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Preface 

This book consists of three parts, rather different in level and purpose: 

The first part was originally written for quantum chemists. It describes the 
correspondence, due to Frobenius, between linear representations and charac­
ters. This is a fundamental result, of constant use in mathematics as well as in 
quantum chemistry or physics. I have tried to give proofs as elementary as 
possible, using only the definition of a group and the rudiments of linear algebra. 
The examples (Chapter 5) have been chosen from those useful to chemists. 

The second part is a course given in 1966 to second-year students of I'Ecole 
Nonnale. It completes the first on the following points: 
(a) degrees of representations and integrality properties of characters (Chapter 6); 
(b) induced representations, theorems of Artin and Brauer, and applications 

(Chapters 7-1 J); 
(c) rationality questions (Chapters] 2 and ) 3). 
The methods used are those of linear algebra (in a wider sense than in the first 
part): group algebras, modules, noncommutative tensor products, semisimple 
algebras. 

The third part is an introduction to Brauer theory: passage from characteristic 0 
to characteristic p (and conversely). I have freely used the language of abelian 
categories (projective modules, Grothendieck groups), which is well suited to 
this sort of question. The principal results are: 
(a) The fact that the decomposition homomorphism is surjective: all irreducible 

representations in characteristic p can be lifted "virtually" (i.e., in a suitable 
Grothendieck group) to characteristic o. 

(b) The Fong-Swan theorem, which allows suppression of the word' 'virtually" 
in the preceding statement, provided that the group under consideration is 
p-solvable. 

I have also given several applications to the Artin representations. 

v 
• 
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Gaston Berthier and Josiane Serre, who have authorized me to reproduce Part I, 
written for them and their students in Quantum Chemistry; 

Yves Balasko, who drafted a first version of Part II from some lecture notes; 
Alexandre Grothendieck, who has authorized me to reproduce Part III, which 

first appeared in his Sc!minaire de Gc!omc!trie Algc!brique, I.H.E.S., 1965/66. 



Contents 

Part I 
Representations and Characters 1 

] Generalities on linear representations 3 
1.1 Definitions 3 
1.2 Basic examples 4 
1.3 Subrepresentations 5 
1.4 Irreducible representations 7 
I.S Tensor product of two representations 7 
1.6 Symmetric square and alternating square 9 

2 Character theory 10 
2.1 The character of a representation 10 
2.2 Schur's lemma; basic applications 13 
2.3 Orthogonality relations for characters 15 
2.4 Decomposition of the regular representation 17 
2.5 Number of irreducible representations 18 
2.6 Canonical decomposition of a representation 21 
2.7 Explicit decomposition of a representation 23 

3 Subgroups, products, induced representations 25 
3.] Abelian subgroups 25 
3.2 Product of two groups 26 
3.3 Induced representations 28 

4 Compact groups 32 
4. ) Compact groups 32 
4.2 Invariant measure on a compact group 32 
4.3 Linear representations of compact groups ~, 33 

vii 



Contents 

5 Examples 
5.1 The cyclic Group c,. 
5.2 The group Coo 
5.3 The dihedral group On 
5.4 T~e group D.h 
5.5 The group 0 00 

5 .6 The group Dooll 
5.7 The alternating group 214 
5.8 The symmetric group 6 4 

5.9 The group of the cube 

Bibliography: Part I 

Part II 
Representations in Characteristic Zero 

6 The group algebra 
6.1 Representations and modules 
6.2 Decomposition, of e[G ] 
6.3 The center of C [G ] 
6.4 Basic properties of integers 
6.5 Integrality properties of characters. Applications 

7 Induced representations; Mackey's criterion 
7.1 Induction 
7.2 The character of an induced representation; 

the rec iprocity formula 
7.3 Restriction to subgroups 
7.4 Mackey's irreducibility criterion 

8 Examples of induced representations 
8.1 Normal subgroups; applications to the degrees of the 

irreducible representations 
8.2 Semidirect products by an abelian group 
8.3 A review of some classes of finite groups 
8.4 Sylow's theorem 
8.5 Linear representations of supersolvable groups 

