CHAPTER 3

Subgroups, products,
induced representations

All the groups considered below are assumed to be finite.

3.1 Abelian subgroups

Let G be a group. One says that G is abelian (or commutative) if st = 15
for all 5, r € G. This amounts to saying that each conjugacy class of G
consists of a single element, also that each function on G 1s a class function.
The linear representations of such a group are particularly simple:

Theorem 9. The following properties are equivalent:
(i) G is abelian.
(ii) All the irreducible representations of G have degree .

_Let g be the order of G, and let (ny, ..., n,) be the degrees of the distinct
irreducible representations of G; we know, cf. Ch. 2, that A is the number
of classes of G, and that g = nf + - -+ + n}. Hence g is equal to A if and
only if all the m; are equal to 1, which proves the theorem. O
Corollary. Ler A be an abelian subgroup of G, let a be its order and let g be

that of G. Each irreducible representation of G has degree < g/a.

(The quotient g/a is the index of A in G.)

Let p: G —+ GL(V) be an irreducible representation of G. Through
restriction to the subgroup A, it defines a representation py : A — GL{V) of
A. Let W C V be an irreducible subrepresentation of py; by th. 9, we have
dim(W) = 1. Let V' be the vector subspace of V generated by the images
p, W of W, 5 ranging over G. It is clear that V' is stable under G; since p is
irreducible, we thus have V' = V., But, fors € G and 1 € A we have

PuW = p;pW = p,W. .
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Chapter 3: Subgroups, products, induced representations

It follows that the number of distinct p, W 1s at most equal to g/a, hence
the desired inequality dim(V) < g/a, since V is the sum of the p, W. 0O

ExampLE. A dihedral group contains a cyclic subgroup of index 2. Its

irreducible representations thus have degree 1 or 2; we will determine them
later (5.3).

EXERCISES

3.1. Show directly, using Schur’s lemma, that each irreducible representation of
an abelian group, finite or not, has degree 1.

3.1, Let p be an irreducible representation of G of degree n and character x; let

C be the center of G (i.c., the set of s € G such that st = ¢s for all 1 € G),
and let ¢ be its order.

(a) Show that p, is a homothety for each s € C. [Use Schur's lemma.]
Deduce from this that |x{s)| = nforalls € C.

(b) Prove the inequality n* < g/c. {Use the formula X |x{.r]|1 = g, com-
bined with (a).] 1€G

(c) Show that, if p is faithful (i.e., p, # 1 for s # 1), the group C is cyclic.

33. Let G be an abelian group of order g, and let G be the set of irreducible
characters of G. If x;, x; belong to G, the same is true of their product x; x;.
Show that this makes G an abelian group of order g; the group G is called
the dual of the group G. For x € G the mapping x ~ x{x) is an irreducible
character of G and so an element of the dual G of (5. Show that the map of
G into G thus obtained is an injective homomorphism; conclude (by
comparing the orders of the two groups) that it is an isomorphism,

3.2 Product of two groups

Let G; and G, be two groups, and let G; X G, be their product, that is,
the set of pairs (s5;,5;), with 5, € G, and 5, € G,.
Putting
(51, 82) - (0 13) = (51 1y, S 15),

we define a group structure on G; X G;; endowed with this structure,
Gy % G, is called the group product of G, and G,. If G, has order g, and G,
has order g5, G, X G, has order g = g, g;. The group G, can be identified
with the subgroup of G; x G, consisting of elements (s, 1), where 5, ranges
over G, ; similarly, G, can be identified with a subgroup of G; X G;. With
these identifications, each element of G; commutes with each element of G,.

Conversely, let G be a group containing G, and G, as subgroups, and
suppose the following two conditions are satisfied:
(i) Eachs € G can be written uniguely in the form s = 5,5, withs; € G
ﬂ'ﬂd .!'-: | = Gz.
(i) For 5; € G, and-5; € G,, we have 5;5; = 5; 5.
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31.2: Product of two groups

The product of two elements s = 5,55, I = I, 1, can then be writlen

st =550 15 = (5;4)(s; ).

It follows that, if we let (5),5,) € G, X G; correspond to the element 5, 5;
of G, we obtain an isomorphism of G, X G, onto G. In this case, we also say
that G is the product (or the direct product) of its subgroups G, and G,, and
we identfy it with G; x G, X

Now let p': G, = GL(V}) and p*: G; — GL{V,) be linear representa-
tions of G; and G, respectively. We define a linear representation p' & pz
of G; ¥ G, into V| @ V; by a procedure analogous to 1.5 by setting

(o' ® p?)(51,5) = p'(5)) @ p?(5,).
This representation is called the rensor product of the representations p' and
p?. If x, is the character of p, (i = 1,2), the character x of p' ® p? is given
by:

x5, 52) = x(5) - xals2)

When Gy and G; are equal to the same group G, the representation
p! @ p? defined above is a representation of G ¥ G. When restricted to the
diagonal subgroup of G X G {consisting of (s, 5), where s ranges over G), it
gives the representation of G denoted p' @ p*in 1.5; in spite of the identity.
of notations, it is important to distinguish these two representations.

