} is a basis of W and so is independent. Hence the above equation forces ¢, =0, ..., ¢,_, =0.
Substituting this into (/), we obtain

aw, +--+av,+bu +---+b,_,u, =0

m=r

But {v;, u;} is a basis of U and so is independent. Hence the above equation forces a; =0, ..., a, =0,
b,=0,...,b,_,=0.

Since the equation (7) implies that the a,, b, and ¢, are all 0, B = {v;, u;, w,} is independent and the
theorem is proved.

Prove Theorem 5.23.

Suppose V = U & W. Then any v € V can be uniquely written in the form v = u + w, where u € U and
w € W. Thus, in particular, ¥ = U + W. Now suppose v e U n W. Then:

(1) v=v+40 where velU, 0e W; and 2 v=0+4+v where OeU,ve W

Since such a sum for v must be unique, v = 0. Accordingly, U n W = {0}.

On the other hand, suppose V=U + Wand U n W = {0}. Let v € V. Since ¥ = U + W, there exist
ue U and we W such that v = u + w. We need to show that such a sum is unique. Suppose also that
v=u + w where v’ € U and w € W.Then

u+w=u +w and so u—u =w —w
Butu—vu' e Uandw —we W;hence,by U n W = {0},

u—u=0w—-—w=0 and so u=u,w=w

Thussuchasumforve Visuniqueand V =U @ W.

Prove Theorem 5.24 (for two factors): Suppose V = U @ W. Suppose S = {u,, ..., 4,} and
S§'={w,, ..., w,} are linearly independent subsets of U and W, respectively. Then:
(a) § U §' is linearly independent in V'; (b) if S is a basis of U and §' is a basis of W, then S U &
is a basis of V; and (¢) dim V =dim U + dim W.
(@) Suppose a,u, +--- + a,u, +b,w, + -+ + b,w, =0, where a,, b; are scalars. Then
O=(au, +--+a,u)+bw,+ - +b,w)=0+0
where 0, ayuy + --- + a,u, e Uand 0, byw, + --- + b,w, € W. Since such a sum for 0 is unique, this
leads to
au, ++a,u,=0 bw,+--+b,w,=0
Since S is linearly independent, each a, = 0, and since §’ is linearly independent, each b; = 0. Thus
S v §'is linearly independent.

(b) By part (a), § U §' is linearly independent, and, by Problem 5.68, § U 8’ span V. Thus § U §' is a basis
of V.

(c) Follows directly from part (b).

COORDINATE VECTORS

5.72.

5.73.

Let S be the basis of R? consisting of u, = (2, 1) and u, = (1, —1). Find the coordinate vector [v]
of v relative to S where v = (q, b).

Set v=xu, + yu, to obtain (a,b)=(2x+y,x—y). Solve 2x + y=a and x—y=>b to obtain
x = (a+ b)/3, y = (a — 2b)/3. Thus [v] = [(a + b)/3, (a — 2b)/3].

Consider the vector space P;(t) of real polynomials in t of degree <3.
(@) Showthat § = {1,1 -1, (1 —1)% (1 —£)*} is a basis of Py(t).
(b) Find the coordinate vector {u] of u = 2 — 3t + t2 + 2t3 relative to S.
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(a) The degree of (1 — 1)* is k; hence no polynomial in § is a linear combination of preceding polynomials.
Thus the polynomials are linearly independent and, since dim P,(t) = 4, they form a basis of P,(r).

(b) Set u as a linear combination of the basis vectors using unknowns x, y, z, s:
u=2-3t+2 4+ 20 =x(1)+ Wl — )+ 21 — > + s(1 —1)*
=x()+ {1 —0)+2z(1 =2t + ¥ +5{1 — 3t + 3 = 1Y)
=x+y—yr+2z—2z2+ 2t +5— 3st + 3st? — 523
=(x+y+z+8)+(—y—2z-3)t +(z + 3sW* +(—s)°

Then set the coefficients of the same powers of t equal to each other:

I
[N

X+y+z+s=2 —y—2z—3s= -3 z4+3s=1 —5
Solving, x =2,y = —5,2=7,s = —2. Thus [u] = [2, 5,7, —2].

1 0
nate vector [A] of the matrix A relative to {( )

2 3\ . . . .
5.74. Consider the matrix A = ( ) in the vector space V of 2 x 2 real matrices. Find the coordi-
0o o)
of V.

4 -7
0 1 00 0 0 ]
(O 0), (1 0), (0 ])}, the usual basis
We have

()0 )l o 9l D-C )

Thus x=2, y=3, z=4, t = —7. Hence [A] =[2, 3, 4, —7], whose components are the elements of A
written row by row.

Remark: The above result is true in general, that is, if A is any m x n matrix in
the vector space V of m x n matrices over a field K, then the coordinate vector [A] of
A relative to the usual basis of V is the mn coordinate vector in K™ whose com-
ponents are the elements of A written row by row.

CHANGE OF BASIS

This section will represent a vector of v € V relative to a basis § of V by its coordinate column
vector,
a,

a,
= [alv az, ..., an]r

[vls =
a,

(which i1s an n x | matrix).

