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Preface

This book consists of three parts, rather different in level and purpose:

The first part was originally written for quantum chemists. It describes the
correspondence, due to Frobenius, between linear representations and charac-
ters. This is a fundamental result, of constant use in mathematics as well as in
quantum chemistry or physics. I have tried to give proofs as elementary as
possible, using only the definition of a group and the rudiments of linear algebra.
The examples (Chapter 5) have been chosen from those useful to chemists.

The second part is a course given in 1966 to second-year students of I'Ecole
Normale. It completes the first on the following points:
(a) degrees of representations and integrality properties of characters (Chapter 6);
(b) induced representations, theorems of Artin and Brauer, and applications
(Chapters 7-11);
(c) rationality questions (Chapters 12 and 13).
The methods used are those of linear algebra (in a wider sense than in the first

part): group algebras, modules, noncommutative tensor products, semisimple
algebras.

The third part is an introduction to Brauer theory: passage from characteristic 0
to characteristic p (and conversely). 1 have freely used the language of abelian
categories (projective modules, Grothendieck groups), which is well suited to
this sort of question. The principal results are:

(a) The fact that the decomposition homomorphism is surjective: all irreducible
representations in characteristic p can be lifted *‘virtually’’ (i.e., in a suitable
Grothendieck group) to characteristic 0.

(b) The Fong—Swan theorem, which allows suppression of the word *‘virtually’’

in the preceding statement, provided that the group under consideration is
p-solvable.

I have also given several applications to the Artin representations.
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Gaston Berthier and Josiane Serre, who have authorized me to reproduce Part 1,
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CHAPTER 1

Generalities on
linear representations

1.1 Definitions

Let V be a vector space over the field C of complex numbers and let
GL(V) be the group of isomorphisms of V onto itself. An element a of GL(V)
is, by definition, a linear mapping of V into V which has an inverse a™!;
this inverse is linear. When V has a finite basis (e;) of n elements, each linear
map a: V= V is defined by a square matrix (a;) of order n. The
coefficients a; are complex numbers; they are obtamed by expressing the
images a(e;) i m terms of the basis (¢;):

ale;) = ; a;e,.

Saying that a is an isomorphism is equivalent to saying that the
determinant det(a) = det(g;) of a is not zero. The group GL(V) is thus
identifiable with the group of invertible square matrices of order n.

Suppose now G is a finite group, with identity element 1 and with
composition (s,z) > st. A linear representation of G in V is a homomor-
phism p from the group G into the group GL(V). In other words, we
associate with each element s € G an element p(s) of GL(V) in such a way
that we have the equality

p(st) = p(s) - p(t) fors, t € G.
[We will also frequently write p, instead of p(s).] Observe that the preceding
formula implies the following:

p() =1, p(s™!) = p(s)™".
When p is given, we say that V is a representation space of G (or even
simply, by abuse of language, a representation of G). In what follows, we

3



Chapter 1: Representations and characters

restrict ourselves to the case where V has finite dimension. This is not a very
severe restriction. Indeed, for most applications, one is interested in dealing
with a finite number of elements x; of V, and can always find a subrepresen-
tation of V (in a sense defined later, cf. 1.3) of finite dimension, which
contains the x;: just take the vector subspace generated by the images p,(x;)
of the x;.

Suppose now that V has finite dimension, and let n be its dimension; we
say also that n is the degree of the representation under consideration. Let
(e,) be a basis of V, and let R be the matrix of p, with respect to this basis.
We have

det(R,) # 0, R, =R,-R, ifs,1€G.

If we denote by 7;(s) the coefficients of the matrix R, the second formula
becomes

ri(st) = ? ri(8) -« ri (0).

Conversely, given invertible matrices R; = (r;(s)) satisfying the preced-
ing identities, there is a corresponding linear representation p of G in V;
this is what it means to give a representation “in matrix form.”

Let p and p’ be two representations of the same group G in vector spaces
V and V'. These representations are said to be similar (or isomorphic) if
there exists a linear isomorphism 7: V — V' which “transforms” p into p’,
that is, which satisfies the identity

Top(s) =p(s)er foralls € G.

When p and p’ are given in matrix form by R, and R; respectively, this
means that there exists an invertible matrix T such that

T-R,=R,-T, foralls € G,

which is also written R; = T - R, - T~1. We can identify two such represen-
tations (by having each x € V correspond to the element 7(x) € V’); in
particular, p and p’ have the same degree.

1.2 Basic examples

(a) A representation of degree 1 of a group G is a homomorphism
p: G = C*, where C* denotes the multiplicative group of nonzero complex
numbers. Since each element of G has finite order, the values p(s) of p are
roots of unity; in particular, we have |p(s)| = 1.

If we take p(s) = 1 for all s € G, we obtain a representation of G which
is called the unit (or trivial) representation.

(b) Let g be the order of G, and let V be a vector space of dimension g,
with a basis (¢,),cg indexed by the elements ¢ of G. For s € G, let p, be

4



1.3: Subrepresentations

the linear map of V into V which sends ¢, to e,; this defines a linear
representation, which is called the regular representation of G. Its degree is
equal to the order of G. Note that e, = p,(e;); hence note that the images
of ¢ form a basis of V. Conversely, let W be a representation of G
containing a vector w such that the p,(w), s € G, form a basis of W; then
W is isomorphic to the regular representation (an isomorphism 7: V —» W
is defined by putting 7(e;) = p,(w)).

(c) More generally, suppose that G acts on a finite set X. This means that,
for each s € G, there is given a permutation x - sx of X, satisfying the
identities

Ix = x, s(tx) = (st)k ifs,1€ G x X

Let V be a vector space having a basis (e, ), cx indexed by the elements of
X. For s € G let p, be the linear map of V into V which sends e, to e,,;
the linear representation of G thus obtained is called the permutation
representation associated with X.

1.3 Subrepresentations

Let p: G = GL(V) be a linear representation and let W be a vector
subspace of V. Suppose that W is stable under the action of G (we say also
“invariant”), or in other words, suppose that x € W implies p,x € W for
all s € G. The restriction p}” of p, to W is then an isomorphism of W onto
itself, and we have pYY = p¥.p¥. Thus p%: G —» GL(W) is a linear
representation of G in W; W is said to be a subrepresentation of V.

ExampLE. Take for V the regular representation of G [cf. 1.2 (b)], and let
W be the subspace of dimension 1 of V generated by the element
X = D.ecé We have p.x = x for all s € G; consequently W is a
subrepresentation of V, isomorphic to the unit representation. (We will
determine in 2.4 all the subrepresentations of the regular representation.)

Before going further, we recall some concepts from linear algebra. Let V
be a vector space, and let W and W’ be two subspaces of V. The space V
is said to be the direct sum of W and W’ if each x € V can be written
uniquely in the form x = w + w/, withw € W and w € W’; this amounts
to saying that the intersection W N W’ of W and W’ is 0 and that
dim(V) = dim(W) + dim(W’). We then write V = W & W’ and say that
W’ is a complement of W in V. The mapping p which sends each x € V to
its component w € W is called the projection of V onto W associated with
the decomposition V = W & W’; the image of p is W, and p(x) = x for
x € W; conversely if p is a linear map of V into itself satisfying these two
properties, one checks that V is the direct sum of W and the kernel W’ of p

5



Chapter 1: Representations and characters

(the set of x such that px = 0). A bijective correspondence is thus
established between the projections of V onto W and the complements of W
myV.,

We return now to subrepresentations:

Theorem 1. Let p: G — GL(V) be a linear representation of G in V and let
W be a vector subspace of V stable under G. Then there exists a complement
WO of W in V which is stable under G.

Let W’ be an arbitrary complement of W in V, and let p be the
corresponding projection of V onto W. Form the average p° of the
conjugates of p by the elements of G:

P’ = 1 S ppop! (g being the order of G).
8 eG

Since p maps V into W and p, preserves W we see that p° maps V into W;
we have p;! x € W for x € W, whence

Cpepitx =px, p P plx = x, and p%x = x..
Thus p° is a projection of V onto W, corresponding to some complement
WO of W. We have moreover

ps-p° =p%-p,  foralls € G.
Indeed, computing p, - p° - p;’!, we find:

1
E 2 Pst " P " Pst —PO'

If now x € W% and s € G we have p®x = 0, hence p° - p,x = p, - p°x
= 0, that is, p,x € WO, which shows that WO is stable under G, and

completes the proof. ]

1
. 00 -l = — . . . —l . —
PP ° Py g‘EEG ps -0 p-p ;!

Remark. Suppose that V is endowed with a scalar product (x| y) satisfying
the usual conditions: linearity in x, semilinearity in y, and (x|x) > 0 if
x # 0. Suppose that this scalar product is invariant under G, i.e. that
(o, x|p,¥) = (x|»); we can always reduce to this case by replacing (x| y) by
2e6 (p; x|p,y). Under these hypotheses the orthogonal complement Woof W
in V is a complement of W stable under G; another proof of theorem 1 is
thus obtained. Note that the invariance of the scalar product (x| y) means
that, if (e;) is an orthonormal basis of V, the matrix of p; with respect to this
basis is a unitary matrix.

Keeping the hypothesis and notation of theorem 1, let x € V and let w
and w? be its projections on W and W9, We have x = w + w® whence
p.x = pw + pw® and since W and WO are stable under G, we have
pw € W and pw® € WO thus pw and pw? are the projections of p,x.
It follows the representations W and W° determine the representation V.

6



1.4: Irreducible representations

We say that V is the direct sum of W and WO, and write V = W & W% An
element of V is identified with a pair (w,w?) withw € W and w® € WO If
W and WO are given in matrix form by R and R° W @ WO is given in

0 R

The direct sum of an arbitrary finite number of representations is defined
similarly.

1.4 Irreducible representations

Let p: G = GL(V) be a linear representation of G. We say that it is
irreducible or simple if V is not 0 and if no vector subspace of V is stable
under G, except of course 0 and V. By theorem 1, this second condition is
equivalent to saying V is not the direct sum of two representations (except for
the trivial decomposition V = 0 @ V). A representation of degree 1 is
evidently irreducible. We will see later (3.1) that each nonabelian group
possesses at least one irreducible representation of degree > 2.

The irreducible representations are used to construct the others by means
of the direct sum:

Theorem 2. Every representation is a direct sum of irreducible representations.

Let V be a linear representation of G. We proceed by induction on
dim(V). If dim(V) = 0, the theorem is obvious (0 is the direct sum of the
empty family of irreducible representations). Suppose then dim(V) > 1. If
V is irreducible, there is nothing to prove. Otherwise, because of th. 1, V
can be decomposed into a direct sum V' @ V” with dim(V’) < dim(V)
and dim(V”) < dim(V). By the induction hypothesis V' and V” are direct
sums of irreducible representations, and so the same is true of V. ]

Remark. Let V be a representation, and let V=W, & --- ® W, be a
decomposition of V into a direct sum of irreducible representations. We can
ask if this decomposition is unique. The case where all the p, are equal to 1
shows that this is not true in general (in this case the W, are lines, and we
have a plethora of decompositions of a vector space into a direct sum of
lines). Nevertheless, we will see in 2.3 that the number of W isomorphic to
a given irreducible representation does not depend on the chosen decom-
position.

1.5 Tensor product of two representations

Along with the direct sum operation (which has the formal properties of
an addition), there is a “multiplication”: the tensor product sometimes
called the Kronecker product. It is defined as follows:



Chapter 1: Representations and characters

To begin with, let V; and V, be two vector spaces. A space W furnished
with a map (x;, x3) = x; * x5 of V; X V, into W, is called the tensor product
of V; and V, if the two followxng conditions are satisfied: :

(i) x, - x, is linear in each of the variables x; and x,.
(i) If (¢, ) is a basis of V; and (e;,) is a basis of V,, the family of products
e; * €, is a basis of W. :

It is easily shown that such a space exists, and is unique (up to
isomorphism); it is denoted V| ® V,. Condition (ii) shows that

dim(V; ® ;) = dim(V}) - dim(V;).

Now let p!': G - GL(V)) and p?: G - GL(V;) be two linear representa-
tions of a group G. For s € G, define an element p, of GL(V| ® V) by the
condition:

ps(x - x2) = pj(x1) - p2(xy) forxy € W, x; € V5.

[The existence and uniqueness of p, follows easily from conditions (i) and
(ii).] We write:

ps = p} ® p2.

The p, define a linear representation of G in V; ® V, which is called- the
tensor product of the given representations.

The matrix translation of this deﬁnmon is the following: let (e ) be a
basis for V, let , ; (s) be the matrix of p! with respect to this basis, and
define (¢;,) and 7 ;,(s) in the same way. The formulas:

pre) = 2 50 e p2e) = X 5,00 e

7]

imply:
ps( ejz) = 2 i (S) ) ’;ziz(s) * € €y

)

Accordingly the matrix of p, is (1 ;, () * 7,;,(5)); it is the tensor product of the
matrices of p! and p2.

The tensor product of two .irreducible representanons is not in general
irreducible. It decomposes into a direct sum of irreducible representations
which can be determined by means of character theory (cf. 2.3).

In quantum chemistry, the tensor product often appears in the following
way: V; and V, are two spaces of functions stable under G, with respective
bases (4"1) and (¢;,), and V; ® V; is the vector space generated by the
products ¢i, - ¥i,, these products being linearly independent. This last
condition is essential. Here are two particular cases where it is satisfied:



1.6: Symmetric square and alternating square

(1) The ¢’s depend only on certain variables (x, x’,...) and the y’s on
variables (y,y’, . ..) independent from the first.

(2) The space V] (or V,) has a basis consisting of a single function ¢, this
function does not vanish identically in any region; the space V, is then
of dimension 1.

1.6 Symmetric square and alternating square

Suppose that the representations V, ‘and V, are identical to the same
representation V, so that y ® V, = V ® V. If (¢;) is a basis of V, let 8 be
the automorphism of V ® V such that

Oe; - ¢) = e - ¢; for all pairs (i,).

It follows from this that #(x - y) = y - x for x, y € V, hence that 8 is
independent of the chosen basis (¢;); moreover 8> = 1. The space V ® V
then decomposes into a direct sum

VeV =Sym?(V)® Alt(V),

where Symz(V) is the set of elements z € V ® V such that #(z) = z and
Alt? (V) is the set of elements z E VOV such that 6(z) = —z. The

elemcnts (e e+ e -e)g;forma basxs of Sym?(V), and the elements

(e; & ,),< j form a ba51s of Alt?(V). We have
dim Sym?(V) = ﬁ”—;—l—) dim Al(V) = 2(—”7”—‘-2

if dimV = n.

The subspaces Sym?(V) and Alt’(V) are stable under G, and thus
define representations called respectively the symmetric square and alternat-
ing square of the given representation.



CHAPTER 2
Character theory

2.1 The character of a representation

Let V be a vector space having a basis (¢;) of n elements, and let a be a
linear map of V into itself, with matrix (a;;). By the trace of a we mean the
scalar

Tr(a) = 3 a;.

It is the sum of the eigenvalues of a (counted w1th their multiplicities), and
does not depend on the choice of basis (e;).

Now let p: G — GL(V) be a linear representatxon of a finite group G in
the vector space V. For each s € G, put:

X,(s) = Tr(p).

The complex valued function Xp On G#,thus obtained is called the character
of the representation p; the importance of this function comes primarily
from the fact that it characterizes the representation p (cf. 2.3).

Proposition 1. If x is the character of a representation p of degree n, we have:
(@) x(1) = n,

(i) x(s™") = x(s5)* fors € G,
(iii) x(est™') = x(s) fors, t € G.

(If z =x+iyisa complex number, we denote the conjugate x — iy either
by z* or z)

We have p(1) = 1, and Tr(1) = n since V has dimension n; hence (i).
For (ii) we observe that p_ has finite order; consequently the same is true

10



2.1: The character of a representation

of its eigenvalues A}, ..., A, and so these have absolute value equal to 1
(this is also a consequence of the fact that p, can be defined by a unitary
matrix, cf. 1.3). Thus

x(6)* = Tr(p,)* = TN = SN = Tr(p;") = Tr(p) = x(s™").

Formula (iii) can also be written x(vu) = x(w), putting u = ts, v = t7;

hence it follows from the well known formula

Tr(ab) = Tr(ba),
valid for two arbitrary linear mappings a and b of V into itself. O
Remark. A function f on G satisfying identity (iii), or what amounts to

the same thing, f(uv) = f(vu), is called a class function We will see in 2.5
that each class function is a linear combination of characters.

Proposition 2. Let p': G —» GL(V,) and p*: G — GL(V,) be two linear
representations of G, and let x; and x, be their characters. Then:

(i) The character x of the direct sum representation V; ® V, is equal to
*

X1 + X2
(i1) The character  of the tensor product representation V; ® V, is equal

o x * Xz

Let us be given p' and p? in matrix form: R' R2 The representation
V, @ V; is then given by
Rl
=0 x2)
0 R?

whence Tr(R,) = Tr(R!) + Tr(R2), that is x(s) = x,(s) + x2(5)-
We proceed likewise for (ii): with the notation of 1.5, we have

xi6) =25, xl) =2 5;,0),

Ws) = E 5, t,(s) Izlz(s) = x1(5) * x2(9)- O

i,

Proposition 3. Let p: G ~+ GL(V) be a linear representation of G, and let x
be its character. Let xd be the character of the symmetric square Sym (V)
of V (cf. 1.6),and let x2 be that of A%(V). For each s € G, we have

x2(s) = 3 (x(s)? + x(2)

X2(6) = 3 (x(s)? =~ X))

11



Chapter 2: Character theory

Let s € G. A basis (¢;) of V can be chosen consisting of eigenvectors for
ps; this follows for example from the fact that p; can be represented by a
unitary matrix, cf. 1.3. We have then p,e; = A;¢; with A; € C, and so

X6)=2x, x)=ZA.

On the other hand, we have

hence
@) = ZAN=ZA+ 3 AN = 2(21\)2 ZEA’
i<

Xi6) = A = HOROLEES Pt

The proposition follows.
(Observe the equality x> + x2 = x2 which reflects the fact that V ® V is

the direct sum of Sym? (V) and Alt? (V)). O

EXERCISES

2.1. Let x and x’ be the characters of two representations. Prove the formulas:

(x+x)2 x2 + X2+ xx
e XE = X

2.2. Let X be a finite set on which G acts, let p be the correspohding permutation
representation [cf. 1.2, example (c)], and xx be the character of p. Let
s € G; show that xx(s) is the number of elements of X fixed by s.

23. Let p: G — GL(V) be a linear representation with character x and let V' be
the dual of V, i.e., the space of linear forms on V. For x € V, x’ € V'’ let
{x,x") denote the value of the linear form x’ at x. Show that there exists a
unique linear representation p’: G — GL(V’), such that

psx,pix) = (x,x’) fors € G,x €V, x' € V.

This is called the contragredient (or dual) representation of p; its character is

x*.

24. Let p;: G = GL(V,) and py: G — GL(V;) be two linear representations
with characters x; and x;. Let W = Hom(V{, V;), the vector space of lmear
mappings f: | > V. For s € G and f € W let p,f = p2,,°f°p1,, so
p,f € W. Show that this defines a linear representation p: G = GL (W),
and that its character is x{* - x,. This representation is isomorphic to p} ® p,,

12



2.2: Schur’s lemma; basic applications

where p] is the contragredient of p,, cf. ex. 2.3.

2.2 Schur’s lemma; basic applications

Proposition 4(Schur’s lemma).Let p' : G — GL(V,) and p*: G = GL(V,) be
two zrreduczble representattons of G, and let f be a linear mapping of V, into
V, such that p? o f = f o p! for all s € G. Then:

(1) If p' and p?* are not isomorphic, we have f = 0.

(2) If Vi = Vy and p' = p?, f is a homothety (i.e., a scalar multiple of
the identity).

The case f = 0 is trivial. Suppose now f # 0 and let W, be its kernel (that
is, the set of x E V, such that fx = 0). For x € W, we have folx = p?fx
= 0, whence p! x € W, and W, is stable under G. Since V, is irreducible,
W, isequalto Vjor0; the first case is excluded, as it implies f = 0.
The same argument shows that the image W, of f (the set of fx, for x € V)
is equal to V,. The two properties W; = 0 and W, = V, show that fis an
isomorphism of V; onto V,, which proves assertion (1).

Suppose now that Vy = V,, p! = p2, and let A be an eigenvalue of f: there
exists at least one, since the field of scalars is the field of complex numbers.
Put f* = f — A. Since A is an eigenvalue of f, the kernel of f’ is # 0; on the
other hand, we have p? o f* = f’ o p!. The first part of the proof shows that
these properties are possible only if f* = 0, that is, if fisequal toA. O

Let us keep the hypothesis that V; and V, are irreducible, and denote by
g the order of the group G.

Corollary 1. Let h be a linear mapping of V, into V,, and put:
1 -
- W == ) hp!.
z IEZG (o7) " hpy

Then:

(1) If p! and p? are not isomorphic, we have h® = 0.

(2) If V; = Vyand p' = p%, h° is a homothety of ratio (1/n)Tr(h), with
n = dim(V)).

We have p2h® = h%p]. Indeed:

ll

(02) " 0! > )™ (,,, )" hp! p!

teG
= E (pts) hpts = ho

Applying prop. 4 to f = h% we see in case (1) that /® = 0, and in case (2)
that A% is equal to a scalar A. Moreover, in the latter case, we have:

13



Chapter 2: Character theory

Te(0) = £ 3 Te(e)) ™ hol) = Te(h),

and since Tr(A) = n - A, we get.)\ = (1/n) Tr(h). O

Now we rewrite corollary 1 assuming that p' and p? are ngen in matrix
form

= (1, (), 82 = (5, (0).

.The linear mapping 4 is defined by a matrix (x; ; ) and likewise h0 is defined

by (x? ,i,)- We have by definition of R

1
‘2'1 =z 2 ‘zlz(t ) th Jl'l(t)'

l’ll J2

lzl

The right hand side is a linear form with respect to x
vanishes for all systems of values of the x
Whence:

Corollary 2. In case (1), we have:

2 ll‘l(’) =0
teG

Xijys- ; in case (1) this form

Xjojis thus 1its coefficients are zero.

Wl'—‘

Jor arbitrary i, iy, j;, j,-

In case (2) we have similarly B® = A, i.e., x,z, = A3, (8;,;, denotes the

Kronecker symbol, equal tolif iy = 12 and 0 otherwise), with
A= (l/n)Tr(h) that is, A = (1/n) X §;,;, x;,;,. Hence the equality:

-1
o z ’zlz(’ ) J2h ]l’l(t) 2 8’2'1 J2Jy !zh

’ 2J1rJ2 Jl WJ2

Equating coefficients of the x; ., we obtain as above:

Xjajp»
Corollary 3. In case (2) we have:

p 2 R0 = 5

IEG

Remarks
(1) If ¢ and ¢ are functions on G, set

| I/n  ifi =iandj; = j,
ALY Lo otherwise .

@ =3 3 oI =2 3 60U ™).

We have (¢,¢y) = {, ¢) Moreover {¢, lP> is linear in ¢ and in ¥. Wnth this
notation, corollaries 2 and 3 become, respectxvely

<'2J2’J|'|> 0 and <'2.12’J|'|> '2'| /2JI

14
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(2) Suppose that the matrices (7;(¢)) are unitary (this can be realized by a
suitable choice of basis, cf. 1 3) We have then 7;(t~ N = ﬂ(t) and
corollaries 2 and 3 are just orthogonality relations for the scalar product
(¢|y) defined in the following section.

2.3 Orthogonality relations for characters

We begin with a notation. If ¢ and  are two complex-valued functions
on G, put

(oly) = ! S o()1)*, g being the order of G .
8 1eG

This 1s a scalar product: it is linear in ¢, semilinear in {, and we have

(¢l¢) > 0 for all ¢ + 0. ]
If { is the function defined by the formula y{r) = Wr~1)*, we have

6l = = #0I) = D,
teG

cf. 2.2, remark 1. In particular, if x is the character of a representation of
G, we have x = x (prop. 1), so that (¢|x) = (¢, x> for all functions ¢ on
G. So we can use at will (¢[x) or {¢, x>, so’'long as we are concerned with
characters.

Theorem 3

(1) If x is the character of an irreducible representation, we have
(xlx) = 1 (i.e., x is “of norm 1”).

ii) If x and x’' are the characters of two nonisomorphic irreducible
representations, we have (x|x’') = 0 (i.e. x and x’ are orthogonal).

Let p be an irreducible representation with character x, given in matrix
form p, = (1;(r)). We have x(r) = X r;(¢), hence

xlx) = 6x> = 2 i 150~

But according to cor. 3 to prop. 4, we have {r;,5;) = §;/n, where n is the

degree of p. Thus

lii» j

(dx) = (£ 8)/n = n/n =

since the indices i,j each take n values. (ii) is proved in the same way, by
applying cor. 2 instead of cor. 3. a

Remark. A character of an irreducible representation is called an irreduci-
ble character. Theorem 3 shows that the irreducible characters form an
orthonormal system; this result will be completed later (2.5, th. 6).

15
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‘Theorem 4. Let V be a Imear representation of G, with character ¢, and
suppose V decomposes into a direct sum of irreducible representations:

V=Wa&---o&W,.
Then, if W is an irreducible representation with character x, the number of
W, isomorphic to W is equal to the scalar product (¢p|x) = {$, ).
Let x; be the character of W,. By prop. 2, we have

p=x1t+ "+ Xk-

Thus (¢|x) = (xqlx) + -+ + (xxlx). But, according to the preceeding
theorem, (x;|x) is equal to 1 or 0, depending on whether W, is, or is not,
isomorphic to W. The result follows. O

Corollary 1. The number of W; isomorphic to W does not depend on the chosen
decomposition.

(This number is called the “number of times that W occurs in V>, or the
“number of times that W is contained in V.”)

Indeed, (olx) does not depend on the decomposition. . O

Remark. It is in this sense that one can say that there is uniqueness in the
decomposition of a representation into irreducible representations. We shall
return to this in 2.6.

Corollary 2. Two representations with the same character are isomorphic.

Indeed, cor. 1 shows that they contain each given irreducible representa-
tion the same number of times.

The above results reduce the study of representations to that of their
characters. If x,, ..., x, are the distinct irreducible characters of G, and if
W,,..., W, denote corresponding representations, each representation V is
isomorphic to a direct sum

V=mW®e&:---&mW, m,integers > 0.

The character ¢ of V is equal to myx; +--- + m,x,; and we have
m; = (¢lx;). [This applies notably to the tensor product W; ® W, of two
1rreduc1ble representauons and shows that the product x; - x; decomposes
into x;x; = X mu Xr the m,j being integers > 0.] The orthogonallty
relations among the x; imply in addition: ’

i=h
(olp) = = mf,
whence:

16



2.4: Decomposition of the regular representation

Theorem 5. If ¢ is the character of a representation V, (¢|¢p) is a positive
integer and we have (¢|¢) = 1 if and only if V is irreducible.

Indeed, 3 m? is only equal to 1 if one of the m;’s is equal to 1 and the
others to 0, that is, if V is isomorphic to one of the W, O

We obtain thus-a very convenient irreducibility criterion.

EXERCISES

2.5. Let p be a linear representation with character x. Show that the number of
times that p contains the unit representation is equal to (x|1)

= (I/g) 2sec x09).

Let X be a finite set on which G acts, let p be the corresponding permutation
representation (1.2) and let x be its character.

2.6.

(a)

(b)

(c)

The set Gx of images under G of an element x € X is called an orbit.
Let c be the number of distinct orbits. Show that c is equal to the number
of times that p contains the unit representation 1; deduce from this that
(x|1) = c. In particular, if G is transitive (i.e., if ¢ = 1), p can be
decomposed into 1 & 6 and @ does not contain the unit representation.
If y is the character of 8, we have x = 1 + ¢y and (y|1) = 0.

Let G act on the product X X X of X by itself by means of the formula
s(x,y) = (sx,sy). Show that the character of the corresponding permuta-
tion representation is equal to xZ.

Suppose that G is transitive on X and that X has at least two elements.
We say that G is doubly transitive if, for all x, y, x’, y’ € X with x # y
and x’ # ', there exists s € G such that x’ = sx and y’ = sy. Prove the
equivalence of the following properties:

(i) G is doubly transitive.
(ii) The action of G on X X X has two orbits, the diagonal and its
complement.

(iii) (3I) = 2.

(iv) The representation # defined in (a) is irreducible.

[The equivalence (i) < (ii) is immediate; (ii) <> (iii) follows from (a)
and (b). If ¢ is the character of 6, we have 1 + ¢ = x and
(lll) =1, (y|]1) = 0, which shows that (iii) is equivalent to

W) = 1, ie, to (1/g) 3,ec \}(s) = 1; since ¢ is real-valued,
this indeed means that @ is irreducible, cf. th. 5.]

2.4 Decomposition of the regular representation

Notation. For the rest of Ch. 2, the irreducible characters of G are
denoted x;, ..., x;; their degrees are written n,,...,n,, we have n;
= x;(1), cf. prop. 1.

Let R be the regular representation of G. Recall (cf. 1.2) that it has a
basis (e,),e g such that p;e, = e,. If s # 1, we have st # ¢ for all ¢, which

17
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shows that the diagonal terms of the matrix of p, are zero; in particular we
have Tr(p;) = 0. On the other hand, for s = 1, we have

Tr(p,) = Tr(l) = dim(R) = g.
Whence:
Proposition 5. The character rg of the regular representation is given by the

Jormulas:

rg(1) = g, order of G,
rg(s) =0 ifs # 1.

Corollary 1. Every irreducible representation W, is contained in the regular
representation with multiplicity equal to its degree n;.

According to th. 4, this number is equal to {rg, x;), and we have

(G xi) = éng ro (s xi(s) = ég xi()=x(M)=n. O

Corollary 2.

(a) The degrees n; satisfy the relation =% n? = g.
(b) If s € G is different from1, we have 3:=% n,x.(s) = 0.

By cor. 1, we have r5(s) = X n;x;(s) for all s € G. Taking s = 1 we
obtain (a), and taking s # 1, we obtain (b). O

Remarks

(1) The above result can be used in determining the irreducible represen-
tations of a group G: suppose we have constructed some mutually
nonisomorphic irreducible representations of degrees ny, ..., n;; in order
that they be all the irreducible representations of G (up to isomorphism), it
is necessary and sufficient that n} + --- + n} = g.

(2) We will see later (Part 11, 6.5) another property of the degrees n;: they
divide the order g of G.

EXERCISE

2.7. Show that each character of G which is zero for all s # 1 is an integral
multiple of the character rg of the regular representation.

2.5 Number of irreducible representations

Recall (cf 2.1) that a function f on G is called a class function if
fst™) = f(s)for all s, 1 € G.

18
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Proposition 6. Let f be a class function on G, and let p: G — GL(V) be a
linear representation of G. Let p; be the linear mapping of V into itself
defined by:

Pr = tEEG f@e,.

IfV is irreducible of degree n and character x, then pgis a homothety of ratio
A given by:

2 SOx)) = FIK*).

teG

RI'—

Let us compute p; ' p;p,. We have:
oy ' osps = PRULY oo = RO
Putting ¥ = s~ ts, this becomes:
oy ooy = 2 Slous Yo, = 2 fwp, = py.

So we have pp; = p;py By the second part of prop. 4, this shows that p,is
a homothety A. The trace of A is nA; that of ;2, is E,EG f(OTr(p,)

= 3,ec f(Ox(?). Hence A = (1/n) 3, f(Ox(r) = (g/m)(fIx*). ]

We introduce now the space H of class functions on G; the irreducible
characters y;, ..., x, belong to H.

Theorem 6. The characters. x,, ..., x, form an orthonormal basis of H.

Theorem 3 shows that the x; form an orthonormal system in H. It
remains to prove that they generate H, and for this it is enough to show that
every element of H orthogonal to the x is zero. Let S be such an element.
For each representauon p of G, put p; = >ec f(Dp,. Since f is orthogonal
to the x*, prop. 6 above shows that py is zero so long as p is irreducible;
from the direct sum decomposition we conclude that p, is always zero.
Applying this to the regular representation R (cf. 2.4) and computing the
image of the basis vector ¢, under p, we have

prep = 2 f(p,e = 3 f(De,.
teG . teG
Since p; is zero, we have p;e; = 0 and the above formula shows that

f() = 0 for all t € G; hence f = 0, and the proof is complete. O

Recall that two elements ¢ and ¢ of G are said to be conjugate if there
exists s € G such that 1’ = sts™!; this is an equivalence relation, which
partitions G into classes (also called conjugacy classes).

Theorem 7. The number of irreducible representations of G (up to isomor-
phism) is equal to the number of classes of G.
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Let C;, ..., C; be the distinct classes of G. To say that a function f on
G is a class function is equivalent to saying that it is constant on each of
C,, ..., Cy; it is thus determined by its values A; on the C;, and these can
be chosen arbitrarily. Consequently, the dimension of the space H of class
functions is equal to k. On the other hand, this dimension is, by th. 6, equal
to the number of irreducible representations of G (up to isomorphism). The
result follows. _ a

Here is another consequence of th. 6:

Proposition 7. Let s € G, and let c¢(s) be the number of elements in the
conjugacy class of s.
(a) We have Di=h x:(s)* x;(s) = g/c(s). -
(b) For t € G not conjugate to s, we have 3'=% x.(s)* x;(1) = 0.
(For s = 1, this yields cor. 2 to prop. 5.)

Let £, be the function equal to 1 on the class of s and equal to 0 elsewhere.
Since it is a class function, it can, by th. 6, be written

=D vt = (flx) = Dy
i=]
We have then, for eacht € G,
0 =9S 21 Xi9)* X0
A=
This gives (a) if # = s, and (b) if ¢ is not conjugate to s. O

ExamPLE. Take for G the group of permutations of three letters. We have
g = 6, and there are three classes: the element 1, the three transpositions,
and the two cyclic permutations. Let ¢ be a transposition and ¢ a cyclic
permutation. We have t2 =1, = 1, tc = c21; whence there are just two
characters of degree 1: the unit character x; and the character x; giving the
signature of a permutation. Theorem 7 shows that there exists one other
irreducible character #; if n is its degree we must have 1 + 1 + nt =6,
hence n = 2. The values of # can be deduced from the fact that x; + x,
+ 20 is the character of the regular representation of G (cf prop. 5). We
thus get the character table of G:

1 t c

X1 1 1 1

X2 i -1 1

0 2 0 -1
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We obtain an irreducible representation with character 8 by having G
permute the coordinates of elements of C3 satisfying the equation x + y
+ z = 0 (cf. ex. 2.6¢)).

2.6 Canonical decomposition of a representation

Let p: G > GL(V) be a linear representation of G. We are going to
define a direct sum decomposition of V which is “coarser” than the
decomposition into irreducible representations, but which has the advan-
tage of being unigue. It is obtained as follows:

Let x;, --., X, be the distinct characters of the irreducible representa-
tions W, ..., W, of G and n,, ..., n, their degrees. Let V= U, & -,
® U,, be a decomposition of V into a direct sum of irreducible representa-
tions. For i = 1,..., h denote by V; the direct sum of those of the
U, ..., U, which are isomorphic to W,. Clearly we have:

V=V o---aV,.

(In other words, we have decomposed V into a direct sum of irreducible
representations and collected together the isomorphic representations.)

This is the canomcal decomposition we had in mind. Its properties are as
follows:

Theorem 8

(i) The decomposition V = V, @ --- @ V, does not depend on the
initially chosen decomposition of V into irreducible representations.

(i) The projection p; of V onto V; associated with this decomposition is
given by the formula:

2 X:(’) Py -

We prove (u) Assertion (i) w1ll follow because the projections p;
determine the V.. Put

n,- *
== — [ .
q; &%mOA

Proposition 6 shows that the restriction of g; to an irreducible representa-
tion W with character x and of degree n is a homothety of ratio

(n/n)(x;1x); it is thus O if x # x; and 1 if x = x;- In other words g; is the
identity on an irreducible representation isomorphic to W, and is zero on
the others. In view of the definition of the V, it follows that g; is the identity

on V; and is 0 on V; for j #i. If we decompose an element xe V into its
components x; € V;:

x=x+ 0+ Xy,

we have then g;(x) = g;(x)) + --- + gi(x)) = x,Q This means that g; is
equal to the projection p; of V onto V. , O
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Thus the decomposition of a representation V can be done in two stages.
First the canonical decomposition V; @ - - - @ V, is determined; this can be
done easily using the formulas giving the projections p;. Next, if needed, one
chooses a decomposition of V; into a direct sum of irreducible representa-
tions each isomorphic to W;:

\’i=w’,$...@w’_.

