CHAPTER 3

Subgroups, products, induced representations

All the groups considered below are assumed to be finite.

3.1 Abelian subgroups

Let G be a group. One says that G is abelian (or commutative) if st = ts for all $s, t \in G$. This amounts to saying that each conjugacy class of G consists of a single element, also that each function on G is a class function. The linear representations of such a group are particularly simple:

Theorem 9. The following properties are equivalent:

- (i) G is abelian.
- (ii) All the irreducible representations of G have degree 1.

Let g be the order of G, and let (n_1, \ldots, n_h) be the degrees of the distinct irreducible representations of G; we know, cf. Ch. 2, that h is the number of classes of G, and that $g = n_1^2 + \cdots + n_h^2$. Hence g is equal to h if and only if all the n_i are equal to 1, which proves the theorem.

Corollary. Let A be an abelian subgroup of G, let a be its order and let g be that of G. Each irreducible representation of G has degree ≤ g/a.

(The quotient g/a is the index of A in G.)

Let $\rho: G \to GL(V)$ be an irreducible representation of G. Through restriction to the subgroup A, it defines a representation $\rho_A: A \to GL(V)$ of A. Let $W \subset V$ be an irreducible subrepresentation of ρ_A ; by th. 9, we have $\dim(W) = 1$. Let V' be the vector subspace of V generated by the images ρ_s W of W, s ranging over G. It is clear that V' is stable under G; since ρ is irreducible, we thus have V' = V. But, for $s \in G$ and $t \in A$ we have

$$\rho_{st} W = \rho_s \rho_t W = \rho_s W.$$

It follows that the number of distinct ρ_s W is at most equal to g/a, hence the desired inequality $\dim(V) \leq g/a$, since V is the sum of the ρ_s W. \square Example. A dihedral group contains a cyclic subgroup of index 2. Its irreducible representations thus have degree 1 or 2; we will determine them later (5.3).

EXERCISES

- 3.1. Show directly, using Schur's lemma, that each irreducible representation of an abelian group, finite or not, has degree 1.
- 3.2. Let ρ be an irreducible representation of G of degree n and character χ; let C be the center of G (i.e., the set of s ∈ G such that st = ts for all t ∈ G), and let c be its order.
 - (a) Show that ρ_s is a homothety for each $s \in C$. [Use Schur's lemma.] Deduce from this that $|\chi(s)| = n$ for all $s \in C$.
 - (b) Prove the inequality $n^2 \le g/c$. [Use the formula $\sum_{s \in G} |\chi(s)|^2 = g$, combined with (a).]
 - (c) Show that, if ρ is faithful (i.e., $\rho_s \neq 1$ for $s \neq 1$), the group C is cyclic.
- 3.3. Let G be an abelian group of order g, and let G be the set of irreducible characters of G. If χ₁, χ₂ belong to G, the same is true of their product χ₁ χ₂. Show that this makes G an abelian group of order g; the group G is called the dual of the group G. For x ∈ G the mapping χ → χ(x) is an irreducible character of G and so an element of the dual G of G. Show that the map of G into G thus obtained is an injective homomorphism; conclude (by comparing the orders of the two groups) that it is an isomorphism.

3.2 Product of two groups

Let G_1 and G_2 be two groups, and let $G_1 \times G_2$ be their *product*, that is, the set of pairs (s_1, s_2) , with $s_1 \in G_1$ and $s_2 \in G_2$.

Putting

$$(s_1, s_2) \cdot (t_1, t_2) = (s_1 t_1, s_2 t_2),$$

we define a group structure on $G_1 \times G_2$; endowed with this structure, $G_1 \times G_2$ is called the *group product* of G_1 and G_2 . If G_1 has order g_1 and G_2 has order g_2 , $G_1 \times G_2$ has order $g = g_1 g_2$. The group G_1 can be identified with the subgroup of $G_1 \times G_2$ consisting of elements $(s_1, 1)$, where s_1 ranges over G_1 ; similarly, G_2 can be identified with a subgroup of $G_1 \times G_2$. With these identifications, each element of G_1 commutes with each element of G_2 .