9 Artin 's theorem 
9.1 The ring R(G) 
9.2 Statement of Artin's theorem 
9.3 First proof 
9.4 Second proof of (i) ~ (ii) 

10 A theorem of Brauer 
10.1 p-regular elements; p-elementary subgroups 
10.2 Induced characters arising from p-elementary 

subgroups 
10.3 Construction of characters 
) 0.4 Proof of theorems ) 8 and ) 8' 
10.5 Brauer's theorem 

viii 

35 
35 
36 
36 
38 
39 
40 
41 
42 
43 

44 

45 

47 
47 
48 
50 
50 
52 

54 
54 
55 

58 
59 

61 
61 

62 
63 
65 
66 

68 
68 
70 
70 

, 72 

74 
74 
75 

76 
78 
78 



I 1 Applications of Brauer's theorem 
I 1.1 Characterization of characters 
11.2 A theorem of Frobenius 
] ].3 A converse to Brauer's theorem 
I ].4 The spectrum of A ® ~(G) 

12 Rationality questions 
12.1 The rings RK(G) and RK(G) 
] 2.2 Schur indices 
12.3 Realizability over cyclotomic fields 
12.4 The rank of RK(G) 
12.5 Generalization of Artin's theorem 
] 2.6 Generalization of Brauer's theorem 
I 2.7 Proof of theorem 28 

13 Rationality questions: examples 
] 3.] The field Q 
13.2 The field R 

Bibliography: Part II 

Part III 
Introduction to Brauer Theory 

14 The groups RK(G), ~(G), and Pk(G) 
14.1 The rings RK(G) and ~(G) 
14.2 The groups Pk(G) and PA(G) 
14.3 Structure of Pk(G) 
14.4 Structure of PA(G) 
14.5 Dualities 
14.6 Scalar extensions 

-

]5 The cde triangle 
] 5.1 Definition of c: Pk(G) --+ Rk(G) 
]5.2 Definition of d: RK(G) ~ Rt(G) 
15.3 Definition of e: Pk(G) --. RK(G) 
15.4 Basic properties of the cde triangle 
15.5 Example: p' -gFOUpS 
15.6 Example: p-groups 
15.7 Example: products of p' -groups and p-groups 

16 Theorems 
] 6. I Propertie s of the cde triangle 
16.2 Characterization of the image of e 
16.3 Characterization of projective A [G ]-modules 

by their characters 
16.4 Examples of projective A [G ]-modules: irreducible 

representations of defect zero 

Contents 

81 
81 
83 
85 
86 

90 
90 
92 
94 
95 
96 
97 
99 

102 
102 
106 

111 

113 

115 
115 
] 16 
116 
118 
120 
122 

124 
124 
125 
127 
127 
128 
129 
129 

131 
13] 
133 
134 

136 

ix 



Contents 

17 Proofs 138 
17.) Change of groups 138 
17.2 Brauer's theorem in the modular case 139 
17.3 Proof of theorem 33 140 
17.4 Proof of theorem 35 142 
17.5 Proof of theorem 37 )43 
17.6 Proof of theorem 38 )44 

18 Modular characters 147 
18.1 The modular character of a representation )47 
) 8.2 Independence of modular characters 149 
18.3 Reformulations 151 
18.4 A section for d 152 
18.5 Example: Modular characters of the symmetric group 6 4 153 
J 8.6 Example: Modular characters of the alternating group ~5 156 

19 Application to Artin representations 159 
J 9.1 Artin and Swan representations 159 
19.2 Rationality of the Artin and Swan representations 16) 
19.3 An invariant 162 

Appendix 163 
Bibliography: Part III 165 

Index of notation 167 

Index of terminology 169 



I 

REPRESENTATIONS 
AND CHARACTERS 



1.1 Definitions 

CHAPTER 1 

Generalities on 
linear representations 

• 

Let V be a vector space over the field C of complex numbers and let 
GL(V) be the group of isomorphisms of V onto itself. An element a of GL(V) 
is, by definition, a linear mapping of V into V which has an inverse a- J; 
this inverse is linear. When V has a finite basis (e;) of n elements, each linear 
map a: V ~ V is defined by a square matrix (aij) of order n. The 
coefficients Qij are complex numbers; they are obtained by expressing the 
images a(ej) in terms of the basis (e;): 

a(ej) = ~ aye;. , 
Saying that a is an isomorphism is equivalent to saying that the 

det~rminant det(a) = det(aij) of a is not zero. The group GL(V) is thus 
identifiable with the group of invertible square matrices oj order n. 

Suppose now G is a finite group, with identity element 1 and with 
composition (s, t) 1-+ st. A linear representation of G in V is a homomor­
phism p from the group G into the group GL(V). In other words, we 
associate with each element s EGan element p(s) of GL(V) in such a way 
that we have the equality 

p{st) = p{s) · p(t) for s, t E G. 

[We will also frequently write Ps instead of p(s).) Observe that the preceding 
formula implies the following: 

P(l) = 1, p(s-·I) = p(s)-I. 

