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Editors’ Foreword

rate durlng the past half century ’\Tew fields have emerged
the diffusion into other disciplines has proceeded apace, and
our knowledge of the classical areas has grown ever more pro-
found. At the same time, one of the most striking trends in
modern mathematics is the constantly increasing interrelation-
ship between its various branches. Thus the present-day
students of mathematics are faced with an immense mountain
of material. In addition to the traditional areas of mathe-
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presentations do abound—there are the new and often en-
lightening ways of looking at these traditional areas, and also
the vast new areas teeming with potentialities. Much of this
new material is scattered indigestibly throughout the research
journals, and frequently coherently organized only in the
minds or unpublished notes of the working mathematicians.
And students desperately need to learn more and more of this
material.

This series of brief topical booklets has been conceived as a
possible means to tackle and hopefully to alleviate some of
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cal ms. They are being written by active
research mathematlmans who can look at the latest develop-
ments, who can use these developments to clarify and con-
dense the required material, who know what ideas to under-
score and what techniques to stress. We hope that they will
also serve to present to the able undergraduate an introduction
to contemporary research and problems in mathematics, and
that they will be sufficiently informal that the personal tastes

and attitudes of the leaders in modern mathematics will shine

The area of differential geometry is one in which recent
developments have effected great changes. That part of
differential geometry centered about Stokes’ Theorem, some-
times called the fundamental theorem of multivariate calculus,
is traditionally taught in advanced calculus courses (second or
third year) and is essential in engineering and physics as well

as in several current and lmnnrfg t branches of mathematics.

(E S S v § v‘vw‘ ~4 i

However, the teaching of this material has been relatively
little affected by these modern developments; so the mathe-
maticians must relearn the material in graduate school, and
other scientists are frequently altogether deprived of it. Dr.
Spivak’s book should be a help to those who wish to see
Stoke’s Theorem as the modern working mathematician sees
it. A student with a good course in calculus and linear algebra

behind him should find this book quite accessible.

Robert Gunning
Hugo Rossi

Princeton, New Jersey
Waltham, M assachusetts
August 1965



Preface

This little book is especially concerned with those portions of
“advanced calculus” in which the subtlety of the concepts and
methods makes rigor difficult to attain at an elementary level.
The approach taken here uses elementary versions of modern
methods found in sophisticated .mathematics. The formal

prerequisites include only a term of linear algebra, a nodding
acquaintance with the notation of set theory, and a respectable
first-year calculus course (one which at least mentions the
least upper bound (sup) and greatest lower bound (inf) of a
set of real numbers). Beyond this a certain (perhaps latent)
rapport with abstract mathematics will be found almost
essential.

The first half of the book covers that simple part of ad-
vanced calculus which generalizes elementary calculus to
higher dimensions. Chapter 1 contains preliminaries, and
Chapters 2 and 3 treat differentiation and integration.

The remainder of the book is devoted to the study of curves,
surfaces, and higher-dimensional analogues. Here the modern
and classical treatments pursue quite different routes; there are,
of course, many points of contact, and a significant encounter

Vil



viii Preface

occurs in the last section. The very classical equation repro-
duced on the cover appears also as the last theorem of the
book. This theorem (Stokes’ Theorem) has had a curious
history and has undergone a striking metamorphosis.

The first statement of the Theorem appears as a postscript
to a letter, dated July 2, 1850, from Sir Willilam Thomson
(Lord Kelvin) to Stokes. It appeared publicly as question 8
on the Smith’s Prize Examination for 1854. This competitive
examination, which was taken annually by the best mathe-
'matics students at Cambridge University, was set from 1849 to
1882 by Professor Stokes; by the time of his death the result
was known universally as Stokes’ Theorem. At least three
proofs were given by his contemporaries: Thomson published
one, another appeared in Thomson and Tait’s Treatise on
Natural Philosophy, and Maxwell provided another in Elec-
tricity and Magnetism [13]. Since this time the name of
Stokes has been applied to much more general results, which
have figured so prominently in the development of certain
parts of mathematics that Stokes’ Theorem may be con-
sidered a case study in the value of generalization.

In this book there are three forms of Stokes’ Theorem.
The version known to Stokes appears in the last section, along
with its inseparable companions, Green’s Theorem and the
Divergence Theorem. These three theorems, the classical
theorems of the subtitle, are derived quite easily from a
modern Stokes’ Theorem which appears earlier in Chapter 5.
What the classical theorems state for curves and surfaces, this
theorem states for the higher-dimensional analogues (mani-
folds) which are studied thoroughly in the first part of Chapter
5. This study of manifolds, which could be justified solely on
the basis of their importance in modern mathematics, actually
involves no more cffort than a careful study of curves and sur-
faces alone would require.

The reader probably suspects that the modern Stokes’
Theorem is at least as difficult as the classical theorems
derived from it. On the contrary, it is a very simple con-
sequence of yet another version of Stokes’ Theorem; this very
abstract version is the final and main result of Chapter 4.
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It is entirely reasonable to suppose that the difficulties so far
avoided must be hidden here. Yet the proof of this theorem
18, in the mathematician’s sense, an utter triviality—a straight-
forward computation. On the other hand, even the statement
of this triviality cannot be understood without a horde of
difficult definitions from Chapter 4. There are good reasons
why the theorems should all be easy and the definitions hard.
As the evolution of Stokes’ Theorem revealed, a single simple
principle can masquerade as several difficult results; the proofs
of many theorems involve merely stripping away the disguise.
The deﬁnitions, on the other hand, serve a twofold purpose:
they are rigorous replacements for vague notions, and
machinery for elegant proofs. The first two sections of
Chapter 4 define precisely, and prove the rules for manipulat-
ing, what are classically described as ‘‘expressions of the form”
Pdx + Qdy + Rdz,orPdxdy + Qdydz + Rdzdz. Chains,
defined in the third section, and partitions of unity (already
introduced in Chapter 3) free our proofs from the necessity of

(‘-hnnnlno' manifolds un inte small pieces: thev reduce guestions
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about manifolds, where everything seems hard, to questions
about Euclidean space, where everything is easy.

Concentrating the depth of a subject in the definitions is
undeniably economical, but it is bound to produce some
difficulties for the student. I hope the reader will beencour-
aged to learn Chapter 4 thoroughly by the assurance that the
results will justify the effort: the classical theorems of the last
section represent only a few, and by no means the most im-
portant, applications of Chapter 4; many others appear as
problems, and further developments will be found by exploring
the bibliography.

The problems and the bibliography both deserve a few
words. Problems appear after every section and are num-
bered (like the theorems) within chapters. I have starred
those problems whose results are used in the text, but this
precaution should be unnecessary—the problems are the most
important part of the book, and the reader should at least
attempt them all. It was necessary to make the bibliography
either very incomplete or unwieldy, since half the major
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as reasonable continuations of the material in the book.
have tried to make it incomplete but tempting.

Many criticisms and suggestions were offered during the
writing of this book. I am particularly grateful to Richard
Palais, Hugo Rossi, Robert Seeley, and Charles Stenard for
their many helpful comments.

ifn LL..M AAAAAAAA 13 1,001 L.m
ul 1U111al/1bb vuuiu lt?g UlIL

g:)
ot
D
d

I have used this printing as an opportunity to correct many
misprints and minor errors pointed out to me by indulgent
readers. In addition, the material following Theorem 3-11
has been completely revised and corrected. Other important
changes, which could not be incorporated in the text without
excessive alteration, are listed in the Addenda at the end of the
book.

Michael Spivak

Waltham, M assachusetts
March 1968
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NORM AND INNER PRODUCT

Euclidean n-space R” is defined as the set of all n- tuples
J | AN AL nal m L,“.N bl (o (€1 ~f 11 W A i
Ly ¢ o o 4t ) ULl TBal numoers r La l Lupltﬂ Oi numoer >
just a number and R! = R, the set of all real numbers). An
element of R” is often called a point in R", and R, R?, R® are
often called the line, the plane, and space, respectively. Ifx
denotes an element of R”, then z is an n-tuple of numbers, the

ith one of which is denoted z'; thus we can write

= (2! ... 2").
A pomt in R" is frequently also called a vector in R",
because R", with z+y = '+ 4} ... 2"+ y") and
ar = (azxl, . . . ,az"), as operations, 7s a vector space (over

the real numbers, of dimension n). In this vector space there
is the notion of the length of a vector x, usually called the
norm |z| of z and defined by lz| = V()2 + - - - + (&2
If n = 1, then ‘x\ is the usual absolute value of . The rela-
tion between the norm and the vector space structure of R is
very important.




2 Calewlu

1-1 Theorem. Ifz,y & R"and a & R, then

(1) |z} >0, and |2z| = 0 if and only if z = 0.

(2) lE,’;lx Y ] < ]x] ]yl, equality holds if and only if x and y
are linearly dependent.

@) |z +yl < |l + lyl.

) laz| = |a] - |z].

Proof

(1) 1s left to the reader.

(2) If x and y are linearly dependent, equality clearly holds.
If not, then Ay — 2 > 0 for all A\ € R, so
0< Ay —z|® = Z Ay' — z")?

t

[

)\22 @H)? — 2) izl zyt ‘Z/I ()2,

=1

Therefore theright side is a quadratic equation in A with no
real solution, and its discriminant must be negative. Thus

n n n
s (Y ) —ay @Y @) <o
t1=1 t1=1 t=1
3) lz 4+ y|* = 20,6 + ¢)?
= 25, + ZE.(yY)? + 222 2y
< le|® + |y|® + 2]l - ly] by (@)
= (= + lyh*
@) laz| = V2 ,(a2)? = Va2Zi, (29 = |o] - |z]. 1

The quantity 27 ,2%* which appears in (2) is called the
inner product of z and y and denoted (z,y). The most
important properties of the inner product are the following.

1-2 Theorem. If x, x1, 9 and y, y1, y2 are vectors in R™
and a & R, then

1) (z,y) = (y,x) (symmetry).



(2) (ax,y) = (z,ay) = alx,y) (bilinearity).
<x1 + T2, y) = <x17y> + <x27y>
<x; Y1 + ?/2) = <x;y1> + <x;y2>

[T

(3) (x,x) 2 0, and (x,z) = 0 if and (positive definiteness).

only if x i
@ ol = V(z).

+ 2 _ . 2
5) (eg) = lz + y| . |z — y|

— S'n it — S'n Tt
@) = Zinxhy = ZLw'e' = (yz).

)
2) By (1) it suffices to prove

These follow from the equations

n

N U
<azyy> = L (axz)yz =a L Y = a<x;y>;
1=1 t=1
n n n
(1 + T2, y) = 2 (xli + xz")y" = 2 xli?/i + 2 z2'y*

t=1 t=1

= (z,y) + (T2,y).

(3) and (4) are left to the reader.
o+ 9~ |z —yl*

4
=Hlx+yz+y)—&—y z—y) by (4)
= (z,y). |

We conclude this section with some important remarks
about notation. The vector (0, ... ,0) will usually be
denoted simply 0. The usual basis of R® is e, . . . ,e,,
where e¢; = (0, . . . ,1, . . . ,0), with the 1 in the 7th place.
If T: R® — R™is a linear transformation, the matrix of 7' with
respect to the usual bases of R® and R™ is the m X n matrix
A = (ai;), where T(e;) = 27 ,a;e; —the coefficients of T'(e;)

(polarization identity).
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appear in the ith column of the matrix. If S§: R™ — RP? has
the p X m matrix B, then So T has the p X n matrix B4
[here S o T'(z) = S(T'(z)); most books on linear algebra denote
So T simply ST]. To find T(x) one computes the m X 1

matrix

1 1
Y ayy, - . . ,41p Z
= )
\Yy"/ \Gm1, + - - 8mn/ \z"/
then T(z) = (', ... ,y#™). One notational convention

<x? e .’xn.’_yl.’ ¢ e ,ym) E Rn+m'

1-2. When does equality hold in Theorem 1-1(3)? Hint: Re-examine
the proof; the answer is not “when z and y are linearly depend-

Problems. 1-1.* Prove that lx! < 2‘(;‘,1 !xiL

ent.”’

1-3. Prove that |z — y| < |z| + |y|. When does equality hold?

1-4. Prove that | |z| — |y| | < |z — y].

1-5. The quantity |y — x| is called the distance between z and .
Prove and interpret geometrically the “triangle inequality’’:
e — 2| < e =yl + |y - 2.

1-6. Let f and g be integrable on [a,b].

(a) Prove that |fgf- g < (ff’,fz)*- (fﬁgz)*. Hint: Consider
separately the cases 0 = ff;(f — Ag)? for some A €ER and 0 <
{2 — rg)? for all A ER.

(b) If equality holds, must f = Ag for some A € R? What if
f and g are continuous?

(c¢) Show that Theorem 1-1(2) is a special case of (a).

1-7. A linear transformation 7: R™-— R"™ is norm preserving if
IT(x)I = le, and inner product preserving if (Tz,Ty) = (z,y).

(a) Prove that T is norm preserving if and only if 7 is inner-
product preserving.

(b) Prove that such a linear transformation 7 is 1-1 and T~ !is
of the same sort.

1-8. If z,y € R™ are non-zero, the angle between z and 7, denoted
Z(z,y), is defined as arccos ((x,y)/lx] . |y|), which makes sense by
Theorem 1-1(2). The linear transformation T is angle preserv-
ing if T is 1-1, and for z,y # 0 we have Z(T=z,Ty) = ZL(z,y).
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(a) Prove that if T is norm preserving, then T is angle pre-
serving.

(b) If thereis a basisz1, . . . ,zn of R®and numbers Ay, . . . ,An
such that 7z; = \z; prove that T is angle preserving if and
only if all |A| are equal.

(c) What are all angle preserving T: R® —» R"?

1-9. If 0 < 6 <, let T: R?— R? have the matrix (_‘:: z - z)
Show that T is angle preserving and if z # 0, then 4£(z,Tz) =

1-10.* If T: R™— R" is a linear transformation, show that there is a
number M such that |T(h)| < M|h| for h € R™ Hint: Estimate
|T(h)] in terms of |h| and the entries in the matrix of 7.

1-11. If z,y € R™ and z,w € R™, show that ((z,2),(y,w)) = (z,y) + (2,w)
and |(r,2)| = V/|z|? + |2|2. Note that (z,2) and (y,w) denote
points in R**™.

1-12.* Let (R™)* denote the dual space of the vector space R™ If
z € R", define ¢ € (RM* by e¢z(y) = (z,y). Define T: R"—
(R * by T(z) = ¢z Show that T is a 1-1 linear transformation
and conclude that every ¢ € (R™* is ¢, for a unique z € R™

1-13.* If 7,y € R", then z and y are called perpendicular (or orthog-
onal) if {(z,y) = 0. If z and y are perpendicular, prove that

o+ ol? = Jal? + lyl2
SUBSETS OF EUCLIDEAN SPACE

The closed interval [a,b] has a natural analogue in R%.  This is
fhn nlnnoﬂ vonfnnnlo l~r Al \/ rn r" d ﬁpnd as f}}e collectien Qf

Viivw wriwr Dullel‘d LW’V \.‘.\Jl v
all pairs (x,y) with 2 & [a,b] and y € [e,d]. More generally,
if A CR™and BC R", then 4 X B C R™™ is defined as

the set of all (z,y) € R’”+" with + € A and y € B. In par-
ticular, R™™" = R* X R*. If ACR™, BCR", and C C
R? then (A X B) X C = A X (B X C), and both of these
are denoted simply A X B X C; this convention is extended to
the product of any number of sets. The set [a;,b1] X + - - X
[an,bn] C R” is called a closed rectangle in R", while the set
(a,by) X - - -+ X (an,b,) C R" is called an open rectangle.
More generally a set U C R" is called open (Figure 1-1)
if for each x & U there is an open rectangle 4 such that
rcACU.

A subset C of R" is closed if R® — C is open. For exam-
ple, if C contains only finitely many points, then C is closed.
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FIGURE 1-1

The reader should supply the proof that a closed rectangle in
R"™ is indeed a closed set.

If A C R"and x € R", then one of three possibilities must
hold (Figure 1-2):

1. There is an open rectangle B such that x & B C A.

2. There is an open rectangle Bsuchthatx € B C R" — 4.

3. If B 1s any open rectangle with « & B, then B contains

noints of both 4 and R” — A
points of both A anag A.

ix as

FIGURE 1-2
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tafertan o S a
)1 the interior ()1 A Ubtﬁ

< ~ 1N\ A
ying (1) const

i onstitute

satlsfymg (2) the exterior of A, and those satisfying (3) the
boundary of A. Problems 1-16 to 1-18 show that these terms
may sometimes have unexpected meanings.

It is not hard to see that the interior of any set A is open,
and the same is true for the exterior of A, which is, in fact, the
interior of R® — A. Thus (Problem 1-14) their union is open,
and what remains, the beundary, must be closed.

A collection O of open sets is an open cover of A (or, briefly,
covers A) if every point x & A is in some open set in the
collection ©. For example, if © is the collection of all open
intervals (a, a + 1) fora & R, then 01is a cover of R. Clearly
no finite number of the open sets in © will cover R or, for that
matter, any unbounded subset of R. A similar situation can

alan nemir for hatinmdad cnte Tf a1 tha nr\]]n 43 on Af a open
WlDU UvLul LUl DUVUILLIUCTU Qo L. 414 U IQ ULIT LvUlITUULl1VUlL \Jl L L} 11
intetvals (1/n, 1 — 1/n) for all integers n > 1, then 0 is an

open cover of (0,1), but again no finite collection of sets in
O will cover (0,1). Although this phenomenon may not appear
particularly scandalous, sets for which this state of affairs
cannot occur are of such importance that they have received a
special designation: a set A is called compact if every open

cover O contalns

&
e
-
-
o
e

also covers A.

A set with only finitely many points is obviously compact
and so is the infinite set A which contains 0 and the numbers
1/n for all integers n (reason: if © is a cover, then 0 &€ U for
some open set U in ©; there are only finitely many other points
of A not in U, each requiring at most one more open set).

Recognizing compact sets is greatly simplified by the follow-
ing results, of which only the first has any depth (1.e., uses any
facts about the real numbers).

1-3 Theorem (Heine-Borel). The closed interval [a,b] is
compact.

Proof. If 0is an open cover of [a,b], let

A = {z:a < z < b and [a,z] is covered by some finite number
of open sets in 0}.
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FIGURE 1-3

Note that a € A and that A is clearly bounded above (by b).
We would like to show that b € A. This is done by proving
two things about a = least upper bound of A; namely, (1)
atc Aand (2) b =

Since O is a cover, a & U for some U in 0. Then all
points in some interval to the left of « are also in U (see Figure
1-3). Since « is the least upper bound of A4, there is an z in
this interval such that z & A. Thus [a}ar] is covered bv some

Y Plsaal

finite number of open sets of O, while [r,a] is covered by the
single set U. Hence [a,a] is covered by a finite number of open
sets of 9, and « &€ A. This proves (1).

To prove that (2) is true, suppose instead that « < b.
Then there is a point 2’ between « and b such that [a,2'] C U.
Since « & A, the interval [a,a] is covered by finitely many
open sets of O, while [a,x’] is covered by U. Hence 2’ € A4,

contradicting the fact that « is an upper bound of 4. §

If B C R™ is compact and ¢ & R”, it is easy to see that
fz} X B C R"™™ is compact. However, a much stronger
assertion can be made.

1-4 Theorem. If B is compact and O is an open cover of
{z} X B, then there is an open set U C R™ containing x such

‘o nadipnp J.‘M,,J,. T amhpar Af anfo am QO
ilvwi (] X B 1S (/U?/'Glcd UJ wJLI e TUIrnoel 0f Seis v 0.

Proof. Since {z} X B is compact, we can assume at the
outset that o is finite, and we need only find the open set U
such that U X B is covered by 0.

For each y & B the point (z,y) is in some open set W in o.
Since W is open, we have (z,y) € U, X V, C W for some
open rectangle U, X V,. The sets V, cover the compact set

B, so a finite number V,, . ..,V also cover B. Let
U=U,MN - - NU,. Thenif (2'.y) € UX B, we have
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T
B
T7.
¥y
A
/s \
] | | | ]
L} | T L)
xz
Uy,
FIGURE 1-4
y €V, for some z' ig' re 1-4), and certainly =’ € U,,.
Hence (z',y") € U, which 1s contained in some W
)../ yn
in 0. |

I1-5 Corollary. If A C R" and B C R™ are compact, then
A X B C R™™ 4s compact.

Proof. 1If ©isanopen coverof A X B, then 0 covers {x} X B
foreachx € A. By Theorem 1-4 there is an open set U, con-
taining x such that U, X B is covered by finitely many sets
in 0. Since 4 is compact, a finite number U,,, . . . ,U,, of
the U, cover A. Since finitely many sets in © cover each
U.; X B, finitely many cover all of A X B. |

I-6 Corollary. A, X - - - X Ay is compact if each A; is.
In particular, a closed rectangle in R* is compact.
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Proof. 1f A C R™ is closed and bounded, then 4 C B for
some closed rectangle B. If © is an open cover of 4, then 0
together with R® — A4 is an open cover of B. Hence a finite
number Uy, . . . ,U, of sets in 0, together with R® — A4 per-
haps, cover B. Then U,, . . . ,U, cover A. |

Problems. 1-14.* Prove that the union of any (even infinite) number
of open sets isopen. Prove that the intersection of two (and hence
of finitely many) open sets is open. Give a counterexample for
infinitely many open sets.

1-15. Prove that {r € R™: lx — a| < r} is open (see also Problem 1-27).
1-16. Find the interior, exterior, and boundary of the sets

{xr € R™: |:z:| <t}
{xr € R™ |x| =1}
{x € R™: each z'is rational}.

1-17. Construct a set A C [0,1] X [0,1] such that A contains at most
one point on each horizontal and each vertical line but boundary
A = [0,1] X [0,1]. Hint: It suffices to ensure that A contains
points in each quarter of the square [0,1] X [0,1] and also in each

sixteenth, etc.

T A +h

1-18. If A C [0,}.} is the union of open intervals ("i,(’l‘i} such that each
rational number in (0,1) is contained in some (a;b;), show that

houndarvy 4 =011 — A
.IJ AL kS

bounda = [0,1] — A.
1-19.* If A is a closed set that contains every rational number r € [0,1],
show that [0,1] C A.
1-20. Prove the converse of Corollary 1-7: A compact subset of R” is
closed and bounded (see also Problem 1-28).
1-21.* (a) If A is closed and z & A, prove that there is a number
d > 0 such that !y — x! >dforally € A.
(b) If A is closed, B is compact, and A N\ B = f, prove that
there is d > 0 such that ]y — xl >dforall y &€ A and z € B.
Hint: For each b € B find an open set U containing b such that
this relation holds for x+ € U N B.
(¢) Give a counterexample in R? if A and B are closed but
neither is compact.
1-22.* If U is open and C C U is compact, show that there is a compact
set D such that C C interior D and D C U.
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Funcitons on Euclidean Space

FUNCTIONS AND CONTINUITY

A function from R" to R™ (sometimes called a (vector-
valued) function of n variables) is a rule which associates to
each point in R™ some point in R™; the point a function f
associates to z is denoted f(x). We write f: R® — R™ (read “‘f
takes R™ into R™ or “f, taking R™ into R™,” depending on con-
text) to indicate that f(z) € R™ is defined for x € R™. The
notation f: 4 — R™ indicates that f(z) is defined only for x in
the set A, which is called the domain of f. If B C 4, we
define f(B) as the set of all f(z) forz € B, and if C C R™ we
define f~1(C) = {z € A: f(z) € C}. The notation f: 4 — B

xndlcatco that f(A\ C B.

A convenient representation of a function f: R* - R may
be obtained by drawing a picture of its graph, the set of all
3-tuples of the form (z,y,f(z,y)), which is actually a figure in
3-space (see, e.g., Figures 2-1 and 2-2 of Chapter 2).

If f,g: R® — R, the functions f + ¢, f — ¢, f - g, and f/g are
defined precisely as in the one-variable case. If f: 4 — R™
and g: B— R?, where B C R™, then the composition
gof is defined by gof(z) = g(f(z)); the domain of gof is
ANFYB). If f: A— R™ is 1-1, that is, if f(z) # f(y)
when z # y, we define f~!: f(4) — R" by the requirement that
f~1(2) is the unique r € A with f(z) = 2.

A function f: A — R™ determines m component functions

ffiy oo A R by f@) = (fi(=), . . . (). If con-
vers Vly m functions g1, . . . ,gm: A — R are given, there
is a unique function f: 4 — R™ such that f* = g;, namely
fx) = (g1(x), . . . ,gm(x)). This function f will be denoted
(g1, - - . ,gm), so that we always have f= (f!, . .. ™.

If : R* — R" is the identity function, v(z) = =z, then #*(z) =
z*; the function =% is called the i{th projection function.
The notation lim f(z) = b means, as in the one-variable case,

r—a

that we can get f(x) as close to b as desired, by choosing x suf-
ficiently close to, but not equal to, a. In mathematical terms
this means that for every number € > 0 there is a number
& > O such that |f(z) — b| < ¢ for all z in the domain of f which



satisfy 0 < lx — a|l < 8. A function f: A —» R™is called con-

|~ & ~ Y- L& 2 il L,epEl

tinuous at a € A if lim f(z) = f (a), and f is simply called con-
T—a

tinuous if it is continuous at each a € A. One of the pleasant
surprises about the concept of continuity is that it can be
defined without using limits. It follows from the next theorem
that f: R —» R™ is continuous if and only if f~1(U) is open
whenever U C R™ is open; if the domain of f is not all of R*, a
slightly more complicated condition is needed.

1-8 Theorem. If A C R™ a function f: A — R™ is contin-
uous if and only if for every open set U C R™ there s some open
set V.C R™ such that f~Y(U) = VN A,

R «

N 7~ T Qivna T7 ia Asan +hn P 4+t
17 WI.UL.I.

J\u ) < U. Since U is open, there is an open "g
f(a) € BC U. Since f is continuous at a, we can ensure
that f(z) € B, provided we choose z in some sufficiently
small rectangle C containing a. Do this for each a € f~}(U)
and let V be the union of all such €. Clearly f~}(U) =
V N A. The converse is similar and is left to the reader. |

Proof. Suppose f is continuous. If a f’ (U), then
n+n n

The follow:

no
A LAl i UllU AL § 16 il

importance.

uence of Theorem 1-8 is of great

1-9 Theorem. Iff: A— R™ is continuous, where A C R",
and A is compact, then f(A) C R™ is compact.

Proof. Let © be an open cover of f(4). For each open set
U in O there is an open set Vy such that f~(U) = Vy M A.
The collection of all Vi is an open cover of A. Since 4 is
compact, a finite number Vy,, . . . ,Vy, cover A. Then

Uy, ..., U, cover f(4). |

If f A —> R is bounded, the extent to which f fails to be
continuous at @ € A can be measured in a precise way. For
> 0let

M(a,f,8) = sup{f(z):z € A and lx — al < 8},
m(a,f,8) = inf{f@):x € 4 and |z — a| < 3.
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The oscillation o(f,a) of f at a is defined by o(f,a) =
lim[M (a,f,8) — m(a,f,8)]. This limit always exists, since
80

M(a,f,8) — m(a,f,8) decreases as § decreases. There are two
important facts about o(f,a).