This last decomposition can in general be done in an infinity of ways (cf.
section 2.7, as well as ex. 2.8 below); it is just as arbitrary as the choice of
a basis in a vector space.

ExampLE. Take for G the group of two elements {1,s} with s> = 1. This
group has two irreducible representations of degree 1, W+ and W~
corresponding to p, = +1 and p;, = —1. The canonical decomposition of a
representation V is V= V* & V™, where V* (resp. V™) consists of the
elements x € V which are symmetric (resp. antisymmetric), i.e., which
satisfy p,x = x (resp. p,x = —x). The corresponding projections are:

1 - 1
prx = ~2-(x +px), px= i(x — pyX)-

To decompose V* and V™ into irreducible components means simply to
decompose these spaces into a direct sum of lines.

EXERCISE

28. Let H; be the vector space of linear mappings h: W; = V such that

psh = hp, for all s € G. Each » € H; maps W, into V,.

(a) Show that the dimension of H; is equal to the number of times that W,
appears in V, i.e., to dim V,/dim W, [Reduce to the case where V = W;
and use Schur’s Temma).

(b) Let G act on H; ® W, through the tensor product of the trivial
representation of G on H; and the given representation on W.. Show that
the map .

F:H;® W, >V,
defined by the formula
FC h,-w,) =3 h,(w,)
is an isomorphism of H; ® W, onto V.. [Same method.]

(c) Let(hy,...,h;) be a basis of H; and form the direct sum W, & --- @ W,
of k copies of W. The system (A, ..., h;) defines in an obvious way a
linear mapping h of W, @ --- @ W, into V;; show that it is an isomor-
phism of representations and that each isomorphism is thus obtainable
{apply (b), or argue directly]. In particular, to decompose V; into a direct
sum of representations isomorphic to W; amounts to choosing a basis for H,.
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2.7: Explicit decomposition of a representation

2.7 Explicit decomposition of a representation
Keep the notation of the preceding section, and let
VYV = \fl D --- \/h

be the canonical decomposition of the given representation. We have seen
how one can determine the ith component V; by means of the corresponding
projection (th. 8). We now give a method for explicitly constructing a
decomposition of V; into a direct sum of subrepresentations isomorphic to W;.
Let W, be given in matrix form (r,4(s)) with respect to a basis (e, .. .,e,);
we have Xi(®) = 2 ra(s) and n = n; = dim W, For each pair of integers
a, B taken from 1 to n, let p,g denote the linear map of V into V defined by

n -1
=_ - t .
(*) Pap g IEEG rBa( )pl

Proposition 8

(a) The map p,, is a projection; it is zero on the V., j # i. Its image V,,
is contained in V,, and V, is the direct sum of the V,, for 1 < a < n.
We have p; = X, Pua-

(b) The linear map p,g is zero on the V;, j # i, as well as on the V,, for
Y # B; it defines an isomorphism from V, g onto V, .

(c) Let x| be an element + 0 of V;, and let x, = p, (x)) € V.,. The
x, are linearly independent and generate a vector subspace W(x,)
stable under G and of dimension n. For each s € G, we have

ps(xa) = 2 rﬁa(s)xﬂ

(in particular, W(xl) is isomorphic to W)).
@ If (x(l) ‘s Xi (m)) is a basis of V, : 1» the representation V; is the direct
sum of the subrepresentanons W(x )y, ., W(x{™) deﬁned in c).

(Thus the choice of a basis of V;; gives a decomposition of V; into a direct
sum of representations 1somorph1c to W.)

We observe first that the formula () above allows us to define the Pop in
arbitrary representations of G, and in particular in the irreducible represen-
tations W,. For W, we have

n -1
e,) = = g ¢ e) =
paﬂ( y) g IEEG ﬁa( )pr( 1)

S 3wl e,

nIS

teG
By cor. 3 to prop. 4 we have then

[ e, fy=28

Pagley) {0 otherwise .
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Chapter 2: Character theory

We get from this the fact that 2 Paq 18 the identity map of W, and the
formulas \

Dag © Pug = {paﬁ if B =Y
ap = Fyb 0 otherwise

Ps © Pay = % 1 (5) Pgy -

For W; with j # i, we use cor. 2 to prop. 4 and the same argument to show
that all the p,g are zero.

Having done this, we decompose V into a direct sum of subrepresenta-
tions isomorphic to W; and apply the preceding to each of these represen-
tations. Assertions (a) and (b) follow; moreover, the above formulas remain
valid in V. Under the hypothesis of (c), we have then

ps(xg) = ps© Pa1(xy) = % Ba(8)Pp1 (1)) = % 12 (5) X

which proves (c). Finally (d) follows from (a), (b), and (c). O

EXERCISES

29. Let H; be the space of linear maps h: W; = V such that h o p; = p; © h, cf.
ex. 2.8. Show that the map & + h(e,) is an isomorphism of H; onto V.

2.10. Let x € V, and let V(x) be the smallest subrepresentation of V containing
x. Let x{' be the image of x under p,,; show that V(x) is the sum of the
representations W(xf'), a = 1, ..., n. Deduce from this that V(x) is the
direct sum of at most n subrepresentations isomorphic to W,

24



CHAPTER 3

Subgroups, products,
induced representations

All the groups considered below are assumed to be finite.

3.1 Abelian subgroups

Let G be a group. One says that G is abelian (or commutative) if st = ts
for all 5, 7 € G. This amounts to saying that each conjugacy class of G
consists of a single element, also that each function on G is a class function.
The linear representations of such a group are particularly simple:

Theorem 9. The following properties are equivalent:

(i) G is abelian.
(if) All the irreducible representations of G have degree 1.

_Let g be the order of G, and let (n,, . .., n,) be the degrees of the distinct
irreducible representations of G; we know, cf. Ch. 2, that 4 is the number
of classes of G, and that g = nf + - -- + n2. Hence g is equal to A if and
only if all the n; are equal to 1, which proves the theorem. O

Corollary. Let A be an abelian subgroup of G, let a be its order and let g be
that of G. Each irreducible representation of G has degree < g/a.

(The quotient g/a is the index of A in G.)

Let p: G = GL(V) be an irreducible representation of G. Through
restriction to the subgroup A, it defines a representation p, : A = GL(V) of
A. Let W C V be an irreducible subrepresentation of p,; by th. 9, we have
dim(W) = 1. Let V' be the vector subspace of V generated by the images
p; W of W, s ranging over G. It is clear that V'’ is stable under G; since p is
irreducible, we thus have V' = V. But, fors € G and ¢t € A we have

Py W = pspW = p,W. -
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Chapter 3: Subgroups, products, induced representations

It follows that the number of distinct p, W is at most equal to g/a, hence
the desired inequality dim(V) < g/a, since V is the sum of the p W. O

ExaMPLE. A dihedral group contains a cyclic subgroup of index 2. Its
irreducible representations thus have degree 1 or 2; we will determine them
later (5.3).

EXERCISES

3.1. Show directly, using Schur’s lemma, that each irreducible representation of
an abelian group, finite or not, has degree 1.

3.2. Let p be an irreducible representation of G of degree n and character x; let

C be the center of G (i.e., the set of s € G such that st = s for all 1 € G),
and let ¢ be its order.

(a) Show that p_ is a homothety for each s € C. [Use Schur’s lemma.]
Deduce from this that |x(s)| = nforalls € C.

(b) Prove the inequality n* < g/c. [Use the formula 2 Ix(s)]* = g, com-
bined with (a).]

(c) Show that, if p is faithful (i.e., p, # 1 for s # 1), the group C is cyclic.

33. Let G be an abelian group of order g, and let G be the set of irreducible

characters of G. If x;, x, belong to G, the same is true of their product x; x,-

Show that this makes G an abelian group of order g; the group G is called

the dual of the group G. For x € G the mapping x - x(x) is an irreducible

character of G and so an element of the dual G of G. Show that the map of

G into G thus obtained is an injective homomorphism; conclude (by
comparing the orders of the two groups) that it is an isomorphism.

3.2 Product of two groups

Let G, and G, be two groups, and let G, X G, be their product, that is,
the set of pairs (s;,5,), with s; € G, and 5, € G,.
Putting
(51, 82) " (&1 t2) = (8144, $282),

we define a group structure on G; X G,; endowed with this structure,
G, X G, is called the group product of G, and G,. If G, has order g, and G,
has order g;, G, X G, has order g = g, g,. The group G; can be identified
with the subgroup of G, X G, consisting of elements (s;, 1), where s; ranges
over G;; similarly, G, can be identified with a subgroup of G, X G,. With
these identifications, each element of G, commutes with each element of G,.

Conversely, let G be a group containing G; and G, as subgroups, and
suppose the following two conditions are satisfied:
(i) Eachs € G can be written uniquely in the form s = s, s, with sy € G
and %) e Gz.
(i) For s; € G and-s, € G,, we have s;5, = 5,5,.
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3.2: Product of two groups

The product of two elements s = 5;5,, t = t; ¢, can then be written

st =S54ty = (5:4)(s22)-

It follows that, if we let (s;,5;) € G, X G, correspond to the element s, 5,
of G, we obtain an isomorphism of G; X G, onto G. In this case, we also say
that G is the product (or the direct product) of its subgroups G, and G,, and
we identify 1t with G; X G,.

Now let p': G, = GL(V)) and p%: G, —» GL(V,) be linear representa-
tions of G, and G, respectively. We define a linear representation p! ® p2
of G, X G, into V; ® V; by a procedure analogous to 1.5 by setting

(' ® p?)(s1,57) = p'(5)) ® p2(s,).

This representation is called the tensor product of the representations p' and
p2. If X; is the character of p; (i = 1,2), the character x of p! ® p?is given
by:

x(s1,52) = x1(51) - x2(5)-

When Gl and G, are equal to the same group G, the representation
p! ® p? defined above is a representation of G X G. When restricted to the
diagonal subgroup of G X G (cons1stm§ of (s, s), where s ranges over G), it
gives the representation of G denoted p' ® p?in 1.5; in spite of the identity.
of notations, it is important to distinguish these two representations.

Theorem 10

(i) If p' and p? are irreducible, p' ® p? is an irreducible representation
Of Gl X Gz

(i) Each trreduczble representanon of G, X G, is isomorphic to a
representation p' ® p where p' is an irreducible representation of G;

(i =12).

If p! and p? are irreducible, we have (cf. 2.3):

g S =1 =S b6l =

By multiplication, this gives:

- 2 'X(SI,SZ)l

£ 51,5,
which shows that p! ® p? is irreducible (th. 5). In order to prove (ii), it
suffices to show that each class function f on G; X G,, which is orthogonal
to the characters of the form x;(s;)x2(s;), is zero. Suppose then that we
have:

T fGrsx) x2(s2)* =0

51,52
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Chapter 3: Subgroups, products, induced representations

Fixing x, and putting g(s;) = 3 f (51,5, )x2(5, )* we have:
52
S g(s)x(5)* =0 forall x;.
5

Since g is a class function, this implies g = 0, and, since the same is true
for each x,, we conclude by the same argument that f(s;,s,) = 0. 0O

[It is also possible to prove (ii) by computing the sum of the squares of
the degrees of the representations p! ® p2, and applying 2.4.]

The above theorem completely reduces-the study of representations of
G, X G, to that of representations of G, and of representations of G,.

3.3 Induced representations

Left cosets of a subgroup

Recall the following definition: Let H be a subgroup of a group G. For
s € G, we denote by sH the set of products st with # € H, and say that sH
is the left coset of H containing s. Two elements s, s’ of G are said to be
congruent modulo H if they belong to the same left coset, i.e., if sThy belongs
to H; we write thens’ = s (mod H). The set of left cosets of H is denoted
by G/H; it is a partition of G. If G has g elements and H has & elements,
G/H has g/h elements; the integer g/h is the index of H in G and is denoted
by (G:H).

If we choose an element from each left coset of H, we obtain a subset R
of G called a system of representatives of G/H; each s in G can be written
uniquely s = rt, withr € Rand ¢t € H.

Definition of induced representations

Let p: G - GL(V) be a linear fepresentation of G, and let py be its
restriction to H. Let W be a subrepresentation of py, that is, a vector
subspace of V stable under the p,, ¢+ € H. Denote by 8: H - GL(W) the
representation of H in W thus defined. Let s € G; the vector space p, W
depends only on the left coset sH of s; indeed, if we replace s by sz, with
t € H,we have p, W = p.p, W = p, W since p, W = W. If g is a left coset
of H, we can thus define a subspace W, of V to be p, W for any s € o. It is
clear that the W, are permuted among themselves by the p,, s € G. Their
sum 3, cc/y W, is thus a subrepresentation of V.

Definition. We say that the representation p of G in V is induced by the
representation § of H in W if V is equal to the sum of the W,

(06 € G/H) and if this sum is direct (thatis, if V= & W,).
oeG/H

We can reformulate this condition in several ways:

(i) Each x € V can be written uniquely as Y x,, with x, € W, for
each o. o€G/H



3.3: Induced representations

(i) If R is a system of representatives of G/H, the vector space V is the
direct sum of the p, W, with r € R.

In particular, we have dim(V) = ¥ dim(p, W) = (G: H) - dim(W).
reR

ExaAMPLES 1. Take for V the regular representation of G; the space V has a
basis (¢,),c such that p;e, = ¢, fors € G, t € G. Let W be the subspace
of V with basis (e,),cy- The representation § of H in W is the regular
representation of H, and it is clear that p is induced by 6.

2. Take for V a vector space having a basis (e,) indexed by the elements
o of G/H and define a representation pof G in V by p,e, = e,, fors € G
and 0 € G/H (this formula makes sense, because, if o is a left coset of H,
so is s6). We thus obtain a representation of G which is the permutation
representation of G associated with G/H [cf. 1.2, example (c)]. The vector
ey corresponding to the coset H is invariant under H; the representation of
H in the subspace Cey is thus the unit representation of H, and it is clear
that this representation induces the representation p of G in V.

3. If p, is induced by 8, and if p, is induced by 8,, then p; ® p, is induced
by 01 @ 02.

4. If (V, p) is induced by (W, #), and if W, is a stable subspace of W, the
subspace V| = X, cgr p, W of V is stable under G, and the representation
of G in V, is induced by the representation of H in W,.

5. If p is induced by 8, if p’ is a representation of G, and if py is the
restriction of p’ to H, then p ® p’ 1s induced by 8 ® py.

Existence and uniqueness of induced representations

Lemma 1. Suppose that (V,p) is induced by (W, 8). Let p': G — GL(V’) be a
linear representation of G, and let f: W — V' be a linear map such that
f(@,w) = p,f(w) for all t € H and w € W. Then there exists a unique
linear map F: V — V' which extends f and satisfies F o p; = p; o F for all
s € G.

If F satisfies these conditions, and if x € p, W, we have p;'x € W;
hence

F(x) = F(p,p;' x) = p;F(p;' x) = p,f(p; " x).

This formula determines F on p, W, and so on V, since V is the sum of the
p; W. This proves the uniqueness of F.

Now let x € W,, and choose s € o; we define F(x) by the formula
F(x) = p.f(ps I x) as above. This definition does not depend on the choice
of s in o; indeed, if we replace s by sz, with 1 € H, we have

05uf (05" X) = 0,0, f (6 o' x) = 0;(6,67 " p;" x) = p;f(ps' x).
Since V is the direct sum of the W,, there exists a unique linear map
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Chapter 3: Subgroups, products, induced representations

F: V — V’ which extends the partial mappings thus defined on the W,. It is
easily checked that F o p, = p, o Fforalls € G. O

Theorem 11. Let (W, 0) be a linear representation of H. There exists a linear
representation (V, p) of G which is induced by (W, ), and it is unique up to
isomorphism.

Let us first prove the existence of the induced representation p. In view
of example 3, above, we may assume that @ is irreducible. In this case, 8 is
1somorphic to a subrepresentation of the regular representation of H, which
can be induced to the regular representation of G (cf. example 1). Applying
example 4, we conclude that @ itself can be induced.

It remains to prove the uniqueness of p up to isomorphism. Let (V, p) and
(V', p’) be two representations induced by (W, 8). Applying Lemma 1 to the
injection of W into V’, we see that there exists a linear map F: V —» V’
which is the identity on W and satisfies F o p. = p; o F for all s € G.
Consequently the image of F contains all the p, W, and thus is equal to V".
Since V’ and V have the same dimension (G: H) - dim(W), we see that F
is an isomorphism, which proves the theorem. (For a more natural proof of
Theorem 11, see 7.1.) O

Character of an induced representation

Suppose (V, p) is induced by (W, ) and let x, and x, be the correspond-
ing characters of G and of H. Since (W,0) determines (V,p) up to
isomorphism, we ought to be able to compute x, from x4 The following
theorem tells how:

Theorem 12. Let h be the order of H and let R be a system of representatives
of G/H. For each u € G, we have

1
u) = -1 r) = — -1 s).
Xo®) rgk Xo(r™u) = sEEG X5~ us)
r-'ureH s~ lus€H

(In particular, x,() is a linear combination of the values of xz on the
intersection of H with the conjugacy class of u in G.)

The space V is the direct sum of the p, W, r € R. Moreover p, permutes
the p, W among themselves. More precisely, if we write ur in the form 7, ¢
with , € R and 1 € H, we see that p, sends p, W into p, W. To determine
Xp(#) = Try (p,), we can use a basis of V which is a union of bases of the
p, W. The indices r such that 7, # r give zero diagonal terms; the others give
the trace of p, on the p, W. We thus obtain:

Xp (u) = , EER . Trp, w (pu,r ),
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where R, denotes the set of r € R such thatz, = r and p,,, is the restriction
of p, to p, W. Observe that r belongs to R, if and only if ur can be written
rt, with t € H, i.e., if r~'ur belongs to H.

It remains to compute Tr, w(p,,), for r € R,. To do this, note that p,
defines an isomorphism of W onto p, W, and that we have

p,°0, =p,0°p, witht= r~lur € H.

The trace of p,, is thus equal to that of §, that is, to x(r) = xa(r ' ur). We
indeed obtain:

X = 3 xolrur).

The second formula given for xp(u) follows from the first by noting that
all elements s of G in the left coset rH (r € R,) satisfy xp(s™'us)

= xp(r~ ur) O

The reader will find other properties of induced representations in part II.
Notably:
(1) The Frobenius reciprocity formula

(fulxodu = (fIx,)o

where fis a class function of G, and fy is its restriction to H, and the scalar
products are calculated on H and G respectively.

(ii) Mackey’s criterion, which tells us when an induced representation is
irreducible.

(iil) Artin’s theorem (resp. Brauer’s theorem), which says that each character
of a group G is a linear combination with rational (resp. integral)
coefficients of characters of representations induced from cyclic subgroups
(resp. from “elementary” subgroups) of G.

EXERCISES

3.4. Show that each irreducible representation of G is contained in a representa-
tion induced by an irreducible representation of H. [Use the fact that an
irreducible representation is contained in the regular representation.] Obtain
from this another proof of the cor. to th. 9. ‘

3.5. Let (W,0) be a linear representation of H. Let V be the vector space of
functions f: G — W such that f(ru) = 6,f(u) for u € G, ¢ € H. Let p be
the representation of G in V defined by (p,f) () = f(us) for s, u € G. For
w € W let £, € V be defined by £,(1) = 6,w for z € H and f,(s) = O for
s & H. Show that w — f, is an isornorphism of W onto the subspace W, of
V consisting of functions which vanish off H. Show that, if we identify W
and W in this way, the representation (V, p) is induced by the representation
(W, 0).

3.6. Suppose that G is the direct product of two subgroups H and K (cf. 3.2). Let
p be a representation of G induced by a representation 8 of H. Show that p
is isomorphic to § ® rg, where r¢ denotes the regular representation of K.
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CHAPTER 4

Compact groups |

The purpose of this chapter is to indicate how the preceding results carry
over to arbitrary compact groups (not necessarily finite); for the proofs, see
[1], [4], [6] cited in the bibliography.

None of the results below will be used in the sequel asnde from examples
5.2, 5.5, and 5.6.

4.1 Compact groups

A topological group G is a group endowed with a topology such that the
product s - # and the inverse s~! are continuous. Such a group is said to be
compact if its topology is that of a compact space, that is, satisfies the Borel-
Lebesgue theorem. For example, the group of rorations around a point in
euclidean space of dimension 2 (or 3, ...) has a natural topology which
makes it into a compact group; its closed subgroups are also compact

groups.

As examples of noncompact groups, we mennon the group of translations
xXHx + a, and the group of linear mappmgs preserving the quadratic
form x? + y2 + 22 — 12 (the “Lorentz group™). The linear representations
of these groups have completely different properties from those in the
compact case. ’

4.2 Invariant measure on a compact group

In the study of linear representations of a finite group G of order g, we
have used a great deal the operation of averaging over G, i.e., attaching to
a function f on G the element (1/g) 3,cg f(¢) (the values of f could be
either complex numbers or, more generally, elements of a vector space). An
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analogous operation exists for compact groups; of course, instead of a finite
sum, we have an integral fg f(s) d¢ with respect to a measure dr.

More precisely, one proves the existence and uniqueness of a measure dt
carried by G and enjoying the following two properties:

() Jg f()dt = f f(ts)dt for each continuous function f and each s € G
(invariance of dt under right translation).
(i) fG dt = 1 (the total mass of dt is equal to 1).

One shows moreover that dt is invariant under left translation, i.e.:

(i) f L f@dr = fG f(st)dt.

The measure dt is called the invariant measure (or Haar measure) of the
group G. We give two examples (see also Ch. 5):

(1) If G is finite of order g, the measure 4t is obtained by assigning to
each element 1 € G a mass equal to 1/g.

(2) If G is the group C_, of rotations in the plane, and if we represent
the elements # € G in the form ¢ = ¢'* (a taken modulo 27), the
invariant measure is (1/27)da; the factor 1/27 is used to insure
condition (ii).

4.3 Linear representations of compact groups

Let G be a compact group and let V be a vector space of finite dimension
over the field of complex numbers. A linear representations of G in V is a
homomorphism p: G — GL(V) which is continuous; this condition is
equivalent to saying that p, x is a continuous function of the two variables
s € G, x € V. One defines similarly linear representations of G in a
Hilbert space; one proves, moreover, that such a representation is isomor-
phic to a (Hilbert) direct sum of unitary representations of finite dimension,
which allows one to restrict attention to the latter.

Most of the properties of representations of finite groups carry over to
representations of compact groups; one just replaces the expressions

“(1/g) 2ieg f() ” by “ f f()dt > . For example, the scalar product (¢|{)
of two functions ¢ and ¢ is

@) = [, $w)* d.

More precisely:

(a) Theorems 1, 2, 3, 4, and 5 carry over without change, as well as their
proofs. The same holds for propositions 1, 2, 3, and 4.

(b) In 2.4, it is necessary to define the regular representation R as the
Hilbert space of square integrable functions on G with group action
(o, fX1)=f(s""). If G is not finite, this representation is of infinite
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dimension, and it is no longer possible to speak of its character, so
proposition 5 no longer makes sense. Nevertheless, it is still true that each
irreducible representation is contained in R with multiplicity equal to its
degree.

(c) Proposition 6 and th. 6 carry over without change (in th. 6, take for H
the Hilbert space of square integrable functions on G).

(d) Theorem 7 is true (but uninteresting) when G is not finite: there are
infinitely many classes, and infinitely many irreducible representations.

(e) Theorem 8 and prop. 8 carry over without change, as well as their
proofs. The projections p; of the canonical decomposition (th. 8) are given
by the formulas

pix = m fy %0k

(f) Theorems 9 and 10 carry over without change, as well as their proofs.
Note, with respect to th. 10, that the invariant measure of the product
G, X G, is the product ds, ds, of the invariant measures of the groups G,
and Gz .

(2) So long as H is a closed subgroup of finite index in G, the notion of
a representation of G induced by a representation of H, defined as in 3.3,
and th. 11 and 12, remain valid. When the index of H is infinite, the
representation induced by (W, #) is defined as the Hilbert space of square
integrable functions f on G, with values in W, such that f(tu) =6, f(u) for
each 1€ H, and G acts on this space by p, f(u)= f(us), cf. ex. 3.5.



CHAPTER 5

Examples

5.1 The cyclic group C,

This is the group of order n consisting of the powers 1, r, ..., r"1of an
element r such that »” = 1. It can be realized as the group of rotations
through angles 2k#/n around an axis. It is an abelian group.

According to th. 9, the irreducible representations of C, are of degree 1.
Such a representation associates with r a complex number x(r) = w, and
with r* the number x(rk) = wk; since r" = 1, we have w" = 1, that is,
w = e2mih/ "withh=20,1,..., n— 1. We thus obtain n irreducible repre-
sentations of degree 1 whose characters xg, X;, - - - » Xp—1 are given by

Xh(’k) = g2mihk/n_
We have Xh' X0 = Xh+h> with the convention that Xh+k' = Xh+h—n if
h + K > n(in other words, the index & of x,, is taken modulo n).
For n = 3, for example, the character table is the following:

1 r r?
Xo 1 1 1
Xi 1 w w?
X2 1 w? w

where
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We have

X0°Xi =XioX1°X1 = X2, X2 X2 =x1and x; - x2 = Xo-

5.2 The group C_,

This is the group of rotations of the plane. If we denote by 7, the rotation
through an angle a (determined modulo 27), the invariant measure on C, is
(1/27) da (cf. 4.2).

The irreducible representations of C_ are of degree 1. They are given by:

X, (%) = €™ (n an arbitrary integer).

€

The orthogonality relations give here the well known formulas:

1
27

and th. 6 gives the expansion of a periodic function as a Fourier series.

2 —ina ima
fo e " . "M da = §,,,,

5.3 The dihedral group D,

This is the group of rotations and reflections of the plane which preserve
a regular polygon with n vertices. It contains n rotations, which form a
subgroup isomorphic to C,, and » reflections. Its order is 2n. If we denote
by 7 the rotation through an angle 27/n and if s is any one of the reflections,
we have:

r" =1, st =1, srs = r7 1,

Each element of D, can be written uniquely, either in the form r*, with
0< k < n-1 (i it belongs to C,), or in the form sr¥, with 0 < &
< n — 1 (if it does not belong to C,). Observe that the relation srs = r~!
implies sr¥s = r~*, whence (sr¥)? = 1.

Realization of D, as a group of rigid motions of 3-space

There are several such:

(a) The usual realization (the one traditionally denoted D, cf. Eyring [5]).
One takes for rotations the rotations around the axis Oz, and for reflections,
the reflections through n lines of the plane Oxy, these lines forming angles
which are multiples of #/n.

(b) The realization by means of the group C,, (notation of Eyring [5]):
instead of the reflections with respect to the lines of Oxy, one takes
reflections with respect to planes containing the axis Oz.

(c) The group D,, can also be realized as the group D, (notation of
Eyring [5]).
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5.3: The dihedral group D,

Irreducible representations of the group D,, (n even > 2)

First, there are 4 representations of degree 1, obtained by letting +1
correspond to r and s in all possible ways. Their characters yy, ¥y, Y3, Y4 are
given by the following table:

ok sr*
L7 1 1
¥ 1 -1
¥ (=Dt (=D*
W | e e

Next we consider representations of degree 2. Putw = e2"/" and let h be
an arbitrary integer. We define a representation p* of D, by setting:

W0 0 wh
) =y pHer) =\

A direct calculation shows that this is indeed a representation. This
representation is induced (in the sense of 3.3) by the representation of C,
with character x, (5.1). It depends only on the residue class of # modulo n;
moreover p* and p"" are isomorphic. Hence we may assume 0 < &
< n/2. The extreme cases h = 0 and h = n/2 are uninteresting: the
corresponding representations are reducible, with characters y; + y, and
¥3 + ¢4 respectively. On the other hand for 0 < h < n/2, the representa-
tion p” is irreducible: since w* # w*, the only lines stable under p"(r) are
the coordinate axes, and these are not stable under p”(s). The same
argument shows that these representatlons are pairwise nonisomorphic. The
corresponding characters x” are given by:

x,(r*) = wh + w™ = 2 cos 2mhk

xh(srk) = (.

The irreducible representations of degree 1 and 2 constructed above are the
only irreducible representations of D, (up to isomorphism). Indeed, the sum
of the squares of their degrees is equal to 4 X 1 + ((n/2) — 1) X4 = 2n,
which is the order of D,,.

ExaMpLE. The group Dy has 4 representations of degree 1, with characters
Y1, ¥2, Y1, Y4 and 2 irreducible representations of degree 2, with characters

Xi and x,.

Irreducible representations of the group D,, (n odd)

There are only two representations of degree 1, and their characters ¥,
and y, are given by the table: '
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Chapter 5: Examples

% 1
7} 1 -1

The representations p” of degree 2 are defined by the same formulas as
in, the case where n is even. Those corresponding to 0 < A < n/2 are
irreducible and pairwise nonisomorphic (observe that, since n is odd, the
condition A < n/2 can also be written h < (n — l) /2). The formulas giving
their characters are the same.

These representations are the only ones. Indeed, the sum of the squares
of their degrees is equal to 2 X 1 + 4(n — 1) X 4 = 2n, and this is the order
of D,

EXERCISES

5.1. Show that in D,, n even (resp. odd), the teflections form two conjugacy
classes (resp. one), and that the elements of C, form (n/2) + 1 classes (resp.
(n + 1)/2 classes). Obtain from this the number of classes of D, and check
that it coincides with the number of irreducible characters.

5.2. Show that x, * X = Xp+n + Xa—p- In particular, we have

Xn"Xn = Xant Xo = Xan t %1 + ¥2.
Show that v, is the character of the alternating square of p" and that
X25 + ¥ is the character of its symmetric square (cf. 1.5 and prop. 3).

5§3. Show that the usual realization of D, as a group of rigid motions in R}
(Eyring [5]) is reducible and has character x; + y, and that the realization
of D, as C,, (loc. cit.) has x; + y; for its character.

5.4 The group D,

This group is the product D, X I, where I is a group of order 2 consisting
of elements {1, ¢} with ¢ = 1. Its order is 4n. If D, is realized in the usual
way as a group of rotations and reflections of 3-space [cf. 5.3, (a)] then D,,,
can be realized as the group generated by D, and the reflection ¢ through
the origin.

According to th. 10, the irreducible representations of D,, are the tensor
products of those of D, and those of I. The group I has just two irreducible
representations, both of degree: 1. Their characters g and u are given by the
table:
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5.5: The group Dy,

Consequently, D,, has twice as many irreducible representations as D,
More precisely, each irreducible character x of D, defines two irreducible
characters x, and x, of D, as follows:

»

)x(: ;%ig _:((i; (x € Dn)

For example, the character x; of D, gives rise to characters x;, and xy,:

rk srk ok usrk
xie | 2 cos2ak/n 0 2 cos 2mk/n 0
Xiu 2 cos 2mk/n 0 -2 cos 2nk/n 0

The same applies to the other characters of D,

5.5 The group D

This is the group of rotations and reflections of the plane which preserve
the origin. It contains the group C_ of rotations z,; if s is an arbitrary
reflection, we have the relations:

s? =1, SrS =r,.
Each element of D,, can be written uniquely either in the form 7, (if it
belongs to C,) or in the form s, (if it does not belong to C,); as a
topological space, D, consists of two disjoint circles. The invariant measure
of D, is the measure da/4w. More precisely, the average [ f(¢)dt of a
function f is given by the formula

Jo s = 4 [T s da + 4 [ Sl55) doc

In particular, the projections p; of 2.6 are:
n. 2= n; .
pix =zt [ xi(e)* o (e + 2t [ xil5t)* oo (x) det.

Realizations of D, as a group of rigid motions in 3-space
There are two of these:
(a) The usual realization (denoted D, in Eyring [5]). Rotations are taken

around Oz and reflections with respect to lines of the plane Oxy passing
through O.
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Chapter 5: Examples

(b) The realization by means of the group C_, (notations of Eyring [5]):
the reflections are taken with respect to planes passing through Oz, instead
of lines of Oxy.

Irreducible representations of the group D,

They are constructed like those for D,,. There are first two representations
of degree 1, with characters y, and ¢, given by the table:

&

el K
]
L

%
| 2)

-

There is a series of irreducible representations p* of degree 2
(h = 1,2,...) defined by the formulas:

0= (0) pe( L)

Their characters x;, X, ... have the following values:

Xn(n) = 2 cos(ha),  x4(sp) = 0.

It can be shown that these are all the irreducible representations of D, (up
to isomorphism).

5.6 The group D,

This group 1s the product D X I; it can be realized as the group
generated by D and the reflection ¢ through the origin. Its elements can
be written uniquely in one of the four forms:

As a topological space, it is the union of four disjoint circles. The invariant
measure of D, is (1/87) da. As above, this means that the average fg f() dt
of a function f on D, is given by:

JoSOdt = = [ f)da + gz [ Slor)da + g [ Flue) d

1 r2=
+ §,;,/;) S (esr,) da.

We leave it to the reader to derive the explicit expressions for the
projections p; of 2.6.
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5.7: The alternating group %,

As in the case of D,,, the irreducible representations of D, come in
pairs from D,,: each character x of D, gives rise to two characters x, and
Xu Of Dw h ) :

So, for example, the character x; of D, gives:

4 sn 1 LSr,
Xog 2 cos 3a 0 2 cos 3a 0
X3u 2 cos 3a 0 -2 cos 3a 0

5.7 The alternating group %,

This is the group of even permutations of a set {a,b,c,d} having 4
elements; it is isomorphic to the group of rotations in R® which stabilize a
regular tetrahedron with barycenter the origin. It has 12 elements:

the identity element 1; : A

3 elements of order 2, x = (ab)(cd), y = (ac)(bd), z = (ad)(bc), which’
correspond to reflections of the tetrahedron through lines joining the
midpoints of two opposite edges;

8 elements of order 3: (abc), (ach), ..., (bed), which correspond to rota-
tions of +120 ° with respect to lines joining a vertex to the barycenter of the
opposite face.

We denote by (abc) the cyclic permutation a+> b, b+ ¢, c - a,d  d;
likewise, (ab)(cd) denotes the permutation a +> b, b>a, c > d, d ¢,
product of the transpositions (ab) and (cd).

Set t = (abc), K = {1,t,+2} and H = {1, x,y, z}. We have

txt™! = z, tzt7! = ¥, tyt'l =

moreover H and K are subgroups of %, H is normal, and H N K = {1}.
It is easy to see that each element of %, can be written uniquely as a product
h-k,withh € Hand k € K. ‘

One also says that %, is the semidirect product of K by the normal
subgroup H; note that this is not a direct product, because the elements of
K do not commute with those of H.

There are 4 conjugacy classes in Ug: {1}, {x,, 2}, {t, tx, 1y, 1z}, and {¢2,12x,
tzy,tzz}, hence 4 irreducible characters. There are three characters of
degree 1, corresponding to the three characters xg, Xx;, and x, of the group
K (cf. 5.1) extended to %, by setting x;(# - k) = x;(k) for h € H and
k € K.The last character y is determined, for example, by means of cor.2
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to prop. 5; it is found to be the character of the natural representation of
A, in R (extended to C3 by linearity). Thus we have the followmg
character table for %j:

1 x t 12
X 1 1 w w?
X2 1 1 w? w
¥ 3 -1 0 0
with
w = /3 = -—l + iﬁ.
2
EXERCISE

54. Set 1) = #(x) = 1 and &y) = &z) = —1; this is a representation of
degree 1 of H. The representation of %, induced by 8 (cf. 3.3) is of degree 3;
show that it is irreducible and has character .

5.8 The symmetric group S,

This is the group of all permutations of {a, b, c,d}; it is isomorphic to the
group of all rigid motions which stabilize a regular tetrahedron. It has 24
elements, partitioned into 5 conjugacy classes:

the identity element 1;

6 transpositions: (ab), (ac), (ad), (bc), (bd), (cd);

the 3 elements of order 2 in A,: x = (ab)(cd), y = (ac)(bd), z = (ad)(bc);
8 elements of order 3: (abc), ..., (bed); '

6 elements of order 4: (abcd), (abdc), (acbd), (acdb), (adbc), (adch).