Conversely, let G be a group containing G₁ and G₂ as subgroups, and suppose the following two conditions are satisfied:

- (i) Each s ∈ G can be written uniquely in the form s = s₁ s₂ with s₁ ∈ G₁ and s₂ ∈ G₂.
- (ii) For $s_1 \in G_1$ and $s_2 \in G_2$, we have $s_1 s_2 = s_2 s_1$.

The product of two elements $s = s_1 s_2$, $t = t_1 t_2$ can then be written

$$st = s_1 s_2 t_1 t_2 = (s_1 t_1)(s_2 t_2).$$

It follows that, if we let $(s_1, s_2) \in G_1 \times G_2$ correspond to the element $s_1 s_2$ of G, we obtain an *isomorphism of* $G_1 \times G_2$ *onto* G. In this case, we also say that G is the *product* (or the *direct product*) of its subgroups G_1 and G_2 , and we identify it with $G_1 \times G_2$.

Now let $\rho^1: G_1 \to GL(V_1)$ and $\rho^2: G_2 \to GL(V_2)$ be linear representations of G_1 and G_2 respectively. We define a linear representation $\rho^1 \otimes \rho^2$ of $G_1 \times G_2$ into $V_1 \otimes V_2$ by a procedure analogous to 1.5 by setting

$$(\rho^1 \otimes \rho^2)(s_1, s_2) = \rho^1(s_1) \otimes \rho^2(s_2).$$

This representation is called the *tensor product* of the representations ρ^1 and ρ^2 . If χ_i is the character of ρ_i (i = 1, 2), the character χ of $\rho^1 \otimes \rho^2$ is given by:

$$\chi(s_1, s_2) = \chi_1(s_1) \cdot \chi_2(s_2).$$

When G_1 and G_2 are equal to the same group G, the representation $\rho^1 \otimes \rho^2$ defined above is a representation of $G \times G$. When restricted to the diagonal subgroup of $G \times G$ (consisting of (s,s), where s ranges over G), it gives the representation of G denoted $\rho^1 \otimes \rho^2$ in 1.5; in spite of the identity of notations, it is important to distinguish these two representations.

Theorem 10

- (i) If ρ¹ and ρ² are irreducible, ρ¹ ⊗ ρ² is an irreducible representation of G₁ × G₂.
- (ii) Each irreducible representation of G₁ × G₂ is isomorphic to a representation ρ¹ ⊗ ρ², where ρⁱ is an irreducible representation of G_i (i = 1, 2).

If ρ^1 and ρ^2 are irreducible, we have (cf. 2.3):

$$\frac{1}{g_1}\sum_{s_1}|\chi_1(s_1)|^2=1, \qquad \frac{1}{g_2}\sum_{s_2}|\chi_2(s_2)|^2=1.$$

By multiplication, this gives:

$$\frac{1}{g}\sum_{s_1,s_2}|\chi(s_1,s_2)|^2=1$$

which shows that $\rho^1 \otimes \rho^2$ is irreducible (th. 5). In order to prove (ii), it suffices to show that each class function f on $G_1 \times G_2$, which is orthogonal to the characters of the form $\chi_1(s_1)\chi_2(s_2)$, is zero. Suppose then that we have:

$$\sum_{s_1,s_2} f(s_1,s_2) \chi_1(s_1)^* \chi_2(s_2)^* = 0.$$

Fixing χ_2 and putting $g(s_1) = \sum_{s_2} f(s_1, s_2) \chi_2(s_2)^*$ we have: $\sum_{s_1} g(s_1) \chi_1(s_1)^* = 0 \text{ for all } \chi_1.$

Since g is a class function, this implies g = 0, and, since the same is true for each χ_2 , we conclude by the same argument that $f(s_1, s_2) = 0$. \square [It is also possible to prove (ii) by computing the sum of the squares of the degrees of the representations $\rho^1 \otimes \rho^2$, and applying 2.4.]

