Notas núm. 1

Los ejercicios estan marcados con flecha \rightarrow .

Definición. Una representación (lineal) de un grupo G en un espacio vectorial V es un homomorfismo $\rho: G \to \operatorname{GL}(V)$, donde $\operatorname{GL}(V)$ es el grupo de las transformaciones lineales invertibles $V \to V$. La representación es de dimensión finita (compleja, real, etc.) si V es un espacio vectorial de dimensión finita (compleja, real, etc.).

Las representaciones que vemos en este curso son típicamente complejas y de dimensión finita.

- \to 1.1. Toda tranformación lineal invertible $A \in \operatorname{GL}(V)$ define una representación del grupo $G = \mathbb{Z}$ mediante la fórmula $\rho(n) = A^n$.
- \to **1.2.** Una transformación lineal invertible $A \in GL(V)$ define un representación de \mathbb{Z}_n mediante la fórmula $\rho([1]) = A$ si y solo si $A^n = I$.

Definición. Dos representaciones (ρ_1, V_1) , (ρ_2, V_2) (sobre el mismo campo) de un grupo G son equivalentes (o isomorfas), $\rho_1 \sim \rho_2$, si existe un isomorfismo lineal $T: V_1 \to V_2$ tal que $\rho_1(g) \circ T = T \circ \rho_2(g)$ para todo $g \in G$. (Decimos que tal T es G-equivariante).

- \to **1.3.** En el ejemplo del ejercicio anterior, $A_1, A_2 \in GL(V)$ definen representaciones equivalentes de \mathbb{Z} si y solo si A_1, A_2 son elementos conjugados del grupo GL(V).
- \rightarrow **1.4.** Sean (ρ_1, V_1) , (ρ_2, V_2) dos representaciones de dimensión finita, sobre el mismo campo, del mismo grupo G. Demuestra que las representaciones son equivalentes si y solo si existen bases B_1, B_2 en V_1, V_2 (resp.) tal que ρ_1, ρ_2 están representadas por las mismas matrices (para todo $g \in G$, $[\rho_1(g)]_{B_1} = [\rho_2(g)]_{B_2}$).
- \to **1.5.** Sea $G = \mathbb{Z}_n := \mathbb{Z}/n\mathbb{Z}$, $\omega = e^{2\pi i/n}$ y $\rho_l : G \to \mathrm{GL}(\mathbb{C}) = \mathbb{C}^*$, dada por $\rho_l([k]) = \omega^{kl}$, $0 \le k, l \le n-1$. Demuestra que $\rho_0, \ldots, \rho_{n-1}$ son n representaciones complejas de \mathbb{Z}_n de dimensión 1, no equivalentes entre sí.
- \to **1.6.** Toda representación lineal compleja de dimensión 1 de \mathbb{Z}_n es equivalente a una de las ρ_l , $0 \le l < n$.

Muchos de los conceptos básicos de álgebra lineal tienen su análogo en la teoría de representaciones lineales de grupos. Van algunos ejemplos.

<u>Definición</u>. Una subrepresentación de una representación (ρ, V) de un grupo G es un subespacio vectorial G-invariante $V_1 \subset V$ $(\rho(g)v \in V_1$ para todo $g \in G$ y $v \in V_1$). Dado tal subespacio invariante, se define en V_1 un representación (ρ_1, V_1) de G por $\rho_1(g)v = \rho(g)v$ para todo $g \in G$, $v \in V_1$.

<u>Definición</u>. Dada una representación (ρ, V) de un grupo G, la representación $dual\ (\rho^*, V^*)$ está dada por $\rho^*(g) := [\rho(g^{-1})]^*$.

- \to 1.7. Verifica que la representación dual es una representación, i.e. que $\rho^*(g) \in GL(V^*)$ para todo $g \in G$ y que $\rho^* : G \to GL(V^*)$ es un homomorfismo (esto explica la inversa g^{-1} introducida en la definición de ρ^*).
- \to 1.8. Para las representaciones ρ_l de \mathbb{Z}_n , $0 \le l < n$, demuestra que $(\rho_l)^* \sim \rho_{n-l}$.

