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Preface

The primary goal of these lectures is to introduce a beginner to the finite-
dimensional representations of Lie groups and Lie algebras. Since this goal is
shared by quite a few other books, we should explain in this Preface how our
approach differs, although the potential reader can probably see this better
by a quick browse through the book.

Representation theory is simple to define: it is the study of the ways in
which a given group may act on vector spaces. It is almost certainly unique,
however, among such clearly delineated subjects, in the breadth of its interest
to mathematicians. This is not surprising: group actions are ubiquitous in 20th
century mathematics, and where the object on which a group acts is not a
vector space, we have learned to replace it by one that is (e.g., a cohomology
group, tangent space, etc.). As a consequence, many mathematicians other
than specialists in the field (or even those who think they might want to be)
come in contact with the subject in various ways. It is for such people that
this text is designed. To put it another way, we intend this as a book for
beginners to learn from and not as a reference.

This idea essentially determines the choice of material covered here. As
simple as is the definition of representation theory given above, it fragments
considerably when we try to get more specific. For a start, what kind of group
G are we dealing with—a finite group like the symmetric group &, or the
general linear group over a finite field GL,(F,), an infinite discrete group
like SL,(Z), a Lie group like SL,C, or possibly a Lie group over a local
field? Needless to say, each of these settings requires a substantially different
approach to its representation theory. Likewise, what sort of vector space is
G acting on: is it over C, R, @, or possibly 2 field of finite characteristic? Is it
finite dimensiona!l or infinite dimensional, and if the latter, what additional
structure (such as norm, or inner product) does it carry? Various combinations
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of answers to these questions lead to areas of intense research activity in
representation theory, and it is natural for a text intended to prepare students
for a career in the subject to lead up to one or more of these areas. As a
corollary, such a book tends to get through the elementary material as quickly
as possible: if one has a semester to get up to and through Harish—Chandra
modules, there is little time to dawdle over the representations of &, and
SL,C.

By contrast, the present book focuses exactly on the simplest cases: repre-
sentations of finite groups and Lie groups on finite-dimensional real and
complex vector spaces, This is in some sense the common ground of the
subject, the area that is the object of most of the interest in representation
theory coming from outside.

The intent of this book to serve nonspecialists likewise dictates to some
degree our approach to the material we do cover. Probably the main feature
of our presentation is that we concentrate on examples, developing the general
theory sparingly, and then mainly as a useful and unifying language to describe
phenomena already encountered in concrete cases. By the same token, we for
the most part introduce theoretical notions when and where they are useful
for analyzing concrete situations, postponing as long as possible those notions
that are used mainly for proving general theorems.

Finally, our goal of making the book accessible to outsiders accounts in
part for the style of the writing. These lectures have grown from courses of
the second author in 1984 and 1987, and we have attempted to keep the
informal style of these lectures. Thus there is almost no attempt at efficiency:
where it seems to make sense from a didactic point of view, we work out many
special cases of an idea by hand before proving the general case; and we
cheerfully give several proofs of one fact il we think they are itluminating.
Similarly, while it is common to develop the whole semisimple story from one
point of view, say that of compact groups, or Lie algebras, or algebraic groups,
we have avoided this, as efficient as it may be.

It is of course not a strikingly original notion that beginners can best learn
about a subject by working through examples, with general machinery only
introduced slowly and as the need arises, but it seems particularly appropriate
here. In most subjects such an approach means one has a few. out of an
unknown infinity of examples which are useful to illuminate h9 general
situation. When the subject is the representation theory of complex semisimple
Lie groups and algebras, however, something special happens: once one has
worked through all the examples readily at hand— the “classical” cases of the
special linear, orthogonal, and symplectic groups—one has not just a few
useful examples, one has all but five “exceptional” cases.

This is essentially what we do here. We start with a quick tour through
representation theory of finite groups, with emphasis determined by what is
useful for Lie groups. In this regard, we include more on the symmetric groups
than is usual. Then we turn to Lie groups and Lie algebras. After some
preliminaries and a look at low-dimensional examples, and one lecture with
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some general notions about semisimplicity, we get to the heart of the course:
working out the finite-dimensional representations of the classical groups.

For each series of classical Lie algebras we prove the fundamental existence
theorem for representations of given highest weight by explicit construction.
Our object, however, is not just existence, but to see the representations in
action, to see geometric implications of decompositions of naturally occurring
representations, and to see the relations among them caused by coincidences
between the Lie algebras.

The goal of the last six lectures is to make a bridge between the example-
oriented approach of the earlier parts and the general theory. Here we make
an attempt to interpret what has gone before in abstract terms, trying to make
connections with modern terminology. We develop the general theory enough
to see that we have studied all the simple complex Lie algebras with five
exceptions. Since these are encountered less frequently than the classical series,
it is probably not reasonable in a first course to work out their representations
as explicitly, although we do carry this out for one of them, We also prove the
general Weyl character formula, which can be used to verify and extend many
of the results we worked out by hand earlier in the book,

Of course, the point we reach hardly touches the current state of affairs in
Lie theory, but we hope it is enough to keep the reader’s eyes from glazing
over when confronted with a lecture that begins: “Let G be a semisimple
Lie group, P a parabolic subgroup, ...” We might also hope that working
through this book would prepare some readers to appreciate the elegance (and
efficiency) of the abstract approach.

In spirit this book is probably closer to Weyl's classic [ Wel] than to others
written today. Indeed, a secondary goal of our book is to present many of the
results of Weyl and his predecessors in a form more accessible to modern
readers. In particular, we include Weyl's constructions of the representations
of the general and special linear groups by using Young’s syminetrizers; and
we invoke a little invariant theory to do the corresponding result for the
orthogonal and symplectic groups. We also include Weyl's formulas for the
characters of these representations in terms of the elementary characters of
symmetric powers of the standard representations. (Interestingly, Weyl only
gave the corresponding formulas in terms of the exterior powers for the general
linear group. The corresponding formutas for the orthogonal and symplectic
groups were only given recently by Koike and Terada. We include 2 simple
new proof of these determinantal formulas.)

More about individual sections can be found in the introductions to other
parts of the book.

Needless to say, a price is paid for the inefficiency and restricted focus of
these notes. The most obvious is a lot of omitted material: for example, we
include little on the basic topological, differentiable, or analytic properties of
Lie groups, as this plays a small role in our story and is well covered in dozens
of other sources, including many graduate texts on manifolds. Moreover, there
are no infinite-dimensional representations, no Harish- Chandra or Verma
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modules, no Steifel diagrams, no Lie algebra cohomology, no analysis on
symmetric spaces or groups, no arithmetic groups or automorphic forms, and
nothing about representations in characteristic p > 0. There is no consistent
attempt to indicate which of our results on Lie groups apply more generally
to algebraic groups over fields other than R or C (e.g., local fields). And there
is only passing mention of other standard topics, such as universal enveloping
algebras or Bruhat decompositions, which have become standard tools of
representation theory. (Experts who saw drafts of this book agreed that some
topic we omitted must not be left out of a modern book on representation
theory—but no two experts suggested the same topic.)

We have not tried to trace the history of the subjects treated, or assign
credit, or to attribute ideas to original sources—this is far beyond our knowl-
edge. When we give references, we have simply tried to send the reader to
sources that are as readable as possible for one knowing what is written here.
A good systematic reference for the finite-group material, including proofs of
the results we leave out, is Serre [Se2]. For Lie groups and Lie algebras,
Serre [Se3], Adams [Ad], Humphreys [Hul], and Bourbaki [Bour] are
recommended references, as are the classics Weyl [Wel] and Littlewood
[Lit1].

We would like to thank the many people who have contributed ideas and
suggestions for this manuscript, among them J-F. Burnol, R. Bryant, J. Carrell,
B. Conrad, P. Diaconis, D. Eisenbud, D. Goldstein, M. Green, P. Griffiths,
B. Gross, M. Hildebrand, R. Howe, H. Kraft, A. Landman, B. Mazur,
N. Chriss, D. Petersen, G. Schwartz, J. Towber, and L. Tu. In particular, we
would like to thank David Mumford, from whom we learned much of what
we know about the subject, and wlose ideas are very much in evidence in this
book.

Had this book been written 10 years ago, we would at this point thank the
people who typed it. That being no longer applicable, perhaps we should
thank instead the National Science Foundation, the University of Chicago,
and Harvard University for generously providing the various Macintoshes on
which this manuscript was produced. Finally, we thank Chan Fulton for
making the drawings.

Bill Fulton anfi Joe Harris



Using This Book

A few words are in order about the practical use of this book. To begin with,
prerequisites are minimal: we assume only a basic knowledge of standard
first-year graduate material in algebra and topology, including basic notions
about manifolds. A good undergraduate background should be more than
enough for most of the text; some examples and exercises, and some of the
discussion in Part 1V may refer to more advanced topics, but these can readily
be skipped. Probably the main practical requirement is a good working
knowledge of multilinear algebra, including tensor, exterior, and symmetric
products of finite dimensional vector spaces, for which Appendix B may help.
We have indicated, in introductory remarks to each lecture, when any back-
ground beyond this is assumed and how essential it is.

For a course, this book could be used in two ways. First, there are 2 number
of topics that are not logically essential to the rest of the book and that can
be skimmed or skipped entirely. For example, in a minimal reading one could
skip §§4,5,6,11.3,134, 15.3-15.5,17.3,19.5, 20, 22.1,22.3,23.3-23.4,25.3, and
26.2; this might be suitable for a basic one-semester course. On the other hand,
in a year-long course it should be possible to work through as much of the
material as background and/or interest suggested. Most of the material in the
Appendices is relevant only to such a long course. Again, we have tried
to indicate, in the introductory remarks in each lecture, which topics are
inessential and may be omitted.

Another aspect of the book that readers may want to approach in different
ways is the profusion of examples. These are put in largely for didactic reasons:
we feel that this is the sort of material that can best be understood by gaining
some direct hands-on experience with the objects involved. For the most part,
however, they do not actually develop new ideas; the reader whose tastes run
more to the abstract and general than the concrete and special may skip many
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of them without logical consequence. (Of course, such a reader will probably
wind up burning this book anyway.)

We inctude hundreds of exercises, of wildly diflerent purposes and difficulties.
Some are the usual sorts of variations of the examples in the text or are
straightforward verifications of facts needed; a student will probably want to
atiempt most of these. Sometimes an exercise is inserted whose solution is a
special case of something we do in the text later, il we think working on it will
be uselul motivation (again, there is no attempt at “efliciency,” and readers
are encouraged to go back to old exercises from time to time). Many exercises
are included that indicate some further directions or new topics (or standard
topics we have omitted); a beginner may best be advised to skim these for
general information, perhaps working out a few simple cases. In exercises, we
tried to include topics that may be hard for nonexperts to extract from the
literature, especially the older literature. In general, much of the theory is in
the exercises-—and most of the examples in the text.

We have resisted the idea of grading the exercises by (expected) difficulty,
although a “problem” is probably harder than an “exercise.” Many exercises
are starred: the * is not ap indication of difficulty, but means that the reader
can find some information about it in the section “Hints, Answers, and
References” at the back of the book. This may be a hint, a statement of the
answer, a complete solution, a reference to where more can be found, or
a combination of any of these. We hope these miscellaneous remarks, as
haphazard and uneven as they are, will be of some use.
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PART I
FINITE GROUPS

Given that over three-quarters of this book is devoted to the representation
theory of Lie groups and Lie algebras, why have a discussion of the represen-
tations of finite groups at all? There are certainly valid reasons from a logical
point of view: many of the ideas, concepts, and constructions we will introduce
here will be applied in the study of Lie groups and algebras. The real reason
for us, however, is didactic, as we will now try to explain.

Representation theory is very much a 20th-century subject, in the following
sense. In the 19th century, when groups were dealt with they were generally
understood to be subsets of the permutations of a set, or of the automor-
phisms GL(V) of a vector space V, closed under composition and inverse. Only
in the 20th century was the notion of an abstract group given, making it
possible to make a distinction between properties of the abstract group and
properties of the particular realization as a subgroup of a permutation group
or GL(V). To give an analogy, in the 19th century a manifold was always a
subset of R"; only in the 20th century did the notion of an abstract Riemannian
manifold become common.

In both cases, the introduction of the abstract object made a fundamental
diflerence to the subject. In differential geometry, one could make a crucial
distinction between the intrinsic and extrinsic geometry of the manifold: which
properties were invariants of the metric on the manifold and which were
properties of the particular embedding in R". Questions of existence or non-
existence, for example, could be broken up into two parts: did the abstract
manifold exist, and could it be embedded. Similarly, what would have been
called in the 19th century simply “group theory” is now factored into two
parts. First, there is the study of the structure of abstract groups (e.g., the
classification of simple groups). Second is the companion question: given a
group G, how can we describe all the ways in which G may be embedded in
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(or mapped to) a linear group GL(V)?. This, of course, is the subject matter
of representation theory.

Given this point of view, it makes sense when first introducing representa-
tion theory to do so in a context where the nature of the groups G in question
is itsell simple, and relatively well understood. It is largely for this reason that
we are starting off with the representation theory of finite groups: {or those
readers who are not already familiar with the motivations and goals of
representation theory, it seemed better to establish those first in a setting where
the structure of the groups was not itsell an issue. When we analyze, for
example, the representations of the symmetric and alternating groups on 3, 4,
and 5 letters, it can be expected that the reader is already familiar with the
groups and can focus on the basic concepts of representation theory being
introduced. :

We will spend the first six lectures on the case of finite groups. Many of the
techniques developed for finite groups will carry over to Lie groups; indeed,
our choice of topics is in part guided by this. For example, we spend quite a
bit of time on the symmetric group; this is partly for its own interest, but also
partly because what we learn here gives one way to study representations of
the general linear group and its subgroups. There are other topics, such as the
alternating group 2, and the grouns SL,(F,) and GL,(F,) that are studied
purely for their own interest and do not appear later. (In general, for those
readers primarily concerned with Lie theory, we have tried to indicate in the
introductory notes to each lecture which ideas will be useful in the succeeding
parts of this book.) Nonetheless, this is by no means a comprehensive treat-
ment of the representation theory of finite groups; many important topics,
such as the Artin and Brauer theorems and the whole subject of modutar
representations, are omitted.



LECTURE 1

Representations of Finite Groups

In this lecture we give the basic definitions ol representation theory, and prove two of
the basic results, showing that every representation is a (unique) direct sum of irreduc-
ible ones. We work out as examples the case of abelian groups, and the stmplest
nonabelian group, the symmetric group on 3 letters. In the latter case we give an
analysis that will turn out not to be useful for the study of finite groups, but whose
main idea is central to the study of the representations of Lie groups.

§1.1: Definitions
§1.2: Complete reducibility; Schur’s lemma
§1.3: Examples: Abelian groups, S,

§1.1. Definitions

A representation of 2 finite group G on 2 finite-dimensional complex vector
space V is a homomorphism p: G = GL(V) of G to the group of automor-
phisms of V; we say that such a map gives V the structure of a G-module. When
there is little ambiguity about the map g (and, we're alraid, even sometimes
when there is) we sometimes call V itself a representation of G; in this vein we
will often suppress the symbol p and write g - v or gv for p{g)(v). The dimension
of V is sometimes called the degree of p.

A map @ between two representations Vand Wol Gis a vector space map

¢: ¥V = W such that
v w
ll ]!
vV w

L SN

_e
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commutes for every g € G. (We will call this a G-linear map when we want to
distinguish it from an arbitrary linear map between the vector spaces V and
W.) We can then define Ker ¢, Im ¢, and Coker ¢, which are also G-modules.

A subrepresentation of a representation ¥ is a vector subspace W of ¥ which
is invariant under G. A representation V is called irreducible if there is no
proper nonzero invariant subspace W of V.

If V and W are representations; the direct sum V @ W and the tensor product
V ® W are also representations, the latter via

gl @ w) = gv ® gw.

For a representation V, the nth tensor power ¥®" is again a representation of
G by this rule, and the exterior powers NA'(V) and symmetric powers Sym"(V)
are subrepresentations® of it. The dual V* = Hom(V, C) of V is also a repre-
senfation, though not in the most obvious way: we want the two representa-
tions of G to respect the natural pairing (denoted { , )) between V* and V,
so that if p: G & GL(V) is a representation and p*: G - GL(V*) is the dual,
we should have

<p*(g)(v*), p(g)(v)) = <{v*, v

for all g e G, ve ¥, and v* € V*. This in turn forces us to define the dual
representation by

p*g)="plg™"): V* > V*
forallg e G.

Exercise 1.1. Verily that with this definition of p*, the relation above is
satisfied.

Having defined the dual of a representation and the tensor product of two
representations, it is likewise the case thatif ¥ and W are representations, then
Hom(V, W) is also a representation, via the identification Hom({V, W) =
V* ® W. Unraveling this, if we view an element of Hom(V, W) as a linear map
o from V to W, we have

(90)(v) = golg ' v)

f
for all v e V. In other words, the definition is such that the diagram

v — . w

Gl J!
v —2 . w

commutes. Note that the dual representation is, in turn, a special case of this:

' For more on exlerior and symmelric powers, including descriptions as quotient spaces of tensor
powers, see Appendix B.



§1.2. Complete Reducibility; Schur's Lemma 5

when W = C is the trivial representation, i.e, gw = wfor all w € C, this makes
V* into a G-module, with go(v) = (g™ "v), i, go = (g7 "eo.

Exercise 1.2. Verify that in general the vector space of G-linear maps between
two representations ¥ and W of G is just the subspace Hom(V, W)¢ of
elements of Hom(¥, W) fixed under the action of G. This subspace is often
denoted Homg4(V, W).

We have, in effect, taken the identification Hom(V, W) = V* ® W as the
definition of the representation Hom(V, W). More generally, the usual iden-
tities for vector spaces are also true for representations, e.g.,

VeUewm)=rVeU)®Wwew),
NV W)= NV RNW,

atb=k
N(V*) = A (V)"

and so on.

Exercise 1.3*, Let p: G - GL(V) be any representation of the finite group G
on an n-dimensional vector space V' and suppose that for any g € G, the
determinant of p(g) is |. Show that the spaces A*V and A" *V* are iso-
morphic as representations of G.

If X is any [inite set and G acts on the left on X, i.e., G —+ Aut(X) is a
homomorphism to the permutation group of X, there is an associated per-
mutation representation: let ¥ be the vector space with basis {e,: x € X}, and
let G acton V by

g E a.e, = Z axegr

" The regular representation, denoted Rg; or R, corresponds to the left action of
G on itself. Alternatively, R is the space of complex-valued functions on G,
where an element g € G acts on a function a by (ga)(h) = a(g™" h).

Exercise 1.4*. (a) Verify that these two descriptions of R agree, by identifying
the element e, with the characteristic function which takes the value t on x,
0 on other elements of G.

(b) The space of functions on G can also be made into a G-module by the
rule (gor) (h) = a(hg). Show that this is an isomorphic representation.

§1.2. Complete Reducibility; Schur’s Lemma

As in any study, before we begin our attempt to classify the representations
of a finite group G in earnest we should try to simplify life by restricting our
search somewhat. Specifically, we have seen that representations of G can be
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built up out of other representations by linear algebraic operations, most
simply by taking the direct sum. We should focus, then, on representations
that are “atomic” with respect to this operation, i.e,, that cannot be expressed
as a direct sum of others; the usual term for such a representation is Inde-
composable. Happily, the situation is as nice as it could possibly be: a repre-
sentation is atomic in this sense if and only il it is irreducible (i.e., contains no
proper subrepresentations); and every representation is the direct sum of
irreducibles, in a suitable sense uniquely so. The key to all this is

Proposition LS. If W is a subrepresentation of a representation V of a finite
group G, then there is a complementary invariant subspace W' of V, so that
Vv=WaoWw.

Proor. There are two ways of doing this. One can introduce a (positive
definite) Hermitian inner product H on V which is preserved by each g e G
(i.e., such that H(gv, gw) = H(v, w)for all v, w € V and g € G). Indeed, if H, is
any Hermitian product on V, one gets such an H by averaging over G:

H(v, w)= 3 Hy(gv, gw).
ge G

Then the perpendicular subspace W+ is complementary to W in V. Alterna-
tively (but similarly), we can simply choose an arbitrary subspace U comple-
mentary to W, let n,: V — W be the projection given by the direct sum
decomposition V = W @ U, and average the map n, over G: that is, take
n(v) = ), glno(g™'v))
geG
This will then be a G-linear map from ¥ onto W, which is multiplication by

|G| on W; its kernel will, therefore, be a subspace of V invariant under G and
complementary to W, O

Corollary 1.6. Any representation is a direct sum of irreducible representations.

This property is called complete reducibility, or semisimplicity. We will see
that, for continuous representations, the circle S, or any compact. group, has
this property; integration over the group (with respect to an invaridnt measure
on the group) plays the role of averaging in the above proof. The (additive)
group R does not have this property: the representation

an—»la
0 1

leaves the x axis fixed, but there is no complementary subspace. We will see
other Lie groups such as SL,(C) that are semisimple in this sense. Note also
that this argument would fail if the vector space V was over a field of finite
characteristicsince it might then be the case that n(v) = Ofor v € W. The failure
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of complete reducibility is one of the things that makes the subject of modular
representdtions, ot representations on vector spaces over finite fields, so tricky.

The extent Lo which the decomposition of an arbitrary representation into
a direct sum of irreducible ones is unique is one of the consequences of the
following;

Schur’s Lemma 1.7. If V and W are irreducible representations of G and
@:V — Wis a G-module homomorphism, then

(1) Either ¢ is an isomorphism, or ¢ = 0.
(2) If V=W, then o = A-I for some A € C, I the identity.

PROOF. The first claim follows from the fact that Ker ¢ and Im ¢ are invariant
subspaces. For the second, since C is algebraically closed, ¢ must have an
eigenvalue 4, ie., for some A € C, » - Al has a nonzero kernel. By (1), then,
we must have ¢ — Al = 0,50 ¢ = AL O

We can summarize what we have shown so far in

Proposition 1.8. For any representation V of a finite group G, there is a
decomposition

V = Vl@ﬂi @D VkEBﬂk,

where the V] are distinct irreducible representations. The decomposition of V
into a direct sum of the k factors is unique, as are the V, that occur and their
multiplicities a;.

Proor. It follows from Schur’s lemma that if W is another representation of
G, with a decomposition W = @ W®%, and ¢: V —» W is a map of represen-
tations, then ¢ must map the factor ¥;® into that factor W, for which
W, = V,; when applied to the identity map of V to V, the stated uniqueness
follows. ]

In the next lecture we will give a formula for the projection of V onto V%,
The decomposition of the ith summand into a direct sum of a; copies of V; is
not unique if @, > 1, however.

Occastonally the decomposition is written

V=aV,® - ®aVi=aV + - +al, (1.9)

especially when one is concerned only about the isomorphisin classes and
multiplicities of the ¥].

One more fact that will be established in the following lecture is that a finite
group G admits only finitely many irreducible representations I up to iso-
morphism (in fact, we will say how many). This, then, is the framework of the
classification of all representations of G: by the above, once we have described
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the irreducible representations of G, we will be able to describe an arbitrary
representation as a linear combination of these. Our first goal, in analyzing
the representations of any group, will therefore be:

() Describe all the irreducible representations of G.

Once we have done this, there remains the problem of carrying out in practice

the description of a given representation in these terms. Thus, our second goal
will be:

(ii) Find techniques for giving the direct sum decomposition (1.9), and in
particular determining the multiplicities a, of an arbitrary representation V.

Finally, it is the case that the representations we will most often be concerned
with are those arising from simpler ones by the sort of linear- or muitilinear-
algebraic operations described above, We would like, thereflore, to be able to
describe, in the terms above, the representation we get when we perform these
operations on 2 known representation. This is known generally as

(iiiy Plethysm: Describe the decompositions, with multiplicities, of represen-
tations derived from a given representation V, such as V@V, V*, A(V),
Sym*(¥), and A*(A'V). Note that if ¥ decomposes into a sum of two represen-
tations, these representations decompose accordingly; e.g., if V = U @ W, then

NV = NU @ NW,
i+j=k
so it is enough to work out this plethysm for irreducible representations.
Similarly, if V and W are two irreducible representations, we want to decom-
pose V ® W; this is usually known as the Clebsch-Gordon problem.

§1.3. Examples: Abelian Groups; S,

One obvious place to look for examples is with abelian groups. It does not
take long, however, to deal with this case. Basically, we may observe in general
that if V is a representation of the finite group G, abelian or not, each g€ G
gives a map p(g): ¥V — V; but this map is not generally a G-module homomor-
phism: for general h € G we will have ,’

g(h(v})) # Mg(v)).