1-10 Theorem. The bounded function f is continuous at a if
and only if o(f,a) =

Proof Let f be continuous at a. For every number e>0

-~ nan nhAan =
wWeE Can Cnoose a nur UB! 0 > U SO hlldb |j\.1;} - j\U«}| < & lUl

all x € A with |z — a| < &; thus M(a,f,8) — m(a,f,8) < 2e.
Since this is true for every €, we have o(f,a) = 0. The con-
verse is similar and is left to the reader. |]

1-11 Theorem. Let A C R"beclosed. Iff: A — Risany
bounded function, and € > 0, then {x € A: o(f,x) > &} s

closed.

ot
>
Q
>

Proof. Let B = {z € A: o(f,x) > &}. We wish to v
that R® — B is open. If z € R" — B, then either z & A
or else x € A and o(f,x) < €. In the first case, since A is
closed, there is an open rectangle C containing z such that
CCR"— ACR"—B. In the second case there is a
d > 0 such that M(z,f,6) — m(z,f,6) < &. Let C be an open

rectangle containing x such that lx — y| < é for all y € C.
Then if y € C there is a §; such that !x — z! < & for all 2
satisfying |z — yl < &;. Thus M(y,f,61) — m(y,f,81) < g, and

PR I VR A o - mL.____£____ 7Y r~— DN n ||
consequently o(y,f) < & 'IThereiore C C R" — B. |
Problems. 1-23. If f: A— R™ and a € A, show that lim f(z) =

if and only if lim fi(z) = b*fori =1, ... ,m. e
x—a
1-24. Prove that f: A — R™ is continuous at a if and only if each f* is.

1-25. Prove that a linear transformation 7: R™ — R™ is continuous.
Hint: Use Problem 1-10.
1-26. Let A = {(z,y) €ER%: z > 0and 0 < y < z?}.
(a) Show that every straight line through (0,0) contains an
interval around (0,0) which is in R? — A.
(b) Define f: RZ—> R by f(z) =0 if z € A and f(z) =1 if
z € A. For h € R? define gh: R— R by gp(t) = Sf(th). Show
that each gy is continuous at 0, but f is not continuous at (0,0).
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1-27. Prove that {z € R*: |z — a| < r} is open by considering the
function f: R” — R with f(z) = |z — a.

1-28. If A C R™is not closed, show that there is a continuous function
f: A— R which is unbounded. Hiunt: If 2 €E R — A but
z & interior (R” — A), let f(y) = l/ly — xl

1-29. If A 18 compact, prove that every continuous function f: A - R
takes on a maximum and a minimum value.

1-30. Let f: [a,b] & R be an increasing function. If zy, . . . ,2, €
[a,b] are distinct, show that Z._,o(f,z:) < F(b) — f(a).



BASIC DEFINITIONS

Recall that a function f: R — R is differentiable at ¢ & R if
there is a number f’(a) such that

() tim H0 1) = J@

h—0

= f'(a).

This equation certainly makes no sense in the general case of a
function f: R® — R™, but can be reformulated in a way that

does. If A»: R —> R is the linear transformation defined by

(A 1

A(h) = f'(a) - h, then equation (1) is equivalent to

2) lim F@F B = 1@ = 2B

= ().
h—0 h

Equation (2) is often interpreted as saying that A 4 f(a) is a
good approximation to f at a (sec Problem 2-9). Henceforth
we focus our attention on the linear transformation A and
reformulate the definition of differentiability as follows.

15



Calculus on Manifolds

b~y
[~

A function f: R—> R i g differentiable at ¢ € R if there is a

4 A ElmL A SFal

linear t a,nsformatlon X: R — R such that

oo J@+ B) = f@) = Ah)

= (.
—0 h

In this form the definition has a simple generalization to
higher dimensions:

A function f: R® — R™ is differentiable at a & R" if there
is a linear transformation A: R® — R™ such that

o 1@+ k) — fl@) — A®)|

[l

Note that h is a point of R™ and f(a + k) — f(a) — A(h) a
point of R™, so the norm signs are essential. The linear trans-
formation X is denoted Df(a) and called the derivative of f at
a. The justification for the phrase ‘‘the linear transformation

2 g
VA )

= 0.

2-1 Theorem. If f: R® — R™ s dyfferentiable at a & R"
there is a unique linear transformation \: R — R™ such that

o 1fa+ ) = fa) — A®)|

[1 ] = 0.
h—0 "
Proof. Suppose u: R® — R™ satisfies
. |fa + 1) — f(a) — u(h)]
lim = (.
h—0 'h

Ly AR = e AR — d(b) + d(B) — w(h)]
h—0 |R| h—0 |R|
< lim AW =AW A — w)]
h—0 ,h, h—0 Ih’
= 0.

If z € R", then tx > 0 as t » 0. Hence for z ¢ 0 we have
0 = lim l)‘(tx) — /.L(t.l?)l _ |>\($) - #(x)l
t—0 |tz| ||

Therefore A(z) = u(z). ||
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We shall later discover a simple way of finding Df(a). For
the moment let us consider the function f: R> —» R defined by
f(z,y) = sinx. Then Df(a,b) = X satisfies A(z,y) = (cos a) * .
To prove this, note that

\f(@a + h, b + k) — f(a,b) — A(h,E)]

(h b0 | (h,F)|
. |sin(@ + h) — sin a — (cos a) - Al
= lim :

(h,k)—0 '(hyk)|

Since sin’(a) = cos a, we have

>

. |sin{a@ + k) — sina — (cos a) -
lim = 0.
h—0 lh‘

Since |(k,k)| > |n|, it is also true that

‘sm(a + h) — sina — (cos a) -h\ _

h—»o |(h,K)]
T4 a nfitas Amnmzraniant 4o Annatdax 4ha m-L“.-_ ~L NFL A~
1L Id vlurell CUIllvellicilt L0 Cullbdiucer uvile lllaulix Ul UJ w).

R"” —» R™ with respect to the usual bases of R™ and R™.
This m X n matrix is called the Jacobian matrix of f at a,
and denoted f’'(a). If f(z,y) = sin z, then f'(a,b) = (cos a, 0).
If f: R— R, then f'(a) is a 1 X 1 matrix whose single entry
is the number which is denoted f/(a) in elementary calculus.
The definition of Df(a) could be made if f were defined only
in some open set containin ing da. uuumdcuug uuxy functions
defined on R™ streamlines the statement of theorems and
produces no real loss of generality. It is convenient to define
a function f: R® — R™ to be differentiable on A if f is differ-
entiable at a for eacha & A. If f: A —» R™, then f is called
differentiable if f can be extended to a differentiable function

on some open set containing A.

Problems. 2-1.* Prove that if f: R®— R™ is differentiable at
a € R"™, then it is continuous at a. Hini: Use Problem 1-10.

2-2. A function f: R? > R is independent of the second variable if
for each z € R we have f(z,y1) = f(z,y2) for all y1,y2 € R. Show
that f is independent of the second variable if and only if there is a
function g: R — R such that f(z,y) = g(z). What is f’(a,b) in
terms of ¢'?
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2-4.

2=5.

Calcuius on Manifolds

. Define when a function f: R2 - R is independent of the first varia-

ble and find f'(a,b) for such f. Which functions are independent of
the first variable and also of the second variable?

Let g be a continuous real-valued function on the unit circle
{z € R?: |z] = 1} such that ¢(0,1) = g(1,0) = 0 and g(—=z) =
—g(z). Define f: R?— R by

A
o {101 "’(m) .0

z = 0.

(a) If z € R?and h: R — Ris defined by h(f) = f(tz), show that
h is differentiable.

(b) Show that f is not differentiable at (0,0) unless g = 0.
Hint: First show that Df(0,0) would have to be 0 by considering
(h,k) with £ = 0 and then with A = 0.

Let f: R2— R be defined by
(  alyl
o) = { Vot (x,y) # 0,
QY (zy) = 0.

Show that f is a function of the kind considered in Problem 2-4,
so that f is not differentiable at (0,0).

. Let f: R2— R be defined by f(z,y) = \/W Show that f is not

differentiable at (0,0).

. Let f: R®*— R be a function such that !f(z)! < !z!2, Show that

f is differentiable at 0.
Let f: R —» R% Prove that f is differentiable at a € R if and only

if f1 and f? are, and that in this case

o _ (Y @\,
'@ (J’2)’(a))

. Two functions f,g: R — R are equal up to nth order at g if

. J@a+h) —gla+h _
lim - =
h—0 h

0.

(a) Show that f is differentiable at a if and only if there is a
function g of the form g(z) = a¢ + a1(z — a) such that f and g are
equal up to first order at a.

(b) If f'(a), . . . ,f™(a) exist, show that f and the function g
defined by

o ) ,
0(@) = 2 f—;—f“) @ — a)f

i=0
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are equal up to nth order at a. Hint: The limit

(1)
@) — z @ o~ ay

lim =0
r—a (z — a)”

may be evaluated by L’Hospital’s rule.

BASIC THEOREMS

2-2 Theorem (Chain Rule). Iff: R* — R™ is differenti-
able at a, and g: R™ — R? 1s differentiable at f(a), then the
composttion g o f: R* — R? 15 differentiable at a, and

D(g > f)(a) = Dg(f(a)) o Df(a).

Remark. This equation can be written

s/ rr AN

N — (r £( Y\
a) = 9 J\a)) " Jj\a).

—
(o]

"

g2 f)'(
If m = n = p = 1, we obtain the old chain rule.

Proof. Let b = f(a), let A = Df(a), and let u = Dg(f(a)).
If we define
(1) e(x) = f(z) — f(a) — Mz — a),

(2) ¥(y) = gy) — g(b) — u(ly — b),
(3) o(@) = gof(x) —gofla) — poXlz — a),

then
(4) lim lcp(x)' =
\*/ ;:"; lx _ al 9
2 A
(5) lim = 0,
y—b ’y - bl
and we must show that
N P

Now

p(z) = g(f(x)) — g(b) — u(Mz — a))
= g(f(z)) — g(0) — u(f(x) — fla) — ¢()) by (1)
= [g(f(@)) — g(b) — w(f(x) — f(a))] + u(e())
= ¢(f(@) + ule(x)) by (2).
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Thus we must prove

(6) lim (@) _ 0
z—a | — @

) lim lae(@))| _ 0
z—a (T — Q@

Equation (7) follows easily from (4) and Problem 1-10. If
€ > 0 it follows from (5) that for some § > 0 we have

W(f@)| < elf(z) — b  if [f(x) — b] < 8,

which is true if [:z: — al < &, for a suitable §;. Then

HONRHORE]
= ¢lo(@) + 2@ — @)
< glo(@)| + eM|z — a
for some M, by Problem 1-10. Equation (6) now follows
easily. |

2-3 Theorem
(1) If f: R®—> R™ 1is a constant function (that s, if for some
y € R™ we have f(x) = y for all x € R"), then

Df(a) = 0.
(2) If f: R® — R™ is a linear transformation, then
Df(a) = 7.

(3) If f: R* — R™, then f is differentiable at a € R™ if and
only if each f* is, and

Df(a) = (Df'(a), . . . ,Df"(a)).

Thus f'(a) is the m X n matrix whose ith row s (f*)(a).
(4) If s: R — R is defined by s(z,y) = = + vy, then

Ds(ab) = s.
(5) If p: R?— R s defined by p(z,y) = z - y, then
Dp(a,b)(z,y) = bz + ay.
Thus p'(a,b) = (b,a).
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Proof

@ tim PN —J@ =0 . ly—v =0
h—0 |h| h—0 ]hl

@) lim @R~ f@) = SO
h—0 ‘hl

_ i J@ + 5B) = f(@) = fB)| _
h—0 |hl

(3) If each f* is differentiable at a and

0.

N = (DfY(a), . . . ,Df™(a)),

then
fla + k) — f(a) — M)
= (f'(a + &) — f'(a) — Df{(@)(R), . . .,
f™(a + k) + f™(a) — Df™(a)(h)).

Therefore
i M@+ ) — f@) = A®)|
h—0 lhl

< lim z @ + 1) — £(@) - DF@®)| _

- h—0 4 ] lh| .

If, on the other hand, f is differentiable at a, then f* =
x' o f is differentiable at a by (2) and Theorem 2-2.

(4) follows from (2).

5

(5) Let =
(5) Let A(z,y) = bz + ay. Then

lp(a + h, b+ k) — p(ab) — A(RK)|

Iim

(h,k)—>0 |(hk)|
= lim ———ihk{-
(h,k)—0 I(h’k)‘
Now
n|2if [k] < |A]
< )
1] < ‘ K2 it fal < k|
Hence |hk| < |h|? + |k|%. Therefore
2 2 -
LI = Vi + K,

1B = vAE £ k2
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80

lim lhk'

= 0.
w0 |(H)] '

2-4 Corollary. If f,g: R® — R are differentiable at a, then

D(f + g)(a) = Df(a) + Dg(a),
D(f - g)(a) = g(a)Df(a) + f(a)Dg(a).

If, moreover, g(a) # 0, then

g(a)Df(a) — f(a)Dg(a)
[9(a)]?

D(f/g)(a) =

Proof. We will prove the first equation
S o

to the reader. Since f+ g =
D(f + g)(a) = DS(f(a),g(a)) o D(f,g)(a)

co (Dfla) NDal
i \UJ\W/’UU\"’/}

= Df(a) + Dg(a). |

We are now assured of the differentiability of those functions
f: R"— R™, whose component functions are obtained by
addition, multiplication, division, and composition, from the
functions #° (which are linear transformations) and the func-

tions which we can already differentiate by elementary

calculus. Finding Df(x) or f'(z), however, may be a fairly
formidable task. For example, let f: R2 — R be defined by

f(z,y) = sin(zy?). Sincef = sino (x!-[r??), we have

f'(a,b) = sin’(ad®) - [b*(x")"(a,b) + a([x*%)'(a,b)]
= sin’(ab?) - [b2(r) (a,b) + 2ab(x?)(a,b)]
= (cos(ab?)) - [%(1,0) + 2ab(0,1)]
= (b? cos(ab?), 2ab cos(ab?)).

Fortunately, we will soon discover a much simpler method of
computing f’.

Problems. 2-10. Use the theorems of this section to find f’ for the
following:
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2-11.

2-12.

2-13.

2-14'0

[z
w

(a) f(z,y,2) = z¥.

(b) f(z,y,2) = (2¥,2).

(¢) f(zx,y) = sin(zsin y).

(d) f(z,y,2) = sin(xsin(y sin 2)).

(e) f(z,y,2) = z¥".

) f(zy2) = zv+=

(&) f@y2) = (& + y)°

(h) f(z,y) = sin(zy).

(i) flz,y) = [sin(zy)]eo* .

() flz,y) = (sin(zy), sin(z sin y), z¥).

Find f’ for the following (where g: R — R is continuous):

ron pron . [ty
\b4) JWY) = Ja G-

) fey) = |3
fsin(z sin(y sin 2))

©) fzy,2) = [
A function f: R™ X R™— RP? is bilinear if for z,21,2, € R%,
1,7,y2 € R™, and ¢ € R we have

£lram a1t = aflom 0]\ = £1an reas)
J\WhyY ) T Wi Y T JyWwy ),
@1 + z9,y) = f(z1,y) + f(ze,),
Iy +y2) = f@y1) + flzy2)
(a) Prove that if f is bilinear, then
. (h,k)
lim |f ’ l = 0.

hky—0 |(BE)]

(b) Prove that Df(a,b)(z,y) = f(a,y) + f(z,b).

(c) Show that the formula for Dp(a,b) in Theorem 2-3 is a
special case of (b).
Define IP: R* X R*— R by IP(z,y) = {(z,y).

(a) Find D(IP)(a,b) and (IP) (a,b).

(b) If f,g: R > R™ are differentiable and h: R — R is defined by
h(t) = (f(1),g(t)), show that

h'(a) = {f'@)T,9(@) + {f(a),g'(@)T.

(Note that f/(a) is an n X 1 matrix; its transpose~f’(a)Tisa 1 X n
matrix, which we consider as a member of R".)

(¢) If f: R— R™is differentiable and |f(t)| = 1 for all ¢, show
that (f'()T,f(t)) = 0.

(d) Exhibit a differentiable function f: R — R such that the
function |f| defined by |f|(t) = |7(t)| is not differentiable.
Let E;y ¢ =1, . . . ,k be Euclidean spaces of various dimensions.
A function f: E1 X - -+ X Ex— R? is called multilinear if
for each choice of z; € Ej, j # ¢ the function g: E; — RP? defined by
g(z) = f(x1, . - . ,%i=1,%,%i+1, - - - ,Tk) is a linear transformation.
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(a) If fis multilinear and 7 # 7, show that for b = (hy, . . . k),
with h; € E;, we have

lf@s, . . . iy .. kg .. ab)] _

lim 0.
h—0 lh|
Hint: If glz,y) =flay, . . . 2, . . ., ... ,¢r), then g is
bilinear.
(b) Prove that
k
Df(ay, . . . ,a)(@1, . . . ,28) = Z flay, . . . ,@i1,25,0541, . . . ,0k).
=1

2-15. Regard an n X n matrix as a point in the n-fold product R* X

n 1 1 a mamhar nf RR
- X R"™ by considering each row as a member of R™

(a) Prove that det: R” X - - - X R™— R is differentiable and
(o1]
n

D(det) (a1, . . . ,an)(x1, . . . ,3p) = : det | x;{.

i=1

\anJ

(b) If a;;: R — R are differentiable and f(f) = det (a;;(t)), show
that

(a11(t), . . . 01 (0))

@ = S‘Idet a;1”’(®), . . . 4" (t)].

@n1(), . . . ,Gnn(D)

(c) If det(a;;(t)) = O for all ¢t and by, . . . ,by: R — R are dif-
ferentiable, let s1, . . . ;3. R —> R be the functions such that
81(t), . . . ,8,(t) are the solutions of the equations

n
a;i(2)8i(t) = bi(t) t=1, ...,
j =1

J

Show that s; is differentiable and find s,/ (f).
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2-16. Suppose f: R®™ — R" is differentiable and has a differentiable
inverse f~1: R®— R". Show that (f~Y(a) = [f'(f ") ™%
Hint: fof~z) = z.

PARTIAL DERIVATIVES

We begin the attack on the problem of finding derivatives
““one variable at a time.”” If f: R® — Rand a & R", the limit

f(al’ s . ’ai+h’ s ’an) —f(al’ <. ’an)
h

lim
h—0
if it exists, is denoted D;f(a), and called the ith partial deriva-
tive of f at @. It is important to note that D,f(a) is the ordi-

Gf a certaln annhgn; n fart lf g(x) =

. .
1rratixr
1 il Uikl PR VERAWAYSY ACUU Uy

nary derivative
fa', . ..z, ... ,"), then D;f(a) = ¢g’(¢’). This means
that D;f(a) is the slope of the tangent line at (a,f(a)) to the
curve obtained by intersecting the graph of f with the plane
v/ = a’, j # i (Figure 2-1). It also means that computation of

D;f(a) is a problem we can already solve. If f(z', . . . ,2")is

~

A
AT
, '\\( e

(a,b)

FIGURE 2-1
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given by some formula involving z', . . . 2", then we find
D:f(z!, . . . ,z™) by differentiating the function whose value
at z' is given by the formula when all 27, for j ¢, are
thought of as constants. For example, if f(z,y) = sin(xy?),
then Dif(z,y) = y® cos(zy®) and Dof(x,y) = 2zy cos(zy?). If,
instead, f(z,y) = ¥, then D, f(z,y) = ya¥"! and D,f(z,y) =
x¥ log x.

With a littie practice (e.g., the problems at the end of this
section) you should acquire as great a facility for computing
D;f as you already have for computing ordinary derivatives.

If D.f(xz) exists for all z & R™, we obtain a function D,f:
R" — R. The jth partial derivative of this function at x, that

D;(D;f)(x), is often denoted D; ;f(x). Note that this nota-

attn At fa 4+ A
tlUlL reverses the GI‘d%I’ of ¢ a,ud J. As a matter of ld;bl/, the

order is usually irrelevant, since most functions (an exception is
given in the problems) satisfy D; ;f = D; ;f. There are various
delicate theorems ensuring this equality; the following theorem
is quite adequate. We state it here but postpone the proof
until later (Problem 3-28).

2-5 Theorem. If D;;f and D;.f are continuous in an
open set containing a, then

D; ;f(a) = D, f(a).

The function D, ;f is called a second-order (mixed)
partial derivative of f. Higher-order (mixed) partial
derivatives are defined in the obvious way. Clearly Theorem
2-5 can be used to prove the equality of higher-order mixed
partial derivatives under appropriate conditions. The order
of %, . .. ,5x Is completely immaterial in Dy, . . . ,@f
if f has continuous partial derivatives of all orders. A function
with this property is called a C” function. In later chapters
it will frequently be convenient to restrict our attention to C
functions.

Partial derivatives will be used in the next section to find
derivatives. They also have another important use—finding
maxima and minima of functions.
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2-6 Theorem. Let A C R" If the maximum (or mini-
mum) of f: A — R occurs at a point a in the interior of A and
D;f(a) exists, then D;f(a) = O.

Proof. Let g;(x) =f(a®, ... ,x, ... ,a"). Clearly g¢;
has a maximum (or minimum) at a‘, and g, is defined in an
open interval containing a’. Hence 0 = g/(a*) = D;f(a). |

The reader is reminded that the converse of Theorem 2-6
is false even if » = 1 (if f: R— R is defined by f(z) = 3
then f'(0) = 0, but 0 is not even a local maximum or mini-
mum). If n > 1, the converse of Theorem 2-6 may fail
to be true in a rather spectacular way. Suppose, for exam-
ple, that f: R? — R is defined by f(z,y) = 2% — y? (Figure
2-2). Then D;f(0,0) = 0 because ¢g; has a minimum at 0,
while D3f(0,0) = 0 because g» has a maximum at 0. Clearly
(0,0) is neither a relative maximum nor a relative minimum.

z

FIGURE 2-2
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If Theorem 2-6 is used to find the maximum or minimum of
fon A, the values of f at boundary points must be examined
separately—a formidable task, since the boundary of A may
be all of A! Problem 2-27 indicates one way of doing this,
and Problem 5-16 states a superior method which can often
be used.

Problems. 2-17. Find the partial derivatives of the following
funetions:
@) flz,y,2) = 2%
b) flz,y,2) = 2.
fa\ €fm 2.\ o= a3ty (e cmer 22)
\VJ J\tyg) = Bilu\w sl y/.
(d) f(z,y,2) = sin{x sin(y sin z)).

() F{v 01 ) = 0"
\WJ T\ Ysey Lod

® flz,y,2) = 7%=
&) flz,y2) = (= + y)~
(h) flz,y) = sin(zy).
6) fz,y) = fsinzy)re?.
2-18. Find the partial derivatives of the following functions (where
g: R — R is continuous):

@) f@y) = [
®) fay) = [ig.
©) flzy) = f '3

d) flz,y) = f Sﬂa)g-

2-19. If f(z,y) = = + (log z)(arctan(arctan(arctan(sin{cos zy) —
log(z + %))))) find Dsf(1,y). Hint: There is an easy way to
do this.

2-20. Find the partial derivatives of f in terms of the derivatives of g and
h if

() f(z,y) = g(@x)h(y).
(b) f(z,y) = glx)*w,
(c) f(z)y) = g().
d) flz,y) = g(y).
(e) flz,y) = g(x + ¥).
2-21.* Let g1,92: R2— R be continuous. Define f: R2— R by

x

y
floy) = / gl(t,O)dt+/gz(z,t)dt.
0 0

(a) Show that Daf(z,y) = ga2(z,y).

(b) How should f be defined so that Dif(z,y) = gi(z,y)?

(c) Find a function f: R*?— R such that Dif(z,y) = z and
D2f(xz,y) = y. Find one such that Dif(z,y) = yand Dof(x,y) = x.
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2-22.* If f: R®—> R and Dgzf = 0, show that j is independent of the
second variable. If Dif = D2f = 0, show that f is constant.
2-23.* Let A = {(z,y) ER%’. 2 < 0,0orz > 0and y # 0}.
(a) If f: A—> R and Dif = Dyf = 0, show that f is constant.
Hint: Note that any two points in A can be connected by a
sequence of lines each parallel to one of the axes.
(b) Find a function f: A — R such that Dsf = 0 but f is not
independent of the second variable.
2-24. Define f: R?2— R by

2 _ .2
V of PO S ‘xy x'), ' y') (x’y) ;é 0’
J\&Y) = 1 z° + y*
0 (z,y) = 0.
(a) Show that Dsf(2,0) = z for all z and D1f(0,y) = —y for

all y.
(b) Show that D1 3f(0,0) ¢ D2, 15(0,0).
2-25.* Define f: R— R by

e z # 0,
f@) = { 0 z =0.
Show that f is a C*® function, and f(7(0) = 0 for all 5. Hint:
, ~h™ 1/h
The limit f(0) = lim ¢ = lim —h(_-; can be evaluated by
r—0 h h—0 €

L’Hospital’s rule. It is easy enough to find f'(z) for z = 0, and
f(0) = lim f’(h)/h can then be found by L’Hospital’s rule.
h—0

e~ (z—1)72 o~ (z+1)"2 r € (—1,1),
0 x & (—1,1).
(a) Show that f: R — R is a C* function which is positive on

(—1,1) and O elsewhere.
(b) Show that there is a C* function g: R — [0,1] such that

gz) =0 for z <0 and g(x) =1 for z > ¢e. Hint: If fis a C®
function which is positive on (0,¢) and 0 elsewhere, let g(x) =

J317 [57.
(¢) If a € R"®, define g: R® —» R by

g@x) = f([&' — all/e) - . . . - f(lz" — a"]/e).
Show that g is a C* function which is positive on

(@' —¢gal +¢) X --- X(@ —¢g a™ + ¢

2-26.* Let  f(z) = {

and zero elsewhere.

(d) If A C R™isopen and C C A is compact, show that there is
a non-negative C* function f: A — R such that f(z) > Oforz € C
and f = 0 outside of some closed set contained in A.

(e) Show that we can choose such an f so that f: A — [0,1] and
flz) =1 for z € C. Hint: If the function f of (d) satisfies
f(x) > ¢ for z € C, consider g o f, where g is the function of (b).
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2-27. Define g, h: {z € R%: ixi <1} - R®by

9@y) = @y, V1 — 2t — y?),

h(zy) = (29, — V1 — 2% — y).

Show that the maximum of fon {z € R®: |z| = 1} is either the
maximum of fog or the maximum of fohon {z € R%: |z] < 1}.

DERIVATIVES

The reader who has compared Problems 2-10 and 2-17 has
probably already guessed the following.

2-7 Theorem. If f: R*" — R™ s differentiable at a, then

™ }i/#\ LI WY S 1 - e B/ N I’y ~
Ujia)etisisfor 1 S 1 Sm,l1 S g<Snanaf{a)stnem X n

matriz (D;f*(a)).

Proof. Suppose first that m = 1, so that f: R®* — R. Define
h: R—R" by h(z) = (a*, . . . ,x, . .. ,a"), with z in the
jth place. Then D;f(a) =(fo h)'(a’). Hence, by Theorem
2-2,

(fo h)'(a’) = f'(a) - W (a’)
0)

= f'(a) + {1] < jth place.

. . . . .
T ey e, A TE 3 € e T ol

0

\ "/

Since (f o h)’(a?) has the single entry D;f(a), this shows that

D,f(a) exists and is the jth entry of the 1 X n matrix f'(a).
The theorem now follows for arbitrary m since, by Theorem

2-3, each f' is differentiable and the ith row of f’(a) is

(f)'(a). 1

There are several examples in the problems to show that the
converse of Theorem 2-7 is false. It is true, however, if one
hypothesis is added.
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2-8 Theorem. If f: R"— R™, then Df(a) exists if all
D;f'(x) exist in an open set containing a and if each function
D;f* is continuous at a.

(Such a function f is called continuously differentiable at a.)