Theorem 10
(i) If p' and p? are irreducible, o' @ p? is an irreducible representation

ﬂj G| x G}

(ii) Each irreducible representation of G, % G, is is ic lo a
representation p' ® p?, where g' is an irreducible representation of G,
(i = 1,2).

If p' and p? are irreducible, we have {cf. 2.3):

1 2 1 2
— sl =1, — 5 = |.
m%ix.h}! EIE-H:{ 2)l

By multiplication, this gives:

13 ) =1

g Fp o2

which shows that p' ® p? is irreducible (th. 5). In order to prove (ii), it
suffices to show that each class function f on G| X G,, which is orthogonal
to the characters of the form x; (5 )xz2(s1), is zero. Suppose then that we
have:

,Eaf{ﬂss!}m{:u}'xz[sﬂ' = 0.
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Fixing x, and putting g(s; ) = E I (s, _,1}11{31}* we have:
%E{-ﬂ xi(s)* =0 forally.

Since g is a class function, this implies g = 0, and, since the same is true
for each x;, we conclude by the same argument that f(s;,5,) = 0. O

[It is also possible to prove (ii) by computing the sum of the squares of
the degrees of the representations p' @ p?, and applying 2.4.]

The above theorem completely reduces the study of representations of
G, % G; to that of representations of G, and of representations of G,.

3.3 Induced representations

Left cosets of a subgroup

Recall the following definition: Let H be a subgroup of a group G. For
5 € G, we denote by sH the set of products sr with 1 € H, and say that sH
is the left coser of H containing 5. Two elements 5, 5 of G are said to be
congruent modulo H if they belong to the same left coset, i.e., if sy belongs
to H; we write then 5’ = 5 (mod H). The set of left cosets of H is denoted
by G/H; it is a partition of G. If G has g elements and H has 4 elements,
G/H has g/h elements; the integer g/h is the index of H in G and is denoted
by (G:H).

If we choose an element from each left coset of H, we obtain a subset R
of G called a system of representatives of G/H; each 5 in G can be written
uniquely s = rt, with r € Rand ¢t € H.

Definition of induced representations

Let p: G — GL{V) be a linear fepresentation of G, and let py be its
restriction to H. Let W be a subrepresentation of py, that is, a vector
subspace of V stable under the p,, + € H. Denote by #: H — GL({W) the
representation of H in W thus defined. Let s € G; the vector space p, W
depends only on the left coset sH of s; indeed, if we replace 5 by sr, with
t € H, we have p, W = p, p, W = p, W since p, W = W.If ois a left coset
of H, we can thus define a subspace W, of Yiobe p, Wforanys € o. It is
clear that the W, are permuted among themselves by the p,, s € G. Their
sum ¥ g/ W, is thus a subrepresentation of V.

Definition. We say that the representation p of G in V is induced by the
representation # of H in W if V is equal to the sum of the W,

(e & G/H) and if this sum is direct (that is, if V = E%H“;}.
F

We can reformulate this condition in several ways:

1) Each x € V can be written uniquely as x. withx, & W for
(} quely o o 5
each o. sEG/H
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3.3: Induced representations

(ii) If R is a system of representatives of G/H, the vector space V is the
direct sum of the p, W, with r € R.
In particular, we have dim(V) = ;En dim(p, W) = (G: H) - dim(W).
F

ExAMPLES |. Take for V the regular representation of G; the space V has a
basis (e, ),z such that p,e, = e, fors € G, r € G. Let W be the subspace
of V with basis (g ),zy. The representation # of H in W is the regular
representation of H, and it is clear that p is induced by 4.

2. Take for V a vector space having a basis (e,) indexed by the elements
e of G/H and define a representation pof G in V by p,e, = e,,fors € G
and o € G/H (this formula makes sense, because, if o is a left coset of H,
50 is so). We thus obtain a representation of G which is the permutation
representation of G associated with G/H [cf. 1.2, example (c)]. The vector
ey corresponding to the coset H is invariant under H; the representation of
H in the subspace Cey is thus the unir representation of H, and it is clear
that this representation induces the representation p of G in V.

3. If p, is induced by #, and if p, is induced by #,, then p; & p, is induced
by 8, @ #,.

4. If (V, p) is induced by (W,#), and if W, is a stable subspace of W, the
subspace V| = ¥ g p, W, of V is stable under G, and the representation
of G in V| is induced by the representation of H in W, .

5. If p is induced by @, if p" is a representation of G, and if py is the
restriction of p’ to H, then p @ p’ is induced by # @ py,.

Existence and uniqueness of induced representations

Lemma 1. Suppose that (V,p) is induced by (W, 8). Let p': G — GL{V') bea
linear representation of G, and let f: W — V' be a linear map such that
f(Bw) = p,f(w) for all t € H and w € W. Then there exists a unique
linear map F: V — V' which extends [ and satisfies F o p, = p, = F for all
s € G

If F satisfies these conditions, and if x € p, W, we have p,'x € W;
hence
F(x) = Flp,p;' x) = p,Flp; ' x) = p,f ;' x).