When p is given, we say that V is a representation space of G (or even 
simply, by abuse of language, a representation of G). In what follows, we 
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Chapter 1: Representations and characters 

restrict ourselves to the case where V has finite dimension. This is not a very 
severe restriction. Indeed, for most applications, one is interested in dealing 
with 'a finite number of elements x; of V, and can always find a subrepresen­
tation of V (in a sense defined later, cf. 1.3) of finite dimension, which 
contains the Xi: just take the vector subspace generated by the images Ps(x;) 
of the xi. 

Suppose now that V has finite dimension, and let n be its dimension; we 
say also that n is the degree of the representation under consideration. Let 
(e;) be a basis of V, and let Rs be the matrix of Ps with respect to this basis. 
We have 

If we denote by Iij(s) the coefficients of the matrix Rs' the second formula 
becomes 

'ik(st) = ~ Ilj(s) · ~k(t). 
J 

Conversely, given invertible matrices Rs = (rij(s» satisfying the preced­
ing identities, there is a corresponding linear representation p of G in V; 
this is what it means to give a representation "in matrix form." 

Let p and p' be two representations of the same group G in vector spaces 
V and V'. These representations are said to be similar (or isomorphic) if 
there exists a linear isomorphism 1': V -+ V' which "transforms" p into pi, 
that is, which· satisfies the identity 

T 0 p(s) = p'(S) 0 l' for all s E G. 

When p and pi are given in matrix form by Rs and R; respectively, this 
means that there exists an invertible matrix T such that 

T · Rs = R; · T, for all s E G, 

which is also written R; == T · Rs · T-1• We can identify two such represen­
tations (by having each x E V correspond to the element ,-(x) E V'); in 
particular, p and pi have the same degree. 

1.2 Basic examples 

(a) A representation of degree I of a group G is a homomorphism 
p: G -+ C*, where C* denotes the multiplicative group of nonzero complex 
numbers. Since each element of G has finite order, the values p(s) of pare 
roots of unity; in particular, we have Ip(s) I = 1. 

If we take p(s) = 1 for all s E 0, we obtain a representation of G which 
is called the unit (or trivial) representation. 

(b) Let g be the order of G, and let V be a vector space of dimension g, 
with a basis (et)'EG indexed by the elements t of G. For s E G, let Ps be 

4 



1.3: Subrepresentations 

the linear map of V into V which sends et to est; this defines a linear 
representation, which is called the regular representation of G. Its degree is 
equal to the order of G. Note that es = ps(el); hence note that the images 
of el form a basis of V. Conversely, let W be a representation of G 
containing a vector w such that the Ps{w), s E G, form a basis of W; then 
W is isomorphic to the regular representation (an isomorphism T: V ~ W 
is defined by putting T(es) = Ps{w». 

(c) More generally, suppose that G acts on a finite set X. This means that, 
for each s E 0, there is given a permutation x ~ sx of X, satisfying the 
identities 

Ix = x, s{tx) = (st)x if s, t E G, x E X. 

Let V be a vector space having a basis (eX)xEX indexed by the elements of 
X. For s E G let Ps be the linear map of V into V which sends ex to esx; 
the linear representation of G thus obtained is called the permutation 
representation associated with X. 

1.3 Subrepresentations 

Let p: G ~ GL(V) be a linear representation and let W be a vector 
subspace of V. Suppose that W is stable under the action of G (we say also 
"invariant"), or in other words, suppose that x E W implies Psx E W for 
all s E G. The restriction P:' of Ps to W is then an isomorphism of Wonto 
itself, and we have p~ = P:' · p~. Thus p W : G ~ GL(W) is a linear 
representation of G in W; W is said to be a subrepresentation of V. 

ExAMPLE. Take for V the regular representation of G [cf. 1.2 (b»), and let 
W be the subspace of dimension 1 of V generated by the element 
x = ~SEG es• We have Psx = x for all s E G; consequently W is a 
subrepresentation of V, isomorphic to the unit representation. (We will 
determine in 2.4 all the subrepresentations of the regular representation.) 

Before going further, we recall some concepts from linear algebra. Let V 
be a vector space, and let Wand W' be two subspaces of V. The space V 
is said to be the direct sum of Wand W' if each x E V can be written 
uniquely in the form x = w + w', with w E Wand w' E W'; this amounts 
to saying that the intersection W n W' of Wand W' is 0 and that 
dim(V) = dim(W) + dim(W/). We then write V = W e W' and say that 
W' is a complement of W in V. The mappingp which sends each x E V to 
its component w E W is called the projection of V onto W associated with 
the decomposition V = W ED W'; the image of p is W, and p(x) == x for 
x E W; conversely if p is a linear map of V into itself satisfying these two 
properties, one checks that V is the direct sum of Wand the kernel W' of p 

5 



ChapteJ' 1: Representations and characters 

(the set of x such that px = 0). A bijective correspondence is thus 
established between the projections of V onto Wand the complements of W 
in V. 