LetH = {1,x,y,2} and let L be the group of permutations which leave d
fixed. We see, as in the preceding section, that &, i, the semidirect product
of L by the normal subgroup H. Each representation p of L is extended to
a representation of &, by the formula p(h - /) = p(/) for h € H,l/ € L.
This gives three irreducible representations of &, (cf. 2.5), of degrees 1, 1,
and 2. On the other hand, the natural representation of &, in C is
irreducible (since its restriction to %, is), and the same is true of its tensor
product by the non-trivial representation of degree 1 of &,. Whence the
following character table for &;:
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5.9: The group of the cube

1 (ab) (abfcd) (abc) (abcd)

W WK e~

Leony

Note that the values of the characters of &, are integers; this is a general
property of representations of symmetric groups (cf. 13.1).

5.9 The group of the cube

Consider in R? the cube C whose vertices are the points (x,y,z) with
x = *1,y = +1,and z = *1. Let G be the group of isomorphisms of R3
onto itself which stabilize the cube C, i.e., which permute its eight vertices.
This group G can be described in several ways: ,

(i) The group G contains the group &; of permutations of {x, y, z} as well
as the group M of order 8 consisting of the transformations

(x,y,2) P (xx, £y, *£2).

&

One checks easily that G is the semidirect product of G, by the normal
subgroup M; its orderis 6 - 8 = 48. -
. (ii) Denote by ¢ the reflection (x,y, z) — (—x, —y, —z) through the ongm
Let T be the tetrahedron whose vertices are the points (1, 1, 1), (1, -1, 1),
(-1,1,-1), (=1,-1,1), and let T" = (T; each vertex of C is a vertex of T
or of T. Let S(T) be thé group of isomorphisms of R? onto itself which
stabilize T; for s € S(T) we have sT' = T = «sT = T, which shows that
s stabilizes the set of vertices of C, and thus belongs to G. Consequently
S(T) C G, and we see immediately that G is the direct product of S(T) with
the group 1 = {(1,4}. Since S(T) = &, the irreducible characters of G are
obtained from those of &, in pairs, just as those of D,, are obtained from
those of D,. Thus there are 4 irreducible characters of degree 1, 2 of degree
2,and 4 of degree 3; their exact description is left to the reader.

EXERCISES

54. Recover the semidirect decomposition G = &, - M from the decomposi-
tions G = §; X1 and §, = &;-H (cf. 5.8).

5.5 Let G, be the subgroup of G consisting of elements with determinant 1 (the
group of rotations of the cube). Show that, if G is decomposed into S(T) X I,
the projection G — S(T) defines an isomorphism of G, onto (T) =
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II

" REPRESENTATIONS
IN CHARACTERISTIC ZERO

Unless explicitly stated otherwise, all groups are assumed to be finite, and
all vector spaces (resp., all modules) are assumed to be of finite dimension
(resp., finitely generated).

In Ch. 6 to 11 (except for 6.1) the ground field is the field C of complex
numbers.
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CHAPTER 6

The group algebra

6.1 Representations and modules

Let G be a group of finite order g, and let K be a commutative ring. We
denote by K[G] the algebra of G over K; this algebra has a basis indexed
by the elements of G, and most of the time we identify this basis with G.
Each element f of K[G] can then be uniquely written in the form

f= X ags, witha, €K,
s€G

and multiplication in K[G] extends that in G.

Let V be a K-module and let p: G — GL(V) be a linear representation
of Gin V. Fors € G and x € V, set sx = p,x; by linearity this defines
fx, for f € K[G] and x € V. Thus V is endowed with the structure of a left
K[G]-module; conversely, such a structure defines a linear representation of
G in V. In what follows we will indiscriminately use the terminology “linear
representation” or “module.”

Proposition 9. If K is a field of characteristic zero, the algebra K[G] is
semisimple.

(For the basic facts on semisimple algebras, see, for example, Bourbaki
[8] or Lang [10].)

To say that K[G] is a semisimple algebra is equivalent to saying that each
K[G}-module V is semisimple, i.e., that each submodule V’ of V is a direct
factor in V as a K[G]-module. This is proved by the same argument of
averaging as that in 1.3: we choose first a K-linear projection p of V onto
V’, then form the average p° = (1/g) 3,eq sps~! of its transforms by G.
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Chapter 6: The group algebra

The projection p° thus obtained is K[G]-linear, which implies that V' is a
direct factor of V as a K[G}-module. O

Corollary. The algebra K[G] is a product of matrix algebras over skew fields
of finite degree over K. .
This is a consequence of the structure theorem for semisimple algebras

(loc. czt) \ -

EXERCISE

6.1. Let K be a field of characteristic p > 0. Show that the following two
properties are equivalent:
(i) KI[G]is semisimple.
(ii) p does not divide the order g of G.
(The fact that (ii) = (i) is proved as above. To prove the converse, show
that, if p divides g, the ideal of K[G] consisting of the I a,s with
2 a;, = 0 is not a direct factor (as a module) of K[G].)

6.2 Decomposition of C[G]

Henceforth we take K = C (though any algebraically closed field of
characteristic zero would do as well), so that each skew field of finite degree
over C is equal to C. The corollary to prop. 9 then shows that C[G] is a
product of matrix algebras M, (C). More precisely, let p;: G > GL(W)),
1 < i < h, be the distinct irreducible representations of G (up to isomor-
phism), and set n; = dim(W,), so that the ring End(W;) of endomorphisms
of W, is isomorphic to M, (C). The map p;: G - GL(W,) extends by
linearity to an algebra homomorphism p;: C[G] — End(W;); the family
(p;) defines a homomorphism

i=h i=h

: €[G] > II End(W) = II M,(C)

Proposition 10. The homomorphism p defined above is an isomorphism:

This is a general property of semisimple algebras. In the present case, it
can be verified in the following way: First, p is surjective. Otherwise there
would exist a nonzero linear form on [] M, (C) vanishing on the image of
p; this would give a nontrivial relation on the coefficients of the represen-
tations p;, which is impossible because of the orthogonality formulas of 2.2.
On the other hand, C[G] and [T M,,(C) both have dimension g = 3 n, cf.
2.4; so since p is surjective, it must be bijective. a

It is possible to describe the isomorphism which is the inverse of p:
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- 6.2: Decomposition of C[G]

Proposition 11 (Fourier inversion formula). Ler (u;),<i<) be an element of
Il End(W,), and let u = 3 ;e u(s)s be the element of C[G] such that
p;(u) = u; for all i. The sth coefficient u(s) of u is given by the formula

i=h
u(s) = é _21 n; Try, (0:(s™V)u;), where n; = dim(W,).
i=

Ed

By linearity it is endugh to check the formula when u is equal to an
element r of G. We have then

us) =8, and Trylp(s™ ) = x(7'),

where x; is the irreducible character of G corresponding to W,. Thus it
remains to show that

1 i=h .
8." = g 2 n,-x,-(s ’),

i=1

which is a consequence of cor. 1 and 2 of prop. 5 of 2.4. O

EXERCISES

6.2. (Plancherel formula.) Let u= Eu(s)s and v= EU(s)s be two elements of
C(G). and put (u,v)=g > u(s” ")u(s). Prove the formula
S€G
i=h
o) = 3 n;Trw y(w)).
=

[Reduce to the case where u and v belong to G.] |

63. Let U be a finite subgroup of the multiplicative group of C[G] which
contains G. Letu = 3 u(s)s and ' = I u'(s)s be two elements of U such
that u - ' = 1; let u; (resp. u}) be the image of u (resp. ') in End(W,) under
pi-

(a) Show that the eigenvalues of p;(s™')u; = p;(s™'u) are roots of unity.
Conclude that, for all s € G and all i, we have

Trw',(p,-(s_])u,-)* = Trw,(u;pi(s)) = Trw (pi(s);),
whence, applying prop. 11, u(s)* = w'(s™").

(b) Show that SEEG Iu(s)l2 = | [use (a)].

(c) Suppose that U is contained in Z|G] so that the u(s) are integers. Show
that the u(s) are all zero except for one which is equal to +1. Conclude
that U is contained in the group +G of elements of the form *r, with
t €G. ;

(d) Suppose G is abelian. Show that each element of finite order in the
multiplicative group of Z[G] is contained in +G (Higman’s theorem).
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Chapter 6: The group algebra

6.3 The center of C[G]

This is the set of elements of C[G] which commute with all the elements
in C[G] (or, what amounts to the same thing, with all the elements of G).

For ¢ a conjugacy class of G, set e, = 3 . 5. One checks immediately
that the e, form a basis for the center of C[G]; the latter therefore has
dimension h, where h is the number of classes of G, cf. 2.5. Let

pi: G > GL(W)
be an irreducible representation of G with character x; and degree n;, and
let p;: C[G] —» End(W,) be the corresponding algebra homomorphism (cf.
6.2).

Proposition 12. The homomorphism p; maps the center of C{G] into the set of
homotheties of W; and defines an algebra homomorphism

w;: Cent. C[G] — C.
Ifu = 3 u(s)s is an element of Cent. C[G], we have

ai6) = 5 Trlp) = 5 3 whs)

1
n; seG

Pd

This is just a reformulation of prop. 6 of 2.5.

Proposition 13. The family (w;) <ic defines an isomorphism of Cent. C[G]
onto the algebra C* = Cx --- X C.

If we identify C[G] with the product of the End(W,), the center of C[G]
becomes the product of the centers of the End(W;). But the center of
End(W,) consists of homotheties. We thus get an isomorphism of Cent.
C[G] onto C X - - - X C, and it is immediate that it is the one of prop. 13.

O

EXERCISES
6.4. Set

n

_ (s~ s,
Pi gsez(}x'(s )s

Show that the p;(1 < i < h) form a basis of Cent. C[G] and that 2 =p,
p;pj =0 fori # j, and p; + - -+ + p, = 1. Hence obtain another proof of
th. 8 of 2.6. Show that w;(p;) = §;.

6.5. Show that each homomorphism of Cent. C[G] into C is equal to one of
the w;.

6.4 Basic properties of integers

Let R be a commutative ring and let x € R. We say that x is integral over
Z if there exists an integer n > 1 and elements gy, .. ., a, of Z such that
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"+ax" 1+ +a =0.

A complex number which is integral over Z is called an algebraic integer.
Each root of unity is an algebraic integer. If x € Q is an algebraic integer,
we have x € Z; otherwise we could write x in the form p/q, with p, g € Z,
q > 2 and p, q relatively prime. The equation (*) would then give

p"+a,qp"‘l +:--+a,q" =0,

hence p" = 0 (mod. ¢) contradicting the fact that p and g are relatively
prime.

Proposition 14. Let x be an element of a commutative ring R. The following
properties are equivalent:

(1) x is integral over L.
(i) The subring Z{x] of R generated by x is finitely generated as a Z-
module.
(i) There exists a finitely generated sub-Z-module of R which contains
Zx).

The equivalence of (ii) and (iii) follows from the fact that a submodule
of a finitely generated Z-module is finitely generated, since Z is noetherian.
On the other hand, if x satisfies an equation

" +ax"'+..-4+a,=0 withg € Z,

the sub-Z-module of R generated by I, x, ..., x"~1 is stable under multi-
plication by x, and thus coincides with Z[x], which proves (i) = (ii).
Conversely, suppose (ii) is satisfied, and denote by R, the sub-Z-module of
R generated by 1, x, ..., x* 1. The R . form an increasing sequence, and
their union is Z{x]; since Z[x] is finitely generated we must have R, = Z[x]
for n sufficiently large. This shows that x” is a linear combination with

integer coefficients of 1, x, ..., x"~!, whence (i). (]
¢4 1

Corollary 1. If R is a finitely generated Z-module, each element of R is integral
over L.

This follows from the implication (iii) = (i). O

Corollary 2. The elements of R which are integral over Z form a subring of R.

Let x, y € R; if x, y are integral over Z, the rings Z[x] and Z[y] are
finitely generated over Z. The same is then true of their tensor product
Z[x] ® Z[y] and of its image Z[x,y] in R. Thus all the elements of Z{x,y]
are integral oveér Z. ]

Remark. In the preceding definitions and results it is possible to replace Z
by an arbitrary commutative noetherian ring; for (i) ¢ (ii) it is not even
necessary to assume the ring is noetherian.
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6.5 Integrality properties of characters. Applications

Proposition 15. Let x be the character of a representation p of a finite group
G. Then x(s) is an algebraic integer for each s € G.

Indeed x(s) is the trace of p(s), hence is the sum of eigenvalues of p(s),
which are roots of unity.

Proposition 16. Let u = Y, u(s)s be an element of Cent. C[G] such that the
u(s) are algebraic integers. Then u is integral over Z.

(This statement makes sense because Cent. C[G] is a commutative ring.)

Let ¢c;(1 < i < h) be the conjugacy classes of G and pute = seq S
cf. 6.3. For s E ¢; we can write u in the form u = ;2| u(s )e In view of
cor. 2 to prop. 14, it suffices to show that the e; are integral over Z. But this
is clear since each product e;e; is a linear combination with integer
coefficients of the e;. The subgroup R = Ze; ® - - - ® Ze, of Cent. C[G] is
thus a subring; as it is finitely generated over Z, each of its elements is
integral over Z (cor. 1 to prop. 14). The result follows. 0

Corollary 1. Let p be an irreducible representation of G of degree n and
character x. If u is as above, then the number (1/n) 2 u(s)x(s) is an
algebraic integer.

Indeed, this number is the image of ¥ under the homomorphism
‘w: Cent.C[G] —» C

associated with p (cf. prop. 12). As u is integral over Z, the same is true Pof
its image under w.

Corollary 2. The degrees of the irreducible representations of G divide the order
of G.

Let g be the order of G. We apply cor. 1 to the element u
= 3. cg x(s™1)s, which is legitimate since x is a class function and since
the x(s) are algebraic integers (prop. 15); we obtain that the number

7 e = £ =

is an algebraic integer. Since this number is rational, it follows that it
belongs to Z, i.e., that n divides g. ]

Corollary 2 can be strengthened somewhat (cf. 8.1, cor. to prop. 24). Here
is a first result in this direction:
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6.5: Integrality properties of characters. Applications

Proposition 17. Let C be the center of G. The degrees of the irreducible
representations of G divide (G: C).

Let g be the order of G and ¢ that of C, and let p: G — GL{W) be an
irreducible representation of G of degree n. If s € C, p(s) commutes with
all the p(1), t € G; so by Schur’s lemma, p(s) is a homothety. If we denote
it by A(s), the map A: s — A(s) is a homomorphism of C into C*. Let m be
an integer > 0, and form the tensor product

P G" > GL(W®---®W)

of m copies of the representation p; this is an irreducible representation of
the group G” = G X --- X G, cf. 3.2 th. 10. The image under p” of an
element (s;,...,s,) of C™ is the homothety of ratio A(s; - - -s,,). The
subgroup H of C™ consisting of the (s;, . . .,s,,) such thats, ---s, = 1 acts
trivially on W @ - - - ® W, so that by passing to the quotient we obtain an
irreducible representation of G™/H. In view of cor. 2 to prop. 16, it follows
that the degree n™ of this representation divides the order g™/c™ ! of
G™/H. We have then (g/cn)™ € ¢~'Z for all m, which implies that (g/cn)
is an integer (cf. prop. 14, for example).

(This proof is due to J. Tate.) O

EXERCISES '
6.6. Show that the ring Ze; @ - - - ® Ze,, is the center of Z[G].

6.7. Let p be an irreducible representation of G of degree n and with character
x. If s € G, show that |x(s)| < n, and that equality holds if and only if p(s)
is a homothety [observe that x(s) is a sum of n roots of unity]. Conclude that
p(s) =1 e x(s)=n.

68. Let A, ..., A, be roots of unity, and let a = - E A;. Show that, if a is an
algebraic mteger, we have either a = 0, or }\ = = )\, = a. [Let A be
the product of the conjugates of a over Q; show tha; |Al < 1]

6.9. Let p be an irreducible representation of G of degree n and with character
x- Let s € G and c(s) be the number of elements in the conjugacy class of
s. Show that (c(s)/n)x(s) is an algebraic integer [apply cor. | to prop. 16,
taking for u the sum of the conjugates of s]. Show that if c(s) and n are
relatively prime and if x(s) # O, then p(s) is a homothety [Observe that
(1/n)x(s) is an algebraic integer, and apply ex. 6.8].

6.10. Let s € G, s # 1. Suppose that the number of elements c(s) of the
conjugacy class containing s is a power of a prime number p. Show that there
exists an irreducible character x, not equal to the unit character, such that
x(s) # 0 and x(1) # 0 (mod.p). [Use the formula 1 + I x(1)x(s) = 0,
cf. cor. 2 to prop. 5 to show that the number 1/p would be an algebraic
integer if no such character x existed.] Let p be a representation with
character x, and show that p(s) is a homothety [use ex. 6.9]. Conclude that,
if N is the kernel of p, we have N # G, and the image of s in G/ N belongs
to the center of G/N.
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CHAPTER 7

Induced representations;
Mackey’s criterton

7.1 Induction

Let H be a subgroup of a group G and R a system of left coset
representatives for H. Let V be a C[G]-module and let W be a sub-C[H]-
module of V. Recall (cf. 3.3) that the module V (or the representation V) is
said to be induced by W if we have V = @, gsW, i.e,, if V is a direct sum
of the images sW, s € R (a condition which is independent of the choice
of R). This property can be reformulated in the following way:

Let

W = C[G] @qH] w

be the C[G}-module obtained from W by scalar extension from C[H] to
C[G]. The injection W — V extends by linearity to a C[G]-homomorphism
W -V,

Proposition 18. In order that V be induced by W, it is necessary and sufficient
that the homomorphism
i: G] ®ctH] WYV

be an isomorphism.

This is a consequence of the fact that the elements of R form a basis of
CIG] considered as a right C[H}-module.

Remarks

(1) This characterization of the representation induced by W makes it
obvious that the induced representation exists and is unique (cf. 3.3, th. 11).
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7.2: The character of an induced representation

In what follows, the representation of G induced by W will be denoted
by Ind§ (W), or simply Ind(W) if there is no danger of confusion.

(2) If V is induced by W and if E is a C[G]}-module, we have a canonical
isomorphism

Hom™"(W, E) = Hom®(V,E),

where Hom%(V, E) denotes the vector space of C[G}-homomorphisms of V
into E, and HomH(W,E) is defined similarly. This follows from an
elementary property of tensor products (see also 3.3, lemma 1).

(3) Induction is transitive: if G is a subgroup of a group K, we have

IndG(Ind (W)) = Ind§(W).
This can be seen directly, or by using the associativity of the tensor product.

Proposition 19. Let V be a C{G)-module which is a direct sum V = ®,c{W,
of vector subspaces permuted transitively by G. Let iy € 1, W = W, and
let H be the stabilizer of W in G (i.e., the set of all s € G such that
sW = W). Then W is stable under the subgroup H and the C[G}-module V
is induced by the C[H]-module W.

This is clear.

Remark. In order to apply proposition 19 to an irreducible representation
V =@ W, of G, it is enough to check that the W; are permuted among
themselves by G; the transitivity condition is automatic, because each orbit
of G in the set of W;’s defines a subrepresentation of V.

7~

ExaMPLE. When the W, are of dimension 1, the representatlon V is said to
be monomial..

7.2 The character of an induced representation;
the reciprocity formula

We keep the preceding notation. If fis a class function on H, consider
the function f’ on G defined by the formula

f'(» = % zeEG £t s0) where 4 = Card(H). y

t~'steH

We say that f’ is induced by f and denote it by either lndﬁ' (f) or Ind(f).
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Chapter 7: Induced représentations; Mackey’s criterion

Propesition 20.

(ij The function Ind(f) is a class function on G.
(ii) If f is the character of a representation W of H, Ind(f) is the
character of the induced representation Ind(W) of G.

Assertion (ii) has already been proved (3.3, th. 12). Assertion (i) is proved
by a direct calculation or can be obtained from (ii) and the observation that
each class function is a linear combination of characters. O

Recall that, for ¢; and ¢, two class functions on G, we set

(01,92 =§ S @167 )ea(s), where g = Caid(G),

cf. 2.2; when we wish to be more explicit about the group G, we wnte
{®1,9; ) instead of {g;,p,).

Also, if V; and V, are two C[G)-modules, we set

{V, %) = dim . Hom®(V}, ).

Lemma 2. If ¢, and @, are the characters of V| and V,, we have

{1,906 = M, Y%Dg-

Decomposing V; and V; into direct sums, we can assume that they are
irreducible, in which case the lemma follows from the orthogonality
formulas for characters (2.3, th. 3). O

If @ (resp. V) is a function on G (resp.  presentation of G), we denote
by Res ¢ (resp. Res V) its restriction to the subgroup H.

Theorem 13 (Frobenius reciprocity). If ¢ is a class functzon onHand ¢ a
class function on G, we have

{y,Res gy = <Ind ¢, p)g.

Since each class function is a linear combination of characters, we can
assume that ¢ is the character of a C[H]-module W and ¢ is the character
of a C[G]-module E. In view of lemma 2, it is enough to show that

(*) <w, Res E>H = <Ind wa E>G’
that s,

dim.Hom"™ (W, Res E) = dim.Hom® (Ind W, E),
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7.2: The character of an induced representation

which follows from remark 2 in 7.1 (or from lemma 1 of 3.3, which amounts
to the same thing). Of course it is also possible to prove theorem 13 by
direct calculation. O

Remarks

(1) Theorem 13 expresses the fact that the maps Res and Ind are adjoints
of each other.

(2) Instead of the bilinear form <{a, 8>, we can use the scalar product
(a| B) defined in 2.3. We have the same formula:

(YIRes @)y = (Ind Y|g)g.

(3) We mention also the following useful formula

Ind(y - Res ) = (Ind ¢) - o.

It can be checked by a simple calculation, or deduced from the formula
Ind(W) ® E = Ind(W ® Res E), cf. 3.3, example 5.

Proposition 21. Let W be an irreducible representation of H and E an
irreducible representation of G. Then the number of times that W occurs in
Res E is equal to the number of times that E occurs in Ind W

This follows from th. 13, applied to the character  of W and to the
character ¢ of E (one may also apply formula (x)). O

EXERCISES

7.1. (Generalization of the concept of induced representation.) Let a: H — G be
a homomorphism of groups (not necessarily injective), and let & C[H]
— C[G] be the corresponding algebra homomorphism. If E is a C({G]-module
we denote by Res, E the C[H}-module obtained from E by means of &; if ¢
is the character of E, that of Res,E is Res,¢ = ¢ ¢ a. If W is a C[H]}-
module, we denote by Ind, W the C[G}-module C[G] @y W, and if y is
the character of W, we denote by Ind, ¢ the character of Ind, W.
(a) Show that we still have the reciprocity formula

<\p9 Resa ‘P)H = <Inda ‘I’» 'p>G .

(b) Assume that «a is surjective and identify G with the quotient of H by the
kernel N of a. Show that Ind, W is isomorphic to the module obtained
by having G = H/N act on the subspace of W consisting of the
elements invariant under N. Deduce the formula

(Ind, ¥)(s) = ;l;a(t}):=s y{t) where n = Card(N).

7.2. Let H be a sdbgroup of G and let x be the character of the permutation
representation associated with G/H (cf. 1.2). Show that x = Indg(l), and
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Chapter 7: Induced representations; Mackey’s criterion

that y = x — 1 is the character of a representation of G; determine under
what condition the latter representation is 1rreducnble [use ex. 2.6, or apply
the reciprocity formula].

73. Let H be a subgroup of G. Assume that for each 1 € H we have
H N tHt™" = {1}, in which case H is said to be a Frobenius subgroup of G.
Denote by N the set of elements of G which are not conjugate to any
element of H.

(a) Let g = Card(G) and let A = Card(H). Show that the number of
elements of N is (g/h) — 1.

(b) Let f be a class function on H. Show that there exists a unique class
function f on G whxch extends f and takes the value f(1) on, N

(c) Show that f = IndSf - f(1)y, where ¢ is the character Ind§(1) - 1 of
G, cf. ex. 7.2. _

(d) Show that {f,f>>4 = {fi./2)6

(¢) Take f to be an irreducible character of H. Show, using (c) and (d), that
{(Ff>6 = 1, f(1) > 0, and that f is a linear combination with integer
coefficients of irreducible characters of G. Conclude that f is an
irreducible character of G. If p is a corresponding representation of G,
show that p(s) = 1 for each s € N [use ex. 6.7}. ;

(f) Show that each linear representation of H extends to a linear representa-
tion of G whose kernel contains N. Conclude that N U {1} is a normal
subgroup of G and that G is the semidirect product of H and N U {1}
( Frobenius’ theorem).

(g) Conversely, suppose G is the semidirect product of H and a normal
subgroup A. Show that H is a Frobenius subgroup of G 1f and only if
for each s € H — {1} and each t € A — {1}, we have sts™! # 1 (ie., H
acts freely on A — {1}). (If H # {1}, this property implies that A is
nilpotent, by a theorem of Thompson.)

7.3 Restriction to subéroups

Let H and K be two subgroups of G, and let p: H — GL(W) be a linear
representation of H, and let V=Ind§(W) be the corresponding induced
representation of G. We shall determine the restriction Resg V of V to K.

First choose a set of representatives S for the (H, K) double cosets of G;
this means that G is the disjoint union of the KsH for s € S (we could also
write s € K\G/H). For s € S, let H, = sHs™! N K, which is a subgroup
of K. If we set :

pi(x) = p(s"'xs),f for x € H,,

we obtain a homomorphism p’: H, - GL(W), and hence a linear representa-
tion of H,, denoted W,.. Since H, is a subgroup of K, the induced
representanon Ind{(W,) is defined. ‘

Proposition 22. The representatmn Resy Ind$§ H(W) is isomorphic to the direct
sum of the representations IndH (W,), for s € S =~ K\G/H.
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7.4: Mackey’s irreducibility criterion

We know that V is the direct sum of the images xW, for x € G/H. Let
s € S and let V(s) be the subspace of V generated by the images xW, for
x € KsH; the space V is a direct sum of the V(s), and it is clear that V(s)
is stable under K. It remains to prove that V(s) is K-isomorphic to
Indﬁl(W,). But the subgroup of K consisting of the elements x such that
x(sW) = sW is evidently equal to H,, and V(s) is a direct sum of the images
x(sW), x € K/H;. Therefore V(s) = Indﬁs(sW). Now it remains to check
that sW is H;-isomorphic to W,, and this is immediate: the isomorphism is
given by s: W, = sW. .0

Remark. Since V(s) depends only on the image of s in K\G/H, we also
see that the representation Indﬁs(ws) depends (up to isomorphism) only on
the double coset of s.

7.4 Mackey’s irreducibility criterion

We apply the preceding results to the case K = H. For s € G, we still
denote by H; the subgroup sHs™' N H of H; the representation p of H
defines a representation Res (p) by restriction to H,, which should not be
confused with the representation p° defined in 7.3.

Proposition 23. In order that the induced representation V = Ind§W be
irreducible, it is necessary and suffficient that the following two conditions be
satisfied:

(a) W is irreducible.
(b) For each s € G — H the two representations p* and Res,(p) of H;
are disjoint.

(Two representation's V, and V, of a group K are said to be disjoint if they
have no irreducible component in common, i.e., if (¥, ¥%)x = 0.)

In order that V be irreducible, it is necessary and sufficient that
V,V)s = 1. But, according to Frobenius reciprocity, we have:
G g

N\

(V, V)G = (W, Resy Vy.

However, from 7.3 we have:

Resy V = @ IndH (o).
H seRboH ndy (p°)

Once more applying the Frobenius formula, we obtain:

<V, V>G = 2 dS’ with ds = <RCSs(p), ps>H:.
s€H\G/H
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Chapter 7: Induced representations; Mackey’s criterion

For s = 1 we have d;, = {p,p) > 1. In order that {V,V)s = 1, it is thus
necessary and sufficient thatd, = 1 and d, = O for s # 1; these are exactly
the conditions (a) and (b). 0

Corollary. Suppose H is normal in G. In order that Indg (p) be irreducible, it
is necessary and sufficient that p be irreducible and not isomorphic to any of
its conjugates p°* for s & H.

Indeed, we have then H; = H and Res,(p) = p.

EXERCISE

74. Let k be a finite field, let G = SL,(k) and let H be the subgroup of G
consisting of matrices (25) such that ¢ = 0. Let w be a homomorphism' of
k* into C* and let x,, be the character of degree 1 of H defined by

x(§ §)=e@

Show that the representation of G induced by x,, is irreducible if w? # 1.
Compute x,,.



CHAPTER 8

Examples of induced representations

8.1 Normal subgroups; applications to the degrees of the
irreducible representations

Proposition 24. Ler A be a normal subgroup of a group G, and let
p: G = GLAV) be an irreducible representation of G. Then:

(a) either there exists a subgroup H of G, unequal to G and containing
A, and an irreducible representation o of H such that p is induced by
o,

(b) or else the restriction of p to A is isotypic.

(A representation is said to be isotypic if it is a direct sum of isomorphic
irreducible representations.)

Let V = @ V, be the canonical decomposition of the representation p
(restricted to A) into a direct sum of isotypic representations (cf. 2.6). For
s € G we see by “transport de structure” that p(s) permutes the V;; since V
is irreducible, G permutes them transitively. Let V; be one of these; if V, is
equal to V, we have case (b). Otherwise, let H be the subgroup of G
consisting of those s € G such that p(s)V, = V,. We have A C H,
H # G, and p is induced by the natural representation o of H in V;, which
is case (a). O

Remark. 1If A is abelian, (b) is equivalent to saying that p(a) is a
homothety for each a€ A.

Corollary. If A is an abelian normal subgroup of G, the degree of each
irreducible representation p of G divides the index (G: A) of A in G.

The proof is by induction on the order of G. In case (a) of the preceding
proposition the induction hypothesis shows that the degree of o divides
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Chapter 8: Examples of induced representations

(H: A), and by multiplying this relation by (G: H) we see that the degree
of p divides (G: A). In case (b) let G’ = p(G) and A’ = p(A); since the
canonical map G/A — G’/A’ is surjective, (G”: A’) divides (G: A). Our
previous remark shows now that the elements of A’ are homotheties, thus
are contained in the center of G’. By prop. 17 of 6.5, it follows that the
degree of p divides (G’: A’) and a fortiori (G: A). O

Remark. If A is an abelian subgroup of G (not ﬁecessarily normal) it is no
longer true in general that deg(p) divides (G: A), but nevertheless we have
deg(p) < (G: A), cf. 3.1, cor. to th. 9.

8.2 Semidirect products by an abelian group

Let A and H be two subgroups of the group G, with A normal. Make the
following hypotheses:

(i) A is abelian.
(ii) G is the semidirect product of H by A.

[Recall that (ii) means that G = A - H and that AN H = {1}, or in
other words, that each element of G can be writien uniquely as a product
ah, witha € A and h € H.] _

We are going to show that the irreducible representations of G can be
constructed from those of certain subgroups of H (this is the method of
“little groups™ of Wigner and Mackey).

Since A is abelian, its irreducible characters are of degree 1 and form a
group X = Hom(A, C*). The group G acts on X by

(5x)(@) = x(s~'as) fors € G, x € X, a € A.

Let (x;);ex/u be a system of representatives for the orbits of H in X. For
eachi € X/ l{l, let H; be the subgroup of H consisting of those elements A
such that hx; = x;, and let G; = A - H; be the corresponding subgroup of
G. Extend the function x; to G; by setting

x(ah) = x;(@) fora € A, h € H;.

Using the fact that hx; = x; for all h € H,, we see that x; is a character of
degree 1 of G, Now let p be an irreducible representation of H;; by
composing p with the canonical projection G; — H; we obtain an irreduci-
ble representation p of G,. Finally, by taking the tensor product of x; and p
we obtain an irreducible representation x;®p. of G;; let §, , be the corre-
sponding induced representation of G.

Proposition 25
(a) 6, , is irreducible.
(b) If6,, and b;. , are isomorphic, then i = i’ and p is isomorphic to p'.
(c) Every irreducible representation of G is isomorphic to one of the 8; .
(Thus we have ‘all the irreducible representations of G.)
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8.3: A review of some classes of finite groups

We prove (a) using Mackey’s criterion (1.4, prop. 23) as follows: Let
s € G;= A -H,; and let K, = G; N sG;s~. We have to show that, if we
compose the representation x; ® p of G; with the two injections K, — G;
defined by x > x and x +> s~ ! xs, we obtain two disjoint representations of
K,. To do this, it is enough to check that the restrictions of these
representations to the subgroup A of K, are disjoint. But the first restricts
to a multiple of x; and the second to a multiple of SXi3 sinces & A - H; we
have sx; # x; and so the two representations in question are mdeed
disjoint.

Now we prove (b). First of all the restriction of §;, to A only involves
characters x belonging to the orbit Hy; of x;. This shows that 0 determines
i. Next, let W be the representation space for 6, p» and let W, be the subspace
of W corresponding to x; [i.e., the set of x € W such that 8, ,(a)x = x;(a)x
for all a € A). The subspace W, is stable under H,, and one checks
immediately that the representation of H; in W, is isomorphic to p; whence

, determines p.

Fmally, let 0: G — GL(W) be an irreducible representation of G. Let
W = @, cx W be the canonical decomposition of Res, W. At least one of
the W, 1s nonzero; if s € G, o(s) transforms W, into W,x)- The group H;
maps W into itself; let'W, be an irreducible sub ClH; ]-module of W, and
let p b«_s the correspondmg representation of H, It is clear that the
representation of G, = A - H; is isomorphic to ; ® p. Thus the restriction
of o to G; contains x; ® p at least once. By prop. 21, it follows that o occurs
at least once in the induced representation 8, ,; since 8, , is irreducible, this
implies that o and 6, , are isomorphic, which proves (c) a

EXERCISES

8.1. Let a, h, h; be the orders of A, H, H; respectively. Show thata = 3 (h/h,-).
Show that, for fixed i, the sum of the squares of the degrees of the
representations 8, , is h2/h;. Deduce from this another proof of (c).

8.2. Use prop. 25 to recompute the 1rreduc1ble representations of the groups D,
-y, and & (cf. Ch. 5). ,

8.3 A review of some classes of ﬁniie groups

For more details on the results of this section and the following, see
Bourbaki, Alg. I, §7.

Solvable groups. One says that G is solvable if there exists a sequence

{1}=GOCG| C"‘-CG,,=G

of subgroups of G, with AIG-__, normal in G; and G,/G,_, abelian for
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1 < i < n. (Equivalent definition: G is obtained from the group {1} by a
finite number of extensions with abelian kernels.)

Supersolvable groups. Same as above, except that one requires that all the
G; be normal in G and that G;/G;_, be cyclic.

Nilpotent groups. As above, except that G,/G,_, is required to be in the
center of G/G;_, for 1 < i < n. (Equivalent definition: G is obtained from
the group {1} by a finite number of central extensions.)

It is clear that supersolvable = solvable. On the other hand, one checks
immediately that each central extension of a supersolvable group is
supersolvable; thus nilpotent = supersolvable.

p-groups. If p is a prime, a group whose order is a power of p is called a
p-group.

Theorem 14. Every p-group is nilpotent (thus supersolvable).

In view of the preceding it suffices to show that the center of every
nontrivial p-group G is nontrivial. This is a consequence of the following
lemma:

Lemma 3. Let G be a p-group acting on a finite set X, and let XC be the set
of elements of X fixed by G. We have

Card(X) = Card(X®)  (mod.p).

Indeed X — X© is a union of nontrivial orbits of G, and the cardinality
of each of these orbits is a power p® of p, with a > 1; hence Card(X — X©)
is divisible by p. O

Let us now apply this lemma to the case X = G with G acting by inner
automorphisms. The set X© is just the center C of G. Thus

Card(C) = Card(G) = 0 (mod.p),

whence C # {1}, which proves the theorem.

We record another application of lemma 3 which will be used in Part 111:

Proposition 26. Let V be a vector space # 0 over a field k of characteristic p
and let p: G — GL(V) be a linear representation of a p-group G in V. Then
there exists a nonzero element of V which is fixed by all p(s), s € G.

Let x be a nonzero element of V, and let X be the subgroup of V
generated by the p(s)x, s € G. We apply lemma 3 to X, observing that X
is finite and of order a power of p. Therefore XC # {0}, which proves the
proposition. 0
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8.4: Sylow’s theorem

Corollary. The only irreducible representation of a p-group in characteristic p
is the trival representation.