575. Consider the following bases of R?:
S;={u, =(1, =2),u; =(3, —4)} and S; ={v, =(1,3), v, =3, 8)}

(@) Find the coordinates of an arbitrary vector v=(a, b) in R? relative to the basis
Sl = {uls “2}-

(b) Find the change-of-basis matrix P from S, to §,.

(¢) Find the coordinates of an arbitrary vector v =(a, b) in R? relative to the basis
S; = {v,, 02}

(d) Find the change-of-basis matrix Q from S, back to §,.
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(e) VerifythatQ =P ..
(/) Show that P[v]s, = [v]g, for any vector v = (g, b). (See Theorem 5.27.)
(9) Show that P™'[v]s, = [v]s, for any vector v = (a, b). (See Theorem 5.27.)

(a) Letwv = xu, + yu, for unknowns x and y:

a 1 N 3 x+3y=a or x+3y=a
- r
b) =\ =2 —4) " _ax_ay-» 2y=2a+b

Solve for x and y in terms of aand b to get x = —2a — 3b, y = a + 4b. Thus
(@a.b)y=(—2a— 3bju, +(a+ b, or  [(a,b)ls,=[—2a—3ba+4b]"

(b) Use (a) to write each of the basis vectors v, and v, of §, as a linear combination of the basis vectorsu,
and u, of §,:

vy =(L,3)=(-2— Py + (1 + P, = (=P, + I,
v;=(3,8=(=6—12u, + (3 + 4u,; = —18u, + Tu,

Then P is the matrix whose columns are the coordinates of v, and v, relative to the basis §,, that is,

(47

(¢) Letv=xv, + yv, for unknown scalars x and y:
a I 3 x+3y=a x+3y=a
- + or or
b 3 8 3x +8y=»b —y=b—-13a
Solve for x and y to get x = —8a + 3b, y = 3a — b. Thus

(a, by = (—8a + 3bv, + (3a — b, o1 [(a, b)}S, = [—8a + 3b, 3a — b]"

(d) Use (c) to express each of the basis vectors u, and u, of S, as a linear combination of the basis vectors
v, and v, of S, :

u, =(. -2)=(—8 -6, + (3 + 2, = —14v, + 50,
uy = (3, —4) = (=24 — 12)o, + (9 + 4, = —36v, + 13v,

. . —14 -36
Write the coordinates of u, and u, relative to S, as columns to obtain @ = ( )

5 13
(-1 36\ -% 18\ (1 0\ _
© QP"'( 5 13)( 3 7)‘(0 1)‘

() Use(a), (b), and (c) to obtain
-1 —18\/ —8a + 3b —2a—s5b
Prv]sz=( ? * )=( ‘ i):[”]m

3 7 3a—b a+3b
(g) Use(a),(c), and (d) to obtain

—-14 =36 —2a—%b —8a + 3b
P l["]s,—Q["]s.=( 5 I3X a+=_1-b )=( 3a—b)=tv]s’

§.76. Suppose the following vectors form a basis § of K™:
v, =(a,, a,, ..., a,), v, =(b,, by,..., b)), eees v,=(cy, €35 ..., C,)

Show that the change-of-basis matrix from the usual basis E = {¢;} of K" to the basis S is the
matrix P whose columns are the vectors v,, v,,..., v, , respectively.
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5.77.

Since ey, e,, ..., e, form the usual basis E of K", we have

v, =, a;,....,a)=a,e +a,e,+ " +a,e,
v;=(b, by, ....b)=be, +bye; +--- +b,e,

U, =(Cqs €34 .00s C) = C18y + €33+ -+ C,p8,

Writing the coordinates as columns we get

a, b, N
P= a, b, C2
a, b, Cn/

as claimed.

Consider the basis § = {u, = (1,2, 0), u, = (1, 3, 2), u; = (0, 1, 3)} of R>. Find:
(@) The change-of-basis matrix P from the usual basis E = {e,, e,, ¢} of R? to the basis S,
(b) The change-of-basis matrix Q from the above basis S back to the usual basis E of R>,

(@) Since E is the usual basis, simply write the basis vectors of S as columns:

110
P=12 3 1
02 3

(b) Method 1. Express each basis vector of E as a linear combination of the basis vectors of S by first
finding the coordinates of an arbitrary vector v = (g, b, ¢) relative to the basis S. We have

a 1 1 0 x4+ y =a
bl=x{2]+13]+2! or 2x+4+3y+ z=b
C 0 2 3 2y+3z=c

Solvefor x,y,ztogetx=T7a—3b+c,y= —6a+3b—c,z=4a—2b + c. Thus
v={(ab, c)=(Ta—3b+ cu, + (—6a+ 3b— c)u, + (4a — 2b + chu,
or [vls=[a b, c)ls=[Ta=3b+c, —6a+3b—c,4a—2b+c]"

Using the above formula for [v]s and then writing the coordinates of the e; as columns yields

€y :(1,0,0) = TH, "‘6“2 +4u3 7 _‘3 1
e, =(0,1,0 = —=3u, + 3u, — 2u, and g=| -6 3 -1
e, =(0,0,1)= Uy — Uy + U 4 -2 1
Method 2.  Find P~! by row reducing M = (P i I) to the form (I i P™):
1 1 0 1 0 0 1 i o' 1 0 0
M=]2 3 1 0 1 0]~}|0 1 1. =2 1 0

o 2 3 0 0 1 0 2 3.0 0 1

1 1 0,1 0 O 1 1t 0’1 0 O
~f0 1 1;-2 1 0)]~f0 1 0,-6 3 -1
0 0 1. 4 -2 1)001:421
1 0o 0, 7 -3 1
~{0 1 0'-6 3 1)
0 0 1. 4 -2 1
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5.78.