We return now to subrepresentations: 

1beorem 1. Let p: G ~ GL(V) be a linear representation of G in V and let 
W be a vector subspace of V stable under G. Then there exists a complement 
WO of W in V which is stable under G. 

Let W' be an arbitrary complement of W in V, and let p be the 
corresponding projection of V onto W. Form the average po of the 
conjugates of p by the elements of G: 

° I ~ _I P = - ~ Pt . P . Pt 
g tEG 

(g being the order of G). 

Since p maps V into Wand p, preserves W we see that po maps V into W; 
we have p;l x E W for x E W, whence 

-I -I -I d 0 . p. P, x = P, x, P, · P . P, x = x, an p x = x._ 

Thus po is a projection of V onto W, corresponding to some complement 
WO of W. We have moreover 

Ps : pO = po · Ps for all s E G. 

Indeed, computing Ps • po . P; 1, we find: 

° -1 1 ~ -I -I 1 ~ -I 0 
Ps · P · Ps = g- ~ Ps ' P, . P . Pt . Ps = g- ~G PSI· P . Pst = P · 

lEG tE 

If now x E WO and s E G we have pOx = 0, hence po · Psx =. Ps • pOx 
= 0, that is, Psx E WO, which shows that WO is stable under G, and 
completes the proof. 0 

Remark. Suppose that V is en':i0wed with a scalar product (xly) satisfying 
the usual conditions: linearity in x, semilinearity in y, and (xl x) > 0 if 
x :f:: O. Suppose that this scalar product is invariant under G, i.e., that 
(PsxlpsY) = (xIY); we can always reduce to this case by replacing (xly) by 
~t E G (Pt xlpl y). Under these hypotheses the orthogonal complement WO of W 
in V is a complement of W stable under G; another proof of theorem 1 is 
thus obtained. Note that the invariance of the scalar product (xly) means 
that, if (e;) is an orthonormal basis of V, the matrix of Ps with respect to this 
basis is a unitary matrix. 

Keeping the hypothesis and notation of theorem I, let x E V and let w 
and wO "be its projections on Wand Woo We have x = w + wo, whence 
PsX = psw + Pswo, and since Wand WO are stable under G, we have 
Psw E Wand Pswo E WO; thus PsW and Pswo are the projections of PsX. 
It follows the representations Wand W O determine the representation V. 

6 



1.4: Irreducible representations 

We say that V is the direct sum of Wand Wo, and write V = W Q) WOo An 
element of V is identified with a pair (w, wo) with w E Wand wo E Woo If 
Wand WO are given in matrix form by Rs and R~, W e WO is given in 
matrix form by 

The direct sum of an arbitrary finite number of representations is defined 
similarly. 

1.4 Irreducible representations 
Let p: G -+ GL(V) be -a linear representation of G. We say ~at it is 

irreducible or simple if V is not 0 and if no vector subspace of V is stable 
under G, except of course 0 and V. By theorem 1, this second condition is 
equivalent to saying V is not the direct sum of two representations (except for 
the trivial decomposition V = 0 Q) V). A representation of degree 1 is 
evidently irreducible. We will see later (3:1) that each nQnabelian group 
possesses at least one irreducible representation of degree ~ 2. 

The irreducible representations are used to construct the others by means 
of the direct sum: 

TIIeorem 2. Every representation is a direct sum of irreducible representations. 

Let V be a linear representation of G. We proceed by induction on 
dim(V). If dim(V) = 0, the theorem is obvious (0 is the direct sum of the 
empty family of irreducible representations). Suppose thendim(V) ;;> l. If 
V is irreducible, there is nothing to prove. Otherwise, because of tho 1, V 
can be decomposed into a direct sum V' Q) V" with dim(V') < dim(V) 
and dim(V") < dim(V). By the induction hypotnesis V' and V" are direct 
sums of irreducible representations, and so the same is true of V. 0 

Remark. Let V be a representation, and let V = WI ED • • • e Wk be a 
decomposition of V into a direct sum of irreducible representations. We can 
ask if this decomposition is unique. The case where all the Ps are equal to 1 
shows that this is not true in general (in this case the W; are lines, and we 
have a plethora of decompositions of· a vector space into a direct sum of 
Jines). Nevertheless, we will see in 2.3 that the number of W; isomorphic to 
a given irreducible representation does not depend on the chosen decom­
position. 