EXERCISES

83. Show that the dihedral group D, is supersolvable, and that it is nilpotent if
and only if n is a power of 2.

8.4. Show that the alternating group %, is solvable, but not supersolvable. Same
question for the group &,.

8.5. Show that each subgroup and each quotient of a solvable group (resp.
supersolvable, nilpotent) is solvable (resp. supersolvable, nilpotent).

8.6. Let p and g be distinct prime numbers and let G be a group of order p“q"

where a and b are integers > 0.

(i) Assume that the center of G is {1}. For s € G denote by ¢(s) the number
of elements in the conjugacy class of s. Show that there exists s # 1 such
that c(s) # 0 (mod.q). (Otherwise the number of elements of G — {1}
would be divisible by ¢.) For such an s, c(s) is a power of p; derive from
this the existence of a normal subgroup of G unequal to {1} or G [apply
ex. 6.10]. ‘

(ii) Show that G is solvable (Burnside’s theorem). [Use induction on the order
of G and distinguish two cases, depending on whether the center of G is
equal or unequal to {1}.] ,

(i) Show by example that G is not necessarily supersolvable (cf. ex. 8.4).
(iv) Give an example of a nonsolvable group whose order is divisible by just
three prime numbers [&5, &4, GL,(F;) will do}.

8.4 Sylow’s theorem

Let p be a prime number, and let G be a group of order g = p"m, where
m is prime to p. A subgroup of G of order p” is called a Sylow p-subgroup
of G.

Theorem 15

(a) There exist Sylow p-subgroups.
(b) They are conjugate by inner automorphisms.
(c) Each p-subgroup of G is contained in a Sylow p-subgroup.

To prove (a) we use induction on the order of G. We may assume n = 1,
i.e. Card (G) = 0 (mod. p). Let C be the center of G. If Card (C) is divisi-
ble of order p, an elementary argument shows that C contains a subgroup
D cyclic of order p. By the induction hypothesis, G/D has a Sylow p-
subgroup, and the inverse image of this subgroup in G is a Sylow p-
subgroup of G. If Card (C) # 0 (mod. p) let G act on G — C by inner
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3

automorphisms; this gives a partition of G — C into orbits (conjugacy
classes). As Card(G — C) % 0 (mod .p), one of these orbits has a cardinal-
ity prime to p. It follows that there is a subgroup H unequal to G such that
(G: H) # 0 (mod.p). The order of H is thus divisible by p", and the
induction hypothesis shows that H contains a subgroup of order p”".

Now let P be a Sylow p-subgroup of G and Q a p-subgroup of G. The p-
group Q acts on X = G/P by left translations. By lemma 3 of 8.3 we have

Card(XQ) = Card(X) = 0 (mod.p),

whence XQ % &. Thus there exists an element x € G such that QxP
= xP, hence Q C xPx~!, which proves (c). If in addition Card (Q)

the groups Q and xPx~! have the same order, and Q = xPx~1, whxch
proves (b). m]

EXERCISES

8.7. Let H be a normal subgroup of a group G and let Ry be a Sylow p-subgroup
of G/H.
(a) Show that there exists a Sylow p-subgroup P of G whose image in G/H
is By [use the conjugacy of Sylow subgroups].
(b) Show that P is unique if H is a p-group or if H is in the center of G
[reduce to the case where H has order prime to p, and use the fact that
each homomorphism from By into H is trivial}.

8.8. Let G be a nilpotent group. Show that, for each prime number p, G contains
a unique Sylow p-subgroup, which is normal [use induction on the order of
G, and apply the induction hypothesis to the quotient of G by its center, cf.
ex. 8.7(b)}. Conclude that G i4s a direct product of p-groups.

89. Let G = GL,(k), where k is a finite field of characteristic p. Show that the
subgroup of G which consists of all upper triangular matrices having only
I’s on the diagonal is a Sylow p-subgroup of G.

8.5 Linear representations of supersolvable groups

Lemma 4. Let G be a nonabelian supersolvable group. Then there exists a
normal abelian subgroup of G which is not comainefl in the center of G.

Let C be the center of G. The quotient H = G/C is supersolvable, thus
has a composition series in which the first nontrivial term H, is a cyclic
normal subgroup of H. The inverse image of H; in G has the required
properties. ‘ a

Theorem 16. Let G be a supersolvable group. Then each irreducible represen-
tation of G is induced by a representation of degree 1 of a subgroup of G
(i.e., is monomial).
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We prove the theorem by induction on the order of G. Consequently we
may consider only those irreducible representations p which are faithful, i.e.,
such that Ker(p) = {1}. If G is abelian, such a p is of degree 1 and there is
nothing to prove. Suppose G is not abelian, and let A be a normal abelian
subgroup of G which is not 'contained in the center of G (cf. lemma 4).
Since p is faithful, this implies that p(A) is not contained in the center of

p(G);

thus there exists a € A such that p(a) is not a homothety. The

restriction of p to A is thus not isotypic. By prop. 24, this implies that p is
induced by an irreducible representation of a subgroup H of G which is
unequal to G. The theorem now follows by applying inductionto H. O

EXERCISES

8.10.

8.11.

8.12.

Extend Theorem 16 to groups which are semidirect products of a supersol-
vable group by an abelian normal subgroup [use prop. 25 to reduce to the
supersolvable case].

Let H be the field of quaternions over R, with basis {1,i,j, k} satisfying

t=jl=kl=-1, jj=—ji=k jk=—ki=i
ki = —ik = j.

Let E be the subgroup of H* consisting of the eight elements +1, +i, £/, *k
(quaternion group), and let G be the union of E and the sixteen elements
(1 £ixj =+ k)/2. Show that G is a solvable subgroup of H* which is a
semidirect product of a cyclic group of order 3 by the normal subgroup E.
Use the isomorphism H ®g C = M,(C) to define an irreducible representa-
tion of degree 2 of G. Show that this representation is not monomial (observe
that G has no subgroup of index 2). [The group G is the group of invertible
elements of the ring of Hurwitz “mtegral quaternions”; it is also the group
of automorphisms of the elliptic curve 2 — y = x3 in characteristic 2. It is
isomorphic to SL,(F;).]

Let G be a p-group. Show that, for each irreducible character x of G, we
have 3 x'(1)2 = 0 (mod.x(1)?), the sum being over all irreducible characters
x’ such that x'(1) < x(1). [Use the fact that x(1) is a power of p, and apply
cor. 2(a) to prop. 5.
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CHAPTER 9

Artin’s theorem

9.1 The ring R(G)

Let G be a finite group and let x;, ..., x; be its distinct irreducible
characters. A class function on G is a character if and only if it is a linear
combination of the x;’s with non-negative integer coefficients. We will
denote by R*(G) the set of these functions, and by R(G) the group
generated by R*(G), i.e., the set of differences of two characters. We have

R(G)=Zx; & --- & Zy,,.

An element of R(G) is called a virtual character. Since the product of two
characters is a character, R(G) is a subring of the ring Fc(G) of class
functions on G with complex values. Since the x; form a basis of Fc(G) over
C, we see that C ® R(G) can be identified with Fc(G).

'We can also view R(G) as the Grothendieck group of the category of finitely
generated C{G]-modules; this will be used in Part III.

If H is a subgroup of G, the operation of restriction defines a ring
homomorphism R(G) — R(H), denoted by Res§ or Res.

Similarly, the operation of induction (7.2) defines a homomorphism of
abelian groups R(H) — R(G), denoted by Indg or Ind. The homomor-
phisms Ind and Res are adjoints of each other with respect to the bilinear
forms {q, ¥ >y and {@,¥)g, cf. th. 13. Moreover, the formula

Ind(¢ - Res(y)) = Ind(g) - ¢
shows that the image of Ind: R(H) — R(G) is an ideal of the ring R(G).
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If A is a commutative ring, the homomorphisms Res and Ind extend by
linearity to A-linear maps:

A ® Res: A® R(G) > A®R(H)
A®Ind: A® R(H) » A®R(G)

EXERCISES

9.1. Let ¢ be a real-valued class function on G. Assume that (¢,1) = 0 and that
o(s) < O for each s # 1. Show that for each character x the real part of
- {@,x) is > 0 [use the fact that the real part of ¢(s~!)x(s) is greater than or
equal to that of g(s~!)x(1) for all 5. Conclude that, if ¢ belongs to R(G), ¢

is a character.

92. Let x € R(G). Show that x is an irreducible character if and only if
x%x> = 1and x(1) > 0.

93. If fis a function on G, and k an integer, denote by ¥*(f) the function
s - f(s%).

(a) Letpbea rel)resentation of G with character x. For each integer k 2 0,
denote by x; (resp. x’,f) the character of the kth symmetric power (resp.
kth exterior power) of p (cf. 2.1 for the case k = 2). Set

e [~ ]
OT(X) =23 x,’,‘T" and M(x) = 3 X’ka’
k=0 k=0
where T is an indeterminate. Show that, for s € G, we have

or(x)(s) = 1/det(1 — p(s)T) and  Ap(x)(s) = det(1 + p(s)T).

Deduce the formulas
o0
or0) = exp{ $ ¥k},
o0
M0 = ep{ E D w00k},
and
n n
= 3 YOOI, md = P VA 210
which generalize those of 2.1.

(b) Conclude from a) that R(G) is stable under the operators ¥*, k € Z.
94. Let n be an integer prime to the order of G.

(a) Let x be an irreducible character of G. Show that ¥"(x) is an irreducible
character of G [use the two preceding exercises].
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(b) Extend by linearity x - x”" to an endomorphism v, of the vector space
C[G]. Show that the restriction of y, to Cent. C[G] is an automorphism of
the algebra Cent. C[G].

9.2 Statement of Artin’s theorem

It is as follows:

Theorem 17. Let X be a family of subgroups of a finite group G. Let
Ind: @H exR(H) — R(G) be the homomorphism defined by the family of
IndH, H € X. Then the following properties are equivalent:

(1) G is the union of the conjugates of the subgroups belonging to X.
(ii) The cokernel of Ind: H2}(R(H) — R(G) is finite.

Since R(G) is finitely generated as a group, we can rephrase (ii) in the
following way:
(ii") For each character x of G, there exist virtual characters
xg € R(H), H € X, and an integer d > 1 such that

= IndS (xy ).
Héx ndy (xy)

Note that the family of cyclic subgroups of G satis;ﬁes (i). Hence:

Corollary. Each character of G is a linear combination with rational coeffi-
cients of characters induced by characters of cyclic subgroups of G.

We will see in the next section that the above statement remains true
when “rational” is replaced by “integer” and “cyclic” by “elementary.”

EXERCISE

9.5. Take for G the alternating group %, and for X the family of cyclic subgroups
of G. Let {xo, X1 X2 ¥} be the distinct irreducible characters of G (cf. 5.7).
Show that the image of 6 R*(H) under Ind is generated by the five
characters:

Xtxntxt+ty 2% xtd xtd xty

Conclude that an element x of R(G) belongs to the image of Ind if and only
if x(1) == 0 (mod.2). Show that none of the characters xg, Xx;, X2 is a linear
combination with positive rational coefficients of characters induced from
cyclic subgroups.

9.3 First proof

First, we show that (ii) = (i). Let S be the union of the conj gates of the
subgroups H belonging to X. Each function of the form 3 Indyj( fy), with
fu € R(H), vanishes off S. If (ii) is satisfied, it follows that each class
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9.3: First proof

function on G vanishes off S, which shows that S = G. Hence (i) holds.
Conversely, suppose (i) is satisfied. To prove (ii), it suffices to show that
the Q-linear map

Q ® Ind: H@XQ ® R(H) - Q ® R(G).
is surjective, which is also equivalent to the surjectivity of the C-linear map

C®Ind: & C®R(H) - C®R(G)
HeX

By duality this is equivalent to the injectivity of the adjoint map

C® Res: C® R(G) » & C®R(H).
HEeX

But this injectivity is obvious: it amounts to saying that if a class function
on G restricts to 0 on each cyclic subgroup, then it is zero. The theorem
follows. a

EXERCISES

We assume that the family X is stable under conjugation and passage to
subgroups, and that G is the union of the subgroups belonging to X. (Example: the
family of cyclic subgroups of G.)

9.6. Denote by N the kernel of the homomorphism
Ind: : .
Q@®Ind ngQ ® R(H) » Q ® R(G)

(@ Let H, HeX, with HcH, let yeRH) and yx=Indj(x)
€ R(H). Show that x — x’ belongs to N.

() Let H € X and s € G. Set *H = sHs™!. Let x € R(H) and let °x be
the element of R(*H) defined by *x(shs™!) = x(h) for h € H. Show that
x — *x belongs to N.

(c) Show that N is generated over Q by the elements of type (a) and (b)
above. [Extend scalars to C and use duality. One is led to prove that, if
for each H € X a class function fy; on H is given and if the f}; satisfy
conditions of restriction and conjugation analogous to (a) and (b) above,
then there exists a class function f on G such that Resyf = fj; for each
H.]

9.7. Show that Q ® R(G) has a presentation* by generators and relations of the
following form: ’

Generators: symbols (H, x), with H € X and x € Q ® R(H).

* This exercise gives a “presentation” of Q ® R(G) in terms of induced characters (H, x).
It would be very desirable, for application to the theory of L-series, to give such a presentation
for R(G) itself (without tensoring by Q). When G is solvable, this has been done by Langlands-
Deligne (Lecture Notes in Math. 349, p. 517, th. 4).
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Relations:

() (HAx +Xx) =AMH,x) + X(H,x') for AN €Q, and x, X € Q
® R(H).

(i) ForH' C H,x € R(H'), and x = IndH.(x’), we have (H,x) = (H',x').

(iii) For H € X, s € G, x € R(H), we have (H,x) = (*H,%x), with the
notation of ex. 9.6(b).

[Use ex. 9.6].

9.4 Second proof of (i) = (ii)

First let A be a cyclic group, and let a be its order. Define a function §,
on A by the formula:

_Ja if x generates A
Oa(x) = {0 otherwise

Proposition 27. If G is a finite group of order g, then
= Ind$(9,),
g A%G A(04)
where A runs through all the cyclic subgroups of G.
(In this formula, the letter g denotes the constant function equal to g.)

Put #, = Ind$(8,). For x € G we have

1

BE=1 3 60w
yxy~leA
=l s 42 3 0
a yeG yeG
yxy~lgen. A yxy~lgen. A

However, for each y € G, yxy~! generates a unique, cyclic subgroup of G.
So we have:

2 0= 2 1=g O
ACG yEG

rd

Proposition 28. If A is a cyclic group, then 8, € R(A).

The proof is by induction on the order a of A, the case a = 1 being
trivial. By prop. 27 we have

= Indd(6p) = 0, + Ind2(8y).
a B%\nn(n) A BEAHB(B),
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9.4: Second proof of (i) = (ii)

The induction hypothesis gives 8 € R(B) for B # A, hence Ind§(05)
belongs to R(A); on the other hand, it is clear that a € R(A) and so it
follows that 6, belongs to R(A). D

Application to the proof of (i) = (i1)

Fnrst observe that, if A’ is contamed in a conjugate of A, the image of
Ind$, is contained in that of Ind§. Hence we can assume that X is the
family of all cyclic subgroups of G. Propositions 27 and 28 then show that

= Ind(,), ith 4, € R(A).
g AEXHA(A) w1 z;\ (A)

Thus the element g belongs to the image of Ind. Since this image is an idea/
of R(G), cf. 9.1, it contains every element of the form gx, with x € R(G),
which proves (ii’) (and even more, since we have an explicit denominator
viz. the order of G).

EXERCISE

9.8. If A is cyclic of order a, put A, = ¢(a)r, — 05, where ¢(a) is the number of
generators of A, and 7, is the character of the regular representation. Show
that A, is a character of A orthogonal to the unit character [apply ex. 9.1).
Show that, if A runs over the set of cyclic subgroups of a group G of order
g, we have

) =, MR 0W) = gl - 1),

where rg; is the character of the regular representation of G [use prop. 27].

[Application (Aramata-Brauer): Let F be a finite extension of the number
field E, and let &(s) = {(s)/$g(s) be the quotient of their zeta functions. It
is known that ® is meromorphic in the entire complex plane. Now suppose
that F/E is a Galois extension with Galois group G. Then the formula (*)
above implies the identity

‘b(s)g = I;I LF/FA(S’ A,1\), B

where F, denotes the subfield of F corresponding to the cyclic subgroup A.
The functions Ly, (s,A4) are “abelian” L-functions, and hence holomor-
phic. So we see that @ itself is holomorphic, i.e., that {¢ divides {; it is not
known if this result still holds for non-Galois extensions (this would follow
from conjectures of Artin).]
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CHAPTER 10

A theorem of Brauer

In sections 10.1 through 10.4 the letter p denotes a prime number.

10.1 p-regular elements; p-elementary subgroups

Let x be an element of a finite group G. We say that x is a p-element (or
is p-unipotent) if x has order a power of p; we say that x is a p’-element (or
is p-regular) if its order is prime to p.

Each x € G can be written in a unique way x = x,x, where x, is p-
unipotent, x, is p-regular, and x, and x, commute; moreover, x, and x, are
powers of x. This can be seen by decomposing the cyclic subgroup
generated by x as a direct product of its p-component and its p’-component.
The element x, (resp. x,) is called the p-component (resp. the p’-component)
of x.

A group H is said to be p-elementary if it is the direct product of a cyclic
group C of order prime to p with a p-group P. Such a group is nilpotent and
its decomposition C X P is unique: C is the set of p -elements of H, and P
is the set of p-elements.

Let x be a p’-element of a finite group G, let C be the cyclic subgroup
generated by x, and let Z(x) be the centralizer of x (the set of all s € G
such that sx = xs). If P is a Sylow p-subgroup of Z(x), the group
H = C - P is a p-elementary subgroup of G, which is said to be associated
with x; it is unique up to conjugation in Z(x).

EXERCISES

10.1. Let H = C - P be a p-clementary subgroup of a finite group G, and let x be
a generator of C. Show that H is contained in a p-elementary subgroup H’
associated with x.
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10.2: Induced characters arising from p-clementary subgroups

10.2. Let G = GL,(k), where k is a finite field of characteristic p. Show that an
element x € G is a p-element if and only if its eigenvalues are all equal to
1, i.e, if 1 — x is nilpotent; it is a p’-element if and only if it is semisimple,
i.e., diagonalizable in a finite extension of k.

10.2 Induced characters arising from p-elementary subgroups

The purpose of this and the next two sections is to prove the following
result:

Theorem 18. Let G be a finite group and let V, be the subgroup of R(G)
generated by characters induced from those of p-elementary subgroups of G.
Then the index of V, in R(G) is finite and prime to p.

Let X(p) be the family of p-elementary subgroups of G. The group v is
the image of the homomorphism

Ind: & R(H)- R(G)
HeX(p)
defined by the induction homomorphisms Ind$, H € X(p). Then V,is an
ideal of R(G), and to prove the theorem it is enough to show that there
exists an integer m, prime to p, such that m € \;. In fact, we prove the
following more precise result:

Theorem 18'. Let g = p"l be the order of G, with (p,I) = 1. Then |l € V,,

The proof (due to Roquette and Brauer-Tate [12]) uses the subring A of
C generated by the gth roots of unity. This ring is free and finitely generated
as a Z-module; its elements are algebraic integers. We have Q N A = Z,
since the elements of this intersection are simultaneously rational numbers
and algebraic integers (cf. 6.4). The quotient group A/Z is finitely generated
and torsion-free, hence free; it follows (by lifting to A a basis of A/Z) that
A has a basis {1,q,,...,a,.} containing the element 1. ,

The homomorphism Ind defines, by tensoring with A, an A-linear map

A®Ind: & A®R(H)— A®R(G).
HeX(p)

The existence of the basis {1,q,,...,a.} then implies the following:

Lemma 5. The image of A ® Ind is A ® V,; moreover we have
(A®V,) N R(G) = V.

Thus, to prove that the constant function / belongs to V,, it is enough to
prove that / belongs to the image of A ® Ind, or in other words, that / is of
the form % ay Ind§(fy), with @y € A and f; € R(H).
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Remarks

(1) The advantage of the ring A over the ring Z is that all the characters
of G have values in A, since these values are sums of gth roots of unity. It
follows that A ® R(G) is a subring of the ring of class functions on G with
values in A.

(2) It can be shown that A is the set of algebraic integers of the
cyclotomic field Q - A, but we will not need this.

10.3 Construction of characters

Lemma 6. Each class function on G with integer values divisible by g is an
A-linear combination of characters induced from characters of cyclic sub-
groups of G.

(Here, and in all that follows, the expression “integer values” méans
“values in Z.”) :

Let f be such a function, and write it in the form gx, where x is a class
function with integer values. If C is a cyclic subgroup of G, let 8 be the
element of R(C) defined in 9.4. We have

g = % Ind€(8c), cf. prop. 27,
whence
f = 8X = % lndg(oc)x = % Indg(ﬂc . RCS(G:X).

It remains to show that 6..Res x belongs to A ® R(C) for each C. But the
the values of xc = 0c - Resc x are divisible by the order of C, so if Y is a
character of C, we have (xc,¥) € A, which shows that xc is an A-linear
combination of characters of C, whence xc € A ® R(C). O

Lemma 7. Let x be an element of A ® R(G) with integer values, let x € G,
and let x, be the p’-component of x (cf. 10.1). Then

x(x) = x(x,) (mod. p).

-~

By restriction, we are led to the case where G is cyclic and generated by
x. Now x = ¥ a;x;, with a; € A and the x; running over the distinct
characters of degree 1 of G. If g is a sufficiently large power of p, we have
x? = x7 and thus x;(x)? = x;(x,)? for all i. Hence

x(x)! = (T a;x;(x))! = 2 af x;(x)?

= 3 af x:(x,)?) = x(x,)? (mod. p A).
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Since pA N Z = pZ, this implies

x(x)? = x(x,)? (mod. p),
hence x(x) = x(x,) (mod. p), since A? = A (mod. p) for all'A € Z. O

Lemma 8. Let x be a p'-element of G, and let H be a p-elementary subgroup

"of G associated with x (10.1). Then there exists a functiony € A ® R(H),

with integer values, such that the induced function §' = Indgz[/ has the
Jollowing properties:

(a) ¥'(x) # 0 (mod. p).
(b) Y'(s) = O for each p’-element of G which is not conjugate to x.

Let C be the cyclic subgroup of G generated by x, and let Z(x) be the
centralizer of x in G. We have H = C X P, where P is a Sylow p-subgroup
of Z(x). Let c be the order of C, and let p? be the order of P. Let - be the
function defined on C by

Yc(x) =c and  yYc(y) =0 ify # x.

We have yc = 3, x(x~')x, where x runs through the set of irreducible
characters of C; it follows that Y belongs to A ® R(C) (which follows also
from lemma 6).

Let ¢ be the function on H = C X P defined by Y(xy) = yc(x) for
x € C and y € P. This is the inverse image of Y- under the projection
H — C. So we have y € A @ R(H). We show now that y satisfies the
conditions of the lemma:

If s is a p’-element of G and if y € G, ysy™' is a p’-element; if ysy
belongs to H then it belongs to C, and we have y{ ysy~!) = 0 whenever
ysy~! # x. It follows that ¢/(s) = 0 if s is not conjugate to x, which proves
(b). Moreover:

1 -1

\4/(x) la S ux) = ia S 1= Card(Z(x))

a
C P yxy=l=x yry~t=x p

whence ¢'(x) # 0 (mod. p) since p? = Card(P) is the largest power of p
dividing Card(Z(x)). O

Lemma 9. There exists an element y of A ® V,,, with integer values, such that
Y(x) # 0(mod. p) for each x € G.

Let (x;);c; be a system of representatives of the p-regular classes (i.e.
those consisting of p’-elements). Lemma 8 gives us an element y, of A ® V,
with integer values, such that

¥i(x;)) # 0(mod. p) and  ¢;(x;) = 0(mod. p) forj # i.
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Put y = 3 y,. Itis clear that § belongs to A ® V, and has integer values.
For x € G, the p’-component of x is conjugate to a unique x;. From lemma
7 we obtain

Wx) = ¥x;) = ¥;(x;) # 0(mod. p). b

EXERCISES
10.3. Extend lemma 6 to class functions with values in the ideal gA of A.

104. Let p be a prime ideal of A such that p N Z = pZ (which is ecjuivalent to
saying that A/p is a finite field of characteristic p). Let x € A ® R(G), let
x € G, and let x, be the p’-component of x. Show that x(x) = x(x,)
(mod.p) (same proof as for lemma 7) but that we no longer always have

x(x) = x(x,) (mod.pA).

10.4 Proof of theorems 18 and 18’

Let g = p"l be the order of G, with (p,/) = 1. It suffices to show that /
belongs to A ® \;, cf. 10.2.

Let ¢ be an element of A ® \;, satisfying the conditions of lemma 9. The
values of ¢ are # 0 (mod. p). Let N = ¢ p") be the order of the group
(Z/p"Z) , so that N = 1 (mod. p") for each integer A prime to p. Hence
W)Y = 1 (mod.p") for all x € G, and the function /(yN — 1) has integer
values divisible by /p" = g. By lemma 6, this function is an A-linear
combination of characters induced from cyclic subgroups of G. Since each
cyclic group is p-elementary, we have /YN — 1) € A ® V,. But A®V, is
an ideal of A ® R(G), whence /yN € A® V, Subtractmg, we get that /
belongs to A ® V,, which finishes the proof. '

10.5 Brauer’s theorem

We will say that a subgroup of G is elementary if it is p-elementary for at
least one prime number p.

Theorem 19. Each character of G is a linear combination with integer
coefficients of characters induced from characters of elementary subgroups.

Let V, be the subgroup of R(G) defined in th. 18. It suffices to show that
the sum V of the V,, for p prime, is equal to R(G). Now V contains V,, so
the index of V in R(G) divides that of V,, hence is prime to p by th. 18. Smce
this is true for all p, this index is equal to 1, which proves the theorem. [

Theorem 20. Each character of G is a linear combination with integer
coefficients of monomial characters.
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“(Recall that a character is said to be monomial if it is induced from a
character of degree 1 of some subgroup.)

This follows from th. 19 and the fact that each character of an elementary
group is monomial, since such a group is nilpotent (cf. 8.5, th. 16). O

Remarks

(1) The linear combinations occuring in th. 19 and 20 may have positive
or negative coefficients. It is in general impossible to write a given character
as a linear combination with positive coefficients (integral or even real) of
monomiai characters, cf. ex. 10.5, below.

(2) Theorem 20 plays an essential role in many applications of represen-
tation theory: to a large extent, it gives a reduction of questions pertaining
to an arbitrary character x to the case where x has degree 1 (hence comes
from a character of a cyclic group). It is by this method, for example, that
Brauer proved the Artin L-functions are meromorphic in the entire complex
plane. We will see other applications later.

EXERCISES

10.5. Let x be an irreducible character of a group G.

(a) Suppose that x is a linear combination with positive real coefficients of
monomial characters. Show that there exists an integer m > 1 such that
my is monomial.

(b) Take for G the alternating group fs. The corresponding permutation
representation is the direct sum of the unit representation and an
irreducible representation of degree 4; take for x the character of this
latter representation. If my were induced by a character of degree 1 of
a subgroup H, the order of H would be equal to 15/m, and m could only
take the values 1, 3, 5, 15. Moreover, the restriction of x to H would have
to contain a character of degree 1 of multiplicity m (observe that G has
no subgroup of order 15). Conclude that x cannot be a linear combina-
tion with positive real coefficients of monomial characters.

10.6. (Suggested by A. Weil.) We want to prove that each f € R(G) such that
f(1) = 0 is a Z-linear combination of elements of the form IndE (@—=1),
where E is an elementary subgroup of G and a is a character of degree 1.

(a) Let Ry(G) be the subgroup of R(G) generated by the Ind§ (a - l) and
let R(G) = Z + Ry(G). Show that, if H is a subgroup of G, Ind§ maps
Ry(H) into Ry(G).

(b) Suppose that H is normal in G and that G/H is abelian. Show that IndH
maps R’(H) into R'(G). [It is enough to show that IndH( 1) belongs to
R’(G), and this follows from the fact that lndH(l) is the sum of (G: H)
characters of degree 1 of G whose kernel contains H.]

(c) Suppose G is elementary. Let Y be the set of maximal subgroups of G.
Show that if H € Y, then H is normal in G, and G/H has prime order
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(@)

[use the fact that G is nilpotent]. Deduce that éG) is generated by the
characters of degree 1 of G together with the Indyj(R(H)), where H runs
over Y [apply th. 16). Show that R'(G) = é ) [use induction on the
order of G, and use (b) to prove that the Indgj (R (H)) are contained in
R'(G)).

Return to the general case and denote by X the set of clementary
subgroups of G. By th. 19 we have 1 = 2 Ind§ (fg), with fz € R(E).
If ¢ € R(G) this gives

Q= ng IndZ(pg) Wwhere pg = fg - ResF(g).

If ¢(1) = 0, we have @ € RH(E) by (c). Conclude that ¢ belongs to
R4(G), whence R’(G) = R(G).



CHAPTER 11

Applications of Brauer’s theorem

11.1 Characterization of characters
Let B be a subring of C and let G be a finite group.

Theorem 21. Let ¢ be a class function on G such that, for each elementary
subgroup H of G, we have Res§ @ € B ® R(H). Then ¢ € B ® R(G).

Let X be the set of all elementary subgroups of G. By th. 19, we can
write the constant function 1 in the form

1= 3 Ind§fy, withfy € R(H).
HEX
Multiplying by ¢, this gives
= -Ind§fy = Ind§(fy - Resj ¢).
P ng P H/H ng H(fu HP)
Since f; belongs to R(H) and Resf ¢ belongs to B ® R(H), their product

belongs to B ® R(H). It follows that ¢ belongs to B ® R(G). O
A similar argument, using Artin’s theorem (ch. 9) gives:

Theorem 21’. Suppose that B contains Q. If ResG ¢ € B ® R(H) for each
cyclic subgroup H of G, then ¢ € B ® R(G).
Remark. Theorem 21 can be interpreted as a coherence property. Suppose

that we are given, for each H € X, an element ¢y of B ® R(H), and
suppose the following properties are satisfied:

(i) If H' C H, then gy = ResH.(py).
(i) If H' = sHs™!, with s € G, then ¢y is obtained from @y by means

of the isomorphism x +> sxs~ 1.
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Chapter 11: Applicaiions of Brauer’s theorem

Then there exists a unique element ¢ of B ® R(G) such that Res§¢
= gy forallH € X.

Theorem 22. Let ¢ be a class Junction on G such that, for each elementary
subgroup H of G, and each character x of degree 1 of H, the number

-1 RIS
<X7 RCSH ¢>H - Card(H) SEEH X(s )(P(S)
belongs to B. Then ¢ belongs to B ® R(G).
Let H be an elementary subgroup of G. Let
ResSo = 3 ¢, w, where ¢, = {w, Resy @Dy,

be the decomposition of Requ) into -irreducible characters w of H. By
th. 16, each character w is induced by a character x,, of degree I of a
subgroup H, of H. By Frobenius reciprocity, we have

Co = <Xw Res& ¢>H,~'

Since H, is an elementary group, the hypothesis on ¢ insures that C,
belongs to B. Consequently, Resy¢ = 3 ¢, w belongs to B ® R(H), and
the result follows by th. 21. ]

Corollary. In order that ¢ be a virtual character (ie., ¢ € R(G)) it is
necessary and sufficient that, whenever H is an elementary subgroup and
x: H = C* is a homomorphism, then {x, Resy o)y € Z.

This is the special case B = Z.

Let Res denote the homomorphism from R(G) into ® R(H) defined
by the restriction homomorphisms Resf.

Proposition 29. The homomorphism Res: R(G) — @ R(H) is a splu
injection.

(A module homomorphism f: L — M is said to be a split injection if there
exists »: M — L such that r o f = 1; this is equivalent to saying that f is
injective and f(L) is a direct factor of M.)

It is immediate that Res is an injection. To show that it is split, it suffices
to prove that its cokernel is torsion free, since the groups under considera-
tion are finitely generated free Z-modules. So we must show that, if

= (fu)gex is an element of ® R(H), and there exists a non-zero »n such
that nf = Res ¢, with ¢ € R(G), then f € Im(Res). But this follows from
Th. 21, applied to the function @/n and the ring Z. 0O
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[The argument could also be given in terms of duality: since the groups
involved are finitely generated free Z-modules, showing that Res is split,is
equivalent to showing that its rranspose is surjective. But its transpose is

Ind: ® R(H) — R(G),

which is indeed surjective by Brauer’s Theorem.]

11.2 A theorem of Frobenius

As in Ch. 10, we denote by A the subring of C generated by the gth roots
of unity, where g = Card(G).

Let n be an integer > 1, and let (g, n) be the g.c.d. of gand n. If fis a
function on G, denote by ¥”f the function x +> f(x"). It is easily checked
(cf. ex. 9.3) that the operator ¥” maps R(G) into itself. Moreover: '

Theorem 23. If f is a class function on G with values in A, the function
(g/(g,n))¥"f belongs to A ® R(G).

If c is a conjugacy class of G, denote by f. the characteristic function of c,

which takes the value 1 on c and 0 on G — c. The function ¥"f is given by:
if x" €c
otherwise .

v = {g

Each class function with values in A is a linear combination of the f.
Theorem 23 is thus equivalent to:

Theorem 23’. For each conjugacy class ¢ of G, the function (g/(g,n))¥"f.
belongs to A ® R(G).

i

This can be formulated in still another way:

Theorem 23”. For each conjugacy class ¢ of G, and each character x of G, we

have 1/(g,n) 3 x(x) € A.

x"€c
Taking for x the unit character, this gives:
Corollary 1. 1he number of elements x € G such that x" € c is a multiple of
(8, n).
In particular:
Corollary 2. If n divides the order of G, the number of x € G such that
x" = 1 is a multiple of n. '
(We mention at this point a conjecture of Frobenius: If the set G, of those

s € G such that s = 1 has n elements, then G, is a subgroup of G.)
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PrROOF OF THEOREM 23. (R. Brauer.) In view of th. 21, it suffices to show
that the restriction of the function (g/(g,n))¥"f to each elementary
subgroup H of G belongs to A ® R(H). Now, if A is the order of H, then
g/ (g, n) is Qivisible by h/(h, n). So it suffices to show that

V" (Resy f)

(h n)
belongs to A ® R(H) that is, the proof is reduced to the case of elementary
groups. Since an elementary group is a product of p-groups, it is enough to.
treat the case of a p-group. Now, using the fact that an irreducible character
of such a group is induced by a character of degree 1, we are led ﬁnally to
proving the following:

Lemma 10. Let ¢ be a conjugacy class of a p-group G, let x be a character of
degree 1 of G, and let a. = Y x(x). Then a, = 0 (mod. (g, n)A).
x"€Ec
First, observe that the sum of the a, (for x fixed and c variable) is equal
to X, ec x(x), i.e., to g'if x = 1 and to O otherwise. So

2. a. = 0 (mod. (g,n)).

Therefore it is enough to prove lemma 10 for those classes ¢ which are
differen. from the unit class.

Write n in the form p?m, with (p,m) = 1. Let p® be the order of the
elements of ¢, and let C be the set of x € G such that x" € c. Since
x" = xP°™ has order p® > 1, and since G is a p-group, the order of x is
p**b. It follows that, if z is an integer =1 (mod.p®), then (x*)" = x",
whence x° € C; moreover, we have equality x° = x if and only if
z = 1(mod. p**?).In other words, the subgroup I of (Z/p°*°Z)" consisting
of elements congruent to 1 mod. p® acts freely on C. Now the set C is
partitioned into orbits under the action of I, and it suffices to show that the
sum of the x(x) over each orbit is divisible by (g, n) in the ring A. Such an
orbit consists of elements x'*?*, with 1 € Z/p°Z. The sum of the values of
x on this orbit is therefore equal to

a.(x) = x(x) 3 z, wherez = x(x?).
tmod. p°

a+b

But x(x) is a p?*°-th root of unity, and z is a p°-th root of unity. Therefore

2 2= {pa ifz =1,
tmod. p? 0 ifz # 1.