Indeed, p(g): V — V will be G-linear for every p if (and only i} g is in the center
Z(G) of G. In particular if G is abelian, and V is an irreducible representation,
then by Schur’s lemma every element g € (G acts on V by a scalar multiple of
the identily. Every subspace of V is thus invariant; so that ¥ must be one
dimensional. The irreducible representations of an abelian group G are thus
simply elements of the dual group, that is, homomorphisms

p: G C*.
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We consider next the simplest nondbelian group, G = S,. To begin with,
we have (as with any symmetric group) two one-dimensional representations:
we have the trivial representation, which we will denote U, and the alternating
representation U', defined by setting

gv = sgn{g)v

for g € G, v e C. Next, since G comes to us as a permutation group, we have
a natural permutation representation, in which G acts on C* by permuting
the coordinates. Explicitly, if {e,, e,, e, } is the standard basis, then g ¢; = e,,;),
or, equivalentiy, '

g (21522, 23) = (Zg- 10110 Zg- 1020 24 1))

This representation, like any permutation representation, is not irreducible:
the line spanned by the sum (1, 1, 1) of the basis vectors is invariant, with
complementary subspace

V={(zy,25,2,) € C* 2y + 2, + 2, = 0}.

This two-dimensional representation ¥ is easily seen to be irreducible; we call
it the standard representation of &,.

Let us now turn to the problem of describing an arbitrary representation
of &,. We will see in the next lecture a wonderful tool for doing this, called
character theory; but, as inefficient as this may be, we would like here to adopt
a more ad hoc approach. This has some virtues as a didactic technique in the
present context (admittedly dubious ones, consisting mainly of making the
point that there are other and far worse ways of doing things than character
theory). The real reason we are doing it is that it will serve to introduce an
idea that, while superfluous for analyzing the representations of finite groups
in general, will prove to be the key to understanding representations of Lie
groups.

The idea is a very simple one: since we have just seen that the representation
theory of a finite abelian group is virtually trivial, we will start our analysis
of an arbitrary representation W of &, by looking just at the action of the
abelian subgroup A, = 7/3 < S, on W. This yields a very simple decom-
position: if we take 7 to be any generator of 2, (that is, any three-cycle), the
space W is spanned by eigenvectors v, for the action of 1, whose eigenvalues
are of course all powers of a cube root of unity w = >, Thus,

W= (—B W,
where
V; = CU{ and fv, = U)afv;.

Next, we ask how the remaining elements of &, act on W in terms of this
decomposition. To see how this goes, let ¢ be any transposition, so that t and
o together generate S,, with the relation ot0 = 12, We want to know where
o sends an eigenvector v for the action of t, say with eigenvalue w'; to answer
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this, we look at how 1 acts on o(v). We use the basic relation above to write

t(o(v) = o(c* ()
= o{w?*-v)

= w* o(v).

The conclusion, then, is that if v is an eigenvector for t with eigenvalue ', then
o (v) is again an eigenvector for t, with eigenvalue v,

Exercise 1.10. Verify that with ¢ = (12), t = (123), the standard representation
has a basis & = (o, 1, ®?), f = (1, w, w?), with

te=wx, tPp=w’fh ox=f off=a

Suppose now that we start with such an eigenvector v for 7. If the eigenvalue
of vis w' # |, then (v} is an eigenvector with eigenvalue w? # w', and so is
independent of v; and v and o(v) together span a two-dimensional subspace
V' of W invariant under &,. In fact, V' is isomorphic to the standard repre-
sentation, which follows from Exercise 1.10. If, on the other hand, the eigen-
value of v is 1, then ¢(v) may or may not be independent of v. If it is not, then
v spans a one-dimensional subrepresentation of W, isomorphic to the trivial
representation if ¢(v) = v and to the alternating representation if o(v) = —v.
If o(v) and v are independent, then v + o(v)and v — o(v) span one-dimensional
representations of Wisomorphicto the trivial and alternating representations,
respectively.

We have thus accomplished the first two of the goals we have set for
ourselves above in the case of the group G = S,. First, we see from the above
that the only three irreducible representations of &, are the trivial, alternating,
and standard representations U, U’ and V. Moreover, for an arbitrary repre-
sentation W of &, we can write

W=U®que e,

and we have a way to determine the multiplicities a, b, and c: ¢, for example,
is the number of independent eigenvectors for t with eigenvalue w, whereas
a + cis the multiplicity of | as an eigenvalue of g, and b + ¢ is the multiplicity
of —1 as an eigenvalue of ¢. '

In fact, this approach gives us as well the answer to our third problem,
finding the decomposition of the symmetric, alternating, or tensor powers of
a given representation W, since if we know the eigenvalues of ¢ on such a
representation, we know the eigenvalues of T on the various tensor powers of
W. For example, we can use this method to decompose V ® V, where V is
the standard two-dimensional representation. For V ® V is spanned by the
vectors a @ a, a @ fi, f® a, and f® f; these are eigenveclors for t with
eigenvalues o?, 1, 1, and o, respectively, and o interchanges o ® o with
f® f,and a ® f with # ® a. Thus &« @ « and f ® f span a subrepresentation
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isomorphic to V, a® i+ f®@ o spans a trivial representation U, and
@ f — ® aspans U, so

VrevVv=UpU V.

Exercise 1.11. Use this approach to find the decomposition of the represen-
{ations Sym?¥ and Sym?*V.

Exercise 1.12. (a) Decompose the regular representation R of S,.
(b) Show that Sym**®V is isomorphic to Sym*V @R, and compute
Sym*V for alf k.

Exercise 1.13*, Show that Sym?(Sym*V)z Sym*(Sym?V). Is
Sym™(Sym"V'} isomorphic to Sym"(Sym"V)?

As we have indicated, the idea of studying a representation ¥ of a group G -
by first restricting the action to an abelian subgroup, getting a decomposition
of V into one-dimensional invariant subspaces, and then asking how the
remaining generators of the group act on these subspaces, does not work well
for finite G in general; for one thing, there will not in general be a convenient
abelian subgroup to use. This idea will turn out, however, to be the key to
understanding the representations of Lie groups, with a torus subgroup
playing the role of the cyclic subgroup in this example.

Exercise 1.14*. Let V be an irreducible representation of the finite group G.
Show that, up to scalars, there is a unigue Hermitian inner product on V
preserved by G.



LECTURE 2

Characters

This lecture contains the heart of our treatment of the representation theory of finite
groups: the definition in §2.1 of the character of a representation, and the main theorem
(proved in two steps in §2.2 and §2.4) that the characters of the irreducible representa-
tions form an orthonormat basis for the space of class functions on G. There will be
more examples and more constructions in the [ollowing lectures, but this is what you
need to know.

§2.1: Characters

§2.2: The first projection formula and its consequences
§2.3; Examples: S, and N,

§2.4: More projection formulas; more consequences

§2.1. Characters

As we indicated in the preceding section, there is a remarkably effective
tool for understanding the representations of a finite group G, called
character theory. This is in some ways motivated by the example worked out
in the last section where we saw that a representation of S, 'was determined
by knowing the eigenvalues of the action of the elements T and ¢ € 4. For a
general group G, it is not clear what subgroups and/or elements should play
the role of Ay, 1, and o; but the example certainly suggests that knowing
ail the eigenvalues of each element of G should suffice to describe the
representation.

Of course, specifying ali the eigenvalues of the action of each element of G
is somewhat unwieldy; but fortunately it is redundant as well. For example,
if we know the eigenvalues {4;} of an element g € G, then of course we know
the eigenvalues {4¥} of g* for each k as well. We can thus use this redundancy
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to simplify the data we have to specify. The key observation here is it is enough
to give, for example, just the sum of the eigenvafues of each element of G, since
knowing the sums )_ Af of the kth powers of the eigenvalues of a given element
g € G is equivalent to knowing the eigenvalues {4,} of g themselves. This then
suggests the following;

Definition. If V is a representation of G, its character yy is the complex-valued
function on the group defined by

xv(g) = Tr(gly),
the trace of g on V.

In particular, we have
xv(hgh™) = v (a),

so that y, is constant on the conjugacy classes of G; such a function is called '
a class function. Note that y,(1) = dim V.

Proposition 2.1. Let V and W be representations of G. Then

Yvew = Xv t+ Xw, Xvew = Xy Xw,
=Ty and xpa(9) = ilx (9 — xe(gP)]

ProoF. We compute the values of these characters on a fixed element g € G.
For the action of g, V has eigenvalues {1,} and W has eigenvalues {;,;}. Then
{4 + 1y} and {1, y;} are eigenvalues for V@ W and V @ W, from which the
first two formulas foliow. Similarly {A]" = 1,} are the eigenvalues for g on V*,
since all eigenvalues are nth roots of unity, with n the order of g. Finally,
{4 li < j} are the eigenvalues for g on AV, and

RN
T 44, = E_Z__:_’_Z_Z__. ]

i<j

and since g2 has eigenvalues {A}}), the last formula follows. O

Exercise 2.2. For Sym?V, verify that
Xsymrv(9) = $0x0(9)* + xv(g%)].

Note that this is compatible with the decomposition

VRV =Sym2V @ A\*V.
Exercise 2.3*. Compute the characters of Sym*V and AV,

Exercise 2.4*. Show that if we know the character xv of a representation V,
then we know the eigenvalues of each element g of G, in the sense that we
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know the coeflicients of the characteristic polynomial of g: V — V. Carry this
out explicitly for elements g € G of orders 2, 3, and 4, and for a representation
of G on a vector space of dimension 2, 3, or 4.

Exercise 2.5. (The original fixed-point formula). If V is the permutation repre-
sentation associated to the action of a group G on a finite set X, show that
1v(g) is the number of elements of X fixed by g.

As we have said, the character of a representation of a group G is really a
function on the set of conjugacy classes in G. This suggests expressing the basic
information about the irreducible representations of a group G in the form of
a character table. This is a table with the conjugacy classes [g] of G listed
across the top, usually given by a representative g, with (for reasons that will
become apparent later) the number of efements in each conjugacy class over
it; the irreducible representations V of G listed on the left; and, in the appro-
priate box, the value of the character g, on the conjugacy class [g].

Example 2.6. We compute the character table of &,. This is easy: to begin
with, the trivial representation takes the values (1, 1, 1) on the three conjugacy
classes [1], [(12)], and [(123)], whereas the alternating representation has
values (1, — I, 1). To see the character of the standard representation, note
that the permutation representation decomposes: C* = U @ V; since the
character of the permutation representation has, by Exercise 2.5, the values
(3,1,0), we have yp = yoo —xo =3, L0 — (1,1, 1) =(2,0, —1). In sum,
then, the character table of €, is

1 3 2
S, 1 (12) (123)

trivial U 1 1 f
alternating U’ 1 -1 |
standard V 2 0 -1

This gives us another solution of the basic problem posed in Lecture 1: if
W is any representation of S, and we decompose W into irreducible repre-
sentations W x U®* @ U'®* @ V< then xy = ayy + byy- + ¢y In particu-
lar, since the functions yy, xy- and y, are independent, we see that W is
determined up to isomorphism by its character xy.

Consider, for example, ¥ ® V. Its character is (x, )%, which has values 4, 0,
and { on the three conjugacy classes. Since V @ U @ U’ has the same char-
acter, this implies that ¥V ® V decomposes into V @ U @ U, as we have seen
directly. Similarly, V ® U’ has values 2,0, and —1,s0 V® U’ = V.
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Exercise 2.7*. Find the decomposition of the representation ¥®" using char-
acter theory.

Characters will be similarly useful for larger groups, although it is rare to
find simple closed formulas for decomposing tensor products.

§2.2. The First Projection Formula and
Its Consequences

In the last lecture, we asked {among other things) for a way of locating
explicitly the direct sum factors in the decomposition of a representation into
irreducible ones. In this section we will start by giving an explicit formula for
the projection of an irreducible representation onto the direct sum of the trivial
factors in this decomposition; as it will turn out, this formula alone has
tremendous consequences.

To start, for any representation V of a group G, we set

Vé={veV:igo=0v VgeG}

We ask for a way of finding V¢ explicitly. The idea behind our solution to
this is already implicit in the previous lecture. We observed there that for any
representation V of G and any g € G, the endomorphism g: V - V is, in
general, not a G-module homomorphism. On the other hand, if we take the
average of all these endomorphisms, that is, we set

=_—. € End(V),
) ]G“EZGQ nd(V).

then the endomorphism ¢ will be G-linear since ) g = > hgh™'. In fact, we
have

Proposition 2.8. The map ¢ is a projection of V onto VE°.

PRroo¥. First, suppose v = @(w) = (1/}G|) Y gw. Then, for any h e G,

f i
ho = — V' } N
1 IGIZ 1gw IGIZgW'

so the image of ¢ is contained in V¢, Conversely, if ve V% then p(v) =
(1/IGHY v =v,s0 V¢ = Im(p); and ¢ o ¢ = 0. )

We thus have a way of finding explicitly the direct sum of the trivial
subrepresentations of a given representation, although the formula can be
hard to use if it does not simplify. If we just want to know the number m of
copies of the trivial representation appearing in the decomposition of ¥, we
can do this numerically, since this number will be just the trace of the
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projection . We have
m = dim V¢ = Trace(yp)

1 1
G gEZG Trace(g) = i ,,;G xv(9). (2.9)
In particular, we observe that for an irreducible representation V other than
the trivial one, the sum over all g € G of the values of the character g, is zero.
We can do much more with this idea, however. The key is to use Exercise
1.2:if V and W are representations of G, then with Hom(V, W), the representa-
tion defined in Lecture 1, we have

Hoin(V, W)¢ = {G-module homomorphisms fromn V to W}.

If ¥ is irreducible then by Schur’s lemma dim Hom(V, W)¢ is the multiplicity
of ¥ in W; similarly, if W is irreducible, dim Hom(V, W)¢ is the multiplicity
of Win ¥, and in the case where both V and W are irreducible, we have

I fVvew

0 ifVEW

But now the character yyomq.w) Of the representation Hom(V, W)= V* @ W
is given by

dim Homg(V, W) = {

We can now apply formula (2.9) in this case to obtain the striking

1 1 ifv=w
Gl ,;; 1 (g xw(g) = {0 v W, (2.10)
To express this, let
Ciass{G) = {class functions on G}
and define an Hermitian inner product on €, (G) by
i e
(@B = — Y. a(g)flg) (2.11)

- |G| geG
Formula (2.10) then amounts to

Theorem 2.12. In terms of this inner product, the characters of the irreducible
representations of G are orthonormal.

For example, the orthonormality of the three irreducible representations
of ©4 can be read from its character table in Example 2.6, The numbers over
each conjugacy class tell how many times to count entries in that column.

Corollary 2.13. The munber of irreducible representations of G is less than or
equal to the number of conjugacy classes.
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We will soon show that there are no nonzero class functions orthogonal
to the characters, so that equality holds in Corollary 2.13.

Corollary 2.14. Any representation is determined by its character.

Indeedifl V= VP @ - @ V& with the V, distinct irreducible characters,
then y, = ) a,xy,, and the x,, are linearly independent.

Corollary 2.15. A representation V is irreducible if and only if (xy, xv) = 1.

In fact, if V = V@ @ - @ VB as above, then (xy, x,,) = 3, a.
The multiplicities a, can be calculated via

Corollary 2.16. The multiplicity a, of Vyin V is the inner product of x, with y, ,
ie, a;= (Xy, Xv,)'

We obtain some further corollaries by applying ail this to the regular
representation R of G. First, by Exercise 2.5 we know the character of R; it is
simply

()_{0 ifg+#e
WI=NG ifg=e.

Thus, we see first of all that R is not irreducible if G # {e}. In fact, if we set
R = @ V;®*, with ¥, distinct irreducibles, then

1 .
a; = (xv,» Xp) = ﬁxv,(e)'IGl = dim V. (2.17)

Corollary 2.18. Any irreducible representation V of G appears in the regular
representation dim V times.

In particular, this proves again that there are only finitely many irreducible
representations. As a numerical consequence of this we have the formula

|G| = dim(R) = ¥ dim(K)>. (2.19)

Also, applying this to the value of the character of the regular representation
on an element g € G other than the identity, we have

0= (dim ) x,(9) ifg#e. (2.20)

These two formulas amount to the Fourier inversion formula for finite groups,
cf. Example 3.32. For example, il a1l but one of the characters is known, they
give a formula for the unknown character.

Exercise 2.21. The orthogonality of the rows of the character table is equiv-
alent to an orthogonality for the columns (assuming the fact that there are as
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many rows as columns). Written out, this says:
(i) Forge G,

where the sum is over all irreducible characters, and c(g) is the number of
elements in the conjugacy class of g.
(ii) If g and h are elements of G that are not conjugate, then

Y. x(@x(h) = 0.

X

Note that for g = e these reduce to (2.19) and (2.20).

§2.3. Examples: S, and N,

To see how the analysis of the characters of a group actually goes in practice,
we now work out the character table of &,. To start, we list the conjugacy
classes in ©, and the number of elements of S, in each. As with any symmetric
group S,, the conjugacy classes correspond naturally to the partitions of d,
that is, expressions of d as a sum of positive integers a, a,, ..., a,, where
the correspondence associates to such a partition the conjugacy class of a
permutation consisting of disjoint cycles of fength a,, a,, ..., a;. Thus, in &,
we have the classes of the identity element 1 d =1+ 1+ 1 + 1), a trans-
position such as (12), corresponding to the partition 4 =2 + 1 + 1; a three-
cycle (123) corresponding to 4 = 3 + |; a four-cycle (1234) (4 = 4); and the
product of two disjeint transpositions (12)(34) (4 = 2 + 2).

Exercise 2.22. Show that the number of elements in each of these conjugacy
classes is, respectively, 1, 6, 8, 6, and 3.

As for the irreducible representations of &, we start with the same ones
that we had in the case of S,: the trivial U, the alternating U’, and the
standard representation V, i.e., the quotient of the permutation representation
associated to the standard action of &, on a set of lour elements by the
trivial subrepresentation. The character of the trivial representation on the
five conjugacy classes is of course (1, 1, 1, 1, 1), and that of the alternating
representation is (1, —1,1, — 1, 1). To find the character of the standard
representation, we observe that by Exercise 2.5 the character of the permuta-
tion representation on C*is yc. = (4, 2, 1, 0, 0) and, correspondingiy,

XV=XC"_IU=(3’ 1,0, -1, —1)

Note that jx, | = 1, so V is irreducible. The character table so far looks like



§2.3. Examples: S, and H, 19

1 6 8 6 3l

e, 1 (12) (123) (1234) (12)(34)
trivial U 1 1 1 I {
alternating U’ | —1 I —1 i
standard ¥V 3 1 0 —1 —1

Clearly, we are not done yet: since the sum of the squares of the dimensions
of these three representations is I + 1 +9 = 11, by (2.19) there must be
additional irreducible representations of G, the squares of whose dimensions
add upto24 — 11 = 13. Since there are by Corollary 2.13 at most two of them,
there must be exactly two, of dimensions 2 and 3. The latter of these is easy
to locate: if we just tensor the standard representation ¥ with the alternating
one U’, we arrive at a representation V' with character x,. = xp  Yv- =
(3, —1,0, 1, —1). We can see that this is irreducible either from its character.
(since |xy-] = 1) or from the fact that it is the tensor product of an irreducible
representation with a one-dimensional one; since its character is not equal to
that of any of the first three, this must be one of the two missing ones. As for
the remaining representation of degree two, we will for now simply call it W;
we can determine its character from the orthogonality relations (2.10). We
obtain then the complete character table for &,:

1 6 8 6 3
S, | (12) (123) (1234) (12)(34)
trivial U 1 1 f i 1
alternating U’ 1 —1 1 -1 |
standard V 3 i 0 —1 -1
V=Veu 3 -1 0 i —1
Another W 2 0 -1 0 2

Exercise 2.23. Verify the last row of this table from (2.10) or (2.20).

We now get a dividend: we can take the character of the mystery represen-
tation W, which we have obtained from general character theory alone, and
use it to describe the representation W explicitly! The key is the 2 in the last
column for y,: this says that the action of (12)(34) on the two-dimensional
vector space W is an involution of trace 2, and so inust be the identity. Thus,
W is really a representation of the quotient group!

Y If N is a normal subgroup of a group G, a representation p: G — GL(V) is trivial on N if and
only if it factors through the quotient

G - G/N = GL(V).

Representations of G/N can be identified with representations of G that are trivial on N,
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&,/{1, (12)(34), (13)(24), (14)(23)} = &,.

[One may sce this isomorphism by letting &, acl on the elements of the
conjugacy class of (12)(34); equivalently, if we realize &, as the group of rigid
motions of a cube (see below), by looking at the action of &, on pairs of
opposite faces.] W must then be just the standard representation of &, pulled
back to &, via this quotient,

Example 2.24. As we said above, the group of rigid motions of a cube is the
symmetric group on four letters; &, acts on the cube via its action on the four
long diagonals. It follows, of course, that &, acts as well on the set of faces,
of edges, of vertices, etc.; and Lo each of these is associated a permutation
representation of &,. We may thus ask how these representations decompose;
we will do here the case of the faces and leave the others as exercises.

We start, of course, by describing the character y of the permutation
representalion associated to the faces of the cube. Rotation by 180° about a
line joining the midpoints of two opposite edges is a transposition in €, and
fixes no faces, so y(12) = 0. Rotation by 120° about a long diagonal shows
x(123) = 0. Rotation by 90° about a line joining the midpoints of two opposite
faces shows x(1234) = 2, and rotation by 180° gives x((12)(34)) = 2. Now
(x, ¥) = 3, so yx is the sum of three distinct irreducible representations. From
the table, (x, xv) = (6, xv) = (t, xw) = 1, and the inner products with the
others are zero, so this representation is U@ V' @ W. In fact, the sums of
opposite faces span a three-dimensional subrepresentation which contains U
(spanned by the sum of all [aces), so this representation is U@ W. The
differences of opposite faces therelore span V.

Exercise 2.25*. Decompose the peninutation representation of &, on (i) the
vertices and (ii) the edges of the cube.

Exercise 2.26. The alternating group 2, has four conjugacy classes. Three
representations U, U', and U”" come from the representations of
W41, (12)(34), (13)(24), (19)(23)} = 23,

so there is one more irreducible representation V of dimension 3. Compute
the character table, with @ = 2™7;

t 4 4 3
L (123 (132} (12(34)
| |

= -

€,

U
U
U

4
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Exercise 2.27. Consider the representations of S, and their restrictions to 21,.
Which are still irreducible when restricted, and which decompose? Which
pairs of nonisomorphic representations of &, become isomorphic when
restricted? Which representations of 91, arise as restrictions from &,?

§2.4. More Projection Formulas; More Consequences

In this section, we complete the analysis of the characters of the irreducible
representations of a general finite group begun in §2.2 and give a more general
formula for the projection of a general representation V onto the direct sum
of the factors in V isomorphic to a given irreducible representation W. The
main idea for both is a generalization of the “averaging” of the endomorphisms
g: V - V used in §2.2, the point being that instead of simply averaging all the
g we can ask the question: what linear combinations of the endomorphisms
g: V — V are G-linear endomorphisms? The answer is given by

Proposition 2.28. Let a: G — C be any function on the group G, and for any
representation V of G set

Gy =2 alg) g: V-V

Then ¢,y is a homomorphism of G-modules for all V if and only if « is a class
Junction,

Proor. We simply write out the condition that ¢, , be G-linear, and the result
falis out: we have

@ay(hv) =} alg)- g(hv)
=Y alhgh™')- hgh™' (hv)
(substituting hgh™! for g)
= h(}_ a(hgh*)-g(v))
= h(}_ a(g)-g(v))
(if o is a class function)

= h(@,v(v)).
Exercise 2.29*. Complete this proof by showing that conversely if « is not a
class function, then there exists a representation ¥ of G for which ¢,  fails to

be G-linear. O

As an immediate consequence of this proposition, we have
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Proposition 2.30. The number of irreducible representations of G is equal to the
number of conjugacy classes of G. Equivalently, their characters {x, } form an
orthonormal basis for C,..(G).