5‘79.

VECTOR SPACES [CHAP. 5

7 -3 1
ThusQ=P '=[—-6 3 —1}.
4 -2 1

Suppose the x and y axes in the plane R? are rotated counterclockwise 45° so that the new x’
axis is along the line y = x, and the new )’ axis is along the line y = — x. Find (a) the change-of-
basis matrix P and (b) the new coordinates of the point A(S, 6) under the given rotation.

(a) The unit vectors in the direction of the new x and y" axes are, respectively,

u =(/2/2,/2/2) and  u,=(-/2/2,/2/2)

(The unit vectors in the direction of the original x and y axes are, respectively, the usual basis vectors
for R2.) Thus write the coordinates of u, and u- as columns to obtain

*~(fan Ve

(b) Multiply the coordinates of the point by P™!:
( V22 ﬁ;z)(s ~ (n\/i;z
-V212 S22 6) - \/512)
[Since P is orthogonal, P~ " is simply the transpose of P.]

Consider the bases S = {1, i} and §' = {1 + i, | 4 2i} of the complex field C over the real field R.
Find (a) the change-of-basis matrix P from the S-basis to the §'-bastis, and (b) find the change-of-
basis matrix Q from the §$'-basis back to the S-basis.

(@) We have

L4 0= 1(1) + 1) o1
Ly2ici) 20 2rdse P (1 2)

2 -1
(b) Use the formula for the inverse of 2 2 x 2 matrix toobtain Q = P~ ' = ( | 1).

Suppose P is the change-of-basis matrix from a basis {u;} to a basis {w;}, and suppose Q is the
change-of-basis matrix from the basis {w;} back to the basis {u;}. Prove that P is invertible and
Q=P

Suppose,fori=1,2,...,n,

n
w; = a;u, + a;u;y + 4 apu, = Zaﬂ.ul (1)
j=1

and, forj=1,2,....n,
uj=buw, +bpw, + - +buw,= 3 byw, @
k=1

Let A = (a;) and B = (b;). Then P = A" and Q = BT. Substituting (2) into (/) yields

" =éjla,. zb w,;) -3 (Jf:ll“u”ﬁ)“’*

k=1

Since the {w,} is a basis }_ a,,b,, = 8, where §,, is the Kronecker delta, that is, §,, = 1 if i = k but §,, = 0 if
i # k. Suppose AB = (c;). Then ¢, = ;. Accordingly, AB = I, and so

QP =B"AT=(AB)' =1"=1
Thus Q=P ".
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581.

Prove Theorem 5.27.
Suppose S = {u,,...,u,} and 8§ = {w,,..., w,},and suppose,fori=1,...,n,

W= Gy, + Aty + 0 A, = ZauuJ

J=1
Then P is the n-square matrix whose jth row is
(au- a!}""!anj) ()
n
Also suppose v = k,w, + kyw, + - + k,w, = Y kw,. Then
i=1
[v)s = [kyys kg oo ko dT (2

Substituting for w; in the equation for v, we obtain

= (a,jkl + azjkz + 4+ a'}k")uj
i=1

Accordingly, [v]s is the column vector whose jth entry is
aukl +ﬂzjk2+"'+auk” (3)

On the other hand, the jth entry of P[v]s is obtained by multiplying the jth row of P by [v]s., that is,
(/) by (2). However, the product of ({) and (2} is (3); hence P[v]s and [v]s have the same entries. Thus
Plv]s = [v]s, as claimed.

Furthermore, multiplying the above by P~ ! gives P~ '[v]y = P 'P[v]s = [v]s.-

MISCELLANEOUS PROBLEMS

5.82.

5.83.

Consider a finite sequence of vectors S = {v,, v,, ..., v,}. Let T be the sequence of vectors
obtained from S by one of the following “elementary operations”: (1) interchange two vectors,
(ii) multiply a vector by a nonzero scalar, (iii) add a multiple of one vector to another. Show that
S and T span the same space W. Also show that T is independent if and only if S is independent.

Observe that, for each operation, the vectors in T are linear combinations of vectors in §. On the other
hand, each operation has an inverse of the same type (Prove!); hence the vectors in S are linear
combinations of vectors in T. Thus S and T span the same space W. Also, T is independent if and only if
dim W = n, and this is true if and only if § is also independent.

Let A = (a;)) and B = (b;;) be row equivalent m x n matrices over a field K, and letv,, ..., v, be

any vectors in a vector space V over K. Let

U, =a,1v,+alzvg+"'+al,0,, Wy :buvl +b12ﬂ2+"'+b1"0,,
Uy = Qa0 + Q3203 +-° +ajz,0, W2=b2!vl +b2292+“'+b2”v,,
Uy = Qn, U, + Qma Uy + +alllvl W = bm‘lvl + bm!”! +- -+ bmnn

Show that {1} and {w;} span the same space.