Proof. As in the proof of Theorem 2-7, it suffices to consider
the case m = 1, so that f: R*— R. Then

fla+ k) — f(a) = f(a* + ', a® . . . @®) — f(a', . . . ,a")
+ flat + Y, a® + B%ad, . .. a®)
— f(at 4+ R, a?, . .. a")
+ S
+ fat + &Y, . .. a® + BV
_ f(al + hl, . ,G',n_l e hn—l, an).
Recall that D,.f is the derivative of the function g defined by
g(x) = f(z,a® . .. ,a"). Applying the mean-value theorem
to g we obtain
fa* + kY, a?, .. e™) = f(al, . .. ,a")
— b1 Dyf(by, a2, . . . a")

for some b; between a! and a! + A'. Similarly the ¢th term
in the sum equals

hi-Dif(a + kY, . .. el AL by L. L a™) = BiDyf(cy),

lim -
h—0 !n‘!
), [Dif(e) — Dif@)] - b |
= lim ==
s [A|
<1m§, Difte) — D@)! - 12
- h__)oi= 2, 1 1 \hl

< lim Z |Dif(ci) — Dif(a)|

h—0 2"

=0,

since D,f is continuous at a. |
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Although the chain rule was used in the proof of Theorem
2-7, it could easily have been eliminated. With Theorem 2-8to
provide differentiable functions, and Theorem 2-7 to provide
their derivatives, the chain rule may therefore seem almost
superfluous. However, it has an extremely important corol-

lary concerning partial derivatives.

2-9 Theorem. Let gy, ... ,gm: R®— R be continuously

(gi(a)’ . L ,gm(a)). Deﬁne v JW’DC zul(& 4 : AR -7 AR Uy

F(z) =f(gl(x)_: .o+ gm(z)). Then

m
D.F@) = Y Difla(

Proof. The function F is just the composition fe g, where

g = (g1, . . . gm). Since g; is continuously differentiable at
a, it follows from Theorem 2-8 that g is differentiable at a.

o o } I,
1

F'(a) = f'(g9(a)) - ¢'(a) = , \
Digi(a), - - - ,Dngl(a)\

(D:1f(g(a)), . . . ,Dmf(g9(a))) & }
\Dign(a), - - . ,Dugn(a)/

But D.F(a) is the 7th entry of the left side of this equation,
while 27 ,D,f(g1(a), . . . ,gm(a)) - Dyg;(a) is the ith entry
of the right side. |

Theorem 2-9 is often called the chain rule, but is weaker
than Theorem 2-2 since g could be differentiable without g;
being continuously differentiable (see Problem 2-32). Most
computations requiring Theorem 2-9 are fairly straightforward.
A slight subtlety is required for the function F: R? — R
defined by

F(zy) = f(g(x,y),h(x)k(y))
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where h,k: R— R. In order to apply Theorem 2-9 define
hk: R?— R by

h(zy) = hx)  k(zy) = kQy).

Dihi(z,y) = K (x) Dih(z,y) = 0
Dyk(z,y) = 0 Dsk(zy) = k' (v),

and we can write

F(zy) = flg(x,),h(z,y), k().

Letting a = (g(z,y),h(z),k(y)), we obtain

DIF(x;y) = le(a) ) Dlg(x7y) + D2f(a) ’ h,(x))
DyF(z,y) = D1f(a) - Dog(z,y) + Dsf(a) - k'(y).

It should, of course, be unnecessary for you to actually write
down the functions % and .

Problems. 2-28. Find expressions for the partial derivatives of the

o

2-29.

2-30.

2-31.

2-32,

following functions:
(a) F(z,y) = fg@)k(y), g(x) + h(y)).
(b) F(z,y,2) = flglxz + v), h(y + 2)).
(e) F(x;yaz) = f(my’yz’zz)‘
d) F(z,y) = f(z,9(),h(z,y)).

Let f: R* > R. For z € R?, the limit

. Jfla+tx) — f(a)’

t—»O ¢
if 1t exists, is denoted D,f(a), and called the directional deriva-
tive of f at a, in the direction z
(a) Show that D, f(a) = D:f(a)
(b) Show that D f(a) = tD.f(a)
(c) If fis diff erpntlahle at @, show that D;f(a) = Df(a)(z) and

Let f be defined as in Problem 2-4, Show that D.f(0,0) exists for
all z, but if g # 0, then D.,,f(0,0) = D.f(0,0) + D,f(0,0) is not
true for all z and-y.

Let f: R? > R be defined as in Problem 1-26. Show that D.f(0,0)
exists for all z, although f is not even continuous at (0,0).

(a) Let f: R — R be defined by

z° sin — z #0,

fz) = z
0 z = 0.
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Show that f is differentiable at 0 but f’ is not continuous at 0.
(b) Let f: R?—> R be defined by

1
2 2y gip ——— e
o) = (z* + y*) sin Ve (,y) # 0,

0 (z,y) = 0.

Show that f is differentiable at (0,0) but D;f is not continuous
at (0,0).

2-33. Show that the continuity of D;f’ at a may be eliminated from the
hypothesis of Theorem 2-8.

2-34. A function f: R® —» R is homogeneous of degree m if f(iz) =
t"f(z) for all z. If f is also differentiable, show that

}_: 2 Dif @) = mf(a).

g(t) = f(tz), find ¢’ (1)

2-35. If f: R” — R is differentiable and f(0) = 0, prove that there exist

n

f@) = Z x'gi(x).

i=1

Hint: If hy(t) = f(tx), then f(z) = [} h,'(t)dt.

INVERSE FUNCTIONS

Suppose that f: R — R is continuously d iable in
open set containing @ and f'(a) =% 0. If f’(a)

open interval V containing a such that f’(z) > 0 for z € V,
and a similar statement holds if f’(a) < 0. Thus f is increas-
ing (or decreasing) on V, and is therefore 1-1 with an inverse
function f~! defined on some open interval W containing f(a).
Moreover it is not hard to show that f~! is differentiable, and

for y €& W that

an
wa

here is an

>O
¢+-SD

1
()
An analogous discussion in higher dimensions is much more

involved, but the result (Theorem 2-11) is very important.
We begin with a simple lemma.

'y =
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2-10 Lemma. Let A C R" be a reciangle and let f: A — R”
be continuously differentiable. If there is a number M such that
|Difi(x)] < M for all z in the interior of A, then

f(x) — f(y)| < M|z — y]
forall zy € A.

Proof. We have

fily) — fi(z) = 2, [Fwh - ™)

j=1
— 7, .y, @)

fity', .., L 2N — P, . N, L
= (v’ — &) - Djf(z:))
for some 2;;. The expression on the right has absolute value
less than or equal to M - |y’ — z7|. Thus
’ n
Ffw) —F@| < Y |y — o] M < nMly — <l
i1
since each |y’ — 2’| < |y — z|. Finally
n

f@) = 1@ < Y 17iw) - fi@)] < oMy ~ 4

=1

2-11 Theorem (Inverse Function Theorem). Suppose that
f: R*— R" is continuously differentiable in an open set contain-
tng a, and det f'(a) # 0. Then there is an open set V containing
a and an open set W containing f(a) such that f: V. — W has a
continuous inverse f~': W — V which is differentiable and for

all y € W satisfies
@) = [P
Proof. Let X be the linear transformation Df(a). Then

A is non-singular, since det f’(a) % 0. Now DA™ lof)(a) =
DA™Y (f(a)) e Df(a) = Ao Df(a) is the identity linear
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transformation. If the theorem is true for A™! o f, it is clearly
true for f. Therefore we may assume at the outset that X is the
identity. Thus whenever f(a + h) = f(a), we have

[f(a + k) = fa) — k)| _ |h]

i Wt

But
i [f@+ k) = f@) = A
m

lim h] = 0.

This means that we cannot have f(x) = f(a) for x arbitrarily
close to, but unequal to, a. Therefore there is a closed rec-
tangle U containing @ in its interior such that

1. f(x) # f(a) if x & U and z # a.

Qinn £ 1o e b1 salsy A «A“LJ,‘LIA " an nrnan ant anndaining
DIILUE J IS vUILUL 1uuub1y qilierentiaonie in an UPCIL dCU CULLLAlILLLE
a, we can also assume that
2. det f'(x) 0 forz € U.
3. DAY — DA < 1/2n2foralls . andz €U
. IUJJ \cl// UJJ \u«/ /Hll/ 1L il D’J’WLUW\_ v

Note that (3) and Lemma 2-10 applied to g(z) = f(z) — «
imply for x;,x, € U that

f@) — z1 = (f(xs) — x2)| < $lar — 2.

Since

21 — x| = [f(z1) — f(xz)l - [fen) = 21— (fae) — 22)]

1x1 - x2l;

we obtain
4, !xl - .’Ez’ < fo(xl) - f(x2)| for x1,Ts e U.

Now f(boundary U) is a compact set which, by (1), does not
contain f(a) (Figure 2-3). Therefore there is a number d > 0
such that if(a) — f(:c)i > d for z & boundary U. Let
W = {y: Iy ~ f(a){ <d/2}. If y & Wandzx & boundary U,
then

5. ly — f@)| < ly — f@)|.

We will show that for any y € W there is a unique z in
interior U such that f(z) = y. To prove this consider the
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- 31 11

function g: U — R defined by

0@ = ly = f@[* = Y @ - fi@)®

This function is continuous and therefore has a minimum on
U. If x € boundary U, then, by (5), we have g(a) < g(z).
Therefore the minimum of g does not occur on the boundary
of U. By Theorem 2-6 there is a point x € interior U such
that D;g(z) = 0 for all j, that is

By (2) the matrix (D;f*(x)) has non-zero determinant. There-
fore we must have y* — fi(z) = 0 for all 4, that is y = f(z).
This proves the existence of z. Uniqueness follows immedi-
ately from (4).

If V = (interior U) N f~Y(W), we have shown that the

Lirenndine £ 7 . T L i vty r—l T .Y XX o
juncuion j: v — ¥ 1as an inverse jJ W — V. yweE cail

rewrite (4) as

6. If—l(?ll) - fl(y2)| < 2|?/1 - y2| for y1,y. € W.

This shows that f~! is continuous.
Only the proof that f_l 1s differentiable remains. Let

Df(z). We will show that f~1i fferentlabl eaty = f(x)

wxridl A neiecnd e -1 A fon 4V amcenf o f Ml o 0 Lol

itl 4aerivautive M . AN ll VIIE pl‘UUl Ol 1 I11e0reiil 4'4, 10T
ry € V, we have

f(xy) = f(x) + plxy — ) + o(z, — 2),

where
I l¢(x1 — x)]
im ————

= 0.
Ii—z lxl - .’E!

Therefore
W (f(xr) — f(=) = 21 — 2+ u " e(z1 — 2)).

Since every y; € W is of the form f(z;) for some r; € V, this
can be written

i) = ) + ey — ») — v e ) — W),
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PR LIS IEPPRY P PRSP I SRR SRS
afiu 1v uviiel UIUIU .suuwcs L0 S11IOW uilau

= TN ) — )

= 0.
n—y ‘yl - yl

Therefore (Problem 1-10) it suffices to show that

Mr@o—rwm

= 0.
N—y ’yl - yl

Now

ey = @)
Y1 — ¥

() =) 1) — 7wl
) — W) ly1 — o]

Since f~! is continuous, f(y1) — f '(y) as y1 — y. There-
fore the first factor approaches 0. Since, by (6), the second
factor is less than 2, the product also approaches 0. |

It should be noted that an inverse function f—! may exist
even 1If det f'(a) = 0. For example, if f: R — R is defined by
f(x) = 3, then f'(0) = 0 but f has the inverse function

) = Vz. One thing is certain however: if det f'(a) = 0,
then f_l cannot be differentiable at f(a). To prove this note

(PR S v § § ARASU RAD RRaAiATa va

that fofY(x) = z. If f~! were differentiable at f(a), the
chain rule would give f'(a) - (f "1)’(f(a)) = I, and consequently
det f'(a) - det(F~1)'(f(a)) = 1, contradicting det f/(a) = 0.
ProbJlems. 2-36.* Let A C R™ be an open set and f: A —» R"
a continuously differentiable 1-1 function such that det f'(z) = 0
forallz. Show that f(A)is an openset and f~1; f(A) — A isdiffer-
entiable. Show also that f(B) is open for any open set B C A.
2-37. (a) Let f: RZ— R be a continuously differentiable function.
Show that fis not 1-1. Hent: If, for example, Dif(z,y) # O for all
(z,y) in some open set A, consider g: A — R? defined by g(z,y) =
(f(z,9),9).
(b) Generalize this result to the case of a continuously differen-
tiable function f: R® —» R™ with m < n.
2-38. (a) If f: R — R satisfies f’(a) # 0 for all ¢ € R, show that f is
1-1 (on all of R).
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n2 1.« e A 2T e a: o
ne oy JU/;.‘/} = (€"co8 Y, e

\
that det ’( ,y) # 0 for all (z,y) but fis not 1-1.
2-39. Use the function f: R — R defined by

1 . M2 L o1
- n° sSin ’y) now

+3325in»1~ x #0
x ’

flx) =

O NIy

z =0,

to show that continuity of the derivative cannot be eliminated from
the hypothesis of Theorem 2-11.

IMPLICIT FUNCTIONS

Consider the function f: R?— R defined by f(x,y) = 2% +
y? — 1. If we choose (a,b) with f(a,p) = 0 and a # 1, —1,
there are (Figure 2-4) open intervals A containing a and B
containing b with the following property: if € A, there 1s
a unique y € B with f(z,y) = 0. We can therefore define

&~ A e N

/’_—L graph of ¢

{(y): fzy) =0 / BT .
[ \
\

B, b

graph of g,

FIGURE 2-4
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a function g: A — R by the condition g(z) € B and f(z,9(z))

=0 (f b >0, as indicated in Figure 2-4, then g(z) =

V1 - z%). For the function f we are considering there is
another number b; such that f(a,b;) = 0. There will also be
an interval B; containing b; such that, when = € A, we
have f(z,9:1(z)) = 0 for a unique g;(x) € B, (here g,(x) =
— V1 — z%). Both g and g; are differentiable. These
functions are said to be defined implicitly by the equation
fley) =

If we choose a = 1 or —1 it is impossible to find any such
function ¢ defined in an open interval containing a. We

111% | 20

would like a simple criterion for deciding when, in general,

[t |

such a function can be found. More generaiy we may ¢ asl
the following: If f: R* X R— R and f(a’, . . . ,a®b) = 0,
when can we find, for each (2!, . . . ,z") near (a , . ,at),
a unique y near b such that f(z!, ... ,z"y) = 0? Even
more generally, we can ask about the possibility of solving
m equations, depending upon parameters x!, . . . 2" in m
unknowns: If
Jii R" X R"—> R t=1 ... m

and

£(~1 ~n L1 m\ _ N S 1

Ji\d -, o, U, ) =V vt = 1, Y11ty
when can we find, for each (z!, . . . ") near (a!, . . . ,@") a
unique (y', . .. ™) near (b}, . ,b™) which satisfies
fixl, . .. ,x’“‘,y“, e y™ =07 'ne answer is provided by

2-12 Theorem (Implicit Function Theorem). Suppose
f: R*" X R™ — R™ s continuously differentiable in an open set
containing (a,b) and f(a,b) = 0. Let M be the m X m matriz

(Dpyifi(ad)) 1<4,j <m.

If det M # 0, there ts an open set A C R™ conlaining a and an
open set B C R™ containing b, with the following property: for
each x & A there is a unique g(x) € B such that f(z,g(z)) = 0
The function g is differentiable.
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Proof. Define F: R"XR"—=R"XR™ by F(z,y) =
(z,f(z,y)). Then det F'(a,b) = det M £ 0. By Theorem 2-11
there is an open set W C R™ X R™ containing F(a,b) = (a,0)
and an open set in R* X R™ containing (a,b), which we may
take to be of the form A X B, such that F: A X B> W
has a differentiable inverse h: W — A X B. Clearly h is of
the form h(x,y) = (z,k(z,y)) for some differentiable function
k (since F is of this form). Let w: R® X R™— R™ be defined
by w(x,y) = y;then v o F = f. Therefore

f@,k(x,y)) = foh(z,y) = (wo F)o h(z,y)
=7o(Fobh)(zy) = w(x,y) = y.

Thus f(z,k(x,0)) = 0; in other words we can define g(z) =
k(z,0). |

Since the function ¢ is known to be differentiable, it is easy
to find its derivative. In fact, since fi(x,g(z)) = 0, taking D,

. .
f both sides gives

Q

0 = Difi(zg@) + ) Dataf(zg(x)) - Dig"(z)
a=1
,j=1,... m.

Since det M # 0, these equations can be solved for D;g*(x).
The answer will depend on the various D,f'(z,g(x)), and there-
fore on g(x). This is unavoidable, since the function g is not
unique. Reconsidering the function f: R?— R defined by
f(xzy) = 2> + ¥ — 1, we note that two possible functions

satisfying f(z,g(x)) = 0 are g(z) = V1 — 2% and g(x) =
— V1 -z Differentiating f(z,g(x)) = 0 gives

Dif(z,9(x)) + Daf(z,9(x)) - ¢'(2) = 0,

or
2z + 29(x) - g'(x) = 0,
g'(x) = —xz/g(x),

which is indeed the case for either g(z) = V1 — z?or g(z) =

— V1 — 22
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A generalization of the argument for Theorem 2-12 can be
given, which will be important in Chapter 5.

2-13 Theorem. Let f: R"— R? be continuously differ-
entiable in an open set containing a, where p < n. If f(a) =
and the p X n matriz (D;f'(a)) has rank p, then there is an
open set A C R" containing a and a differentiable function h:
A — R™ with differentiable inverse such that

foh(zl, ... 2% = (@ Pt . .. ,z".

Proof. We can consider f as a function f: R"™? X R? — RP?.
If det M £ 0, then M is the p X p matrix (D,_,,;f'(a)),

AR i

1 < 1,5 < p, then we are precisely in the situation considered

2 +ha mmanf Af Mhanvwar D 19 aend an vwwra ahnverad 314 dhad mnnnf

1 Viic pProul O0i 1 10E0T Ulll L=l4y AU ad VWE SlIUwou 111 vilav pl vul,
i ny — (,n—pt1 n

there is h such that fo h(z!, . . . ,2") = (z 4

In general, since (D;f'(a)) has rank p, there will be j; <
-+ < jp such that the matrix (D;f{(a)) 1<i<p, j=

Ji, - - + ,Jp has non-zero determinant. If g: R® — R"™ per-
mutes the z7 so that g(z!, . . . ,a™ = (. .. ,z7, . .. ,z%),
then fog is a function of the type already considered, so
((fog)ok)(xY, . .. &%) = (" P*L . .. 2") for some k.

Leth =gok. |

Problems. 2-40. Use the implicit function theorem to re-do Prob-
lem 2-15(c).
2-41. Let f: R X R— R be differentiable. For each z € R define g,:

R->Rb by g={y) = f(z,y). Suppose that for each z there is a

unique y with g,'(y) = 0; let ¢(z) be this y.

(o) Tf D, oF(ra) £ 0O for all [+ v thot » 1a diffavantiahla
\@) 11 72 2f\A4yY) 77 U 1UL all \&,YJ, SIIUW Uullau € 18 ulliciciiviaulic
and
Do 1 f(z.c(z)
7 Ly 1) \ Wy /)
c (x) = -
D2 of (z,c(x))

Hint: g.'(y) = O can be written Df(z,y) = 0.
(b) Show that if ¢’(z) = 0, then for some y we have

D2,1f(x7y) = 07
Dof(z,y) = 0.

(¢) Let f(z,y) = 2z(ylogy — y) — ylogz. Find

max ( min f(z,y)).
1<z<2 $<y<1
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NOTATION
A¥Y X/ K FRA K E N5V iV

This section is a brief and not entirely unprejudiced discussion
of classical notation connected with partial derivatives.

The partial derivative D f(z,y,2) is denoted, among devotees
of classical notation, by

M or 2[ or ﬂ(x,y,z) or 'a%;f(x,y,z)

ax ax ox
or any other convenient similar symbol. This notation forces
one to write
of
- (u’yv,w)
ou

for D,f(u,v,w), although the symbol

;v;w)

af(x,y,z)[ o @2
dr | )

@.v.2) = (u,p,w) x
e e md LS ST o L o Y /__ 2 ___ . ¢+ L. __. 1 & _
or someviing simiiar may oe usea \ana must De used I10r an
expression like D,f(7,3,2)). Similar notation is used for D,f
and D3f. Higher-order derivatives are denoted by symbols
like

2
Y (x,y,2)

3 Ar

V‘l, Ao

D2D Lf(xyy)z) =

When f: R — R, the symbol 8 automatically reverts to d; thus

d sin x . dsincz
» Nnov :
dx ox

The mere statement of Theorem 2-2 in classical notation
requires the introduction of irrelevant letters. The usual
evaluation for D;(f e (g,h)) runs as follows:
If f(u,w) is a function and u = g(z,y) and v = A(z,y),
then
of(g(x,y), M(z,y)) _ 3f(upw) du  of(uw) ov.
o  du o dv oz

[The symbol du/dx means 9/dx g(x,y) and /0w f(u,v) means
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D, f(up) = D1f(g(z,y), h(z,y)).] This equation is often written
simply
of _ ofou , of dv

ox ou ox v ox

Note that f means something different on the two sides of the
equation!

The notation df /dx, always a little too tempting, has inspired
many_(usually meaningless) definitions of dx and df separately,
the sole purpose of which is to make the equation

df = f

work out. If f: R?— R then df is defined, classically, as

I R
ax ay

dy

+» and Ay mean
x and dy mean).

Chapter 4 contains rigorous definitions which enable us to
prove the above equations as theorems. It is a touchy
question whether or not these modern definitions represent a
real improvement over classical formalism; this the reader
must decide for himself.



Integration

BASIC DEFINITIONS

The definition of the integral of a function f: A — R, where
A C R" is a closed rectangle, is so similar to that of the ordi-
nary integral that a rapid treatment will be given.

Recall that a partition P of a closed interval

LULULL ALR Uuid

gt

[ay
< <t =b.
The partition P divides the interval [a,b] into k subintervals
[ti_1,t:]. A partition of a rectangle [a1,b1] X - - - X [a@n,bs]
is a collection P = (Py, . . . ,P,), where each P; is a par-
tition of the interval [a;b;]. Suppose, for example, that
Py =ty, . . . ,lx 1s a partition of [a;,b;] and Py = 8o, . . . ,8
is a partition of [as,bz]. Then the partition P = (P;,P,) of
[a1,b1] X [as,bs] divides the closed rectangle [a1,b1] X [a2,bs]
into k - [ subrectangles, a typical one being [t;_1,t:;] X [sj—1,8;]-
In general, if P; divides [a;,b;] into N; subintervals, then P =
(Py, . .. P, divides [a1,b1] X * - X [an,b,] Into N =
N;- ... N, subrectangles. These subrectangles will be
called subrectangles of the partition P.
Suppose now that A is a rectangle, f: A — R is a bounded
46

bl is a
sequence to, . . . ,lx, Where a =t, <t < - - t



Integration 47

function, and P is a partition of A. For each subrectangle S
of the partition let

mg(f) = mf{f(z): z € 8},
Ms(f) = sup{f(x): z € 8},

and let »(8) be the volume of S [the volume of a rectangle
[@1,b1] X - - - X [an,ba), and also of (a1,b;) X * - = X (an,by),
is defined as (by —a1): ... - (bp — a,)]. The lower and
upper sums of f for P are defined by

“1

T _ h ] TT

/£ THI\ £ PN\ /7 OIN\ /s r TN V‘ eV 2 Y. £ I\
LML) = msJ) vw) and - UL E) = ) MslT) tvie).
S 8

Clearly L(f,P) < U(f,P), and an even stronger assertion (3-2)
is true.

3-1 Lemma. Suppose the partition P’ refines P (that is,
each subrectangle of P’ 1s contained in a subrectangle of P)
Then
/ ’
L(f,P) SL(AP)  and  U(f,P) < U(fP).

Proof. Each subrectangle S of P is divided into several sub-
rectangles Sy, . . . ,8, of P/, so v(S) =v(S1)) + - - - +
v(Sa). Now mg(f) < mg,(f), since the values f(x) for t & S
include all values f(x) for + € S; (and possibly smaller ones).
Thus

mg(f) - v(8) = mg(f) *v(S1) + - - - + ms(f) - v(8Sa)
< mg(f) v(S1) + - - -+ ms(f) - v(8Sa).
The sum, for all S, of the terms on the left side is L(f,P),
while the sum of all the terms on the right side is L(f,P’).

Hence L(f,P) < L(f,P’). The proof for upper sums is
similar. |

3-2 Corollary. If P and P’ are any two partitions, then
L{f,P") < U(f,P).

Proof. Let P” be a partition which refines both P and P’.
(For example, let P = (PY, . .. ,P!), where P, is a par-

-~
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tition of [@:,b;] which refines both P; and P..) Then
L(f,P") < L(f,P") < U(f,P") < U(f,P). |

It follows from Corollary 3-2 that the least upper bound of
all lower sums for f is less than or equal to the greatest lower
bound of all upper sums for f. A function f: A — R is called
integrable on the rectangle 4 if fis bounded and sup {L(f,P)}
= inf{U(f,P)}. This common number is then denoted [ 4f,
and called the integral of f over 4. Often, the notation
[af(et, . .. ,a™dz* - - - de™is used. If f:[a,b] > R, where
a <b, then [2f = [(a5f A simple but useful criterion for
integrability is provided by

3-3 Theorem. A bounded function f: A — R is integrable
if and only if for every € > O there is a partition P of A such
that U(f,P) — L(f,P) < &.

Proof. If this condition holds, it is clear that sup{L(f,P)} =
inf{U(f,P)} and f is integrable. On the other hand, if f is
integrable, so that sup{L(f,P)} = inf{U(f,P)}, then for
any € > 0 there are partitions P and P’ with U(f,P) — L(f,P’)
< e. If P refines both P and P’, it follows from Lemma 3-1
that U(f,P") — L(f,P") < U(f,P) — L(f,P') <e. 1

In the following sections we will characterize the integrable
functions and discover a method of computing integrals. For
the present we consider two functions, one integrable and one
not.

1. Let f: A — R be a constant function, f(x) = ¢. Then
for any partition P and subrectangle S we have mgs(f) =
Ms(f) = ¢, so that L(f,P) = U(f,P) = Zsc - v(8) = ¢ v(A4).
Hence [4f = c-v(4).

2. Let f:[0,1] X [0,1] — R be defined by

0 if z is rational,
1 if x i1s irrational.

flz,y) = {

If P is a partition, then every subrectangle S will contain
points (z,y) with z rational, and also points (z,y) with z
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irrational. Hence mg(f) = 0 and Mg(f) = 1, so

and

L(f,P) = EO-v(S) =0
S

U(f,P) = ) 1-0(8) = o([0,1] X [0,1]) = 1.
S

Therefore f is not integrable.

3-2.

3-3.

3-4,

3-5.

3-6.

3-7.

blems. 3-1. Let f:[0,1] X [0,1] - R be defined by
f@y) (0 ifo<z <3
T,y) = 1 ey o
1 if 1 <z <1

Show that f is integrable and f[o,lx[o,ll =43
Let f: A — R be integrable and let g = f except at finitely many
points. Show that g is integrable and f Af = f a0-
Let f,g: A — R be integrable.
(a) For any partition P of A and subrectangle S, show that

mg(f) + mg(g) < msg(f + g) and Ms(f +g)
< Ms(f) + Mgs(g)

and therefore

L({P) + L( J(f + g, P)

or - 7

< U(£,P) + U(g,P).

.
-

(b) Show that f 4+ ¢ is integrable and fAf +g= fAf + J‘Ag.
(c) For any constant ¢, show that JfAcf = chA b
Let f: A — R and let P be a partition of A. Show that fis integra-
ble if and only if for each subrectangle S the function f|S, which
consists of f restricted to S, is integrable, and that in this case
[af = ZsfsrIS.
Let f,g: A — R be integrable and suppose f < g. Show that
f af = f A
If f: A — R is integrable, show that |7| is integrable and IfA fl <

S alsl.

Let f: [0,1] X [0,1] — R be defined by

0 x irrational,
flz,y) = 30 z rational, y irrational,
1/q z rational, y = p/q in lowest terms.

