Problemas de práctica para el examen final

(Fecha del examen: 10 dic, 2019)

- 2.1. Which of the following subsets of C are fields with respect to the usual addition and multiplication of numbers:
- (a) \mathbb{Z} ; (e) $\{a + b\sqrt[3]{2}, a, b \in \mathbb{Q}\};$ (b) $\{0,1\}$; (f) $\{a + b\sqrt[4]{2}, a, b \in \mathbb{Q}\};$
- (g) $\{a + b\sqrt{2}, a, b \in \mathbb{Z}\};$ (c) $\{0\}$;
- (d) $\{a + b\sqrt{2}, a, b \in \mathbb{Q}\};$ (h) $\{z \in \mathbb{C} : |z| \le 1\}$.
- **2.2.** Show that every subfield of \mathbb{C} contains \mathbb{Q} .
- **2.3.** Give an example of an infinite field of characteristic $\neq 0$.
- **2.6.** Give a description of all numbers belonging to the fields:
- (a) $\mathbb{Q}(\sqrt{2})$; (b) $\mathbb{Q}(i)$; (c) $\mathbb{Q}(\sqrt{2},i)$; (d) $\mathbb{Q}(\sqrt{2},\sqrt{3})$.
- **2.7.** Show that
- (a) $\mathbb{Q}(\sqrt{5}, i\sqrt{5}) = \mathbb{Q}(i, \sqrt{5});$
- (b) $\mathbb{Q}(\sqrt{2}, \sqrt{6}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$
- (c) $\mathbb{Q}(\sqrt{5},\sqrt{7}) = \mathbb{Q}(\sqrt{5}+\sqrt{7});$
- (d) $\mathbb{Q}(\sqrt{a}, \sqrt{b}) = \mathbb{Q}(\sqrt{a} + \sqrt{b})$, when $a, b \in \mathbb{Q}$, $\sqrt{a} + \sqrt{b} \neq 0$.
- **2.8.** Give a description of the following subfields of \mathbb{C} :
- (a) $\mathbb{Q}(X)$, where $X = {\sqrt{2}, 1 + 2\sqrt{8}}$;
- (b) $\mathbb{Q}(i)(X)$, where $X = {\sqrt{2}}$;
- (c) K_1K_2 , where $K_1 = \mathbb{Q}(i)$, $K_2 = \mathbb{Q}(\sqrt{5})$;
- (d) $\mathbb{Q}(X)$, where $X = \{z \in \mathbb{C} : z^4 = 1\}$.
- **4.2.** (a) Show that if $f \in K[X]$ is irreducible over K and $L \supseteq K$ is a field extension such that the degree $\deg f$ and the degree [L:K] are relatively prime, then f is irreducible over L.
- **4.3.** Find the minimal polynomial and the degree of α over K when:
- (a) $K = \mathbb{Q}, \ \alpha = \sqrt[3]{\sqrt{3} + 1};$ (d) $K = \mathbb{Q}(i), \alpha = \sqrt{2}$;
- (b) $K = \mathbb{Q}, \ \alpha = \sqrt{2} + \sqrt[3]{2};$ (e) $K = \mathbb{Q}(\sqrt{2}), \ \alpha = \sqrt[3]{2};$
- (c) $K = \mathbb{Q}$, $\alpha^5 = 1$, $\alpha \neq 1$; (f) $K = \mathbb{Q}$, $\alpha^p = 1$, $\alpha \neq 1$, p a prime number.
- **4.4.** Find the degree and a basis of the following extensions $L \supseteq K$:
- (f) $K = \mathbb{Q}, L = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5});$ (a) $K = \mathbb{Q}, L = \mathbb{Q}(\sqrt{2}, i);$
- (g) $K = \mathbb{Q}(\sqrt{3}), L = \mathbb{Q}(\sqrt[3]{1+\sqrt{3}});$ (b) $K = \mathbb{Q}, L = \mathbb{Q}(\sqrt{2}, \sqrt{3});$
- (c) $K = \mathbb{Q}, L = \mathbb{Q}(i, \sqrt[3]{2});$
- (a) $K = \mathbb{F}_2, L = \mathbb{F}_2(\alpha), \text{ where } \alpha^4 + \alpha^2 + 1 = 0;$ (i) $K = \mathbb{F}_3, L = \mathbb{F}_3(\alpha), \text{ where } \alpha^3 + \alpha^2 + 2 = 0;$ (j) $K = \mathbb{R}(X^2 + \frac{1}{X^2}), L = \mathbb{R}(X).$ (d) $K = \mathbb{Q}, L = \mathbb{Q}(\sqrt[3]{2} + 2\sqrt[3]{4});$
- (e) $K = \mathbb{R}(X + \frac{1}{X}), L = \mathbb{R}(X);$

- **4.5.** Show that a complex number z = a + bi is algebraic (over \mathbb{Q}) if and only if a and b are algebraic.
- **4.6.** Show that the numbers $\sin r\pi$ and $\cos r\pi$ are algebraic if r is a rational number.
- **4.7.** Let $L = \mathbb{Q}(\sqrt[3]{2})$. Find $a, b, c \in \mathbb{Q}$ such that $x = a + b\sqrt[3]{2} + c\sqrt[3]{4}$ when

(a)
$$x = \frac{1}{\sqrt[3]{2}}$$
; (b) $x = \frac{1}{1 + \sqrt[3]{2}}$; (c) $x = \frac{1 + \sqrt[3]{2}}{1 + \sqrt[3]{2} + \sqrt[3]{4}}$.