Applying an “elementary operation” of Problem 5.82 to {u,;} is equivalent to applying an elementary
row operation to the matrix A. Since A and B are row equivalent, B can be obtained from A by a sequence
of elementary row operations; hence {w;} can be obtained from {u} by the corresponding sequence of
operations. Accordingly, {u;} and {w;} span the same space.
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Letv,, ..., v, belong to a vector space V over a field K. Let

Wy =a,,Uy +a4,0; + -+ a,,0,
Wy = a0y + Q3302+ + Qy,0,
Wy = Gyt + Aty + - + Gy
where g;; € K. Let P be the n-square matrix of coefficients, i.e,, let P = (a;).
(@) Suppose P is invertible. Show that {w;} and {v;} span the same space; hence {w;} is indepen-
dent if and only if {v;} is independent.
(b) Suppose P is not invertible. Show that {w,} is dependent.
(¢) Suppose {w;} is independent. Show that P is invertible.

(@) Since P is invertible, it is row equivalent to the identity matrix I. Hence by the preceding problem {w,}
and {v;} span the same space. Thus one is independent if and only if the other is.

(b) Since P is not invertible, it is row equivalent to a matrix with a zero row. This means that {w,} spans a
space which has a spanning set of less than n elements. Thus {w;} is dependent.

(c) This is the contrapositive of the statement of (b) and so it follows from (b).

Suppose that 4,, 4,, ... are linearly independent sets of vectors, and that A, < 4, = ---. Show
that the union A = A, U A, U --- is also linearly independent.

Suppose A is linearly dependent. Then there exist vectors v, ..., v, € A and scalars 4,, ..., g, € K, not
all of them 0, such that

@, + a0+ - +a,v,=0 n

Since A = U A; and the v; € A, there exist sets 4; , ..., A; such that

v, € AUy €A, ..., 0, € A
Let k be the maximum index of the sets A, : k = max (i, ..., i,). It follows then, since 4, € 4, < ---, that
each A; is contained in A,. Hence v,, v,, ..., v, € A, and so, by (/), 4, is linearly dependent, which

contradicts our hypothesis. Thus A is linearly independent.

Let K be a subfield of a field L and L a subfield of a field E: thatis, K= L < E. (Hence K is a
subfield of E.) Suppose that E is of dimension n over L and L is of dimension m over K. Show
that E is of dimension mn over K.

Suppose {v,, ..., v,} is a basis of E over L and {a,, ..., a,} is a basis of L over K. We claim that
{av):i=1,...,mj=1,...,n}is abasis of E over K. Note that {q;v;} contains mn elements.

Let w be any arbitrary element in E. Since {v,, ..., v,} spans E over L, w is a linear combination of the
v; with coefficients in L:

w=bw +bv, +---+b,v, b;e L N
Since {a,,..., a,} spans L over K, each b; € L is a linear combination of the a; with coeflicients in K:
by =kyay + kipa + -+ + kypa,
b, =k, ay + kysay, + - + k.0,

bn = kﬂlal + k..zaz +- -+ kmﬂam
where k;; € K. Substituting in (/), we obtain
w=(kya +-+k,a +ka, + - +ka)w,+ 0+ (k,a + 0+ ka)v,
=kyawy + -+ kpa,v, + kyavy + 0 + kypavy, + -+ kyagw, + 0 + k0,0,
=2 kida;v)
iJ
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where k; € K. Thus w is a linear combination of the g;v; with coeflicients in K; hence {a,v;} spans E
over K.

The proof is complete if we show that {a;v,} is linearly independent over K. Suppose, for scalars
x; € K, Y xya;v) = 0; that is,
ij
‘xllatvl + Xia0y 1y +-+ xlllamul) + - +(xnlalva + Xp202 U, +---+ xnllamvn} = 0
or [x“al + X120, + -+ x,_ﬂm)vl + 4 (X,,.dl + xnzaz + 4 Imam]v,, = 0

Since {v,, ..., v,} is linearly independent over L and since the above coefficients of the v, belong to L, each
coefficient must be 0:

Xp 8y + X028, + 0+ X O =0, 000, X0, + X008 + 0 + Xy =0
But {a,,..., a,} is linearly independent over K; hence, since the x; € K,
X1 =0, x,=0, ..., X, =0, ..., %, =0x,,=0,..., x,,=0

Accordingly, {a;v;} is linearly independent over K and the theorem is proved.

Supplementary Problems

VECTOR SPACES

587. Let V be the set of ordered pairs (a, b) of real numbers with addition in V and scalar multiplication on V
defined by

@b +c,d=@+c,b+d and  Ka, b) = (ka, 0)

Show that V satisfies all of the axioms of a vector space except [M,]: lu=u. Hence [M,] is not a
consequence of the other axioms.

588. Show that the following axiom [A4,] can be derived from the other axioms of a vector space.
[A,] For any vectorsu,ve V,u + v=v + u

5.89. Let V be the set of infinite sequences (a,, a,, ...} in a field K with addition in V and scalar multiplication on
V defined by

{ﬂl. a3, ...) + (bl' b.!'l .--)=(at +bl' a; +b1| .
k(ali dy, -") = {kah kﬂl! ..-)

where a,, b;, k € K. Show that V is a vector space over K.