1.5 Tensor product of two representations 
Along with the direct sum operation (which has the formal properties of­

an addition), there is a "multiplication": the tensor product, sometimes 
called the Kronecker p~oduct. It is defined as follows: 

7 



Chapter 1: Representations and characters 

To begin with, let Vi and V2 be two vector spaces. A space W furnished 
with a map (Xl,X2) ~ Xl· x2 of V. x V2 into W, is called the.tensor product 
of \l and '2 if the two following conditions are satisfied: 

(i) XI • x2 is linear in e~ch of the variables XI and X2. 
(ii) If (~il) is a basis of"t and (ei

2
) is a basis of V2, the family of products 

ei
1 

• ei
2 

is a basis of W. _ . 

It is easily shown that such a space exists, and is unique (up to 
isomorphism); it is denoted "t ~ '2. Condition (ii) shows that 

dim(\1 ® V2) = dim(\) · dim(V2). 

Now let pi: G --+ GL(Yt) and p2: G -+' GL(V2) be two linear representa­
tions of a group G. For s E G, define an element P, of GL(\l ® "2) by the 
condition: 

P,(XI • X2) = p! (Xl) • P;(X2) for Xl E Vi, X2 E V2 · 

[The existence and uniqueness of P, follows easily from conditions (i) and 
(ii).] We write: 

Ps = p! ® p;. 
The P, define a linear representation of G in \) ® "2 which is called,the 
tensor product of the given representations. 

The matrix translation of this definition is the following: let (ei
l

) be a 
basis for Yt, let 'i.jl (s) be the matrix of p~ with respect to this basis, and 
define (e;2) and 'i,)2(S) in the same way. The formulas: 

p: (ej.) = ~. '1.j.(s) · eil ' 

;. 

imply: 

. p (eo .- e· )\ = ~ 1: . (s) . 1: . (s) · e· · e· . 
S:J.:J2 ~ '111 '2.12 '1'2 

;1,;2 

Accordingly the matrix of Ps is ('ilil (s)· 'il.i2 (s»; it is the tensor product of the 
matrices of p!and p;. 

The tensor product of two .irreducible representations is not in general 
irreducible. It decomposes into a direct sum of irreducible representations 
which can be determined by means of character theory (cf. 2.3). 

8 

In quantum chemistry, the tensor product often appears in the following 
way: \j and Vi are two spaces of functions stable under G, with respective 
bases (4)>;.) and (1/1;2)' and V. ® '1 is the vector space generated by the 
products 4»il • 1/1;2' these products being linearly independent. This last 
condition is essential. Here are two particular cases where i~ is satisfied: 



1.6: Symmetric square and alternating square 

(1) The cp's depend only on certain variables (x, x', ... ) and the 1/1'5 on 
variables (y,y', ... ) independent from the first. 

(2) The space ~ (or V~ has a basis consisting of a single function cp, this 
function does not vanish identically in any region; the space V. is then 
of dimension 1. 

1.6 Symmetric square and alternating square 

Suppose that the representations \I' and \2 are identical to the same 
representation V, so that Yt ® \2 = V ® V. If (e;) is a basis of V, let (J be 
the automorphism of V ® V such that 

fJ(ej • ej) = ej · ej for all pairs (i,j). 

It follows from this that 9{x · y) = y · x for x, y E V, hence that (J is 
independent of the chosen basis (ej); moreover 1J2 = 1. The space V ® V 
then decomposes into a direct sum 

V ® V = Sym2(V) EB Alt2{V), 

where Sym2(V) is the set of elements z E V ® V such that 9{z) = z and 
Alt2 (V) is the set of elements z E V ® V such that iJ(z) == -z. The 
elements (e; · ej + ej • ei)i<j form a basis of Sym2{V), and the elements 
(e· · e· - e· · e.);< . form a basis of Alt2{V) We have , '} '} I I } • 

d" S 2(V) _ n(n+ 1) 
1m ym - 2 ' 

if dimV = n. 

dim Alt2(V) = n(n - I) 
2 

The subspaces Sym2 (V) and Alt2(V) are stable under G, and thus 
define representations called respectively the symmetric square and alternat­
ing square of the given representation. 
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CHAPTER 2 

Character theory 

2.1 The character of a representation 
Let V be a vector space having a basis (ej) of n elements, and let a be a 

linear map of V into itself, with matrix (aU). By the trace of a we mean the 
scalar 

Tr(a) = ~ ai;. 
i 

It is the sum of the eigenvalues' of a (counted with their multiplicities), and 
does not depend on the choice of basis (ej). 

