Examen parcial núm. 2

(20 mayo 2011)

- 1. Sea $T:V\to W$ una transformación lineal entre espacios vectoriales de dimensión finita sobre el mismo campo K. Demuestra: $\dim(Ker(T)) + \dim(Im(T)) = \dim(V)$.
- 2. Sea $T: \mathbb{R}^4 \to \mathbb{R}^3$ la transformación lineal dada por $T(x_1, x_2, x_3, x_4) = (x_1 + 2x_2 + 3x_3 + 4x_4, 5x_1 + 6x_2 + 7x_3 + 8x_4, 9x_1 + 10x_2 + 11x_3 + 12x_4)$. Encuentra bases para el kernel y la imagen de T.
- 3. Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ la transformación lineal dada por T(x,y) = (x+y,x-y). Encuentra la matriz de T con respecto a la base $\{(1,2),(3,4)\}$ de \mathbb{R}^2 .
- 4. Sean $B = \{\mathbf{v}_1, \mathbf{v}_2\}, B' = \{\mathbf{v}_1', \mathbf{v}_2'\} \subset \mathbb{R}^2$, donde $\mathbf{v}_1 = (1, 2), \mathbf{v}_2 = (3, 4), \mathbf{v}_1' = (5, 6)$ y $\mathbf{v}_2' = (7, 8)$.
 - a) Demuestra que B, B' son bases de \mathbb{R}^2 .
 - b) Expresa las coordenadas de un vector en \mathbb{R}^2 con respecto a B en términos de sus coordenadas con respecto a B'.
 - c) Expresa las coordenadas de un vector en \mathbb{R}^2 con respecto a B' en términos de sus coordenadas con respecto a B.