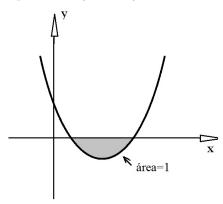
Cálculo Integral para bachillerato, CIMAT, ene-jun 2013

Tarea núm. 5

(para el jueves 28 feb)

Repaso de polinomios y funciones cuadráticas:

- **Definiciones**. Un polinomio cuadrático es una expresión de la forma $p(x) = ax^2 + bx + c$, donde a, b, c son constantes (números reales) y $a \neq 0$. Una raíz de p(x) es una solución de la ecuación $ax^2 + bx + c = 0$. Una factorización de p(x) consiste en escribirlo como un producto de dos polinomios lineales (los factores), $p(x) = (a_1x+b_1)(a_2x+b_2)$, donde a_1, b_1, a_2, b_2 son constantes (números reales) y $a_1, a_2 \neq 0$. La discriminante de p(x) es el número $\Delta = b^2 4ac$.
- Raíces. Un polinomio cuadrático $p(x) = ax^2 + bx + c$ puede tener 0, 1, o 2 raíces. Esto se determina segun la discriminante Δ : si $\Delta > 0$ p(x) tiene 2 raíces $(-b \pm \sqrt{\Delta})/2a$, si $\Delta = 0$ p(x) tiene una sola raíz -b/2a y si $\Delta < 0$ p(x) no tiene raíces.
- Factorización. Un polinomio cuadrático p(x) se factoriza justo cuando tiene raices: si r es una raíz entonces x r es un factor; si $a_1x + b_1$ es un factor de p(x) entonces $r = -b_1/a_1$ es una raíz de p(x).
- Funciones cuadráticas y sus gráficas. Una función cuadrática es una función de la forma y = p(x), donde p(x) es un polinomio cuadrático. La gráfica de una función cuadrática es una parábola, con eje vertical. El vértice es un mínimo (la parabola se abre "hacia arriba") si a > 0 y es un máximo si a < 0 (se abre "hacia abajo"). Los puntos de intersección de la gráfica con el eje de x corresponden a las raíces del polinomio. Así que la gráfica de y = p(x) intersecta el eje de x en 0,1 o 2 puntos segun si la descriminante de p(x) es negativa, cero o positiva (resp.).


Problemas

- 1. Para cada uno de los siguientes polinomios cuadráticos p(x): (i) encuentra su discriminante Δ ; (ii) decide cuántas raíces tiene (0, 1, o 2); (iii) encuentra las raíces (si existen); (iv) factoriza el polinomio (si es posible); (v) encuentra el vértice de la parábola y = p(x) (sugerencia: es un punto (x_0, y_0) en donde $y'(x_0) = 0$); (vi) decide si el vértice es un punto mínimo o máximo de la función y = p(x) (sugerencia: se detrmina por el signo de $y''(x_0)$); (vi) encuentra los puntos de intersección de la gráfica de y = p(x) con los ejes de coordenadas; (vii) dibuja la gráfica de y = p(x).
 - (a) $x^2 + 2$ (b) $x^2 4$ (c) $x^2 2x + 1$ (d) $x^2 2x 8$ (e) $-2x^2 + 3x + 1$ (f) (2x+3)(4x-5) (g) $(2x+3)^2$ (h) $(x+1)^2 + 2$.
- 2. Cierto o falso:
 - a) Si $p(x) = ax^2 + bx$ entonces p(x) se factoriza.
 - b) (Opcional) Si dos polinomios cuadráticos p(x), q(x) tienen las mismas 2 raíces entonces son iguales, p(x) = q(x).
 - c) (Opcional) r es una raíz de un polinomio p(x) si x-r divide el polinomio p(x) (es decir, al dividir p(x) entre x-r nos da un resíduo 0).
- 3. Encuentra un polinomio cuadrático $p(x) = ax^2 + bx + c$ tal que
 - a) tiene dos raices, $r_1 = 2$ y $r_2 = -3$.
 - b) tiene una sola raíz, r=-3/2, y a,b,c son números enteros;

- c) la gráfica de y = p(x) toca el eje de x en un solo punto, con x = -1;
- d) la gráfica de y = p(x) pasa por los puntos (0,0), (1,3), (2,0);
- e) la gráfica de y = p(x) pasa por los puntos (0,1), (1,2), (2,5).

Nota: algunos de los incisos tienen mas que una solución. Encuentra todas.

- 4. Encuentra todos los valores del número real α tal que $p(x)=x^2+\alpha x+1$
 - a) no tiene raíces;
 - b) tiene una sola raíz;
 - c) tiene dos raices;
 - d) no se puede factorizar;
 - e) es el cuadrado de un factor lineal;
 - f) la gráfica de y = p(x) no toca el eje de x.
 - g) la gráfica de y = p(x) pasa por el origen (0,0);
 - h) la gráfica de y = p(x) intersecta la recta y = 1 en dos puntos distintos;
 - i) (reto) el eje de x corta la gráfica de y = p(x) en dos puntos tal que el área que queda abajo del eje de x es 1.