Now let p: G ~ GL(V) be a linear representation of a finite group G in 
the vector space V. For each s E G, put: 

Xp(s) = Tr(ps)· 

The complex valued function Xp on G 4~hus obtained is called the character 
of the representation p; the importance of this function comes primarily 
from the fact that it characterizes the representation p (cf. 2.3). 

Propositlon 1. If X is the character of a representation p of degree n, we have: 

(i) X(l) = n, 
(ii) x(S-I) = x.<s)* for s E G, 

(iii) X(tst- I ) = x(s) for s, t E G. 

(If z . x + ;y is a complex number, we denote the conjugate x - iy ei~her 
by z* or z.) 

10 

We have P(I) = I, and Tr(l) = n since V has dimension n; hence (i). 
For (ii) we observe that Ps has finite order; consequently the same is true 



2.1: The character of a representation 

of its eigenvalues AI' •.. , An and so these have absolute value equal to I 
(this is also a consequence of the fact that Ps can be defined by a unitary 
matrix, cf. 1.3). Thus 

X(s)* = Tr(ps)* = ~ Ai == ~ Ail = Tr(p;l) = Tr(ps-t) = X(s-I). 

Formula (iii) can also be written X(vu) = X(uv), putting u = ts, v = t- I ; 

hence it follows from the well known formula 

Tr(ab) = Tr(ba), 

valid for two arbitrary linear mappings a and b of V into itself. 0 

Remark. A function f on G satisfying identity (iii), or what amounts to 
the same thing, f(uv) = f(vu), is called a class function We will see in 2.5 
that each class function is a linear combination of characters. 

Proposition 2. Let pi: G -+ GL(\I) and p2: G -+ GL( V2) be two linear 
representations of G, and let XI and X2 be their characters. Then: 

(i) The character X of the direct sum representation V. ED V~ is equal to 

XI + X2-
(ii) The character l/I of the tensor product representation V. ® V2 is equal 

to XI • X2· 

Let us be given pi and p2 in matrix form: R1, R;. The representation 
\l ED V2 is then given by 

R = (R1 0) 
s 0 R2 

s 

whence Tr(Rs) = Tr(R1) + Tr(R;), that is X(s) = Xl (s) + X2(s). 
We proceed likewise for (ii): with the notation of 1.5, we have 

l/I(s) = .~ 'il i. (S)'i2i2(S) = XI (s) - X2(S). 0 
'1,12 

Proposition 3. Let p: G ~ GL(V) be a linear representation of .. G, and let X 
be its character. Let X; be the character of the symmetric square Sym2 (V) 
of V (cr. 1.6), and let X; be that of Alt2(V). For each s E G, we have 

X;(s) = ~(X(s)2 + X(s2» 

X;(s) = ~(X(s)2 - x<s2» 

11 
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Let s E G. A basis (e;) of V can be chosen consisting of eigenvectors for 
Ps; this follows for example from the fact that Ps can be represented by a 
unitary matrix, cf. 1.3. We have then pse; = A;e; with Ai E C, and so 

On the other hand~ we have 

(Ps ® ps)(e; · ej + ej · e;) = A;Aj · (e; · ej + ej · ei)' 

(Ps ® ps)(e; · ej - ej · e;) = A;A.; · (e; · ej - ej · e;), 

hence 

X;(s) = .~. A;~ =~ A~ + .~<. A;~ = ~(~ Al + ~ ~ Af 
I-.-J I J 

X;(s) = .~<. A;~ = ~(~ A;)2 - ~ ~ Al. 
I J 

The proposition follows. 
(Observe the equality X; + ~ = X2, which reflects the fact that V ® V is 

the direct sum of Sym2 (V) and Alt2 (V». 0 

EXER.CISES 
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1.1. Let X and X' be the characters of two representations. Prove the formulas: 

<x + x'); = X; + x;,2 + XX'; 

<x + x'); == X; + x;.2 + xx'· 

2.2. Let X be a finite set on which G acts, let P be the corresponding permutation 
representation [cf. 1.2, example (c)], and Xx be the character of p. Let 
s E G; show that Xx{s) is the number of elements of X fixed by s. 

2.3. Let p: G -+ GL(V) be a linear representation with character X and let V' be 
the dual of V, i.e., the space of linear forms on V. For x E V, x' E V'Iet 
(x, x') denote the value of the linear form x' at x. Show that there exists a 
unique linear representation p': G --+ GL(V'), such that 

(Psx, p;x') = (x, x') for s E G,x E V, x' E V'. 