ProOF. Suppose a: G — € is a class function and (o, x, ) = 0 for all irreducible
representations V; we must show that a = 0. Consider the endomorphism

Pay =, alg) g: V>V
as defined above. By Schur’s lemma, ¢, , = A-Id; and if n = dim V, then

1
= —-{r
" ace((pa.l’)

|
= E Z x(g)xv(9)

= !‘il(“ Xv*)

= (),

Thus, ¢, , = 0, or Y, «(g)-g = 0 on any representation ¥ of G; in particular,
this will be true for the regular representation ¥ = R. But in R the elements
{g & G}, thought of as elements of End(R), are linearly independent. For
example, the elements {g(e)} are all independent. Thus «(g) = 0 for all g, as
required. J

This proposition completes the description of the characters of a finite
group in general, We will see in more examples below how we can use this
information to build up the character table of a given group. For now, we
mention another way of expressing this proposition, via the representation
ring of the group G.

The representation ring R(G) of a group G is easy to define. First, as a group
we just take R{G) to be the free abelian group generated by all (isomorphism
classes of) representations of G, and mod out by the subgroup generated by
elements of the form V + W — (V @ W). Equivalently, given the statement of
complete reducibility, we can just take all integral linear combinations ) a,* ¥
of the irreducible representations ¥, of G; elements of R(G) are correspondmgly
called virtual representations. The ring structure is then given simply by tensor
product, defined on the generators of R(G) and extended by linearity.

We can express most of what we have learned so far aboul representations
of a finite group G in these terms. To begin, the character defines a map

X R(G) - Cclnss(G)

from R(G}to the ring of complex-valued functions on G; by the basic formulas
of Proposition 2.1, this map is in fact a ring homomorphism. The statement
that a representationin determined by its character then says that x is injective;
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the images of y are called virtual characters and correspond thereby to virtual
representations. Finally, our last proposition amounts to the statement that
x induces an isomorphism

Xc: R(G) ® C - Cclnss(G)-

The virtual characters of G form a lattice A = Z°¢ in C,,,,(G), in which the
actual characters sit as a cone Ay =~ N° < Z°. We can thus think of the
problem of describing the characters of G as having two parts: first, we have
to find A, and then the cone Ay < A (once we know Ay, the characters of the
irreducible representations will be determined). In the following lecture we
will state theorems of Artin and Brauer characterizing A ® Q and A.

The argument for Proposition 2.30 also suggests how Lo obtain a more
general projection formula. Explicitly, if W is a fixed irreducible representation,
then for any representation V, look at the weighted sum

¥ =— 2 xwl(g)geEnd(V)
|G|yeG

By Proposition 2.28, s is a G-module homomorphism. Hence, if V is irreduc-
ible, we have y = A-1d, and

1
S, |
dim V race §

1
FmV Gl Z 1w(g) 1v(9)
L fv=w
= ddimV B
0 v W
For arbitrary V,

py=dimW-.— 3 yulg)g: V-V (2.31)
ICIg

is the projection of V onto the factor consisting of the sum of all copies of W
appearing in V. In other words, if V = (P V;®™, then

Y w9 g (2.32)

i
= dim V-
= CMAE

is the projection of ¥ onto V2™,

Exercise 2.33%, (a) In terms of representations ¥V and W in R(G), the inner
product on €, (G) takes the simple form

(¥, W) = dim Homg(V, W).
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(b) Il x € C_,.(G) is a virtual character, and (x, y) = 1, then either y or —y
is the character of an irreducible representation, the plus sign occurring when
x(1)> 0. I (x, y) = 2, and x(1) > 0, then y is either the sum or the difference
ol two irreducible characters.

(c) IfU, ¥, and W are irreducible representations, show that U appears in
V ® W il and only if W occurs in V* ® U. Deduce that this cannot occur
unless dim U > dim W/dim V.

We conclude this lecture with some exercises that use characters to work
out some standard facts about representations.

Exercise 2.34*. Let V and W be irreducible representations of G, and
Ly: V — W any linear mapping. Define L: V - W by

1
Liv)= — 1 Lo{g-v).
(v) |G|g§;g olg°v)

Show that L. = 0if V and W are not isomorphic, and that L is multiplication
by trace(Ly)/dim(V)if V = W,

Exercise 2.35*. Show that, if the irreducible representations of G are represented
by unitary matrices [cf. Exercise 1.14], the matrix entries of these representa-
tions form an orthogonal basis for the space of all functions on G [with inner
product given by (2.1 1}].

Exercise 2.36*. If GG, and G, are groups, and V, and V, are representations of
G, and G, then the tensor product ¥; ® V, is a representation of G, x G,,
by (g, x ¢,)-(vy ®v,) =g, v, ® g, v,. To distinguish this “external” tensor
product from the internal tensor product—when G, = G,—this external
tensor product is sometimes denoted V, @ V,. If g, is the character of ¥, then
the value of the character y of ¥V, @V, is given by the product:

x(g: % g2} = x:(g:)x2(g2)-

H ¥, and V, are irreducible, show that V, @V, is also irredugible and show
that every irreducible representation of G, x G, arises this way. In terms of
representation rings,

R{G, x G;) = R(G,)® R(G,).

In these lectures we will often be given a subgroup G of a general linear
group GL(V), and we will look for other representations inside tensor powers
of V. The following problem, which is a theorem of Burnside anid Molien,
shows that for a finite group G, all irreducible representations can be found
this way.
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Problem 2.37*. Show that if V is a faithful representation of G, ie., p: G —»
GL(V) is injective, then any irreducible representation of G is contained in
some tensor power V" of V.

Problem 2.38*. Show that the dimension of an irreducible representation of
G divides the order of G.

Another challenge:
Problem 2.39*. Show that the character of any irreducible representation of

dimension greater than 1 assumes the value 0 on some conjugacy class of the
group.



LECTURE 3

Examples; Induced Representations;
Group Algebras; Real Representations

This lecture is something of a grabbag. We start in §3.1 with examples illustrating the
use of the techniques of the preceding lecture. Section 3.2 is also by way of an example,
We will see quite a bit more about the representations of the symmetric groups in
general later; §4 is devoted to this and will certainly subsume this discussion, but this
should provide at least a sense of how we can go about analyzing representations of
a class of groups, as opposed to individual groups. In §§3.3 and 3.4 we introduce two
basic notions in representation theory, induced representations and the group algebra.
Finally, in §3.5 we show how to classily representations of a finite group on a real
vector space, given the answer to the corresponding question over C, and say a few
words about the analogous question for subfields of C other than R. Everything in this
lecture is elementary except Exercises 3.9 and 3.32, which involve the notions of Clifford
aigebras and the Fourier transform, respectively (both exercises, of course, can be

skipped).

§3.1: Examples: &, and U,

§3.2: Exterior powers of the standard representation of S,
§3.3: Induced representations

§3.4: The group algebra
§3.5: Real representations and representations over subfields of C

§3.1. Examples: G5 and 2,

We have found the representations of the symmetric and alternating groups
for n < 4. Before turning to a more systematic study of symmetric and alter-
nating groups, we will work out the next couple of cases.
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Representations of the Symmetric Group S,

As before, we start by listing the conjugacy classes of &, and giving the number
of elements of each: we have 10 transpositions, 20 three-cycles, 30 four-cycies
and 24 five-cycles; in addition, we have 15 elements conjugate to (12)(34) and
10 elements conjugate to (12){345). As for the irreducible representations, we
have, of course, the trivial representation U, the alternating representation U",
and the standard representation V; also, as in the case of &, we can tensor
the standard representation V with the alternating one to obtain another
irreducible representation V' with character x,. = %y * xu-.

Exercise 3.1. Find the characters of the representations ¥ and V’; deduce in
particular that ¥ and V' are distinct irreducible representations.

The first four rows of the character table are thus

1 10 20 30 24 15 20

S, | 1 (1) (123) (1234  (12345)  (12(34)  (12)(345)
U 1 1 1 1 1 1 1
Ul -1 1 -1 1 1 —1
v | 4 2 i 0 -1 0 -1
v I 4 -2 1 0 —1 0 [

Clearly, we need three more irreducible representations. Where should we
look for these? On the basis of our previous experience (and Problem 2.37), a
natural place would be in the tensor products/powers of the irreducible
representations we have found so far, in particular in ¥V ® V (the other two
possible products will yield nothing new: wehave V'®@ V=V ® V® U’ and
V'®V' =V® V). Of course, ¥ ® V breaks up into A?V and Sym?V, so we
look at these separately. To start with, by the formula

xnv(@) = (@) — 1))
we calculate the character of A2V
Xpy = (6s Os Os 0; l, _23 0);

we see from this that it is indeed a fifth irreducible representation (and that
AV @ U’ = AV, so we get nothing new that way).

We can now find the remaining two representations in either of two ways.
First, if n, and n, are their dimensions, we have

51=120= 124+ 12 + 42 + 42 + 6 + n} + n3,

s0 n? + n = 50, There are no more one-dimensional representations, since
these are trivial on normal subgroups whose quotient group is cyclic, and 2,
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is the only such subgroup. So the only possibility isn, = n, = 5. Let W denote
one of these five-dimensional representations, and set W’ = W® U’. In the
table, if the row giving the character of W is

(5 oy oy o3 o4 o5 Og),

that of W is(5 —a; a, —a; a, as —og) Using the orthogonality
relations or (2.20), one sees that W’ 2 W; and with a little calculation, up to
interchanging W and W, the [ast two rows are as given:

P10 20 30 24 (5 20
S | 1 (12 (123) (1234 (12345  (12)(34)  (12)(345)
Ui 1 1 I 1 1 |
Ul -t ! — { 1 ~1
v | 4 2 1 0 —1 0 ~1
vila -2 I 0 1 0 !
AV | o6 0 0 0 : -2 0
Wl s 1 ~1 —1 0 | 1
weol s 1 -1 1 0 ! ~1

From the decomposition V@ U = C*, we have also A*V = A\C* = U’,
and V* = V. The perfect pairing’

Vx NBvV-N\Y=U,

taking v x (v, A v; A v3) tO B A ] A v, A vy shows that AV is isomorphic
oV*QU =V,
Another way to find the representations W and W’ would be to proceed

with our original plan, and look at the representation Sym?V, We will leave
this in the form of an exercise:

Exercise 3.2. (i) Find the character of the representation Sym?2V,
(i) Without using any knowledge of the character table of Sy, use this to
show that Sym?V is the direct sum of three distinct irreducible representations.
(iii) Using our knowledge of the first five rows of the character table, show
that Sym?V is the direct sum of the representations U, ¥, and a third irreduc-
ible representation W. Complete the character table for &,.

Exercise 3.3. Find the decomposition into irreducibles of the representations
AW, Sym?W, and V ® W.

YUl ¥ and W are n-dimensional vector spaces, and U is one dimensional, a perfect pairing is a
bilinear map fi: ¥ x W — U such that no nonzero vector v in ¥ has fi(v, W) = (. Equivalently,
the map ¥ -+ Hom(W, U) = W* ® U, v+ (wr— f{v, w)), is an isomorphism.
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Representations of the Alternating Group 2

What happens to the conjugacy classes above if we replace S, by U,?
Obviously, all the odd conjugacy classes disappear; but at the saine time, since
conjugation by a transposition is now an outer, rather than inner, auto-
morphism, some conjugacy classes may break into two.

Exercise 3.4. Show that the conjugacy class in S, of permutations consisting
of products of disjoint cycles of lengths b,, b,, ... will break up into the union
of two conjugacy classes in U, if all the b, are odd and distinct; if any b, are
even or repeated, it remains a single conjugacy class in N,. (We consider a
fixed point as a cycle of length 1)

In the case of 2, this means we have the conjugacy class of three-cycles
(as before, 20 elements), and of products of two disjoint transpositions (15
elements); the conjugacy class of five-cycles, however, breaks up into the
conjugacy classes of (12345) and (21345), each having 12 elements.

As for the representations, the obvious first place to look is at restrictions
to A of the irreducible representations of S5 found above. An irreducible
representation of ©; may become reducible when restricted to %U,; or two
distinct representations may become isomorphic, as will be the case with U
and U', ¥V and V', or W and W’ In fact, U, ¥, and W stay irreducible
since their characters satisfy (y, ) = 1. But the character of A’V has values
(6,0, —2, 1, 1) on the conjugacy classes listed above, so (x, x) = 2, and A2V is
the sum of two irreducible representations, which we denote by ¥ and Z. Since
the sums of the squares of all the dimensions is 60, (dim ¥)? + (dim Z)? = 18,
so each must be three dimensional.

Exercise 3.5. Use the orthogonality relations to complete the character table
of U,:

1 20 15 12 12
A, | 1 (123 (19(34)  (12345)  (21345)
U 1 i | 1 |
Vv 4 | 0 -1 -1
wls -1 L 0 0
Y 3 0 -1 l__+_\/§ l_f__\é
2 7
z |3 0 ~1 ! “2\/ o] +23[§

The representations Y and Z may in fact be familiar: 2 can be realized as
the group of motions of an icosahedron (or, equivalently, of a dodecahedron)
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and Y is the corresponding representation. Note that the two representations
N, — GL4(R) corresponding to ¥ and Z have the same image, but (as you
can see from the fact that their characters differ only on the conjugacy classes
of (12345) and (21345)) differ by an outer automorphism of 2.

Note also that A’V does not decompose over Q; we could see this directly
from the fact that the vertices of a dodecahedron cannot all have rational
coordinates, which follows from the analogous fact for a regular pentagon in
the plane.

Exercise 3.6. Find the decomposition of the permutation representation of 2
corresponding to the (i) vertices, (ii) faces, and (iii) edges of the icosahedron.

Exercise 3.7. Consider the dihedral group D,,, defined to be the group of
isometries of a regular n-gon in the plane. Let I' = Z/n < D,, be the subgroup
of rotations. Use the methods of Lecture | (applied there to the case S; == D)
to analyze the representations of D,,: that is, restrict an arbitrary representa-
tion of D,, to I, break it up into eigenspaces for the action of I', and ask how
the remaining generator of D,, acts of these eigenspaces.

Exercise 3.8. Analyze the representations of the dihedral group D,,, using the
character theory developed in Lecture 2.

Exercise 3.9. (a) Find the character table of the group of order 8 consisting of
the quaternions {41, +i, j, +k} under multiplication. This is the case
m = 3 of a collection of groups of order 2™, which we denote H,,. To describe
them, let C,, denote the complex Clifford algebra generated by v, ..., v,, with
relations v = —1 and v, v, = —v,-v,, so C, has a basis v, = v;, *-.. Uy, @S
I ={i; <--- <i,) varies over subsets of {1, ..., m}. (See §20.1 for notation and
basic facts about Clifford algebras). Set

H, = {+v,;:|l]|is even} = (C*")*.

This group is a 2-to-1 covering of the abelian 2-group of m x m diagonal
matrices with 4| diagonal entries and determinant 1. The center of H,, is
{21} ifmis odd and is {1, £v[,, .} il mis even. The other conjugacy
classes consist of pairs of elements { + v, }. The isomorphisms; of C5*" with a
matrix algebra or a product of two matrix algebras give a 2"-dimensional
“spin” representation S of H,,,,, and two 2"~'-dimensional “spin” or “half-
spin” representations $* and §~ of H,,.

{b) Compute the characters of these spin representations and verify that
they are irreducible.

(c) Deduce thal the spin representations, together with the 2! one-
dimensional representations coming from the abelian group H,,/{ 1} give a
complete set of irreducible representations, and compute the character table
for H,.
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For odd i the groups H,, are examples of extra-special 2-groups, cf. [Grie],

[Qu].
Exercise 3.10. Find the character table of the group SL,(Z/3).

Exercise 3.11. Let H(Z/3) be the Heisenberg group of order 27:

1 a b
HZ/)=410 1 ¢ |abceZ/3t cSLyZ/3).
0 0 1t

Analyze the representations of H(Z/3), first by the methods of Lecture |
(restricting in this case to the center

1 0 b
z=4l0o 1 olbezn}=2zn3
0 0 1
of H(Z/3)), and then by character theoty.

§3.2. Exterior Powers of the Standard
Representation of &,

How should we go about constructing representations of the symmetric
groups in general? The answer to this is not immediate; it is a subject that will
occupy most of the next lecture (where we will produce all the irreducible
representations of S,). For now, as an example of the elementary techniques
developed so far we will analyze directly one of the obvious candidates:

Proposition 3.12. Each exterior power N\*V of the standard representation V of
S, is irreducible, 0 <k <d — 1.

PrOOF. From the decomposition C* = ¥ @ U, we see that V is irreducible if
and only if (xce, xca) = 2. Similarly, since
NC! = (NV RN NT'VRN Y =NV @ NV,

it suffices to show that (x, x) == 2, where y is the character of the representation
NC? Let 4 ={1,2,...,d}. For asubset B of A with k elements,andge G =
S, let

0 ifg(B)#B
{9}s = 1 if g(B) = B and g is an even permutation
—1 ifg(B) = B and g}, is odd.
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Here, if g(B) = B, gl denotes the permutation of the set B determined by g.
Then x(g) = . {g}s, and

(6 x) = 211‘1 ':LG (; {9}3)2

!geG

i ; ; ; (sgn glp)- (581 glc),

where the sums are over subsets B and C of 4 with k elements, and in the last
equation, the sum is over those g with g(B) = B and g(C) = C. Such g is given
by four permutations: one of B C, one of B\B n C, one of C\B n C, and one
of A\B v C. Letting [ be the cardinality of B n C, this last sum can be written

31-122 ¥ ; Y. ) (sena)’(sgn b)(sgnc)

+ B C ae GibE -1 €€ Gl(_[ he Gd-zk‘pl

= % T LN = 2%+ 1) (bg sgn b) (}; sgn c)-

These last sums are zero unless k — | = 0 or 1. The case k = | gives

1 [ (d
3 Lk~ kit = a—!(k)k!(n -k =1,

Similarly, the terms with k — [ = 1 also add up to 1, s0 (%, x) = 2, as required.
O

I

ZBZZCZ {g}alg}c

[~

2,

Note by way of contrast that the symmetric powers of the standard repre-
sentation of S, are almost never irreducible. For example, we already know
that the representation Sym? ¥ contains one copy of the trivial representation:
this is just the statement that every irreducible real representation (such as V)
admits an inner product (unique, up to scalars) invariant under the group
action; nor is the quotient of Sym?2V by this trivial subrepresentation neces-
sarily irreducible, as witness the case of S,

§3.3. Induced Representations

If H = Gisasubgroup, any representation V of G restricts to a representation
of H, denoted Res§ V or simple Res V. In this section, we describe an impor-
tant construction which produces representations of G from representations
of H. Suppose V is a representation of G, and W < V is a subspace which is
H-invariant. For any g in G, the subspaceg- W = {g-w: w e W} depends only
on the left coset gH of g modulo H,sincegh-W = g-(h- W) = g- W;lor a coset
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o in G{H, we write ¢ - W for this subspace of V. We say that V is induced by W
if every element in ¥ can be written uniquely as a sum of elements in such
translates of W, i.e.,

V=@ oW

ceGIH

In this case we write V = Ind§jW = Ind W,

Example 3.13. The permutation representation associated to the left action of
G on G/H is induced from the trivial one-dimensional representation W of H.
Here V has basis {e,: 0 € G/H}, and W = C- ¢y, with H the trivial coset.

Example 3.14. The regular representation of G is induced from the regular
representation of H. Here V has basis {¢,: g € G}, whereas W has basis
e, he H}.

We claim that, given a representation W of I, such V exists and is unique
up to isomorphism. Although we will later give several fancier ways to see
this, it is not hard to do it by hand. Choose a representative g, € G for each
coset o € G/, with e representing the trivial coset H. To see the uniqueness,
note that each element of ¥ has a unique expression v = ) g, w,, for elements
w, in W. Given g in G, write g-¢g, = g, It for some 1 € G/H and h € H. Then
we must have

g (GoW,) = (9°g,)W, = (g, W)w, = g.(hw,).

This proves the uniqueness and tells us how to construct ¥V = Ind(W) from
W. Take a copy W7 of W for each left coset 0 € G/I1; for w e W, let g,w denote

the element of W" corresponding to w in W. Let V= (P W<, so every
oeGIH
element of ¥ has a unique expression v = ) g, w, for elements w, in W. Given

g € G, define

g:(g,w,) = g.(hw,) ilg-g,=g, h

To show that this defines as action of G on ¥, we must verify that g’ - (g (g,w,))
= (g’ g)*(g,w,) for another element g’ in G. Now if g’ g, = g, I, then

g (g:(g,w,)) = 9" (gi(hw,)) = g, (W (hw,)).
Since (9 9)'9, =9 '(9°9,) =" 9. h =g, W -h, we have

(9" 9) (g,w,) = g, (I - hyw,) = g, (W - (hw,)),
as required.

Example 3.15. [f W = (P W}, then Ind W = P Ind W,.

The existence of the induced representation follows from Examples 3.14
and 3.15 since any W is a direct sum of summands of the regular representation.



34 3. Examples; Induced Representations; Group Algebras; Real Representations

Exercise 3.16. (a) If U is a representation of G and W a representation of H,
show that (with all tensor products over C)

U ® Ind W = Ind(Res(U) ® W).

In particular, Ind(Res(U)} = U ® P, where P is the permutation representa-
tion of G on G/H. For a formula for Res(Ind(W)), for W a representation of
H, see [Se2, p. 58].

(b) Like restriction, induction is transitive: if H « K < G are subgroups,
show that

Ind$(W) = Ind$(IndX ).

Note that Example 3.15 says that the map Ind gives a group homomor-
phism between the representation rings R(H) and R(G), in the opposite direc-
tion from the ring homomorphism Res: R(G) - R(H) given by restriction;
Exercise 3.16(a) says that this map satisfies a “push—pull” formula a - Ind(f) =
Ind(Res(a)- f) with respect to the restriction map.

Propasition 3.17. Let W be a representation of H, U a representation of G, and
suppose V = Ind W. Then any H-module homomorphism ¢: W — U extends
uniquely to a G-module homomorphism $: V — U. ie.,

Homy (W, Res U) = Hom(Ind W, U).
In particular, this universal property determines Ind W up to canonical
isomorphism.
Proor. With V = @, . g,4 0 W as before, define ¢ on - W by
o WEL W2,y U,
which is independent of the representative g, for o since ¢ is H-linear.  []
To compute the character of V = Ind W, note that g € G maps W to go W,

so the trace is calculated from those cosets ¢ with go = g, ie., s 'gse H lor
s € 0. Therefore,

Ximaw(g) = Z 1w(s™'gs) (s € o arbitrary). : (3.18)

go=o

Exercise 3.19. (a) If C is a conjugacy class of G, and C n H decomposes into
conjugacy classes D,, ..., D, of H, (3.18) can be rewritten as: the value of the
character of Ind W on C is

|Gl & IDil
aw(©) =1 Y Sy D),
Xina w( | H]| eZi C| xw(D;)
(b) If W is the trivial representation of !, then
[G:H .
Yinaw(C) = ——— 1 JCnH|.

IC|
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Corollary 3.20 (Frobenius Reciprocity). If W is a representation of H, and U a
representation of G, then

(Xinaws Xvde = (Xw) Xresv)n-

ProoF. It suffices by linearity to prove this when W and U are irreducible.
The left-hand side is the number of times U appears in Ind W, which is
the dimension of Homg(Ind W, U). The right-hand side is the dimension of
Hom,,(W, Res U). These dimensions are equal by the proposition. O

If Wand U are irreducible, Frobenius reciprocity says: the number of times
U appears in Ind W is the same as the number of times W appears in Res U.

Frobenius reciprocity can be used to find characters of G if characters of
H are known.

Example 3.21. We compute Ind§W, when H =S, =« G = S,, W=V, (the
standard representation) = U, (the alternating representation). We know the
irreducible represenatations of S,: U,, U3, V3, which restrict to U,, U; = V;,
U, & Uj,, respectively. Thus, by Frobenius, Ind ¥V, = U; @ V,.

Example 3.22. Considernext H = €, « G = &,, W = F,. Again we know the
irreducible representations, and Res Uy = U,, Res U; = U3, Res V, = U, @ V,
[the vector

(I, l, l, —3)6 V4 = {(x],xZ, JC3, X4)ZZ X = 0}

isfixed by H], Res Vy = U; @ V3, with V3 = V,,and Res W, = V;{as one may
see directly). Hence, Ind Vy = V, @ V; @ W,. (Note that the isomorphism
Res W, = V, actually follows, since one W, is all that could be added to
Vo Vg to get Ind V)

Exercise 3.23. Determine the isomorphisin classes of the representationsof &,
induced by (i) the one-dimensional representation of the group generated by
(1234) in which (1234)v = iv, i = \/——_l; (ii) the one-dimensional representa-
tion of the group generated by (123) in which (123)-v = ¢2*Py.