This formula determines F on p, W, and so on V, since V is the sum of the
p, W. This proves the uniqueness of F.

MNow let x € W,, and choose 5 € o; we define F(x) by the formula
Fi{x) = p.f(p,; ! x) as above. This definition does not depend on the choice
of 5 in o; indeed, if we replace s by st, with r € H, we have

o f oy x) = oo S8 07  x) = pi(8,87 o' x) = pif(p; " x).
Since V is the direct sum of the W, there exists a unique linear map
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Chapter 3: Subgroups, products, induced representations

F: V — V' which extends the partial mappings thus defined on the W,. It s
easily checked that F o p, = p, = Fforall s € G. O

Theorem 11. Let (W, #) be a linear representation of H. There exisis a linear
representation (V, p) of G which is induced by (W, #), and it is unique up 1o
isomorphism.

Let us first prove the existence of the induced representation p. In view
of example 3, above, we may assume that # is irreducible. In this case, # is
isomorphic to a subrepresentation of the regular representation of H, which
can be induced to the regular representation of G (cf. example 1). Applying
example 4, we conclude that § itself can be induced.

It remains to prove the uniqueness of p up to isomorphism. Let (V, p) and
(V", p’) be two representations induced by (W, #). Applying Lemma 1 to the
injection of W into V', we see that there exists a linear map F: V —» V'’
which is the identity on W and satisfies Fep, = p, e F for all s € G.
Consequently the image of F contains all the p, W, and thus is equal 10 V"
Since V' and V have the same dimension (G: H) - dim(W), we see that F
is an isomorphism, which proves the theorem. (For a more natural proof of
Theorem 11, see 7.1.) O

Character of an induced representation

Suppose (V, p) is induced by (W, #) and let x, and x; be the correspond-
ing characters of G and of H. Since (W,#) determines (V,p) up to
isomorphism, we ought to be able to compute Xo from x, The following
theorem tells how:

Theorem 12. Let h be the order of H and let R be a system of representatives
of G/H. For each u € G, we have

%= 3 xCw) =g 3 6

rlureH luseEH

{In particular, xp[u} i5 a linear combination of the values of x; on the
intersection of H with the conjugacy class of u in G.)

The space V is the direct sum of the p, W, r € R. Moreover p, permutes
the p. W among themselves. More precisely, if we write wr in the form £«
with , € R and ¢t € H, we see that p, sends p, W into p, W. To determine
Xp(#) = Try (p,), we can use a basis of V which is a union of bases of the
p, W. The indices r such that g, # r give zero diagonal terms; the others give
the trace of p, on the p, W. We thus obtain:

xp{"} - ’E%“ Tf,,.w [Pu,r]k



3.3: Induced representations

where R, denotes the set of r € R such that g, = rand p, , is the restriction
of p, to p, W. Observe tilat r belongs to R, if and only if wr can be written
rt, with t € H, i.e, if r~'ur belongs to H.

It remains to compute Tr, w(p, ). for r € R,. To do this, note that p,
defines an isomorphism of W onto p, W, and ﬂlat we have

p,ol,=p op, witht=r"'ur €H

The trace of p,, is thus equal to that of 8, that is, to x(r) = xglr ~Tur). We
indeed obtain:

Xp(u) = % xolr ™" ur).

The second formula given for X, (1) follows from the first by noting thnt
all el:mcnts s of G in the 1¢n coset rH (r € R,) satisfy xp(s™!
= xplr " ur). I:’.I

The reader will find other properties of induced representations in part IL.
Notably: :
(i) The Frobenius reciprocity formula

(frulbedu = (flx)o

where fis a class function of G, and [ is its restriction to H, and the scalar
products are calculated on H and G respectively.

(ii) Mackey's criterion, which tells us when an induced representation s
irreducible.

(iii) Artin's theorem (resp. Brauer's theorem), which says that each character
of a group G is a linear combination with rational (resp. integral)
coefficients of characters of representations induced from cyclic subgroups
(resp. from “elementary”™ subgroups) of G.

EXERCISES

34. Show that each irreducible representation of G is contained in a representa-
tion induced by an irreducible representation of H. [Use the fact that an
irreducible representation is contained in the regular representation.] Obtain
from this another proof of the cor. to th. 9.

35 Let (W,8) be a linear representation of H. Let V be the vector space of
functions f: G — W such that f{m) = 8 f(«) for « € G,r € H. Let p be
the representation of G in V defined by (p,f W) = f(us) for 5, v« € G. For
w € Wlet {, € V be defined by (1) = 8w for r € H and f,(s) = 0 for
s & H. Show that w =+ [, is an isomorphism of W onto the subspace W, of
V consisting of functions which vanish off H. Show that, il we identfy W
and W in this way, the representation (V, p) is induced by the representation
(W, 8).

3.6. Suppose that G is the direct product of two subgroups H and K (cf. 3.2). Let
p be a representation of G induced by a representation # of H. Show that p
is isomorphic to # @ ng, where ry denotes the regular representation of K.
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