Show that f is integrable and I[O,IIX[O.II f=0.
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MEASURE ZERO AND CONTENT ZERO

A subset A of R” has (n-dimensional) measure 0 if for every
€ > 0 there is a cover {U,,U5,Us, . . .} of A by closed rec-
tangles such that 22 ,0(U;) < e. It is obvious (but never-
theless useful to remember) that if 4 has measure 0 and
B C A, then B has measure 0. The reader may verify that
open rectangles may be used instead of closed rectangles in
the definition of measure 0.

A set with only finitely many points clearly has measure 0.

o
E'(
o

If A has infinitely many points which can be arrange
sequence ai, @&qg, G3, . . . , then A also has measure U, for if

€ > 0, we can choose U; to be a closed rectangle contamlng
a; with v(U;) < €/2%, Then T2 »(U;) < Z32_,8/2 =

The set of all rational numbers between 0 and 1 is an impor-
tant and rather surprising example of an infinite set whose
members can be arranged in such a sequence. To see that
this is so, list the fractions in the following array in the order

lats
indicated by the arrows (deletin

greater than 1):

A hane
ig Ie pcmm 118 and numnmoers

/A

.
[y

An important generalization of this idea can be given.

3-4 Theorem. If A = A1UA2UA3U -+ - and each
A; has measure 0, then A has measure 0.

Proof. Let e > 0. Since A; has measure 0, there is a cover
{UiyUi2,Usis, . . .} of A; by closed rectangles such that
27 w(Us ;) < &/2. Then the collection of all U; ; is a cover
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of A. By considering the array

S/
Ui1 Ui Uis -

S S S
Usi Uz Uggs

v
U3,1 U3,2 U3,3

N

we see that this collection can be arranged in a sequence
Vi, Ve, Vs, . ... Clearly Z7_0(V;) < 27_,8/2"=¢. §

A subset A of R™ has (n-dimensional) content 0 if for every

g > 0 there is a finite cover {Uy, . . . ,U,} of A by closed
rectangles such that Z? »(U;) <& If A has content O,
then A clearly has measure 0. Again, open rectangles could

be used instead of closed rectangles in the definition.

3-5 Theorem. If a < b, then [a,b] C R does not have con-
tent 0. In fact, if {Uy, . . . ,U,} s a finite cover of [a,b] by
closed intervals, then 27?_v(U;) 2 b — a.

Proof. Clearly we can assume that each U; C [a,b]. Let

a=1t<t1 < ... <t =bbeall endpoints of all U;, Then
Pa¥s) 4‘-\ n/ TT_\ ;n 4"\:\ D11 YV A'P an+n;n 4. —_— 4. < 1\/|'nvnn"nv na nh
Cavll vV, 1D UiIT Duill Ul vlivailil oy Vj—1. LVAUITUVUL, Tavil

[t;—1,¢,] lies in at least one U; (namely, any one which contains
an interior point of [t;_1,t]), so Z2_w(U;) > Z5_;(t; — tj—1)
=b—a |

If @ < b, it is also true that [a,b] does not have measure 0.
This follows from

3-6 Theorem. If A is compact and has measure 0, then A
has content Q.

Proof. Let € > 0. Since A has measure 0, there is a cover

{U, Uy, . ..} of A by open rectangles such that Z;_,0(U;)
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the U; also cover 4 and surely 27_,0(U;) < e. |

The conclusion of Theorem 3-6 is false if A is not compact.
For example, let A be the set of rational numbers between 0
and 1; then A has measure 0. Suppose, however, that
{la,b1], . . . ,[an,bn]} covers A. Then A is contained in
the closed set [a1,b1] \J - - - \U [an,b,], and therefore [0,1] C
[al,bl] U+« \UJagby]. It follows from Theorem 3-5 that

does not have content 0.

.
anNIYr amnn NANYTTO
all uvii vuyvwuo

Problems. 3-8. Prove that [ay,b1] X - + -+ X [an,b,] does not have
content 0 if a; < b; for each 7.
3-9. (a) Show that an unbounded set cannot have content 0.
(b) Give an example of a closed set of measure 0 which does not
have content 0.
3-10. (a) If C is a set of content 0, show that the boundary of C has
content 0.
(b) Give an exampie of a bounded set C of measure 0 such that
the boundary of C does not have measure 0.
3-11. Let A be the set of Problem 1-18. If X2 ,(b; — a;) < 1, show
that the boundary of A does not have measure 0.
3-12. Let f: {a,b] = R be an increasing function. Show that {z: f
discontinuous at z} has measure 0. Hent: Use Problem 1-30 to

show that {z: o(f,x) > 1/n} is finite, for each integer =.

3-13.* (a) Show that the collection of all rectangles [a1,b1] X - - - X

1 a; and b; rational can be arranged in a sequence.

ed in a sequ

"

b
pi

L8 Ve ULy Y3 Yer oso - 1

) 18 A en rs I
cover A. Hmt For eachz € A there is arectangle B = [a1,b1] X

+ X [an,bs) with all @; and b; rational such that x E B C U
for some U & 0.

INTEGRABLE FUNCTIONS

Recall that o(f,z) denotes the oscillation of f at .

3-7 Lemma. Let A be a closed rectangle and let f: A — R be
a bounded function such that o(f,x) < € for all x © A. Then
there is a partition P of A with U(f,P) — L(f,P) < &- v(4).
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Proof. For each © € A there is a closed rectangle U,,
containing x in its interior, such that My (f) — my,(f) < &.
Since 4 is compact, a finite number U,, . . . ,U,, of the
gets U, cover A. Let P be a partition for 4 such that each
subrectangle S of P is contained in some U,;. Then Mg(f) —
mg(f) < € for each subrectangle S of P, so that U(f,P) —

L(f,P) = Z5[Ms(f) — ms(N)] - v(8) < &-v(A4). [

3-8 Theorem. Let A be a closed rectangle and f: A — R a
bounded function. Let B = {x:f 4s mot continuous at xz}.
Then f is integrable if and only if B 1s a set of measure 0.

Proof. Suppose first that B has measure 0. Let ¢ > 0 and
let B, = {x: o(fix) > ¢}. Then B. C B, so that B, has
measure 0. Since (Theorem 1-11) B, is compact, B, has con-
tent 0. Thus there is a finite collection U,, . . . U, of
closed rectangles, whose interiors cover By, such that Z?_ 0(U;)
< & Let P be a partition of A such that every subrectangle

S of P is in one of two groups (see Figure 3-1):

FIGURE 3-1. The shaded rectangles are in $;.
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(1) $1, which consists of subrectangles S, such that S C U;

for some 1.
(2) §2, which consists of subrectangles S with S/ B,

= .

Let |f(z)] < M for z € A. Then Mg(f) — ms(f) < 2M
for every S. Therefore

[Ms(f) — ms()] - v(8) < 2M E o(Us) < 2Me.
Seg i=1

~
{

Now, if S €8, then o(fx) < ¢ for x € 8. Lemma 3-
implies that there is a refinement P’ of P such that

N Ms(f) — me(f)] - 0(S) < &+ v(8)

T s
for § &€ §2. Then

U(SP) = LUEP) = ) [Ms(f) = my(} - o(S")

S CSES
-+ [Ms(f) — ms ()] - v(S')
< 2Me + 2 e - 0(S)
SE8:

< 2Me + g -v(A).

Since M and v(A4) are fixed, this shows that we can find a
partition P’ with U(f,P’) — L(f,P’) as small as desired. Thus
f is integrable.

Suppose, conversely, that f is integrable. Since B =
Bi\UB,\UB;\U - it suffices (Theorem 3-4) to prove
that each Bj;, has measure 0. In fact we will show that
each Bj,, has content 0 (since B),, is compact, this is actually
equivalent).

If € >0, let P be a partition of A such that U(f,P) —
L(f,P) < &/n. Let § be the collection of subrectangles S
of P which intersect By;,. Then §is a cover of By;,. Now if
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S € §, then Mg(f) — mg(f) > 1/n. Thus

S ) oS < Y (Ma(h) = ms(h] oS

DI S

< 2 [Ms(f)— ms(f)] - v(S)

S
g
< —
n

and consequently Zgesv(S) < &. |
We have thus far dealt only with the integrals of functions
over rectangles. Integrals over other sets are easily reduced

to this type. If C C R", the characteristic function x¢
of C 18 defined by

. _ o =zgc,
xc@ =1, Lc¢

If ¢ C A for some closed rectangle A and f: A — R is
bounded, then [¢f is defined as [4f - x¢, provided f- xc¢ is
integrable. This certainly occurs (Problem 3-14) if f and
xc¢ are integrable.

3-9 Theorem. The function x¢: A — R 18 integrable if and
only if the boundary of C has measure O (and hence content 0).
Proof. If rzis 1 p
rectangle U with x € U C C. Thus x¢ = 1 on U and xc¢ is
clearly continuous at z. Similarly, if z is in the exterior of
there is an open rectangle U with € U C R™ — C. Hence
xc = 0 on U and x¢ is continuous at z. Finally, if z is in
the boundary of C, then for every open rectangle U containing
xz, there is y; € UM C, so that xc(y1)) = 1 and there is
ye & UM (R™® — (), so that x¢(y2) = 0. Hence x¢ is not
continuous at z. Thus {z: x¢ is not continuous at z} =
boundary C, and the result follows from Theorem 3-8. ||

k 8}
i1
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A bounded set C whose boundary has measure 0 is called
Jordan-measurable. The integral [¢1 is called the
(n-dimensional) content of C, or the (n-dimensional) volume
of C. Naturally one-dimensional volume is often called
length, and two-dimensional volume, area.

Problem 3-11 shows that even an open set C may not be
Jordan-measurable, so that [cf is not necessarily defined even
if C is open and f is continuous. This unhappy state of affairs
will be rectified soon.

Problems. 3-14. Show that if ‘g: A —» R are integrable, so is
f-g

3-15. Show that if C has content 0, then C C A for some closed rectangle
A and C is Jordan-measurable and f axc = 0.

3-16. Give an example of a bounded set C of measure 0 such that f AXC
does not exist. i

3-17. If C is a bounded set of measure 0 and J A x¢ exists, show that
[axc =0. Hint: Show that L(f,P) = 0 for all partitions P.
Use Problem 3-8.

3-18. If f: A — R is non-negative and fAf = (), show that {z: f(x) # 0}
has measure 0. Hint: Prove that {z: f(z) > 1/n} has content 0.

3-19. Let U be the open set of Problem 3-11. Show that if f = xy
except on a set of measure 0, then f is not integrable on [0,1].

3-20. Show that an increasing function f: [a,b] — R is integrable on
{a,b].

3-21. If A is a closed rectangle, show that C C A is Jordan-measurable
if and only if for every € > 0§ there is a partition P of A such that
Eseglv(S) - Esegzv(S) < g, where §; consists of all subrectan-
gles intersecting C and §3 all subrectangles contained in C.

3-22.* If A is a Jordan-measurable set and ¢ > 0, show that there is a

uch that [4 ¢ 1 <.

FUBINDI’S THEOREM

The problem of calculating integrals is solved, in some sense,
by Theorem 3-10, which reduces the computation of integrals
over a closed rectangle in R®, » > 1, to the computation of
integrals over closed intervals in R. Of sufficient importance
to deserve a special designation, this theorem is usually
referred to as Fubini’s theorem, although it is more or less a



Integration 57

special case of a theorem proved by Fubini long after Theorem
3-10 was known.

The idea behind the theorem is best illustrated (¥igure 3-2)
for a positive continuous function f: [a,b] X [c,d] » R. Let
to, . . . ,tn be a partition of [a,b] and divide [a,b] X [¢,d]
into n strips by means of the line segments {t;} X [c,d].
If g, is defined by g.(y) = f(z,y), then the area of the region
under the graph of f and above {z} X [c,d] is

d
r = {f(x~y)dy

|
KQ

L.

rFL a1
i1re voiu

CD
C
ot

above [ti_l,t,-] X [c,d] is therefore approx1mately equal to
(t; — ti_1) - jrff‘(x,y)dy, for any x € [t;_1,t;]. Thus
“ r
=Y [ g
{a,b] X[e,d] i=1 [t} X e, d]

is approximately 27 (t; — ti_l)-fff(xi,y)dy, with z; In

graph of

Il L, t, b

FIGURE 3-2
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[ti_1,t]. On the other hand, sums similar to these appear in
the definition of [2([?f(z,y)dy)dz. Thus, if h is defined by
h(z) = [%, = [2f(z,y)dy, it is reasonable to hope that % is
integrable on [a,b] and that

b b d
[ 7= [r=[(] rwpdy)dz.
{a,b] X [¢,d] a a ¢
This will indeed turn out to be true when f is continuous, but
in the general case difficulties arise. Suppose, for example,
that the set of discontinuities of f is {xo} X [c,d] for some
Zo € [a,b]. Then f is integrable on [a,b] X [c,d] but h(zg) =
fff(xo,y)dy may not even be defined. The statement of
Fubini’s theorem therefore looks a little strange, and will be
followed by remarks about various special cases where simpler

We will need one bit of terminology. If f: A > R is a
bounded function on a closed rectangle, then, whether or not
f is integrable, the least upper bound of all lower sums, and
the greatest lower bound of all upper sums, both exist. They
are called the lower and upper integrals of f on A, and
denoted

17 f
Uij
A

T [ £ and
LoJJ ana
i
3-10 Theorem (Fubini’s Theorem). Lei A C R" and
B C R™ be closed rectangles, and let f: A X B — R be integrable.
For x € A let g.: B— R be defined by g-(y) = f(z,y) and let

2@) =L [g=1 J J@y)dy,
B

U(z) = U 0/ g. = U ! f@y)dy.

Then £ and U are integrable on A and

ff=Af£ =Af (L!f(x,y)dy) dz,

AXB

[ 1= [w=[(v]sGnai)d

AXB
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Proof. Let P4 be a partition of A and Pp a partition of B.
Together they give a partition P of A X B for which any
subrectangle S is of the form S4 X Sp, where S4 is a sub-
rectangle of the partition P4, and Sp is a subrectangle of the
partition Pg. Thus

T.(f PY = meﬁ_(f\ () = v Ma. a lf) S (R
NS T L( "YS\J 7 YA\ L( UVOSAXDB\J/ Y\ MPA 7N D)
S S4,88

Now, if r & S4, then clearly mg,ys,(f) < mgs(gz). Conse-
quently, for x & S4 we have

=4 )

Y Msuxsall) - 0(S5) < Y msy(gs) 0(Sp) < L [ g. = 2(2).
Se Ss B

Therefore

A 1d

z (z Msaxss(f) - U(SB)) ~v(S4) < L(L,P,).
Ss

Sa
We thus obtain
L(f,P) < L(&,P4) < ULP4) < U(UP4) < U(f,P),

where the proof of the last inequality is entirely analogous
to the proof of the first. Since f is integrable, sup{L(f,P)} =
inf{U(f,P)} = foBf. Hence

sup{L(€,P4)} = inflU(L,P4)} = [axsf.

In other words, £ is integrable on 4 and foBf = fA£. The
assertion for U follows similarly from the inequalities

L(f,P) S L(&,P4) < L(U,P4) S U(UP4) SUP). |

Remarks. 1. A similar proof shows that

A>'</B d =J (L!f(x,y)dx) dy =§/ (U]f(x,y)dx) dy.
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These integrals are called iterated integrals for f in the reverse
order from those of the theorem. As several problems show,
the possibility of interchanging the orders of iterated integrals
has many consequences.

2. In practice it is often the case that each g, is integrable,
so that f AxBf = fA (fo(x,y)dy)dx. This certainly occurs
if f is continuous.

3. The worst irregularity commonly encountered is that g,
is not integrable for a finite number of + € A. In this case
£(z) = [pf(z,y)dy for all but these finitely many z. Since
[ 48 remains unchanged if & is redefined at a finite number of

points, we can still write foBf [ a([ Bf(z,y)dy)dz, pro-
Vldpd H’mf fpf(r 'H\Ihl 18 r‘]pﬁnpr] nr]'nfrnr\]v qny as n nrhnn 1+

vValsls VIIGY NSALLAN/NA (AR ARSI UL (UL AR

does not exist.

4. There are cases when this will not work and Theorem 3-10
must be used as stated. Let f: [0,1] X [0,1] = R be defined
by

{1 if x is irrational,
1 if = is rational and y is irrational,
fla,y) = : ) .
1 —-1/q if £ =p/q in lowest terms and y is
rational.

Then f is integrable and [(0,17%(0.11f = 1. Now [f(z,y)dy =1
if z is irrational, and does not exist if z is rational. There-
fore h is not integrable if h(z) = f of (z,p)dy is set equal to O
when the integral does not exist.

5. If A =[a,17b1])< . e xl'n_h1 and f A > R ig suf-

LT y> [>T 03

ficiently nice, we can apply Fubini’s theorem repeatedly to

~loa ot
v valir

[ [ (oo ([ i) Y

6. If C C A X B, Fubini’s theorem can be used to evaluate
[ cf, since this is by definition [ 45z xcf- Suppose, for exam-
ple, that
C =[-11] X [-L1] = {zp): |@n] < 1}.

/Cf = /—11 (/_11 f(z,y) 'XC(x,?/)dy) dz.

Then
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Now
(x)—{l ify>V1—-zlory< —V1-—2z?
Xe\%Y) =] ¢ otherwise.
Therefore

[1 1@ xe@mdy = [J77 s@mdy + [ s@pay

In general, if ¢ C A X B, the main difficulty in deriving
expressions for f cof will be determining C M ({z} X B)
for » = A Tf O\ (A Y 140 far v £ R iga aagiar tn
AL w \_ AR e 4L A | 1 \JJ. VAN (y ’ / AUL y \_

A7 1Y UAwiLUi v

&
£
¢

mine, one should use the iterated integral

[of = [, ([ f@w) - xe@y)dz) dy.

not of content 0. Show that A’ is aset of measure 0. Hini: XC i8
integrable and foB xXC = f,m fA 80 f,m - £ =0.

3-24. Let C C [0,1] X [0,1] be the union of all {p/q} X [0, 1/q], where
p/q is a rational number in [0,1] written in lowest terms. Use C
to show that the word “measure’”’ in Problem 3-23 cannot be
replaced by ‘“‘content.”’

3-25. Use induction on n to show that [a1,b1] X « - + X [a,,b,] i1s not a
set of measure O (or content 0) if a; < b; for each <.

3-26. Let f: [a,b] = R be integrable and non-negative and let Ay =
{(zy):a <z <band 0 £y < f(z)}. Show that A, is Jordan-
measurable and has area [2f.

3-27. If f: [a,b] X [a,b] = R is continuous, show that

[ [ semazay = |, |, fawayds

Hint: Compute fcf in two different ways for a suitable set
C C [a,b] X [a,b].

3-28.* Use Fubini’s theorem to give an easy proof that Di,of = Do:f
if these are continuous. Hint: If Djsf(a) — D21f(a) > 0,
there is a rectangle A containing a such that Djof — Dof >
Oon A.

3-29. Use Fubini’s theorem to derive an expression for the volume of
a set of R? obtained by revolving a Jordan-measurable set in the
yz-plane about the z-axis.
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3-30. Let C be the set in Problem 1-17. Show that

./[0.11 (ﬁo.u "C(x’y)d"’) dy = ﬁO.ll ( ﬁm] xc(y,x)dy) dz =0

but that f[O,l]X[O,l] xXc does not exist.
3-31. If A =[a;,b)) X - - - X [an,bs] and f: A —> R is continuous,
define F: A — R by

F@) = ﬁax,x‘]x ceos Xlan,zn] i

What is D;F (z), for z in the interior of A?
3-32.* Let f: [a,b] X [c,d]— R be continuous and suppose D,f is con-
tinuous. Define F(y) = [bf(x,y)dz. Prove Leibnitz’s rule: F'(y)
= [ Dof(z,y)dz. Hint: F(y) = [of(zy)dz = [3([YDof(z,y)dy +
f(z,c))dz. (The proof will show that continuity of Dsf may be
replaced by considerably weaker hypotheses.)
3-33. If f: [a,b] X [c,d] = R is continuovs and D:f is continuous, define
F(z,y) = J’ff(t;y)d-t'
(a) Find DyF and D,F.
() If Gx) = [¢@ f(t,2)dt, find G (z).
3-34.* Let g1,§2: R2— R be continuously differentiable and suppose
Digs = Dggy. As in Problem 2-21, let

fz,y) = /;)z g1(t,0)dt + ﬁ)y ga(z,t)dt.

Show that Dif(z,y) = g1(z,y).
3-35.* (a) Let g: R® — R" be a linear transformation of one of the fol-
lowing types:

Jgle) =e 1#]
| g(ej) = aej

{ gle) = e 1 #]
glej) = ej + ek

gle:) = ¢

g(ej) = e
If U is a rectangle, show that the volume of g(U) is |det g| - »(U).
(b) Prove that |det g| - v(U) is the volume of g(U) for any linear
transformation g: R® — R™ Hint: If det g > 0, then g is the
composition of linear transformations of the type considered in (a).
3-36. (Cavalieri’s principle). ILet A and B be Jordan-measurable sub-
sets of R3. Let A, = {(z,5): (z,y,c) € A} and define B, similarly.
Suppose each A, and B, are Jordan-measurable and have the same

area. Show that A and B have the same volume.

{g(ek) =e k#]
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PARTITIONS OF UNITY

In this section we introduce a tool of extreme importance in
the theory of integration.

3-11 Theorem. Let A C R" and let © be an open cover of A.
Then there is a collection ® of C* functions ¢ defined in an open
set containing A, with the following properties:

For each x € A we have 0 < ¢(z) < 1.

For each x & A there is an open set V containing x such that

all but finitely many ¢ & ® are 0 on V.

(3) For each x & A we have Z cpp(x) = 1 (by (2) for each x
this sum is finite in some open set containing z).

(4) For each ¢ & ® there 1s an open set U in O such that ¢ = 0

outstde of some closed set contained in U.

(A collection & satisfying (1) to (3) is called a C” partition of
unity for A. If & also satisfies (4), it is said to be sub-
ordinate to the cover 0. In this chapter we will only use
continuity of the functions ¢.)

Proof. Case 1. A is compact.

Then a finite number U,, . . . ,U, of open setsin © cover A.
It clearly suffices to construct a partition of unity subordinate
to the cover {U,, ... ,U,}. We will first find compact
sets D; C U; whose interiors cover A. The sets D; are con-
structed inductively as follows. Suppose that Dy, . . . ,D;
have been chosen so that {interior D,, . . . , interior Dy,
Ukrr, . . . ,U,} covers A. Let

Ck+1= A - (1ntD1U tor e UlntDkU Uk+2U Lo UU,.)

Then Ciry1 C Uiy 1s compact. Hence (Problem 1-22) we can
find a compact set Dy, such that

Ciy1 C interior Dyyy and  Dyypy C Upys.

Having constructed the sets Dy, . . . ,D,, let ¢; be a non-
negative C” function which is positive on D; and 0 outside of
some closed set contained in U; (Problem 2-26). Since
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{Dy, . .. ,D;}covers A,wehavey(z) + * * + + Yr(z) >0
for all x in some open set U containing A. On U we can define
Yi(z)
pi(2) =

Vi@ + -+ @)
If f: U — [0,1] is a C” function which is 1 on A and 0 outside

of some closed set in U, then ® = {f-¢1, . . . ,f* ¢u} is the
desired partition of unity.
Case 2. A= A,\J A.\J A3;\J - - -, where each A 1is

compact and A; C interior Ay
For each 7 let ©; consist of all U M (interior A;y1 — A;_3)
for U in ©. Then ©; is an open cover of the compact set

B; = A; — interior A;_;. By casel there is a partition of unity
o, for B;, subordmate to ©;. For each r & A the sum
@ = ) o
e E P, all ©

is a finite sum in some open set containing z, since if x & A; we
have ¢(x) = 0 for ¢ € &; with j > 7 + 2. For each ¢ in
each ®;, define ¢'(x) = ¢(x)/o(x). The collection of all ¢ is
the desired partition of unity.

nn on R A n.n nmaom
v wWwoU v, L1 O VoI,
Let A; =

{x € A: |x] < 7 and distance from z to boundary 4 > 1/4},

and apply case 2.
Case 4. A 1s arbitrary.
Let B be the union of all U in 0. By case 3 there is a par-

n c
tition of unity for B; this is also a partition of unity for 4. 1§
An important consequence of condition (2) of the theorem
should be noted. Let C C A be compact. For each x & C
there is an open set V, containing z such that only finitely
many ¢ € & are not 0 on V,. Since C is compact, finitely
many such V, cover C. Thus only finitely many ¢ & & are
not 0 on C.
One important application of partitions of unity will illus-
trate their main role—piecing together results obtained locally.



o
17 cgrat LUTG (704

An open cover © of an open set A C R" is admissible if
each U € 0 is contained in A. If & is subordinate to O, .
f: 4 — R is bounded in some open set around each point of 4,
and {z: f is discontinuous at x} has measure 0, then each
fae: | f ] exists. We define f to be integrable (in the extended
sense) if E¢€¢f AQ" | f ‘ converges (the proof of Theorem 3-11
shows that the ¢’s may be arranged in a sequence). This
implies convergence of Z,c4| [ 4 ¢ - fl, and hence absolute con-
vergence of ,cef 4 ¢ f, which we define to be [4f. These

[~7a¥aY
[sloiw)

3-12 Theorem.

(1) If ¥ is another partition of unity, subordinate to an admis-
sible cover © of A, then Z,c o[ 4 ¢ - 11| also converges, and

Z J/<.P'f= 2 [v-1.

J
prEP® A VEVY A

(2) If A and f are bounded, then f is integrable in the extended
sense. '
(3) If A is Jordan-measurable and f 18 bounded, then this defini-

tion of ( f agrees with the old one.

Proof

VA I\

(1) Since ¢ - f = 0 except on some compact set C, and there
are only finitely many y which are non-zero on C, we can
write

2“/¢'f=¢;”[¢g\b¢-¢-f=¢gw€zw[¢-¢.f,

This result, applied to |f|, shows the convergence of 2, c ¢
Zyevfa v e-|f], and hence of Z,ceZyculfa ¥ ¢l
This absolute convergence justifies interchanging the order
of summation in the above equation; the resulting double
sum clearly equals Z,cyf4 ¢ f. Finally, this result
applied to l f] proves convergence of E‘pe\pf AV | f|.
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forx € A, and F C & is finite, then

¢g“fso'lfl SngM/st/ ¢gF¢_<_Mv(B),

since Z,er ¢ < 1 on 4.

(3) If € > 0 there is (Problem 3-22) a compact Jordan-meas-
urable ¢ C A such that f 4a—cl < & There are only
finitely many ¢ &€ ® which are non-zeroon C. If FC &
is any finite collection which includes these, and [ 4f has

its old meaning, then

ARLUCVRARS L Py aaNima

1 [i=3 [eslcfli=73 o]
A ¢eE€EF A }_1 ] e EF ]
T 4 '\ \
su (1= o)
o — ¢€F -
=M <M [ 1< Me |
,/peg—ﬁ'so A[C

Problems. 3-37. (a) Suppose that f: (0,1) = R is a non-negative
continuous function. Show that [(o,1)f exists if and only if
lim [37% exists.

e—0
(b) Let A, =[1~1/2*1—1/2"*1]. Suppose thatf:(0,1)— R
satisfies _,r;,"f =(=1)"/n and f(z) = 0forz & any A,. Show that

f(0,1f does not exist, but lim [(e,1_¢) f = log 2.
e—0

3-38. Let A, be a closed set contained in (n, n + 1). Suppose that
f: R— R satisfies fA"f =(—1)"/n and f = 0 for z & any Aa.
Find two partitions of unity ® and ¥ such that Z,c s/ R ¢ - f and
Zyew[R ¥ - f converge absolutely to different values.