This is called the contragredient (or dual) representation of p; its character is 
X*· 

2.4. Let PI: G -+ GL(\l) and P2: G --+ GL(V2) be two linear representations 
with characters Xl and X2' Let W == ~om (V., V2), the vector space of linear 
mappings I: Vi --+ Vi. For s E G and I EW let PsI == Pl,s 0 I 0 P1~1; so 
-Psi E W. Show that this defines a linear representation p: G -+ GL (W), 
and that its character is xr· X2' This representation is isomorphic to PI ® P2' 



2.2: Schur's lemma; basic applications 

where PI is the contragredient of PI' cf. ex. 2.3. 

2.2 Schur's lemma; basic applications 

Proposition 4(Schur's lemma).Let pi: G --+ GL(\1) and pl: G --+ GL(V2) be 
two irreducible representations of G, and let f be a linear mapping of \1 into 
"2 such that p; 0 f = f 0 p1 for all s E G. Then: 

(1) If pi and p2 are not isomorphic, we have f = O. 
(2) If"t = \'2 and pi = pl, f is a homothety (i.e., a scalar multiple of 

the identity). 

The case f = 0 is trivial. Suppose now f =F 0 and let WI be its kernel (that 
is, the set of x E V. such thatfx = OJ. For x E WI we havefp1x = p;jx 
= 0, whence p1 X E WI' and WI is stable under G. Since "I is irreducible, 
WI is equal to \1 or 0; the first case is excluded, as it implies f = o. 
The same argument shows that the image W2 of f (the set of fx, for x E v.) 
is equal to V2 • The two properties WI = 0 and W2 = V2 show that f is an 
isomorphism of ~ onto \'2, which proves assertion (I). 

Suppose now that \1 = V1, pi = p2, and let A be an eigenvalue of f: there 
exists at least one; since the field of scalars is the field of complex numbers. 
Putf' = f - A. Since A is an eigenvalue of 1, the kernel of I' is ::1= 0; on the 
other hand, we have p;, 0 f' = f' 0 p1. The first part of the proof shows that 
these properties are possible only if f' = 0, that is, if f is equal to A. 0 

Let us keep the hypothesis that Yt and V1 are irreducible, and denote by 
g the order of the group G. 

Corollary 1. Let h be a linear mapping of V. into \12, and put: 

Then: 

(I) If pi and p2 are not isomorphic, we have hO = o. 
(2) If ~ = V1 and pi = p2, hO is a homothety of ratio (l/n)Tr(h), with 

n = dim(V.). 

We have p;ho = hOp1. Indeed: 

(p;)-lhOp~ = i t~G (p})-I(p~)-lhp:p1 
.....: ! ~ (pl)-Ihpl = hOe 

g ~G IS IS 
IE . 

a 

Applying prop. 4 to f = hO, we see in case (I) that hO = 0, and in case (2) 
that hO is equal to a scalar A. Moreover, in the latter case, we have: 

13 
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Tr(hO) =! ~ Tr«p: )-1 hP:) = Tr(h), 
g lEG 

and since Tr(A) = n . A, we get A = (1In)Tr(h). o 
Now we rewrite corollary 1 assuming that pI and p2 are given in matrix 

form: 

P: = ('iljl (t», p~ = (r;2h (I» . 

. The linear mapping h is defined by a matrix (Xi2il) and likewise ·ho is defined 
by (xgi

l
). We have by definition of hO: 

x9. = ! ~ 1: . (t -I ) x· . n . (t). 
'2't g ~.. '112 lUI ·.11" 

"}1,]2 

The right hand side is a linear form with respect to xivl; .in case (1) this form. 
vanishes for all systems of values of the Xj2il; thus its co~fficients are zero. 
Whence: 

Corollary 2. in case (I), we have: 

! ~ 1: . (t -I)r.: . (t) = 0 
g ~ '212 'JI 'I 

lEG 

In case (2) we have similarly hO = A, i.e., X?2i = A8; ; (8i-2~· denotes the 
. I z.:1 1 

Kronecker symbol, equal to 1 if i l = i2 and 0 otherwise), with 
A = (l/n)Tr(h), that is, A = (lin) ~ 6j2i1 Xj2il. Hence the equality: 

i ~. '1,12(1-
1 )Xj~1 ~Iil (I) = ~. ~ 8izil 8j,JI Xj~l· 

"}I ,]2 }I ,]2 

Equating coefficients of the Xj2iI' we obtain as above: 

Corollary 3. In c~se. (2) we have: 

1 ~ _I I {lin 
g- ~ 'i1h (t )~);I (t) = n8;2 i18jVI = 0 

lEG . 