4.8. Let $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Find $a, b, c, d \in \mathbb{Q}$ such that $x = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}$ when

(a)
$$x = \frac{1}{\sqrt{2} + \sqrt{3}}$$
; (b) $x = \frac{1}{1 + \sqrt{2} + \sqrt{3}}$; (c) $x = \frac{\sqrt{2} + \sqrt{3}}{1 + \sqrt{2} + \sqrt{3} + \sqrt{6}}$.

4.9. Let $L = \mathbb{F}_2(\alpha)$, where $\alpha^4 + \alpha + 1 = 0$. Find $a, b, c, d, \in \mathbb{F}_2$ such that $x = a + b\alpha + c\alpha^2 + d\alpha^3$ when

(a)
$$x = \frac{1}{\alpha}$$
; (b) $x = \alpha^5$; (c) $x = \alpha^{15}$; (d) $x = \frac{1}{\alpha^2 + \alpha + 1}$.

- **4.14.** Is it true that for each divisor d to [L:K] there exists a field M between K and L such that [M:K]=d?
- **4.15.** It is (well-)known that the numbers e and π are transcendental. It is not known whether $e + \pi$ and $e\pi$ are transcendental. Show that at least one of the numbers $e + \pi$ or $e\pi$ must be transcendental.
- **4.16.** (a) Let $K \subseteq L$ be a field extension and let $f(\alpha) = 0$, where $\alpha \in L$ and f(X) is a polynomial whose coefficients are algebraic over K. Prove that α is also algebraic over K.
- (b) Assume that the number α is algebraic. Prove that also the following numbers are algebraic:

(b₁)
$$\alpha^2$$
; (b₂) $\sqrt{\alpha}$; (b₃) $\sqrt[3]{1+\sqrt{\alpha}}$.

5.1. Find the degree and a basis of the splitting field over K for $f \in K[X]$ when

$$\begin{array}{ll} \text{(a) } K=\mathbb{Q},\, f=(X^2-2)(X^2-5); & \text{(e) } K=\mathbb{Q},\, f=X^4+1; \\ \text{(b) } K=\mathbb{Q},\, f=X^3-2; & \text{(f) } K=\mathbb{Q}(i),\, f=X^4-2; \\ \text{(c) } K=\mathbb{Q},\, f=X^4-2; & \text{(g) } K=\mathbb{Q}(i),\, f=(X^2-2)(X^2-3); \\ \text{(d) } K=\mathbb{Q},\, f=X^4+X^2-1; & \text{(h) } K=\mathbb{Q},\, f=X^p-1,\, p \text{ a prime number.} \end{array}$$

(e)
$$K = \mathbb{Q}, \ j = X^2 + 1;$$

(f) $K = \mathbb{Q}(i), \ f = X^4$

(b)
$$K = \mathbb{Q}, f = X^3 - 2;$$

(i)
$$K = \mathbb{Q}(i), f = X^4 - 2;$$

(d)
$$K = \mathbb{Q}, f = X^4 + X^2 - 1$$

(h)
$$K = \mathbb{Q}, f = X^p - 1, p$$
 a prime number.

5.2. Decide whether the following pairs of fields are isomorphic:

(a)
$$\mathbb{Q}(\sqrt[4]{2})$$
 and $\mathbb{Q}(i\sqrt[4]{2})$;

(b)
$$\mathbb{Q}(\sqrt[3]{1+\sqrt{3}})$$
 and $\mathbb{Q}(\sqrt[3]{1-\sqrt{3}});$

(c)
$$\mathbb{Q}(\sqrt{2})$$
 and $\mathbb{Q}(\sqrt{3})$.

- **5.3.** Let L be a splitting field of a polynomial f(X) of degree n with coefficients in a field K. Show that $[L:K] \leq n!$.
- **5.4.** Prove that a field with p^n elements contains a field with p^m elements if and only if m|n.
- **5.5.** (a) Let f(X) be an irreducible polynomial of degree n over a field \mathbb{F}_p . Show that $\mathbb{F}_p[X]/(f(X))$ is a field with p^n element, which is isomorphic with the splitting field of the polynomial $X^{p^n} - X$ and f(X) divides $X^{p^n} - X$.
- (b) Let f(X) be an irreducible polynomial in $\mathbb{F}_p[X]$. Show that $f(X)|X^{p^n}-X$ if and only if $\deg(f(X))|n$.
- **6.1.** Let $L \supseteq K$ be a field extension.
- (a) Show that if $\alpha \in L$ is a zero of $f \in K[X]$ and $\sigma \in G(L/K)$, then $\sigma(\alpha)$ is also a zero of f.
- (b) Show that if $L = K(\alpha_1, \ldots, \alpha_r)$ and two automorphisms $\sigma, \tau \in G(L/K)$ are equal for every generator α_i (that is, $\sigma(\alpha_i) = \tau(\alpha_i)$ for each i), then $\sigma = \tau$ (that is, $\sigma(\alpha) = \tau(\alpha)$ for every $\alpha \in L$).
- **9.1.** Which of the following extensions $L \supseteq K$ are Galois?