CHANGE OF VARIABLE

If g: [a,b] = R is continuously differentiable and f: R— R
is continuous, then, as is well known,

g(®) b
ff=/(f°g)-g’-

g(a)
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The proof is very simple: if F’ = f, then (Fog) = (fog) -¢';
thus the left side is F(g(b)) — F(g(a)), while the right side is
Fog() — Fog(a) = F(g(d)) — F(g(a)).

We leave it to the reader to show that if ¢ is 1-1, then the
above formula can be written

f= [ foq-lol.

o((a,b)) (a,b)

(Consider separately the cases where ¢ is increasing and where

a3 danmasaing ) Th A alinatian of thia fo 1la +a hi
g 1s aecreasiiig.) 106 gencrailzavion oI tais iormuia 1o 11151161

dimensions is by no means so trivial.

2-12 Theorem Let A C R"” be an open set an r] A R”
L3 rCIry AACOUV 4L & AN vv wiv V[.IV v U v wWivw i F 39
a 1-1, continuously differentiable function such h g (x)

# 0foraliz & A. Iff: g(4d) — R 1s iniegrable, then

[ 7= /(fog)ldetg|

o(4)

Proof. We begin with some important reductions.

1. Suppose there is an admissible cover © for A such that
for each U & 0 and any integrable f we have

[ 1= [ enldetyl.
U

o(U)

Then the theorem is true for all of A. (Since g is auto-
matically 1-1 in an open set around each point, it is not sur-
prising that this is the only part of the proof using the fact

that g is 1-1 on all of 4.)
Proof of (1). The collection of all g(U) is an open cover of

g(A). Let ® be a partition of unity subordinate to this cover.
If ¢ = 0 outside of g(U), then, since g is 1-1, we have (¢ - f) o ¢
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o f = [ [(¢ - f) o g]|det ¢'|.

Hence
[f= o f = Z [ 1o+ < glldet ¢
= z [ (0o q)(fog)ldet ¢
pED A
= [ (fopldet ¢/
J
4
Remark. The theorem also follows from the assumption
that
!f = (f o g)|det ¢'|
o~i(V)

for V in some admissible cover of g(A). This follows from (1)
applied to g~

2. Tt suffices to prove the theorem for the function f = 1.
P’,rggf Of (2). Tf fhn thanram halde fnr 'f =1 it halde for

A\ SAVIVI RV VY EEP VA VIRVIS NG | , av lluluo 1AV

constant functions. Let V be a rectangle in g(4) and P a par-
tition of V. For each subrectangle S of P let fs be the con-
stant function mg(f). Then

L(f,P) = ) ms(f) - o(8) = ) [ 1s
S

int S
=Z f (fs © g)|det ¢’ Sz f (f© g)|det ¢'|
S g~ (int S) S g~i(int S)
< [ (opldet gl
g~ (V)

Since fvf is the least upper bound of all L(f,P), this proves
that fo < f,-x(v) (fe g)ldet g | A similar argument, letting

fs = Ms(f), shows that [vf > [,-1v)(fog)|det ¢’|. The
result now follows from the above Remark.
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3. If the theorem is true for g: A —» R" and for h: B —» R",
where g(4) C B, then it is true for ho g: A — R".

Proof of (3).

f= [ 1= [ Gonldetr

hog(4) h(g(4)) o(4)

[ 1rom) o gl - [ldet '] o g] - |det o'

A
= ff° (h o g)|det (hog)'|.
A

4, The theorem is true if g is a linear transformation.
Proof of (4). By (1) and (2) it suffices to show for any open
rectangle U that

J[ 1= [!det g|.
o(U) il’

This is Problem 3-35.

Observations (3) and (4) together show that we may assume
for any particular a € A that ¢’(a) is the identity matrix: in
fact, if T is the linear transformation Dg(a), then (T~ ¢ g)’(a)
= I; since the theorem is true for T, if it is true for T" 1o g it
will be true for g.

We are now prepared to give the proof, which preceeds by
induction on n. The remarks before the statement of the
theorem, together with (1) and (2), prove the case n = 1.
Assuming the theorem in dimension n — 1, we prove it in
dimension n. For each a € A we need only find an open set
U with a € U C A for which the theorem is true. Moreover
we may assume that ¢'(a) = I.

Define h: A— R™ by h(z) = (¢'(), . . . 0" z),z").
Then h'(a) = I. Hence in some open U’ with e € U’ C A4,
the function 2 is 1-1 and det A'(z) # 0. We can thus
define k: R(U’) > R™ by k() = (z}, . . . , 2" Lg"(h~'(x)))
and ¢ = ko h. We have thus expressed g as the composition
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of two maps, each of which changes fewer than n coordinates
(Figure 3-3).

We must attend to a few details to ensure that & is a function
of the proper sort. Since

(g" o B (h(a)) = (9")(a) - [K'(@)]7" = (g™)(a),

we have D,(¢g" o h™ ") (h(a)) = D,g"(a) = 1, so that k'(h(a))
= J. Thus in some open set V with h(a) & V C h(U’'), the
function k& is 1-1 and det k’(x) # 0. Letting U = k~ (V)
we now have g = koh, where h: U— R" and k: V— R”
and R(U) C V. By (3) it suffices to prove the theorcm for
and k. We give the proof for h; the proof for k is similar
and easior

Let W C U be a rectangle of the form D X [a,,b,], where
D is a rectangle in R*~!. By Fubini’s theorem

r r/ [ o I
j 1 = j k j ldx - - - dz” l)dx”.
h(W) [an,bn] h(DX {13"’})

Let h,: D— R be defined by An(zx!, . .. 2" 1) =
(g'xt, ... 2™, ... gt @Y, L .. @), Then each A
is clearly 1-1 and

det (hn)(x!, . . . 2" 1) =deth'(z!, . . . ,a") # 0.
Moreover
r : s ' R 5
ldx' - - - da™ = / 1dx' - - - da™ .
(D X {z")) hen (D)

Applying the theorem in the case n — 1 therefore gives

[1= [( [ 1@ @ )ar

R(W) [ambi]  hen(D)
- [ ldet(ray e’ . e lazt - da"1) da”
[ambs] D
= / (/ ldet h'(z, . . . a™)|dz! - - - dx”_l) dz"
[an,bn] D

det 2'|. |

-l

The condition det ¢’(x) # 0 may be climinated from the
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Y
which often plays an unexpected role.
3-14. Theorem (Sard’s Theorem). Let g: A — R" be con-
tinuously differentiable, where A C R™ is open, and let B =
{x € A: det g’'(x) = 0}. Then g(B) has measure 0.

Proof. Let U C A be a closed rectangle such that all sides
of U have length [, say. Let e > 0. If N is sufficiently large
and U is divided into N® rectangles, with sides of length /N,
then for each of these rectangles S, if x € S we have

IDg(®) (v — 2) — 9() — 9(@)| < elz — 4| < eV W/N)
for all y € 8. If S intersects B we can choose z € S N B;

Aat A+ = 0O tha set, Inn(m\/u -_— m\ Yy C Ql Iu:g in an

nu.u/c uc v y ul/ = VU, vuviiv Oov 1+ Yy\

(n — 1)-dimensional subspace V of R" Therefore the set
lgy) — g(z): y € S} lies within & V'n (I/N) of V, so that
{g(y): y € S} lies within € V'n (I/N) of the (n — 1)-plane
V 4+ g(x). On the other hand, by Lemma 2-10 there is a

number M such that
l9(x) — 9(y)| < Mz — y| < M Vn (I/N).

Thus, if S intersects B, the set {g(y): y € S} is contained in
a cylinder whose height is <2& V/'n (I/N) and whose base is an
(n — 1)-dimensional sphere of radius <M V'n (I/N). This
cylinder has volume <C(I/N)"¢ for some constant C. There

awna ot mact ATN po
are at most N” such 1cu‘|}uusxca S, S0 y(ur M B; lies in a set of

volume <C(/N)"-g&-N" = Cl"*-¢. Since this is true for
all € > 0, the set g(U M B) has measure 0. Since (Problem
3-13) we can cover all of A with a sequence of such rectangles
U, the desired result follows from Theorem 3-4. |

Theorem 3-14 is actually only the easy part of Sard’s
Theorem. The statement and proof of the deeper result will
be found in [17], page 47.

Problems. 3-39. Use Theorem 3-14 to prove Theorem 3-13 without
the assumption det g’(z) = 0.
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9 AN T& .. DN _. PN o0 d Iod 1\ LN smnsrn 4hod 3 cmra A and
o=2. 1l . IN —7 IV allly Uucy y\4L) »~ v, pruve uviiay 1l puULLC Upcoll pdcuy
containing z we can write ¢ = T'og,o - - - og), where g, is of
the form gi(z) = (2}, ... ,fi{z), ... ,z"), and T is a linear
transformation. Show that we can write ¢ = g,c - - - o gy if

and only if ¢g’(z) is a diagonal matrix.
3-41. Define f: {r: r > 0} X (0,2x) = R2 by f(r,0) = (r cos 6, r sin 6).
(a) Show that f is 1-1, compute f’(r,6), and show that
det f'(r,0) = 0 for all (r,6). Show that f({r: r > 0} X (0,2r)) is
the set A of Problem 2.-23.
(b) If P = 1, show that P(z,y) = (r(z,y),8(z,y)), where

nzy) = Vz? + %,

arctan y/z x>0 9>0,
= -+ arctan y/x z <0,
6(x,y) = < 2= + arctan y/z x>0 y<0,
/2 z=03>0,
‘31.'/2 z=09<0.

(Here arctan denotes the inverse of the function tan: ( —/2,7/2)
— R.) Find P’(z,y). The function P is called the polar coor-

(¢) Let C C A be the region between the circles of radii 1 and

ey e

wm-and $ha half 150 as ¢4 L Narhiinh mralea cavvalac A8 0. 2l O warié s
72 &AllU LVIIC L1All-11I1GS VIITUURKIL U WILIUI] LILAAC AIIRICS Uk U] &I1U U2 WILil
the z-axis. If h: C — R is integrable and h(z,y) = g(r(z,y),6(z,y)),
show that

r2 0.
jr h = jr jr rg(r,6)do dr
C rn o
If B, = {(z,y): 22 + y? < r?}, show that

) r 2x
/ h = / f rg(r,0)de dr.
B 0O O
d) If C, = [~r,r] X [—r,r], show that

f e~ @) dp dy = x(1 — ")

B,
and
,
f e~ @) dp dy = (/ e—”dx)2.
Cr -7 -

(e) Prove that

lim e~ (2 dr dy = lim / e~ @ dy dy
r—w r—w

B, Cr
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“A mathematician is one to whom that is as obvious as that twice
two makes four is to you. Liouville was a mathematician.”

—Lorp KELVIN
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AT O ERR AT PRPEREITMIN ARIES
(& o) 1 F & R | FVF 7] x S

P ¥ ¥ AW FA F4 N £ iva P Ve F L WY 4

If V is a vector space (over R), we will denote the k-fold
product V. X + -+ X V by V*¥. A function T: V¥ > R is
called multilinear if for each 7 with 1 < 7 < k we have

Ty, Y .Y = T{p, . 2:.)
I, . .. 0TV, ...,k (v, . . .05 « . .0
’
+ T(vl’ Wi, ,vk);
mys \ —
1V, Vs, W) = a1V, Uiy k)

M eeon AL

e L oM ~ kTN A n
i1 a d & nwe aeline

or 0,1 &« J7(vV) an

('S+ T)(vly e yvk) = S(vla <o Jvk) + T(f)_{, v ,T)k),
(@S)(y, . . . wx) =a- S, .. . k-

There is also an operation connecting the various spaces 3%(V).
If SE 3%(V) and T € 34V), we define the tensor product
ST E 3FYV) by

S ® T(f)l, oo UEYESL, - . ,vk+l)
= S(T)l, . .. ,T)k) . T('t‘)k+1, . .o ,vk_,_l).
75
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Note that the order of the factors S and T is crucial here since
S ®T and T ® S are far from equal. The following prop-
erties of ® are left as easy exercises for the reader.

B1+8) T =80T+ 8:9T,

ST+ Ty) =8ST,+8T,,
@S) ® T = 8 ® (aT) = a(S ® T),

SIT)RU =8 (T® U).

Both (S® T) ® U and S ® (T ® U) are usually denoted
simply 8§ ® T ® U, higher-order products 7, ® : - - ® T,
are defined similarly.

The reader has probably already noticed that 31(V) is just

..... dy n 1at J ust
the dual space V*. The operation ® allows us to express th
other vector spaces 3°(V) in terms of 31(V)

4-1 Theorem. Let vy, ... v, be a basis for V, and let
@1, - - - ,¢n be the dual basis, p;(v;) = 8;;. Then the set of all
k-fold tensor products

‘pil®...®‘pik 1Sily"')ik.§n

is a basis for 3*(V), which therefore has dimension n*.

Proof. Note that

® ¢ Rl 2

s
tY'll X X WrE\YI1y ¢ ¢+ o Vg

*
= 04,5, " -« - " Oi,g
{ LY . B .
— 1 U =1t, .. .,0k= i,
0 otherwise.
If wy, . . . ,wi are k vectors with w; = 27_,a;v; and T isin
L7 A 1290 ) "
3°{(V), tnen
n
T(wly T ka) = z ai,j, "« o . .ak']'kT(vfu NI ijk)
Iy a0 e dw=1
n
= z Ty, . « . 03) 05, ® «* * ® op(wy, . . . ,Wg).
th,eoo, =1
Thus T = 23,...,1',,-1’—’7(%, DI :vik)"Pix ® - Pir-

Consequently the ¢;; ® * - * ® ¢, span 3¥(V).
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Suppose now that there are numbers a;,... ; such that

.....

n

a, . . ., b en®  ®e, =0,
Thooo k=l
Applying both sides of this equation to (v;, . . . ,vj;) yields
@, ....;n = 0. Thus the ¢; ® - ® ¢; are linearly

independent. |

One important construction, familiar for the case of dual
spaces, can also be made for tensors. If f: V— W is a linear
transformation, a linear transformation f*: 3%(W)— 3%(V)
is defined by

*Tw,, ... w) = T(fw), . .. . flvx))
for TE (W) and vy, . . . v € V. It is easy to verify
that f*(S ® T) = f*S @ f*T.
The reader is already familiar with certain tensors, aside
from members of V*. The first example is the inner product

(,) € 3*(R™. On the grounds that any good mathematical
commodity is worth gener a,umug, we define an inner product
on V to be a 2-tensor T such that T is symmetric, that is
T(v,w) = T(wpw) for v,w € V and such that T is positive-
definite, that is, T(v,v) > 0 if » 2 0. We distinguish (,) as
the usual inner product on R". The following theorem

shows that our generalization is not too general.

4-2 Theorem. If T is an inner product on V, there is a
basis vy, . . . W for V such that T(viw;) = &;;. (Such a

wthananmal 2 mf respect to T ﬂnfn eonriemitls
i weurv tl(/t/ll vv Fa I \va vyl 00011 wvlvuvg

-

haeie 1¢ rallod
vUwore o vuwuvovw

there 1s an isomorphism f: R® — V such that T(f(x),f(y))

(z,y) for z,y € R"*. In other words f*T = (,).
Proof. Let w,, . .. ,w, be any basis for V. Define
wl’ = wi,
! = w T(w,’ ’LO2) ,
: ' T'(wy ,’wl') o
T(wi'ws) ,  Twws)

ws = w3 —

T'(wy'yw, ) T(w',w2")

ete.
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It is easy to check that T'(w,’,w;) = 01if ¢ % 7 and w,’ # 0 so
that T(w/w) > 0. Now define v; = w//V T(w/ w!). The
isomorphism f may be defined by f(e;) = v;. ||

Despite its importance, the inner product plays a far lesser
role than another familiar, seemingly ubiquitous function,
the tensor det € 3"(R™). In attempting to generalize this
function, we recall that interchanging two rows of a matrix
changes the sign of its determinant. This suggests the fol-
lowing definition. A k-tensor w € 3*(V) is called alternating
if
o1, « v o Wi oo Wiy e .. VE)

= —oWy, -« . Wi .. Wiy .. UR)
forallv,, . .. p, E V.

(In this equation v; and v; are interchanged and all other ¢’s
are left fixed.) The set of all alternating k-tensors is clearly
a subspace A¥(V) of 3*(V). Since it requires considerable
work to produce the determinant, it is not surprising that
alternating k-tensors are difficult to write down. There is,
however, a uniform way of expressing all of them. Recall
that the sign of a permutation o, denoted sgn o, is +1 if ¢ i8
even and —1 if ¢ is odd. If T € 3*(V), we define Alt(T) by
A
sgn o * T(vd(l)’ e ’va(k)),

s € Sk

1
AI(T)(vq, . . . g = x

where Sy, is the set of all permutations of the numbers 1 to k.

4-3 Theorem

(1) If T € 35(V), then AIY(T) € AX(V).
(2) If o € A¥(V), then Alt(w) = w.
(3) If T € 35(V), then AUt(AU(T)) = Al(T).

Proof

(1) Let (¢,7) be the permutation that interchanges ¢ and 7 and
leaves all other numbers fixed. If ¢ € S, let ¢ =
o+ (1,7). Then
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AlR(T)(vy, « - v 04 o o v W4« v o WVR)
1
= sgn o - T'(Va1y, « + + Wa(i)y » + » sVali)y « +  yWalk))
.aeSk
1
=0 sgn @ * T'(Vg(1)y « - « Wor(e)y -« « sVo'(i)y - - + Vo' (k)
. e & Sk
1 ’
= _k_:—' —sgno - T(U,f(l), . o . ,v,'(k))
.a’ESk
= —Alt(T)(vl, .o o ,vk).
(2) If w E Ak(V), and g = (Z.,j), then w(v,(l), e e ,v,(k)) =
SLOYY 7 o l.\/')‘_ ')'-\ q"lnﬂﬂ axrariyy o~ ;Q [»Y Y\vl\AlIn*’ n‘F nNoavr_
Déll v W\Ul, . . . ,(/[c/n [ ¥ ¥ & V4 W UV\JIJ v 1o leuu\zU vi P\Jl

mutations of the form (¢,7), this equation holds of all 4.

Therefore
llllll N 1 v 7 N
Alt(@) (1, - - 28) = 7 Z4 sgn o w1y, + - - Wotk))
.aESk
1
=1 sgneo-sgno- w(y, ... Uk
S sEM
= w(vl, - e ,Uk).

(3) follows immediately from (1) and (2). |

To determine the dimensions of A*(V), we would like a
theorem analogous to Theorem 4-1. Of course, if w € A*(V)
and n € AYV), then & ® » is usually not in A*TYV). We
will therefore define a new product, the wedge product
w A g € AFTYV) by

(The reason for the strange coefficient will appear later.) The
following properties of A are left as an exercise for the reader:

(w1 + w2) Ap=w1 A g+ wy A,
@A (m+m) =wAn+wA n,
aw A np=wAang=alw A1),
wAg= (=1 A w,
¥ A ) = f*(w) A f*(n).
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The equation (w A5 A =wA(np A8 is true but
requires more work.

4~-4 Theorem
(1) IfS & ﬂk(V) and T € 34V) and Alt(S) = 0, then
AS @ T) = AT @ S) = 0.

2) Alt(Altlo @ 1) © 6) = Alt(w Q@ 1  6)
= Altlo ® Alt(n ® 8)).

7

als \ o D AaMsTTN a1 .
(V),ana 6§ & A™(V ), then

k41 4+ m)!
_EHIEM e 80 ® 0).
kEltitm!
Proaof
1)
(k-J—l\'Avt(Sf%T\(V)1 e e vr..r
\ i 7 \! \+4 J\vV1) A T ol 74

= 2; 8gn o - S(Ve(1), - - « o)) * TWotht1), - - - Walhtd)-
de k+i

If @ C Spy: consists of all ¢ which leave £+ 1, . . .,
k 4 I fixed, then
Z sgno - SWer), - - - Watt)) * TWotks1)y - -+ VolhtD)
e &
= [ 2 sgno’ - 81y, - - ,”a'(k))] “T(er, - - - Pt
o € Sk
= (.
Suppose now that g & G. Let G a9 = {0 0¢: ¢ € G}
and let Voo(l)y » + « sWeo(k+l) = W1, - « « ;WEyl Then
z 8gn o - SWey, - - - o) - TWotkt1y, - - - Wokstn))
e & G oo
= [sgn oo - Z sgn o’ - S(Wer(1y, - . - ,waf(k))]
r =Xt
*T(Wegr, - - - ,Whit)
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Notice that G NG 09 = F. In fact, if c €@ NG - oy,
then ¢ = ¢’ - oy for some o’ EG and 09 =0 - (¢')"! EQG,
a contradiction. We can then continue in this way,
breaking Si4; up into disjoint subsets; the sum over each
subset is 0, so that the sum over S;,; is 0. The relation
Alt(T ® 8) = 0 is proved similarly.

(2) We have

Alt(Alt(n ® ) — n @ 8) = Alt(» ® 8) — Alt(n ® 6) = 0.
Hence by (1) we have

0=Alt(o @ [Alt(n @ 8) — » @ 8])
= Alt(w ® Ali(y ® §)) — Alt(w ® 7 @ 6).

(k + I)tm!
(k+ 1+ m)! (k+ D!

(k+D!m! kNl

The other equality is proved similarly. |

Naturally w A (n A 8) and (w A 5) A 6 are both denoted
simply @ A n A 0, and higher-order products w; A - - -+ A wr
are defined similarly. If vy, . .. p, is a basis for V and
®1, . . . ,en is the dual basis, a basis for A*(V) can now be
constructed quite easily.

A_5 Th arxe s Mho oot nf nll
e i 7 4 A IREUITIIL. AL v ovu UJ wiv
ea N 0 N eg 1< <2< - < <n

i3 a basis for A¥(V), which therefore has dimension

<n> B n! _
k) kln —k)!

Proof. If w € A*¥(V) C 3*(V), then we can write

wen ® " Q o

.....
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Thus

o=Altw) = ) a,.. Alt(py ® * - ® pi)
Since each Alt(p;, ® -+ - ® ¢4,) is a constant times one of the
e A * © A @i, these elements span A*(V). Linear inde-

pendence is proved as in Theorem 4-1 (cf. Problem 4-1). |

If V has dimension n, it follows from Theorem 4-5 that
A™(V) has dimension 1. Thus all alternating n-tensors on V
are multiples of any non-zero one. Since the determinant is
an example of such a member of A"(R"™), it is not surprising
to find it in the following theorem.

4-6 Theorem. Let vy, . .. v, be a basis for V, and let
w € A™(V). If w; = Z%_,a:v; are n vectors in V, then

w(wy, . . . wp) = det(a;;) - w(vy, . . . Wu).
Proof. Define n € 3*(R") by

n((Q11, . - . 1)y - « - ,(Anl, - - - ,Qna))
= w(Zavjy -+ + 200 05).

Clearly n € A™(R™) so 7 = X\ - det for some A & R and X\ =
77(61’ oo ,G-n) = w(vly e ,Un). I

Theorem 4-6 shows that a non-zero w & A"(V) splits the
bases of V into two disjoint groups, those with w(vy, . . . ,va)
> 0 and those for which w(vy, . . . ,0a) <O0;if vy, . . . 00
and wy, . . . ,w, are two bases and A = (a;;) is defined by
w; = Za;w;, then vy, . . . v, and wy, . . . ;w, are in the
same group if and only if det A > 0. This criterion is inde-
pendent of w and can always be used to divide the bases of V
into two disjoint groups. FEither of these two groups is
called an orientation for V. The orientation to which a
basis vy, . . . ,w, belongs is denoted [vy, . . . ,,] and the
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ig denoted —[vy, . . . ,,]. In R™ we define
the usual orientation as [e1, . . . ,e,].

The fact that dim A"(R") = 1 is probably not new to you,
since det is often defined as the unique element w € A™(R")
such that w(e;, . . . e,) = 1. For a general vector space V
there is no extra criterion of this sort to distinguish a particular
w & A™(V). Suppose, however, that an inner product T for
V is given. If vy, . .. v, and wy, . . . ,w, are two bases
which are orthonormal with respect to T, and the matrix

A /0 N 2L A 1 1 _ s\ . 41
A = (ay;) 18 delined by w; = &,-104;V;, then

8y = T(wiw;) = E @ix@;1T (i, v1)

In other words, if AT denotes the transpose of the matrix A4,
1

then we have A - AT = I, so det A = +1. It follows from
Theorem 4-6 that if w & A™(V) satisfies w(vy, . . . v,) = +1,
then w(wy, . . . ,w,) = £1. If an orientation u for V has
also been given, it follows that there is a unique w € A™(V)
such that w(vy, ... w,) =1 whenever vy, ... v, is an
orthonormal basis such that [v;, . . . w,] = u. This unique

w 1s called the volume element of V, determined by the

inner product T and orientation u. Note that det is the

s2422a%41 | s R AV IAIS QI AVISY

volume element of R™ determined by the usual inner product
and usual orientation, and that idet(vl, . ,vn)i is the vol-
ume of the parallelipiped spanned by the line segments from
0 to each of vy, . . . ,u,.

We conclude this section with a construction which we will
restrict to R*. If vy, . . . ,vn_1 € R™ and ¢ is defined by

1

e(w) = det ;
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V1
(w,2) = o(w) = det
Un—1
w
This z is denoted v; X -+ - X 9,1 and called the cross
product of »;, . .. w,—3. The following properties are

immediate from the definition:

Vo) X * * * X VUgtn—1) =800 v X * * * X Up_y,

1 >< [ xdvix e . Xi}n—l =a.(,vl>< e v . Xvn—l))
v X o X (et 0d) X Xvn_l
= X s Xy X+ Xovp
+ v X X v X - X Va1

It is uncommon in mathematics to have a ‘‘product’” that
depends on more than two factors. In the case of two vectors
v,w € R® we obtain a more conventional looking product,
v X w &€ R3% For this reason it is sometimes maintained
that the cross product can be defined only in R3.

Problems. 4-1.* Let ey, . .. ,en be the usual basis of R” and let
@1, « . . ,on be the dual basi
(a) Show that ¢; A /\ ei, (eiyy - . . ,e5) = 1. What

would the right side be if the factor (k + D!/kN! did not appear in
the definition of A?

(b) Show that ¢;; A + « + A ¢ (1, . . . ,vx) is the determinant
U1
of the % X ¥ minor of . obtained by selecting columns
Vk
T « « « ik

4-2. If f: V— V is a linear transformation and dim V = n, then
f*: A™(V) —> A™(V) must be multiplication by some constant c.
Show that ¢ = det f,



4-3, If @ € A™(V) is the volume element determined by 7 and u, and

wy, . . . W, € V, show that
lw(wl, . ,wn)l = ‘\/det (gij)’
where ¢i; = T (w;wy;). Hint: If vy, . . . ,v, is an orthonormal

basis and w; = X, a;v;, show that g;; = Zi_; anar;.
4«4, If w is the volume element of V determined by 7 and u, and
f: R*— V is an isomorphism such that f*T" = () and such that

[f(e1), . . . ,f(en)] = m, show that f*w = det.

4-5. If ¢: [0,1]— (R™™ is continuous and each (c}(t), . . . ,c™(t)) is
a basis for R”, show that [¢1(0), . . . ,c"(0)] = [c!(1), . . . ,c™(1)].
H'I‘/ﬂt.’ r‘OLlDLdUl dut ec.

4<6. (a) If v € R? whatisv X?

() If v;, ... v,m1 € R" are linearly independent, show
1§} wn i N— J | ) el
that [vy, . . . ,vn—1, 1 X * + - X v,_1] is the usual orientation of
'R’n

47, Show that every non-zero w € A"(V) is the volume element
determined by some inner product 7 and orientation u for V.
4-8. If w € A™(V) is a volume element, define a ‘‘cross product”

vy X + + + X vp_1in terms of w.
4-9.* Deduce the following properties of the cross product in R3:
(a) eg Xep1 =0 es X ep = —e; ez X e1 = ez
e1 X es = g3 ea Xepg =0 e3 X eg = —e;
e1 X e3 = —e2 es X eg =¢ e3 X ez = 0.