Consequently a.(x) is divisible by )7", and a fortiori by (g, n). ]
EXERCISE

11.1. Let f be a class function on G with values in Q such that f(x™) = f(x) for
all m prime to g. Show that f belongs to Q ® R(G) [use th. 21’ to reduce to
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the cyclic case]. Conclude from th. 23 that, if in addition f has values in Z,
then the function (g/(g, n))¥"f belongs to R(G). Apply this to the charac-
_ teristic function of the unit class.

11.3 A converse to Brauer’s theorem
The letters A and g have the same meaning as in the preceding section.

Lemma 11. Let p be a prime number. Let x be a p'-element of G, C the
subgroup generated by x, and P a Sylow p-subgroup of the centralizer Z(x)
of x in G. Let H be a subgroup of G containing no conjugate of C X P, let
¥ be a class function on H with values in A, and let ' = Indﬁ' Y. Then
¥'(x) = 0 (mod. p A).

Let S(x) be the set of conjugates of x. Then

wn _ Card Z(x)
Y (x) Card H JesenH ‘1’()')

‘Let (Y;);¢| be the distinct H-conjugacy classes contained in S(x) N H, and
choose an element y; in each Y. The number of conjugates of y; in H is
equal to Card Y,, and also equal to (H: H N Z(y;)). Therefore

Y

V) =SR2 5 cara v, w0,

_ . _ Card Z(y;)
= & ), with = N Z00)

Suppose we have n; # 0 (mod. p) for some i € I. Then Card Z(y,) and
Card(H N Z(y;)) are divisible by the same power of p; thus a Sylow p-
subgroup P; of H N Z(y;) is also a Sylow p-subgroup of Z(y;). If C; is the
cyclic group generated by y;, then C; X P; is contained in H, and is a p-
elementary subgroup associated with y; in the group G. Since y; and x are
conjugate in G, the group C; X P; is conjugate to C X P. This contradicts
the hypothesis on H. Thus n; = 0 (mod.p) for all i, whence

¥(x) = 0(mod. p A). O

Theorem 23" (J. Green.) Ler (H;);c| be a family of subgroups of G such that
R(G) =Y, Ind§} R(H,). Then each elementary subgroup of G is con-
tained in a conjugate of some H,.

Let C X P be a p-elementary subgroup of G. We can assume that this
subgroup is maximal, and thus associated with a p’-element x of G. If C X P
were not contained in a conjugate of any H,, the preceding lemma would
show x(x)=0(mod.pA) for all ye) Indfj R(H)), in particular for x
equal to the unit character of G, which is absurd. O
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In other words, the family of elementary subgroups is “the smallest” for
which Brauer’s theorem is true.

11.4 The spectrum of A ® R(G)

Recall that if C is a commutative ring, then the spectrum of C, denoted
Spec(C), is the set of prime ideals of C, cf. Bourbaki, Alg. Comm., Ch. II.

We want to determine the spectrum of the ring A ® R(G). (We could
also describe that of R(G), but it would be more complicated.)

Let CI(G) be the set of conjugacy classes of G. The ring ACXG) can be
identified with the ring of class functions on G with values in A; if f belongs
to this ring, and if ¢ is a conjugacy class, let f(c) denote the value of f on
an arbitrary element of c. The injections A — A ® R(G) — ANC) define
maps

Spec(ACNG)) - Spec(A ® R(G)) = Spec(A).
These maps are surjective; this follows, for example, from the fact that
ASO) s integral over A (and even over Z), cf. Bourbaki, Alg. Comm., Ch.
IV, §2.

On the other hand, we know that Spec(A) consists of the ideal 0 and the
maximal ideals of A. Moreover, if M is maximal in A, the field A/M is
finite; its characteristic is called the residue characteristic of M.

The spectrum of AU can be identified with C1(G) X Spec(A): with
each ¢ € CI(G) and each M € Spec(A) we associate the prime ideal M,
consisting of those f € ACXC) such that f(c) € M. The image of M, in
Spec(A ® R(G)) is the prime ideal Py, . = M, N (A ® R(G)).
Proposition 30. If '

(i) with each class ¢ € C1(G) we associate P,
(ii) with each p-regular class ¢ and each maximal ideal M of A with
residual characteristic p we associate Py .,

then we obtain once and only once each prime ideal of A ® R(G).

(A conjugacy class is said to be p-regular if it consists of p’-elements, cf.
10.1.)

Since Spec(ACMC)) — Spec(A ® R(G)) is surjective (cf. above), each
prime ideal p of A ® R(G) is of the form Py ; since p N A is M, we see
that p determines M, and it remains only to determine which pairs of
classes c| and c; are such that Py;, = Py .. Thus the proposition follows
from:

Proposition 30’.
@) fM=0Py, =Py, is equwalent 10 ¢, = ¢y
(ii) Suppose that M % O with residue characteristic p. Let ¢} (resp. cz)

be the class consisting of the p'-components of the elements of
¢y (resp. c;). Then Py, = Py, is equivalent to ¢) = 3.
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N

¢y

Spec (A X R(G))
:
M 4 “
1';1 Spec (A)
\
]
1
i_’; ‘ Spec (Z)

To prove (i) we must show that, if ¢; # c,, then there exists an element
f € A ® R(G) such that f(¢;) # 0 and f(c,) = 0, and this is clear (take
for f the function equal to g on ¢, and 0 elsewhere).

If M has characteristic p, an easy argument, analogous to the proof of
lemma 7, shows that Py, = Py (cf. ex. 10.4). On the other hand, lemma
8 shows that Py .. +# PMC if ¢} # 5. Whence (ii). O

Remarks

(1) Let I be an ideal of A ® R(G). To show that I is equal to A ® R(G),
it suffices to show that I is not contained in any of the prime ideals Py ;
this is the approach taken in the proof of Brauer’s theorem (see also ex. 11.7
below).

(2) We can represent Spec(A ® R(G)) graphically as a union of “lines”
D, corresponding to the various classes c, each of these lines representing
Spec(A). These lines “intersect” in the following way: D, and D,, have a
common point above a maximal ideal M of A with resxdue charactenstnc p
if and only if the p’-components of ¢, and ¢, are equal.

Proposition 31. Spec(A ® R(G)) is connected in the Zariski topology.

(If C is a commutative ring, a subset F of Spec(C) is closed in the Zariski
topology if and only if there exists H C C such thatp € F< p D H)

Let x be an element of G of order p" - p3? - Pk ; x decomposes into a
productx = x, - x xp,» Where x,, is of order p}". The classes associated

with x and x, ---x, havc the same p;-regular component. Thus, the

corresponding “lines” of Spec(A ® R(G)) intersect; moreover, each of
these lines is connected, being isomorphic to Spec(A). Proceding step by
step until we get to the identity, we see that Spec(A ® R(G)) is connected.

O
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Corollary. Spec R(G) is connected.

Indeed, this is the image of Spec(A ® R(G)) under a continuous map.

ExampPLE. Take for G the symmetric group ©;. There are three classes: 1, ¢,
(consisting of the elements of order 2), and c; (the elements of order 3).
There is a unique prime ideal p, in A of residual characteristic 2, and the

same

holds for 3. The spectrum of A ® R(G) consists of three “lines”

which intersect as indicated below:

Ca C3 -~

1 Spec (A ®) R(G)

P

Spec (A)
b, p3

Remark. The results of this section have been extended to compact Lie
groups by G. Segal (Publ. Math. I.H.E.S., 34, 1968).

EXERCISES

11.2.
113‘

lll4.

115.

11.6.

Show that the residue field of B, . is A/M.

If B is an A-algebra, determine Spec(B ® R(G)) in terms of Spec(B) (use
the proof of prop. 30 and 30').

Let K be the quotient field of A and let I' be the Galois group of K/Q. We
know that T is isomorphic to (Z/gZ)*. Let T act on A ® R(G) via its action
on A, and determine its corresponding action on Spec(A ® R(G)). Obtain
Spec(R(G)) by observing that R(G) is the subring of A ® R(G) consisting
of those elements fixed by I'.

Determine Spec (A[G]) when G is abelian (observe that A[G] can be
identified with A ® R(G), where G is the dual of G, cf. ex. 3.3).

Let B be the subring of ACKG) consisting of those functions f such that, for
every maximal ideal M of A with residue characteristic p, and every class ¢
with p-regular component ¢, we have f(c) = f(c’)(mod .M). Show that
A ® R(G) C B, and that these two rings have the same spectrum; give an
example where they are distinct.
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11.7. Let H be a subgroup of G, and let I;; be the ideal of A ® R(G) which is the
image of A ® Ind§.

(a) Let ¢ be a class of G. Show that I; is contained in P, ¢ if and only if
HnNnc=0. .
(b) Let ¢ be a p-regular class, and let M be a maximal ideal of A containing

p- Show that I is contained in By if and only if H contains no p-
elementary subgroup associated with an element of c.

(c) Obtain from (b) another proof of th. 18 and 23.
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CHAPTER 12

Rationality questions

So far we have only studied representations defined over the field C of
complex numbers. In fact, all the proofs of the preceding sections still hold
over an algebraically closed field of characteristic zero, for example, an
algebraic closure of Q. Now we are going to see what happens for fields
which are not algebraically closed.

12.1 The rings Rk (G) and R (G)

In this section, K denotes a field of characteristic zero and C an algebraic
closure of K. If V is a K-vector space, we let V- denote the C-vector space
C ®k V obtained from V by extending scalars from K to C. If G is a finite
group, each linear representation p: G — GL(V) over the field K defines a
representation

pc: G = GL(V) - GL(V¢)
over the field C. In terms of “modules” (cf. 6.1), we have
The character x, = Tr(p) of p is the same as for pc; it is a class function

on G with values in K.

We denote by Rg(G) the group generated by the characters of the
representations of G over K; it is a subring of the ring R(G) = R(G)
studied in Ch. 9, 10, 11.

We could also define R g (G) as the Grothendieck group for the category of
K[G]-modules of finite type, cf. Part III, Ch. 14.
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12.1: The rings Rk (G) and R (G)

Proposition 32. Let (V;,p;) be the distinct (up to isomorphism) irreducible
linear representations of G over K, and let x; be the corresponding
characters. Then

(a) The x; form a basis of Rk (G).
(b) The x; are mutually orthogonal.

[As usual, this concerns orthogonality with respect to the bilinear form

{px) = (1Vg) T;ec ols™Hx(s).]

It is clear that the x; generate R g (G). On the other hand, if i # j we have
HomS(V,, V;) = 0. But in general, if V and W have characters xy and xw,
we have

dimyg Hom®(V, W) = dimc Hom®( V¢, We) = {xv,Xxw >

cf. 7.2, lemma 2. It follows that {x;,x;> = 0 if i # j, and that {x;,x;)
= dim End®(V)) is an integer > 1 (equal to 1 if and onmly if V. is
irreducible, i.e., if V is absolutely irreducible, cf. Bourbaki [8], §13, no. 4). In
particular, the x; are linearly independent. a

A linear representation of G over C is said to be realizable over K (or
rational over K) if it is isomorphic to a representation of the form pc, where
p is a linear representation of G over K; this amounts to saying that it can
be realized by matrices having coefficients in K.

Proposition 33. In order that a linear representation of G over C be realizable
over K, it is necessary and sufficient that its character belong to R (G).

The condition is obviously necessary. Suppose conversely that it is
satisfied, and let x be the character of the given representation. In view of
prop. 32, we have x = 3 n;x;, with n; € Z, and we obtain:

X6 XD = ni{x;»x;) for alli.

Since x is the character of a representation of G over C, the scalar product
{x:x;> is 2 0. It follows that n; is positive, and that the given representa-
tion can be realized as the direct sum of the V, each repeated n; times. [

The same argument shows that the realization in question is unique, up to
K-isomorphism.

In addition to the ring Rk (G), we shall consider the subring Rg (G)
consisting of those elements of R(G) which have values in K. Obviously,
Rk (G) € Rk (G). Moreover:
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Proposition 34. The group R ¢ (G) has finite index in R (G).

First, observe that each irreducible representation of G over C can be
realized over a finite extension of K (that generated by the coefficients of a
corresponding matrix representation). Hence there exists a finite extension
L of K, such that R; (G) = R(G). Let 4 = [L: K] be the degree of this
extension; the proposition then follows from the following lemma:

Lemma 12. We have d- _R—K(G) C RK(G).

First, let V be a linear representation of G over L with character x; by
restricting scalars we can consider V as a K-vector space (of dimension d
times as large) and even as a linear representation of G over K. We see
immediately that the character of this representation is equal to Tr /K(x),
where T /¢ denotes the trace associated with the extension L/K. It follows
by linearity that Tr ;g (x) € R (G), for each element x of R (G).

In particular, take x € Ry (G), i.e. suppose that the values of x belong
to K. Then Tr x(x) = d- x; hence d- x € Rg(G), and the proof is
complete. O

12.2 Schur indices

The results of the preceding section can also be obtained, and even
refined, by using the theory of semisimple algebras. We sketch this briefly:

The algebra K [G] is a product of simple algebras A,, corresponding to
the distinct irreducible representations V; of G over K. If D; = Hom® (V,,
V,) is the commuting algebra of G in End(V,), then D; is a field (noncom-
mutative, in general), and A; can be identified with the algebra Endp (V;)
of endomorphisms of the D-vector space V. If [V;: D;] = n; then
A; = M, (D}), where D} is the opposite ring of D;. Moreover, the degree
of D, over its center K, is a square, say m?; the integer m; is called the Schur
index of the representation V, (or of the component A)).

Let s € G, and let p;(s) be the corresponding endomorphism of V. We
have to consider three kinds of “traces” of p;(s):

(a) Its trace as a K-endomorphism; this is the element of K denoted
above by x;(s);

(b) Its trace as a K~endomorphism; this is an element of K; which we will
denote by ;(s); '

(c) Its reduced trace as an element of the simple algebra A; (cf. for
example [8], no0.12.3); this is an element of K; which we will denote

by ¥;(s).
The various traces_are related by the formulas
xi(s) = TTK,/K(‘Pi(S)) and  @;i(s) = m;y;(s)-
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Now let =; be the set of K-homomorphisms of the field K; into the
algebraically closed field C. If 0 € Z;, scalar extension from K to C by
means of ¢ makes D; into a matrix algebra M, (C), and A; becomes

M, »,(C). Composing G — A; > M, (C), we obtam an m'educlble rep-
resentation of G over C, of degree n;m;, and with character y;, = o(y;).
For fixed i, the characters ¢, , are conjugate: the Galois group of C over K
permutes them transitively. Moreover, each irreducible character of G over
C is equal to one of the y;,. We have ’

xi = Trg k(i) = agz,- olp:) = m agzi Vi

which gives the decomposition of x; as a sum of irreducible characters over
C.

Now let x = 3, dis¥;, be an element of R(G), where the dj, are
integers. In order that x have values in K, it is necessary and sufficient that
it be invariant under the Galois group of C over K, i.e,, that the d; , depend
only on i. If this is indeed the case, and we let d; denote their common
value, we have

X = ? dy; = ; d; x;/m;.

Hence we have the following proposition, which refines prop. 34:
Proposition 35. The characters {; = x;/m; form a basis of R (G).

Let us say that K[G] is quasisplit if the D; are commutative, or, what
amounts to the same thing, if the Schur indices m; are all equal to 1. Then
prop. 35 implies:

Corollary. In order that Rg (G) = R (G), it is necessary and sufficient that
K[G] be quasisplit.
In particular, we have Rg (G) = R (G) in each of the following cases:

(i) G is abelian (because then K[G] and the D; are commutative).
(ii) The Brauer groups of the finite extensions of K are trivial.

EXERCISES

12.1. Show that all the Schur indices for the finite groups considered in Ch. 5 are
equal to 1.

12.2. Take for G the alternating group ¥%,, cf. 5.7. Show that the decomposition of
Q[G] into simple factors has the form

Q[G] = Q X Q(w) X M3(Q),

where Q(w) is the quadratic extension of Q obtained by adjoining to Q a
cube root of unity w.

93



Chapter 12: Rationality questions

123. Take for G the quaternion group {*l,*i,+j, +k}. The group G has 4
characters of degree 1, with values in {+1}. On the other hand, the natural
embedding of G in the division ring Hg of quaternions over Q defines a__
surjective homomorphism Q[G] — Hgq. Show that the decomposition of
Q[G] into simple components is

QIG] = @ x QX Q X Q x Hy.

The Schur index of the last component is equal to 2. The corresponding
character ¥ is given by

W=2 Y-1)=-2, Y s)=0 fors # =1.

Hence K[G] is quasisplit if and only if K ® Hg is isomorphic to M,(K);
show that this is equivalent to saying that —1 is a sum of two squares in K.

124, Show that the Schur indices m; divide the index a of the center of G.
[Observe that the degree of the irreducible representation with character y; ,
is n;m; and apply prop. 17.] Deduce that a - R (G) is contained in Rk (G).

12.5. Let L be a finite extension of K. Show that, if L[G] is quasisplit, then [L: K]
is divisible by each of the Schur indices m;.

12.3 Realizability over cyclotomic fields

We keep the notation of the preceding sections, and denote by m the least
common multiple of the orders of the elements of G; it is a divisor of g.

Theorem 24 (Brauer). If K contains the mth roots of unity, then Rg(G)
= R(G).
In view of prop. 33, this implies:

Corollary. Each linear representation of G can be realized over K.
(This result had been conjectured by Schur.)
Let x € R(G). By th. 20 of 10.5, we can write x in the form

x = 2 nIndf(p), (n € Z)

where the ¢; are characters of degree 1 of subgroups H; of G. The values of
the ¢; are mth roots of unity; they belong to K. Thus ¢; € Rk (H;). But, if
H is a subgroup of G, it is clear that Ind§ maps Ry (H) into Rg(G).
Therefore Indgi(tp,-) € Rk (G) for all i, which proves the theorem. 0

EXERCISE

12.6. Show that the Schur indices of G (over an arbitrary field) divide the Euler
function p(m) [use ex. 12.5).
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12.4 The rank of Rg (G)

We return now to the case of an arbitrary field K of characteristic zero.
We shall determine the rank of Ry (G), or equivalently, the number of
irreducible representations of G over K.

Choose an integer m which is a multiple of the orders of the elements of
G (for example, their least common multiple or the order g of G), and let
L be the field obtained by adjoining to K the mth roots of unity. We know
(cf. for example Bourbaki, Alg. V, §11) that the extension L/K is Galois and
that its Galois group Gal(L/K) is a subgroup of the multiplicative group
(Z/mZ)* of invertible elements of Z/mZ. More precisely, if 6 € Gal(L/K),
there exists a unique element t € (Z/mZ)* such that

olw) = o' if 0™ = 1.

We denote by I the image of Gal(L/K) in (Z/mZ)*, and if 1 € I, we let
o, denote the corresponding element of Gal(L/K). The case considered in
the preceding section was that where Iy = {1}.

Let s € G, and let n be an integer. Then the element 5" of G depends
only on the class of n» modulo the order of s, and so a fortiori modulo m; in
particular s’ is defined for each 1 € Ix. The group Ik acts as a permutation
group on the underlying set of G. We will say that two elements s, s’ of G
are Iy-conjugate if there exists ¢ € I such that s’ and s’ are conjugate by
an element of G. The relation thus defined is an equivalence relation and
does not depend upon the choice of m; its classes are called the Ix-classes
(or the K-classes) of G.

Theorem 25. In order that a class function f on G, with values in L, belong to
K ®z R(G), it is necessary and sufficient that

() o,(f(s)) = f(s') foralls € Gandallt € I.

(In other words, we must have o,(f) = ¥/(f)for all 1 € Iy, cf. 11.2))

Let p be a representation of G with character x. For s € G, the
eigenvalues w; of p(s) are mth roots of unity, and the eigenvalues of p(s’) are
the w!. Thus we have

0, (x(s)) = o2 w;) = 3 wj = x{s"),

which shows that x satisfies the condition (*). By linearity, the same is true
for all the elements of K ® R(G).

Conversely, suppose f is a class function on G satisfying condition ().
Then

f=2exx, withe = {f,x0
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?

where x runs over the set of irreducible characters of G. We have to show
that the ¢, belong to K, which, according to Galois theory, is equivalent to
showing that they are invariant under the 6,, ¢ € Iy. But, if ¢ and x are two
class functions on G, then we have

(Yo, ¥'x) = {9, x)
as can be easily verified. Whence

ey = L0 = KYL¥0 = (0,(f)0,(x)> = a.({fix0) = 0,(cy),
which finishes the proof. ' O

Corollary 1. In order that a class function f on G with values in K belong to
K ® Ry (G), it is necessary and sufficient that it be constant on the Ik-
classes of G.

If f € K ® Rg(G), then f(s) € K for all s € G, and formula (*) shows
that f(s) = f(s*) for all € I. Hence f is constant on the Iy -classes of G.

Conversely, suppose that f has values in K, and is constant on the Ik-
classes of G. Then condition (#) is satisfied, and we can write

f=3{x with{f,x) €K

as above. Moreover, the fact that fis invariant under the o,, ¢t € Iy, shows
that (f,x> = (£,0,(x)), so the coefficients of the two conjugate characters
x and o,(x) are the same. Collecting characters in the same conjugacy class,
we can write f as a linear combination of characters of the form Tr /i (x).
Since the latter belong to R (G), cf. 12.1, this proves the corollary.
[Alternately: Let Ty act on K ® R(G) by f+ o,(f) = ¥/(f), and
observe that the set of fixed points is K ® Rg(G).] O

Corollary 2. Let x; be the characters of the distinct irreducible representations
of G over K. Then the x; form a basis for the space of functions on G which
are constant on Iy-classes, and their number is equal to the number of Iy-
classes.

This follows from cor. 1. a

Remark. In cor. 1, we can replace R (G) by R (G). Indeed prop. 34
shows that

Q ® Rx(G) = Q ® R¢(G), whence K ® Rg(G) = K ® R (G).

12.5 Generalization of Artin’s theorem
If H is a subgroup of G, it is clear that

Resy: R(G) » R(H) and  Indy: R(H) - R(G)



12.6: Generalization of Brauer’s theorem

map Ry (G) into Rx(H) and Rg(H) into Rg(G). So we can ask if the
theorems of Artin and Brauer remain valid when R is replaced by Rg. In
the case of Artin’s theorem, the answer is affirmative:

Theorem 26. Let T be the set of cyclic subgroups of G. Then the map
Q ® Ind: H%TQ ® Rx(H) = Q ® Rk (G)
defined by the maps Q ® Ind§, H € T, is surjective.

The two proofs given in Ch. 9 apply without chanée. The first is a duality
argument; one must show that the mapping

Q®Res: Q@ R(G) » @ Q® Rg(H)
HeT

is injective, which is clear.
The second proof consists of using the formula

= 3 Ind§@y), cf. prop. 27 (9.4),
HET

and proving that y belongs to R (H). The latter can be verified either by
induction on the order of H, or by observing that 8y has integer values and
thus belongs to R (H); since H is abelian we have Rg(H) = R (H).
Now the identity above shows that the constant function 1 belongs to the
image of Q ® Ind. Since this image is an ideal, it must be the whole ring
Q ® Rk (G). O

12.6 Generalization of Brauer’s theorem

We keep the notation of the preceding sections. It is easy to see that, if
X is the family of elementary subgroups of G, the map

Ind: ® Rg(H) = R (G)

is not, in general, surjective (example: G = &3, K = R). It is necessary to
replace X by a slightly larger family Xy, that of “ Iy - elementary”
subgroups:

Let p be a prime ‘number. A subgroup H of G is said to be Ix-p-
elementary if it is the semidirect product of a p-group P and a cychc group
C of order prime to p such that":

-1

(*k) For each y € P, there exists t € Iy such that yxy™" = x' for each

x € C.

* The subgroup C should not be confused with the algebraic closure of K chosen in 12.1;
the latter will not appear in this section.
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(When Iy = {1}, this condition just means that C and P commute, so that
H = CXP is a p-elementary group.) A subgroup of G is said to be
Ix-elementary if it is Iy -p-elementary for at least one prime number p.

Denote by Xy (resp. Xk (p)) the family of Ix-elementary (resp. Ix-p-
elementary) subgroups of G. Then we have the following analogue of
th.19:

Theorem 27. The map Ind: H éﬁx Ry (H) = R (G) is surjective.

As in 10.5, we obtain theorem 27 from a more precise result relative to
a fixed prime number p:

Theorem 28. Let g = p"l be the order of G, where (p,!) = 1. The constant
function | belongs to the image Vg , of the map

Ind: Ry¢ (H) = R (G).
HEXK(p) K ( K (

In particular, the index of Vg , in- R (G) is finite and prime to p.

The'proof of this theorem is completely analogous to that of th. 18’ (to
which it reduces when K is algebraically closed). We will give the proof in
the next section and, for the time being, just indicate two consequences:

Prdposition 36. Let ¢ be a class function on G. In order that ¢ belong to
Rk (G), it is necessary and sufficient that, for each Ty-elementary subgroup
H of G, we have Res§ @ € Ry (H).

Using th. 27, we have an identity

1= 3 Ind§fy, withfy € Rg(H).
HEXK

Multiplying by ¢, this gives

= 3 o-Indify= HEEX Ind§(fy - Res§o).

HEXg

So, if Resyp € Rg(H) for all H € XK, we have ¢ € Rg(G); the
converse is clear . 0O

Proposition 37. If each of the algebras K[H] H € X, is quasisplit (cf. 12.2),
the same is true of K[G].

Let ¢ € Rg(G). For H € X, we have Res§o € Rg(H), and Rg(H)
is equal to Rg(H) since K[H] is quasisplit (cf. cor. to prop. 35). The
preceding proposition then shows that ¢ belongs to Rg(G). Whence
Rk (G) = Rk(G), and K[G] is quasisplit. m]
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EXERCISE

127 Show that the map Ind: @ 'RK(H) — Rk (G) is surjectwe [Use the
proof of prop. 36.]

12.7 Proof of theorem 28

We denote by A the subring of L generated by the mith roots of unity.
Lemma 13. If ! belongs to A ® Vg ,, then | € Vg ,.

This is proved by the same argument as the one used in 10.2 for lemma 5.

]
Lemma 14. There are finitely many prime ideals py, . . ., b, of A containing p.
The quotients A/p; are finite ﬁelds of charactensttc D, and there exists an

integer N such that pA D (p; N -+ N ph)

The p; correspond to prime ideals of A/pA, which is a finite ring of
characteristic p. The first two assertions follow from this. The third follows
from the fact that (p; N --- N p,)/pA is the radical of the artinian ring
A/pA, thus is nilpotent. ]

Lemma 15. Let f be a function on G, constant on Ty- classes, and with values
in gA. Then f can be written in the form

f= 3 Ind€(pc), withoc € A ® Rg(C),

where C runs over the set of cyclic subgroups of G.

Let ¢ = f/g. In the notation of lemma 6, we have

f =3 Ind€(4c - Res@ o),

and it remains only to show that pc = 0 - ResS g belongs to A ® R (C)
for all C. But the values of ¢ are divisible by the order of C; it follows that,
if x is a character of degree 1 of C, we have {pc,x) € A. Moreover, the
fact that f is constant on Ik-classes implies that

{pcs X0 = ¥oc, ¥'x) = {pc, ¥'x), ift € Ix.

The coefficients in ¢ of characters conjugate over K are thus equal, and
we can express @c as an A-linear combination of traces over K of
characters x; thus oc € A ® R (C). a

Lemma 16. Let x, y € G be elements whose p’-components are Ix-conjugate.
If f € A ® Rg(G), then

fx)=f(y) (mod.p,) fori=1,...,h
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We know that f is constant on I-classes (cor. 1 of th. 25). So we can
assume that x is the p’-component of y, in which case the same argument
applies as in the proof of lemma 7. a

Lemma 17. Let x be a p'-element of G, let C be the cyclic subgroup generated
by x, let N(x) be the set of y € G such that there exists t € Iy with
'yxy~! = x', and let P be a Sylow subgroup of N(x). Then:
(a) H = C - P is a Ix-p-elementary subgroup of G.
(b) Each linear representation of C over K extends to H.
(c) The map Res: Ry (H) = R (C) is surjective.

Assertion (a) is clear. To prove (b), it suffices to consider the case of an
irreducible representation over K. Such a representation can be obtained by
choosing a homomorphism x: C — L*, taking as vector space the subfield
K, generated by x(C), and defining p: C — GL(K, ) by the formula

p(s)o=x(s)e ifseCandwek,.

The group Ik = Gal(L/ K) acts K-linearly on K,. If y € P, let ¢ € I be
such that yxy~! = x’, and define p(y) as the restnctlon of o, to K,. One
checks that p( y) does not depend upon the choice of ¢, and that

p(»p(x)p(») ™" = plx").

It follows that the homomorphisms of C and of P into GL{K, ) thus defined
extend to a homomorphism of H into GL(K, ), which proves (b) Assertion
(c) follows from (b). a

In 10.3 we had Iy = {1}, whence H = C X P, so that the lemma above
was trivial.

Lemma 18. Keep the notation of lemma 17. Then there exists

Y € A® Rg(H)
such that the induced function ' = Ind Y has the following properties:

(1) ¢'(x) % O(mod. p,) fori =1, ..., h.
(ii) Y'(s) = O for each p’-element s of G which is not I-conjugate to x.

Let ¢ be the order of C, and let yc be the function defined on C by
Yc(y) = ¢ wheny has the form x/, with ¢ € Ik, and Yc(y) = 0 otherwise.
Then Y- € A ® R (C): this follows, say, from lemma 15 applied to C. By
lemma 17, there exists ¢ € A ® Ry (H) such that Resfly = Y. We show
that ¢ works:

If s is a p-element of G, and if y € G, ysy™' is a p’-element. If
ysy~! € H, then ysy~! € C and y{ysy~") is zero whenever ysy~! is not of
the form x', for t € Ik. It follows that y/(s) = 0 if s is not Ix-conjugate to
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x, which proves (ii). For the rest, let Z be the set of x/, 1 € I. Then

g1 _ Card(N(x))
V) = G ), Pz © T Card(P)

and since P is a Sylow p-subgroup of N(x) (cf. lemma 17), we see that ¢ (x}
is an integer prime to p, whence (i). 0

Lemma 19. There exists ¢ € A ® Vi , such that ¢(x) # 0 (mod. ;) for each
x € Gandeachi = 1,..., A

Let (x\)rea be a system of representatives for the p’-regular I-classes
i.e., those consisting of p’-elements. For each A € A, the preceding lemma
allows us to construct ¢, € A ® Vg , such that

ea(xy) £0(mod. p;) and  @y(x) =0 if A # p.

Put ¢ = X, ¢,. Then ¢ belongs to A ® Vg , and we have ¢(x) # 0
(mod. ;) for each p’-element x in G. Lemma 16 shows that the same holds
for each x in G. : O

Completion of the proof of theorem 28

Let 9 € A ® V¢ , satisfy the conditions of lemma 19. For each x € G
and each i, the class of ¢(x) mod. p; belongs to the multiplicative group of
the field A/p,. Since the field A/p, is finite (lemma 14), there isan M > |
such that oM (x) = I(mod. p;) for all i and all x € G. Then by lemma 14
we have ¢MN(x) =1 (mod. pA), and raising ™™ to the power p”, we
obtain € A ® Vi , such that

Wx) = | (mod. p"A) forall x € G.

/

The function /(¢ — 1) thus has values in p"/A = gA. In view of lemma 15,
we have /(y — 1) € A ® V¢ ,. By subtraction, we obtain that / belongs to
A ® ¥, ,, and now the theorem follows from lemma 13. a

EXERCISE

12.8. Determine the spectrum of the ring A ® Ri(G). (The result is the same as in
11.4, except that conjugacy classes are replaced by I'-classes.)
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CHAPTER 13

Rationality questions: examples

We keep the notation of Ch. 12.

13.1 The field Q

Let G be a finite group of order g, and let m be a multiple of the orders
of all the elements of G. Take as ground field K the field Q of rational
numbers, and let Q(m) be the field obtained by adjoining the mth roots of
unity to Q. The Galois group of Q(m) over Q is the group denoted I in
12.4; it is a subgroup of the group (Z/mZ)*. In fact:

Theorem (Gauss-Kronecker). We have [ =(Z/mZ)*.

(This amounts to saying that the mth cyclotomic polynomial &, is
irreducible over Q.)

We assume this classical result; for a proof, see, for example, Lang [10],
p- 204. o

Corollary. Two elements of G are Iq-conjugate if and only if the cyclic
subgroups they generate are conjugate.

Applying the results of 12.4, we have:
Theorem 29. Let f be a class function on G with values in Q(m).

(a) In order that f belong 1o Q ® R(G), it is necessary and sufficient
that o,(f) = Y'(f) for each t prime 10 m.

(b) In order that f belong to Q ® Ro(Q), it is necessary and suficient
that f have values in Q, and that \I/’ (f) = f for each t prime to m
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(i.e., we must have f(x) = f(y) if x and y generate the same
subgroup of G).

(Recall that o, is the automorphism of Q(m) which takes an mth root of
unity to its rth power, and that ¥/(f) is the function x + f(x').)

Corollary 1. The number of isomorphism classes of irreducible representations
of G over Q is equal to the number of conjugacy classes of cyclic subgroups

of G.
This follows from cor. 2 to th. 25.
Corollary 2. The following properties are equivalent:

(i) Each character of G has values in Q.
(") Each character of G has values in Z.
(ii) Two elements of G which generate the same subgroup are conjugate.

The equivalence of (i) and (i’) comes from the fact that character values
are algebraic integers, thus are elements of Z whenever they belong to Q.
The equivalence of (i) and (ii) follows from th. 29. O

Examples

(1) The symmetric group &, satisfies (ii), hence (i). Moreover, one can
show that each representation of &, is realizable over Q, i.e., that R(&,)

(2) The quaternion group G = {1, %i, =, +k} satisfies the conditions of
the corollary. Hence R(G) = R(G); the group Ro(G) is a subgroup of
index 2 of R(G), cf. ex. 12 3.

If H is a subgroup of G, denote by 1y the unit character of H and by 1§
the character of G induced by 1y (in other words the character of the
permutation representation on G/H, cf. 3.3, example 2).

Theorem 30. Each element of R (G) is a linear combination, with coefficients
in Q, of characters lC where C runs over the set of cyclic subgroups of G.

This amounts to saying that Q ® Rq(G) is generated by the 1S. Since
Q® RQ(G) is endowed with the nondegenerate bilinear form

(p.4) <‘P’ ¥),

we can just as well show that each element 8 of R o(G) orthogonal to all
the 1S is zero. However, we have

{8, lc> = (Resg 0,1c) = E > 6(s), where ¢ = Card C.
seC

So theorem 30 is equivalent to the following:

Theorem 30". If 0 € Ro(G) is such that 3 &(s) =0 for each cyclic
subgroup C of G, then § = 0. s€C
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We prove this result by induction on Card(G). Let s € G, and let C(s)
be the cyclic subgroup of G generated by s. Let x € C(s); if x generates
C(s), we have §(x) = 8(s) since x and s are I-conjugate; if x generates a
proper subgroup of C(s), the induction hypothes1s (applied to the restriction
of 8 to this subgroup) shows that #(x) = 0. So we get that

2 0x)=a-00),

x€C(s)

where q is the number of generators of C (s). But by hypothesis we have

2 ﬂ(x)-O

xE s

and therefore 8(s) = 0. O

Corollary. Let V and V' be two linear representations of G over Q. In order
that V be isomorphic to V' it is necessary and sufficient that, for each cyclic
subgroup C of G, we have

dim V€ = dim V'C,

where V€ (resp. V'C) denotes the subspace of V (resp. V') consisting of the
elements invariant under C.

The necessity is obvious. To see that the condition is sufficient, let x and
x’ be the characters of V and V’. We have:

dim V€ = (Res& x, 1c)c

and hence (Res&(x — x'), Ic) = O for each C, whence x — x' = 0 by th.
30. Thus V and V’ are isomorphic. O

Remarks

(1) It is not true in general that each element of R (G) is a linear
combination with integer coefficients of characters 1§, even if H runs over
the set of all subgroups of G (cf. ex. 13.4).

(2) Theorem 30 implies the following result: let F/E be a finite Galois
extension of number fields, and let x be the character of a linear
representation of Gal(F/E) realizable over Q. Then we can write the Artin
L-function relative to x as a product of fractional powers of zeta functions
of subfields F. of F corresponding to cyclic subgroups C of Gal(F/E).