Exercise 3.24. Let H =, c G = G,. Show that Ind U =U @ U', Ind V =
Ve V,and Ind W= W@ W', whereas Ind Y = Ind Z = A?V.

Exercise 3.25*. Which irreducible representations of S, remain irreducible
when restricted to ;7 Which are induced from 21,7 How much does this tell
you about the irreducible representations of ,?

Exercise 3.26%, There is a unique nonabelian group of order 21, which can be
realized as the group of afline transformations x+ ax + f of the line over the
field with seven elements, with o a cube root of unity in that field. Find the
irreducible representations and character table for this group.
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Now that we have introduced the notion of induced representation, we can
state two important theorems describing the characters of representations of
a finite group. In the preceding lecture we mentioned the notion of virtual
character; this is just an element of the image A of the character map

X3 R(G) B Cclass(G)

from the representation ring R(G) of virtual representations. The following
two theorems both state that in order to generate A ® Q (resp. A) it is enough
to consider the simplest kind of induced representations, namely, those induced
from cyclic (respective elementary) subgroups of G. For the proofs of these
theorems we refer to [Se2, §9, 10]. We will not need them in these lectures.

Artin’s Theorem 3.27. The characters of induced representations from cyclic
subgroups of G generate a lattice of finite index in A.

A subgroup H of G is p-elementary if H = A x B, with A cyclic of order
prime to p and B a p-group.

Brauer’s Theorem 3.28. The characters of induced representations from elemen-
tary subgroups of G generate the lattice A.

§3.4. The Group Algebra

There is an important notion that we have already dealt with implicitly but
not explicitly; this is the group algebra CG associated to a finite group G. This
is an object that for all intents and purposes can completely replace the group
G itself; any statement about the representations of G has an exact equivalent
statement about the group algebra. Indeed, to a large extent the choice of
language is a matter of taste.

The underlying vector space of the group algebra of G is the vector space
with basis {e } corresponding to elements of the group G, that is, the under-
lying vector space of the regular representation. We define the algebra struc-
ture on this vector space simply by

eg ‘ e,, = egh'

By a representation of the algebra CG on a veclor space V we mean simply
an algebra homomorphism

CG — End(V),

so that a representation ¥ of CG is the same thing as a left CG-module. Note
that a representation p: G ~» Aut(¥) will extend by linearity toamap 5: CG —
End(V), so that representations of CG correspond exactly to representations
of G; the left CG-module given by CG itself corresponds to the regular
representation.
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If { W} are the irreducible representations of G, then we have seen that the
regular representation R decomposes

R = G_) (H/i)EBdim(W,)_

We can now refine this statement in terms of the group algebra: we have

Proposition 3.29. As algebras,
CG = (P End(W)).

Proo¥. As we have said, for any representation W of G, the map G — Aut(W¥)
extends by linearity to a map CG — End(W); applying this to each of the
irreducible representations W, gives us a canonical map

@: CG —» @ End(W)).

This is injective since the representation on the regular representation is
faithful. Since both have dimension ) (dim W,)?, the map is an isomorphism.

0O

A few remarks are in order about the isoinorphism ¢ of the proposition.
First, ¢ can be interpreted as the Fourier transform, cf. Exercise 3.32. Note
also that Proposition 2.28 has a natural interpretation in terms of the group
algebra: it says that the center of CG consists of those ) a(g)e, for which « is
a class function.

Next, we can thinkof ¢ as the decomposition of the semisimple algebra CG
into a product of matrix algebras. It implies that the matrix entries of the
irreducible representations give a basis for the space of all functions on G, cf.
Exercise 2.35.

Note in particular that any irreducible representation is isomorphic to a
(minimat) left ideal in CG. These left ideals are generated by idempotents. In
fact, we can interpret the projection formulas of the last lecture in the language
of the group algebra: the formulas say simply that the elements

dim WL S 1wig) e, eCG
|Gl geG
are the idempotents in the group algebra corresponding to the direct sum
factors in the decomposition of Proposition 3.29. To locate the irreducible
representations W, of a group G [not just a direct sum of dim(W¥,) copies], we
want to find other idempotents of CG. We will see this carried out for the
symmetric groups in the following lecture.

The group algebra also gives us another description of induced representa-

tions: if W is a representation of a subgroup H of G, then the induced
representation may be constructed simply by
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where G acts on the first factor: g+ (e, ® w) = ¢,,, ® w. The isomorphism of
the reciprocity theorem is then a special case of a general formutla for a change
of rings CH — CG:

Hom ¢u(W, U) = Hom ¢(CG Qcy W, U).
Exercise 3.30*. The induced representation Ind(W) can also be realized con-
cretely as a space of W-valued functions on G, which can be useful to produce

matrix realizations, or when trying to decompose Ind(W) into irreducible
pieces. Show that Ind(W) is isomorphic to

Hom,(CG, WY {f: G- W:f(hg) = hf(g), Yhe H,ge G},
where G acts by (¢ )(g) = f(gq")
Exercise 3.31. If CG is identified with the space of functions on G, the function

¢ corresponding to )’ _. ¢(g)e,, show that the product in CG corresponds
to the convolution * of functions:

(p+¥)(g) = hZG p(y(h™'g).

(With integration replacing summation, this indicates how one may extend
the notion of regular representation to compact groups.)

Exercise 3.32*. If p: G - GL(¥,) is a representation, and ¢ is a function on G,
define the Fourier transform ¢(p) in End(V,) by the formula

@(p) = g;; ®(g) p(g).

~ ~
(a) Show that @+ () =p(p) W(p).
(b) Prove the Fourier inversion formula

1
olg) = Gl 2 dim(¥,): Trace(p(g™")- ¢(p)),

the sum over the irreducible representations p of G. This formula is equivalent
to formulas (2.19) and (2.20). .
(c) Prove the Plancherel formula for functions ¢ and  on G:

I oo
,;G o(g " Wig) = iGi ; dim(¥,)- Trace(d(p)f(p)).

Our choice of left action of a group on a space has been perfectly arbitrary,
and the entire story is the same if G acts on the right instead, Moreover, there
is a standard way to change a right action into a left action, and vice versa:
Given a right action of G on V, define the left action by

gv=0v(g"'), geGuelV
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If A = CG is the group algebra, a right action of G on ¥V makes V a right
A-module. To turn right modules into left modules, we can use the anti-
involution a+—»a of A defined by (3 a,e,)" = Y a,e,-.. A right A-module is
then turned into a left A-module by settinga-v =1v-4.

The following exercise will take you back to the origins of representation
theory in the 19th century, when Frobenius found the characters by factoring
this determinant.

Exercise 3.33*. Given a finite group G of order n, take a variable x, for each
element g in G, and order the elements of G arbitrarily. Let F be the deter-
minant of the n x n matrix whose entry in the row labeled by g and column
labeled by h is x,.,-1. This is a form of degreé n in the n variables x,, which is
independent of the ordering. Normalize the factors of F to take the value 1
when x, = 1 and x, =0 for g # ¢. Show that the irreducible factors of F -
correspond to the irreducible representations of G. Moreover, if F,, is the factor
corresponding to the representation p, show that the degree of F, is the degree
d(p) of the representation p, and that each F, occurs in F d(p) times. Il x, is
the character of p, show that x,(g) is the coefficient of x,- xi®~" in F,.

§3.5. Real Representations and Representations
over Subfields of C

If a group G acts on a real vector space ¥, then we say the corresponding
complex representation of V = ¥V, ®g C is real. To the extent that we are
interested in the action of a group G on real rather than complex vector
spaces, the problem we face is to say which of the complex representations of
G we have studied are in fact real,

Our first guess might be that a representation is real if and only if its
character is real-valued. This turns out not to be the case: the character of a
real representation is certainly real-valued, but the converse need not be true.
To find an example, suppose G < SU(2)is a finite, nonabelian subgroup. Then
G acts on C? = V with a real-valued character since the trace of any matrix
in SU(2) is real. Il V¥ were a real representation, however, then G would be a
subgroup of SO(2) = §*, which is abelian. To produce such a group, note that
SU(2) can be identified with the unit quaternions. Set G = { £ 1, +i, 4j, +k}.
Then G/{ & 1} is abelian, so has four one-dimensional representations, which
give four one-dimensional representations of G. Thus, G has one irreducible
two-dimensional representation, whose character is real, but which is not real,

Exercise 3.34*. Compute the character table for this quaternion group G, and
compare it with the character table of the dihedral group of order 8.



40 3. Examples; Induced Representations, Group Algebras; Real Representations

A more successful approach is to note that if V is a real representation of
G, coming from ¥, as above, then one can find a positive definite symmetric
bilinear forin on ¥, which is preserved by G. This gives a symmetric bilinear
form on V which is preserved by G. Not every representation will have such
a form since degeneracies may arise when one tries to construct one following
the construction of Proposition 1.5, In fact,

Lemma 3.35. An irreducible representation V of G is real if and only if there is
a nondegenerate symmetric bilinear form B on V preserved by G.

ProOOE. If we have such B, and an arbitrary nondegenerate Hermitian form H,
also G-invariant, then

vivsLy
gives a conjugate linear isomorphism ¢ from V to V: given x € V, there is a
unique ¢(x) € ¥ with B(x, y) = H(¢(x), y), and ¢ commutes with the action

of G. Then ¢? = ¢ o ¢ is a complex linear G-module homomorphism, so
@? = A-1d. Moreover,

H(p(x), y) = B(x, y) = B(y, x) = H(p(y), ) = H(x, ¢(y)),

from which it follows that H(p2(x), y) = H(x, ¢2(»)), and therefore 1 is a
positive real number. Changing H by a scalar, we may assume 1 = 1, so
@ = Id. Thus, ¥ is a sum of real eigenspaces V, and V. for ¢ corresponding
toeigenvalues | and — 1. Since ¢ commutes with G, ¥, and V_ are G-invariant
subspaces. Finally, ¢(ix) = —ig(x),s0iV, =V_,and V=V, ® C. O

Note from the proof that a real representation is also characterized by the
existence of a conjugate linear endomorphism of ¥ whose square is the
identity; if ¥ = V, ®g C, it is given by conjugation: v, ® A v, ® 1.

A warning is in order here: an irreducible representation of G on a vector
space over R may become reducible when we extend the group field to C. To
give the simplest example, the representation of Z/n on R? given by

2nk . 2nk
cOs — —sin —-
n n
p:k—
. 2nk 2nk
sin — cos —
n n

is irreducible over R for n > 2 (no line in R? is fixed by the action of Z/n), but
will be reducible over C. Thus, classifying the irreducible representations of G
over C that are real does not mean that we have classified all the irreducible
real representations. However, we will see in Exercise 3.39 below how to finish
the story once we have found the real representations of G that are irreducible
over C.
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Suppose V is an irreducible representation of G with g, real. Then there is-
a G-equivariant isomorphism V = V*, ie, there is a G-equivariant (non-
degenerate) bilinear form B on V; but, in general, B need not be symmetric.
Regarding B in

V*@V*=SymiV*@ A2V,

and noling the uniqueness of B up to inultiplication by scalars, we see that B
is either symmetric or skew-symmetric. I B is skew-symmetric, proceeding as
above one can scale so ¢ = —Id. This makes V “quaternionic,” with ¢
becoming multiplication? by j:

Definition 3.36. A quaternionic representation is a (complex) representation ¥
which has a G-invariant homomorphism J: V — V that is conjugate linear,
and satisfies J* = —Id. Thus, a skew-symmetric nondegenerate G-invariant
B determines a quaternionic structure on V.

Summarizing the preceding discussion we have the

Theoem 3.37. An irreducible representation V is one and only one of the
following:

(1) Complex: x, is not real-valued; V does not have a G-invariant non-
degenerate bilinear form,

(2) Real: V = ¥V, ® C, a real representation; V has a G-invariant symmeltric
nondegenerate bilinear form.

(3) Quaternionic: gy is real, but V is not real; V has a G-invariant skew-
symmetric nondegeneate bilinear form.

Exercise 3,.38. Show that for V irreducible,
0 if V is complex

I_CITI ZG w(g?) = 1 if Vis real
g€

—1 if V is quaternionic.

This verifies that the three cases in the theorem are mutually exclusive. It also
implies that if the order of G is odd, all nontrivial representations must be
complex.

Exercise 3.39. Let V, be a real vector space on which G acts irreducibly,
V = V, ® C the corresponding real representation of G. Show that if V' is not
irreducible, then it has exactly two irreducible factors, and they are conjugate
complex representations of G.

? See §7.2 for more on quaternions and quaternonic representations.
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Exercise 3.40. Classify the real representations of .

Exercise 3.41*. The group algebra RG is a product of simple R-algebras corre-
sponding to the irreducible representations over R. These simple algebras are
matrix algebras over C, R, or the quaternious H according as the representa-
tion is complex, real, or quaternionic.

Exercise 3.42*. (a) Show that all characters of a group are real if and only if
every element is conjugate to its inverse.

(b) Show that an element ¢ in a split conjugacy class of U, is conjugate to
its inverse if and only if the number of cycles in ¢ whose length is congruent
to 3 modulo 4 is even.

(c) Show that the only d’s for which every character of 2, is real-valued are
d=12,5,6,10,and 14.

Exercise 3.43*. Show that: (i) the tensor product of two real or two quater-
nionic representations is real; (ii) for any V, V* ® V is real; (iii) if V is real, so
are all A*V; (iv) if ¥ is quaternionic, A*V is real for k even, quaternionic for
k odd.

Representations over Subfields of C in General

We consider next the generalization of the preceding problem to more general
sublields of C. Unfortunately, our results will not be nearly as strong in
general, but we can at least express the problem neatly in terms of the
representation ring of G.

To begin with, our terminology in this general setting is a little different.
Let K = C be any subfield. We define a K-representation of G to be a vector
space ¥, over K on which G acts; in this case we say that the complex
representation V = V, @ C is defined over K.

One way to measure how many of the representations of G are defined over
a field K is to introduce the representation ring Rg(G) of G over K. This is
defined just like the ordinary representation ring; that is, it is just the group
of formal linear combinations of K-representations of G modulo relations of
the form V + W — (V @ W), with multiplication given by tensor product.

Exercise 3.44*. Describe the representation ring of G over R for some of the
groups ¢ whose complex representation we have analyzed above. In partic-
ular, is the rank of Rg(G) always the same as the rank of R(G)?

Exercise 3.45*. (a) Show that R () is the subring of the ring of class functions
on G generated (as an additive group) by characters of representations defined
over K.
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(b) Show that the characters of irreducible representations over K form an
orthogonal basis for Rg(G).

(c) Show that a complex representation of G can be defined over K if and
only if its character belongs to Rg(G).

For more on the relation between Rg(G) and R(G), see [ Se2].



LECTURE 4

Representations of &,: Young Diagrams
and Frobenius’s Character Formula

In this lecture we get to work. Specifically, we give in §4.1 a complete description of
the irreducible representations of the symmetric group, that is, a construction of the
representations (via Young symmetrizers) and a formufa (Frobenius’ formula) for their
characters. The proof that the representations constructed in §4.1 are indeed the
irreducibfe representations of the symmetric group is given in §4.2; the proof of
Frobenius’ formula, as well as a number of others, in §4.3. Apart from their intrinsic
interest (and undeniable beauty), these results turn out to be of substantial interest in
Lie theory: analogs of the Young symmetrizers will give a construction of the irredic-
ible representations of SL,C. At the same time, while the techniques of this lecture are
completely elementary (we use only a few identities about symmetric polynomials,
proved in Appendix A), the leve! of difficuity is clearly higher than in preceding
fectures. The results in the latter half of §4.3 (from Coroliary 4.39 on) in particular are
quite difficult, and inasmuch as they are not used later in the text may be skipped hy
readers who are not syminetric group enthusiasts.

§4.1: Statements of the resuits .
§4.2: Irreducible representations of S,
§4.3; Prool of Frobenius's formuia

§4.1. Statements of the Results

The nuinber of irreducible representaton of &, is the number of conjugacy
classes, which is the number p(d) of parlitions' of did =4, + - + 4,,
Ay == 4 > 1. We have

' It is sometimes convenieni, and somelimes a nuisance, to have partitions that end in one or
more zeros; il convenieant, we allow some of the 2, on the end to be zero. Twu sequences define
the same partition, of course, il they differ only by zeros at the end.



§4.1. Statements of the Resuilts 45

on el ]
JZO p(d)t" B n (T_ t")

n=1
=(1 +t+t2+...)(] _'_12_'_‘4_'_...)([ +t3+)

which converges exactly in |t] < |. This partition number is an interesting
arithinetic function, whose congruences and growth behavior as a function of
d have been much studied (cf. [Har], [And]). For example, p(d) is asymptoti-

cally equal to (1/ad)e? ﬁ, with o = 4\/5 and f = n\/i/?a.
To a partition 4 = (4,, ..., 4,) is associated a Young diagram (sometimes
called a Young frame or Ferrers diagram)

with A; boxes in the ith row, the rows of boxes lined up on the left. The
conjugate partition ' = (1},..., 1)) to the partition 1 is defined by inter-
changing rows and columns in the Young diagram, i.c., reflecting the diagram
in the 45° line. For example, the diagram above is that of the partition
(3,3,2,1, ), whose conjugateis (5, 3, 2). (Without reference to the diagram, the
conjugate partition to A can be defined by saying 4; is the number of terms in
the partition A that are greater than or equal to ) '

Young diagrams can be used to describe projection operators for the
regular representation, which will then give the irreducible representations of
&,. For a given Young diagram, number the boxes, say consecutively as
shown:

23]

wn

IWC\-&—
~J

More generally, define a tableau on a given Young diagram to be a numbering
of the boxes by the’integers 1, ..., d. Given a tableau, say the canonical one
shown, define two subgroups? of the symmetric group

? Il a tableau other than the canonical one were cliosen, one would get different groups in place of
P and @, and different efements in the group ring, but the representations constructed this way
will be isomorphic.
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P = P, = {g € ©,: g preserves each row}
and
Q0 = Q, = {g € ©,: g preserves each column}.

In the group aigebra CS,, we introduce two elements corresponding to these
subgroups: we set
aa_ = Z eg al‘ld bz = Z Sgn(g)‘ eﬂ' (4.])
geP gcQ
To see what a, and b, do, observe that if ¥V is any vector space and &, acts

on the dth tensor power V ®¢ by permuting factors, the image of the element
a, e C&, —» End(V ®) is just the subspace

Im(a,) = Sym* V @Sym*?V @ --- @ Sym*V < V¥,

where the inclusion on the right is obtained by grouping the factors of ¥ ®¢
according to the rows of the Young tableaux, Similarly, the image of b, on
this tensor power is

]m(b;_) — A_u, V® AﬂzV@ ‘s .® /\FIV Fo V@d,

where yt is the conjugate partition to A.
Finally, we set

61 = ﬁ;_'bAECGJ; (4.2)

this is called a Young symmetrizer. For example, when 1 = (d), ¢y, = ay =
Y sec,€ and the image of ¢, on V® is Sym?V. When 1=(1,..., D),
Coty= by 1) = Yges,580(g)e,, and the image of ¢, .y, on V®is AV,
We will eventually see that the image of the symmetrizers c; in V®¢ provide
essentially all the finite-dimensional irreducible representations of GL(V).
Here we state the corresponding fact for representations of &,

Theorem 4.3. Some scalar multiple of c, is idempotent, i.e., c; = n,c,, and the
image of ¢, (by right multiplication on C&,) is an irreducible representation
V, of ©,. Every irreducible representation of &, can be obtained in this
way for a unique partition.

We will prove this theorem in the next section. Note that, as a corollary,
each irreducible representation of &, can be defined over the rational numbers
since ¢, is in the rational group algebra Q&,. Note also that the theorem gives
a direct correspondence between conjugacy classes in &; and irreducible
representations of &,, something which has never been achieved for general
groups.

For example, for 4 = (d),

Va=C8yr }, ¢=C- ), ¢
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is the trivial representation U, and when A = (1, ..., 1),

Va....n= CS,- Z sgn(gle, = C- Z sgn(g)e,

gE Sy ge Sy

is the alternating representation U’. For A = (2, 1),

Co.n=(er +eyz)(es—eyus)=1+eq—ey3 — €y

in CS,, and ¥, ,,is spanned by c(;,4,and (13)- ¢ 1), 50 ¥};,,, is the standard
representation of &,.

Exercise 4.4*. Set A = CS,, so V, = Ae¢;, = Aa,b,.

{(a) Show that V, = Ab,a,.

{b) Show that V, is the image of the map from Aa, to Ab, given by right
multiplication by b,. By (a), this is isomorphic to the image of Ab, - Aa, given
by right multiplication by a,.

{c) Using (a) and the description of ¥, in the theorem show that

V‘_l = Vﬂ. ® U’,

where 1'is the conjugate partition to A and U’ is the alternating representation.
Examples 4.5, In earlier lectures we described the irreducible representations
of &, ford < 5. From the construction of the representation corresponding to

a Young diagram it is not hard to work out which representations come [rom
which diagrams:

S, (1] trivial B alternating

S, (10 U tivial B U' altemating
V standard

S, o U E U

v V' W

L
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Sy (Il u U
]
[0 v H Y - A
w o w

Exercise 4.6*. Show that for general d, the standard representation V corre-
sponds to the partition d = (d — 1) + 1. As a challenge, you can try to prove
that the exterior powers of the standard representation V are represented by
a “hook™

11i1]

e

5

=

NV

Note that this recovers our theorem that the AV are irreducible.

Next we turn to Frobenius’s formula for the character y, of V,;, which
includes a formula for its dimension. Let C; denote the conjugacy class in S,
determined by a sequence

i= (i), 0y ...,05) with) ai, =d:

C, consists of those permutations that have i, [-cycles, i, 2-cycles, ..., and i,
d-cycles.

Introduce independent variables x,, ..., x,, with k at least as large as the
number of rows in the Young diagram of A. Define the power sums Py(x),
I <j <d, and the discriminant A(x) by

P(x)=x{ + x{ + - + x|,
A(x) =[] (x — x;).

i<}

If fix) = fix,,..., x;) is a formal power series, and ({,,..., 1) is a k-tuple
of non-negative integers, let

[/(x)]g,.... 1y = coefficient of xhroo.s X in I (4.8)
Given a partition A: A, > --- > A, = 0 of d, set
=;ll+k_l, ’2='12+k—2’---9lk=’1h (49)

4.7)
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a strictly decreasing sequence ol k non-negative integers. The character of ¥,
evaluated on g € G, is given by the remarkable

Frobenius Formula 4.10

xa(G) = [A(x)' I1 P;(X)"]
J Beenns h)

For example, if d = 5, 1 = (3, 2), and C, is the conjugacy class of (12)(345),
i.e., iI = 0, iz = I, ia = l, lheﬂ

23.0(C) = [(x, — x2) (¢ + xD(x] + x) ]y = 1.

Other entries in our character tables for &,, &,, and &; can be verified as
easily, verifying the assertions of Examples 4.5.

In terms of certain symmetric functions S, called Schur polynomials, Fro-
benius’s formula can be expressed by

U Pix)h = ¥ xa(Ci) S,

the sum over all partitions 1 of 4 in at most k parts (cf. Proposition 4.37
and (A.27)). Although we do not use Schur polynomials explicitly in this
lecture, they play the central role in the algebraic background developed in
Appendix A.

Let us use the Frobenius formula to compute the dimension of V,. The
conjugacy class of the identity corresponds to i = (), so '

dim ¥, = y.(Cy) = [A(x)  (xy + -~ + xk)d]u, ..... 1)

Now A{x) is the Vandermonde determinant:

| Xy x:"l
: —_ Z (sgn a)x:(l)‘_l ..... xg(k)_'l-
! x! Y x:,_l o€ Gk
The other term is
) &
(.xl 4+t x*) = Z———_—‘xllx;'..,'xkk,
r,!'...'r,‘!
the sum over k-tuples (r,,...,r,) that sum to d. To find the coefficient of
xy'-...-x*in the product, we pair off corresponding terms in these two sums,
getting
y d!
sgn(o) ,
gn(c) {, —ak) + )1---(y, — a(1) + 1)!

the sum over those g in &, such that [, _;,, —a{i)+ 1 > 0forall t i<k
This sum can be written as
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d! . ;
REaN 2; sgn(o) j_ﬂl W= (b—ok—j+ 1 +2)

d!

b W)
E!...[,‘! :

Lot 4, — 1)

By column reduction this determinant reduces to the van der Monde deter-
minant, so
d!
dim V) = ———T1d, - 1)), (4.11)
PRRERY M

withl; =4, +k—i

There is another way of expressing the dimensions of the V,. The hook
length of a box in a Young diagram is the number of squares directly below
or directly to the right of the box, including the box once.

uamed
¥

In the following diagram, each box is labeled by its hook lengti:

F-9
(7S]

1]

G
[ 8 ]
J—

Hook Length Formula 4.12.

d1
dmV,= ————— - — .
"= T (Hook lengths)

For the above partition 4 + 3 + 1 of 8, the dimension of the corresponding
representation of @y is therefore 81/6-4-4-2-3 = 70.