SUBSPACES

590. Determine whether or not W is a subspace of R? where W consists of those vectors (q, b, ) € R3 for which
@a=2b;ba<b<ciic)ab=0;(d)a=b=c;(e)a=b%

591. Let V be the vector space of n-square matrices over a field K. Show that W is a subspace of ¥V if W consists
of all matrices which are (a) antisymmmetric (AT = — A), (b) (upper) triangular, (c) diagonal, (d) scalar.

592. Let AX = B be a nonhomogeneous system of linear equations in n unknowns over a field K. Show that the
solution set of the system is not a subspace of K".
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5.93.

5.94.

5.95.

5.96.

VECTOR SPACES [CHAP. 5

Discuss whether or not R? is a subspace of R>.

Suppose U and W are subspaces of ¥ for which U u W is also a subspace. Show that either U € W or
wWeU.

Let V be the vector space of all functions from the real field R into R. Show that W is a subspace of V in
each of the following cases.

(a) W consists of all bounded functions. [Here f: R— R is bounded if there exists M € R such that
f(x)| < M,¥x e R.]

(b)) W consists of all even functions. [Here f: R — R is even if f(— x) = f(x), Vx € R.]

(c) W consists of all continuous functions.

(d) W consists of all differentiable functions.

(¢) W consists of all integrable functions in, say, the interval 0 < x < 1.

(The last three cases require some knowledge of analysis.)

Let V be the vector space (Problem 5.106) of infinite sequences (a,, 4,, ...) in a field K. Show that W is a

subspace of ¥V where (@) W consists of all sequences with 0 as the first component, and (b) W consists of all
sequences with only a finite number of nonzero components.

LINEAR COMBINATIONS, LINEAR SPANS

597.

5.98.

5.99.

5.100.

5.101.

5.102.

5.103.

5.104.

Show that the complex numbers w = 2 + 3i and z = 1 — 2i span the complex field C as a vector space over
the real field R.

Show that the polynomials (1 — )3, (1 — 1)%, 1 — t, and 1 span the space P,(t) of polynomials of degree <3.

Find one vector in R*> which spans the intersection of U and W where U is the xy plane: U = {(a, b, 0)},
and W is the space spanned by the vectors (1, 2, 3) and (1, —1, 1).

Prove that span S is the intersection of all the subspaces of V containing S.

Show that span S = span (S v {0}). That is, by joining or deleting the zero vector from a set, we do not
change the space spanned by the set.

Show that if S = T, then span § < span T.
Show that span (span §) = span S.
Let W,, W,, ... be subspaces of a vector space V for which W, c W, c---. Let W=W, u W, u---.

(a) Show that W is a subspace of V. (b) Suppose S, spans Wi fori=1,2, ... Show that§ =8, u S, U ---
spans W.

LINEAR DEPENDENCE AND INDEPENDENCE

5.105.

5.106.

Determine whether the following vectors in R* are linearly dependent or independent:

(a) {l) 3, - l' 4)) l3s 8. —5, 7}, (21 9' 4: 23) {b) (1, _2v 4v 1}! (2- l, or *B)y (3s "-6r l: 4)

Let V be the vector space of polynomials of degree <3 over R. Determine whether u, v, w € V are linearly
dependent or independent where:

@ u=* -4 +2+3v=0>+22+4—1l,w=22—t2—3t+5
) u= =522 +3 =24 -3t +4,w=22 -7 —-Tt +9
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5.107.

5.108.

5.109.

5.110.

5.111.

Show that (a) the vectors (1 — i, i) and (2, —1 + i) in C? are linearly dependent over the complex field C but
are linearly independent over the real field R; (b) the vectors (3 + \/5. 1+ \/1_!) and (7,1 + 2\,/5) in R? are
linearly dependent over the real field R but are linearly independent over the rational field Q.

Suppose {u,, ..., 4,, Wy, ..., w,} is a linearly independent subset of V. Prove that span u; n span w; = {0}.
(Recall that span u; is the subspace of V spanned by the u;)
Suppose v,, t5, ..., U, are linearly independent vectors. Prove the following:

(@) {ayvy.ay0,,...,a,v,} is linearly independent where each a; # 0.

M {vy, -.oy G W, Uiy oo, U,) i linearly independent where w= bvy + - + bjv; + --- + b, v, and
b; #0.

Suppose (ay,, ---, @y,), -5 (@pys -- -+ Gy} are linearly independent vectors in K", and suppose vy, ..., v, are
linearly independent vectors in a vector space V' over K. Show that the vectors

wy=apt + 8V W =Gty o A, U,

are also linearly independent.

Suppose A is any n-square matrix and suppose u,, u,, ..., &, are n x | column vectors. Show that, if Au,,
Au,, ..., Au, are linearly independent (column) vectors, then u,, u,, ..., u, are linearly independent.

BASIS AND DIMENSION

5.112. Find a subset of u,, u,, u;, u, which gives a basis for W = span (u,, u, , u,, u,) of R® where:

5.113.

5.114.

5.115.