The above theorem completely reduces the study of representations of $G_1 \times G_2$ to that of representations of G_1 and of representations of G_2 .

3.3 Induced representations

Left cosets of a subgroup

Recall the following definition: Let H be a subgroup of a group G. For $s \in G$, we denote by sH the set of products st with $t \in H$, and say that sH is the *left coset* of H containing s. Two elements s, s' of G are said to be congruent modulo H if they belong to the same left coset, i.e., if $s^{-1}s'$ belongs to H; we write then $s' \equiv s \pmod{H}$. The set of left cosets of H is denoted by G/H; it is a partition of G. If G has g elements and H has h elements, G/H has g/h elements; the integer g/h is the index of H in G and is denoted by G/H).

If we choose an element from each left coset of H, we obtain a subset R of G called a system of representatives of G/H; each s in G can be written uniquely s = rt, with $r \in R$ and $t \in H$.

Definition of induced representations

Let $\rho: G \to GL(V)$ be a linear fepresentation of G, and let ρ_H be its restriction to H. Let W be a subrepresentation of ρ_H , that is, a vector subspace of V-stable under the ρ_t , $t \in H$. Denote by $\theta: H \to GL(W)$ the representation of H in W thus defined. Let $s \in G$; the vector space $\rho_s W$ depends only on the left coset sH of s; indeed, if we replace s by st, with $t \in H$, we have $\rho_{st} W = \rho_s \rho_t W = \rho_s W$ since $\rho_t W = W$. If σ is a left coset of H, we can thus define a subspace W_σ of V to be $\rho_s W$ for any $s \in \sigma$. It is clear that the W_σ are permuted among themselves by the ρ_s , $s \in G$. Their sum $\sum_{\sigma \in G/H} W_\sigma$ is thus a subrepresentation of V.

Definition. We say that the representation ρ of G in V is *induced* by the representation θ of H in W if V is equal to the sum of the W_{σ} ($\sigma \in G/H$) and if this sum is direct (that is, if $V = \bigoplus_{\sigma \in G/H} W_{\sigma}$).

We can reformulate this condition in several ways:

(i) Each $x \in V$ can be written uniquely as $\sum_{\sigma \in G/H} x_{\sigma}$, with $x_{\sigma} \in W_{\sigma}$ for each σ .

 (ii) If R is a system of representatives of G/H, the vector space V is the direct sum of the ρ, W, with r ∈ R.

In particular, we have
$$\dim(V) = \sum_{r \in \mathbb{R}} \dim(\rho_r W) = (G: H) \cdot \dim(W)$$
.

EXAMPLES 1. Take for V the regular representation of G; the space V has a basis $(e_t)_{t \in G}$ such that $\rho_s e_t = e_{st}$ for $s \in G$, $t \in G$. Let W be the subspace of V with basis $(e_t)_{t \in H}$. The representation θ of H in W is the regular representation of H, and it is clear that ρ is induced by θ .

- 2. Take for V a vector space having a basis (e_{σ}) indexed by the elements σ of G/H and define a representation ρ of G in V by $\rho_s e_{\sigma} = e_{s\sigma}$ for $s \in G$ and $\sigma \in G/H$ (this formula makes sense, because, if σ is a left coset of H, so is $s\sigma$). We thus obtain a representation of G which is the permutation representation of G associated with G/H [cf. 1.2, example (c)]. The vector e_H corresponding to the coset H is invariant under H; the representation of H in the subspace Ce_H is thus the unit representation of H, and it is clear that this representation induces the representation ρ of G in V.
- 3. If ρ_1 is induced by θ_1 and if ρ_2 is induced by θ_2 , then $\rho_1 \oplus \rho_2$ is induced by $\theta_1 \oplus \theta_2$.
- 4. If (V, ρ) is induced by (W, θ) , and if W_1 is a stable subspace of W, the subspace $V_1 = \sum_{r \in R} \rho_r W_1$ of V is stable under G, and the representation of G in V_1 is induced by the representation of H in W_1 .
- 5. If ρ is induced by θ , if ρ' is a representation of G, and if ρ'_H is the restriction of ρ' to H, then $\rho \otimes \rho'$ is induced by $\theta \otimes \rho'_H$.