Exercise 4.13*, Deduce the hook length formula from the Frobenius formula
(4.11).

Exercise 4.14*, Use the hook length formula to show that the only irreducible
representations of S, of dimension less than d are the trivial and alternating
representations U and U’ of dimension 1, the staridard representation V
and V' =V ® U’ of dimension d — 1, and three other examples: the two-
dimensional representation of &, corresponding to the partition 4 = 2 + 2,
and the two five-dimensional representations of S¢ corresponding to the
partitions 6 =3 + 3and 6 =2 + 2 + 2.
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Exercise 4.15*. Using Frobenius’s formula or otherwise, show that:
X(d—l.n(cl) =i — L
x(d—z,i.l)(cl) = %(fi — ), — 2)— iy
Ya-2.2C) =34, — DGy - D+ i, —~ L.

Can you continue this list?

Exercise 4.16*. If g is a cycle of length d in &,, show that y,(g)is +-1i[disa
hook, and zero il A is not a hook:

(g) = (-1 fl=d-51...,1)0<s<d-—1
Xl = 0 otherwise.

Exercise 4.17. Frobenius [Froi] used his formula to compute the value of g,
on a cycle of lengthm < d.

(a) Following the procedure that led to (4.11)—which was the case
m = 1—show that '

w2 = St 5 W

dim V, i LA (4.18)

where h,, = d!/(d — m)\m is the number of cycles of length ns (if m > 1), and
k m
p(x) = ‘Ul (x — I} Y(x) = @(x —m) ;l-In (x —j+1)

The sum in (4.18) can be realized as the coefficient of x~! in the Laurent
expansion of Y (x)/p(x) at x = oo.

Define the rank r of a partition to be the length of the diagonal of its Young
diagram, and let a; and b, be the number of boxes below and to the right of
the ith box of the diagonal, reading from lower right to upper left. Frobenius

’ a,a,...qa,
called (blbz b
a reverse notation for the characteristics, writing (b,, ..., b, la,, ..., a,) instead.)
For the partition (10,9, 9, 4, 4, 4, 1)

) the characteristics of the partition. (Many writers now use

-]

r=4
. 2 3 4 6
characteristics =
0 6

Algebraicaily, r and the characteristics @, < --- <a, and b, <--- < b, are
deterinined by requiring the equality of the two sets
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M..oshk—-1—ay ..., k—1—aj} and
o, L....k—Lk+b,...k+b}
(b) Show that ¥ (x)/p(x) = g(»)/f(y), where y = x — d and
H(J"“b:)

() = =1 e =f—m =i+
[To+a+1) =t
i=1

Deduce that the sum in (4.18) is the coefficient of x~! in g(x)/f(x).
{c) When m = 2, use this to prove the formula
dmVy, &
12)= —— = b(b; + 1) — a(a; + 1))
xa((12) d(d—l);;.(‘(‘ ) 4

Hurwitz [Hur] used this formula of Frobenius to calculate the number of
ways to write a given permultation as a product of transpositions. From this
he gave a formula for the number of branched coverings of the Riemann sphere
with a given number of sheets and given simple branch points. Ingram {In}
has given other formulas for y,{g), when g is a somewhat more complicated
conjugacy class,

Exercise 4.19*. If V is the standard representation of S,, prove the decom-
positions into irreducible representations:

Sym*’Vx U@ VD Vys.2,
VRV =Sym>VONV2UDV®D Vy-2.5® Vu-2,1.1)

Exercise 4.20*. Suppose A is symmetric, ie, A=A, and let ¢; > g, > - >
q, > 0 be the lengths of the symmetric hooks that form the diagram of 4; thus,
qy =24, — 1,q; =21, — 3, ....Show that if g is a product of disjoint cycles
of lengths q,, q,, ..., g,, then

Xilg) = (= ).

§4.2. Trreducible Representations of S,

We show next that the representations ¥, constructed in the first section are
exactly the irreducible representations of &,. This proofl appears in many
standard texts (e.g. [C-R], [Ja-Ke], [N-S], [Wel]), so we will be a little
concise.

Let A = CS, be the group ring of S,. For a partition A of d, let P and Q
be the corresponding subgroups preserving the rows and columns of a Young
tableau T corresponding to A, let a=a,, b="b,, and let ¢ = ¢, = ab be
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the corresponding Young symmetrizer, so V; = Ac, is the corresponding
representation. (These groups and elements should really be subscripted by
T to denote dependence on the tablcau chosen, but the assertions made
depend only on the partition, so we usually omit reference to T))

Note that P~ Q = {1}, so an element of G, can be written in at most one
way as a product p-q, p€ P, g € Q. Thus, ¢ is the sum Y, +e,, the sum over
all g that can be written as p- q, with coefficient + 1 being sgn(q); in particular,
the coefficient of e, in c is 1.

Lemma 4.21. () Forpe P,pra=a'p=a.

(2) For g€ Q,(sgn(q)g) b = b-(sgn(q)q) = b.

(3) Forallpe P, g€ Q, p-c-(sgn(g)q) = ¢, and, up to nuiltiplication by a
scalar, ¢ is the only such element in A.

PrOOF. Only the tast assertion is not obvious. Il Y, n,e, satisfies the condition
in (3), then n,,, = sgn{(q)n, for all g, p, q; in particular, n,, = sgn(g)n,. Thus,
it suffices to verify that n, =0 il g ¢ PQ. For such g it suffices to find a
transposition ¢ such that p=te P and g = g 'tg € Q; for then g = pgq, so
n,= —n, Il T' = gT is the tableau obtained by replacing each entry i of T
by g{i), the claim is that there is are two distinct integers that appear in the
same row of T and in the same column of T, ¢ is then the transposition of
these two integers. We must verily that il there were no such pair of integers,
then one could writeg = p-gforsomep e P, q € Q. To do this, first take p, € P
and g} € Q' = gQg ! so that p, T and g} T have the same [irst row; repeating
on the rest of the tableau, one gets p € P and g' € Q" so that pT = q'T". Then
pT = q'gT, so p = q’g, and therefore g = pq, where g = ¢7'(¢') 'g€ Q, as
required. [

We order partitions lexicographically:

A > pu if the first nonvanishing 1, — g, is positive. (4.22)

Lemma 4.23.(1)If A > u,then forallx € A,a,- x-b, = 0.In particular,if L > p,
thenc, c, = 0.

(2) Forallxe A,c;-x ¢, = isascalar multiple of ¢,. In particular,c,-c, =
n,c, for some n, € C.

Proor. For (1), we may take x = g € &,. Since g-b,-g~" is the element con-
structed from gT’, where T” is the tableau used to construct b, it suffices to
show thata, - b, = 0. One verifies that A > pimplies that there are two integers
in the same row of T and the same column of 7" If ¢t is the {ransposition of
these integers, then a, t =a,, t-b, = —b,,s0a;-b,=a, ¢t t-b, = —a, b,

as required. Part (2) follows from Lemma 4.21 (3). O

Exercise 4.24* Show thatil A # y, thenc, A-¢, = 0;in particular,c, ¢, = 0.
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Lemma 4.25, (1) Each V, is an irrediicible representation of ©,.
(2) If A 5 p, then Vy and V, are not isomorphic.

Proor. For (1) note that c¢;V; « Cc, by Lemma 423 If WV, is a
subrepresentation, then ¢, W is either Cc, or 0. If the first is true, then
V,=A-c;c W. Otherwise W-W < A-c,W =0, but this implies W =0.
Indeed, a projection from 4 onto W is given by right multiplication by an
element g € A with ¢ = 9> € W-W = 0. This argument also shows that
c,V, # 0, ie, that the number n, of the previous lemma is nonzero.

For (2), we may assume A > p. Then ¢, V; = Cc, # 0,but ¢, ¥, = ¢;- Ac, =
0, so they cannot be isomorphic 4-modules. O

Lemma 4.26. For any A, ¢, ¢; = n,c;, with n, = d/dim V,.

Proor. Let F be right multiplication by ¢, on A. Since F is multiplication by
n, on ¥,, and zero on Ker(c,), the trace of F is n, limes the dimension of V,.
But the coefficient of ¢, in e, - c; is 1, 50 trace(F) = |&,| = d\. ]

Since there are as many irreducible representations V, as conjugacy classes
of &,, these must form a complete set of isomorphism classes of irreducible
representations, which completes the proof of Theorem 4.3. In the next section
we will prove Frobenius’s formula for the character of V,, and, in a seties of
exercises, discuss a little of what else is known about them: how to decompose
tensor products or induced or restricted representations, how to find a basis
for V,, etc.

§4.3. Proof of Frobenius's Formula

For any partition A of d, we have a subgroup, often called a Young subgroup,
61 = 6‘_' b SR 4 61" <y Gd‘ (4.27)

Let U, be the representation of &, induced [rom the trivial representation of
©,;. Equivalently, U, = A-a,, with a, as in the preceding section. Let

¥, = xu, = character of U,. (4.28)

Key to this investigation is the relation between U, and V,, i.e., between y,
and the character y, of ¥,. Note first that V, appears in U,, since there is a
surjection

U.l = Aa)_ ead VJ = Aalh‘_, XHX'bl. (4.29)
Altemnatively,

V;_ = Aalbl = Ab‘_aa_ L Aﬂ‘_ = Ul!
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by Exercise 4.4. For example, we have

U—1.1y & Na1,.1y O Mgy

which expresses the fact that the permutation representation C? of &, is the
sum of the standard representation and the trivial representation. Eventually
we will see that every U, contains ¥, with multiplicity one, and contains only
other V, for > A.

The character of U, is easy to compute directly since U, is an induced
representation, and we do this next.

Fori = (i}, ..., iy) a d-tuple of non-negative integers with ) ai, = d, denote
by

Cl Lo 64

the conjugacy class consisting of elements made up of i, 1-cycles, i, 2-cycles,
..., i d-cycles. The number of elements in C, is easily counted to be

d!

of S — .
Gl = gr i T

(4.30)

By the formula l'or characters of induced representations (Exercise 3.19),

VilG) = = [8:: G, 1" ICn &,

!C;I
l"t -, d'ai) d!
d! A | EURY )

where the sum is over all collections {r,:1 <p<k t <q<d} of non-
negative integers satisfying

Al
L&l 0 L d'v*;'_,,:,_!’

g

<A !

ig="ryg+r+ g
llp = r,,, + 2";;2 A dr,,,,.
(To count C, n &,, write the pth component of an element of &, as a product
of r,, t-cycles, r,, 2-cycles, ...} Simplifying,
d i
¥a(G) = Z LY q‘.ﬁ,,;-i’ (4.31)

the sum over the same collections of integers {r,,}.
This sum is exactly the coeflicient of the monomlal Xt =x}h- o xMinthe
power sum symmetric polynomial

PY=(xy + 4 x) x4 x4 4 X (432)
So we have the formula
¥,(C) = [PM], = coeflicient of X*in P, (4.33)

To prove Frobenius’s formula, we need to compare these coefficients with the
coeflicients o, (i) defined by



56 4. Representations of &, Young Diagrams and Frobenius’s Character Formula

) =[A P, 1=, +k—-1A,+k=2,...,4) (4.34)

Our goal, Frobenius’s formula, is the assertion that x,(C)) = w,(i).
There is a general identity, valid for any symmetric polynomial P, relating
such coeflicients:

[P],= Z KHA[A'P](,.lu—l,,,zu—z,..‘.u,‘p
n

where the coefficients K,; are certain universally defined integers, called
Kostka numbers. For any partitions A and pof d, the integer K, may be defined
combinatorially as the number of ways to fill the boxes of the Young diagram
for p with A, I's, 1, 2's, up to A, k’s, in such a way that the entries in each
row are nondecreasing, and those in each column are strictly increasing; such
are called semistandard tableaux on u of type A. In particular,

Ku=1 andK,;=0foru<Ai

The integer K ,, may be also be delined to be the coeflicient of the monomial
X* = x{r-...-x} in the Schur polynomial S, corresponding to . For the
prool that these are equivalent definitions, see (A.9) and (A.19) of Appendix
A. In the present case, applying Lemma A.26 to the polynomial P = P?, we
deduce
Va(C) = Y Knw, (i) = @,0) + ¥ K,0,6). (4.35)
H

a>a

The resutt of Lemma A.28 can be written, using (4.30), in the form

5 Z1CI0.000,0) = b, (4.36)

This indicates that the functions w;, regarded as [unctions on the conjugacy
classes of &,, satisfy the same orthogonality relations as the irreducibie
characters of &,. In [act, one can deduce formally from these equations that
the w; must be the irreducible characters of &,, which is what Frobenius
proved. A littte more work is needed to see that w, is actually the character
of the representation V,, that is, to prove

Proposition 4.37. Let x; = xy, be the character of V,. Then for any conjugacy
class G of &y,

12(Cp) = w,(i).

ProOOF. We have seen in (4.29) that the representation U,, whose character is
¥y, contains the irreducible representation V¥,. In fact, this is all that we need
to know about the relation between U, and V. It implies that we have

|/11 = Z nz“xu, n“_ 2_ ], ﬂ" n,_u 2 O. (438)
"

Consider this equation together with (4.35). We deduce first that each w, is a
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virtual character; we can wrile

w; = Z My X May € 4.
But the w,, like the x;, are orthonormal by (4.36), so

| =(w;, ;) =), mi,
"

and hence w, is + x for some irreducible character . (It follows from the hook
length formuia that the plus sngn holds here, but we do not need to assume
this.)

Fix A, and assume inductively that y, = @, for all 1 > 4, so by (4.35)

Y=, + Z KXy

Comparing this with (4.38), and using the linear independence of characters,
the only possibility is that w, = y,. )

Corollary 4.39 (Young's rule). The integer K, is the multiplicity of the irreduc-
ible representation V, in the induced representation U,:
Vi @ @ K,ul '3 '!IA = Xa + Z& K,.AX;;-
jt

PEY

Note that when 1=(1,..., 1), U, 15 just the regular representation, so
K. ...,y =dim V,. This shows that the dimension of V, is the number of
standard tableaux on A, i.e., the number of ways o fill the Young diagram of
A with the numbers from 1 to d, such that all rows and columns are increasing.
The hook length formula gives another combinatorial formula for this dimen-
sion. Frame, Robinson, and Thralil proved that these two numbers are equal.
For a short and purely combinatorial proof, see [G-N-W]. For another prool
that the dimension of V, is the number of standard tableaux, see [Jam]. The
latter leads to a canonical decomposition of the group ring A = CS, as the
direct sum of left ideals Ae;, summing over all standard tableaux, with
er = (dim V,/d!)- ¢y, and ¢, the Young symmetrizer corresponding to T, cf.
Exercises 4.47 and 4.50. This, in turn, leads to explicit cafculation of matrices
of the representations ¥, with integer coeflicients.

For another example of Young’s rule, we have a decomposition

Vig-a,m = @ Wa-1n-

In fact, the only 4 whose diagrams can be filled with d — a 1’s and a 2’s,
nondecreasing in rows and strictly increasing in columns, are those with at
most two rows, with the second row no longer than a; and such a diagramn
has only one such tableau, so there are no multiplicities.

Exercise 4.40*, The characters /; of €, have been defined only when 1 is a
partition of d. Extend the definition to any k-tuple a = {ay, ..., a,) ol integers
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that add up to d by setting ¥, = 0 if any of the a; are negative, and otherwise
W, = y;, where 1 is the reordering of ay, ..., g, in descending order. In this
case i, is the character of the representation induced [rom the trivial represen-
tation by the inclusion of &, x---x &, in S, Use (A.5) and (A.9) of
Appendix A to prove the determinantal formula for the irreducible characters
X in terms of the induced characters ,:

Ya= 2 sE“(T)'//(M+t(1)—l.J.z+t(2)—2.....1,¢+t(k)—k)'
TE e

Il one writes y, as a formal product y, -, ..." ¥, , the preceding formula
can be written

'I{’A, '/’J.l-!-l ‘I’A,u—l
'l’.l,—! '/’,12---

Xy = |'.[’1,+j—i| = .
'l"](‘**‘l L ‘Illk

The formal product of the preceding exercise is the character version of an
“outer product” of representations. Given any non-negative integers d,, ...,
dy, and representations V,of €, , denote by V| o -+ o 1} the (isomorphism class
of the) representation of &,,d = ) d,, induced from the tensor product repre-
sentation V@@V, of §; x - x &, by the inclusion of &, x - x &,
in &, (see Exercise 2.36). This product is commutative and associative. It will
turn out to be useful to have a procedure for decomposing such a representa-
tion into its irreducible pieces. For this it is enough to do the case of two
factors, and with the individual representations V, irreducible. In this case, one
has, for ¥, the representation of G, corresponding to the partition 1 of d and
V, the representation of &, corresponding to the partition p of m,

VioV, =Y N,V (4.41)

the sum over all partitions v of d + m, with N,,, the coefficients given by the
Littlewood—- Richardson rule (A.8) of Appendix A. Indeed, by the exercise, the
character of ¥, o ¥, is the product of the corresponding determinants, and, by
(A.8), that is the sum of the characters N;,,x,.

When m = 1 and pu = (m), V, is trivial; this gives

Indg«'v, =3V, (4.42)

the sum over all v whose Young diagram is obtained from that of 1 by adding
one box. This formuta uses only a simpler form of the Littlewood—Richardson
rule known as Pieri’s formula, which is proved in (A.7).

Exercise 4.43*. Show that the Littlewood-Richardson number N,,, is the
multiplicity of the irreducible representation ¥,®V, in the restriction of V,
from &€,,  to &, x S,. In particular, taking m = 1, u = (1), Pieri’s formula
(A.7) gives

]
RCS e:”l/v = Z VI’
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the sum over all 1 obtained from v by removing one box. This is known as
the “branching theorem,” and is usefud for inductive proofs and constructions,
particularly because the decomposition is multiplicity free. For example, you
can use it to reprove the fact that the multiplicity of ¥, in U, is the number of
semistandard tableaux on u of type A. It can also be used to prove the assertion
made in Exercise 4.6 that the representations corresponding to hooks are
exterior powers of the standard representation.

Exercise 4.44* (Pieri’s rule). Regard &, as a subgroup of &,,,, as usual. Let 1
be a partition of d and v a partition of d + m. Use Exercise 4.40 to show that
the multiplicity of V¥, in the induced representation Ind(V,) is zero unless the
Young diagram of A is contained in that of v, and then it is the number of
ways to number the skew diagram lying between them with the numbers from
I to m, increasing in both row and column. By Frobenius reciprocity, this is
the same as the multiplicity of V; in Res{V,). :

When applied to d = 0 (or 1), this implies again that the dimension of V, is
the number of standard tableaux on the Young diagram of v.
For a sampling of the many applications of these rules, see [ Dia §7, §8].

Problein 4.45*. The Murnaghan-Nakayama rule gives an efficient inductive
method for computing character values: If 1 is a partition of d, and g € S, is
written as a product of an m-cycle and a disjoint permutationh € S,_,,, then

Xa(g) = X (= 1)y, (),

where the sum is over all partitions it of d — m that are obtained from 1 by
removing a skew hook of length m, and r(y) is the number of vertical steps in
the skew hook, i.e., one less than the number of rows in the hook. A skew hook
for 1 is a connected region of boundary boxes lor its Young diagram such
that removing them leaves a smaller Young diagram; there is a one-to-one
correspondence between skew hooks and ordinary hooks of the same size, as
indicated:

T 1=(165544,1,1)
' 1=(7,4,4,3,31,1,1)
hook length =9, r = 4

¥

For example, if 1 has no hooks of length m, then y,(g) = 0.

The Murnaghan -Nakayama rule may be written inductively as follows: Il
g is a written as a product of disjoint cycles of lengths m,, m,, ..., m,, with
the lengths m, taken in any order, then y,(g) is the sum ) (— 1Y, where the
sum is over all ways s to decompose the Young diagram of A by successively
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removing p skew hooks of lengths m,, ..., m,, and r(s) is the total number of
vertical steps in the hooks of s.

(a) Deduce the Murnaghan-Nakayama rule from (4.41) and Exercise 4.16,
using the Littlewood—-Richardson rule, Or:

(b) With the notation of Exercise 4.40, show that

VoW, - Va (9) = Z‘!’...\lf.,,‘---"//a,-m'l/a.ﬂ'---'l!f..,,(h)-

Exercise 4.46*. Show that Corollary 4.39 implies the “Snapper conjecture™
the irreducible representation V, occurs in the induced representation U, il
and only if

foraitj > 1.

o~

IA
g

=

Problem 4.47*. There is a more intrinsic construction of the irreducible
representation V,, called a Specht module, which does not involve of the choice
of a tableau; it is also useful for studying representations of &, in positive
characteristic. Define a tabloid {T} to be an equivalence class of tableaux
{numberings by the integers 1 to d) on A, two being equivalent if the rows are
the same up to order. Then S, acts by permutations on the tabloids, and the
corresponding representation, with basis the tabloids, is isomorphic to U,.
For each tableau 7, define an element E; in this representation space, by

Er = b {T} =} sgn(q){qT},

the sum over the g that preserve the columns of T. The span of all E{’s is
isomorphic to V), and the E;’s, where T varies over the standard tableaux,
form a basis.

Another construction of V, is to take the subspace of the polynomial ring
Clx,,..., x,] spanned by all polynomials Fr, where F; =] |(x; — x)), the
product over all pairs i < j which occur in the same column in the tableau T.

Exercise 4.48*. Let U, be the representation 4 - b,, which is the representation
of &, induced [rom the tensor product of the alternating representations on
the subgroup &, = &, x -~ x &, , where u = 1’ is the conjugate partition.
Show that the decomposition of Uj is

“Uy=Y K2 ¥,
u

Deduce that ¥, is the only irreducible representation that occurs in both U,
and U}, and it occurs in each with multiplicity one.

Note, however, that in general A ¢, # A-a, " A- b, since A- ¢, may not be
contained in 4 -a,.
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Exercise 4.49* With notation as in (441), il U = ¥, _,, is the alternating
representation of &, show that V, o ¥, ,, decomposes into a direct sum
@ V,, the sum over all n whose Young diagram can be obtained from that of
A by adding nt boxes, with no two in the same row.

Exercise 4.50, We have seen that 4 = CS, is isomorphic to a direct sum of
m, copies of V, = Ac,, where m, = dim V; is the number of standard tableaux
on A. This can be seen explicitly as follows. For each standard tableau T on
each /, et ¢; be the element of CS, constructed [rom T. Then A = @ A4 - ¢4
Indeed, an argument like that in Lemma 4.23 shows that ¢ - ¢~ = 0 whenever
T and T’ are tableaux on the same diagram and T > T7, i.e., the first entry
(reading [rom left to right, then top to bottom) where the tableaux differ has
the entry of T larger than that of T". From this it follows that the sum £A- ¢,
is direct. A dimension count concludes the prool. (This aiso gives another
proof that the dimension of V, is the number of standard tabileaux on 4,

provided one verifies that the sum of the squares of the latter numbers is df,
cf. [Boe] or [Ke]))

Exercise 4.51*. There are several methods for decomposing a tensor product
of two representations of &,, which amounts to finding the coefficients C,,,
in the decomposition

VJ. ® Vu = Zvcﬂ.yv Vw

for A, 1, and v partitions of d. Since one knows how to express V, in terms
of the induced representations U,, it suffices to compute V, ® U,, which
is isomorphic to Ind(Res(V,)), restricting and inducing from the subgroup
6, = 6, x &,, x -+; this restriction and induction can be computed by the
Littlewood—Richardson rule. For d < 5, you can work out these coefficients
using only restriction to €,_, and Pieri’s formula.