(a)
$$K = \mathbb{Q}$$
, $L = \mathbb{Q}(\sqrt[3]{2})$; (e) $K = \mathbb{Q}(X^2)$, $L = \mathbb{Q}(X)$;

(b)
$$K = \mathbb{Q}, L = \mathbb{Q}(\sqrt[4]{2});$$
 (f) $K = \mathbb{F}_p(X^2), L = \mathbb{F}_p(X), p$ a prime number;

(c)
$$K = \mathbb{Q}(\sqrt{2}), L = \mathbb{Q}(\sqrt[4]{2});$$
 (g) $K = \mathbb{F}_2(X^2 + X), L = \mathbb{F}_2(X);$ (d) $K = \mathbb{Q}(i), L = \mathbb{Q}(i, \sqrt[4]{2});$ (h) $K = \mathbb{R}(X^3), L = \mathbb{R}(X).$

(d)
$$K = \mathbb{Q}(i), L = \mathbb{Q}(i, \sqrt[4]{2});$$
 (h) $K = \mathbb{R}(X^3), L = \mathbb{R}(X).$

9.2. Find all subgroups of the Galois group G(L/K) of the splitting field L of the polynomial f as well as all corresponding subfields M between K and L when

(a)
$$K = \mathbb{Q}, f(X) = (X^2 - 2)(X^2 - 5);$$
 (b) $K = \mathbb{Q}, f(X) = (X^4 - 1)(X^2 - 5);$ (c) $K = \mathbb{Q}, f(X) = X^5 - 1;$ (d) $K = \mathbb{Q}, f(X) = X^3 - 5;$ (e) $K = \mathbb{Q}, f(X) = X^4 + X^2 - 5;$ (f) $K = \mathbb{Q}, f(X) = X^4 + X^2 - 5;$

(b)
$$K = \mathbb{Q}, f(X) = (X^4 - 1)(X^2 - 5);$$
 (f) $K = \mathbb{Q}, f(X) = X^3 - 5;$

(c)
$$K = \mathbb{Q}, f(X) = X^5 - 1;$$
 (g) $K = \mathbb{Q}, f(X) = X^4 + X^2 - 1;$ (h) $K = \mathbb{Q}(i), f(X) = X^3 - 1.$

(d)
$$K = \mathbb{Q}, f(X) = X^4 + 1;$$
 (h) $K = \mathbb{Q}(i), f(X) = X^3 - 1$

- **9.3.** (a) Let $f(X) \in K[X]$ be a polynomial of degree n over a field K and let $K_f =$ $K(\alpha_1,\ldots,\alpha_n)$ be a splitting field of f(X) over K, where α_i are all zeros of f(X) in K_f . Show that the permutations σ of the indices i of the zeros α_i corresponding to the automorphisms $\sigma \in G(L/K)$ according to $\sigma(\alpha_i) = \alpha_{\sigma(i)}$ form a subgroup of S_n .
- (b) Give a description of the Galois group $G(K_f/K)$ as a permutation subgroup of S_n $(n = \deg f)$ for polynomials f(X) in Ex. 9.2.

9.5. Show that the extension $L \supseteq K$ is Galois, find the Galois group G(L/K), all its subgroups and the corresponding subfields between K and L when

$$\begin{array}{ll} \text{(a)} \ K=\mathbb{Q}, L=\mathbb{Q}(\sqrt{2},i); \\ \text{(b)} \ K=\mathbb{Q}, L=\mathbb{Q}(\sqrt[3]{2},\varepsilon), \varepsilon^3=1, \varepsilon\neq 1; \\ \text{(c)} \ K=\mathbb{Q}, L=\mathbb{Q}(\sqrt[4]{2},i); \\ \end{array} \qquad \begin{array}{ll} \text{(d)} \ K=\mathbb{R}(X^2+\frac{1}{X^2}), L=\mathbb{R}(X); \\ \text{(e)} \ K=\mathbb{R}(X^2,Y^2), L=\mathbb{R}(X,Y); \\ \text{(f)} \ K=\mathbb{R}(X^2+Y^2,XY), L=\mathbb{R}(X,Y). \end{array}$$

9.6. Is it true that if $L\supseteq M$ and $M\supseteq K$ are Galois extensions, then $L\supseteq K$ is a Galois extension?