- <u>Definición</u>. La suma directa de dos representaciones (ρ_1, V_1) , (ρ_2, V_2) es la representación $(\rho_1 \oplus \rho_2, V_1 \oplus V_2)$, dada por $(\rho_1 \oplus \rho_2)(g) := \rho_1(g) \oplus \rho_2(g)$.
- \to **1.9.** Dada una $A \in GL(V)$, A es diagonalizable si y solo si la reprepresntación inducida de \mathbb{Z} en V es la suma directa de subrepresentaciones de dimensión 1.
- \to 1.10. Toda representación lineal compleja de dimensión finita de $G = \mathbb{Z}_n$ es equivalente a suma directa de representaciones de dimensión 1. (Sugerencia: ver más adelante el concepto de representación unitaria).
- \to **1.11.** Definimos una representación de \mathbb{Z}_3 en \mathbb{C}^3 por $\rho([1])(z_1, z_2, z_3) = (z_2, z_3, z_1)$. Demuestra que esta fórmula define una representación de \mathbb{Z}_3 y encuentra una decomposición de esta representación en la suma directa de 3 subrepresentaciones de dimensión 1.

<u>Definición</u>. Una representación (ρ, V) de un grupo G es *irreducible* si los únicos subespacios G-invariantes de V son todo V y el subespacio nulo.

Ejemplo. Toda representación de dimensión uno es irreducible.

- \rightarrow **1.12.** La representación "obvia" de G = GL(V) en V, $\rho(g) = g$, es irreducible.
- \to 1.13. La representación "obvia" de U_n (matricies unitarias) en \mathbb{C}^n es irreducible.

Lema de Schur. Si (ρ, V) es una representación compleja irreducible y $T: V \to V$ es una transformación lineal G-equivariante, i.e. $T \circ \rho(g) = \rho(g) \circ T$ para todo $g \in G$, entonces T es un múltiplo de la identitad, $T = \lambda I$, $\lambda \in \mathbb{C}$.

 \triangleright Sea λ un valor propio de T. Entonces $W:=Ker(T-\lambda I)\neq\{0\}$ y es G-invariante, así que W=V.

Corolario. Toda representación compleja irreducible de un grupo abeliano es de dimensión 1.

 \triangleright Para todo $g \in G$, $\rho(g)$ es G-equivariante, así que, por Schur, un múltiplo de la identidad. Así que todo subespacio de V es G-invariante, por lo que V debe ser 1 dimensional.

<u>Definición</u>. El producto tensorial de dos representaciones (ρ_1, V_1) , (ρ_2, V_2) es la representación $(\rho_1 \otimes \rho_2, V_1 \otimes V_2)$, dada por $(\rho_1 \otimes \rho_2)(g) := \rho_1(g) \otimes \rho_2(g)$.

- \rightarrow **1.14.** Para las representaciones ρ_l de \mathbb{Z}_n , $\rho_l \sim \rho_1 \otimes \ldots \otimes \rho_1$ (l veces).
- \to **1.15.** Sean $(\rho_1, V_1), (\rho_2, V_2)$ dos representaciones de un grupo G. Se define $Hom(V_1, V_2)$ como el espacio de todas transformaciones lineales $V_1 \to V_2$ con $\rho : G \to GL(Hom(V_1, V_2))$ dado por $\rho(g)T = \rho_2(g)T\rho_1(g^{-1})$. Demuestra que $(\rho, Hom(V_1, V_2))$ es una representación y que es equivalente a $(\rho_1^* \otimes \rho_2, V_1^* \otimes V_2)$.
- \rightarrow **1.16.** Sean $(\rho_1, V_1), (\rho_2, V_2)$ dos representaciones irreducibles complejas y $T: V_1 \rightarrow V_2$ una transformación lineal G-equivariante. Si V_1 y V_2 son equivalentes, o sea existe un isomorfismo G-equivariante $T_0: V_1 \rightarrow V_2$, entonces $T = \lambda T_0$, para algun $\lambda \in \mathbb{C}$. Si V_1, V_2 no son equivalentes entonces T = 0.
- \rightarrow 1.17. Cierto o Falso: el producto tensorial de dos representaciones irreducibles es irreducible.
- →1.18. Encontrar un ejemplo de una representación que no es irreducible pero que no es la suma directa de irreducibles.
- \rightarrow 1.19. La representación dual a una representación irreducible es irreducible.