(b) v X w = (v*w® — v®we
+ (iw! — v w3)62
+ (v'w? — v*wl)es.
(c) Iv X wl = lvl . |w| . lsin 0,, where 8 = Z(v,w).
o Xw,v) =@ Xw w=0.
(d) (v, w X z2) =(w, 2 Xv)=(2v X w
v X (w X 2) = @2w — (vw):?
(v Xw) Xz ={@zw — (wzp.
©) v X w| =V () (ww) — @,w)”.
4-10. If wy, . . . ,wy—1 € R show that

lwi X + -+ X wa_y| = V/det (gs)),

where gi; = (w;,w;). Hint: Apply Problem 4-3 to a certain
(n — 1)-dimensional subspace of R™.

4-11. If T is an inner product on V, a linear transformation f: V. V
is called self-adjoint (with respect to T) if T'(z,f(y)) = T(f(z),y)
forz,y €V. Ifvy, ... ,v,isanorthonormal basisand 4 = (aij)
is the matrix of f with respect to this basis, show that a;; = aji.

4<12. X f1, . . . ,fn—1: R™— R"® define f1 X - - - X fp—1: R®—> R"
by fiX +++ X fazi(p) =fi(p) X + - - X fa-1(p). Use Prob-
lem 2-14 to derive a formula for D(fi X - -+ X fn—1) when fi,

. ,fn—1 are differentiable.
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If p € R”, the set of all pairs (p,v), for v € R”, is denoted
R",, and called the tangent space of R" at p. This set is
made into a vector space in the most obvious way, by defining

(o) + (p,w) = (p, v + w),
a- (p,v) = (p’(w)'

A vector v € R" is often pictured as an arrow from 0 to v; the
vector (p,v) © R", may be pictured (IFigure 4-1) as an arrow
with the same direction and length, but with initial point p.
This arrow goes from p to the point p + v, and we therefore

p+v

FIGURE 4-1
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define p + v to be the end point of (p,y). We will usually
write (p,v) as v, (read: the vector v at p).

The vector space R™, is so closely allied to R™ that many
of the structures on R" have analogues on R",. In particular
the usual inner product (,), for R", is defined by (v,,w,), =
(v,w), and the usual orientation for R",is [(e1)p, . . . ,(€n)p).

Any operation which is possible in a vector space may be
performed in each R",, and most of this section is merely an
elaboration of this theme. About the simplest operation in a
vector space is the selection of a vector from it. If such a
selection is made in each R",, we obtain a vector field (Figure

4-2). To be precise, a vector field is a function F such that
F(p) € R", for each p &€ R™. For each p there are numbers
| 23 RN F 2l WU N IR T
r(p), . .. ,"(p) such that

71_/\_71_1/\./\ L e v o L BN (s )

r(p) = 1£°(p) - (e1)p t+ T I7(P) - (€n)p

We thus obtain n component functions F': R - R. The
vector field F is called continuous, differentiable, etc., if the
functions F* are. Similar definitions can be made for a vector
field defined only on an open subset of R™ Operations on
vectors yield operations on vector fields when applied at each

. )
For example, if F and G are vector fields

/,’\E

point separately. mpile, if I &

FIGURE 4-2
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and f is a function, we define

F + &) (p) = F(p) + G(p),
<F:G>(p) = <F(p)7G(p)>a
(f - F)(p) = f(p)F(p).

If ¥y, . . . ,F,_ are vector fields on R", then we can simi-
larly define
(Fr X+ XFo)(p) =Fi(p) X - -+ X Fa_a(p).

Certain other definitions are standard and useful. We define
the divergence, divF of F, as 2?_,D;F*. If we introduce
the formal symbolism

n

T

V= Z D; - e;,

i=1
we can write, symbolically, divF =(V,F). If n =3 we
write, in conformity with this symbolism,

(V X F)(p) = (D:F?* — D3F? (1),
+ (DsF' — D1F®)(e2)p
+ (D1F? — DoFY)(e3),.

The vector field V X F is called curl . The names ‘“‘diverg-
ence” and ‘‘curl” are derived from physical considerations
which are explained at the end of this book.

Many similar considerations may be applied to a function
w with w(p) € A*¥(R",); such a function is called a k-form on

R", or simply a differential form. If ¢1(p), . . . ,en(p)
is the dual basis to (e1)p, . - . ,(€n)p, then
wp) = 2 @i @) lealp) A A ealP)]
1< e <ik

for certain functions wy, ... s ; the form w is called continuous,
differentiable, etc., if these functions are. We shall usually
assume tacitly that forms and vector fields are differentiable,
and “differentiable” will henceforth mean “C””; this is a
simplifying assumption that eliminates the need for counting
how many times a function is differentiated in a proof. The
sum w + 7, product f - w, and wedge product w A g are defined
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in the obvious way. A function f is considered to be a 0-form

and f - w is also written f A w.
If f: R®” — R is differentiable, then Df(p) € A(R"). By a
minor modification we therefore obtain a 1-form df, defined by

df(p)(vp) = Df(p)(v).

Let us consider in particular the 1-forms dr®. It is customary
to let z* denote the function ='. (On R?® we often denote
x!, 2%, and z3 by z, y, and z.) This standard notation has
obvious disadvantages but it allows many classical results
to be expressed by formulas of equally classical appearance.
Since dz'(p)(v,) = dr'(p)(vpy) = Dri(p)(v) = v', we see that
dz'(p), . . . ,dz™(p) is just the dual basis to (e1)p, . . . ,(€n)p.
Thus every k-form w can be written

w = L Wiy, ..., ik dzt A - - - A dz'
The expression for df is of particular interest.

4-7 Theorem. If f: R® — R 1s differentiable, then
df = Dif -dxt + - - - + D,f-dz™

In classical notation,

af of
df = —=d ——dz".
/ dx! T+ +6x" v

Proof. df(p)(v,) = Df(p)(v) = ZF_,v* * Dif(p)
= 2., dz'(p)(vp) * Dif(p). |

If we consider now a differentiable function f: R* — R™ we
have a linear transformation Df(p): R"™— R™. Another
minor modification therefore produces a linear transformation
fx: R", — R™f(,) defined by

Fx(vp) = (Df(P)(©) (-

This linear transformation induces a linear transformation
*: A*(R™s(p)) — A¥(R™,). If w is a k-form on R™ we can
therefore define a k-form f*w on R" by (f*w)(p) = f*(w(f(p))).
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call this means h 1 ‘F ] — R” +hen we haxvre

AVOU&EAL tNnis C&is Nilw v . ’u,g \ A% Py

fro(p)(vy, . . . wx) = w(f(P))(f*(vl), o ofx(v). As an
antidote to the abstractness of these definitions we present
a theorem, summarizing the important properties of f*, which
allows explicit calculations of f*w.

4-8 Theorem. If f: R® — R™ 1s differentiable, then

, . , aft

() F) = B Dif - de =33, L aw
(2) f¥(@1 + w2) = f*(@1) + f*(w2).
(3) fg-w) = (gof) e
(4) f*(w A ) = f*a A f*a.
Proof
) f*(dz?)(p)(vp) = dxf(f (p))(f*vp) _

= dz'(f(p) (v’ - Dif' @), -« -, 23’ Dif™B)) sy

= 2L Dif'(p)
= J=1UJ] (p) - dr’ (p) (vp).

The proofs of (2), (3), and (4) are left to the reader. [

By repeatedly applying Theorem 4-8 we have, for example,

P da! A dz® + Qdz® A dz®) = (P o f)[f*(dz") A f*(dz?)]
+ (Q o NIf*(dz®) A f*(dz)).

The expression obtained by expanding out each f*(dz?) is quite

complicated. (It is helpful to remember, however, that we
have dz* A dz' = (—1)dz! A dz' = 0.)

n 1al na 14
0.) In onespecial caseit

will be worth our while to make an explicit evaluation.

4-9 Theorem. If f: R" — R" is differentiable, then

f*(hdxl A A d.’l?n) = (h of)(det,f’) del A - - - A dz™.

Proof. Since

f*(h dxl A oo /\dx") (h f)f*(dx A A dxn)y
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it suffices to show that

f*dx* A - - - Adr®) = (detf)dz' A - - - A da™.

Let p € R™ and let A = (a;;) be the matrix of f'(p). Here,
and whenever convenient and not confusing, we shall omit

“p" indxt A - - - A dz*(p), etc. Then
F*dz* A - Ada™)(er, . . . Len)
=dz* A -+ Adx"(feer, . . . fxen)
=d$1/\"'/\ L a;16;y - . . Ain€;
(4 o0 0wt
= det(a;;) -dz' A - - - Ada™(es, . . . ,en),

by Theorem 4-6. |

An important construction associated with forms is a gen-
eralization of the operator d which changes 0-forms into
1-forms. If

@ = 2 Wiy, ..., ik dxil A A d:ci’“,

we define a (k + 1)-form dw, the differential of w, by

do = 2 dwsy .. i AdTE A o A da
1< L
= z E Da(wil ..... ik) s dx A dzit A - - A da,

4-10 Theorem

(1) d(w + 9) = dw + dn.
Q) If v is a k-form and n 1s an [-form, then

dlw A ) =dw A g+ (—1) % A dn.

(3) d(dw) = 0. Briefly, d* = 0.
(4) If w is a k-form on R™ and f: R® — R™ 1s differentiable,
then f*(dw) = d(f*w).
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(1) Left to the reader.
(2) The formula is true if w =dxt A - - - A dz* and

(3)

—~~

S’

n=dx’t A - -+ A dz’, since all terms vanish. The
formula is easily checked when w is a 0-form. The gen-
eral formula may be derived from (1) and these two
observations.

Since
n
. “ v - P N LT o - ,’.: N N - 1",
dw = L L Dg(wiy, ... i)dZ" N\ de't N\ - - - N\ dT*,
n< <tk a=1
we have
n n
d(dw) = Z Z D, s(wiy, ... i)dzx? A dz*
< <ira=18=1 7
Adzr A - - - A dxtk,
In this sum the terms
D a(w.:. drP A dx® A dxzht A A dx'k
hod 104N 1 Yl 74 4
and
Dgo(wiy, . .. a)dz* A dif A dzit A - - - A dz™
cancel in pairs.
This is clear if w is a 0-form. Suppose, inductively, that

(4) is true when w is a k-form. It suffices t
a (k + 1)-form of the type w A dz’. We have

Y — (A0 A Art L (—1)\k,,
/ J \ww I\ wa T \ J./ w

P
= f*dw A dz®) = f*(dw) A f*(dz’)
= d(f*e A f*(dz%)) by (2) and (3)
= d(f*(w A dz?)). |

A form w is called closed if dw = 0 and exact if w = dy, for

some 7. Theorem 4-10 shows that every exact form is closed,
and it is natural to ask whether, conversely, every closed form
is exact. If wis the 1-form P dz + Q dy on R?, then

dw = (D1Pdx + D:P dy) N dz + (D1Q dx + D:Q dy) N dy

= (D1Q — DyP)dz A dy.
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Thus, if dw = G, then DIQ = D2P. -21 and 3-34
show that there is a O-form f such that w = df D:fdz +
Dyfdy. If wis defined only on a subset of R%, however, such

a function may not exist. The classical example is the form

“"x+yd'+ + 2 W
defined on R?2 — 0. This form is usually denoted df (where
6 is defined in Problem 3-41), since (Problem 4-21) it equals d#
on the set {(z,y): <0, or 2 > 0 and y = 0}, where § is
defined. Note, however, that 6 cannot be defined continuously
on all of R? — 0. If w = df for some function f: R? — 0 — R,
then D,f = D10 and D,f = D6, so f = 8 4+ constant, show-

ing that such an f cannot exist.
anpnqp that 5‘" 1094 dxtisal-formon R* and » hnnnpne

ANSa Aax RS2 b o et >

to equal df = 2} 1D,f dz’. We can clearly assume that

£rON\ n [N M
f(0) = 0. Asin Problem 2-35, we have

"t
2

ﬂm=]§mwm

1
= [ Y Dijtte) - ot
ol
[
/

This suggests that in order to find f, given w, we consider the
function /w, defined by

Note that the definition of Iw makes sense if w is defined only
on an open set 4 C R™ with the property that whenever
r € A, the line segment from 0 to z is contained in A ; such
an open set is called star-shaped with respect to 0 (Figure
4-3). A somewhat involved calculation shows that (on a
star-shaped open set) we have w = d(/w) provided that « satis-
fies the necessary condition dw = 0. The calculation, as well
as the definition of Iw, may be generalized considerably:
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FIGURE 4-3

AUANT gselt JU 0

4-11 Theorem (Poincare Lemma). If A C R"isan open

18 exact.

Proof. We will define a function 7 from [-forms to ({ — 1)-
forms (for each 1), such that 7(0) = 0 and v = I(dw) + d({w)
for any form w. It follows that = d(/w) if dw = 0. Let

o= ) ea..addt A Adeh,

{ 1

To(z) = 2 E (—1)~! (/ AT iz(tx)dt) r'ia
' 0

< - <t a=1

. > .
dz* A -+ - Adxle A - 0 A dat

(The symbol —~ over dz'= indicates that it is omitted.) The



Integration on Chains 25

“V'l'\l'\'p +l’\ﬂ+ PR ,ff] \ _l_ I]’ Tl \ 19 an r\,]n‘\nrn“n nnm“]]"ﬂ";nﬂ .
1.)1 AVAV S viiavtv W £z \WW/ { u\.l. W/ 40 il uvivvuliranvuo UUALLIJUUWUIULI
We have, using Problein 3-32,
doy =1y f e, a(tz)dt)

#< e <in 0

det A - - - A dat

2 2 2 (-1 ( fl tDj(ws, ... i) (tw)dt) =
0

<ua=1j5=1
N

dx? Adzt A - - - Adze A - - A dah.

(Explain why we have the factor ¢!, instead of t'~1.) We also
have

dw = z Z Dj(ws, . ... i) - dx’ A dxt A - - A dzh

u< - <aj=1

Applying I to the (I + 1)-form dw, we obtain

I(dw) = Z Z( / EDj(w, ... i) (t)dt) 27

s <ugj=1 0
dxt A - - - A dx™

— 2 22 (—1)=( [1 £D;(wn, ... w)(z)dt ) a'e

<11 =1 a=1
P

de’ ANdx* A - - - Adzte A - - - A dah

Adding, the triple sums cancel, and we obtain

d(Iw) + I(dw) = Z ( f . a(t2)dt)
) dzv A - -+ A dzt

o3 ([ e o)

1< cLugy=1
dziv A -+ - A dah

_ Z ([1 (—g [t ... ,iz(tx)]dt)
PO

deit A -+ + © A dx®
- z Wiy, g dTY A o A dzt
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Problems. 4-13. (a) If f: R"— R™ and g: R™— RP?, show that

4-14.

4-15.

4-16.

4-17.

4-18.

4-19.

4-20.

(@of)x = gxofuand (gof)* = f*og*

(b) If f,g:R™ —» R, show that d(f-g) = f-dg + ¢ - df.
Let ¢ be a differentiable curve in R", that is, a differentiable func-
tion ¢: [0,1] » R™. Define the tangent vector v of ¢ at ¢ as
cx(er)) = (()'®), . . ., ®))ew. If f: R®— R™, show that
the tangent vector to foc at ¢is fi (v).
Let f: R— R and define ¢: R— R? by c¢(t) = (¢,f(t)). Show
that the end point of the tangent vector of ¢ at ¢ lies on the
tangent line to the graph of fat (¢,7(f)).
Let ¢:[0,1] = R™ be a curve such that |c(t)|= 1forallt. Show that
c(®)ey and the tangent vector to ¢ at ¢ are perpendicular.
If f: R® — R", define a vector field f by f(p) = f(p)p, € R*,.

(a) Show that every vector field F on R" is of the form f for
some f.

(b) Show that div £ = trace f’.
If f: R* —> R, define a vector field grad f by

(grad /) (p) = Dif(p) - (e)p + + + + + Dnf(p) - (en)p-

For obvious reasons we also write grad f = Vf. If Vf(p) = w,,
prove that D,f(p) == (v,w) and conclude that Vf(p) is the direction
in whieh f is changing fastest at p.

If F is a vector field on R?, define the forms

wp = Flde + F?dy + F® dz,
wh = Fldy Adz + F*dz N\ dz + F3dz A dy.

(a) Prove that

df = ‘-";rad i)
17 1 2
aA\wp) = wcyrl Fy
d(wh) = (div F) dz A dy A da.
(b) Use (a) to prove that

curl grad f = 0,
div curl F = 0.

(¢) If F is a vector field on a star-shaped open set A and

curl F = 0, show that F = grad f for some function f: 4 — R.
Similarly, if div F# = 0, show that F = curl G for some vector
field G on 4.
Let f: U — R™ be a differentiable function with a differentiable
inverse f~1: f(U) —» R". If every closed form on U is exact, show
that the same is true for f(U). Hint: If dw = 0 and f*o = dy,
consider (f~1)*y.
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4-21.* Prove that on the set where 8 is defined we have

de = dr + dy.
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GEOMETRIC PRELIMINARIES

A singular n-cube in A C R" is a continuous function c:
[0,1]* — A (here [0,1]" denotes the n-fold product [0,1] X - - -
X [0,1]). We let R? and [0,1]° both denote {0}. A singular
0-cube in A is then a function f: {0} — A or, what amounts to
the same thing, a point in A. A singular 1-cube is often
called a curve. A particularly simple, but particularly

important example of a singular n-cube in R" is the standard
n-cube I": [0,1]* — R" defined by I"(z) = z for z & [0,1]".
We shall need to consider formal sums of singular n-cubes in

A multiplied by integers, that is, expressions like
261 + 362 - 463,

where ¢, ¢s, c3 are singular n-cubes in A. Such a finite sum
of singular n-cubes with integer coefficients is called an
n-chain in A. In particular a singular n-cube c is also con-
sidered as an n-chain 1-¢. It is clear how n-chains can be
added, and multiplied by integers. For example

2(c1 + 3cs) + (—2)(c1 + c3 + c2) = —2¢cy — 2c3 + 6.

(A rigorous exposition of this formalism is presented in Prob-
lem 4-22.)

For each singular n-chain ¢ in A we shall define an (n — 1)-
chain in A called the boundary of ¢ and denoted dc. The
boundary of 12, for example, might be defined as the sum of
four singular 1-cubes arranged counterclockwise around the
boundary of [0,1]?, as indicated in Figure 4-4(a). It is
actually much more convenient to define 12 as the sum, with
the indicated coefficients, of the four singular 1-cubes shown
in Figure 4-4(b). The precise definition of d/™ requires some
preliminary notions. For each 7 with 1 <7 < n we define
two singular (n — 1)-cubes If o and I{;,, as follows. If
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FIGURE 4-4

r € [0,1]" 7!, then

1 mi—1l n i ~n—1

1§/ /N . Tns 1 i \
It o) = 1", . .. 202, ... ,2"7)
1

= i—1 1 n—1
(x ’ . T ,O,x A ),
n _ Jn¢.l i—1 % n—1
I y(@) = Iz, . .. 2 Lt ... 2™ )
= (!, ... 2712 ... 2.

We call If;, the (7,0)-face of I" and I7; ;) the (¢,1)-face
(Figure 4-5). We then define

L
i=1a=0,1

n 1 ai n __,

For a general singular n-cube c: [0,1]" — A we first define the

i=1 «=0,1
Finally we define the boundary of an n-chain Za;c; by
d(2aic;) = 2a;9(cs).

Although these few definitions suffice for all applications in
this book, we include here the one standard property of 4.
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4-12 Theorem. If ¢ is an n-chain in A, then 9(dc) =
Briefly, 3% = 0.

Proof. Let i <j and consider (If; ) .8. If x € [0,1]"72
then, remembering the definition of the (j,8)-face of a singular
n-cube, we have

(It s (@) = (za)(I?fﬂl)(x)) | |
= 1(10‘)(:1; T 7x1g‘)5;x{7 o ,x"_")
= I"(xl, R ,x"—l,a,x@, ... ,33]_1,6,23], Ce, x”"Q).
Similarly

(I?j+1,ﬂ))(i,a) = I?j+1 ﬁ)(I(z a)(x)) . .
= 1(]+1 ﬁ)(xy Cee T e, T

= Iz}, ... @ Laat, ... 2B, "2,

Thus (I%; ). = (ITiy1.8) G for © < j. (It may help to
verify this in Figure 4-5.) It follows easily for any singular
n-cube ¢ that (C(i,a))(j,ﬂ) = (C(H_LB))(,"Q) when ¢ < j Now

n

d(dc) = 9 (2 z (—1)i+°‘c(,-,a,)
t=1 a=0,1
n—1

=Z Z Z (— 1) 748 (ei0)) (7.8 -
i= 1 j=1 8=0,1
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In this sum (c(:,ay) (s, and (c(i41,8)¢i,4) Occur with opp 31te
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signs. Therefore all terms cancel out in pairs and d(dc) =
Since the theorem is true for any singular n-cube, it is also
true for singular n-chains. |

It is natural to ask whether Theorem 4-12 has a converse: If
dc = 0, is there a chain d in A such that ¢ = 8d? The answer
depends on A and is generally ‘“no.” For example, define
c: [0,1] > R? — 0 by ¢() = (sin 27nt, cos 2rnt), where n is

n R ¢

Zero aen oli) = 6V SO0 oOC = u. DUv
\+/ \V/),

a nmn_ ‘I
(2] IJ.ULJ. llU v p 8

(Problem 4-26) there is no 2-chain ¢’ in R? — 0, with d¢’ = ¢

Problems. 4-22, Let § be the set of all singular n-cubes, and Z the
integers. An n-chain is a function f: § — Z such that f(c) =
for all but finitely many ¢. Define f + g and nf by (f + g)(¢) =
f(e) + g(c) and nf(c) = n - f(c). Show that f+ g and nf are
n-chains if f and g are. If ¢ € §, let ¢ also denote the function f
such that f{c) = 1 and f{(¢’) = 0 for ¢’ ¢ ¢. Show that every
n-chain f can be written aic1 + - - - + aicr for some integers
i, . . . ,ak and Sing“umr n-cubes c1, . . . ,Ck.

4-23. For B > 0 and n an integer, define the singular 1-cube cg,,: [0,1] —
R? — 0 by cr,n(t) = (R cos 2xnt, R sin 2rnt). Show that there
is a singular 2-cube c: [0,1]2 — R? — Osuch that cg,» — cr,.» = dc.

4-24, If cis a singular 1-cube in R2 — 0 with c(0) = ¢(1), show that th

—c1,n = 9c? for some 2-cha1n

(‘D
(‘D

is an integer n such that 2,

Hint: First partition [0,1
one side of some line throug
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THE FUNDAMENTAL THEOREM OF CALCULUS
2 —— 2 PR RPN Yy
The fact that d° = 0 and 3® = 0, not to mention the typo-

graphical similarity of d and 9, suggests some connection
between chains and forms. This connection is established by
integrating forms over chains. Henceforth only differentiable
singular n-cubes will be considered.

If w is a k-form on [0,1)*, then w = fdz' A - - + A dz* for
a unique function f. We define

w=[f.

{o,1]* {0,1]*
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fdz* A - - - Adzb = / fzt, . .. x2F)dz! - - - dab,
(0,1 [0/1]%

one of the reasons for introducing the functions z'.
If wis a k-form on A and cis a singular k-cube in A, we define

[ 5d Ak |

Note, in particular, that

[1da* A -+ Adab = [ (I¥*(fde' A - - - A dah)
It [0,1]%
= [ s, .. aRaet - - - dat
[0,1]*
A special definition must be made for £k = 0. A O-form w is
a funetion; if ¢: {0} — A is a singular O-cube in A we define
[ w = w(c(0)).

[

The integral of w over a k-chain ¢ = Za,c; is defined by

[o=Ya o
oL

The integral of a 1-form over a 1-chain is often called a line

nnnnnn 1 T D Ao L N A 1 favrn ~nn P2 4 .INn 11 _, P2
xxu,cslax AL 1 WL T w U/y lb a 1~=1Ul1l1l]l Ull av auu b lU J.J =7 4t

is a singular 1-cube (a curve), then one can (but we will not)
prove that

f Pdz + Qdy = lim Z [c}(t) — c*(ti—p)] - Ple(t?))
jw=]
+ [e(t:) — c*(ti-1)] - Q(e(tY))

where o, . . . ,t, is a partition of [0,1], the choice of # in
[ti—1,ts] 18 arbitrary, and the limit is taken over all partitions
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as the maximum o The right side is
often taken as a definition of [,P dx + Q dy. This is a natural
definition to make, since these sums are very much like the
sums appearing in the definition of ordinary integrals. How-
ever such an expression is almost impossible to work with and
is quickly equated with an integral equivalent to f[o,uc*(P dx
+ @ dy). Analogous definitions for surface integrals, that
is, integrals of 2-forms over singular 2-cubes, are even more
complicated and difficult to use. This is one reason why we
have avoided such an approach. The other reason is that the
definition given here is the one that makes sense in the more
general situations considered in Chapter 5.

The relationship between forms, chains, d, and 9 is summed
up in the neatest possible way by Stokes’ theorem, sometimes

nn”nr’] fhn fnndnmnnfn] fhnernm n'F na]cu lus ;n h 5“‘“ dlmc 1=

AALIVACUILAULE ViUl ULLY

i — ti 1| goes to 0.

sions (if £ = 1and ¢ = I}, it really is the fundamental theorem
of calculus).

4-13 Theorem (Stokes’ Theorem). If w is a (k — 1)-
form on an open set A C R" and ¢ is a k-chain in A, then

Proof. Suppose first that ¢ = I* and w is a (k — 1)-form on
[0,1]*. Then w is the sum of (k — 1)-forms of the type

N

fdr'' A - - Ad* A - A d2h,

and it suffices to prove the theorem for each of these. This
stimply involves a computation:

Note that
It o*(fda' A - - - Adz* A - - - A d2P)
[0,1]%-1
0 if j 5 4,

= /f(xl,...,a,...,xk)dxl--~dx’° if j = 4.

(0,1]%
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Therefore
[fds' A - AN A A
alx
k P
=Y Y (vt [ BorGdt A A
j=1a=0,1 [0,1]1
= (—1)"*! /f(xl, oo ZBde - - dat
[0,1]*
+ (=1)" /f(xl, o0, .. ZDdet - - dat,
[0,1]*
On the other hand,
[agdz A - Adzt A A dat)
= f Difdx* Adzt A - - - /\J;i/\ N
[0,1]
= (=1t [ Dy,
(0,1

By Fubini’s theorem and the fundamental theorem of calculus
(in one dimension) we have

/d(fdxl/\ C o AAE A A dab)
d 1 1
= (=)= [ ([ Difat, ... Ve dat - -
J \.J N /
0 0
dot - - - dat
1 1
(=07 [ e e
0 0
—f(xly 707 ;xk)]dxl o dxi dxk
= (—1)1! /f(xl, L L dhdat - - da”
[0,1]%

+ (—1)* /f(xl, o0, L 2Bdat - - - dat,
[0,1]*
Thus

Ik arx
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If ¢ is an arbitrary singular k-cube, working through the
definitions will show that

/w = /c*w.
T

dc
Therefore

fdw = /c*(dw) = /d(c*w) = /c*w = /w.

Ik It ark dc

Finally, if ¢ is a k-chain Za.c;, we have

!dw =Za,-! do = Zaia;[w = [ w1

dc

Stokes’ theorem shares three important attributes with
many fully evolved major theorems:

1. It is trivial.

2. It is trivial because the terms appearing in it have been
properly defined.

3. It has significant consequences.

Since this entire chapter was little more than a series of
definitions which made the statement and proof of Stokes’
theorem possible, the reader should be willing to grant the
first two of these attributes to Stokes’ theorem. The rest of
the book is devoted to justifying the third.