5.116,

5.117.

@ u =L, 1L, 1,23 u,=(1,2 -1, =2, 1, u3 =35 —1, =2, ) us = (1,2, 1, —1,4)
h uy=01,-213 -1 u,=(-2,4,-2, -6, u; =(1, -3, 1,2, 1),u, =(3,—7,3,8, —1)
@ u,=(LO1LON)u,=(1L1L21L0u;=(L23L1)u=(121L1)
d u,=010111)u;=(21201,u;=(1,1,2,3,4), u, = (4,2, 5,4, 6)
Let U and W be the following subspaces of R*:

U={(a b, c,d):b—2c+d=0} W={(a b, c,d:a=d b=2)
Find a basis and the dimension of (@) U, (b)) W,(c}) U n W.

Find a basis and the dimension of the solution space W of each homogeneous system:

Xx+2y—224+25— =0 x+2y— z+35—-4=0

x+2y— z435—-2t=0 2x +4y —2z— s+ 5t=0

2x+4y—-Tz+ s+ t=0 2x+4y -2z 4+ 45— 2t=0
(@) (]

Find a homogeneous system whose solution space is spanned by the three vectors

(1, -2,0,3, -1) (2, -3,2,5 -3 (1, -2,1,2, -2
Let ¥ be the vector space of polynomials in t of degree <n. Determine whether or not each of the following
isabasisof V:

@ L1+l e+ 0404240, T+14+4024+--+1"""1417
) P+tt+de2+0, .24 417

Find a basis and the dimension of the subspace W of P(t) spanned by the polynomials

(@ u=+2 -2 +Lv=0+3"—-t+4andw=20" +12 -7t -7
) u=+12-3t+2qv=20+t*+t -4, andw=41 4+ 312 — 5t +2
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5.118. Let V be the space of 2 x 2 matrices over R. Find a basis and the dimension of the subspace W of V

spanned by the matrices
1 1 2 — 1 -7
(l 5) (s 7) and (ﬁs 1)

()

ROW SPACE AND RANK OF A MATRIX

5.119. Consider the following subspaces of R3:

Ul = span [(l' 11 _l)l (2$ 3‘ _1)) [31 1! _s)]
U,=span[(1, -1, —3),(3, -2, -8),(2, 1, —-3)]
U,=span [(1, L, 1)}, (1, =1, 3), (3, — 1, N]

Determine which of the subspaces are identical.

5.120. Find the rank of each matrix:

t 3 -2 5 4 1 2 -3 -2 -3 11 2 2 1
1 4 3 5 1 3 -2 o0 -4 4 5 5 3 -7
1 4 2 4 3 3 8 -7 -2 -11 5 8 1 -6 1
2 7 -3 6 13 2 1 -9 -10 -3 -1 -2 2 5 -8
(@ (®) (c) (@

5.121. Show that if any row is deleted from a matrix in echelon (row canonical) form then the resulting matrix is
still in echelon (row canonical) form.

5.122. Let A and B be arbitrary m x n matrices. Show that rank (4 + B) <rank 4 + rank B.

5.123. Give examples of 2 x 2 matrices 4 and B such that:

(@) rank (4 + B) <rank A, rank B (¢) rank (A + B) > rank A, rank B
(p) rank (4 + B) =rank A =rank B

SUMS, DIRECT SUMS, INTERSECTIONS
5.124. Suppose U and W are 2-dimensional subspaces of R*. Show that U n W + {0}.

§.125. Suppose U and W are subspaces of V and that dim U =4, dim W =5, and dim V = 7. Find the possible
dimensions of U n W.

5.126. Let U and W be subspaces of R* for which dim U = I, dim W = 2,and U ¢ W.Show thatR* = U @ W.

5127. Let U be the subspace of R® spanned by
(1,3, -3, -1, —4) (1,4, -1, -2, -2) (2.9.0, =5, —2)
and let W be the subspace spanned by
(1.6,2, -2,3) (2,8 —1,-6,-5) (1,3, -1, -5, —¢6)
Find (a) dim (U + W), (b) dim (U n W).
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5.128.

5.129.

5.130.

5.131.

5.132.

5.133.

5134,

5.135.

5.136.

5.137.

5.138.

Let V be the vector space of polynomials over R. Find (g) dim (U + W), (b)dim (U n W), where
U=span(® +4r* — 1+ 3, 1> + 5t + 5, 3t> + 101> — 5t + 5)
W=span(t*+4t2 + 6, >+ 22—t + 523+ 242 - 31 + 9)

Let U be the subspace of R® spanned by

(. -1, -1, -2,0) 1, -2, —-2,0, -3 and (1, -1, -2, =2, 1)
and let W be the subspace spanned by
(1, =2, —=3,0, =2 (1, -1, =32, -4 and (1, =1, 2,2, —5)

(@) Find two homogencous systems whose solution spaces are U and W, respectively.
(b) Find a basis and the dimension of U n W.

Let U,, U,, and U be the following subspaces of R?:
U ={la,bc:a+b+c=0) U,={la, b, ¢):a=c} Uy={(0,0¢:ceR}
Show that: (@) R* = U, + U,,(h R* = U, + U,, () R* = U, + U,. When is the sum direct?