- \to 1.20. Sea V una representación compleja de un grupo. Demuestra que la representación $V \oplus \cdots \oplus V$ (k veces) es isomorfa a la representación $V \otimes \mathbb{C}^k$, donde \mathbb{C}^k es la repersentación trivial.
- \to 1.21. Para una representación V de un grupo G se denota por $\operatorname{End}_G(V)$ el espacio de los endomorfismos G-equivariantes de V. Así que el lema de Schur afirma que para V irreducible, $\operatorname{End}_G(V) = \mathbb{C}I_V$ (múltiplos complejos del endomorfismo identidad de V). Demuestra la siguiente generalización del lema de Schur: si V es la suma directa de representaciones irreducibles V_1, \ldots, V_k , donde V_i aparece con multiplicidad m_i , o sea $V = \bigoplus_i m_i V_i = \bigoplus_i [V_i \otimes \mathbb{C}^{m_i}];$ y donde los V_i 's son irreducibles distintos (i.e. no equivalentes entre sí), entonces $\operatorname{End}_G(V) = \bigoplus_i [I_{V_i} \otimes \operatorname{End}(\mathbb{C}^{m_i})].$
- \to 1.22. Se define una representación de \mathbb{Z}_n en \mathbb{C}^n en donde [1] actua por $(x_1, \ldots, x_n) \mapsto (x_2, \ldots, x_n, x_1)$. Demuestra que esta fórmula define una respresentación que se descompone como suma directa de subrepresentaciones $\mathbb{C}^n = V_0 \oplus \cdots \oplus V_{n-1}$, donde cada V_i es equivalente a ρ_i . Encuentra explicitamente los V_i .
- \rightarrow 1.23. Una aplicación bonita del ejercicio anterior. Se toma un polígono con n vértices y se asigna un número real a cada vértice. Luego se define una nueva asignación de números a los vértices del polígono al sustituir cada número por el promedio de sus dos vecinos. Estudia el comportamiento de este proceso al iterarlo muchas veces.

(Sugerencia: cada asignación determina un vector $v \in \mathbb{C}^n$. Tomar el promedio de los vecinos define una transformación $T \in \operatorname{End}(\mathbb{C}^n)$, \mathbb{Z}_n -equivariante con respecto a la representación definida en el ejercicio anterior. Por Schur, T actua en cada uno de los V_i por un escalar λ_i . Determina los λ_i y observa que si $|\lambda_i| < 1$ entonces $\lim_{k \to \infty} \lambda^k = 0$. Nota tambien que los casos de n par e impar son distintos.)

<u>Definición</u>. Una representación compleja (ρ, V) de un grupo G es unitaria si existe en V un producto hermitiano G-invariante. O sea, existe una función $h: V \times V \to \mathbb{C}$, lineal en la primera entrada, anti-lineal en la segunda, simétrica conjugada, positiva definida, y tal que $h(\rho(g)v_1, \rho(g)v_2) = h(v_1, v_2)$ para todo $g \in G, v_1, v_2 \in V$.

<u>Proposición</u>. Toda representación unitaria de dimensión finita es completamente reducible, i.e. es la suma directa de subrepresentaciones irreducibles.

 \triangleright Por inducción sobre la dimensión de la representación. Si $W \subset V$ es un subespacio invariante, entonces su complemento ortogonal tambien lo es.

Teorema. Toda representación compleja de dimensión finita de un grupo finito es unitaria.

 \triangleright Sea h_0 cualquer producto hermitiano en V. Verifique que $h(v_1, v_2) := \sum_{g \in G} h_0(\rho(g)v_1, \rho(g)v_2)$ es un producto hermitiano G-invariante.

<u>Corolario</u>. Toda representación de dimensión finita de un grupo finito es completamente reducible.

<u>Corolario</u>. Toda representación compleja de dimensión finita de un grupo finito abeliano es la suma directa de representaciones unidimensionales (ver ej. 1.10).

(Actualizado 22 ago, 2013).