Problems. 4-25. (Independence of parameterization). Let ¢ be a
singular %-cube and p: [0,1]F — [0,1]¥ & 1-1 function such tha
p([0,1]¥) = [0,1]* and det p’(z) > 0 for z € [0,1F. If w is a

k-form, sh

(=]
<
-
o d
)
-+

4-26. Show that [., d@ = 2an, and use Stokes’ theorem to conclude
that cg.n # dc for any 2-chain ¢ in R? — 0 (recall the definition of
CR,n In Problem 4-23).

4-27. Show that the integer n of Problem 4-24 is unique. This integer
i called the winding number of ¢ around 0.

4-28. Recall that the set of complex numbers C is simply R2? with
(@db) =a+0b. If a,...,0.,EC let f: C— C be f(z) =
2" +ape™ '+ .- . +a, Define the singular 1l-cube cg;:
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4-29.

4-30.

4‘-310

4-32.

4“33-

L3

[0,1] > C — 0 by cg,s = fecr1, and the singular 2-cube ¢ by
c(st) =t crn(s) + (1 — t)er,s(s).

(a) Show that ac = cr.s — cr,a, and that ¢([0,1] X {0,1]) C
C — 0if R is large enough.

(b) Using Problem 4-26, prove the Fundamental Theorem of
Algebra: Every polynomial z* + a1z® ! + - - - + apwitha; € C
has a root in C.

If wis a 1-form fdz on [0,1] with f(0) = f(1), show that there is
a unique number A such that @ — XA dz = dg for some function g
with ¢(0) = g(1). Hint: Integrate w — Xdx = dg on {0,1] to
find A.

If w is a 1-form on R? — 0 such that dw = 0, prove that

= \df + dg
for some N €E Rand g: R2 —0— R. Hint: If
cr.1*(w) = Mg dz + d(gr),

show that all numbers A have the same value A.

If w 5 0, show that there is a chain csuch that [,w = 0. Use this
fact, Stokes’ theorem and 4% = 0 to prove d? = 0.

(a) Let €1, ¢z be singular 1-cubes in R? with ¢1(0) = c2(0) and ¢1(1)
= ¢o(1). Show that there is a singular 2-cube ¢ such that dc =
c1 — ¢ + ¢3 — ¢4, where ¢3 and ¢4 are degenerate, that is, c3([0,1])
and ¢4([0,1]) are points. Conclude that [,w = [cw if @ is exact.
Give a counterexample on R? - 0if wis merely closed.

(b) If w is & 1-form on a subset of R2 and Jrclw = Jrc,w forall ¢ ci,

ce with ¢1(0) = ¢2(0) and c1(1) = c3(1), show that « is exact.

differentiabl & C if the limi
z) —flz
oy = i 1@~ IG0)
o \vu/
22 < — 20
exists. (This quotient involves two complex numbers and this

definition is completely different from the one in Chapter 2.)
If f is differentiable at every point z in an open set A and f’ is
continuous on 4, then fis called analytic on A.

(a) Show that f(z) = z is analytic and f(z) = Z is not (where
z + 1 =z — 1y). Show that the sum, product, and quotient
of analytic functions are analytic.

(b) If f = u + v is analytic on 4, show that u and » satisfy
the Cauchy-Riemann equations:

ou av ou —adv
—=—  and —=—:
ox ay a9y o0x
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Hint: Use the fact that lim [f(z) — f(z0)]/(z — z0) must be the

z2—20
same for .=z + (x +7-0) and z=20+4+ (0 +7-y) with
x,y — 0. (The converse is also true, if » and v are continuously
differentiable; this is more difficult to prove.)
(¢) Let T: C— C be a linear transformation (where C is con-
sidered as a vector space over R). If the matrix of 7 with respect

to the basis (1,7) is (g’s) show that T is multiplication by a com-

lex number if and only if ¢ = dand b = —¢. Part (b) shows that
an analytic function f: C — C, considered as a function f: R?—
R2, has a derivative Df(zp) which is multiplication by a complex
number. What complex number is this?

(d) Define

d{w + 79) = dw + 7 dy,

/w+in=[w+i/n,

W+ AN@FAN=0A0 — g ANFIAGO + & AN),

and
dz = dx + v dy.

Show that d(f-dz) = 0 if and only if f satisfies the Cauchy-
Riemann equations.

(e) Prove the Cauchy Integral Theorem: If f is analytic on 4,
then fcf dz = 0 for every closed curve ¢ (singular i-cube with
¢(0) = ¢(1)) such that ¢ = ¢’ for some 2-chain ¢’ in A.

[N Ao 2an

(f) Show that if g(z) = 1/2, then g: az {01" (l/z)uz in classica
notation] equals 7d6# 4+ dh for some function A: C — 0— R.

Conclude that [c,,(1/2)dz = 2rin.

(g) If f is analytic on {z: Iz < 1}, use the fact that g(z) =

[

f(z)/z is analytic in {z: 0 < |z| < 1} to show that
(1@, o [1D,
]z z
CRy,n CRgyn

if 0 <Ry, Ry <1. Use (f) to evaluate lim fckmf(z)/z dz and
R—0

conclude:
Cauchy Integral Formula: If f is analytic on {z: |z| < 1} and
¢ is a closed curve in {z: 0 < |z| < 1} with winding number n
around 0, then
n - f(0) =—1—, f—(z—)dz.
271

-4
c
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FIGURE 4-6

(e)
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4-34. If F: [0, 1]2— R?3 and s € [0,1] define F,: [0,1] > R® by F,(@) =
F(s,t). IfeachF,is a closed curve, F is called a homotopy between
the closed curve Fg and the closed curve F;. Suppose F and G are
homotopies of closed curves; if for each s the closed curves F, and
G, do not intersect, the pair (F,@) is called a homotopy between the
nonintersecting closed curves Fo, Go and Fy, G4. It is intuitively
obvious that there is no such homotopy with Fq, G¢ the pair of
curves shown in Figure 4-6 (a), and F1, G; the pair of (b) or (c).
The present problem, and Problem 5-33 prove this for (b) but the
proof for (c) requires different techniques.

(a) If f, g: [0,1] = R3 are nonintersecting closed curves define
¢s,0: (0,112 > R® — 0 by
cro(u,w) = f(u) — g(v).
If (F,G) is a homotopy of nonintersecting closed curves define
Cr,g: [0,1]* > R? — 0 by
Cr,e(8u,0) = cp,q,(u,0) = F(s,u) — G(s).

Show that
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MANIFOLDS

If U and V are open sets in R", a differentiable function
h: U— V with a differentiable inverse A~™': V — U will be
called a diffeomorphism. (“leferentlable” henceforth
means ‘“‘C*".)

A subset M of R" is called a k-dimensional manifold (in

an 11 I.Ul. UVUL.)’ pUllLU S O LVL UIJ.U J.ULI.UVV]. 5 ‘JU ULUJ.UI.L J.D
satisfied:
(M) There is an open set U containing z, an open set V C R”,
and a diffeomorphism h: U — V such that
RUNM) =VN( foh
— vkl — L L — g —
={yeV:yT = = y" = 0}.

In other words, U M M is, “up to diffeomorphism,”’ simply
RF X {0} (see Figure 5-1). The two extreme cases of our
definition should be noted: a point in R” is a 0-dimensional
manifold, and an open subset of R” is an n-dimensional
manifold.
One common example of an n-dimensional manifold is the
109
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(b)

FIGURE 5-1. A one-dimensional manifold in R? and a two-dimen-
stonal manifold in R3.
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n-sphere S”, defined as {z € R**!: |x| = 1}. We leave it
as an exercise for the reader to prove that condition (M) is
satisfied. If you are unwilling to trouble yourself with the
details, you may instead use the following theorem, which
provides many examples of manifolds (note that 8" = g~1(0),
where g: R**!1 — R is defined by g(z) = |z|? — 1).

5-1 Theorem. Let A C R" be open and let g: A — RP
be a differentiable function such that g’(z) has rank p whenever
g(z) = 0. Then ¢g~1(0) is an (n — p)-dimensional manifold in
R™.

Proof. This follows immediately from Theorem 2-13. |

There is an alternative characterization of manifolds which
is very important.

5-2 Theorem. A subset M of R™ is a k-dimensional mani-
fold if and only if for each point x & M the following ‘‘coordinate
condition” is satisfied:

(C) There ©s an open set U containing x, an open set W C R¥,
and a 1-1 differentiable function f: W — R™ such that

() f(Wy=MMNU,

(2) f'(y) has rank k for each y & W,

(3) f~: f(W) — W s continuous.
[Such a function f is called a coordinate system around z
(see Figure 5-2).]

Proof. If M is a k-dimensional manifold in R", choose
h: U — V satisfying (M). Let W = {a € R*: (a,0) € h(D)}
and define f: W — R"™ by f(a) = h~(a,0). Clearly f(IV) =
MNU and f! is continuous. If H: U- R* is H(z) =
(hY(z), . . . , h*(2)), then H(f(y)) = y for all y € W; there-
fore H'(f(y)) - f'(y) = I and f’(y) must have rank k.

Suppose, conversely, that f: W — R" satisfies condition (C).
Let z = f(y). Assume that the matrix (D;fi(y)),1 < 4,7 <k
has a non-zero determinant. Define g: W X R** — R" by
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h

FIGURE 5-2
g(a,b) = f(a) + (0,b). Then det ¢’(a,b) = det (D;f¥a)), so
det ¢'(y,0) % 0. By Theorem 2-11 there is an open set V,’

containing (y,0) and an open set V' containing ¢(y,0) = z such
that g: V' — V4’ has a differentiable inverse h: Vo' — V,’.
Since f~! is continuous, {f(a): (a,0) € Vy'} = U N f(W) for
some open set U. Let Vo=V, N U and Vi = g 1(V,).
Then Vo, M M is exactly {f(a): (a,0) € V1} = {g(a,0): (a,0)
E Vl}, 80

(Ve N\ M) =g (Vo N\ M) = g7 ({g(a,0): (a,0) € V1})
=ViN R X {0}). |

One consequence of the proof of Theorem 5-2 should be
noted. If fy: W;— R"™ and f,: W, — R™ are two coordinate
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systems, then

fotofi ST (fo(We)) — R?

is differentiable with non-singular Jacobian. If fact, f3(y)
consists of the first k£ components of A(y).

The half-space H* C R”* is defined as {z € R*: 2% > 0}.
A subset M of R" is a k-dimensional manifold-with-
boundary (Figure 5-3) if for every point # € M either condi-
tion (M) or the following condition is satisfied:

(M’) There is an open set U containing z, an open set
V C R”, and a diffeomorphism A: U — V such that

RUNM) =V N HF X {0})
={yEV:iy*>0and y**1 = - - - =y* =0}
and h(x) has kth component = 0.
It is important to note that conditions (M) and (M’)

cannot both hold for the same z. In fact, if hy: U; — V; and
he: Us— Vo satisfied (M) and (M’), respectively, then
he o by ! would be a differentiable map that takes an open set
in R* containing A(z), into a subset of H”* which is not open in
R”*. Since det (hgohy;™ %)’ # 0, this contradicts Problem
2-36. The set of all points x € M for which condition M’ is

satisfied is called the boundary of M/ and denoted /. This

1’ {/\\
TN L N
\ QY

(a) (b)
FIGURE 5-3. A one-dimensional and a two-dimensional manifold-
with-boundary in R,



Problems. 5-1. If M is a k-dimensional manifold-with-boundary,
prove that M is a (¢ — 1)-dimensional manifold and M — M is
a k-dimensional manifold.

5-2. Find a counterexample to Theorem 5-2 if condition (3) is omitted.
Hint: Wrap an open interval into a figure six.

5-3. (a) Let A C R™be an open set such that boundary A isan (n — 1)-
dimensional manifold. Show that N = A \U boundary A is an
n-dimensional manifold-with-boundary. (It is well to bear in mind
the following example: if 4 = {z € R™ |z| <1 or 1 < |z| < 2}
then N = A U boundary A is a manifold-with-boundary, but
ON # boundary A.)

(b) Prove a similar assertion for an open subset of an n-dimen-
sional manifoid.

5-4. Prove a partial converse of Theorem 5-1: If M C R" is a k-dimen-
sional manifoid and x & M, then there i1s an open set A C R” con-
taining z and a differentiable function g: A — R *guch that 4 N\ M

= ¢g~'(0) and ¢'(y) has rank n — k when g(y) = 0.
5-5. Prove that a k-dimensional (vector) subspace of R" is a k-dimen-

orAanal mrana

FIGURE 5-4
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5-6. If f: R* —» R™, the graph of fis {(z,y): v = f(z)}. Show that
the graph of f is an n-dimensional manifold if and only if f is

differentiable.

5-7. Let K* = (s ER™ 2! =0and z?, ... 2" >0}. If M C K"
is a k-dimensional manifold and N is obtained by revolving M
around the axis z! = . . . = z"~! = 0, show that N is a (k + 1)-

dimensional manifold. Example: the torus (Figure 5-4).
5-8. (a) If M is a k-dimensional manifold in R® and k& < n, show that

M has measure 0.

(b) If M is a closed n-dimensional manifold-with-boundary in
R", show that the boundary of M is 8M. Give a counterexample if
M is not closed.

) If M is a compact n-dimensional manifold-with-boundary

Shf)w l/[l&I/ llfl J.S Juruan-measurame

FIELDS AND FORMS ON MANIFOLDS

Let M be a k-dimensional manifold in R” and let f: W — R”
be a coordinate system around z = f(a). Since f’(a) has rank
k, the linear transformation fx: R, — R™,is 1-1, and fx (R%,)
18 a k-dimensional subspace of R",. If g: V — R" is another
coordinate system, with z = g(b), then

9*(Rkb) = f+(f7 o g)x(R%) = fx(R%).

£
)
L o
)
)
o
o
)

the GOOI‘d'uuw system _/ This subspace is denoted ﬁ’fx, and
is called the tangent space of M at z (see Figure 5-5). In
later sections we will use the fact that there is a natural inner
product T, on M,, induced by that on R”,: if vy,w &€ M, define
T.(v,w) = (v,w),.

Suppose that 4 is an open set containing M, and F is a differ-
entiable vector field on A such that F(z) € M, for each
r& M. If f~W— R"” is a coordinate system, there is a
unique (differentiable) vector field G on Wsuch that f«(G(a)) =
F(f(a)) for each a € W. We can also consider a function F
which merely assigns a vector F(x) € M, for each z € M;
such a function is called a vector field on M. There is still
a unique vector field G on W such that f«(G(a)) = F(f(a)) for
a & W; we define F to be differentiable if G is differentiable.

Note that our definition does not depend on the coordinate



.y

FIGURE 5-5
system chosen: if g: V— R" g« (H()) = F(g(b)) for all
b € V, then the component f“nctlvns of H(b) must equal the
component functlons of G(f~(g(b))), so H is differentiable

if G is.

Precisely the same considerations hold for forms. A func-
tion w which assigns w(z) € AP(M,) for each x € M is called
a p-form on M. If f: W — R"is a coordinate system, then
f*w is a p-form on W; we define w to be differentiable if f*w 1s.
A p-form w on M can be written as

w = z Win, .. 5 QTN A dx'®.

< - <ip

Here the functions w;, ... ;, are defined only on M. The
definition of dw given previously would make no sense here,
since D;(ws,, ... ) has no meaning. Nevertheless, there is a
reasonable way of defining dw.
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5-3 Theorem. There 18 a unique (p + 1)-form dw on M
such that for every coordinate system f: W — R™ we have

f*(dw) = d(f*w).

Proof. If f: W — R" is a coordinate system with z = f(a)
and vy, . . . wpyp1 © M, there are unique wy, . . . ,wpy1in
R*, such that fi(w;) = v; Define dw(z)(vy, . . . Wpy1) =
d(f*w)(a)(wy, . . ., ;Wpt1). One can check that this definition
of dw(x) does not depend on the coordinate system f, so that

I] “Yl'\]] AI\GV\I\A “/r ““““““ 4‘ n]nnm *1"\(\"' r],. I‘\f\ﬁ "l\ L\I\
aw 18 weli-aennea. lvioreover, 1t is clear that dw has to be

defined this way, so dw is unique. §

It is often necessary to choose an orientation u, for each
tangent space M, of a manifold M. Such choices are called
consistent (Figure 5-6) provided that for every coordinate

(b)

FIGURE 5-6. (a) Consistent and (b) inconsistent choices of orien-
tations.
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system f: W — R" and a,b € W the relation

[fx((e1)a), - - . fa((er)a)] = ms(a)
holds if and only if

[f+((e1)s), . - . \fe((er)s)] = msesy.

Suppose orientations u, have been chosen consistently. If
f: W — R" is a coordinate system such that

t T = —1, then
fo T 2s orientation-preserving. Therefore there is an orienta-
tion-preserving coordinate system around each point. If fand
g are orientation-preserving and z = f(a) = g(b), then the

relation

[Fx((er)a), - - . fe((er)a)] = nz = [gx((e1)s), - - . ,g+((en)s)]

FIGURE 5-7. The Mobius strip, a non-orientable manifold. A

basis begins at P, moves to the right and around, and comes back to P with
the wrong arientation.
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[(g7 o Nx(le)a)s - . . (g o Nx((ex)a)] = [ler)s, - . . ,(ex)s,

so that det (¢~ o f)’ > 0, an important fact to remember.

A manifold for which orientations u, can be chosen con-
sistently is called orientable, and a particular choice of the
uz is called an orientation u of M. A manifold together with
an orientation u is called an oriented manifold. The classical
example of a non-orientable ma,nifold is the Mobius strip.

paper which has been given a half twist (Flgure 5-7).

Our definitions of vector fields, forms, and orientations can
be made for manifolds-with-boundary also. If M isa k-dimen-
sional manifold-with-boundary and x & M, then (dM), is
a (k — 1)-dimensional subspace of the k- dimensional Vector

follows (Flgur 5-8). If f: W— R" is a coordinate system
with W C H* and f(0) = z, then only one of these unit vectors
is fx (vg) for some vy with v* < 0. This unit vector is called the
outward unit normal n(z); it is not hard to check that this
definition does not depend on the coordinate system f.

Suppose that uis an orientation of a k-dimensional manifold-
with- boundary M. Ifz & dM, choose v; V1 & BM),

TALiRAalne ¥ drA o 0 AL WO\ U drd 4 VidUUDY 1, e s s VK] N \Virt J

so that [n(x), vy, . . . we—1] = ue If it is also true that
[n(x), wi, . .. ,wr_1] = pg, then both [vy, . . . ,vx_1] and
[wy, . . . ,wz_1] are the same orientation for (dM),. This
orientation is denoted (du),. It is easy to see that the orienta-
tions (du),, for x € M, are consistent on dM. Thusif M is
orientable, d M is also orientable, and an orientation u for M
determines an orientation du for M, called the induced
orientation. If we apply these definitions to H* with the
usual orientation, we find that the induced orientation on
R*! = {z € H*: 2* = 0} is (—1)* times the usual orienta-
tion. The reason for such a choice will become clear in the
next section.

If M is an oriented (n — 1)-dimensional manifold in R”, a
substitute for outward unit normal vectors can be defined,
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g () = n(y)

(a)

IS Al I8 '3 HiN-
LA GUINTIY J=0.

So
]

boundary in R3.

even though M is not necessarily the boundary of an n-dimen-

sional manifold. If [v;, . . . ,vp_1] = us, we choose n(x) in
R", so that n(x) is a unit vector perpendicular to M, and
[n(x), v1, . . . ,wn_1] is the usual orientation of R”,. We still

call n(z) the outward unit normal to M (determined by w).
The vectors n(z) vary continuously on J, in an obvious sense.
Conversely, if a continuous family of unit normal vectors n(z)
is defined on all of M, then we can determine an orientation of
M. This shows that such a continuous choice of normal
vectors is impossible on the Mébius strip. In the paper model
of the Mobius strip the two sides of the paper (which has
thickness) may be thought of as the end points of the unit
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normal vectors in both directions. The impossibility of
choosing normal vectors continuously is reflected by the
famous property of the paper model. The paper model is
one-sided (if you start to paint it on one side you end up
painting it all over); in other words, choosing n(x) arbitrarily
at one point, and then by the continuity requirement at other
points, eventually forces the opposite choice for n(r) at the
initial point.

Problems. 5-9. Show that M, consists of the tangent vectors at {
of curves ¢ in M with ¢(t) = z.
1N [« SR, D tee oa o Vands o P Q
=-1U. duppose € 18 a coliecrion ot € 8
(1) For each z € M there is f € € which is a coordinate system
...... Vif fac o th A.,urr—l..,.'\n Shcwtha\tthere

on

around z; (2) if f,g € €, then det (f gr > 9
is a unique orientation of M such that f is orientation-preserving
ffe e

5-11. If M is an n-dimensional manifold-with-boundary in R”, define
uz as the usual orientation of M, = R", (the orientation u so
defined is the usual orientation of M). If x € M, show that
the two definitions of n(x) given above agree.

5-12. (a) If F is a differentiable vector field on M C R"™, show that
there is an open set A D M and a differentiable vector field F
on A with F(z) = F(z) for x € M. Hint: Do this locally and
use partitions of unity.

(b) If M is closed, show that we can choose 4 = R™.

5-13. Let g: A — RP? be as in Theorem 5-1.

(a) If x € M = ¢g~1(0), let h: U — R" be the essentially unique

diffeomorphism such that goh(y) = (y»?*, ...,y and
h(0) = z. Define f: R"? — R" by f(a) = h(0,a). Show that fe
is 1-1 so that the n — p vectors fx((€1)0), . . . ,f+x ((€n—p)o) are

linearly independent.

(b) Show that orientations u; can be defined consistently, so
that M is orientable.

(¢) If p = 1, show that the components of the outward normal
at z are some multiple of Dig(z), . . . ,Dng(x).

5-14. If M C R" is an orientable (n — 1)-dimensional manifold, show
that there is an open set A C R” and a differentiable g: A — R's0
that M = g—}(0) and ¢’(z) has rank 1 for z € M. Hint: Prob-
lem 5-4 does this locally. Use the orientation to choose consistent
local solutions and use partitions of unity.

5-15. Let M be an (n — 1)-dimensional manifold in R”. Let M (g) be
the set of end points of normal vectors (in both directions) of
length ¢ and suppose ¢ is small enough so that M (e) is also an
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(n — 1)-dimensional manifold. Show that M (e) is orientable
(even if M is not). What is M (¢) if M is the Mobius strip?

5-16. Let g: A — R? be asin Theorem 5-1. If f: R®— R is differentiable
and the maximum (or minimum) of f on g~!(0) occurs at a, show
that there are \;, . . . ,A\; € R, such that

(1) Dif@) = Y, uDig@)  j=1,...n

i1=1

Hint: This equation can be written df(a) = 2 ;\dg*(a) and is
obvious if g(x) = (z* P, . . . z").

The maximum of f on g—}(0) is sometimes called the maximum
of f subject to the constraints g' 0. One can attempt to
find a Uy bOlVlIlg the bybbUIIl of equauions \1) In particu}ar, if

g: A — R, we must solve n + 1 equations

D;f(a) = ADjg(a),
gla) =

in n + 1 unknowns a!, . . . ,a®\, which is often very simple
if we leave the equation g(a) = 0 for last. This is Lagrange’s
method, and the useful but irrelevant X is called a Lagrangian
multiplier. The following problem gives a nice theoretical use
for Lagrangian multipliers.

5-17. (a) Let T: R® — R™ be self-adjoint with matrix 4 = (as;), so
that a;; = aj. If fz) = (Tz,x) = Za,-,-xixf show that Dyf(zr) =

oSn . 7 TN 23, IR TN of (Tx.2) on Sr1
QH] l(l/k].b Dy bUllbluCllllE IJII.Q‘J' ula,)uuuuu Ul \ .b/ Ll A3

show that there is z € S*™! and A € R with Tz = \z.

(h) Tf Tf— fog —C RB. |/
W) ty S Al |

T:V — Vis self-adjoint.

STOKES> THEOREM ON MANIFOLDS

If w is a p-form on a k-dimensional manifold-with-boundary
M and c is a singular p-cube in M, we define

/ w = f c*w

c [0,1]»
precisely as before; integrals over p-chains are also defined as
before. In the case p = k it may happen that there is an
open set W D [0,1]* and a coordinate system f: W — R™ such
that c(z) = f(x) for z € [0,1]%; a k-cube in M will always be
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understood to be of this type. If M is oriented, the singular
k-cube c is called orientation-preserving if f is

5-4 Theorem. If cycs: [0,11*— M are two orientation-
preserving singular k-cubes in the oriented k-dimensional mani-

fold M and w is a k-form on M such that w = 0 outside of
cl([();l]k) M 62([011]k)7 then

[o=[o
Proof. We have

[o= [ e*@ = [ (@ en*erw.

J J

¢1 [0,1]% (0,1]*
(Here c;! o c; is defined only on a subset of [0,1]* and the
second equality depends on the fact that w = 0 outside of
¢1([0,11%) M ¢4([0,1]%).) It therefore suffices to show that

(1 vk s roo. r
(€5 " oc1)*ce™(w) = j c2¥(w) = / w.
[0,1]* [0,1]% c2

c2*(w) = fdz'! A - - - A dz* and ¢, o ¢; is denoted by g,
4

(ca to c)¥*co*(w) = g*(fdzx! A -+ - A dz¥)
= (fog) -detg' -dz' A - - - A dz”
= (fog)- !detg’! cdz'' A - - - A d2h

Y

since det ¢’ = det(caloci)’ > 0. The result now follows
from Theorem 3-13. |

The last equation in this proof should help explain why we
have had to be so careful about orientations.

Let w be a k-form on an oriented k-dimensional manifold M.
If there is an orientation-preserving singular k-cube ¢ in M such
that w = 0 outside of ¢([0,1]), we define

J!w=cfw.

Theorem 5-4 shows f u w does not depend on the choice of c.
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uppose now that w is an arbitrary k-form on M. Thereisan
open cover O of M such that for each U & 0 there is an orienta-
tion-preserving singular k-cube ¢ with U C ¢([0,1]¥). Let ® be
a partition of unity for M subordinate to this cover. We

define
M/w= ; M/ga-w
e ®

provided the sum converges as described in the discussion pre-
ceding Theorem 3-12 (this is certainly true if M is compact).
An argument similar to that in Theorem 3-12 shows that [ w
does not depend on the cover © or on &.

All our definitions could have been given for a k-dimensional
manifold-with-boundary M with orientation u. Let M have

the induced orientation du. Let ¢ be an orientation-preserv-
lIig k-cuue n llfl bULII EII&D C(k 0) lleb IIl Ollfl dllu lb DIJB Ullly ldLB
which has any interior points in dM. As the remarks after
the definition of du show, ¢(x,0) is orientation-preserving if & is
even, but not if £ is odd. Thus, if w is a (k — 1)-form on M

which is 0 outside of ¢([0,1]¥), we have

c(k[”w = (—1)’“615 @

On the other hand, ¢,y appears with coefficient (—1)* in dc.

d)

Therefore
/w= [ w = (—1) [w= [w-
J J ’ ’ J i{
dc (= 1) kek,0 C(k,0) ']
Ohir ahalon of 20 wac made to eliminate anv minus signs in this
vur ¢noice o1 ou was 11 1adae to Ulllllll LE ally IILILUNS SIZILS 111 L1LD
equation, and in the following theorem

5-5 Theorem (Stokes’ Theorem). If M 1is a compact
oriented k-dimensional manifold-with-boundary and o is a
(k — 1)-form on M, then

A{dw=anflw.

(Here dM is given the induced orientation.)