Suppose U, V, and W are subspaces of a vector space. Prove that
UnN+WUnWycUn(V+W)
Find subspaces of R? for which equality does not hold.

The sum of arbitrary nonempty subscts (not necessarily subspaces) § and T of a vector space V is defined
by § + T = {s + t:s € S, 1 € T}. Show that this operation satisfies:

(@) Commutative law: S+ T =T + § () S+{0}={0}+5=S
(h) Associative law: (S, + S,;) + S; = S, + (S, + Sy) @d S+V=V4+S=V

Suppose W,, W;, ..., W, are subspaces of a vector space V. Show that:
(@ span(W,,W,, .. W)=W, + W, + -+ W,
(b) IfS,spans W.fori=1,...,r,thenS, U S, U--- U §,spans W, + W, +--- + W,

Prove Theorem 5.24.
Prove Theorem 5.25.

Let U and W be vector spaces over a field K. Let V' be the set of ordered pairs (u, w) where u belongs to U
and w to W: V = {(u, w): ue U, we W}. Show that V is a vector space over K with addition in V and
scalar multiplication on V defined by

(1, w) + (', W) =(u + o, w4+ w) and k(u, w) = (ku, kw)

where u, v’ € U, w,w € W, and k € K. (This space V is called the external direct sum of U and W)

Let V be the external direct sum of the vector spaces U and W over a field K. (See Problem 5.136) Let
U ={(u,0:ue U}and W = {(0,w): w € W}. Show that
(@ U and W are subspaces of ¥V and that V = U@ W;

(h) U is isomorphic to U under the correspondence u « (i, 0), and that W is isomorphic to W under the
correspondence w« (0, w);

(¢) dim V =dim U + dim W,

Suppose V = U@ W. Let V be the external direct product of U and W. Show that ¥ is isomorphic to
under the correspondence v = u + W (1, w).
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COORDINATE VECTORS

5.139.

5.140.

5.141.

Consider the basis S = {u, = (1, —2), u, = (4, —7)} of R% Find the coordinate vector [v] of v relative to §
where (g) v = (3, 5), (b) v = (1, 1), and () v = (q, b).

Consider the vector space P5(t) of polynomials of degree <3 and the basis S = {1t + 1,12 + 1, 1* + 1*} of
P,(1). Find the coordinate vector of v relative to S where (@) v =2 — 3t + 2 + 26 (b} v =3 — 2t — ¢*; and
(Qv=a+ bt +ct* + dr’.

Let S be the following basis of the vector space W of 2 x 2 real symmetric matrices:

{26 o 0

1 -5
Find the coordinate vector of the matrix A € W relative to the above basis S where (a) A = ( )

dbA—] 2
an(}——2 a)

CHANGE OF BASIS

5.142.

5.143.

5.144.

5.145.

5.146.

Find the change-of-basis matrix P from the usual basis E = {(1, 0), (0, 1)} of R? to the basis §, the change-
of-basis matrix @ from S back to E, and the coordinate vector of v = (g, b) relative to § where

(@ S={1,2,(3,9} © S={2 5037}

B S={1 -G -8} @ S={23)45)

Consider the following bases of R%: S = {u; =(1, 2), 4, = (2, 3)} and §' = {v, = (1, 3), vy = (1, 4)}. Find:
(a) the change-of-basis matrix P from S to §', and (b) the change-of-basis matrix Q from S back to S.

Suppose that the x and y axes in the plane R? are rotated counterclockwise 30° to yield new x’ and y' axes
for the plane. Find: (a) the unit vectors in the direction of the new x' and y" axes, (b) the change-of-basis
matrix P for the new coordinate system. and (c) the new coordinates of each of the following points under
the new coordinate system: A(1, 3), B(2, —5), C(a, b).

Find the change-of-basis matrix P from the usual basis E of R? to the basis S, the change-of-basis matrix Q
from S back to E, and the coordinate vector of v = (a, b, c) relative to S where S consists of the vectors:

(ﬂ) H! =(l~ 1,0), ul =[03 l) 2)» ua =(0vls l) (C] I‘t] :(11 2» l]-“z :(]!3|4)‘ u3=(2- S, 6)

{b] u1 =(1|0t 1); U3 :(1! l’ 2}’ u!. =(lo2;4)

Suppose §,, S,, and S, are bases of a vector space V, and suppose P is the change-of-basis matrix from §,
to §, and Q is the change-of-basis matrix from §; to §,. Prove that the product PQ is the change-of-basis
matrix from S, to S;.

MISCELLANEOUS PROBLEMS

S5.147.

5.148.

Determine the dimension of the vector space W of n-square: (a) symmetric matrices over a field K,
(b) antisymmetric matrices over K.

Let V be a vector space of dimension n over a field K, and let K be a vector space of dimension m over a
subfield F. (Hence V may also be viewed as a vector space over the subfield F.) Prove that the dimension of
V over F is mn.
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5.149.

5.90.

5.92.

5.93.

5.95.

5.99.

5.105.

5.106.

5.107.

5.112.

5.113.

5.114.

5.115.