(a) Prove the folowing closed-form formula for the coefficients, which
shows in particular that they are independent of the ordering of the subscripts
A, 1, and v:

1
Cluv = Z[ ;(_i_j (ul(i)wn(i)wv(i)’
the sum over all i = (i,, ..., i) with Zai, = d, and with w,(i) = x,(C;) and
z(i) = i 111 iy020- -qld,
(b) Show that

co b ifpu=4 c b itp =2
A 10 otherwise, tutl+D 710 otherwise.

Exercise 4.52* Let R, = R{(S,) denole the representation ring, and set
R = (P70 R, The outer product of (4.41) determines maps

Rn ® Rm - Rn-l-nn
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which makes R into a commutative, graded Z-algebra. Restriction determines
maps

Rn+m = R(6n+m) - R(Gn X Gm) = Rn ® Rm:

which defines a co-product 6: R -+ R ® R. Together, these make R into a
(graded) Hopf aigebra. (This assertion implies many of the formulas we have
proved in this lecture, as well as some we have not.)

(a) Show that, as an algebra,

R Z[H,,...,H,...],

where H, is an indeterminate of degree d; H, corresponds to the trivial
representation of &,. Show that the co-product § is determined by

SH)=H,®@l+H,_ ®H, ++1®H,

Il we set A=2Z[H,,...,H, ...J=@A,, we can identify A; with the
symmetric polynomials of degree d in k > d variables. The basic symmetric
polynomials in A, defined in Appendix A therefore correspond to virtual
representations of S,.

(b) Show that E, corresponds to the alternating representation U, and

HAH UA, SAH V.ls EAHU;J.

(c) Show that the scalar product  , ) defined on A, in (A.16) corresponds
to the scalar product defined on class functions in (2.11).

(d) Show that the involution 3 of Exercise A.32 corresponds to tensoring
a representation with the alternating representation U’,

(e) Show that the inverse map from R, to A, takes a representation W to

1
z—(ﬁXw(Cm)Pm»
where z(i) = i 11" 1,120 - {,1d",

The (inner) tensor product of representations of S, givesamap R, ® R, -+
R, which corresponds to an “inner product” on symmetric functions, some-
times denoted +.

(f) Show that

0 forj#i

py ph -
* {z(i)P"’ ifj=i.

Since these P form a basis for A, ® Q, this formula determines the inner
product.



LECTURE 5
Representations of U, and GL,(F,)

1n this lecture we analyze the representation of two more types of groups: the alternat-
ing groups A, and the linear groups GL,(F,) and SL,(F,) over finite fields. in the former
case, we prove some general results relating the representations of & group to the
representations of a subgroup of index two, and use what we know about the symmetric
group; this should be completely straightforward given just the basic ideas of the
preceding lecture. In the latter case we start essentially from scratch. The two sections
can be read (or not) independently; neither is logically necessary for the remainder of
the book.

§5.1: Representations of U,
§5.2: Representations of GL,(F,) and SL,(F,)

§5.1. Representations of 2,

The alternating groups ,, d > 5, form one of the infinite [amilies of simple
groups. In this section, continuing the discussion of §3.1, we describe their
irreducible representations. The basic method for analyzing representations
of AU, is by restricting the representations we know from &,.

In general when H is a subgroup of index two in a group G, there is a close
relationship between their representations. We will see this phenomenon again
in Lie theory for the subgroups SO, of the orthogonal groups O,

Let U and U’ denote the trivial and nontrivial representation of G obtained
from the two representations of G/H. For any representation V of G, let
V' =V ® U’'; the character of V' is the same as the character of V on

elements of H, but takes opposite values on elements not in . In particular,
Resf V' = Res§ V.
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If W is any representation of H, there is a conjugate representation defined
by conjugating by any element ¢t of G that is not in H; il ¢ is the character
ol W, the character of the conjugate is h+s y(tht™!). Since ¢ is unique up to
multiplication by an element of H, the conjugate representation is unique up
to isomorphism.

Proposition 5.1. Let V be an irreducible representation of G, and let W = Resg V
be the restriction of V to H. Then exactly one of the following holds:

(1) VisnotisomorphictoV’'; W isirreducible and isomorphic toits corljugate'
Ind§Wxve V.

Q) VeV W=Wo&W”" where W' and W” are irreducible and conjugate
but not isomorphic; IndS W’ = Ind§W” = V.

Each irreducible representation of H arises uniquely in this way, noting that
in case (1) V' and V determine the same representation.

PROOF. Let y be the character of V. We have
|Gl =2{H| =}, lx(* + Y, {xP
heH t¢H

Since the first sum is an integral multiple of {H|, this multiple must be 1 or 2,
which are the two cases of the proposition. This shows that W is either
irreducible or the sum of two distinct irreducible representations W’ and W".
Note that the second case happens when x(t) = 0 for all t ¢ H, which is the
case when V' is isomorphic to V. In the second case, W’ and W” must be
conjugate since W is self-conjugate, and if W’ and W" were self-conjugate V
would not be irreducible. The other assertions in (1) and (2) follow from the
isomorphism Ind(Res V) = V ® (U @ U’) of Exercise 3.16. Similarly, for any
representation W of H, Res(Ind W)is the direct sum of W and its conjugate—
as follows say from Exercise 3.19—from which the last statement foillows
readily. 0

Most of this discussion extends with little change to the case where H is a
normal subgroup of arbitrary prime index in G, cf. [B-tD, pp. 293-296].
Clifford has extended much of this proposition to arbitrary normal subgroups
of finite index, cf. [Dor, §14].

There are two types of conjugacy classes ¢ in H: those that are also
conjugacy classes in G, and those such that ¢ U ¢’ is a conjugacy class in G,
where ¢’ = tct ™}, t ¢ H; the latter are called split. When W is irreducible, its
character assumes the same values—those of the character of the representa-
tion V of G that restricts to W—on pairs of split conjugacy classes, whereas
in the other case the characters of W' and W" agree on nonsplit classes, but
they must disagree on some split classes. If yp-(c) = yw(¢') = x,and yy(c') =
Xw-{c) = y, we know the sum x + y, since it is the value of the character of
the representation V that gives rise to W’ and W” on ¢ U ¢’. Often the exact
values of x and y can be determined from orthogonality considerations.
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Exercise 5.2*. Show that the number of split conjugacy classes is equal to the
number of irreducible representations V of G that are isomorphic to V', or
to the number of irreducible representations of H that are not isomorphic
to their conjugates. Equivalently, the number of nonsplit classes in H is same
as the number of conjugacy classes of G that are not in H.

We apply these considerations to the alternating subgroup of the symmetric
group. Consider restrictions of the representations V, [rom &, to 2,. Recall
that if A" is the conjugate partition to A, then

Vi =@ U,

with U’ the alternating representation. The two cases of the proposition
correspond (o the cases (1) I’ # 1 and (2) ' =4 If 1’ # 4, let W, be the
restriction of ¥, to A, i ' = 4, let W] and W)’ be the two representations
whose sum is the restriction of V,. We have

Ind W, =V, @ V,, Res V, = Res V. = W, when 1’ # /A,
Ind W] = Ind Wy =V, Res I, =W, D W' whenl =4
Note that
# {self-conjugate representations of S,}
= # {symmetric Young diagrams}
= #{split pairs of conjugacy classes in 2}
= #{conjugacy classes in &, breaking into two classes in ,}.

Now a conjugacy class of an element written as a product of disjoint cycles
is split if and only if there is no odd permutation commuting with it, which is
equivalent to all the cycles having odd length, and no two cycles having the
same length. So the number of sell-conjugate representations is the numbet
of partitions of d as a sum of distinct odd numbers. In fact, there is a natural
correspondence between these two sets: any such partition corresponds to a
symmetric Young diagram, assembling hooks as indicated:

If A is the partition, the lengths of the cycles in the corresponding split
conjugacy classes are g, = 24, — 1,9, =21, — 3,95 =24, — 5, ....
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For a self-conjugate partition A, let y} and x} denote the characters of W)
and Wy, and let ¢ and ¢’ be a pair of split conjugacy classes, consisting of cycles
of odd lengths gy > g, >+ > q,. The following proposition of Frobenius
completes the description of the character table of ,.

Proposition 5.3. (1) If ¢ and ¢’ do not correspond to the partition A, then
13(0) = xi(e’) = 1i(c) = xi(¢') = dalc v ).
(2) If c and ¢’ correspond to A, then
BE =xic)=x 1) =1l =y,
with x and y the two numbers
He-0" 2 /(=D a,),
andm = Y[Jg— 1) =4(d —r).

For example,iffd=4and 1 = (2,2), we haver=2,q,=3,q, =1, and x
and y are the cube roots of unity; the representations W, and W) are the
representations labeled U’ and U” in the table in §2.3. Ford = 5,2 = (3, 1, 1),
r=1,q, =5, and we find the representations called Y and Z in §3.1. For
d <1, there is at most one split pair, so the character table can be derived
from orthogonahty alone.

Note that since only one pair of character values is not taken care of by
the first case of Frobenius’s formula, the choice of which representation is W)
and which W}’ is equivalent to choosing the plus and minus sign in (2). Note
also that the integer m occurring in (2) is the number of squares above the
diagonal in the Young diagram of 1.

We outline a proof of the proposition as an exercise:

Exercise 5.4* Step 1. Let g = (q, > - > q,) be a sequence of positive odd
integers adding to d, and let ¢’ = ¢'(q) and ¢" = ¢"(g) be the corresponding
conjugacy classes in 2,. Let 1 be a self-conjugate partition of 4, and let ), and
x1 be the corresponding characters of 2,. Assume that y, and xj take on the
same values on each element of U, that is not in ¢’ or ¢”. Let u = yi(c') =

xale")yand v = x(c") = xi(c’).

() Show thatu and v are real whenm = 1X(q, — 1)is evcn and @ = v when
m is odd.

(ii) Let 3 = x; — x}. Deduce from the equation (3, 9) = 2 that ju — v|* =
41°.--7 4,

(iti) Show that A is the partition that corresponds to q and that u + v =
(—1)", and deduce that ¥ and v are the numbers specified in (2} of the
proposition.

Step 2. Prove the proposition by induction on d, and for fixed d, Jook at
that ¢ which has smallest q,, and for which some character has values on the
classes ¢’(g) and c¢”(q) other than those prescribed by the proposition.
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(i) Ifr =1,50q, =d = 2m + |, the corresponding self-conjugate partition
isA=(m+ 1, 1,..., 1). By induction, Step | applies to y; and y}.

(1) Il r > 1, consider the imbedding H =W, x N,_, = G = Ay, and let
X' and X” be the representations of G induced [rom the representations
WimW; and WymW;, where W) and W, are the representations of AU,
corresponding to q,, i.e., to the sell-conjugate partition (3(q, — 1), 1,..., ) of
q1; W; is one of the representations of ,_, correspondingto(q,, ..., q,); and
® denotes the external tensor product (see Exercise 2.36). Show that X’ and
X" are conjugate representations of U,, and their characters y’' and " take
equal values on each pair of split conjugacy classes, with the exception of ¢'(q)
and ¢"(q), and compute the values of these characters on ¢’(q) and ¢"(q).

(iif) Let & = y’' — x”, and show that (3, §) = 2. Decomposing X’ and X"
into their irreducible pieces, deduce that X' = Y @ W and X" = Y @ W} for
some self-conjugate representation Y and some self-conjugate partition A of d.

(iv) Apply Step |1 to the characters x) and yj, and conclude the prool.

Exercise 5.5*. Show that if d > 6, the only irreducible representations of
A, of dimension less than d are the trivial representation and the (n — 1)-
dimensional restriction of the standard representation of &,. Find the excep-
tions for d < 6.

We have worked out the character tables for all €, and U, for d < 5. With
the formulas of Frobenius, an interested reader can construct the tables for a
few more d—until the number of partitions of d becomes large.

§5.2. Representations of GL,(F,) and SL,([F,)

The groups GL,(F,) of invertible 2 x 2 matrices with entries in the finite field
F, with g elements, where q is a prime power, form another important series
of finite groups, as do their subgroups SL,(F,) consisting of matrices of
determinant one. The quotient PGL,(F,) = GL,(F )/Fy is the automor-
phism group of the finite projective line P'(F,). The quotients PSL,(F,) =
SL,(F,)/{ + 1} are simple groups if g # 2, 3 (Exercise 5.9). In this section we
sketch the character theory of these groups.
We begin with G = GL,(F,). There are several key subgroups:

o=n={(s N=r-{; D}

(This “Borel subgroup” B and the group of upper triangular unipotent
matrices N will reappear when we look at Lie groups.) Since G acts transitively
on the projective line P'(F,), with B the isotropy group of the point (1:0), we
have

|Gl = |BI-IP!(F)l = (g — 1)’q(g + 1),
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We will also need the diagonal subgroup

oeff 9o

where we write F for F,. Let F' = [, be the extension of F of degree two, unique
up to isomorphism. We can identify GL,(F,) as the group of all F-linear
invertible endomorphisms of F'. This makes evident a large cyclic subgroup
K = (F')* of G. At least il g is odd, we may make this isomorphism explicit by
choosing a generator g for the cyclic group F* and choosing a square root \/a
in F’. Then 1 and \/é form a basis for F’ as a vector space over F, so we can
make the identification:

D TEEE A PP X eV\ L ._ ]
e Do Prameons

K is a cyclic subgroup of G of order g* — 1. We often make this identification,
leaving it as an exercise to make the necessary modifications in case q is even.
The conjugacy classes in G are easily found:

Representative No. Elements in Class No. Classes

x 0
= 1 —_

x 1 5
bx—(o x) g*—1 qg—1

x 0 —1)(g~2)
cx.y=(0 y)’x#y q2+q (q 2(q
_{(* ¥ 2 _ iU ill)
dx.y_(y X)’y#o q q 2

. 0 1 .

Here ¢, ,and ¢, . are conjugate by ( _i O)’ and d,  andd, _, areconjugate
a —&c . .

by any . Fo count the number of elements in the conjugacy class

c —a .

of b,, look at the action of G on this class by conjugation; the isotropy group

. Jfa b . . , .
is {(O ")}, so the number of elements in the class is the index of this group

in G, which is g> — 1. Similarly the isotropy group for ¢, , is D, and the isotropy
group for d, ,is K. To see that the classes are disjoint, consider the eigenvalues
and the Jordan canonical forms. Since they account for |G| elements, the list
is complete.

There are g% — 1 conjugacy classes, so we must find the same number of
irreducible representations. Consider first the permutation representation ol
G on P'(F), which has dimension g + 1. It contains the trivial representation;
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let V be the complementary g-dimensional representation. The values of the
character y of V on the four types of conjugacy classes are y(a,) = g, x(b,) = 0,
xley,,) =1, x(d,.,) = — 1, which we display as the table:

Vi ¢ 0 1 -1

Since (y, x) = 1, V is irreducible.

For each of the g — I characters a: F* - C* of F*, we have a one-
dimensional representation U, of G defined by U,(g) = a(det(g)). We also
have the representations V, = V' ® U,. The values of the characters of these
representations are

Uy: a(x)? a(x)?  alx)a(y) a(x? — ey?)
Ve qa(x)? 0 a(xja(y)  —alx? —ry?)
ey

Note that if we identify (; ) with{ =x + y\/;: in I, then
X

x2 — gy? = det (; Bj) = Notmy¢({) = {-{* = (7"

The next place to look for representations is at those that are induced
from large subgroups. Foreach pair «, f of characters of F*, there is a character
of the subgroup B:

B—B/N =D =F* x F* > C* x C* 5 C*,

b
which takes (g d) to a(a)f(d). Let W, ; be the representation induced from

Bto G by this representation; this is a representation of dimension [G : B] =
q + 1. By Exercise 3.19 its character values are found to be:

Went (a4 Da(x)Blx)  a(x)B(x)  a(x)B(y) +a(y)f(x) O

We see from this that W, , = W, ,, that W, , =~ U, @ V,, and that lor « # f
the representation is irreducible. This gives 1(¢ — 1)(g — 2) more irreducible
representations, of dimension g 4 1.

Comparing with the list of conjugacy classes, we see that there are 1q{g — 1)
irreducible characters left to be found. A natural way to find new characters
is to induce characters from the cyclic subgroup K. For a representation

¢: K = (F)* - C*,

the character values of the induced representation of dimension [G: K] =
2
q° — lare

Ind(p):  4ql@—De(x) 0 0 o)+ ol)

Here again { = x + y\/é e K = (F')*. Note that Ind{p?) = Ind(p), so the
representations Ind(g) for ¢? # ¢ give 1q(q — 1) different representations.
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However, these represenations are not irreducible: the character y of Ind(¢)
satisfies (x, x) = q — 1 if ¢? # ¢, and otherwise (y, x) = q. We will have (o
work a little harder to get irreducible representations from these Ind(g).

Another attempt to find more representations is to look inside tensor
products of representations we know. We have V,@ U, =V, ,and W, ,Q@ U, =
W,,. sy 50 there are no new ones to be found this way. But tensor products of
the V,’s and W, ,'s are more promising. For example, V' ® W, ; has character
values:

VaWw..: 4q@+lalx) 0 afx)+a(y) O

We can calculate some inner products of these characters with each other
Lo estimate how many irreducible representations each contains, and how
many they have in common. For example,

(tvew. . xw. ) =2,
(Xlnd(w’XW._.) =1 ilplg =g,
(Xvew, ,» Xvew, )} =q+3,
(IV@H'.,.a Xinde) = G il plg» = 0,

Comparing with the formula (Xi,aem Xinag)) =9 — 1, one deduces that
V® W, , and Ind(¢) contain many of the same representations. With any
luck, Ind(p) and W, ; should both be contained in V ® W, . This guess is
easily confirmed; the virtual character

Xo = Xvaw,, — Xw,, — Xind(e)

takes values (g — I)a(x), —a(x), 0, and —(@({) + @({)?) on the four types of
conjugacy classes. Therelore, (x,, x,) =1, and x,(1)=qg— 1 >0, so g, is,
in fact, the character of an irreducible subrepresentation of ¥ ® W, , of
dimension g — 1. We denote this representation by X,. These iq(qg — 1)
representations, for ¢ 3 @ and with X = X _,, therefore complete the list
of irreducible representations for GL,(F). The character table is

I gt —1 ?+q ’—q
_fx 0 _(x [ _(x 0 _f(x ey
| o) oG () D
U, afx?) a(x?) a(xy) a((?)
v, ga(x?) 0 a(xy) ~a(lY)
Wes | €@+ Da(x)f(x) a(x)f(x) a(x)B(y) + a(y)f(x) 0
X (g — De(x) —p(x) 0 = (@) + 9l

Exercise 5.6. Find the mulitiplicity of each irreducible representation in the
representations V' ® W, ; and Ind (o).
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Exercise 5.7. Find the character table of PGL,(F) = GL,(F)/F*. Note that its

characters are just the characters of GL,(F) that take the same values on
elements equivalent mod F*.

We turn next to the subgroup SL,(F,) of 2 x 2 matrices of determinant

one, with g odd. The conjugacy classes, together with the number of elements
in each conjugacy class, and the number of conjugacy classes of each type, are

Representative No. Elements in Class No. Classes

1 0
(1) e=(0 1) I 1
-1 0
@ —e=( 0 _]) i !
11 g —1
3 (0 1) 2 :

N e
o (o) 3 ,
© (_([) -fl) q"z'z:_l 1
(7 (g x?l)’ x# 41 g+ 1) ‘!.%E
(8) (; i),x#il glg — 1) "_:7:_‘_

The verifications are very much as we did for GL,(F,). In (7), the classes of
0 10
(; _1) and (xO ) are the same. In (8), the classes [or (x, y) and (x, —y)
X X
are the same; as before, a better labeling is by the element { in the cyclic group

C={{eF)y: "' =1}

the elements + 1 are not used, and the classes of { and {"! are the same.

The total number of conjugacy classes is g + 4, so we turn to the task of
finding ¢ + 4 irreducible representations. We first see what we get by restrict-
ing representations f[rom GL,(F,). Since we know the characters, there is no
problem working this out, and we simply state the results;

(1) The U, all restrict to the trivial representation U. Hence, if we restrict any
representation, we will get the same for all tensor products by U,’s.
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(2) The restriction ¥ of the Vs is irreducible.

(3) Therestriction W, of W, , isirreducible ifa® # t,and W, = Wywhen 8 = «a
or f# = a~'. These give (g — 3) irreducible representations of dimension
q+ 1.

(3') Let = denote the character of F* with 12 = 1, 7 # 1. The restriction of W,
is the sum of two distinct irreducible representations, which we denote
W' and W".

(4) The restriction of X, depends only on the restriction of ¢ to the subgroup
C, and ¢ and ¢! determine the same representation. The representation
is irreducible if @ # 1. This gives 4(g — 1) irreducible representations of
dimension q — 1.

(4) If ¢ denotes the character of C with > = 1,  # 1, the restriction of X,
is the sum of two distinct irreducible representations, which we denote
X and X"

Altogether this list gives g + 4 distinct irreducible representations, and it
is therefore the complete list. To finish the character table, the problem is to
describe the four representations W', W”, X', and X". Since we know the sum
of the squares of the dimensijons of all representations, we can deduce that the
sum of the squares of these four representations is g* + 1, which is only
possible if the first two have dimension i{q + 1) and the other two i(q — 1).
This is similar to what we saw happens for restrictions of representations to
subgroups of index two. Aithough the index here is larger, we can use what
we know about index two subgroups by finding a subgroup H of index two
in GL,(F,) that contains SL,(F,), and analyzing the restrictions of these four
representations to H.

For H we take the matrices in GL,(F,) whose determinant is a square. The
representatives of the conjugacy classes are the same as those for GL,(F,),
including, of course, only those representatives whose determinant is a square,

8), x € F*. These

x
but we must add classes represented by the elements (0
X

. 1y, :
are conjugate to the elements ((J; x) in GL,(F,), but not in H. These are the

q — 1 split conjugacy classes. The procedure of the preceding section can be
used to work out all the representations of H, but we need only a little of this.

Note that the sign representation U’ from G/H is U, so that W, |
W, ® U and X, = X, ® U’, their restrictions to H split into sums of conju-
gate irreducible representations of half their dimensions. This shows these
representations stay irreducible on restriction from H to SL,(F,), so that W’
and W" are conjugate representations of dimension (g 4 1), and X" and X"
are conjugate representations of dimension 3(g — 1). In addition, we know
that their character values on all nonsplit conjugacy classes are the same as
half the characters of the representations W,  and X, respectively. This is all
the information we need to finish the character table. Indeed, the only values
not covered by this discussion are
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bo) 1) Gom) (o)

w’ $ t s’ t
w” t s t' s’
X' u v u' v’
X" v u v’ u’

The first two rows are determined as follows. We know that s 4+ { =

WY _ 1 addition since { £ 1) = (! ™1 is coniugate ¢
XW"' 01 =1, In 1ion, since Ol = 0 ]lsco_]ugaeo

I ) 1 . .
(0 l) if g is congruent to { modulo 4, and to 0 7 otherwise, and since

x(g™") = x(g) for any character, we conclude that s and ¢ are real if ¢ =
1 nod(4), and s = 1 il ¢ = 3 mod(4). In addition, since — e acts as the identity
or minus the identity for any irreducible representation (Schur’s [emma),

x(—a) = x(g)- x(1)/x(--€)

for any irreducible character y. This gives the relations s' = t(— l)s and
t' = 1(— 1)t. Finally, applying the equation (x, x) = 1 to the character of W’
gives a formula for st + 5. Solving these equations gives s, { = 1 4 %Jw_q,
where @ = t(—1)is 1 or — 1 according as g = I or 3 mod(4). Similarly one
computes that x and v are —% + 4, /wq. This concludes the computations
needed to write out the character table.

Exercise 5.8. By considering the action of SL,(F,) on the set P'(F ), show that
SL,(F,) = ©,, PSL,(F,) = %,, and SL,(F,) = 9.

Exercise 5.9*, Use the character table for SL,(F,) to show that PSL,(F,) is a
simple group if g is odd and greater than 3.

Exercise 5.10. Compute the character table of PSL,(F,), either by regarding
it as a quotient of SL,(F,), or as a subgroup of index two in PGL,(F,).

Exercise 5.11*. Find the conjugacy classes of GL,(F ), and compute the char-
acters of the permutation representations obtained by the action of GL;(F,)
on (i) the projective plane P2(F,) and (ii) the “flag variety” consisting of a point
on a line in P2(F,). Show that the first is irreducible and that the second is a
sum of the trivial representation, two copies of the first representation, and
an irreducible representation.