EXERCISES
13.1. Let G be a cyclic group of order n. For each divisor d of n, denote by G, the
subgroup of G of index d.

(a) Show that G has an irreducible representation over Q, unique up to
isomorphism, whose kernel is equal to G,. Let x, denote its character;
then x4(1) = ¢{(d). The x, form an orthogonal basis of RQ(G).

104



13.2.

133.

134.

13.5.

* 13.1: The field Q

(b) Define an 1somorphxsm from Q[G] onto H Q).

where B denotes the Mobius funcnon Deduce that the Yg form a basis for
Ro(G).
Q

Prove th. 30 by reducing to the cyclic case using th. 26, and then applying
ex. 13.1.

Let p be an irreducible representation of G over Q, let A = M, (D) be the
corresponding simple component of Q[G] (D being a field, not necessarily
commutative), and let x be the character of p. Assume that p is faithful (i.e.,
ker p = 1) and that every subgroup of G is normal. Let H be a subgroup of
G. Show that the permutation reresentation on G/H contains the represen-
tation p n times if H = {1} and 0 times if H # {1}. Conclude that, if n > 2
X is not contained in the subgroup of RQ(G) generated by the characters lH

Let E be the quaternion group, C the cyclic group of order 3, and let
G = E X C. If Hg denotes the usual field of quaternions (over Q), show that
E and C can be embedded in the multiplicative group H:) This gives an
action of E (resp. C) on the vector space Hg by right multiplication (resp. by

. left multiplication). Obtain from this an meducnble representation p of G

over Q of degree 4. Show that the corresponding simple algebra is isomor-
phic to M,(K), where K is the field of cube roots of unity. Verify the
conditions of ex. 13.3 and deduce that the character of p is not a linear
combination of characters lg, HCG.

Let X and Y be two finite sets on which the group I acts. If H is a subgroup
of T, denote by XH (resp. Y!) the set of elements of X (resp. Y) fixed by H.
Show that the I'-sets X and Y are isomorphic if and only if Card(XH)
= Card(YH) for each subgroup H of T. Next, show that the properties listed
below are equivalent to each other:

(i) The (linear) permutation representations py and py associated with X
and Y are isomorphic.
(i) For each cyclic subgroup H of T, we have Card(XH) = Card(YH).
(iii) For each subgroup H of I, we have Card(X/H) = Card(Y/H).
(iv) For each cyclic subgroup H of T, we have Card(X/H) = Card(Y/H).

When these properties hold, we shall say that X and Y are weakly
isomorphic.

[The equivalence of (i) and (ii) is obtained by calculating the characters
of px and py. The equivalence of (i) with (iii) and (iv) comes from the
fact that Card (X/H) is the inner product of the character of px with the
character 1 ]

Show that, if T is cyclic, the I'-sets X and Y are isomorphic if and only
if they are weakly isomorphic. Give an example in the general case of
weakly isomorphic sets which are not isomorphic (take for I' the direct
product of two groups of order 2).
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13.6. Let X be the set of irreducible characters of G over Q(m), and let Y be the
set of conjugacy classes of G. Let the group Iy = (Z/mZ)* act on X by
x > o,(x) and on Y by x > x".

(a) Show that thc To-sets X and Y are weakly 1somorph1c (cf. ex. 13.5).

(b) Show that X (resp. Y) can be identified with the set of homomorphisms
from the Q-algebra Cent. Q[G] (resp. Q ® R(G)) into Q(m). Deduce that
the Tp-sets X and Y are isomorphic if and only if the center of Q[G] is
1somorphic to Q ® R(G).

(c) Show that the center of Q[G] is isomorphic to Q ® R(G) in each-of the
following cases:

(c;) G is abelian (use an isomorphism from G onto its dual G, and observe
that Q[G] = R(G)).

(c;) G is a p-group and p #* 2 (use the fact that FQ is cyclic).
(For an example of a group G such that X and Y are not Iy-
isomorphic, see J. Thompson, J. of Algebra, 14, 1970, pp. 1-4.)

13.7. Let p be a prime number # 2. Let G be a Sylow p-subgroup of GL4(F,) and
let G’ be a nonabelian semldlrect product of Z/pZ with Z/p’Z. Thus
Card(G) = Card(G’) = p

(a) Show that G and G’ are not isomorphic.

(b) Construct the irreducible representations of G and G’. Show that Q|[G]
and Q[G’] are products of the field Q, p + 1 copies of the field Q(p), and
the matrix algebra M,,(Q(p)). In particular, Q[G] and Q|[G’] are isomor-
phic. '

(c) Show that F[G] and E, [G’] are not isomorphic.

138. Let (C;,...,C,} be a system of representatives for the con éugacy classes of
cyclic subgroups of G. Show that the characters lc s eees I¢, forma basis of
Q @ Rq(G).

13.2 The field R

We keep the preceding notation, and take as ground field K the field R
of real numbers. The corresponding group Iy is the subgroup {*1} of
(Z/mZ)*; two elements x,y of G are Iz-conjugate if and only if y is
conjugate to x or to x_!. The automorphism o_, corresponding to the
element — 1 of T} is just complex conjugation z — z*. If x is a character of
G over C, the general formula o,(x) = ¥'(x) reduces here to the standard
formula

x(s)* = x(G7Y), f. 2.1, pi'op. 1.

Theorem 31 (Frobenius-Schur). Let p: G — GL(V) be a linear representa-
tion of G over C with character x. In order that x have values in R (resp.
that p be realizable over R), it is necessary and sufficient that V have a

nondegenerate bilinear form (resp. symmetric bilinear form) invariant under

G.
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The group G acts naturally on the dual V’ of V, and it is easy to see that
the corresponding character x’ is given by

X () = x(* = x(s7").

For x to have real values, it is necessary and sufficient that x = x’, i.e., that
the representations of G in V and V’ are isomorphic. But an isomorphism
of V onto V’ corresponds to a nondegenerate bilinear form on V invariant
under G. So the existence of such a form is necessary and sufficient for x
to have real values.

Suppose now that p is realizable over R. This is equivalent to saying that
we can write V in the form

V=V,@8iV,=C®&V,

where V; is an R subspace of V stable under all p,. One knows that there
exists a positive definite quadratic form Q, on V; invariant under G (take
the sum of the transforms of an arbitrary positive definite form). By scalar
extension, Q, defines a quadratic form on V, and the associated bilinear
form is nondegenerate, symmetric, and invariant under G.

Conversely, suppose V is endowed with such a form B(x,y). Choose a
positive definite hermitian scalar product (x| y) on V, invariant under G; the
argument given above shows that such a product exists (cf. 1.3). For each
x € V, there exists a unique element ¢(x) in V such that

B(x,y) = (p(x)|»)* forally € V.

The map ¢: V — V so defined is antilinear and bijective. Its square ¢ is an
automorphism of V. For x, y € V, we have :

(@2 (x)]y) = Ble()|»)* = B(y,¢(x))* = (@(»)lp(x)).
Since (p()|9(x)) = (p(x)lp(»))*, we get

@*®|y) = @*)x)* = (xle*(»),

which means that ¢? is hermitian. Moreover, the formula

@®)1%) = @)

shows that @? is positive definite. But we know that, whenever u is hermitian
positive definite, there is a unique hermitian positive definite v such that
u=v?, and v can be written in the form P(u), where P is a polynomial with
real coefficients (if the eigenvalues of u are A,...,A,, choose P so that
P(A,)=\A, for all i). Apply this to u=¢?* and put o=¢uv~'. Since
v = P(¢?), ¢ and v commute, and we have o2 = ¢?v 2 = 1. Let V
= Vp ® V| be the decomposition of V with respect to the eigenvalues + 1

and — 1 of o. Since ¢ is antilinear, multiplication by i maps Vj onto V,. Thus
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V =V, ®iV, On the other hand, the fact that B(x,y) and (x|y) are
invariant under G implies that ¢, v, and 6 commute with all p,. It follows
that Vy and V; are stable under the p;, and we have a realization of V over
R, which proves th. 31. a

Remarks

(1) Theorem 31 carries over to representations of compact groups, cf. Ch.
4. The same is true of the other results in this section.

(2) Denote by O,(C) (resp. O,(R)) the complex (resp. real) orthogonal
group in n variables. The last part of the above proof shows, in fact, that
each finite (or even compact) subgroup of O,(C) is conjugate to one
contained in O, (R); this is a special case of a general theorem on maximal
compact subgroups of Lie groups.

The three types of irreducible representations of G

Let p: G —» GL(V) be an irreducible representation of G over C of
degree n, and let x be its character. There are three possible cases (mutually
exclusive): )

(1) One of the values of x is not real. By restriction of scalars, p defines
an irreducible representation over R of degree 2n with character x + X. The
commuting algebra for this representation is C. The corresponding simple
component of R[G] is isomorphic to M, (C); its Schur index is 1.

(2) All values of x are real, and p is realizable by a representation py over
R. The representation pg is irreducible (and even absolutely irreducible)
with character x. Its commuting algebra is R. The corresponding simple
component of R[G] is isomorphic to M, (R); its Schur index is 1.

(3) All values of x are real, but p is not realizable over R. By restriction
of scalars, p defines an irreducible representation over R of degree 2n and
with character 2x. Its commuting algebra has degree 4 over R; it is
isomorphic to the field H of quaternions. The corresponding simple .
component of R[G] is isomorphic to M,,(H); its Schur index is 2.

Moreover, every irreducible representation of G over R can be obtained
by one of the three procedures above: this can be proved by decomposing
R[G] as a product of simple components, and observing that such a
component is of the form M, (R), M, (C), or M, (H). (The fact that R[G] is
a group algebra is not important here: the same result holds for any
semisimple algebra over R.)

The types 1, 2, and 3 can be characterized in various ways:

Proposition 38.

(a) If G does not have a nonzero invariant bilinear form on V, then p is
of type 1. ‘

(b) If such a form does exist, it is unique up 1o homothety, is nondege-
nerate, and is either symmetric or alternating. If it is symmetric, p is
of type 2, and if it is alternating, p is of type 3.
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An invariant bilinear form B # 0 on"V ‘corresponds to a G-homomor-
phism b # 0 of V into its dual V'. Since V and V'’ are irreducible, b is an
isomorphism, and this shows that B is nondegenerate. By th. 31, the
existence of B means that p is of type 2 or 3. Moreover, Schur’s lemma
shows that B is unique up to homothety. If we write B in the form
B = B, + B_, with B, symmetric and B_ alternating, then B, and B_ are

also invariant under G. Since B is unique, we have either B_ = 0 (and B is
symmetric) or B, = 0 (and B is alternating). By th. 31, the first case
corresponds to type 2; thus the second corresponds to type 3. O

Proposition 39. In order that p be of type 1, 2, or 3, it is necessary and sufficient
that the number

LYK =+ S xs?),  whereg = Card(G),
8 seG
be equal to 0, +1, or —1, respectively.

Let x2(resp. x2) be the character of the symmetric square (resp. the
alternating square) of V. Then

2

1
x2 = 5()(2 +¥2x), xi=z(x*-¥%),

N -

cf. 2.1, Prop. 3. Let a, and a_ denote the number of times that the

symmetric and alternating squares of p contain the unit representation.
Then

a,=(lL,x% and a_=(1,x2).

On the other hand, the dual of the symmetric (resp. alternating) square of
V can be identified with the space of symmetric (resp. alternating) bilinear
forms on V. Since dual representations contain the unit representation the
same number of times, we obtain from Prop. 38 that:

a,=a_=0 in case I,
a, =1 a_=90 in case 2,

a, =0, a_=1 in case 3 .

Since (1,¥23(x)) = a, — a_, we indeed get 0, +1, and —1 in the three
respective cases. The proposition follows. ]

EXERCISES

13.9. If ¢ is a conjugacy class of G, let c"{ denote the class consisting of all x™!
for x € c. We say that ¢ is even if ¢ = ¢~
(a) Show that the number of real-valued irreducible characters of G over C

is equal to the number of even classes of G.
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lS.lol
13.11.

13.12.

110

(b) Show that, if G has odd order, the only even class is that of the identity.
Deduce that the only real-valued irreducible character of G is the unit
character (Burnside).

Show that the R-algebras (Cent. R[G]) and R ® R(G) are isomorphic. |

Let X, and X; denote the sets of irreducible characters which are of type 2
and 3, respectively. Show that the integer

5 X0 B X
XEX;
is equal to the number of elements s € G such that s> = 1. (Observe that
this integer is equal to 3 x(1)<1, ¥2(x)> = {1, ¥2(rg)), where rg is the
character of the regular representation of G.)
Deduce that, if G has even order, at least two irreducible characters are of
type 2.

(Burnside). Suppose G has odd order. Let 4 be the number of conjugacy
classes of G. Show that g = h (mod. 16)

[Use the formula g = 2,,, x(1)2, and observe that the x; # 1 are
conjugate in pairs (cf. ex. 12.9), and that the x;(1) are odd.]

If each prime factor of g is congruent to 1 (mod.4), show that g = h
(mod. 32) by the same method.
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II1

INTRODUCTION TO BRAUER THEORY

We are concerned here with comparing the representations of a finite
group in characteristic p with those in characteristic zero. The results, due
essentially to Brauer, can be described most conveniently in terms of
“Grothendieck groups”; this approach was introduced by Swan (cf. [21],
[22]), who also obtained a number of results not discussed here.

Ch. 14 and 15 are preliminary. Ch. 16 contains the statements of the main
theorems; they are proved in Ch. 17. In Ch. 18 we express these results in
terms of “modular characters.” Ch. 19 contains applications to the Artin
representations. Some standard definitions are collected in an appendix:
Grothendieck groups, projective modules, etc.

The exposition which follows is just an introduction; in particular, the
theory of blocks is not touched upon. The interested reader is referred to
Curtis—Reiner [9] and Feit’s book [20], as well as to the original papers by
Brauer, Feit, Green, Osima, Suzuki, and Thompson.
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CHAPTER 14
The groups R (G), R;(G), and P,(G)

Notation

In Part III, G denotes a finite group, and m is the l.c.m. of the orders of
the elements of G. A field is said to be sufficiently large (relative to G) if it
contains the mth roots of unity (cf. 12.3, th. 24).

All modules considered are assumed to be finitely generated.

We denote by K a field complete with respect to a discrete valuation v
(cf. Appendix) with valuation ring A, maximal ideal m and residue field
k = A/m. We assume that K has characteristic zero and that k has
characteristic p > 0 (so that “reduction modulo m” goes from characteris-
tic zero to characteristic p).

14.1 The rings R¢ (G) and R4 (G)

If L is a field we denote by R;(G) the Grothendieck group of the
category of finitely generated L{G}-modules (cf. Appendix). It is a commu-
tative ring with unit with respect to the external tensor product (relative to
L). If E is an L[G]-module, we let [E] denote its image in R (G); the set of
all [E] is denoted by R} (G).

Let S; denote the set of isomorphism classes of simple L[G}-modules (i.e.,
irreducible representations of G over L).

Proposition 40. The family of all elements [E), with E € Sy, is a basis for the
group R, (G).

Let R be the free Z-module with basis S;. The family of the various [E},
E € Sy, defines a homomorphism a: R — R (G). On the other hand, if F
is an L{G]-module, and if E € §;, let /g(F) denote the number of times
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which E appears in a composition series of F; it is clear that /g is an additive
function of F. Thus there exists a homomorphism Bg: R; (G) = Z such
that Bg([F]) = /g(F) for all F. The Bg’s define a homomorphism

B: RL(G) = R,

and it is immediate that a and B are inverses of one another. The
proposition follows. O

More generally, the same argument applies to the category of modules of
finite length over an arbitrary ring.

Note also that the elements of R{ (G) are just the linear combinations
with non-negative integer coefficients of elements of the basis ([E])ges,
The preceding discussion applies in particular to the fields K and k. Since
K has characteristic zero, the character xg of a K[G]-module E is already
defined; it is an additive function of E. By linearity, we obtain a linear map
x - x, from Rg(G) into the ring of class functions of G. This map is in
fact an isomorphism of R g (G) onto the group of virtual characters of G over
K, and we often identify the two groups (this explains the notation used in
12.1). We also say that x, is the character (or the virtual character) of an
element x € Ry (G).

We will see in Ch. 18 that there is an analogous result for k, in terms of
Brauer’s modular characters.

Remark. If E and E’ are two K[G]-modules such that [E] = [E'] in
R (G), then E and E’ are isomorphic: this follows from the fact that E and
E’ are semisimple. The analogous result is not true for k[G]-modules if p
divides the order of G, because of the existence of modules which are not
semisimple.

14.2 The groups P,(G) and P, (G)

These are defined as the Grothendieck groups of the category of k[G]-
modules (resp. of A[G]}-modules) which are projective (cf. Appendix).
Similar definitions are made for P{f (G) and Py (G).

If E (resp. F) is a k[G}-module (resp. a projective k[G]-module), then
E ®, F is a projective k[G}-module (it suffices to check this when F is free,
in which case it is obvious). We obtain thereby an R (G)-module structure
on Pk(G)

14.3 Structure of P,(G)

Since k[G] is artinian, we can speak of the projective envelope of a k[G]-
module M (cf. Gabriel [23] or Giorgiutti [24]). We recall briefly what this
means:

A module homomorphism f: M’ = M is called essential if f(M') = M
and if f(M”) # M for all proper submodules M” of M'. A projective
envelope of M is a projective module P endowed with an essential homomor-
phism f: P - M.
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Proposition 41.

(a) Every module M has a projective envelope which is unique up to
isomorphism.

(b) If P, is the projective envelope of M; (1 = 1,...,n), the direct sum
of the P/’s is a projective envelope for the dzrect sum of the M;’s.

(c) IfPisa projective module, and if E is its largest semisimple quotient
module, then P is a projective envelope for E.

We prove (a). Write M in the form L/R, where L is projective and R is
a submodule of L (we can take L free, for example). For N C R, let fy be
the canonical homomorphism of L/N onto M = L/R. Now let N be
minimal in R such that fy is essential; such a submodule exists, since fg is
essential, and k[G] is artinian. Put P = L/N, and let Q be a submodule of
L minimal among those whose projection Q — P is surjective. Since L is
projective, the projection p: L - P = L/N lifts to ¢: L - Q, and the
minimality of Q shows that ¢g(L) = Q. Let N’ be the kernel of 4. The
projection fy.: L/N’ — L/R factors into L/N’ = Q - L/N — L/R and
the two factors are essential. Since N’ is contained in N, the minimality of
N implies that N’ = N, i.e., that Q — P is an isomorphism. The module L
is thus a direct sum L = N @ Q, which shows that P = L/ N is projective.
It is then clear that P — M is a projective envelope of M.

Let P’ = M be another projective envelope of M. Using the fact that P
is projective, we see that there exists g: P — P’ such that the triangle

P & p’

N v/
M

is commutative. The image of g(P) in M is M; since P’ — M is essential,
this implies g(P) = P’, and so g is surjective. Since P’ is projective, the
kernel S of P — P’ is a direct factor in P, which shows that P decomposes
into S ® P'. Using the fact that P — M is essential, we conclude that
S = 0, i.e, that P — P’ is an isomorphism. This completes the proof of (a).
Assertions (b) and (c) are easy, and left to the reader (see [23], [24] for more
details). O

Note that, in case (c), E is the quotient of P by rP, where t is the radical
of k[G] (maximum nilpotent ideal); this follows from the fact that the
semisimple k[G]-modules are those which are annihilated by r. Moreover,
by (b), each decomposition of E as a direct sum of simple modules gives a
corresponding decomposition of P. Hence we have: :
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-

Corollary 1. Each projective k[G)-module is a direct sum of projective
indecomposable k{G}-modules; this decomposition is unique up to isomor-
phism. The projective indecomposable k|G)-modules are the projective
envelopes of the simple k[G]-modules.

Corollary 2. For each E € S,, let Pg be a projective envelope of E. Then the
[Pc], E € S;, form a basis of P,(G).

Corollary 3. Two projective k[G}-modules P and P’ are isomorphic if and only
if their classes [P] and [P’] in P,(G) are equal.

More precisely, if [P] = EES ng[Pg], the module P is isomorphic to

IT (Pg)™. *

EXERCISE ‘
14.1. Show that k[G] is an injectiue”k[G]-module. Conclude that a k[G]-module is

k[G]-modules are the injective envelopes of the simple k[G}-modules (cf. ex.
14.6).

14.4 Structure of P, (G)

The following result is well known:

Lemma 20. Let A be a commutative ring, and P a A[G}-module. In order that
P be projective over A[G), it is necessary and sufficient that it be projective
over A, and that there exists a A-endomorphism u of P such that

S s-u(s"'x) = x forall x € P.
seG

If P is projective over A[G] it is projective over A: this follows from the
fact that A[G] is A-free. Conversely, suppose that the underlying A-module
P, of P is projective, and set Q = A[G] ®, P;. The A[G}-module Q is
projective. Moreover, the identity map P, — P extends to a surjective A[G]-
homomorphism ¢g: Q — P. It follows that P is projective if and only if there
exists a A[G]-homomorphism v: P — Q such that g o v =.1. It is easily
seen that every A[G]-homomorphism v: P — Q has the form

x> D s® uls~x)
seG

with ¥ € End, (Py). To have g o v = 1 it is necessary and sufficient to

have 3 s-u(s”'x) = x for all x € P. This proves the lemma. 0
s€G
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Lemma 21. Suppose that A is a local ring, with residue field ky = A/m,.

(a) Let P be a A-free A[G] module. In order that P be A[G]-projective,
it is necessary and sufficient that the k ,[G)-module P = P ® k, be
projective.

(b) Two projective A[G)-modules P and P'are isomorphic if and only if
the corresponding k ,[G)-modules P and ¥ are isomorphic.

If P is A[G]-projective, then P is k,[G}-projective. Conversely, if this
condition is satisfied, the preceding lemma shows that there exists a k,-
endomorphism # of P such that 3 . s- @ -s~ " = 1. By lifting @, we
obtain a A-endomorphism u of P such that &' = 1(mod. m, P), where
w = .cq 5 u-s"\. Consequently ¥’ is an automorphism of P, which
moreover commutes with G. Thus 3, s - (uw’™!) - s~ = 1, which shows
that P is projective over A[G] and proves (a).

If P and P’ are projective, and if w: P — P’ is a k,[G}-homomorphism,
the fact that P is projective shows that there exists a A[G]-homomorphism
w: P — P’ which lifts w. If in addition w is an isomorphism, then Nakaya-
ma’s lemma (or an elementary determinant argument) shows that w is an
isomorphism. This proves (b). a

We now return to the ring A:

Proposition 42.

(a) Let E be an A[G}-module. In order that E be a projective A[G]-
module it is necessary and sufficient that E be free over A and that
the reduction E = E/mE of E be a projective k[G}-module.

(b) If F is a projective k[G)-module, there exists a unique (up to
isomorphism) projective A[G)-module whose reduction mod. m is
isomorphic to F.

Part (a) and the uniqueness in (b) follow from lemmas 20 and 21. It
remains to prove existence in (b):

Let F be a projective k[G}-module. If n > 1 is an integer, let A, denote
the ring A/m”"; thus A; = k and A is the projective limit of the A,. The
rings A, and A,[G] are artinian. The arguments in the preceding section
show that the A [G}-module F has a projective envelope P,, and that P, is free
over A,. The projection B, —» F factors through B,/mPB, — F, which is
surjective. Since F is k[G]-projective, there exists a k[G}-submodule F’ of
P,/mP, which maps isomorphically onto F. The inverse image P’ of F’ in P,
has image F. Since B, — F is essential, it follows that P’ = B, i.e., that
P,/mP, — F is an isomorphism. Moreover, the P,’s form a projective
system. Their projective limit P is an A-free A[G]-module, such that

P = P/mP is isomorphic to F. In view of (a), this completes the proof
of (b).
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Corollary 1. Every projective A{G}-module is a direct sum of projective
indecomposable A[G)-modules; this decomposition is unique up to isomor-
phism. A projective indecomposable A|G|-module is characterized up to
isomorphism by its reduction mod.m which is a projective indecomposable
k[G]-module (i.c., the projective envelope of a simple k[G]-module).

This follows from the preceding proposition and known results for
projective k[G]-modules. As a consequence we get:

Corollary 2. Two projective A[G}-modules are isomorphic if and only if
[P] = [Q] in RA(G).

Corollary 3. Reduction mod.m defines an isomorphism from P,(G) onto
P,(G); this isomorphism maps P, (G) onto P,/ (G).
As a result we may identify P,(G) and P,(G).

For a general exposition of projective envelopes in “proartinian™ catego-
ries, see Demazure-Gabriel [23].

EXERCISES
14.2. Let A be a commutative ring, and let P be a A[G}-module which is projective
over A. Prove the equivalence of the following properties:
(i) P is a projective A[G)-module.
(ii) For each maximal ideal p of A, the (A/p)[G}-module P/pP is projective.

143.(a) Let B be an A-algebra which is free of finite rank over A, and let @ be an
idempotent of B = B/mB. Show the existence of an idempotent of B
whose reduction mod. mB is equal to @.

(b) Let P be a projective A{G}-module, and let B = End®(P). Show that B is
A-free, and that B can be identified with the algebra of G-endomorphisms
of P = P/mP. Deduce from this, and (a), that each decomposition of P
into a direct sum of k[G)-modules lifts to a corresponding decomposition
of P.

(c) Use (b) to give another proof of existence in Prop. 42(b). [Write F as a
direct factor of a free module P, lift P to a free module, and apply (b).]

14.5 Dualities

Duality between R  (G) and Rk (G)
Let E and F be K[G}-modules, and put

(E,F) = dim Hom®(E,F),  cf. 7.1.
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14.5: Dualities

-The map (E,F) > <E,F) is “bilinear” (with respect to exact sequences),
and so defines a bilinear form

Rk(G) X Rk (G) —» Z,

which we denote by {e,f) or {e,f k. The classes [E] of simple modules
E € Sk are mutually orthogonal, and {E,E) is equal to the dimension dg
of the field End®(E) of endomorphisms of E; hence dg > 1, and equality
holds if and only if E is absolutely simple (i.e., if the corresponding
representation is absolutely irreducible), cf. 12.1.

When K is sufficiently large, it follows from th. 24 that every simple
K[G}-module is absolutely simple. Consequently the above bilinear form is
nondegenerate over Z, in the sense that it defines an isomorphism of Rk (G)
onto its dual.

Duality between R ;(G) and Pi(G)
If E is a projective k[G]-module and F an arbitrary k[G}-module, put
{E,F) = dim Hom° (E, F).
We thus obtain a bilinear function of E and F (thanks to the assumption
that E is projective), hence a bilinear form
P,(G) X R,(G) - Z,
denoted {e,f) or {e,f %. If E, E’' € §,, we have

Hom®(Pg,E’) = HomS(E, E'),

where P denotes the projective envelope of E. If E # E’ we see that [Pg]
and [E’] are orthogonal; for E = E’ we have

(Pg,E) = dim. End® (E).
As before, dg = 1 if and only if E is absolutely simple.

Suppose that K is sufficiently large, so that k contains the mth roots of
unity. We then have dg = 1 for each E € S, (see below). Consequently the
bilinear form {, ), is nondegenerate over Z and the bases [E] and [Pg]
(E € S,) are dual to each other with respect to this form.

Remark

The fact that dg = 1 if K is sufficiently large can be proved in various
ways:

(1) We can obtain this from th. 24 by “reduction mod. m” once we know
that the homomorphism d: R (G) — R, (G) is surjective (cf. Ch. 16,
th. 33).
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Chapter 14: The groups Rk (G), R;(G), and P,(G)

(2) We could also use the fact that Schur indices over k are equal to 1 (cf.
14.6). This reduces the proof to showing that characters of represen-
tations of G (over an extension of k) always have values in k, and this
follows from the fact that they are sums of mth roots of unity.

EXERCISES

144. If E is a k[G}-module, we let E’ denote its dual. We define H%(G, E) as the
subspace of E consisting of the elements fixed by G, and Hy(G, E) as the
quotient of E by the subspace generated by the sx — x, with x € E and
s €G.

(a) Show that, if E is projective, the map x = 3 g sx defines, by passing
to quotients, an isomorphism of Hy(G, E) onto H%(G,E).

(b) Show that H%(G, E) is the dual of Hy(G, E’). Conclude that H%(G, E)
and H%(G, E') have the same dimension if E is projective.

14.5. Let E and F be two k[G}-modules, with E projective. Show that

dim Hom®(E, F) = dim Hom®(F, E).

[Apply part (b) of exercise 14.4 to the projective k[G}]-module Hom(E, F),
and observe that its dual is isomorphic to Hom(F,E).]

14.6. Let S be a simple k[G}-module and let Pg be its projective envelope. Show
that Pg contains a submodule isomorphic to S. [Apply exercise 14.5 with
E = Pg, F = S.] Conclude that Pg is isomorphic to the injective envelope of
S, cf. exercise 14.1. In particular, if S is not projective, then S appears at least
twice in a composition series of Pg.

14.7. Let E be a semisimple k[G]-module, and let K be its projective envelope.
Show that the projective envelope of the dual of E is isomorphic to the dual
of B [reduce to the case of a simple module and use exercise 14.6].

14.6 Scalar extensions

If K’ is an extension of K, each K[G]-module E defines by scalar
extension a K'[G}-module K’ ®¢ E. We thus obtain a homomorphism

Rk (G) = Rk/(G).

This homomorphism is an injection. This can be seen by determining the
image of the canonical basis {[E]} (E € Sg) of R¢(G): if D is the (skew)
field of endomorphisms of E, the tensor product K’ ® Dg decomposes as a
product of matrix algebras M, (D;), where the D; are fields. Each of the D;
corresponds to a simple K’[G]-module E/, and the image of [E] in Rg.(G)
is equal to 3 5;[E;]. Moreover each simple K’[G}-module is isomorphic to
a unique E/. This description of Ry (G) — R/ (G), which generalizes that
of 12.2, shows in particular that:

122



14.6: Scalar extensions

If all the Dg’s are commutative, the s; are equal to 1, and the homo-
morphism Rg(G) — Ry (G) identifies the first group with a direct
factor of the second, i.e., is a split injection. If all the E € Sk are absolutely
simple, the R (G) — R/ (G) is an isomorphism.

Analogous results hold for the homomorphisms

R,(G) —» R (G), P (G) - Pk'(G)

defined by scalar extension from & to k’. The situation is even simpler: the
endomorphism field of a simple k[G]-module is always commutative and
separable over k. (This is clear when & is finite, and the general case follows
by scalar extension.) Consequently R, (G) — R.(G) is a split injection. The
same applies for P,(G) — P,.(G): since the “scalar extension” functor
takes a projective envelope to a projective envelope.

Suppose now that K’ is a finite extension of K. Let A’ be the ring of
integers of K’ (i.e., the integral closure of A in K’), and k' its residue field.
If E is a projective A[G]-module, then E' = A’ ®, E is a projective A'[G}
module; moreover, the reduction k’ ®, E’ of E’ is isomorphic to

k' ® E = k' ® (k ®, E).

The diagram

RAG) - FR(G)
l l
PG - P(G)

is thus commutative. Since the two vertical arrows are isomorphisms, it
follows from the above that the homomorphism P, (G) — B,.(G) is a split
injection.

Remark. The injections Rg(G) — Rk(G), R4 (G) — R,/ (G), etc., are

compatible with the bilinear forms of the preceding section. Moreover, they
commute with the homomorphisms c,d,e defined in the next chapter.
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CHAPTER 15
The cde triangle

We shall define homomorphisms ¢, d, and e which form a commutative
triangle:

P(G) ——  R,(G)

N

Ry(G)

15.1 Definition of ¢: P,.(G) = R, (G)

Associate with each projective K[G}-module P the class of P in the group
R, (G). This class is an additive function of P, and so we get a homomor-
phism

c: P(G) = R,(G)

called the Cartan homomorphism. If we express ¢ in terms of the canonical
bases [Pg] and [S] (S € §;) of P,(G) and R (G), we obtain a square matrix
C, of type S, X S, called the Cartan matrix of G (with respect to k). The
(S,T) coefficient Cgy of C is the number of times that the simple module
S appears in a composition series for the projective envelope Pt of T: we
have

[Pr]= 3 CstlS] in Ry(G).
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15.1: Definition of c: P,(G) ~ R(G)

EXERCISE
15.1. Prove that c(x - y) = x - o(y) if x € R,(G), y € P,(G).

15.2 Definition of d: Ry (G) = R.(G)

Let E be a K[G]}-module. Choose a /attice E, in E (i.e., a finitely generated
A-submodule of E which generates E as a K-module); replacing E, by the
sum of its images under the elements of G, we can assume that E, is stable
under G. The reduction E; = E,;/mE, of E, is then a k[G]-module.

Theorem 32. The image of E, in R, (G) is independent of the choice of the
stable lattice E,.

(Two k[G]-modules E, and E, obtained by reduction of stable lattices E;
and E; need not be isomorphic, cf. ex. 15.1. What the above theorem says
is that they have the same composition factors.)

Let E, be a lattice of E stable under G. We must show that [E,] = [E;]
in R, (G). We begin with a special case:

We have mE; C E, C E,. Let T be the k[G}-module E,/E,. Then we have
an exact sequence

0-T->E ->E ->T-0,

where the homomorphism T — E, is obtained from multiplication by a
generator 7 of the ideal m. Passing to R, (G), we have

[T] - [E;] + [E)] - [T] = 0.

Thus [E;] = [E,] which proves the theorem in this case.

The general case. Replacing E, by a scalar multiple (which does not effect
E,), we can assume that E, is contained in E,. Thus there exists an integer
n 2 0 such that

m"El C Ez C El’
and we proceed by induction on n. Let E; = m" 'E, + E,. Then
m"—lEl C E3 - El and mE3 C Ez C E3.
By (a) and induction we get )
[El] = [E3] = [_E_Z]a
which proves the theorem. » O
It is now clear that the map E + [E,] extends to a ring homomorphism
d. RK(G) - Rk(G),
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Chapter 15: The cde triangle

called the decomposition homomorphism. It takes R § (G) into R{ (G). The
corresponding matrix D. (relative to the canonical bases of Rg(G) and
R,(G)) is called the decomposition matrix. It is a matrix of type S, X Sy
with nonnegative integer coefficients. For F € S, and E € Sk the corre-
sponding coefficient Dgg of D is the number of times that F appears in the
reduction mod. m of a stable lattice E; of E: thus

[El] = %DFE[F] in R,(G).

Remarks

(1) The hypothesis that K be complete plays no role in the proof of th.
32 nor in the definition of the homomorphism 4.

(2) There are analogous results for algebraic groups, cf. Publ. Sci. . H.E.S.
no. 34, 1968, pp. 37-52.

EXERCISES

152. Takep = 2 and G of order 2. Let E = K[G]. Show that E has stable lattices
whose reductions are semisimple (isomorphic to k @ k) and others whose
reductions are not semisimple (isomorphic to k[G]).

15.3. Let E be a nonzero K[G}-module and E, a lattice in E stable under G. Prove
the equivalence of the following:
(i) The reduction E, of E, is a simple k[G]-module.
(ii) Every lattice in E stable under. G has the form ¢E, with a€ K*.
Show that these imply that E is a simple K[G]-module.

154. (After J. Thompson.) Let E be a Z-free Z[G}-module, with rank n > 2.
Assume that, for each prime number p, the reduction E/pE of E is a simple
(Z/pZ)[G]-module. . A
(a) Show that there is a bilinear form B(x, y) on E with values in Z such that

B(x,x) > 0 for all x # 0.

(b) Let B be chosen as in (a) and extend it by linearity to the Q-vector space
Q @ E. Show that the set E’ of x € Q ® E such that B(x,y) € Z for all
y € E has the form E' = gE with a € Q* (same a-gument as for ex.
15.3). Conclude that B can be chosen nondegenerate over Z, i.e., such
that E' = E. If (e, ...,e,) is a basis of E, the determinant of the matrix
of the B(e;, ¢;) is then equal to 1. :

(c) Assume that B has been chosen as in (b). Show that there exists e € E
such that B(x, x) = B(e, x) (mod. 2) for all x € E, and that such an ¢
is invariant under G mod. 2E. Conclude that e = 0 (mod. 2E), i.e., that
the quadratic form B(x, x) takes only even values.