Existence and uniqueness of induced representations

Lemma 1. Suppose that (V,ρ) is induced by (W,θ) . Let $\rho' \colon G \to GL(V')$ be a linear representation of G, and let $f \colon W \to V'$ be a linear map such that $f(\theta_t w) = \rho'_t f(w)$ for all $t \in H$ and $w \in W$. Then there exists a unique linear map $F \colon V \to V'$ which extends f and satisfies $F \circ \rho_s = \rho'_s \circ F$ for all $s \in G$.

If F satisfies these conditions, and if $x \in \rho_s W$, we have $\rho_s^{-1} x \in W$; hence

$$F(x) = F(\rho_{\epsilon}\rho_{\epsilon}^{-1}x) = \rho_{\epsilon}'F(\rho_{\epsilon}^{-1}x) = \rho_{\epsilon}'f(\rho_{\epsilon}^{-1}x).$$

This formula determines F on ρ_s W, and so on V, since V is the sum of the ρ_s W. This proves the uniqueness of F.

Now let $x \in W_{\sigma}$, and choose $s \in \sigma$; we define F(x) by the formula $F(x) = \rho'_s f(\rho_s^{-1} x)$ as above. This definition does not depend on the choice of s in σ ; indeed, if we replace s by st, with $t \in H$, we have

$$\rho_{st}'f(\rho_{st}^{-1}x) = \rho_s'\rho_t'f(\theta_t^{-1}\rho_s^{-1}x) = \rho_s'(\theta_t\theta_t^{-1}\rho_s^{-1}x) = \rho_s'f(\rho_s^{-1}x).$$

Since V is the direct sum of the W_o, there exists a unique linear map

F: V \rightarrow V' which extends the partial mappings thus defined on the W_o. It is easily checked that F $\circ \rho_s = \rho_s' \circ F$ for all $s \in G$.

Theorem 11. Let (W, θ) be a linear representation of H. There exists a linear representation (V, ρ) of G which is induced by (W, θ) , and it is unique up to isomorphism.

Let us first prove the existence of the induced representation μ . In view of example 3, above, we may assume that θ is irreducible. In this case, θ is isomorphic to a subrepresentation of the regular representation of H, which can be induced to the regular representation of G (cf. example 1). Applying example 4, we conclude that θ itself can be induced.

It remains to prove the uniqueness of ρ up to isomorphism. Let (V, ρ) and (V', ρ') be two representations induced by (W, θ) . Applying Lemma 1 to the injection of W into V', we see that there exists a linear map F: $V \to V'$ which is the identity on W and satisfies $F \circ \rho_s = \rho'_s \circ F$ for all $s \in G$. Consequently the image of F contains all the $\rho'_s W$, and thus is equal to V'. Since V' and V have the same dimension $(G: H) \cdot \dim(W)$, we see that F is an isomorphism, which proves the theorem. (For a more natural proof of Theorem 11, see 7.1.)

Character of an induced representation

Suppose (V, ρ) is induced by (W, θ) and let χ_{ρ} and χ_{θ} be the corresponding characters of G and of H. Since (W, θ) determines (V, ρ) up to isomorphism, we ought to be able to compute χ_{ρ} from χ_{θ} . The following theorem tells how:

Theorem 12. Let h be the order of H and let R be a system of representatives of G/H. For each $u \in G$, we have

$$\chi_{\rho}(u) = \sum_{\substack{r \in \mathbb{R} \\ r^{-1}wr \in \mathbb{H}}} \chi_{\theta}(r^{-1}ur) = \frac{1}{h} \sum_{\substack{s \in \mathbb{G} \\ s^{-1}us \in \mathbb{H}}} \chi_{\theta}(s^{-1}us).$$

(In particular, $\chi_{\rho}(u)$ is a linear combination of the values of χ_{θ} on the intersection of H with the conjugacy class of u in G.)