Although the characters of the above groups were found by the early
pioneers in representation theory, actually producing the representations in
& natural way is more difficult. There has been a great deal of work extending
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this story to GL,(F,) and SL,(F,) for n > 2 {c[. [Gr]), and for corresponding
groups, called finite Chevalley groups, related to other Lie groups. For some
hints in this direction see [Hu3], as well as [ Ti2]. Since all but a finite number
of finite simple groups are now known to arise this way (or are cyclic or
alternating groups, whose characters we aiready know), such representations
play a fundamental role in group theory. In recent work their Lie-theoretic
origins have been exploited to produce their representations, but to tell this
story would go far beyond the scope of these lecture(r)s.



LECTURE 6

Weyl’s Construction

In this lecture we introduce and study an important collection of functors generalizing
the symmetric powers and exterior powers. These are defined simply in terms of the
Young symmetrizers ¢, introduced in §4: given a representation V of an arbitrary group
G, we consider the dth tensor power of ¥, on which both G and the symmetric group
on d letters act. We then take the image of the action of ¢, on ¥®4; this is again a
representation of G, denoted S,(V). This gives us a way of generating new representa-
tions, whose main application will be to Lie groups: for example, we will generate all
representations of SI.,C by applying these to the standard representation C” of SL,C.
While it may be easiest to read this material while the definitions of the Young
symmetrizers are still fresh in the mind, the construction will not be used again until
§15, so that this lecture can be deferred until then.

§6.1: Schur functors and their characters
§6.2: The proofs

§6.1. Schur Functors and Their Characters

For any finite-dimensional complex vector space V, we have the canonical
decomposition

V@ V=Sym2V @AV

The group GL(FV) acts on V¥ ® V, and this is, as we shall soon see, the decom-
position of ¥ ® V into a direct sum of irreducible GL(V)-representations. For
the next tensor power,

VR V@V =Sym’V@®AV@® another space.

We shall see that this other space is a sum of two copies of an irreducible
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GL(V)-representation. Just as Sym?V and A’V are images of symmetrizing
operators from V® = V® V® - ® V to itsell, so are the other factors. The
symmetric group S, acts on V 7, say on the right, by permuting the factors

(0 ® " ®) 0 =0,1,D " ® Vya.

This action commutes with the left action of GL(V). For any partition 1 of d
we have from the last lecture a Young symmetrizer ¢, in CS,;. We denote the
image of c, on V® by S, V:

Sl V = Im(clly@d)

which is again a representation of GL(V). We call the functor' ¥ ~~S, ¥ the
Schur functor or Weyl module, or simply Weyl's construction, corresponding
to A. It was Schur who made the correspondence between representations of
symmetric groups and representations of general linear groups, and Weyl who
made the construction we give here.? We will give other descriptions later, cf.
Exercise 6.14 and §15.5.

For example, the partition d = d corresponds to the functor V ~~ Sym? ¥,
and the partitiond = 1 + - + I to the functor V ~~AV.

We find something new for the partition 3 = 2 4 1. The corresponding
syminetrizer ¢, is

Ca,n=1+euzn — us — €13z
so the image of ¢, is the subspace of V ®3 spanned by all vectors
VROV, RU; + 1,V V3 — 0PV, Pv, — ;@0 @ v,.

If A’V ® V is embedded in ¥ ®3 by mapping
(v, AD) @V, @V, Q3 — v, Qv D1y,
then the image of ¢, is the subspace of A’V ® V spanned by all vectors
(v AU3) @ vy + (b3 ADy)® 0.

It is not hard to verify that these vectors span the kernel of the canonical map
from A2V ® V to AV, so we have

S(Z.IJV = Ker(A2V® V“‘) /\3V)-

(This gives the missing factor in the decomposition of V®3)

Note that some of the §, ¥ can be zero if V has small dimension. We will
see that this is the case precisely when the number of rows in the Young
diagram of A is greater than the dimension of V.

! The funciorialily means simply that a linear inap g: ¥ — W of vector spaces deiermines a linear
map $,(9): S,V =S, W, with S(¢ o ¥) = §,(¢) o S,(¥) and §,(1d,) = Ids,,

? The notion goes by a variety of names and notations in the literature, depending on the context.
Constructions differ markedly when not over a field of characteristic zero; and many authors now
parametrize them by the conjugate partitions. Qur choice of noiation is guided by the corre-
spondence between these functors and Schur polynotnials, which we will see are their characters.
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When G = GL(V), and for important subgroups G = GL(V), these S,V
give many of the irreducible representations of G; we will come back to this
Jater in the book. For now we can use our knowledge of symmetric group
representations to prove a few facts about them—in particular, we show that
they decompose the tensor powers V%, and that they are irreducible repre-
sentations of GL(V’). We will also compute their characters; this will eventually
be seen to be a special case of the Weyl character formula.

Any endomorphism g of V gives rise to an endomorphism of S, V. In order
to tell what representations we get, we will need to compute the trace of this
endomortphism on S, V; we denote this trace by s ,(g). For the computation,

let x4, ..., x, be the eigenvalues of g on V, k = dim V. Two cases are easy. For
A = (d),

S(d) V = Sym‘, Xs,d,v(g) = Hy(xy,..., X), (6.1)

whete Hy(x,, ..., x;) is the complete symmetric polynomial of degree d. The
definition of these symmetric polynomials is given in (A.1) of Appendix A.
The truth of (6.1) is evident when g is a diagonal matrix, and its truth for the
dense set of diagonalizable endomorphisms implies it for all endomorphisms;
or one can see it directly by using the Jordan canonical form of g. For
A=(l1,..., 1), we have similarly

WV =NV, s, (@) =Edxs. .. x) (6.2)

with Eix,, ..., ;) the elementary symmetric polynomial [see (A.3)]. The
polynomials H; and E, are special cases of the Schur polynomials, which we
denote by S, = 8,(x;, ..., X,). As  varies over the partitions of d into at most
k parts, these polynomials S, form a basis for the symmetric polynomials of
degree d in these k variables. Schur polynomials are defined and discussed in
Appendix A, especially (A.4)-(A.6). The above two formulas can be written

Xsplg) = Silxys.o0sxp) ford=(d)and L =(1,..., 1).
We will show that this equation is valid for all A:

Theorem 6.3. (1) Let k=dim V. Then S,V is zero if 2, #0. If 1=
(A, = =2 = 0), then

dim SJ.V = SA(It ey ]) = n _‘F—’—"-*“'—~
1<i<jsk J—1

(2) Let m, be the dimension of the irreducible representation V, of S,
corresponding to A. Then

ve = (Ps,vem
A

(3) For any g € GL(V), the trace of g on S,V is the value of the Schur
polynomial on the eigenvalues x,, ..., x,0f gon V:

Xs,w(g) = S3(xy, ..., x).
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(4) Each S,V is an irreducible representation of GL(V).

This theorem will be proved in the next section. Other formulas for the
dimension of S,V are given in Exercises A.30 and A.31. The following is
another:

Exercise 6.4*. Show that
(k —i+j)
hy

. m .y s
d1m51V=B—§]_[(k—n+j)=ﬂ )
where the products are over the d pairs (i, f) that number the row and column
of boxes for 4, and h,; is the hook number of the corresponding box.

Exercise 6.5. Show that V®3 = Sym?*V @ A3V & (S, V) P2, and
Ve > Sym* VAV @ (Sa.y V)P @ (S¢2,2 elg (Se,1,V) ®3,

Compute the dimensions of each of the irreducible lactors.
The proof of the theorem actually gives the following corollary:

Corollary 6.6. If c € C&,, and (CS,) - c = (P, V2" as representations of &,,
then there is a corresponding decomposition of GL(V)-spaces:

V®d'c = @glVer‘.
a

If x,, ..., x, are the eigenvalues of an endomorphism of V, the trace of the
induced endomorphism of V®-cis Y r,S,(X,,..., Xa).

If 2 and p are different partitions, each with at most k = dim ¥V parts, the
irreducible GL(V)-spaces S,V and S,V are not isomorphic. Indeed, their
characters are the Schur polynomials S, and §,, which are different. More
generally, at least for those representations of GL(V) which can be decom-
posed into a direct sum of copies of the represenations S, V’s, the representa- -
tions are completely determined by their characters. This follows immediately
from the fact that the Schur polynomials are linearly independent.

Note, however, that we cannot hope to get all finite-dimensional irreducible.
representations of GL(V) this way, since the duals of these representations
are not included. We will see in Lecture i5 that this is essentiafly the only
omission. Note also that although the operation that takes representations of
S, to representations of GL(V) preserves direct sums, the situation with
respect to other linear algebra constructions such as tensor products is more
complicated.

One important application of Corollary 6.6 is to the decomposition of a
tensor product S,¥ ® S,V of two Weyl modules, with, say, 1 a partition of
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d and p a partition of m. The resuit is

S,V ®S,V =P NS, Vs (6.7)

here the sum is over partitions v of d + m, and N,,, are numbers determined
by the Littlewood— Richardson rule. This is a rule that gives N,,,, as the number
of ways to expand the Young diagram of 4, using i in an appropriate way, to
achieve the Young diagram for v; see (A.8) for the precise formula. Two
important special cases are easier to use and prove since they involve only the
simpler Pieri formula (A.7). For gt = (m), we have

S,V @Sym™V = PS,V, (6.8)

the sum over all v whose Young diagram is obtained by adding m boxes to
the Young diagram of i, with no two in the same column. Similarly for
p=(..., 1)

S, VNV =PS.,V, (6.9)

the sum over all partitions # whose Young diagram is obtained [rom that of
A by adding m boxes, with no two in the same row.
To prove these formulas, we need only observe that

S, VRS, V=V®-c,®V® ¢,
=V ® V®""(C,1®C,,)= V®("+"')'c,

with c=¢,®¢,eCE,QCE, =C(G, x &,) =« C&,,,.. This proves that
S,V ® S,V has a decomposition as in Corollary 6.6, and the coeflicients are
given by knowing the decomposition of the corresponding character. The
character of a tensor product is the product of the characters of the factors;
so this amounts to writing the product 8,5, of Schur polynomials as a linear
combination of Schur polynomials. This is done in Appendix A, and formulas
(6.7), (6.8), and (6.9) follow from (A.8), (A.7), and Exercise A.32 (v), respectively.
For example, from Sym’V @ V = Sym*'V @ S, , V, it follows that

Sw.1)V = Ker(Sym‘V ® v - Sym’*'y),
and similarly for the conjugate partition,
V= Ker(AV @ V - A*y),
Exercise 6.10*. One can also derive the preceding decompositions of tensor
products directly from corresponding decompositions of representations of

symmetric groups. Show that, in fact, S,V ® S,V corresponds to the “inner
product” representation ¥, o V, of &,,,, described in (4.41).

Exercise 6.11*, (a) The Littlewood-Richardson rule also comes into the de-
composition of a Schur functor of a direct sum of vector spaces V and W. This
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generalizes the well-known identities

Sym" (V@ W)= ) (Sym*V @ Sym"W),

dat+h=n

NVeW)= P NVRNW)

ath=n
Prove the general decomposition over GL(V) x GL(W).
SV W) =@ N,,(S:VOS, W),

the sum over all partitions A, # such that the sum of the numbers partitioned
by 4 and p is the number partitioned by v. (To be consistent with Exercise
2.36 one should use the notation ® lor these “external” tensor products.)

{(b) Similarly prove the formula for the Schur functor of a tensor product:

SV(V ® w) = @ Clpv(gl |4 ® S,u W))
where the coeflicients C, ,, are defined in Exercise 4.51. In particular show that
Sym‘(v@ W) =P S,V @ S, W,

the sum over all partitions A of d with at mostdim V or dim W rows. Replacing
W by W*, this gives the decomposition for the space of polynomial functions
of degree d on the space Hom(V, W) over GL(V) x GL(W). For variations
on this theme, see [Ho3]. Similarly,

Nrew)=@PS,Vyres,w,
the sum over partitions 1 of d with at most dim V rows and at most dim W
columns.
Exercise 6.12. Regarding
GL, C=GL,Cx{1}=GL,CxGL,€C<=GL,,C,

the preceding exercise shows how the restriction of a representation de-
composes:

Res(S,(C"*™) = T Ny dim S,(€"))S 1(C")
In particular, for m = 1, Pieri’s formula gives
Res(S,(C™*Y)) = P SH€"),

the sum over ali 1 obtained from v by removing any number of boxes from
its Young diagram, with no two in any column.

Exercise 6.13*. Show that for any partition u = (p,, ..., #,) of d,
NVRNVQ - Q@ NV Q?KMS,V,

where K, is the Kostka number and 1’ the conjugate of 1.
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Exercise 6.14*. Let 1 = 1’ be the conjugate partition. Put the factors of the
dth tensor power V ® in one-to-one correspondence with the squares of the
Young diagram of 1. Show that S, V is the image of this composite map:

@ (NV) = Q@ F) = VO (9 (@) - X (Sym™¥F),

the first map being the tensor product of the obvious inclusions, the second
grouping the factors of ¥ ®4 according to the columns of the Young diagram,
the third grouping the factors according to the rows of the Young diagram,
and the fourth the obvious quotient map. Alternatively, S,V is the image of
a composite map

X (Sym* 1) = @ (®*V) - V& = R, (®"F) - &) (NV).

In particular, S,V can be realized as a subspace of tensors in ¥'®¢ that are
invariant by automorphisms that preserve the rows of a Young tableau of
A, or a subspace that is anti-invariant under those that preserve the columns,
but not both, cl. Exercise 4.48.

Problem 6.15*. The preceding exercise can be used to describe a basis for the
space S, V. Let v,, ..., v, be a basis for V. For each semistandard tableau T’
on 4, one can use it to write down an element vy in (X); (/A*V); vy is a tensor
product of wedge products of basis elements, the ith factor in AV being the
wedge product (in order) of those basis vectors whose indices occur in the ith
column of 7. The fact to be proved is that the images of these elements vy
under the first composite map of the preceding exercise form a basis for S, V.

At the end of Lecture 15, using more representation theory than we have
at the moment, we will work out a simple variation of the construction of S, V
which will give quick proofs of refinements of the preceding exercise and
problem.

Exercise 6.16*. The Pieri formula gives a decomposition
Sym'V ® Sym'y = (“D Sutad-aV;

the sum over 0 < a < d. The left-hand side decomposes into a direct sum of
Sym2(Sym’¥) and A*(Sym?¥V). Show that, in fact,

Symz(Sym"V) = 5(24,0) Ve §(2d—2.2) Ve 5(24-4.4)V® T

N SymV) = Sza-1, 1)V B S2a-3,3V ® Sau-s5.5V D"
Similarly using the dual form of Pieri to decompose A’V ® A’V into the sum
@S.,V, thesumoverall A =(2,...,2,1,..., 1) consisting of d — a 2’s and 2a

. I's,0 < a < d, show that Sym?(A?V) is the sum of those factors with a even,
and A*(A'V) is the sum of those with a odd.
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Exercise 6.17*.1f L and y are any partitions, we can form the composite functor
S,(S, V). The original “plethysm” problem—which remains very difficult in
general—is to decompose these composites:

Su(S.V) =D M,,S.V,

the sum over all partitions v of dm, where 1 is a partition of d and y is a partition
of m. The preceding exercise carried out four special cases of this.

(a) Show that there always exists such a decomposition for some non-
negative integers M, ,, by constructing an element ¢ in €&,,,, depending on
Aand g, such that (S, V) is V& c.

(b) Compute Sym*(S; ;) V) and AX(S,; , V).

Exercise 6.18* “Hermite reciprocity.” Show that if dim ¥ = 2 there are iso-
morphisms

SymP(Sym?V) = Sym*(Sym”V)
of GL(V)-representations, for all p and q.

Exercise 6.19*. Much of the story about Young diagrams and representations
ol symmetric and general linear groups can be generalized to skew Young
diagrams, which are the differences of two Young diagrams. If 1 and p are
partittons with u, < A, for all i, A/p denotes the complement of the Young
diagram for i in that of A. For example, if A = (3,3, ) and g = (2, 1), A/p is
the numbered part of

BRORRE
e

To each A/u we have a skew Schur function S,,,, which can be defined by
any of several generalizations of constructions of ordinary Schur functions.
Using the notation of Appendix A, the following definitions are equivalent:

() Szm = IH).r-u,—Hjl,
(ii) Su,. = lEz;—n;—u;L
(iii) Syn = Y, MX1" X,

where m, is the number of ways to number the boxes of A/u with a, 1’s, a, 2's,
..., & k's, with nondecreasing rows and strictly increasing columns.
In terms of ordinary Schur polynomials, we have

(iV) ' S‘Iﬂ = z NuMS‘,,

where N, , is the Littlewood-Richardson number.
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Each /i determines elements a,,,, b,,,, and Young symmetrizers c,,, =
by in A =CSy,d =3 ) — p, exactly as in §4.1, and hence a representa-
tion denoted ¥,,, = Ac,,, of &,. Equivalently, V,,, is the image of the map
Ab,,, - Aa,,, given by right multiplication by a,,,, or the image of the map
Aa,, - Ab,, given by right multiplication by b,,,. The decomposition of V,,,
into irreducible representations is

(V) VJ./;A = Z N.uv). V;'

Similarly there are skew Schur functors S,,,, which take a vector space V'
to the image of ¢, on V ®%; equivalently, S,,, V' is the image of a natural map
(generalizing that in the Exercise 6.14)

(vi) GO (N1 — V& 5 (), Sym* ™ V),
or

(vii) i (Sym*~#y) - VO (R (NI 1V).

Given a basis v, ..., v, for V and a standard tableau T'on A/u, one can write
down an element vy in ), (A% ~%¥); for example, corresponding to the dis-
played tableau, vy = v, ® v, ® (v; A v;). A key fact, generalizing the result of
Exercise 6.15, is that the images of these elements under the map (vi) form a
basis for S, V.

The character of S,V is given by the Schur function §,,,: if g is an
endomorphism of V with eigenvalues x, ..., x;, then

(viii) Xs,,,,v(g) = Szm(xl yooes Xi)

In terms of basic Schur functors,

(ix) SV Y. NS, V.

Exercise 6.20*. (a) Show that il 1 = (p, g), S,V is the kernel of the contrac-
tion map

Cp.q: SYM?V ® Sym?¥V — Sym?P*'V @ Sym?™' V.

(b) If A = (p, q, r), show that S, , ,,V is the intersection of the kernels of
two contraction mapsc, , ® I, and I, ® ¢, ,, where [; denotes the identity map
on Sym' V.

In general, for A=(4,,..., 4), S,V <Sym" V@ - ® Sym*¥ is the inter-
section of the kernels of the k — | maps

\l’f = 111 ® ® 111—t ®Cli.1nt ® l‘-uz@ @ l‘lk’ I<i<k-L

(¢ ForA=(p,1,...., 1), show that S;V is the kernel of the contraction
map:

5(p. 1,...,1) V= Ker(Sym."V® NPy o Symp-u V® NP1 ).

In general, for any choice of a between 1 and k — 1, the intersection of
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the kernets of all ¥, except ¢, i5 S,V ® S,V, where o = (4,,..., 4,) and
T ={A4s1,--., 4); 50 S,V is the kernel of a contraction map defined on
S,V®S,V.Forexample,ilaisk — 1,and we set r = 1,, Pieri’s formula writes
S,V@Sym'V as a direct sum of S,V and other factors S, FV; the general
assertion in (b) is equivalent to the claim that S,V is the only factor that is
in the kernel of the contraction, ie.,

S,V =Ker(S§,,, V@ Sym'V — Vo) @ Symrty),

These results correspond to writing the representations V, < U, of the sym-
metric group as the intersection of kernels of maps to U, . ,.41.1,,,-1..... 2-

SIRYY T

Exercise 6.21. The functorial nature of Wey!'s construction has many conse-
quences, which are not explored in this book. For example, if £, is a complex
of vector spaces, the tensor product E2? is also a complex, and the symmetric
group &, acts on it; when factors in E, and E, are transposed past each other,
the usual sign (— 1) is inserted. The image of the Young symmetrizer ¢, is a
complex S,(E,), sometimes called a Schur complex. Show that if E_ is the
complex E_; = V' — E, = V, with the boundary map the identity map, and
A = (d), then §,(E,) is the Koszul complex

0__>Ad,_+/\d—1®sl_’/\d-2®sz_’.,__’/\l®sd~l__,Sd_,o’
where A' = A'V, and §/ = Sym/V.

§6.2. The Proofs

We need first a small piece of the general story about semisimple algebras,
which we work out by hand. For the moment G can be any finite group,
although our application is for the symmetric group. If U is a right module
over A = CG, let

B = Homg(U, U) = {@: U = U: p(v-g) = ¢(v)-g,Vve U ,g e G}.
Note that B acts on U on the left, commuting with the right action of 4; B is
called the commutator algebra. [[ U = (P UB" isan irreducible decomposition

with U, nonisomorphic irreducible right A-modules, then by Schur’s Lemma
1.7

B = P, Homg(U®™, UP™) = (P M, (O),

where M, (C) is the ring of n; x n, complex matrices.
If W is any left A-module, the tensor product

U@y W= U ®¢ W/subspace generated by {ra®@ w — v ® aw}
is a left B-module by acting on the first factor: b- (v @ w) = (b v) @ w.
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Lemma 6.22. Let U be a finite-dimensional right A-module.

(i) For any ¢ € A, the canonical map U ®, Ac — Uc is an isomorphism of left
B-modules.

(i) If W = Ac is an irreducible left A-module, then U ®, W = Uc is an
irreducible left B-module.

(iii) If W, = Ac, are the distinct irreducible left A-modules, with m; the
dimension of W,, then

U= @ (U@ W)™ = Py (Uc))®™

is the decomposition of U into irreducible left B-modules.

PRrROOF. Note first that Ac is a direct summand of A4 as a left 4-module; this is
a consequence of the semisimplicity of all representations of G (Proposition
1.5). To prove (i), consider the commutative diagram

UuA —— URAc = U@, 4

o

U - U-c e U

where the vertical maps are the maps v ® a+— v-a; since the left horizontal
maps are surjective, the right ones injective, and the outside vertical maps are
isomorphisms, the middle vertical map must be an isomorphism.

For (1), consider first the case where U is an irreducible A-module, so
B = €. Tt suffices to show that dim U ®, W < 1. For this we use Proposition
3.29 to identify A with a direct sum Pf.; M,, € of r matrix algebras. We can
identify W with a minimal left ideal of A. Any minimal ideal in the sum of
matrix algebras is isomorphic to one which consists of r-tuples of matrices
which are zero except in one factor, and in this factor are all zero except for
one column. Simitarly, U can be identified with the right ideal of r-tuples which
are zero except in one factor, and in that factor all are zero except in one row.
Then U @, W will be zero unless the factor is the same for U and W, in which
case U ®, W can be identified with the matrices which are zero except in one
row and column of that factor. This completes the proof when U is irreducible.
For the general case of (ii), decompose U = (P, UP™ into a sum of irreducible
right A-modules, so U ®, W = (B,(U,®, W)®" = C®™ or some k, which is
visibly irreducible over B = (P M, (C).

Part (iii) follows, since the isomorphism A4 = @W,@"" determings an iso-
morphism

Uz U@ AU, (PW®) = @i ®, w)e™. 0

To prove Theorem 6.3, we will apply Lemma 6.22 to the right CS;-module
U = v®4 That lemma shows how to decompose U as a B-module, where B



86 6. Weyl's Construction

is the algebra of all endomorphisms of U that commute with all permuta-
tions of the factors. The endomorphisms of U induced by endomorphisms of
V are certainly in this algebra B. Although B is generally much larger than
End(V), we have

Lemma 6.23. The algebra B is spanned as a linear subspace of End(V®?) by
End(V). A subspace of V®¢ is a sub-B-module if and only if it is invariant by
GL(V).

PROOF. Note that if W is any finite-dimensional vector space, then Sym*W is
the subspace of W®4 spanned by all w¥ = d!lw® -+ ® w as w runs through
W. Applying this to W = End(V) = V* ® V proves the first statement, since
End(V®9) = (V*)® ® V® = W9 with compatible actions of . The second
follows [rom the fact that GL(V) is dense in End(V). O

We turn now fo the proof of Theorem 6.3. Note that S, V is Uc,, so parts
(2) and (4) follow from Lemmas 6.22 and 6.23. We use the same methods to
give a rather indirect but short proof of part (3); for a direct approach see
Exercise 6.28. From Lemma 6.22 we have an isomorphism of GL(V)-modules:

S,)V=v®e,V, (6.24)

with V, = A-c;,. Similarly for U, = A-a,, and since the image of right multi-
plication by a; on ¥® is the tensor product of symmetric powers, we have

Sym*V @ Sym*2V ® --- @ Sym*V = ¥V ®, U,. (6.25)

But we have an isomorphism U; = (P, K, ¥, of A-modules by Young’s rule
(4.39), so we deduce an isomorphism of GL(V)-modules

Sym*'V @ Sym*V @ - @ Sym*V = P K,,S, V. (6.26)
]

By what we saw before the statement of the theorem, the trace of g on the
left-hand side of (6.26) is the product H,(x,, ..., x,) of the complete symmetric
polynomials H, (x,, ..., x,;). Let S;{g) denote the endomorphism of S,V
determined by an endomorphism g of V. We therefore have

H;‘(xl_.. csey x.) = EMK"A Trace(gﬂ(g)).