Lett,, t;,..., !, be symbols, and let K be any field. Let V' be the set of expressions
ayty +axt, + -+ a,t, where a; €K
Define addition in V by
(agty +azty +---+a,t)+(byty + bty + - +b,t)=(ay, + b))ty +(ay + b)t, + -~ +(a, + b,
Define scalar multiplication on V by
kia,t, +a,t, + -~ +a,t,)=kayt, + kat, +--- + ka,t,

Show that V is a vector space over K with the above operations. Also show that {t, ..., t,} is a basis of V
where, fori=1,...,n,

=0+ +0, + 1+ 00, +---+ 01,

Answers to Supplementary Problems

(a) Yes. (d) Yes.
(b)) No;eg,(l,23)eWbut —2(1,2,3) ¢ W. (e) No;eg,(9,3,00e Whbut 29,3 0)¢ W.
{(¢) No;eg,(1,00),(0, 1, 0) ¢ W, but not their sum.

X = 0 is not a solution of AX = B.

No. Although one may “identify” the vector (a, b) € R? with, say, (a, b, 0) in the xy plane in R3, they are
distinct elements belonging to distinct, disjoint sets.

(@) Letf, g € W with M, and M_ bounds for f and g, respectively. Then for any scalars g, b € R,

[(a + bgkx)| = laf(x) + bg(x) < 1af(x)| + |bg(x)| = lallf(x)| +1blig(x)] <laiM, +|bIM,
That is, |a| M, + || M, is a bound for the function af + bg.
(b) (of + bgX—x) = af (—x) + bg(—x) = af(x) + bg(x) = (4f + bg)x).

2, —5,0).
(@) Dependent, (b) Independent.

(@) Independent, (b) Dependent.

@ @-1+d=1+Xl—iidi @ L1+2/2=06-/26+/21+/2.
(@ wupuy,ug;  (B) upuy; () Uy up,ua, s () oy, Uy, us.

(@) Basis, {(1,0,0,0),(0,2,1,0),©, —1,0, 1)};dim U = 3.

(b) Basis, {(1,0.0.1),(0,2,1.0)}; dim W = 2.

(c) Basis, {(0, 2, 1, 0)}; dim (U n W) = 1. Hint. U ~ W must satisfy all three conditions on a, b, ¢ and d.

(a) Basis, {(2, —1,0,0,0),(4,0,1, —1,0),(3,0,1,0, 1)}; dim W = 3.
() Basis, {(2, —1,0,0,0)(1,0,1,0,0)}; dim W = 2.

Sx+y—z—s =0
x+y—z —t=0
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5.116. (a) Yes, () No. Fordim ¥ = n + |, but the set contains only n elements.
5117. (@ dim W =2, () dim W =3

5118, dimW =2

5119. U, and U,.

5120. @) 3, () 2 () 3. (d 2

11 -1 —1 1 0 0 0
5123. (a) A:(O 0),B=(0 0) (© A=(0 0),B=(0 1)
1 0
®) A=(0 (JB=(

§125. dim(U ~n W)=2,30r4
§.127. (a)dim (U + W)=3, (Bydim(U n W) =
5128. (a)dim (U + W) =13, dim(U n W)= 1.
2. @ {:’;::i_z+s"‘ig, {:2:22§a+z_s+t:g
{1, -2, =5,0,0,(0,0,1,0, = 1)}.dim (U n W) =
§.130. The sum is direct in (b) and (c).
5131. InR2 let U, V, and W be, respectively, the line y = x, the x axis, and the y axis.
5.139. (@) [—41,11], B [—11,3), () [—T7a—4b,2a+ b]

5140. (@) [4, -2, -12], (b) [4, —1,—1,0], (00 [a—-b+c—db—-—c+dc—dd]

5141. (@) [2,—-1,1], (b [3,1,-2]

5.142. () P=(; i),Q=(_; _?).[v]=(_;2t:)
o r=(0 e-(78 D=5
o T
¥ Doa-(B)
5.143. (a) P=(_? _f) (b Q=(_f *:)
/3/2.3)

5144 (0) (/3

m]P=(«@2 —%)

) -

(¢ P

L

@ P

W N
LY. -
N—
o
i
/'-“'\
Hluwha U‘l*-l
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© [A1=[/3- 321 +3,/3)2),
[B] = [(2/3 + 52,2 — 5./3)2],
[C] = [(/3a — b)2, (@ + \/3b)/2]

5.145. Since E is the usual basis, simply let P be the matrix whose columns are u,, u,;, ;. Then @ = P~ ! and

[W}=P 'v= Qv
1 0 0 1 o 0 a

(@ P=|1 1 1,0 = | R | 1) [v]= a-b+c
] 2 1 -2 2 -1 —2a+2b—c
1 1 | 0 -2 1 —-2b+c

b P=\|0 1 21,0= 2 3 =2}, [vl=|2a+3b~-2
1 2 4 -1 -1 1 —a—b+c
1 1 2 -2 2 -1 —2a+2bh—c

(¢ P=|2 3 5Lo=|-17 4 —1)L[vl=| -7a+4b—c
1 4 6 5 -3 1 5 —~3b+c

5147. (a) nn+ 1)2, (B) n(n—1)2

§.148. Hint: The proof is almost identical to that given in Problem 5.86 for the special case when V' is an extension
field of K.