(d) Obtain from (c) the congruence n = 0 (mod. 8). [Use the fact” that every
positive definite integer quadratic form which is even and has discrimi-
nant | has rank divisible by 8.]

(e) Show that the reflection representation of a Coxeter group of type Eg has
the above properties (cf. Bourbaki, Gr. et Alg. de Lie, Ch. VI, §4, no. 10).

* See, for example, A Course in Arithmetic, GTM 7, Springer-Verlag (1973), p. 53 and 109.
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15.3: Definition of e: P,(G) = Rk(G)

15.3 Definition of e: P,(G) — R (G)

The functor “tensor product with K” defines a homomorphism from
P,(G) into Rg(G). Combining it with the inverse of the canonical
isomorphism P, (G) — P,(G), cf. 14.4, we obtain 2 homomorphism

e: P,(G) — Ry (G).

Its matrix will be denoted by E; it is of type S¢ X S,.

EXERCISE

15.5. We have e(d(x) .. y) =x-e(y)if x € Rg(G), y € P(G).

15.4 Basic properties of the cde triangle

(a) It is commutative, i.e., ¢ = d o e, or equivalently C = D - E. This is
clear.

(b) The homomorphisms d and e are adjoints of one another with respect
to the bilinear forms of 14.5:

xd(n = Lex)yx  if x € P(G),y € Rg(G).

Indeed, we can assume that x = [X], where X is a projective A{G]-module,
and that y = [K ®, Y], where Y is an A[G]-module which is A-free. The
A-module Hom®(X,Y) is then free; let r be its rank. Then we have
canonical isomorphisms:

K ® Hom®(X,Y) = Hom®(K ® X,K ® Y)

and

k ® Hom®(X,Y) = HomC(k ® X,k ® Y).

This shows that {e(x),y> = r = {x,d(y)).

(c) Assume that K is sufficiently large. In view of 14.5, the canonical bases
of P,(G) (resp. of Rk (G)) and of R (G) (resp. of R (G)) are dual to each
other with respect to the bilinear form {a, b), (resp. the form {(a, b)g). This
implies that e can be identified with the transpose of d; in particular we have
E = 'D.Since C = D - E = D - 'D, we see that C is a symmetric matrix.

EXERCISES
15.6. Let S, T € S, and let Pg, Py be their projective envelopes. We put

ds = dim End®(S), dy = dim End%(T),
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and let Cgy (resp. Cyg) be the multiplicity of S (resp. T) in a composition

series of Py (resp. Pg), cf. 15.1.

(a) Show that Cgpds = dim Hom® (P, By).

(b) Show that Cgrdg = Crsdy [apply ex. 14.5]. When K is sufficiently large,
the dg are equal to 1, and we obtain again the fact that the matrix
C = (Cgy).is symmetric.

15.7. Keep the notation of Ex. 15.6. Show that either S is projective, Py = S and
Css = 1, or Cgg > 2 [use ex. 14.6].

158. If x € P,(G), we have {x,c(x)) = (e(x),e(x)>x. Conclude that, if K is
sufficiently large, the quadratic form defined by the Cartan matrix C is
positive definite.

15.5 Example: p’-groups
Proposition 43. Assume that the order of G is prime to p. Then:

(1) Each k[G}-module (resp. each A-free A|G]-module) is projective.
(ii) The operation of reduction mod. m defines a bijection from Sy onto
Si.
(ii1) If we identify Sg with S, as in (ii), the matrices C, D, E are all
identity matrices.

(More briefly: the representation theory of the group G is “the same”
over k as over K.)

Let E be an A[G]-module which is free over A. We can write E as a
quotient L/R of a free A{G}-module L. Since E is A-free, there exists an A-
linear projection = of L onto R; since the order g of G is invertible in A,
we can replace 7 by the average (1/g) 3, s7s™! of its conjugates, and the
projection thus obtained is A[G]-linear. This shows that E is A[G]-
projective. The same argument applies for k[G]-modules. This proves (i), as
well as the fact that the Cartan matrix is the identity.

If E € S,, the projective envelope E, of E relative to A[G] is a projective
A[G]-module, whose reduction E, = E,/mE, is E. If we put F = K ® E,,
then 4([F]) = [E]. Since E is simple, this implies that F is simple, thus
isomorphic to one of the elements of Sx. We thus obtain a map E - F of
S, into S, and it is clear that this map is the inverse of d. This proves (ii)
and (iii). a

Remark. The fact that D is an identity matrix shows that d maps R (G)
onto R} (G); in other words, every linear representation of G over K can
be lifted to a representation over A, a result which can easily be verified
directly (cf. ex. 15.9, below).
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EXERCISE

15.9. Suppose that g is prime to p. Let E be a free A-module.
(a) Letn > 1 be an integer, and let
. pp: G » GL(E/m"E)

be a homomorphism of G into the group of automorphisms of E/m"E.
Show that p, can be lifted to

pns1: G = GL(E/m"*'E)

and that this lifting is unique, up to conjugation by an automorphism of
E/m"*'E congruent to 1 mod .m". [Use the fact that the cohomology
groups of dimension 1 and 2 of G with values in End(E/mE) are zero.)

(b) Obtain from (a) the fact that every linear representation
p: G = GL(E/mE)

of G over k can be lifted, in an essentially unique way, to a representa-
tion of G over A.

15.6 Example: p-groups

Suppose that G is a p-group, of order p". We have seen (8.3, cor. to prop.
26) that the only irreducible representation of G in characteristic p is the
unit representation. It follows that the artinian ring k[G] is a local ring with
residue class field k. The projective envelope of the simple k{G]-module k
is kK[G], i.e., the regular representation of G. The groups R, (G) and P, (G)
can be both identified with Z, and the Cartan homomorphjsm ¢: Z — Z is
multiplication by p". The homomorphism d: R (G) — Z corresponds to the
K-rank; the homomorphism e: Z — R (G) maps an integer n onto n times
the class of the regular representation of G.

15.7 Example: products of p’-groups and p-groups

Suppose that G = S X P, where S has order prime to p, and P is a p-
group. We have k[G] = k[S] ® k[P]). Moreover:

(a) A k[G}-module E is semisimple if and only if P acts trivially on E.

The sufficiency follows from the fact that every k[S]-module is semisim-
ple, cf. 15.5: To prove the necessity, we can assume that E is simple. By 15.6
the subspace E’ of E consisting of elements fixed by P is not zero. Since P
is normal in' G, the subspace E’ is stable under G, and thus equal to E,
which means that P acts trivially.

(b) A k[F}-module E is projective if and only if it is isomorphic to F ® k[P,
where F is a k[S]-module.

Since F is a projective k[S}-module (cf. 15.5), F ® k[P] is a projective
k[G}-module. Moreover, it is clear that F is the largest quotient of F ® k[P]
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on which P acts trivially. Because of (a) this means that F ® k[P] is the
projective envelope of F. However, every projective module is the projective
envelope of its largest semisimple quotient. We thus see that every
projective module has the form F ® k[P]. :

(c) An A[G)-module E is projective if and only if it is isomorphic to
F ® A[P], where F is an A-free A[S)-module.

Clearly a module of the form F ® A[P] is projective. The converse is
proved by applying (b) to E = E/mE: if E is projective, we have E
~ F ® k[P), and we know that F can be lifted to an A[S}-module F which
is free over A (and even A[S}-projective, cf. above). The module F ® A[P]
is the projective envelope of F ® k[P), and thus is isomorphic to E

Properties (a) and (b) show in particular that the Cartan matrix of G is
the scalar matrix p", where p" = Card(P).
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CHAPTER 16

Theorems

16. 1 Properties of the cde triangle
The main result is the following*: )
Theorem 33. The homomorphism d: R ¢ (G) — R (G) is surjective.

The proof will be given in 17.3.

Remarks

(1) This applies in particular to k = Z/pZ, taking for K the p-adic field
Q,; the ring A is then the ring Z, of p-adic integers.

(2) Roughly speaking, the theorem asserts that every linear representation
of G over k can be lifted to characteristic 0 if we are willing to accept
“virtual representations”, i.e., elements of the Grothendieck group R (G).
This is an extremely useful result for many applications.

Theorem 34. The homomorphism e: P,(G) — R (G) is a split injection.
When K is sufficiently large, e is the transpose of d (cf. 15.4), and the fact

that 4 is sur’ .tive implies that e is a split injection. In the general case, let
K’ be a finite sufficiently large extension of K, and let £’ be its residue field.
Consider the diagram:

P(G = Rg(G)

2 \)
P.(G) > Rg(G)

* In the first French edition of this book, theorem 33 was stated only for a sufficiently large
field K. Claude Chevalley and Andreas Dress have independently observed that it is valid in
general.
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As we have just seen, €’ is a split injection. In view of 14.6, the same is true

for P,(G) — P,.(G). Their composition is a split injection as well, hence the

same holds for e. 0
At the same time we have proved:

Corollary 1. For each finite extension K’ of K, the homomorphism
P,(G) = Rg(G) - Rg/(G)

is a split injection.

The injectivity of e is equivalent to:

Corollary 2. Let P and P’ be projective A[G]-modules. If the K[G]-modules
K ® P and K ® P’ are isomorphic, then P and P’ are A[G]-isomorphic.

(Indeed we know that the equality [P] = [P’] in R,(G) = R,(G) is
equivalent to P =~ P’.)

Theorem 35. Let p” be the largest power of p dividing the order of G. Then
every element of R (G) divisible by P" belongs 1o the image of the Cartan
map : P(G) = R,(G).

The proof will be given in 17.4.
Corollary 1. The map c: P,(G) — R, (G) is injective, and its cokernel is a
finite p-group.

The second assertion is immediate from th. 35; the first then follows,
since P,(G) and R,;(G) are free Z-modules with the same rank, namely
Card(S,).

Corollary 2. If two projective k(G)-modules have the same composition factors
they are isomorphic.

This is a restatement of the injectivity of c.

Corollary 3. Assume K is sufficiently large. The Cartan matrix C is then
symmetric, and the corresponding quadratic form is positive definite. The
determinant of C is a power of p. :

The quadratic form in question is

x> (x,ex)y = {x,d(e(x))) = elx).ex))x,  x € Be(G).

Since the form {a, b) is clearly positive definite, and e is injective (th. 34),
we see that the above form is also positive definite. The determinant of C
is thus > 0. This implies that det(C) is a power of p, since the cokernel of
c is a p-group. | O

132



16.2: Characterizations of the image of e

Remarks

(1) The above argument shows that the injectivity of ¢ follows from that
of e.

(2) Theorem 35 is equivalent to the assertion that there exists a
homomorphism ¢’: R;(G) = P,(G) such that ¢ o ¢/ = p" (which implies
¢’ oc=p").

(3) The exponent » in th. 35 is best possible, cf. ex. 16.3.

EXERCISES

16.1. Show that, when K is not complete, theorem 33 remains valid provided K is
sufficiently large. (If K denotes the completion of K, observe that the
homomorphism Ry (G) = Ry (G) is an isomorphism, and apply th. 33 to
K)

16.2. Show that d: Ro(G) - Rz/sz(G) is not surjective if G is cyclic of order 4.

163. Let H be a Sylow p-subgroup of G. Show that, if E is a projective k[G]-
module, then E is a free k[H}-module (cf. 15.6), and so dim E is divisible by
p". Conclude that the map [E] — dim E defines, by passing to quotients, a
surjective homomorphism Coker (¢) — Z/p"Z. In particular, the element
7"~} of R, (G) does not belong to the image of c.

16.2 Characterization of the image of e

An element of G is said to be p-singular if it is not p-regular (cf. 10.1), i.e.,
if its order is divisible by p. Recall also that every element of R (G) can
be identified with a class function on G, namely its character (cf. 12.1 and
14.1).

Theorem 36. The image of e: P,(G) = Rk (G) consists of those elements of
R (G) whose character is zero on the p-singular elements of G.

We even have the more precise result:

Theorem 37. Let K’ be a finite extension of K. In order that an element of
Rk (G) belong to the image of P,(G) = P,(G) under e, it is necessary and
sufficient that its character take values in K, and be zero on the p-singular
elements of G.

For the proof, see 17.5.

EXERCISE

164. (Swan.) Let A be a Dedekind domain with quotient field F. Assume that, for
each prime number p dividing the order of G, there exists a prime ideal p of
A such that A/p has characteristic p. Let P be a projective A{G}-module.
Show that F ® P is a free F[G}-module. [Apply th. 36 to the modules
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obtained from P by completion at such primes p. Deduce that the character
of F ® P is zero off the identity element of G.] ¢

This exercise applies in particular to the case where A is the ring of
integers of an algebraic number field.

16.3 Characterization of projective A[{G}-modules
by their characters

Such a characterization amounts to determining those representations of
G over K which contain a lattice stable under G which is projective as an
A[G}-module. In other words, it amounts to characterizing the image of
Pg (G) = P{(G) under e. Only partial results are known. First:

Lemma 22. Let x € P,(G), and let n > 1 be an integer. If nx € Py (G), we
have x € P (G).

This is clear: if r = Card(S;), then P,(G) can be identified with Z" and
Py (G) with N, cf. 14.3 and 14.4. O

Proposition 44. Let K’ be a finite extension of K, and let A’ be the ring of
integers of K'. Assume the following two conditions on an element
x of Rg/(G):

(a) The character of x has values in K. _
(b) There exists an integer n > 1, such that nx arises, by scalar
extension, from a projective A’'[G)-module.

Then x arises from a projective A[G)-module, uniquely determined up to
isomorphism.

Let N = [K’: K] = [A": A]. Let E’ be a projective A’[G}-module with
image nx in Rg.(G), and let E be the A[G}-module obtained from E’ by
restriction to A[G]. One checks easily that the character of K ® E is equal
to nN times that of x.

Thus ~

e([E]) = nN - x in Rg.(G).

By th. 36, the character of e([E]) is zero on the p-singular elements of G;
hence the same is true for x. So, by th. 37, we have x = e(y), with
¥y € P,(G). Since e is injective (th. 34), this implies [E] = nN - y, and
lemma 22 shows that y belongs to P)(G). Consequently, there exists a
projective A[G]-module Y such that [K @ Y] = x in Rg(G); the unique-
ness of Y (up to isomorphism) follows from cor. 2 to th. 34. O

One can ask whether e(PY (G)) = (P, (G)) N R{(G). This is not true
in general (cf. ex. 16.5 and 16.7). However, we have the following criterion:
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Proposition 45. Suppose the following condition is satisfied:
(R) There exists a finite extension K’ of K, with residue field k', such that
d(Rg/(G)) = R{(G).
Then we have e(P5 (G)) = &(P4(G)) N R (G).

By prop. 44 it is enough to-prove that
(P (G)) = e(PA(G)) N Rk (G)

when K is sufficiently large, in which case condition (R) just means that d
maps R§ (G) onto R} (G). Now let
x € e(B(G)) N RE(G).

Since x € e(P,(G)), we can write x as
= P:D),
x Egsk ng e([Pg])

where Pg denotes a projective A[G)-module whose reduction mod. m is the
projective envelope Pg of E (cf. 14.4). We must show that the integers ng
are nonnegative. By (R), for each E € S, there exists zg € Rg(G) such
that d(zg) = [E}. Since x € R} (G), we have {x,zg )k > 0. On the other
hand, the fact that 4 and e are adjoint shows that {x,zg)x = ng. In
particular ng is non-negative, and the proof is complete. O

Combining prop. 45 and th. 36, we get:

Corollary. Suppose that G satisfies condition (R) of prop. 45. A linear
representation of G over K comes from a projective A[G)-module, if and only
if its character vanishes on the p-singular elements of G.

Remark. Condition (R) is equivalent to the‘following:
(R’) If K is sufficiently large, every simple k[G)-module is the reduction mod.
m of a K[G}-module (necessarily simple).

(In other words, each irreducible linear representation of G over k lifts

to K.)

Theorem 38. ( Fong-Swan). Suppose that G is p-solvable, i.e., has a normal
composition series whose factors are either p-groups or groups of order prime
to p. Then G satisfies conditions (R) and (R’) above.

For the proof, see 17.6.

EXERCISES
16.5. With notation as in prop. 44, show that
B{(G) = BE(G) N B\(G) = B{(G) N Rk(G)
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16.6. Show that, for K sufficiently large, condition (R) is equivalent to the
condition (P} (G)) = e(P,(G)) N R (G). (Observe that an element x
of P,(G) belongs to P (G) if and only if {x,y) > Oforally € R{(G).)

16.7. Take for G the group SL(V) where V is a vector space of dimension 2 over
the field F, = Z/pZ. Show that the natural representations of G in the ith
symmetrlc powers V; of V are absolutely irreducible for i < p. (Since the
number of p-regular classes of G is p, it follows that these are, up to
isomorphism, all the irreducible representations of G, cf. 18.2, cor. 2 to th.
42.) Give examples where these representations cannot be lifted to charac-

teristic zero even over a sufficiently large field K. (Forp = 7,i = 4, we have
dim V, = 5, and 5 does not divide the order of G; hence V, cannot be lifted.)

16.4 Examples of projective A[G}-modules: irreducible
representations of defect zero

In this section we assume that K is sufficiently large.

Proposition 46. Let E be a simple K|G}-module, and let P be a lattice in E
stable under G. Assume that the dimension N of E is divisible by the largest
power p" of p dividing the order g of G. Then:

(a) P is a projective A[G}-module.

(b) The canonical map A[G) — End, (P) is surjective, and its kernel is
a direct factor in A|G] (as a two-sided ideal). -

(c) The reduction P = P/mP of P is a simple and projective A[G}-
module.

Observe that (a) implies (cf. th. 37):
Corollary. The character xg of E is zero on p-singular elements of G.

First of all, since N is divisible by p”", the quotient N/g belongs to the ring
A. This enables us to apply Fourier inversion (6.2., prop. 11) without
introducing any “denominators,” i.e., within the ring A. More precisely, let
sp be the endomorphlsm of P defined by s € G; if ¢ € End,(P), the trace
Tr(sp' ¢) of sp' ¢ belongs to-A, so we can define the element -

U, = — 2 Tr(s; ¢)s of the ring A [G].

1t follows from prop. 11 that u, has image 1 ® ¢ in Endg(E), and 0 in
Endg (E’') for each sxmple K[G]-module E’ not isomorphic to E. In
particular, u, has image ¢ in End, (P), which proves (b). Assertion (a) then
follows from the elementary fact that P is projective over the ring End, (P);

the same argument works for (c). a

Remark. In the language of block theory (cf. [9], [20]), prop. 46 is the case
of a block with a unique irreducible character (or of defect zero).

136



16.4: Examples of projective A{G}-modules

ExaMmpLE. If G is a semisimple linear group over a finite field of character-
istic p, there exists a linear irreducible representation of G (over Q) whose
degree is equal to p”; it is the special representation of G discovered by R.
Steinberg (cf. Canad. J. of Math., 8, 1956, p. 580-591 and 9, 1957, p.
347-351). By a result of Solomon-Tits it may be realized as the homology
representation of top dimension for the Tits building associated with G*.

EXERCISES

16.8. Take G = U, cf. 5.7. Show that, for p = 2, the group G has no irreducible
representation of the type described by prop. 46, but that there is such a
representation for p = 3. Same question for &,.

169. Let S € S;. Prove the equivalence of the following properties:
(i) S is a projective k[G}-module.
(ii) S is isomorphic to the reduction mod.m of a module P satisfying the
conditions of prop. 46.
(iii) The diagonal coefficient Cgg of the Cartan matrix of G is equal to 1.
(For the equivalence of (i) and (iii), see ex. 15.7.)

* CI. L. Solomon, The Steinberg character of a finite group with a BN-pair. Theory of Finite
Groups, edited by R. Brauer and C.-H Sah. W. A. Benjamin, New York, 1969, p. 213-221.
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CHAPTER 17

Proofs

17.1 Change of groups

Let H be a subgroup of G. We have already defined restriction and
induction homomorphisms relative to Ry :

ResS: Rg(G) » Rg(H) and  IndS: Rg(H) - Rg(G).

The same definitions apply to R, and P,: by restriction, every k[G]-module
defines a k[H] module, which is projective if the given module is projective.
Passing to Grothendieck groups, we get homomorphisms

Resi: Ry (G) > Ry (H) and  Resg: Pi(G) — P (H).

On the other hand, if E is a k[H]-module, then Ind E = k[G] & m] Eis a
k[G}module (said to be induced by E), which is projective if E is projective.
Hence we have homomorphisms

Ind§: R, (H) > R, (G) and Ind§: P,(H) - P,(G).
Using the associativity of the tensor product we easily obtain the formula
ON IndS - ReSHy) lnd (x)-y.
in each of the following situations:
@ x€RgH)yeR(G) and IndS(x)-y € Rg(G),”
(b)) x € R,(H),y € R, (G) and Ind§(x) -y € R,(G),
(c) x € R (H),y € P.(G) and Ind§(x) - y € Pi(G).
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17.2: Brauer’s theorem in the modular case

[Case (c) makes sense because P, (G) is a module over R ;(G).]

Moreover, the homomorphisms ¢, d, e of Ch. 15 commute with the
homomorphisms Res§ and Ind§.

EXERCISE

17.1. Extend the definitions of Res§ and Ind§ to the case of a homomorphism
H — G whose kernel has order prime to p (cf. ex. 7.1).

17.2 Brauer’s theorem in the modular case

Theorem 39. Let X be the set of all Ix-elementary subgroups of G (cf. 12.6).
The homomorphisms

Ind: R G
nd: @ «(H) = R,(G)
and

Ind: H%XP"(H) - P.(G)
defined by the IndS, for H € X, are surjective.

(In other words, th. 27 holds for R, and P, .)

Let 1g(resp. ;) denote the identity element of t!le riI}g Rk (G)
(resp. R;(G)). We have d(Ig) = ;. By th. 27 we can write Ig in the form

Ix = > IndH(xH) with Xy € RK(H)
HeX

Applying d, and using the fact that d commutes with IndS, we obtain an
analogous formula for 1;:

|, = Hzx Indy(xy), with xyy = d(xy) € R,(H).
eX.
For y € R, (G) (resp. P,(G)), we get by multiplication:

=Ly=3 Indg(y) -y = 3 IndS(xy - Res§y),

y kY Héx uGu) -y ng H (*xH HY)
which proves the theorem. ) 0O
Corollary. If K is sufficiently large, each element of R, (G) (resp. of P, (G))
is a sum of elements of the form Indy(yy), where H is an elementary

subgroup of G, and yy belongs to R, (H)(resp. to P, (H)).

Indeed, when K is sufficiently large, then X is just the set of all
elementary subgroups of G.
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Remark. The argument used in the proof of th. 39 applies to many other
situations (cf. Swan [21], §§ 3,4) For example it gives the following
analogue of Artin’s theorem (cf. th. 26):

‘Theorem 40. Le: T be the set of all cyclic subgroups of G. The homomorphisms
Q ® Ind: H%TQ ® R;(H) - Q ® R, (G)
and
Q ® Ind: HQTQ ® P,(H) - Q ® P.(G)

are surjective.

17.3 Proof of theorem 33

We have to show that d: RK(G) — R, (G) is surjective. By th. 39, R (G)
is generated by the vanous IndH (R, (H)), where H is I'x-elementary. Since
d commutes with Ind§, it is enough to show that R, (H) = d(Rg(H)).
Hence we are reduced to the case where G is Iy-elementary. In this case we
have the following more precise result:

Theorem 41. Let | be a prime number. Assume that G is the semidirect product
of an I-group P by a cyclic normal subgroup C of order prime to l. Then every
simple k[G}-module E can be lifted (i.e., is the reduction mod m of an A-
free A [G}-module)..

(In other words, d maps Rg (G) onto R} (G).)

Suppose | # p. Let C, be the p-Sylow subgroup of C, and let E’ be the
vector subspace of E con51stmg of those elements fixed by C,,. Since C, is a
p-group, we have E’ # 0, cf. 8.3, prop. 26. Since C, is normal in G the
space E’ is stable under G. Thus E’ = E, which means that C, acts trivially
on E, and that the representation of G in E comes from a representation of
G/C Since the order of G/C is prime to p, it is immediate that such a
representatnon can be lifted (cf 15.5).

Suppose now that | = p. We proceed by induction on the order of G.
Since C has order prime to p, the representation of C in E is semxsnmple
Decompose it into a direct sum of isotypic k[C}-modules (cf. 8.1 prop. 24):

E=9E,.

The group G permutes the E_ ’s; since E is simple, G permutes transitively
the nonzero E, ’s. Let Eg be one of these, and let Gg be the subgroup of
G consisting of those elements s such that sEg = Eg. It is clear that Egis a
k[GB]-module and that E is isomorphic to the corresponding induced
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17.3: Proof of theorem 33

module IndGﬂ(E ). Moreover, Gp is the semidirect product of a subgroup
of P and the group C. If Eg # E we have Gg # G, and the induction
hypothesis applied to Gg shows that Eg can be hfted the same is then true
for E.
Thus we may assume that E is an isotypic k[C]-module. Let p denote the
homomorphism from k[G] into End,(E) which defines the k[G]-module
structure on E. The fact that E is k[C]-isotypic is equivalent to saying that
the image of k[C] under p is a field k', which is a finite extension of k. The
restriction of p to C is a homomorphism ¢: C — k'*, and k' is generated
over k by ¢ (C). The module E is thus endowed with the structure of a k'-
vector space. Now choose an element v 7 0 of E invariant under P; again
this is possﬂ)le since P is a p-group, cf. 8.3, prop. 26. For x € C,s € P, put
Sx = sxs~!. We have

o(s)(@(x) - v) = plsxs™")pls) - v = ¢(*x) - v.

Hence the subspace k’v of E generated by the ¢(x)-»,x € C, is stable under
C and P, thus is equal to E. Hence dim,.E = 1. This allows us to identify
E with &’ in such a way that v becomes the unit element of k’. Forallt € G
p(?) is an endomorphism o, of the k-vector space k. For s € P we have
a,(1) = 1 by construction. Moreover, the above formula shows that

o,(¢(x)) = ¢(°x) forall x € C,

hence

0,(6()H(x)) = 0,(¢(x))e,(#(x")) for all x, x' € C.

Since k’ is generated by the ¢(x), we get
o,(aa’) = o/(a)o,(a’) ifa,a € k’;

in other words, o, is an automorphism of the field K’ and the map s - o, is
a homomorphism o: P — Gal(k'/k), where the latter denotes the Galois
group of k’/k. The lifting of E is now easy to define: let K’ be the unramified
extension of K corresponding to the residue extension k’/k, and let A’ be
the ring of integers of K'. The canonical isomorphism

Gal(K'/K) => Gal(k'/k)

gives an action of P on K’ and on A’ (using 0). On the other hand, the
homomorphism ¢: C — k’* lifts uniquely (using, say, multiplicative repre-
sentatives) to a homomorphism ¢: C — A’*, which gives an action of C on
A’ by multiplication. It is then immediate (from uniqueness) that we still
have

o, (#(x)) = ¢(°x) forx € C,s € P.
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This means that the actions of C and P on A’ combine to give an action of
G. Endowed with such an A[G}-module structure, A’ is the desired lifting.

O

Remark. When K is sufficiently large, we only need th. 41 in the case
where G is elementary, thus a direct product of C with P. The above proof
becomes much simpler: the group P acts trivially on the simple module E,
which can thus be viewed as a simple k[C]-module and lifted without
difficulty.

17.4 Proof of theorem 35

Let p” be the largest power of p dividing the order of G. We have to show
that the cokernel of ¢: P,.(G) — R, (G) is killed by p". We distinguish two
cases:

(a) K is sufficiently large

By the cor. to th. 39, R, (G) is generated by the Ind§(R,(H)) with H
elementary. We are thus reduced to the case where G is elementary, hence
decomposes as a product S X P, where S has order prime to p and P is a p-
group. We have seen in 15.7 that the Cartan matrix of such a group is the
scalar matrix p". The theorem follows in this case.

(b) General case

Let K’ be a finite sufficiently large extension of K, with residue field k'.
Scalar extension from k to k' gives us a commutative diagram:

0- P.(G) - P, (G) - P -0

le i 1y
0-» PG - R (G - R -0,

where P = P,.(G)/P,(G) and R = R,.(G)/R,(G). Whence the exact
sequence:

0 — Ker(c) — Ker(c’) = Ker(y) = Coker(c) — Coker(c’).

By (a), Coker(c’) is killed by p”. Since P,.(G) and R,.(G) have the same
rank, it follows that ¢’ is injective, whence the same is true for ¢, and so
Coker(c) is finite. But we know (cf. 14.6) that P,(G) — P.(G) is a split
injection. The group P is thus Z-free, and so is Ker(y). Since Ker(¢’) = 0,
and Coker(c) is finite, the exact sequence above shows that Ker(y) = 0;
hence Coker(c) embeds in Coker(c’). Since the latter is killed by p", the
same is true of Coker(c), which proves the theorem. O
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17.5 Proof of theorem 37

By extending K’ if necessary, we can assume that K’ is sufficiently large.

(1) Necessity

Let E be a projective A[G}- module and let x be the character of the
K’'[G]-module K’ ®,. E. If s € G is p-singular, we must show that x(s) = 0.
Replacing G by the cyclic subgroup generated by s, we can assume G is
cyclic, hence of the form S X P, where S has order prime to p, and P is a p-
group. By 15.7, E is isomorphic to F ® A’[P], where F is an A’-free A’[S])-
module. The character x of K’ ® E is thus equal to y ® rp, where ¢ is a
character of S and 7 is the character of the regular representation of P.
Such a character is evidently zero off S, so in particular x(s) = 0.

(i1) Sufficiency (first part)

Let y € R;.(G), let x be the corresponding virtual character and
suppose x(s) = 0 for every p-singular element s of G.

We will show that y belongs to P,.(G) (where this group is identified with
a subgroup of R .(G) by means of e).

By the cor. to th. 39, we have

1=) Ind(xyg), with xy € Ry (H),
where H runs over the set of all elementary subgroups of G. Multiplying by
y, we get:
y = 3 Ind(yy), with yy = xy - Resy(y) € Ry -(H).

The character of yy is zero on the p-singular elements of H. If we knew that
yy belonged to Py-(H), it would follow that y belongs to P,.(G). Hence,
we are reduced to the case where G is elementary.

Now decompose G = S X P as above. We have

Ry (G) = Ry (S) ® Ry (P).

Since x is zero off S, we can write x in the form f ® rp. where f is a class
function on S, and 1, is the character of the regular representation of P. If
p is a character of S, then

f®mpp® 1) =fip) Cp. 1> = (frp).
Since the left-hand side is equal to {x,p ® I). it is an integer; thus
{f,py € Z for all p, which proves that fis a virtual character of S. Thus we
can write y in the form
y = ys ® yp.

with yg € Rg.(S), and yp the class of the regular representation of P. Since
Vs € By(S) and yp € Py(P), we indeed have y € Py (G).
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(i) Sufficiency (second part)

Keep the notation (ii), and suppose in addition that the character x of y
has values in K. We must show that y belongs to P, (G). By (ii), we at least
know that y € P,.(G).

Let r be the degree of the extension K'/K. Every A’[G]-module defines
an A[G]-module by restriction, and this module is projective whenever the
original module is. Thus we have a homomorphism

7: Py.(G) = Py (G).

Put z = 7(y). Then z = r - y. Indeed, it suffices to verify this equality in
Rk (G), and for this it is enough to show that the character x, associated
with z is equal to r - x. But we have

X: = TrK'/K (X )’

and since x has values in K, we get x, = r - x.

Thus y € P,.(G) and r - y € P,(G). But the inclusion P, (G) — P,-(G)
is a split injection, cf. 14.6. Since r - y is divisible by r in P,.(G), the same is
true in P, (G), which means that y € P, (G), and completes the proof. [

17.6 Proof of theorem 38

We say that a group G is p-solvable of height h if it is a successive
extension of h groups which are either of order prime to p or of order a
power of p. We want to show that, if K is sufficiently large, then every
simple k[G]-module lifts to an A-free A[G]-module.

We proceed by induction on 4 (the case A = 0 being trivial) and, for groups
of height A, by induction on the group order.

Let I be a normal subgroup of G, of order either prime to p or a power of
D, such that G/I has height A — 1. Let E be a simple (and thus absolutely
simple) k[G]-module. If I is a p-group, the subspace E! of all elements of E
left invariant by I is # 0 and therefore equal to E; thus E is a simple
k[G/1]-module. By induction it can be lifted to an A-free A[G/ I] module,
and the result follows in this case.

Suppose now that I has order prime 1o p. Decompose E as a direct sum of
isotypic k{I}-modules (i.e., sums of isomorphic simple modules):

E=9E,

where E_ is an isotypic k[I}-module of type S,.

The group G permutes the E_; since E is simple it permutes transitively
those which are nonzero. Let E be one of these, and let G, be the subgroup
of G formed by all s € G such that s(E,) = E,. Then E, is a k[G, ]
module, and it is clear that E is the corresponding induced module. If
E, # E, we have G, # G, and the induction hypothesis, applied to G,,
shows that E_ can be lifted; consequently the same is true for E.
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We can now assume that E is an isotypic k{I}-module of type S where S
is a simple k[I}-module. Since I has order prime to p, we can lift S in an
essentially unique way to an A-free A[I] module, say S, and it is clear that
K ® S is absolutely simple. By cor. 2 to prop. 16 of 6.5, it follows that
dim S divides the order of I; in particular, dim. S is prime to p.

Now lets € G, and denote by i, the automorphism x + sxs~! of I. Since
E is isotypic of type S, it follows that S (and hence S) is isomorphic to its
transform by i;. This can be expressed as follows:

Let p: I — Aut(S) be the homomorphism defining the I-module struc-
ture of S, and let U, be the set of 1 € Aut(S) such that

tp(x)t~! = p(sxs™!) forallx € L.

Then Uj is not empty.

Let Gl be the group of all pairs (s,¢) with s € G, ¢+ € U,. The map
(s,7) > s is a surjective homomorphism G, — G; its kernel is equal to U,
which is the multiplicative group A* of A. The group G; is thus a central
extension of G by A*; it acts on S via the homomorphism (s, 1) > ¢.

We shall now replace G, by a finite group. Let d = d1m S. If s € G, the
elements det(?), ¢+ € U, form a coset of A* modulo A?. By enlarging K
(which is all right, since it does not change Ry (G)), we may assume that
these cosets are all trivial, in other words that each U; contains an element
of determinant 1. This being done, let C be the subgroup of A* formed by
all det(p(x)), x € I, and let G, be the subgroup of G, formed by all (s, 1)
with ¢+ € U, and det(s) € C. The group G, maps onto G; the kemel N of
G, > Gis 1somorph1c to the subgroup of A* formed by all @ with a? € C.
Since d and Card (C) are prime to p, we conclude that N is a cyclic group
of order prime to p.

Denote by p,: G, — Aut(S) the representation (s,7) = ¢ of G,. If I is
identified with a subgroup of G, by means of x + (x, p(x)), we see that the
restriction of p, to I is equal to p. Thus we have extended p, not to G itself,
but at least to a central extension of G (we have a “projective” representa-
tion of G in the sense of Schur). Observe that I is normal in G,, and that
INnN={1}.

Return now to the original k[G}-module E. Let F = Hom!(S, E) and let
u: S ® F — E be the homomorphism which associates witha ® ¢ (a € S,
b € F the element b(a) of E.) From the fact that E is isotypic of type S we
deduce easily that u is an isomorphism of S ® F onto E.

The group G, acts on S through the reduction of p,; it also acts on E via
G; — G; hence it acts on F. The isomorphism

uS®F - E

is compatible with this action of G,. Thus E, viewed as a k[G, ]-module, can
be identified with the tensor product of the k[G,]-modules S and F. In
order to lift E, it thus suffices to lift S and F and take the tensor product of

145



Chapter 17: Proofs

these liftings. We will then get an A-free A[G]-module E. Since N has order
prime to p and acts trivially on the reduction E of E, it will follow that N
acts trivially on E (cf. 15.5) and that E can be viewéd as an A[G}-module—
indeed, we will have lifted E.

Hence it remains to show that F can be lifted (the case of S being already
settled). But F is a simple k|G,}-module (since E is) upon which I acts
trivially by construction.. So we may consider it as a simple k[H}-module,
where H = G,/

The group H is a central extension of G/I (which is p-solvable of height
< h — 1) by the group N, which is cyclic of order prime to p. If h = |, we
have H = N, and the lifting of F is immediate (15.5). If A > 2, the group
H/N contains a normal subgroup M/N satisfying the following two
conditions:

(a) H/M = (H/N)/(M/N) has height < h — 2.
(b) M/N is either a p-group or a group of order prime to p.