But these are precisely the relations between the functions H; and the Schur
polynomials S, [see formula (A.9)], and these relations are invertible, since
the matrix (K ,,) of coefficients is triangular with 1’s on the diagonal. It follows
that Trace(S,(g)) = S;(x,, ..., x;), which proves part (3).

Note that if 2 = (4, ..., 4,) with d > k and 1,,, # 0, this same argument
shows that the trace is §;(xy, ..., x,, 0, ..., 0), which is zero, for example by
(A.6). For g the identity, this shows that S, ¥ = 0 in this case. From part (3)
we also get
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dim S,V = S,(1,..., 1), (6.27)
and computing S,(1, ..., 1) via Exercise A.30(ii) yields part (1). ]

Exercise 6.28. If you have given an independent proof of Problem 6.15, part
(3) of Theorem 6.3 can be seen directly. The basis elements vy for S, V specified
in Problem 6.15 are eigenvectors for a diagonal matrix with entries x, ..., Xx;,
with eigenvalue X = x{*-... - xf*, where the tableau T has a, 1's, a, 2's, ...,
a, k's. The trace is therefore ) K,, X" where K, is the number of ways to
number the boxes of the Young diagram of A with a; U’s,a, 2’s,..., a; k's. This
is just the expression for S, obtained in Exercise A.31(a).

We conclude this lecture with a few of the standard elaborations of these
ideas, in exercise form; they are not needed in these lectures.

Exercise 6.29*. Show that, in the context of Lemma 6.22, if U is a faithful
A-module, then 4 is the commutator of its commutator B:

A={Y:U->U:{bv) =by(v),Yve U, be B}

If U is not faithful, the canonical map from A to its bicommutator is surjective.
Conclude that, in Theorem 6.3, the algebra of endomorphisms of ¥'®¢ that
commute with GL(V') is spanned by the permutations in &,.

Exercise 6.30. Show that, in Lemma 6.22, there is a natural one-to-one cor-
respondence between the irreducible right A-modules U, that occur in U and
theirreducible left B-modules V. Show that there is a canonical decomposition

U= (-P(Vr®c Uy

as a lelt B-module and as a right A-module. This shows again that the number
of times V; occurs in U is the dimension of U, and dually that the number of
times U, occurs is the dimension of ¥. Deduce the canonical decomposition

Vet =PS, VRV,

the sum over partitions A of dinto at most k = dim V parts; this decomposition
is compatible with the actions of GL(V) and &,. In particular, the number of
times V; occurs in the representation V¢ of &, is the dimension of S, V.

Exercise 6.31. Let e be an idempotent in the group algebra 4 = CG, and let
U = eA be the corresponding right A-module. Let E = eAe, a subalgebra of
A. The algebra structurein 4 makes eA a left E-module. Show that this delines
an isomorphism of C-algebras

E = eAe =~ Hom,(eA, eA) = Homgx(U, U) = B.
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Exercise 6.32. If H is a subgroup of G, and ¢ € CH is an idempotent, corre-
sponding to a representation W = CH - e of H, show that CG - ¢ s the induced
representation Tnd§(W). For example, if 9: If -~ C* is a one-dimensional
representation, then

t .
Ind§(9) = CG-ey, whereeyg=_—_. Y 3(g)e,.
‘GI geG
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Index of Symbols

g-v = gv = p(g)(v) (group action,
representation), 3

Ve W, V@eWwaA4

AV, 4

Sym"V, 4

V* 4

<, 04

p*, 4

VF"t@...@ [;;‘Qdk =alVl DD
aVi=aVi + -+ a W7

U (trivial rep.), 9

V (standard rep.), 9

U’ (alternating rep.), 9

xv (character of V), 13

Tr (trace), 13

[g] (conjugacy class of g), 14

C s O) (class functions on), 16

( , )(inner product), 16

S, (symmetric group), 18

A, (alternating group), 18

R(G) (representation ring of G), 22

& (external tensor product), 24

D, (dihedral group), 30

C,, (Clifford algebra), 30

SL,(Z/3), 31

Res$ V, Res(V) (restriction of

CG (group algebra of G), 36

Rx(G) (representation ring over K), 42

p(d) (number of partitions of d), 44
A’ (conjugate partition to 2), 45
Pb Qb 46

a;, by, 46

¢, (Young symmetrizer), 46

Vi, 46

P(x) (power sum}, 48, 459

A(x) {(discriminant), 48, 459
[f(x)]u,‘....:,‘)e 48, 459

3 (Schur polynomial), 49, 454
A = CS, (group ring of S), 52
S,, 54

U,, 54

'l’b 54

P™, 55, 459-460

ung(i), 55, 459-460

X4 = xfre . xdx 55, 459-460
K,, (Kostka number), 56, 456
., 58

V; o... o V (outer product), 58

N, ., (Littlewood-Richardson number),

58,79, 82,424, 427, 455-456
Ciu 61
GL(F,), SL,(F,), PGL,(F,), 67

representation), 32 S, ¥ (Schur functor, Weyl module), 76-77
Ind§ V, Ind(V) (induced representation),  xs(g), 7677
33 Sj_,l’,, Cihl! ;"1,", Sﬂh‘” 82_3



544 Index of Symbols

GL,R, GL(V), Aut(V) = SL,R, 95 PW (projective space of lines in W}, 153
B,,95 [w], 153
N,, 96 (29, -1 Zm], 153
SO,R = SO(n), SO, ;R = SO(k, I), 96 1,: P! < P (rational normal curve), 154
Sp,R, 96 D, 162, 198
O,k = 0{n), 97 9, 162, 198
GL,C.SL,C, 97 E, ;, (weights), 163, 212, 239
S0O,C, 97 L, (weights), 163, 212, 239
Sp,,C, 97 Ap (root lattice), 165-166, 198, 213
U, = U), SUMm), U, = ULk, 1), I: Ag — R, 166, 202, 243

SU, =SU(k, 1), 98 Ay (weight lattice), 172, 200
GL,H, 98 T, s (irred. rep. of s1,C with highest weight
SL,H, 98-100 aL, + b(L, + L,)), 176, 244
Sp(n) = Uy(n), 98-100 R (the set of roots), 198
U, .M, 98-100 s, (subalgebra = sl,C corresponding
U¥(H), 98-100 to root a), 200
Z(G) (center of G), 101 H,, (elts. of s, corresponding to I1, X, Y
PSL,R, PSL,C, PGL,C, PSO, R, in sl,C), 200

PSO,C, PSp,,R, PSp,,C, 102 X,, (elts. of s, corresponding to I, X, Y
Spin, R, Spin,C, 102 in sl,C), 200
T,G (tangent space), 105 Y, (elts. of s, corresponding to H, X, Y
m, (left multiplication by g), 105 in sl,C), 200
¥, (conjugation by g), 105 - W, (reflection on h* corresponding to
Ad, ad (adjoint actions), 106-107 root a), 200
[, ](bracket in Lie algebra), 107 0, (hyperplane in h* corresponding to
gl(V), g, R, 109 root a), 200
sl,R, 112 8 (Weyl group), 201
s0,R =o,R, 112 Vg (a-string of ), 201
sp,, R, 112 R (positive roots), R~ (negative roots),
u,, 113 202
bR, 113 W {closed Weyl chamber), 205
n,R, 113 wy, ..., w, (fundamental weights),
al,C, sl,C, 113 205, 306
so,,C, 113 F.,....a, (irred. rep. with highest wt.
sp,,C, 113 a,wy + - + a,w,), 205
¢y (one-parameter subgroup), 115 B (Killing form), 206
exp (exponential map), 115 T, (in | corresponding to H, in §*), 208
X+ Y = log{exp{X)-exp(Y)), 117 H, = FE,, 211,239
Z(q) (center of g), 121 p: Grass, V — P(A'V) (Pliicker
2.9, 2*q, 29 = [g, ¢] (commutator embedding), 227

subalgebra), 122 D, (k*" power of determinant), 231
Rad(g) (radical of g), 123 D, ...231
Oss = g/Rad(q}v 127 "PA,,....J,.: 231
X = X, + X, (Jordan decomposition), SV = (—BS"V, 235-236, 398

128, 482 Q (skew-symmetric bilinear form), 238
H, 147 Sp,,C, (symplectic Lie groups), 239
X, 147 sp,,C (symplectic Lie algebras), 239
Y, 147 X Yip Zi g Uy, V (elements in sp,,C),

V,, 147 240



Index of Symbols

T, ..q, (irred. rep. of sp,,C with highest
wt. Za,(L, + - + L;)), 260

V%™ (irred. rep. with highest wt.
L, + -+ L), 260

V442 263

S,V 263

S$¢2, 265, 398

Q (symnmetric bilinear form), 268

S0,,C, (orthogonal Lie groups), 268

s0,,C {orthogonal Lie algebras), 263

By, X5, Y 2y, U, Vi(elements
in s0,,), 270

via 296

SV 296

st 297, 398

O(V, Q) (orthogonal group), 301

C = C(Q) = CHfi{¥, Q){Clifford algebra),
301

C=C""@CH=Ct*eC, 302

s0((Q), 303

St = AW, §7 = AW (half-spin
representations}), 305

§ = AW (spin representation), 307

C(p, ), 307

* (conjugation), 307-308

t (reversing map), 307-308

a (main involution), 307-308

p: Spin(Q) —» SO((), 308

Pin{(Q), 308

Spin*(p, g) -» SO*(p, q), Spin(p, q) »
SO(p, q), 312

E (Euclidean space of root system), 319

( , ) (Killing form), 320

nge = B(H,) = 2B, a)fla, a), 320

(4,), (B.), (C,), (D,), 321-326

(Eg). (E4), {Eg), (F4), (G3), 321-326

w,, w, (for g,), 351

T, 4 (for g5), 351

A (trilinear maps), 360

T, T’ (trilinear maps), 360

O (Octonians, Cayley algebra), 362--365

J (Jordan algebra), 362-365

H (Cartan subgroup), 369

T, (irred. rep. with highest wt.
A=A Ly + -+ 4,L,), 370371

Ig, Fw, 372-373

N(H)/H =1, 374

R(g) (representation ring), 375

A=Ay, 375
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Z[A], 375

e(d), 375

Char: R{g) - Z[A]T, 375

Iy, ..., T, (irred. reps. with highest wts.
Wy, ..., w,), 376

A, B, B, C,D,D*", D", 377-378

A! (exterior power operator), 380-381

¥' (Adams operator), 380-381

b (Borel subalgebra), 382-383

B (Borel subgroup), 382-383

P (parabolic subgroup), 384

p (parabolic subalgebra), 384

p(Z), 385

L, (line bundle), 392

iy, 396

B-w-B, 396

U, Uu-, u(w), u(wy, 396

(— ¥ = sgn(W), 400

p (half the sum of the positive roots), A,,
400

Ca, By = alHy) = 2, AP, B), 402

n, (dimension of weight space), 415

C (Casimir operator), 416

P, P, 419-420

A, 419-420

v, 419-420

P(y1) (Kostant’s counting function), 421

Nz, 428

A" A, AN = PT,, 428

0o {real form), 430

H,, H)(complete symmetric polynomials),
453

M, (monomial symmetric polynomials),
454

E,, E; (elementary symmetric
polynomials), 454

S, (Schur polynomials), 454

¢, ) (bilinear form on symmetric
polynomials), 458

Ua(P), w,(P), 459

z() = iy 111 0,12 id", 460

A, 3 A - A 461-462

S¢ays Spay, 466-467

A {exterior multiplication), 474

TV (tensor algebras), 475

AV {exterior algebras), 475

Sym'V (symmetric algebras), 475

{ , ) (pairing between space and dual
space), 476
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B, (Killing form on V), 478

b, 480

Nil{g) =  {nilradical), 485

U = U(g) (universal enveloping algebra),
486

o(H), 487

e(X) = exp(ad(X)), 491

E(b), 491

Index of Symbols

S (set of simple roots), 494
o = —-—2—-a {coroot), 496
(o, )
[x"x@ | x'7 (bracket), 504
§¢ = Symi(V'*), 504
&' < d (antilexicographic order), 505
D, ,, 505
€1 (Cayley operator), 507
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abelian groups (representations of), 8
abelian Lie algebra, 121
abelian Lie group, 94
abelian variety, 135
Abramsky-Jahn-King formula, 411-412
Adams operators, 380, 449
adjoint form (of a Lie group), 101
adjoint representation, 106
admissible Coxeter diagram_ 327
Ado’s theorem, 124, 500-503
algebraic group, 95, 374
alternating group (representations of)
€A,y 9
A, 20
n,, 29
Ny, 6367
alternating map, 472
alternating representation, 9
Artin’s theorem, 36
automorphism group of a Lie algebra,
498
averaging, 6, 15, 21

bilinear form, 40, 97

Borel-Weil-Bott-Schmid theorem, 392
393

Borel subalgebra, 210, 338, 382

Borel subgroup, 67, 383 478

Borel’s fixed point theorem, 384
bracket, 107--108, 504

branching formula, 59, 426

Brauer's theorem, 36

Bruhat cell and decomposition, 395-398
Burnside, 24-25

Campbell-Hausdorff formula, 117
Capelli's identity, 507-508, 514-515
Cartan, 434
Cartan criterion for solvability, 479
Cartan decomposition, 198, 437
Cartan matrix, 334
Cartan multiplication, 429
Cartan subalgebra, 198, 338, 432,
478-492
Cartan subgroup, 369, 373, 381
Casimir operator, 416, 429, 481
Cauchy’s identity, 457-458
Cayley algebra, 362-365
Cayley operator, 507
center of Lie algebra, 121
character (of representation), 13, 22, 375,
440, 442

character homomorphism, 375
character table, 14

of S,, 14

of G,, 19
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character table (cont.)
of A,, 20
of G4, 28
of 2, 29
of S,, 49
of A, 66
of GL,(F,), 70
of SL,(F,), 71-73
characteristic ideal, 484
characteristics (of Frobenius), 51
Chevalley groups, 74
chordal variety, 192, 230
class function, 13, 22
classical Lie algebras and groups, 132,
367-375
Clebsch,.237
Clebsch-Gordon problem, 8, 424
Clifford, 64
Clifford algebras, 30, 299-307, 364365
commutator algebra, 84
commutator subalgebra of Lie algebra,
122
compact form, 432-438
complete reducibility, 6, 128, 481-483
complete symmetric polynomial, 77, 453
complex Lie algebra, 109
complex Lie group, 95
complex representation, 41, 444-449
complex torus, 120
complexification, 430, 438
conjugate linear involution, 436
conjugate partition, 45, 454
conjugate representation, 64
connected Lie group, 94
contraction maps, 182, 224, 260-262,
288,475-477
convolution, 38
coroot, 495-496
Coxeter diagram, 327
cube, rigid motions of, 20

degree (of representation), 3

derivation, 113, 480, 483-486

derived series, 122

Deruyts, 237

determinantal formula, 58, 404, 406411,
454-470

dihedral group, 30, 243

Index

dimension of Lie group, 93

direct sum (of representations), 4
discriminant, 48, 400, 454
distinguished subalgebras, 200
dodecahedron, rigid motions of, 29-30
dominant weight, 203, 376

dual (of representation), 4, 110, 233
dual (of root systemn), 496

Dynkin, 117

Dynkin diagrams, 319-338

eigenspace, 162
eigenvector, 162
eightfold way, 179
elementary subgroup, 36
elementary symmetric polynosnial, 77,
454
elliptic curve, 133- 135
Engel’s theorem, 125
exceptional Lie algebrasand groups, 132,
339-365
92, 339-359, 362-364, 391-392
e — €5, 361-362, 392
fa, 362, 365
exponential map, 115120, 369-370
exterior algebra, 475
exterior powers of representations, 4,
31-32,472-477
external tensor product, 24, 427
extra-special 2-groups, 31

first fundamental theorem of invariant
theory, 504-513

fixed point formula, {4, 384, 393

ftag (complete and partial), 95-96,
383-398

flag manifold, 73, 383-398

Fourier inversion formula, 17

Fourier transform, 38

Freudenthal, 359, 361

Freudenthal multiplicity formula,
415-419

Frobenius character formula, 49, 54-62

Frobenius reciprocity, 35, 37-38

fundamental weights, 205, 287, 295,
376-378, 528
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Gelfand, 426

general linear group, 95, 97, 231-237

Giambelli’s forinula, 404-411, 455

Grassmannian, 192, 227-231, 276-278,
283, 286, 386388

(Lagrangian and orthogonal), 386—

387, 390

group algebra, 36-39

half-spin representations, 306

Heisenberg group, 31

Hermite reciprocity, 82, 160, 189, 233

Hermitian inner product, form, 6, 11, 16,
98, 99

Hessian, 157

highest weight, 175, 203

highest weight vector, 167, 175, 202

homogeneous spaces, 382-398

hook length (formula), 50, 78, 411-412

Hopf algebra, 62

icosahedron, rigid motions of, 29-30

ideal in Lie algebra, 122

immersed subgroup, 95

incidence correspondence, 193

induced representation, 32-36, 37-38,
393

indecomposable representation, 6

inner multiplicities, 415

inner product, 16, 23, 79

inmternal products, 476

invariant polynomials, 504513

invariant subspace, 6

irreducible representation, 4

isogenous, isogeny, 101

isotropic, 262, 274, 278, 304, 378, 390

Jacobi identity, 108, 114

Jacobi-Trudy identity, 455

Jordan algebra, 365

Jordan decomposition, 128--129, 478,
482-483

Kilting form, 202, 206-210, 240-241,
272, 478-479

349

King, 411, 424

Klimyk, 428

Kostant, 429

Kostant multiplicity formula, 419-424

Kostka numbers, 56-57, 80, 456-457,
459

A-ring, 380

level (of a root), 330

Levi decomposition, subalgebra, 124,
499-500

lexicographic ordering of partitions, 53

Lie algebra, 108

Lie group, 93

Lie subalgebra, 109

Lie subgroup, 94

Lie’s theorem, 126

Littlewood-Richardson number, 58, 79,
82-83, 424, 427, 455-456

Littlewood-Richardson rule, 58, 79,
225-227, 455-456

lower central series, 122

map between representations, 3

map between Lie groups, 93
minuscule weight, 423

modification rules, 426

modular representation, 7

Molien, 24-25

module (G-module, g-module), 3, 481
monomial symmetric polynomial, 454
morphism of Lie groups, 93
multilinear map, 472

multiplicities, 7, 17, 199, 375
Murnaghan-Nakayama rule, 59

natural real form, 435, 437

Newton polynomials, 460

nil radical, 485

nilpotent Lie algebra, 122, 124-125
nilrepresentation, 501

octonians, 362-365
one-parameter subgroup, 115
ordering of roots, 202
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orthogonal group, 96, 97, 268--269, 300,
301, 367, 374

orthogonal Lie algebras, 268-269

orthonormal, 16, 17, 22

outer product, 58, 61

pairing, 4

partition, 18, 4445, 421, 453

perfect Lie algebra, 123

perfect pairing, 28

permutation representation, 5

Peter-Weyl theorem, 440

Pfaffian, 228

Pieri's formula, 58-59, 79-81, 225-227,
455, 462

Plancherel formula, 38

plane conic, 154-159

plethysm, 8, 82, 151-160, 185-193,
224-231

Pliicker embedding, 227-228, 389

Pliicker equations, relations, 229, 235

Poincaré-Birchoff-Witt theorem, 486

positive definite, 98, 99, 207

positive roots, 202, 214, 243, 271

power sums, 48, 459-460

primitive root, 204, 215, 243, 271-272

projection (formulas), 15, 21, 23

projective space, 153

quadric, 189-190, 228, 274278,
285-286, 313, 388, 391

quaternions, 99, 312

quaternionic representation, 41,444-449

Racah, 422, 425, 428

radical ol a Lie algebra, 123, 483481

rank (of Lie algebra or root system), 321,
488

rank (of a partition), 51

rational normal curve, 153-160

real form, 430, 442

real representation, 5, 17, 444-449

real simple Lie algebras and groups,
430-439

reductive Lie algebra, 131

regular element, 487488

Index

regular representation, 5, 17
representation, 3, 95, 100, 109

defined over a field, 41

of a Lie algebra, 109
representations

of eg, €4, eg, f4,414

of g,, 350-359, 412-414

of GL,C, 231-237

of sl,C, 146-160

of sl,C, 161-193

of sl,C and sl,C, 217-231

of s0,C, 273

of s0,C, 274277

of so,C, 277-281

of so,C, 282-286

of s0,C, 294-296

of sogC, 312-315

of s0,,C, 286-292, 305-306, 409-411

of s0,,,,C, 294-296, 307, 407-409

of sp, C, 244-252

of spsC, 256-259

of sp,,C, 259-266, 404-407
representation ring

of finite group, 22

of Lie group or algebra, 375-382
restricted representation, 32, 80, 381-1382,

425-428

right action, 38-39
root, 165, 198, 240, 270, 332-334, 489
root lattice, 166, 213, 242, 273, 372-374
root space, 165, 198
root system, 320

Schur functor, 76, 222--227

Schur polynomial, 49, 77, 223, 399, 454—
462

Schur's Lemma, 7

semisimple Lie algebra, 123, 131,209,480

semistandard tableau, 56, 236, 456, 461

Serre, 337

Severi, 392

shuffle, 474

simple Lie algebra, 122, 131-132

simple root, 204, 324

simply reducible group, 227

skew hook, 59

skew Schur functor, function, 82-83

skew symmetric bilinear form, 238
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skew Young diagram, 82
Snapper conjecture, 60
solvable Lie algebra, 122, 125, 479480
Specht module, 60
special linear group, 95-97
special linear Lie algebra, 211-212
special unitary group, 98
spin groups, 102, 299- 300, 307-312,
368-372
spin representations, 30, 281, 291, 295,
306, 446, 448
spinor, 306
spinor variety, 390
split conjugacy class, 64
split form, 432-438, 445
standard representation, 9, 151, 176, 244,
257, 273, 352
standard tableau, 57, 81, 457
Steinberg’s formula, 425
string (of roots), 201, 324
subrepresentation, 4
symmetric algebra, 475
symmetric group (representations of)
S,, 9-11
S, 18-20
S4,27-28
Sy, 31, 44-62
symmetric map, 473
symmetric polynomials, 450-451, 461
462
symmetric powers (of representations), 4,
111, 473-477
symplectic group, 96, 97, 99, 238--239
symplectic Lie algebra, 239-240

tableau, 45

tabloid, 60

tangent developable, 159

tensor algebra, 475

tensor powers of representation, 4, 472

tensor product of representations, 4, 110,
424-425,471-472

Towber, 235

triality, 311, 312-315, 364

trivial representation, 5, 9

twisted cubic curve, 155

551

nnipotent matrices, 96

unitary group, 98

universal enveloping algebra, 416,
486

upper triangular matrices, 95

Vandermonde determinant, 49

vector field, 114

Veronese embedding, 153-155, 189,
230-231, 286, 389

Veronese surface, 189 -193, 392

virtual character, 23, 36

virtual representation, 22

von Neumann, |18

weight, 165, 199

weight diagram, 199

weight lattice, 172-173, 200, 214, 242,
273,350, 372--374

weight space, 165, 199

Weil, 392

Weyl chamber, 205, 208, 215, 243, 256,
259,272,283,292,295, 351,376,495

Weyl character formula, 289, 399-414,
440 -444

Weyl group, 201, 214, 243, 271, 340, 375,
493-498

Weyl module, 76-84, 222-227

Weyl's construction, 76- 84, 222-227,
262--266, 296-298

Weyl's integration formula, 443

Weyl's unitary trick, 128-131

Wwitt, 365

wreath product, 243

Young diagram, 45, 453
Young subgroup, 54
Young symmetrizer, 46
Young's rule, 57

Zak, 3192
Zetlin, 426