The space V is the direct sum of the ρ_r W, $r \in \mathbb{R}$. Moreover ρ_u permutes the ρ_r W among themselves. More precisely, if we write ur in the form $r_u t$ with $r_u \in \mathbb{R}$ and $t \in \mathbb{H}$, we see that ρ_u sends ρ_r W into ρ_{r_u} W. To determine $\chi_{\rho}(u) = \text{Tr}_{V}(\rho_u)$, we can use a basis of V which is a union of bases of the ρ_r W. The indices r such that $r_u \neq r$ give zero diagonal terms; the others give the trace of ρ_u on the ρ_r W. We thus obtain:

$$\chi_{\rho}(u) = \sum_{r \in \mathbb{R}_u} \operatorname{Tr}_{\rho_r \mathbf{W}}(\rho_{u,r}),$$

where R_u denotes the set of $r \in R$ such that $r_u = r$ and $\rho_{u,r}$ is the restriction of ρ_u to ρ_r W. Observe that r belongs to R_u if and only if ur can be written rt, with $t \in H$, i.e., if $r^{-1}ur$ belongs to H.

It remains to compute $\operatorname{Tr}_{\rho_r W}(\rho_{u,r})$, for $r \in \mathbb{R}_u$. To do this, note that ρ_r defines an isomorphism of W onto $\rho_r W$, and that we have

$$\rho_r \circ \theta_t = \rho_{u,r} \circ \rho_r$$
, with $t = r^{-1}ur \in H$.

The trace of $\rho_{u,r}$ is thus equal to that of θ_l , that is, to $\chi_{\theta}(t) = \chi_{\theta}(r^{-1}ur)$. We indeed obtain:

$$\chi_{\rho}(u) = \sum_{r \in \mathbb{R}_{+}} \chi_{\theta}(r^{-1}ur).$$

The second formula given for $\chi_{\rho}(u)$ follows from the first by noting that all elements s of G in the left coset rH $(r \in R_u)$ satisfy $\chi_{\theta}(s^{-1}us) = \chi_{\theta}(r^{-1}ur)$.

The reader will find other properties of induced representations in part II. Notably:

(i) The Frobenius reciprocity formula

$$(f_H|\chi_\theta)_H = (f|\chi_\theta)_G$$

where f is a class function of G, and f_H is its restriction to H, and the scalar products are calculated on H and G respectively.

- (ii) Mackey's criterion, which tells us when an induced representation is irreducible.
- (iii) Artin's theorem (resp. Brauer's theorem), which says that each character of a group G is a linear combination with rational (resp. integral) coefficients of characters of representations induced from cyclic subgroups (resp. from "elementary" subgroups) of G.

EXERCISES

- 3.4. Show that each irreducible representation of G is contained in a representation induced by an irreducible representation of H. [Use the fact that an irreducible representation is contained in the regular representation.] Obtain from this another proof of the cor. to th. 9.
- 3.5. Let (W, θ) be a linear representation of H. Let V be the vector space of functions f: G → W such that f(tu) = θ_tf(u) for u ∈ G, t ∈ H. Let ρ be the representation of G in V defined by (ρ_sf)(u) = f(us) for s, u ∈ G. For w ∈ W let f_w ∈ V be defined by f_w(t) = θ_t w for t ∈ H and f_w(s) = 0 for s ∉ H. Show that w ↦ f_w is an isomorphism of W onto the subspace W₀ of V consisting of functions which vanish off H. Show that, if we identify W and W₀ in this way, the representation (V, ρ) is induced by the representation (W, θ).
- 3.6. Suppose that G is the direct product of two subgroups H and K (cf. 3.2). Let ρ be a representation of G induced by a representation θ of H. Show that ρ is isomorphic to $\theta \otimes r_K$, where r_K denotes the regular representation of K.