If M/N is a p-group, then since N has order prime to p, M can be written
as a product N X P where P is a p-group. The argument given at the
beginning of the proof shows that P acts trivially on F, so F can be viewed
as a k[H/P}-module. But it is clear that the height of H/Pis < h — 1,50 F
can be lifted by induction. There remains the case where M/N has order
prime to p. The order of M is then prime to p, and since H/M has height
€ h — 2, the height of H is < A — 1, and again induction applies. This
completes the proof. a



CHAPTER 18

Modular characters

The results we have been discussing are due, for the most part, to R. Brauer.
He stated them in a slightly different language, that of modular characters,
which we shall now describe.

For simplicity, we assume that K is sufficiently large.

18.1 The modular character of a representation

Let G, be the set of p-regular elements of G, and let m’ be the l.c.m. of
the orders of elements of G,,. By hypothesis, K contains the group pyg of
m’th roots of unity; moreover, since m’ is prime to p, reduction mod. m 1s
an isomorphism of py onto the group y, of m’'th roots of unity of the residue
field k. For A € p, welet A denote the element of pg whose reduction
mod. mis A.

Let E be a k[G]-module of dimension 7, let s € G, and let sg be the
endomorphism of E defined by s. Since the order of s is prime to p, sg is
diagonalizable, and its eigenvalues (A;,...,A,) belong to ;. Put

i=n

¢p(s) = 3 A

1=

The function ¢g: G, — A thus defined is called the modular character (or
Brauer character) of E. The following properties are immediate:

(i) We have ¢g(1) = n = dim E.
(ii) ¢ is a class function on G, that is,

op(tst™!) = ¢p(s) ifs € G and? € G.
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(iti) If 0 - E —» E’ = E” — 0 is an exact sequence of k[G]-modules, we
have

$p = ¢ + -
(iv) We have

PE,©E, = PE, * PE,-

(v) If t € G has p'-component s € Gy, the trace of the endomorphism
tg of E is the reduction mod. m of ¢g(s): we have

Tr(tg) = ¢g(s),

where the bar denotes reduction modulo m.(This can be seen by observing
that the eigenvalues of (1~ !s)g are p“th roots of unity, hence equal to 1 since
k has characteristic p. It follows that the eigenvalues of /¢ are the same as
those of sg, whence the desired formula.)

(vi) Let F be a K[G]-module with character x, let E; be a lattice of F
stable under G, and let E = E;/mE, be its reduction mod. m. Then ¢g is
the restriction of x t0 Gie,. (It is enough to see this when G is cyclic of order
prime to p. Moreover, th. 32 shows that ¢g does not depend on the choice
of a stable lattice E;. This allows a reduction to the case where E, is-
generated by eigenvectors of G, in which case the result is clear.)

(vii) If F is a projective k|G}-module, and if F is a projective A[G]-module
whose reduction is F, we shall denote the character of F (i.., of the K[G}-
module K ® F) by ®. If E is any k[G]-module, we know that E®@ Fis a
projective k[G]-module, and so ®ggr makes sense. We have

og (s)PE(s) ifs € Greg
O otherwise,

Pegr(s) = {

a formula which can be more concisely written as Pger = ¢ - Pf, even
though ¢ is not defined off G,.;. (We know that ¢E@F(s) =0if s € G,
cf. th. 36. And by (vi) the restriction of ®ggf t0 G, is equal to the modular
character of E ® F, which is ¢g - @ by (iv).)

(viii) With the same hypothesis as in (vii), we have

(F.E), = 2 2 Op(s™")ee(s) = (. Pr).
8 5€ Gy
where g = Card(G). (By definition, (F,E), is the dimension of the largest
subspace H® of H=Hom(F,E) which is fixed by G. However, H is a
projective k[G]-module, so if H is the corresponding projective A{G]-mod-
ule, we see easily that dim, HS = rank , HC. If ®,, is the character of K®H,
we have

<F,E>k=<1,<bﬂ>=§ 3 @u(s).

s€qG
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18.2: Independence of modular characters

But H is isomorphic to the tensor product of E and the dual of F. By (vii)
we have ®y(s) = ®p(s™')eg(s) for s € Gy, and Py(s) = O otherwise.
The result follows.)

We note the special case where E is the unit representation:
(ix) The subspace F€ formed by the elements invariant under G has
dimension

@ry=7 3 ls).

SE Gy,

Remark. Property (iii) allows us to define the virtual modular character ¢,
of an arbitrary element x of R, (G). By (vi), if x = d(y) with y € Rg(G),
then ¢, is just the restriction to G, of the virtual character x,, of y.

It is possible to give analogous definitions for any linear algebraic group G
over k (assuming here k algebraically closed, for simplicity). The set Geg
is then defined as the set of semisimple elements of G. If E is a linear
representation of G, and if s € Gye, then ¢g(s) is defined to be the sum
of the multiplicative representatives of the eigenvalues of sg; the modular
character ¢g thus defined is a class function on Geg With values in A.

18.2 Independence of modular characters

Recall that S, denotes the collection of isomorphism classes of simple
k[G]-modules. The various ¢g corresponding to elements E of S, are called
the irreducible modular characters of the group G.

Theorem 42 . (R. Brauer). The irreducible modular characters ¢ (E € S;)
form a basis of the K-vector space of class functions on Gieg With values in
K.

This can be stated in the following equivalent form:

Theorem 42’. The map x > ¢, extends to an isomorphism of K ® R, (G) onto
the algebra of class functions on G,y with values in K.

These theorems immediately give:

Corollary 1. Let F and F’' be two k[G}-modules with the same modular
character. Then [F} = [F'} in R, (G); if F and F’ are semisimple, they are
isomorphic.

Corollary 2. The kernel of the homomorphism d: R g (G) = R (G) consists of
those elements x whose virtual character x, is zero on Giq,.
(Since d is surjective, this gives an explicit description of R,(G) as a
quotient of Rg (G).)
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Chapter 18: Modular characters

Corollary 3. The number of classes of simple k[G}-modules is equal to the
number of p-regular conjugacy classes of G.

PROOF OF THEOREM 42.

(a) We prove first that ¢g(E € S;) are linearly independent over K.
Indeed, suppose that we had a relation 3 ag ¢ = 0, with ag € K, not all
zero. Multiplying the ag by some element of K, we can assume that they all
belong to the ring A, and that at least one does not belong to m. By
reduction mod. m, we then have

E 6E¢E(S) =0 foralls € Greg,
EES,

where the bar denotes reduction mod. m, and one of the ag is not zero.
From formula (v) of the preceding section, we get

2 aETl'(IE) =0 forallr € G,

thus also for all + € k[G]. However, since K is sufficiently large, the
modules E are absolutely simple, so by the density theorem ([8], §4, no. 2),
the homomorphism k[G] — @5, End,(E) is surjective. Now let E € S
such that @ # 0, let € End,(E) have trace 1 (a projection on a line, for
example), and let 1 be an element of k[G] having image u in End, (E) and
0in End, (E’) for E' # E. Then we find that ag - 1 = 0, a contradiction.

This part of the proof applies just as well to linear algebraic groups.

(b) We have to show that the ¢y generate the vector space of class
functions on G,,,. Let f be such a function, and extend it to a class function
S on G. We know that f’ can be written in the form X A;x; with A; € K
and x; € R (G). Consequently f = 3 A, d(x;) where d(x;) is the restric-
tion of x; to G,,,. Since each d(x;) is a linear combination of the ¢g, we
obtain the desired result. 0

EXERCISES

18.1. (In this exercise we do not assume that G is finite or that k has characteristic
# 0.) Let E and E’ be semisimple k[G]-modules. Assume that, for each
s € G, the polynomials det(1 + sg T) and det(l + sg T) are equal. Show
that E and E’ are isomorphic. [Reduce to the case where k is algebraically
closed and argue as in part (a) of the proof of th. 42.] As a consequence,
show that, if E is semisimple and if all the sg are unipotent, then G acts
trivially on E (Kolchin’s theorem).

18.2. Let H be a subgroup of G, let F be a k[H]}-module, and let E = Indﬁ F.
Show that the modular character ¢g of E is obtained from ¢ by the same
formula as in the characteristic zero case.
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18.3. What is the spectrum of the ring R, (G)?

18.4. Show that the irreducible modular characters form a basis of the A-module
of class functions on G,,, with values in A. [Use lemma 8 of 10.3 to show
that each class function on G, with values in A extends to a class function
on G which belongs to A ® RK(G)]

18.3 Reformulations

We have just seen that x > ¢, defines an isomorphism of K ® R (G)
onto the space of class functions-on G;- On the other hand, the map
K ®e: K ® P(G) = K ® Rg(G) identifies K ® P,(G) with the vector
space of class functions on G zero off G, (this can be checked, for
example, by comparing the dimensions of the two spaces). Tensoring with
K, the cde triangle becomes:

K®c¢
Class functions on G—=Class functions on G,

zero off G

reg

K®e\ K®d

Class functions on G,

the maps K ® ¢, K ® 4, K ® e being the obvious ones: restriction, restric-
tion, inclusion. Observe that K ® ¢ is an isomorphism, in accordance with
cor. 1 to th. 35.

The matrices C and D can be interpreted in the following way: if
F € Sk, let xg denoté the character of F; if E € S;, let ¢g denote the
modular character of E, and @ the character of the projective envelope of
E. Then

xF = 2 Dgpog on G,

EES,

O = X Dgpxr on G
FES,

= 3 Cprépr onG.,,

E= & CEE®E Gireg

and we have the orthogonality relations

1 _
<¢E’¢E'> = 8gp., where (P, ¢p ) = Z .o 2 ‘DE(S Vog: (s)-

We also mention the following version of th. 35:
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Chapter 18: Modular characters

Theorem 35'. Let p" be the largest power of p dividing the order of G. If ¢ is
a modular character of G, and if ® is defined by the formula

®(s) = p"0(s)  if s € Gigg
®(s) =0 if s @ G

then ® is a virtual character of G.

We leave to the reader the task of making further reformulations of this

type.

EXERCISES
188. Ifs € G

reg’

of sin G.

(a) Let @ be a class function on G which has values in K. Show that
® € A ® P,(G) if and only if ® is 0 off G, and &(s) € p* A for
every s € Gy (use ex. 18.4, together with the orthogonality relations
(®g,¢p) = Og)-

(b) Use (a) to prove that

denote by p‘(‘) the order of a p-Sylow subgroup of the centralizer

Coker(c) = [1 Z/p*9Z  and det(C) = ),

where s runs through a system of representatives of the p-regular classes
of G.

18.6. Assume that G is p-solvable (cf. 16.3). If F € Sg, let ¢ denote the restriction
of xf to G, Show that a function ¢ on G, is the modular character of a
simple k[G]-module if and only if it satisfies the following two conditions:

(a) There exists F € Sk such that ¢ = ¢F.

(b) If (np),.-esK is a family of integers > O such that ¢ = 3 ng ¢, then one
of the ng is equal to 1 and the others are 0. [Use the Fong-Swan
theorem.]

18.4 A section for d

The homomorphism d: Rk (G) — R, (G) is surjective (th. 33). We shall
now describe a section for d, i.e., a homomorphism

o: R, (G) = Rk (G)

such thatdo o = 1. _
For s € G let 5" denote the p’-component of s. If fis a class function on
G,,, define a class function f* on G by the formula

fs) = f&).
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Theorem 43.

(1) If f is a modular character of G, f’ is a virtual character of G.
(if) The map fv> [’ defines a homomorphism of R;(G) into Ry (G)
which is a section for d.

To prove that f” is a virtual character of G (i.e., belongs to R (G)), it is
enough to prove that, for each elementary subgroup H of G, the restriction
of f to H belongs to R (H) (cf. 11.1, th. 21). We are thus reduced to the
case where G is elementary, and so decomposes as G = S X P where S has
order prime to p and P is a p-group. Moreover, we can assume that f is the
modular character of a simple k[G]-module E. By the discussion in 15.7, E
is even a simple k[S]-module, and we can lift it to a simple K[S]-module on
which P acts trivially. The character of this module is evidently f’, which
proves (i).

Assertion (ii) follows from (i) by observing that the restriction of f’ to
G, is equal to f. a

EXERCISES

18.7. Let m be the 1.c.m. of orders of the elements of G. Write m in the form p"m’
with (p,m’) = 1 (cf. 18.1.) and choose an integer ¢ such that ¢ = 0
(mod. p™) and ¢ = 1 (mod. m).

(a) Show that, if s € G, the p’-component s’ of s is equal to s7.

(b) Let f be a modular character of G, and let ¢ pe an element of R (G)
whose restriction to G, is f (such an element exists by th. 33). In the
notation of th. 43, show that f’ = ¥7%¢, where ¥7 is the operator defined
in ex. 9.3. Deduce from this another proof of the fact that f’ belongs to
R (G) [observe that R (G) is stable under ¥9).

18.8. Prove th. 43 without assuming K sufficiently large [use the method of the
preceding exercise].

18.5 Example: Modular characters of the symmetric group &,

The group &, is the group of permutations of {a,b,c,d}. Recall its
character table (cf. 5.8):

1 (@b) (abXcd) (abc) (abed)
X 1 1 1 1 1
X2 1 -1 1 1 -1
X3 2 0 2 -1 0
X4 3 1 - -1 0 -1
X5 3 -1 -1 0 1
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Chapter 18: Modular characters

We shall determine its irreducible modular characters in characteristic p.
We may assume that p divides the order of G, i.e.,p = 2 or p = 3.

(@) The case p = 2

There are two p-regular classes: that of 1 and that of (abc). By cor. 3 to
th. 42, there are two irreducible representations in characteristic 2 (up to
isomorphism.) The only representation of degree 1 is the unit representa-
tion, with modular character ¢; = 1. On the other hand, the irreducible
representation of degree 2 of ©, upon reduction mod. 2 gives a representa-
tion p, whose modular character ¢, takes the value —1 for the element
(abc). Consequently, p5 is not an extension of two representations of degree
1 (otherwise we would have ¢, = 2¢, = 2), hence is irreducible. The
irreducible modular characters of &, are thus ¢, and ¢,:

1 (abc)

& 1
& 2 -1

Pt

The decomposition matrix D is obtained by expressing the restrictions to

G, of the characters xy, ..., x5 as a function of ¢; and ¢,. We find
X1 = ¢ on Greg
X2 = & on Greg
X3 = &, on Greg

X4 =P+ P, on Grcg
Xs = ¢ + ¢ on Greg

hence

D — (l 1 0 1 l).
001 11
The characters ®; and ®, of the projective indecomposable modules
corresponding to ¢ and ¢, are obtained by means of the transposed matrix
of D: ‘
D =xi+x2+Xa+Xs
Dy = X3+ Xq4 + X5-

The corresponding representations have degree 8. The Cartan matrix
C =D :'D is the matrix (33) with determinant 8. It expresses the
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following decomposition of ®; and ®,; on G,

D, = 4¢; + 2¢, on Greg
d’z = 2¢l + 34)2 on Greg'

(b) The case p = 3

There are four p-regular classes: 1, (ab), (ab)(cd), (abed), hence four
irreducible representations in characteristic p = 3. On the other hand, the
reductions of the characters x;, x;, x4 and xs are irreducible: this is clear
for the first two, which have degree 1, and for the two others it follows from
the fact that their degree is the largest power of p dividing the group order
(cf. 16.4, prop. 46). Since their modular characters are distinct, they are all
the irreducible modular characters of & . If we denote them by ¢,, $,, ¢5, ¢4,
we have the table:

1 (ab) (ab)cd) (abcd)
& 1 1 1 1
3 3 1 -1 -1

Since x3 = ¢, + ¢, on G,., we obtain the following decomposition matrix

€
D and Cartan matrix C: :
1 01 00 21 00
01100 . 1 200
= =D-'D = , det(C) =3
P=tooo010) ©7P 0 0 1 of 4O
0 0 0 011 0 0 01
The characters @y, ..., &, of the projective indecomposable modules are:
D =x*+x;
) =x2+x3
Dy = x4
P4 = X5

(Note the simple expression of ®; and @, cf. prop. 46.)
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EXERCISES

18.9. Verify the Fong-Swan theorem for &, [check that each ¢ is the restriction of
some x; to Gyep)-

18.10. Show that the irreducible representations of &, are realizable over the prime
field (in any characteristic).

18.11. The group &, has a normal subgroup N of order 4 such that &;/N is
isomorphic to ©;. Show that N acts trivially in each irreducible representa-
tion of €, in characteristic 2. Use this to classify such representations.

18.6 Example: Modular characters of the alternating group s

The group U is the group of even permutations of {a, b, ¢, d, €}. It has 60
elements, divided into 5 conjugacy classes:

the identity element 1,

the 15 conjugates of (ab)(cd), which have order 2,

the 20 conjugates of (abc), which have order 3,

the 12 conjugates of s = (abcde), which have order 5,

the 12 conjugates of s, which have order 5. .

There are 5 irreducible characters, given by the following table:

1 (ab)cd) (abc) ) 52

X2 3 -1 0 z ol +2\/§ z

s 3 1 0 7 1-V5 ,
2

Xs 5 1 -1 0 0

The corresponding representations are:

X;: the unit representation

X2 and xj: two representations of degree 3, realizable over the field
Q(1/5), and conjugate over Q. They can be obtained by observing that
{x1} x % is a “Coxeter group” with graph o—2 -3  and then consider-
ing the reflection representation for this group (cf. Bourbaki, Gr. er Alg. de
Lie, Ch. VI, p. 231, ex. 11).

X4: a representation of degree 4, realizable over Q, obtained by removing
the unit representation from the permutation representation of A5 on
{a,b,c,d, e}, cf. ex. 2.6.
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Xs: a representation of degree 5, realizable over Q, obtained by removing
the unit representation from the permutation representation of s on the
set of its 6 subgroups of order 5.

We determine the modular irreducible characters of s for p = 2, 3, 5:
(a) The case p = 2

There are four p-regular classes, hence 4 modular irreducible characters.
Two of these are obvious: the unit character, and the restriction of x4 (cf.
prop. 46). On the other hand, we have

X2+x3=1+xs on Greg’

which shows that the reductions of both the irreducible representations of
degree 3 are not irreducible (their characters are conjugate over the field Q,
of 2-adic numbers since /5 € Q,). Each must decompose in R;(G) as a
sum of the unit representation and a representation-of degree 2, necessarily
irreducible. Therefore, the irreducible modular characters ¢;, ¢,, ¢3, ¢4 are
given by the table:

1 (abc) s s
& 1 1 1
o2 2 - z—-1 22-1
¢3 2 - 2 - zZ =
b4 4 - =
We have
X1 = & on Greg
X2 = ¢ + ¢, on C'reg
X3 = ¢ + ¢3 on G,
Xa = ¢4 on G,

Xs = ¢ + by + 3 on G, .

Whence the matrices D and C:

det(C) = 4.

©C OO -
O QO =
© - O -
- O O O
O = =
O NN A
S - NN
O N - N
- O O O
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(b) The casep = 3

One finds 4 irreducible representations in characteristic 3. namely the
reductions of the irreducible representations of degree 1, 3, and 4 (two of
degree 3). Moreover, we have xs = 1 + x4 on G,,. Hence:

det(C) = 3.

© o -~ O
© —- o o
-0 © O
O - O
o - O O
N OO -

CR-N-
— oo N

(c) The case p = 5
There are 3 irreducible representations in characteristic 5. the reductions
of the irreducible representations of degree 1, 3, and 5 (note that the two

representations of degree 3 have isomorphic reductions). Moreover, we
have x4 = x; + x3 on G, . Hence

1 0 01 O 21 0
D={0 1 1 1 0}, C=\{1 3 0], det(C) = 5.
0 00 01 0 0 1
EXERCISES

18.12. Check assertions (b) and (c).

18.13. Prove that the irreducible representations of degree 2 of %5 in characteristic
2 are realizable over the field F; of 4 elements; obtain from this an
isomorphism of %5 with the group SL,(F,).

18.14. Show that % is isomorphic to SL,(Fs5)/{+1}, and use this isomorphism to
obtain the list of irreducible representations of A in characteristic 5.

18.15. Show that }(5 is monomial, and that x,, x3, x4 are not.
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CHAPTER 19

| Applications to Artin representations

19.1 Artin and Swan representations

Let E be a field complete with respect to a discrete valuation, let F/E be
a finite Galois extension of E, with Galois group G, and assume for
simplicity that E and F have the same residue field. If s # 1 is an element
of G and if 7 is a prime element of F, put

io(s) = ve(s(m) — m),

where v denotes the valuation of F, normalized so that vg(7) = 1.
Put '

ag(s) = —ig(s) ifs#1
ag(l) = I ig(s).
s#1
Clearly vg 1s a class function on G with integer values. Moreover:

Theorem. The function ag is the character of a representation of G (over a
sufficiently large field).

In other words, if x is any character of G, then the number

f(X) = <ac.,X>

1S a non-negative integer.

Using the formal properties of ag (cf. [25], ch. VI), we see that f(x) 2 0.
and easily reduce the integrality question to the case where G is cyclic (and
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even, if we like, to the case where G is cyclic of order a power of the residue
characteristic of E). We can then proceed in several ways:

(1) If x is a character of degree 1 of G, one shows that f(x) coincides with
the valuation of the conductor of x in the sense of local class field theory,
and this valuation is evidently an integer. This method works, either in the
case of a finite residue field (treated initially by Artin) or in the case of an
algebraically closed residue field (using a “geometric” analogue of local
class field theory); furthermore, the general case follows easily from the
case of an algebraically closed residue field.

(ii) The assertion that f(x) is an integer is equivalent to certain congru-
ence properties of the “ramification numbers” of the extension F/E. These
properties can be proved directly, cf. [25], chap. V, §7, and S. Sen, Ann. of
Math., 90, 1969, p. 33-46. a

Now let 1; be the character of the regular representation of G, and put
ug = i — 1. Let swg = ag — ug. Then

swg(s) = 1 —ig(s) ifs#1
wol) = 3 () -

It is easily checked that, if x is a character of G, the scalar product
{(swg,x) is 2> 0. Using the above theorem, one sees that {swg, x) is a non-
negative integer for all x, that is, swg is a character of G.

The character ag(resp.swg) is called the Artin (resp. Swan) character of
the Galois group G; the corresponding representation is called the Artin
(resp. Swan) representation of G. An explicit construction of these repre-
sentations is not known. Nevertheless we can give a simple description of
the characters g - ag and g - swg, where g = Card(G):

Let G; (i = 0,1,...) denote the ramification groups of G; thus s € G; if
and only if ig(s) > i + 1 or s = 1. Put Card(G;) = g;. Then one checks
that

o0
g-ag = ,20 g - Ind§ (ug,)

and

oC
g SWGg = .21 g - Indg (ug)
i=

with llGi = )’Gi - 1.

In particular we have swg = 0 if and only if G; = (1}, i.e. the order of
G is prime to the residue characteristic of E. (In other words, swg = 0 if
and only if F/E is tamely ramified.)
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19.2 Rationality of the Artin and Swan representations

Even though a; and swg have values in Z, one can give examples where
the corresponding representations are not realizable over Q, nor even over
R (cf. [26], §4 and §5). Nevertheless:

Theorem 44. Let | be a prime number unequal to the residue characteristic
of E.

(i) The representations of Artin and Swan are realizable over the field
Q, of l-adic numbers.

(ii) There exists a projective Z;|G)-module Swg, unique up to isomor-
phism, such that Q; ® Swg has character swg.

It is enough to prove (ii); assertion (i) then follows, since ag is obtained
from swg by adding to it ug, which is realizable over any field.

For this, we apply prop. 44, taking p = [, K = Q,, n = g = Card(G),
and choosing for K’ a sufficiently large finite extension of Q, Condition (a)
of that proposition is satisfied, cf. 19.1.

To check (b), we use the formula

g swg = 2 8- Indg (ug,)

given above. By ramification theory, these G, (i > 1) have orders prime to
l; it follows that every A’[G;]-module is projective (cf. 15.5), where A’
denotes the ring of integers of K'. Hence ug_ is afforded by a projective
A’[G;}-module (even by a projective Z,[G; J-module if we wish), and the
corresponding induced A’[G}-module is projective as well. Taking the direct
sum of these modules (each repeated g; times), we obtain a projective A'[G}-
module with character g - swg. All the conditions of prop. 44 are thus
satisfied, and the theorem follows. a

Remarks

(1) Part (i) of th. 44 is proved in [26] by a somewhat more complicated
method, which, however, gives a stronger result: the algebra Q,[G] is
quasisplit (cf. 12.2).

(2) One could get (ii) from (i) combined with the Fong-Swan theorem (th.
38), and with cor. to prop. 45.

(3) There are examples where the Artin and Swan representations are not
realizable over Q,, where p is the residue characteristic of E. However, J.-
M. Fontaine has shown (cf. [27]) that these representations are realizable
over the field of Witt vectors of ey, where e, denotes the largest subfield of
the residue field of E which is algebraic over the prime field.
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19.3 An invariant

Let / be a prime number unequal to the residual characteristic of E. Put
k = Z/IZ and let M be a k[G]}-module. We define an invariant 5(M) of M
by the formula

b(M) = (Swg, M), = dim Hom®(Swg, M) = dim Hom g 6,(Swg, M),

where Swg = Swg// - Swg denotes the reduction mod. / of the Z,[G}
module Swg defined by th. 44. The scalar product (Swg, M), makes sense,
since Swg is projective, cf. 14.5.

The invariant (M) has the following properties:

(i) f0—-> M —> M — M” - 0is an exact sequence of k[G]-modules,
then (M) = b(M’) + b(M").
(i) If denotes the modular character of M, then

BM) = (swg, by ) = ;% swg (s~ oM (),

cf. 18.1, formula (viii).

o0

(iii) bM) = 3 %dim(M/MGf)

where MG denotes the largest subspace of M fixed by the ith
ramification group G;.

(This follows from the formula g - swg = 2,51 8; Indgl_(uG'.) by observ-

ing that {Indg (ug ), dp Y is equal to dim, (M/MS) if i > 1.)

(iv) We have b(M) = 0 if and only if G, acts trivially on M, i.., the
action of G on M is “tame.” [This follows from (iii).]

Thus H(M) measures the “wild ramification” of the module M. This
invariant enters into many questions: cohomology of algebraic curves, local
factors of zeta functions, conductors of elliptic curves (cf. [28], [29], [30]).
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Appendix

Artinian rings

A ring A is said to be artinian if it satisfies the following equivalent
conditions (cf. Bourbaki, A/g. Ch. VIII, §2):

(a) Every decreasing sequence of left ideals of A is stationary.
(b) The left A-module A has finite length.
(c) Every finitely generated left A-module has finite length

If A is artinian, its radical r is nilpotent, and the ring S = A/r is
semisimple. The ring S can be decomposed as a product [] S; of simple
nngs each §; is isomorphic to a matrix algebra M, (D;) over a (skew) ﬁ’eld

,» and possesses a unique simple module E,, whnch isa D°-vector space of
dlmensnon n,. Every semisimple A-module is annihilated by r and ‘thus | may

be viewed as an S-module; if the module is simple, it is 1somorph1c to one of
the E..

EXAMPLE. An algebra of finite dimension over a field k is an artinian ring;
this applies in particular to the algebra k[G] of a finite group G.

Grothendieck groups

Let A be a ring, and let ¥ be a category of left A-modules. The
Grothendieck group of %, denoted K(%), is the abelian group defined by
generators and relations as follows:

Generators. A generator [E] is associated with each E € &.
Relations. The relation [E] = [E’] + [E”] is associated with each exact
sequence

O->E—->E —->E”"—>0 whereE, E,E” € 4
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" If H is an abelian group, the homomorphisms f: K(%) — H correspond
bijectively with maps ¢: ¥— H which are “additive,” i.e., such that
&E) = &(E’) + ¢(E”) for each exact sequence of the above type.

The two most common examples are those where ¥ is the category of all
finitely generated A-modules, or all finitely generated projective A-modules.

Projective modules

Let A be a ring, and P be a left A-module. We say that P is projective if
it satisfies the following equivalent conditions (cf. Bourbaki, Alg., Ch. II,
§2):

(a) There exists a free A-module of which P is a direct factor.

(b) For every surjective homomorphism f: E — E’ of left A-modules,
and for every homomorphism g’: P — E’, there exists a homomor-
phism g: P - E such thatg’ = fo g.

(c) The functor E - Hom, (P, E) is exact.

In order that a left ideal a of A be a direct factor of A as a module, it is
necessary and sufficient that there exist e € A with ¢? = e and a'= Ae;
such an ideal is a projective A-module.

Discrete valuations

Let K be a field, and let K* be the multiplicative group of nonzero
elements of K. A discrete valuation of K (cf. [25]) is a surjective homomor-
phism v: K* — Z such that

v(x +y) > Inf(v(x),v(y)) forx,y € K*.

Here v is extended to K by setting v(0) = +o0.

The set A of elements x € K such that (x) > 0is a subring of K, called
the valuation ring of v (or the ring of integers of K). It has a unique maximal
ideal, namely the set m of all x € K such that v(x) > 1. The field
k = A/m is called the residue field of A (or of v).

In order that K be complete with respect to the topology defined by the
powers of m, it is necessary and sufficient that the canonical map of A into
the projective limit of the A/m”" be an isomorphism.
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Index of notation

Numbers refer to sections, i.e., “1.1”” is Section 1.1.

V, GL(V): 1.1
p, p, = p(s): 1.1.
C*=C-{0):12
V=WeWw:13
g = order of G: 1.3,2.2
vl ® Vza Py ® [ Sym2 (V),
Al? (V): 1.5
Tr(a) = X a;, x,(s) = Tr(p,): 2.1

F=z=x—-iy: 21

X2 x2: 2.1

8; (= 1if i = j, = 0 otherwise):
22

{p:¥) = (I/g) ZIEG ‘P(t—l)‘p(t):
2.2

#(1) = o(t™H*:23

(9l¥) = <@ 9

= (/8) Zyec pOWD)": 2.3

Xps ooos Xis My v e By W ee e
W,: 24

Chois Cpsgi 2.5

V=V®&:- &YV, (canonical
decomposition) : 2.6

p; (canonical projection onto V) :

2.6
Pog’ 2.7
G =G, xG,:32
00, x5 Xp: 33
G/H, sH,R: 3.3
-rG f(t) dt: 4.2
(Pl¥) = S5 eV dr: 4.2
C,: 5.1
Co:52
D,C,:53
I1={1,4; D, =D, xI:54
Xg» Xu* 54
D,:5.5
D,, = D, X1:56
%A =H- K:57
€ =H-L:58
G =@3M = G, X1I: 59
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K[G]: 6.1
Cent. C[G], w;: 6.3
Ind§ (W), Ind W: 7.1
f =Ind f = Ind§f: 7.2
Res ¢, Res V: 7.2
K\G/H, W, p°: 7.3
6,,:82
R*(G), R(G), Fyg0
Resg, Res, Ind$, Ind: 9.1
YX(£), %k x§ or(0) Ap(x): 9.1,

ex. 3
6,:94

=x,-x, H=C-P: 10.1
g =7p"1:102
V, Ind, A : 10.2
A g ¥": 112
Spec, CI(G), M,, By .: 11.4
K, C, Rk (G), Rg(G): 12.1
A, YV, p, Xio Pp ¥pp M2 12.2
I o, ¥ 124
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Xk» Xk (P). g = P"1, Vg ,: 126,
12.7

A, b, N(x): 12.7

Q(m), 15: 13.1

K, A, m, p, G, m: 14, Notation

Sk» S Rx(G), Rg(G), R (G),
R} (G): 14.1

B(G). B’ (G), P\ (G), B{ (G): 14.2

B:: 143

P = P/mP: 144

{e.f Dk e fD: 145

¢, C, Csr: 15.1

d, D, Dgg: 15.2

e, E: 153

Resg, Ind§: 17.1

Greg’ Bgs> By X’ Pp P Sp> PE: 18.1

xp(F € sg), op, Pe(E € S;):18.3

ag igs SWg» I» Ug: 19.1

Swg: 19.2

b(M): 19.3



Index of terminology

Numbers refer to sections, i.e., “1.1” is Section 1.1.

Absolutely irreducible (representation):
12.1

Algebra (of a finite group): 6.1

Artin (representation of): 19.1

Artin’s theorem: 9.2, 12.5, 17.2

Artinian (ring): Appendix

Associated (the p-elementary
subgroup ...with a p’-element): 10.1

Brauer’s theorem (on the field affording
a representation): 12.3

Brauer’s theorem (on induced
characters): 10.1, 12.6, 17.2

Brauer’s theorem (on modular
characters): 18.2

Center (of a group algebra): 6.3
Character (of a representation): 2.1
Character (modular): 18.1

Class function: 2.1, 2.5

Ik-class: 12.6

Compact (group): 4.1

Complement (of a vector space): 1.3
Conjugacy class: 2.5

Conjugate (elements): 2.5
Ik-conjugate (elements): 12.4

Decomposition (canonical ...of a
representation): 2.6

Decomposition (homomorphism, ...
matrix): 15.3

Degree (of a representation): l 1

Dihedral (group): 5.3

Direct sum (of two representations): 1.3

Double cosets: 7.3

Elementary (subgroup): 10.5

Ik-elementary (subgroup): 12.6

Envelope (projective ... of a module):
14.3

Fong-Swan (theorem of): 16.3, 17.6
Fourier (inversion formula of): 6.2
Frobenius (reciprocity formula of): 7.2
Frobenius (subgroup): ex. 7.3
Frobenius (theorem of): 11.2

Grothendieck (group): Appendix

Haar (measure): 4.2
Higman (theorem of): ex. 6.3

Index (of a subgroup): 3.1, 3.3
Induced (function): 7.2

Induced (representation): 3.3, 7.1, 17.1
Integral (element over Z): 6.4
Irreducible (character): 2.3
Irreducible (modular character): 18.2
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Irreducible (representations): 1.4
Isotypic (module, representation): 8.1

Ix-class: 12.6

Ikx-conjugate (elements): 12.4

Ix-elementary, Ix-p-elementary
(subgroup): 12.6

Kronecker (product): 1.5

Lattice (of a K-vector space): 15.2
Left coset (of a subgroup): 3.3

Mackey (irreducibility criterion of): 7.4
Matrix form (of a representation): 2.1
Monomial (representation): 7. l

Nilpotent (group): 8.3
Nondegenerate over Z (bilinear form):

14.5

Orthogonality relations (for
characters): 2.3

Orthogonality relations (for
coefficients): 2.2

p-component and p’-component of an
element: 10.1 ;

p-clement, p’-element: 10.1

p-clementary (subgroup): 10.1

Ix-p-elementary (subgroup): 12.6

p-group: 8.3

Plancherel (formula of): ex. 6.2

p-regular (element): 10.1

p-regular (conjugacy class): 11.4

p-solvable (group): 16.3

Product (direct ... of two groups): 3.2

Product (scalar): 1.3

Product (scalar ... of two functions):
23 o

Product (semidirect ... of two groups):
82 ‘
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Product (tensor ... of two
representations): 1.5, 3.2

Projection: 1.3

Projective (module): Appendix

p-singular (element): 16.2

p-unipotent (element): 10.1

Quasisplit algebra: 12.2
Quaternion (group): 8.5, ex. 8.11

Rational (representation over K): 12.1
Reduction (modulo m): 144, 15.2
Representation: 1.1, 6.1
Representation (permutation): 1.2
Representation (regular): 1.2
Representation (space): 11.1
Representation (unit): 1.2
Restriction (of a representation): 7.2,
9.1, 17.1

Schur (index): 12.2

Schur’s lemma: 2.2

Simple (representation): 1.3

Solvable (group): 8.3

Spectrum (of a commutative ring): 11.4

Split (injection): 11.1

Subrepresentation: 1.3

Sufficiently large (field): 14, notation

Supersolvable (group): 8.3

Swan (representation of): 19.1

Sylow (theorems of): 8.4

Sylow subgroup: 8.4

Symmetric square and alternating
square (of a representation): 1.5

Trace (of an endomorphism): 2.1

Valuation (discrete . .. of a field):
Appendix

Virtual (character): 9.1
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