Proof. Suppose first that there is an orientation-preserving
singular k-cube in M — dM such that o = 0 outside of
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[dw = /c*(dw) = /d(c*w) = /c*w = /w.

c [0,1]% [0,1]% Ik

]‘[dw=cfdw=/w=0,

ac

since @ = 0 on dc. On the other hand, [, @ = Osincew = 0

Qiinnnes naovt that thara 1@ an ariantatinnonragarving cingntlar
UuyyUDU 1IA2CAUV V1l U1ITULI U 1D avll vlicliuva uviull pl WovL Vllls Dllléul

k-cube in M such that

c
outside of ¢([0,1])*. Then

Now consider the general case. There is an open cover ©
of M and a partition of unity ® for M subordinate to © such
that for each ¢ & ® the form ¢ - @ is of one of the two sorts

already considered. We have
0=d)=d() o)= ) do
P pC®
so that
do A\ w = 0.
PESE

Since M is compact, this is a finite sum and we have

Therefore

M[dw=

Problems. 5-18. If M is an n-dimensional manifold (or manifold-
with-boundary) in R"™, with the usual orientation, show that
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,[Mf dz! A - - - A dz2™ as defined in this section, is the same as

f uf, as defined in Chapter 3.

5-19. (a) Show that Theorem 5-5 is false if M is not compact. Hint: If
M is a manifold-with-boundary for which 5-5 holds, then M — oM
is also a manifold-with-boundary (with empty boundary).

(b) Show that Theorem 5-5 holds for noncompact M provided
that » vanishes outside of a compact subset of M.

5-20. If wis a (k — 1)-form on a compact k-dimensional manifold M,
prove that f umdw = 0. Give a counterexample if M is not
compact.

5-21. An absolute k-tensor on V is a function n: V¥ — R of the form
|w| for @ € A¥(V). An absolute k-form on M is a function 5
such that 5(z) is an absolute k-tensor on M,. Show that f MN
can be defined, even if M is not orientable.

5-22. If M; C R® is an n-dimensional manifold-with-boundary and
Mo C My — 8M, is an n-dimensional manifold-with-boundary,
and M;,M; are compact, prove that

w = w,
oM dM.
where wis an (n — 1)-form on M, and dM, and dM ¢ have the ori-
entations induced by the usual orientations of M1 and M. Hini:
Find a manifold-with-boundary M such that oM = M, \JdM3and

such that the induced orientation on oM agrees with that for
dM, on dM; and is the negative of that for M3 on M.

THE VOLUME ELEMENT
Let M be a k-dimensional manifold (or manifold-with-bound-
ary) in R”, with an orientation u. If £ € M, then p, and the
inner product T, we defined previously determine a volume
element w(z) € A*(M,). We therefore obtain a nowhere-zero
k-form w on M, which is called the volume element on M
(determined by u) and denoted dV, even though it is not gen-
erally the differential of a (¢ — 1)-form. The volume of M
is defined as [ dV, provided this integral exists, which is
certainly the case if M is compact. ‘‘Volume” is usually
called length or surface area for one- and two-dimensional
manifolds, and dV is denoted ds (the ‘“‘element of length’’) or

dA [or dS] (the “element of [surface] area’).
A concrete case of interest to us is the volume element of an
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oriented surface (two-dimer
n(x) be the unit outward normal a

is defined by

then w(v,w) = 1 if v and w are an orthonormal basis of M, with
[v,w] = py. Thus dA = w. On the other hand, w(vw) =
(v X w, n(z)) by definition of ¥ X w. Thus we have

dA(w,w) = (v X w, n(z)).

Since » X w is a multiple of n(x) for v,w & M,, we conclude
that

dA@ww) = v X w|
if [v,w] = py. If we wish to compute the area of M, we must
evaluate [[g,1)2 c* (d4) for orientation-preserving singular
2-cubes ¢. Define

E(a) = [Dic'(a)]* + [D1c*(@)]* + [D1c*(a)]?,
F(a) = Dicl(a) - Doc'(a)

+ Dic*(a) - Dyc*(a)
+ Dic(a) - Dac¥(a),
G(a) = [Dac(a)]® + [Dac*(@)}? + [Dacd(a)l®.
Then
c* (dA)((e1)a,(e2)a) = dA(cx((€1)a),cx((€2)a))
= |(D1c'(a),D1c¥(a),D1c%(a)) X (DzCI(Q),D262(a),D263(a))l
= VE(0)G(a) — F(a)?

by Problem 4-9. Thus

[ e @ay= [ VEG—F.
(0,1]2 [0,1]?

Calculating surface area is clearly a foolhardy enterprise;
fortunately one seldom needs to know the area of a surface.
Moreover, there is a simple expression for d4 which suffices for
theoretical considerations.
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5-6 Theorem. Let M be an oriente

AdVv AVA (A2 14

ifold (or manifold-with-boundary) in R
outward normal. Then

(1) dA = nldy A dz+ n%dz A dz + nddx A dy.

Moreover, on M we have

(2) ntdA = dy A dz.
(3) ntdA = dz A dx.
(4) nddA = dx A dy.
Proof

Equation (1) is equivalent to the equation

dA (v,w) = det (:v \
\n(x)/

This is seen by expanding the determinant by minors along
the bottom row. To prove the other equations, let z € R3,.
Since v X w = an(z) for some a« € R, we have

(zn(2)) - (0 X w, n(x)) = (z;n(2))a = (z,0n(z)) = (z,v X w).

M H —
A

AnQIN g A PN Py and 5. wxra nhtain
1vuvsiity « = ©1, €2, aliu €3 WC VUL

1oin (O 2 (A [}
"'11\1: 9, a and \x | |

A word of caution: if w & A%(R3,) is defined by

nl(a) - w = dy(a) A dz(a).

The two sides give the same result only when applied to
vw & M,.

A few remarks should be made to justify the definition of
length and surface area we have given. If ¢: [0,1] = R" is
differentiable and ¢([0,1]) is a one-dimensional manifold-with-
boundary, it can be shown, but the proof is messy, that the
length of ¢([0,1]) is indeed the least upper bound of the lengths
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FIGURE 5-9. A surface contatning 20 triangles inscribed in a por-
tion of a cylinder. If the number of triangles is increased sufficiently, by
making the bases of triangles 3, 4, 7, 8, etc., suffictently small, the total area
of the inscribed surface can be made as large as desired.
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of inscribed broken lines. If ¢: [0,1]2— R”, one naturally
hopes that the area of ¢([0,1]2) will be the least upper bound of
the areas of surfaces made up of triangles whose vertices lie in
¢([0,1]%). Amazingly enough, such a least upper bound is
usually nonexistent—one can find inscribed polygonal surfaces
arbitrarily close to ¢([0,1]%) with arbitrarily large area! This
is indicated for a cylinder in Figure 5-9. Many definitions
of surface area have been proposed, disagreeing with each

other, but all agreeing with our definition for dlfferen'mable
S‘ 'I"FO T?f\"' a A'I

noag aQnit GG‘I nn
ULIauuvo. A AU UOOLIY IIUDU

P'h

11 U

reader is referred to References [3] or [15].

Problems. 5-23. If M is an oriented one-dimensional manifold in
R™ and c: [0,1] » M is orientation-preserving, show that

f . f , -
J @) = | VISP +

(0,1] {0,1}

5-24. If M is an n-dimensional manifold in R®, with the usual orienta-
tion, show that dV = dx! A - - - A dz", so that the volume of
M, as defined in this section, is the volume as defined in Chapter 3.
(Note that this depends on the numerical factor in the definition of
w A 7n)

5-25. Generalize Theorem 5-6 to the case of an oriented (n — 1)-dimen-
sional manifold in R™,

5-26. (a) If f: [a,b] > R is non-negative and the graph of f in the
zy-plane is revolved around the z-axis in R? to yield a surface M,
show that the area of M is

(b) Compute the area of S2.

5-27. If T: R®*— R™is a norm preserving linear transformation and M
is a k-dimensional manifold in R", show that M has the same
volume as T (M).

5-28. (a) If M is a k-dimensional manifold, show that an absolute
k-tensor |dV]| can be defined, even if M is not orientable, so that
the volume of M can be defined as fMldVl

(b) If c:[0,2x] X (—1,1) —» R3?is defined by c(u,v) =

(2 cos « + v sin(u/2)cos u, 2 sin u + v sin(u/2) sin u, v cos u/2),

show that c¢([0,2x] X (—1,1)) is a Mébius strip and find its area.
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5-29. If there is a nowhere-zero k-form on a k-dimensional manifold M,
show that M is orientable.
5-30. (a) If f: [0,1] — R is differentiable and c: [0,1] — R?2 is defined by
c(z) = (z,f(z)), show that ¢([0,1]) has length f(l) \/1 + ()2
(b) Show that this length is the least upper bound of lengths of
inscribed broken lines. Hint: If 0 = <1, < - - - <t =1,
then

le@t) — cltict)| = V (i — ti1)? + (F(t:) — f(tic1))?
=Vt — tic1)? + (532t — ti_1)?

for some s; € [t;—1,t].
5-31. Consider the 2-form « defined on R® — 0 by

_2dyANdz+yde Ndzs +2de Ady
(z2+y2+z2)§

w

(a) Show that w is closed.
(b) Show that

|p]?

ICYO T
\PJ\p,WpJ} —

m\
rJ

w

For r > 0 let 8%(r) = {z € R®: |z| = r}. Show that w restricted
to the tangent space of S%(r) is 1/r% times the volume element,
and that Jnsm) w = 4r. Conclude that w is not exact. Neverthe-
less we denote w by dO since, as we shall see, dO is the analogue of
the 1-form dg on R% — 0.

(c) If v, is a tangent vector such that v = \p for some A € R
show that de(p)(vp,wp) = 0 for all wy. If a two-dimensional
manifold M in R3 is part of a generalized cone, that is, M
is the union of segments of rays through the origin, show that
fM de = (.

(d) Let M C R® — 0 be a compact two-dimensional manifold-
with-boundary such that every ray through 0 intersects M at most
once (Figure 5-10). The union of those rays through 0 which
intersect. M, isa solid cone C(M). The solid angle subtended by M
is defined as the area of C(M) N 82, or equivalently as 1/7% times
the area of C(M) N 82(r) for r > 0. Prove that the solid angle
subtended by M is UM del. Hint: Choose r small enough so
that there is a three-dimensional manifold-with-boundary N (as in
Figure 5-10) such that 6N is the union of M and C(M) N 8%(r),
and a part of a generalized cone. (Actually, N will be a manifold-
with-corners; see the remarks at the end of the next section.)
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FIGURE 5-10

5-32. Let f, g: [0,1] > R?® be nonintersecting closed curves. Define
the linking number l(f,g) of f and g by (¢f. Problem 4-34)

-1
I(f9) = o / de.

Cfwe

(a) Show that if (¥,G) is a homotopy of nonintersecting closed
curves, then [(Fo,Go) = [(F1,G1).
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(b) If r(u,w) = |f(u) — g(v)| show that
1 1
I(f,g) = —1 / / L A du d
19 = =~ o (u,w) du dv
0 0
where
(' () (' () (3 ()
A(up) = det( (g") @) (g% (v) @%) ) )
fllw) —g') fPw) — g* ) ) — ¢*@)

5-33.

(c) Show that I(f,g) = 0 if f and g both lie in the zy-plane.
The curves of Figure 4-5 (b) are given by f(x) = (cos u, sin u, 0)
and g(») = (1 +cosv, 0, sinv). You may easily convince
yourself that calculating I(f,g) by the above integral is hopeless in
this case. The following problem shows how to find I(f,g) without
explicit calculations.

(a) If (a,b,c) € R? define

_ (x—a)dy/\dz—i—(y—b)dz/\da;—f—(z—c)da;/\dy.
R (@ —a):+ @y —b)?2+ (z — o)}

2

If M is a compact two-dimensional manifoid-with-boundary in

R? and (a,b,c) & M define

Q(a,b,c) = /de(ayb,c).
M

Let (a,b,c) be a point on the same side of M as the outward normal
and (a’,b’,c’) a point on the opposite side. Show that by choosing
(a,b,c) sufficiently close to (a',b’,c’) we can make Q(a,b,c) —
Q(a',b',c’) as close to —4r as desired. Hint: First show that if
M = 90N then Q(a,b,c) = —4r for (a,b,c) € N — M and Q(a,b,c) =
0 for (a,b,e) & N.

(b) Suppose f([0,1]) = 9M for some compact oriented two-
dimensional manifold-with-boundary M. (If f does not intersect
itself such an M always exists, even if f is knotted, see [6], page 138.)
Suppose that whenever g intersects M at x the tangent vector v of
g is not in M,. Let n' be the number of intersections where v
points in the same direction as the outward normal and n~ the
number of other intersections. If n = n* — »n™ show that

-1
4r
g

dQ.

n ==
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(e¢) Prove that

D1Q(a,b,c) = / (y — b)dzr—;g (z — ody
/
Do2(a,b,c) = / (z = c)dz :3 (z — a)dz
f
Dstab,c) = / = oy~ (y = D
/
where r(:c,y,z) = l(x,y,z)].

(d) Show that the integer n of (b) equals the integral of Prob-
lem 5-32(b), and use this result to show that I(f,g) = 1if fand g
are the curves of Figure 4-6 (b), while I(f,g) = 0if f and g are the
curves of Figure 4-6 (¢). (These results were known to Gauss
[7]1. The proofs outlined here are from [4] pp. 409-411; see also
[13], Volume 2, pp. 41-43.)

THE CLASSICAL THEOREMS

We have now prepared all the machinery necessary to state and
prove the classmal “Stokes’ type” of theorems We will

5-7 Theorem (Green’s Theorem). Let M C R? be a com-
pact two-dimensional manifold-with-boundary. Suppose that
a,B8: M — R are differentiable. Then

/adx+6dy = /(Dlﬂ— Dsa)dz A dy

L@

(Here M is given the usual orientation, and M the induced
orientation, also known as the counterclockwise orientation.)

Proof. This is a very special case of Theorem 5-5, since

d(adz + 8dy) = (D18 — De)dz A dy. |
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“5-8 Theorem (Divergence Theorem). Let M C R3 be a
compact three-dimensional manifold-with-boundary and n the
unit outward normal on M. Let F be a differentiable vector field
on M. Then

MfdideV - M{ (Fn) dA.

Thes equation 1s also written in terms of three differentiable func-
tions a,8,y: M — R:

]G5+ a)er = [[ ot + o as

Proof. Define w on M by w = Fldy A dz + F*dz A dx +
F3dx A dy. Then dw = divF dV. According to Theorem
5-6, on M we have

ntdd = dy A de,

ntdA = dz A dr,
nddA = dr A dy.

Therefore on M we have

(Fn)dA = F'nldA + F'n?dA + F*n®dA
= Fldy ANde +F*dz A dz + F3dr A dy

= w.

Thus, by Theorem 5-5 we have

[divFav = [ do = = [ (&, ndA.
A!lv /w /w /(n} |

M aM oM

5-9 Theorem (Stokes’ Theorem). Let M C R3 be a com-
pact oriented two-dimensional manifold-with-boundary and n the
unit outward normal on M determined by the orientation of M.
Let dM have the induced orientation. Let T be the vector field on
dM with ds(T) = 1 and let F be a differentiable vector field in
an open set containing M. Then

f<(V X F),nydA = [(F,T) ds.
M aM
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This equation 1s sometimes written

f adx +Bdy + vdz =

IM
9y _ 9B z(f’_oi,"_V) a(ﬂﬁ_i"_‘)]
f/["l(ay az)+" e as) T " \os " ay) | %
M

Proof. Defne w on M by w=Fldx + F*dy + F3 dz.
Since V X F has components D,F® — D3F? DjF! — DF3
D1F? — D,F1, it follows, as in the proof of Theorem 5-8, that
on M we have

(VX F),n)dA = (DyF* — DFdy A dz
+ (DsF' — DF3)dz A dz
+ (D1F2 - D2F1)d$ A dy

= dw.
On the other hand, since ds(T) = 1, on M we have
Tlds = dzx
T? ds = dy,
T3ds = dz

(These equations may be checked by applying both sides to
T,, for x € dM, since T, is a basis for (0M),.)

Therefore on M we have

(F,TYds = F'T'ds + F?T*ds + F3T3 ds
— Flde + Fdy + Fdz

= w.

Thus, by Theorem 5-5, we have

/((VXF),n)dA - /dw - /w - /(F,T)ds. 1
M M oM oM

Theorems 5-8 and 5-9 are the basis for the names div F and
curl F. If F(xz) is the velocity vector of a fluid at « (at some
time) then [sn (F,n)dA is the amount of fluid “diverging”
from M. Consequently the condition div F = 0 expresses
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the fact that the fluid is incompressible. If M is a dise, then
fa um (F,T) ds measures the amount that the fluid curls around
the center of the disc. If this is zero for all discs, then V X F
= (, and the fluid is called ¢rrotational.

These interpretations of div F and curl F are due to Maxwell
[13]. Maxwell actually worked with the negative of div F,
which he accordingly called the convergence. For V X F
Maxwell proposed ‘‘with great diffidence” the terminology
rotation of F; this unfortunate term suggested the abbreviation
rot F' which one occasionally still sees.

The classical theorems of this section are usually stated in
somewhat greater generality than they are here. For exam-
ple, Green’s Theorem is true for a square, and the Divergence
Theorem is true for a cube. These two particular facts can
be proved by approximating the square or cube by manifolds-
with-boundary. A thorough generalization of the theorems of
this section requires the concept of manifolds-with-corners;
these are subsets of R™ which are, up to diffeomorphism,
locally a portion of R* which is bounded by pieces of (k — 1)-
planes. The ambitious reader will find it a challenging exer-
cise to define manifolds-with-corners rigorously and to
investigate how the results of this entire chapter may be
generalized.

Problems. 5-34. Generalize the divergence theorem to the case of
an n-manifold with boundary in R™.
5-35. Applying the generalized divergence theorem to the set M =
{x ER". [z] < a} and F(x) = z,, find the volume of Sr—t =
{z € R*: |[z| = 1} in terms of the n-dimensional volume of B, =
{x € R™ |2| < 1}. (This volume is x™2/(n/2)! if n is even and
2D/ (n=D/2/1 .3.5. . . . .nif nis odd.)
5-36. Define F on R?® by F(r) = (0,0,cz%), and let M be a compact
three-dimensional manifold-with-boundary with M C {z: #® <
0}. The vector field F may be thought of as the downward pres-
sure of a fluid of density ¢ in {z: z® < 0}. Since a fluid exerts
equal pressures in all directions, we define the buoyant force on M,
due to the fluid, as —fa M (Fmn)dA. Prove the following theorem.
Theorem (Archimedes). The buoyant force on M is equal to the
weight of the fluid displaced by M.
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Absolute differential form, 126
Absolute tensor, 126
Absolute value, 1

Algebra, Fundamental Theorem of,

.o

105

Alternating tensor, 78
Analytic function, 105
Angle, 4

preserving, 4

solid, 131
Approximation, 15
Archimedes, 137
Area, 56

element of, 126

surface, 126, 127

Basis, usual for R*, 3
Bilinear function, 3, 23
Boundary
of a chain, 97, 98
of a manifold-with-boundary,
113

Boundary, of a set, 7
Buoyant force, 137

Cauchy Integral Formula, 106

Cauchy Integral Theorem, 106

Cauchy-Riemann equations,
105

Cavalieri’s principle, 62

Chain, 97, 100

Chain rule, 19, 32

Change of variable, 67-72

Characteristic function, 55

Closed curve, 106

Closed differential form, 92

Closed rectangle, 5

Closed set, 5

Compact, 7

Complex numbers, 104

Complex variables, 105

Component function, 11, 87

Composition, 11

Cone, generalized, 131
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Consistent choices of orientation,
117

Constant function, 20
Constraints, 122
Content, 56
Content zero, 51
Continuous differential form, 88
Continuous function, 12
Continuous vector field, 87
Continuously differentiable, 31
Convergence, 137
Coordinate condition, 111
Coordinate system, 111

polar, 73
Counterclockwise orientation, 134
Cover, 7
Cross product, 84
Cube

singular, 97

standard n-cube, 97
Curl, 88, 137
Curve, 97

closed, 106

differentiable, 96
c”, 26

Degenerate singular cube, 105
Derivative, 16
partial, 25
higher-order (mixed), 26
second-order (mixed), 26
Diffeomorphism, 109
Differentiable function, 15, 16,
105
continuocusly, 31
Differentiable curve, 96
Differentiable differential form, 88
on a manifold, 117
Differentiable vector field, 87
on a manifold, 115
Differentiable = C, 88
Differential, 91
Differential form, 8%
absolute, 126
closed, 92
continuous, 88
differentiable, 88
exact, 92

Index

Differential form, on a manifold,
117
differentiable, 117
Dimension
of a manifold, 109
of a manifold-with-boundary,
113
Directional derivative, 33
Distance, 4
Divergence of a field, 88, 137
Divergence Theorem, 135
Domain, 11
Dual space, 5

Element of area, 126

Element of length, 126

Element of volume, see Volum
element

End point, 87

Equal up to nth order, 18

Euclidean space, 1

Exact differential form, 92

Exterior of a set, 7

Faces of a singular cube, 98
Field, see Vector field
Form, see Differential form
Fubini’s Theorem, 58
Function, 11
analytic, 105
characteristic, 55
component, 11, 87

________ L2 e

composition of, 11
constant, 20
continuous, 12
continuously differentiable, 31
c”, 26
differentiable, 15, 16, 105
homogeneous, 34
identity, 11
implicitly defined, 41
see also Implicit Function
Theorem
integrable, 48
inverse, 11, 34-39
see also Inverse Function
Theorem

projection, 11
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Fundamental Theorem of Algebra,

105

Fundamental Theorem of Calcu-
lus, 100-104

Gauss, 134

Generalized cone, 131

Grad f, 96

Graph, 11, 115
Green’s Theorem, 134

Half-space, 113
Heine-Borel Theorem, 7
Homogeneous function, 34
Homotopy, 108

Identity function, 11
Implicit Function Theorem, 41
Implicitly defined function, 41
Incompressible fluid, 137
Independence of parameteriza-
tion, 104

Induced orientation, 119
Inequality, see Triangle inequality
Inner product, 2, 77

preserving, 4

usual, 77, 87
Integrable function, 48
Integral, 48

iterated, 59, 60

line, 101

lower, 58

of a form on a manifold,

123-124

of a form over a chain, 101

over a set, 55

over an open set, 65

surface, 102

upper, 58
Integral Formula, Cauchy, 106
Integral Theorem, Cauchy, 106
Interior of a set, 7
Inverse function, 11, 34-39
Inverse Function Theorem, 35
Irrotational fluid, 137
Iterated integral, 59, 60

Jacobian matrix, 17
Jordan-measurable, 56
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Kelvin, 74

Lac locus, 106
Lagrange’s method, 122
Lagrangian multiplier, 122
Leibnitz’s Rule, 62
Length, 56, 126

element of, 126
Length = norm, 1
Limit, 11
Line, 1
Line integral, 101
Linking number, 132
Liouville, 74
Lower integral, 58
Lower sum, 47

Manifold, 109
Manifold-with-boundary, 113
Manifold-with-corners, 131, 137
Mathematician (old style), 74

Matrix, 1
Jacobian, 17
transpose of, 23, 83
Maxima, 26-27
Measure zero, 50
Minima, 26-27
Mébius strip, 119, 120, 130
Multilinear function, 23, 75
Multiplier, see Lagrangian multi-

nlier
phier

Norm, 1
Norm preserving, 4
Normal, see Qutward unit normal

Notation, 3, 44, 89

One-one (1-1) function, 11

One-sided surface, 121

Open cover, 7

Open rectangle, 5

Open set, 5

Orientable manifold, 119

Orientation, 82, 119
consistent choices of, 117
counterclockwise, 134
induced, 119
usual, 83, 87, 121
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Orientation-preserving, 118, 123
Oriented manifoid, 119
Orthogonal vectors, 5
Orthonormal basis, 77
Oscillation, 13

Outward unit normal, 119, 120

Parameterization, independence of,
104
Partial derivative, 25
higher-order (mixed), 26
second-order (mixed), 26
Partition
of a closed interval, 46
of a closed rectangle, 46
of unity, 63
Perpendicular, 5
Plane, 1
Poincare Lemma, 94
Point, 1
Polar coordinate system, 73
Polarization identity, 5
Positive definiteness, 3, 77
Product, see Cross product, Inner
product, Tensor product,
Wedge product
Projection function, 11

Rectangle (closed or open), 5
Refine a partition, 47
Rotation of F, 137

Sard’s Theorem, 72

Self-adjoint, 85

Sign of a permutation, 78

Singular n-cube, 97

Solid angle, 131

Space, 1

see also Dual space, Euclidean

space, Half-space, Tangent
space

Sphere, 111

Standard n-cube, 97

Star-shaped, 93
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Stokes’ Theorem, 102, 124, 135
Subordinate, 63

Subrectangles of a partition, 46
Surface, 127

Surface area, 126, 127

Surface integral, 102
Symmetric, 2, 77

Tangent space, 86, 115
Tangent vector, 96
Tensor, 75
absolute, 126
alternating, 78
Tensor product, 75
Torus, 115
Transpose of a matrix, 23, 83
Triangle inequality, 4

Unit outward normal, 119, 120

Upper integral, 58

Upper sum, 47

Usual, see Basis, Inner product,
Orientation

Variable
change of, 67-72
complex, see Complex variables
function of n, 11
independent of the first, 18
independent of the second, 17
Vector, 1
tangent, 96
Vector field, 87
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differentiable, 87
on a manifold, 115
continuous, 87
differentiable, 115
Vector-valued function, 11
Volume, 47, 56, 126
Volume element, 83, 126

Wedge product, 79
Winding number, 104



Addenda

1. It should be remarked after Theorem 2-11 (the Inverse
Funection Theorem) that the formula for f~! allows us to con-
clude that f~!is actually continuously differentiable (and that
it is C” if fis). Indeed, it suffices to note that the entries of
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of A. This follows from “Cramer’s Rule”: (471),; =
(det A*)/(det A), where A% is the matrix obtained from 4
by deleting row ¢ and column j.

2. The proof of the first part of Theorem 3-8 can be simpli-
fied considerably, rendering Lemma 3-7 unnecessary. It

suffices to cover B by the interiors of closed rectangles U; with

25 9(U;) <e¢g, and to choose for each €& A — B a closed
rectangle V., containing « in its interior, with My (f) —
my.(f) < e If every subrectangle of a partition P is con-
tained in one of some finite collection of U;s and V;’s which
cover A, and [f(x)l < M forall zin A, then U(f, P) — L(f, P)
< ev(4A) + 2Me.

The proof of the converse part contains an error, since
M,(f) — m,(f) 2 1/n is guaranteed only if the interior of S
intersects By;,. To compensate for this it suffices to cover the
boundaries of all subrectangles of P with a finite collection of
rectangles with total volume < €. These, together with §,

cover Bj,,, and have total volume < 2e.
145
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)
3. The argument in the first part of Theorem 3-14 (Sard’s

Theorem) requires a little amplification. If U C A is a closed
rectangle with sides of length !, then, because U is compact,
there is an integer N with the following property: if U is
divided into N™ rectangles, with sides of length !/N, then
ID,-g‘(w) — D,-g"(z)l < &/n? whenever w and z are both in one
such rectangle 8. Given z € 8, let f(z2) = Dg(x)(2) — g(2).
Then, if z € 8§,

|D;ifiz)| = |Dig*(x) — Dig*(2)| < e/n*.
So by Lemma 2-10, if z,y € §, then

|Dg(@)y — =) — 9@) + 9(@)| = | @) — f(@)] < el — 4|
< & Van(/N).

4. Finally, the notation A*(V) appearing in this book is
incorrect, since it conflicts with the standard definition of
A¥(V) (as a certain quotient of the tensor algebra of V). For
the vector space in question (which is naturally isomorphie to
A¥(V*) for finite dimensional vector spaces V) the notation
Q¥(V) is probably on the way to becoming standard. This
substitution should be made on pages 78-85, 88-89, 116, and
126-128.