Remarks 
(I) If q, and l/I ar~ functions on G, set 

if i l = i2 andjl = j2 

otherwise. 

< 4», '" > = ! ~ q,( t -I ) 1/1( t ) =! ~ </>( t) 1/1( t - I ). 
g lEG . g lEG 

We have (4), l/I) = <t/I, cp). Moreover <4>, tfI) is linear in.p and in t/I. With this 
notation, corollaries 2 and 3 become, respectively 

14 
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(2) Suppose that the matrices (rij(t» are unitary (this can be realized by a 
suitable choice of basis, cf. 1.3). We have then rij(t- I ) = ~i(t)* and 
corollaries 2 and 3 are just orthogonality relations for the scalar product 
(4)I~) defined in the following section. 

2.3 Orthogonality relations for characters 

We begin with a notation. If 4> and t/I are two complex-valued functions 
on G, put 

(4)I~) = ! L cp(t)\fI(t)*, g being the order of G · 
g'EG 

This is a scalar product: it is linear in ~, semilinear in l/I, and we have 
(4)Iq,) > 0 for all 4> =F O. 

If ~ is the function defined by the formula ~t) =i \fI(t- I )* , we have 

I 
1 W I W 

(cp l/I) = g- ~ ~t).xt - ) = (</>, l/I >, 
lEG 

cf. 2.2, remark I. In particular, if X is the character of a representation of 
G, we have X = X (prop. 1), so that (4)lx) = (4), X> for all functions cp on 
G. So we can use at will (.pIx) or <cp,X), so'long as we are concerned with 
characters. 

Theorem 3 . 

(i) If X is the character of an irreducible representation, we have 
(xix) = 1 (i.e., X is "'of norm I"). 

ii) If X and X' are the characters of two nonisomorphic irreducible 
representations, we have (xix') = 0 (i.e. X and X' are orthogonal). 

Let p be an irreducible representation with character X, given in matrix 
form P, = (rij(t». We have X(t) = ~ 'i;(t), hence 

(xix) = <X, X> = ~ <'ii' '1i >. 
I,} 

But according to cor. 3 to prop. 4, we have <'ii' '1i> = 8ij/n, where n is the 
degree of p. Thus 

(xix) = (~ 8ij)/n = n/n = I, 
',) 

since the indices iJ each take n values. (ii) is proved in the same way, by 
applying cor. 2 instead of cor. 3. 0 

Remark. A character of an irreducible representation is called an irreduci-
ble character. Theorem 3 shows that the irreducible characters form an 
orthonormal system; this result will be completed later (2.5, tho 6). 
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1beorem 4. Let V be a linear representation ofG, with character </>, and 
suppose V decomposes into a direct sum of irreducible representations: . 

v=wle···ewk· 

Then, if W is an irreducible representation with character X, the number of 
W; isomorphic to W is equal to. the scalar product (q,lx) = <4>,X). 

Let Xi be the character of W;. By prop. 2, we have 

q, = XI + · · · + Xk· 

Thus (q,lx) = (xlix) + . · · + (XJc Ix)· But, according to thepreceeding 
theore~, (Xi Ix) is equal to I or 0, depending on whether W; is, or is not, 
isomorphic to W. The result follows. 0 

Corollary 1. The number of W;' isomorphic to W does not depend on the chosen 
decomposition. 
(This number is called the "number of times that W occurs in V", or the 

"number of times that W is contained in V.") 

Indeed, (q,tX) does not depend on the decomposition. o 

Remark. It is in this sense that one can say that there is uniqueness in the 
decomposition of a representation into irreducible representations. We shall 
return to this in 2.6. 

Corollary 2. Two repres~ntations with the same character are isomorphic. 

Indeed, COf. 1 shows that they contain each "given irreducible representa­
tion the same number of times. 

The above results reduce the study of representations to that of their 
characters. If XI' ••• , Xh are the distinct irreducible characters of G, and if 
WI' ... , W" denote corresponding representations, each representation V is 
isomorphic to a direct sum 

V = ml WI e··· ED mil WII m; integers ~ o. 
The character q, of V is equal to ml XI + · .. + mh Xh' and we have 
mi = (4)IXi)· [This applies notably to. the tensor product W; ® W; of two 
irreducible representations, and shows that the product Xi • Xj decomposes 
into Xi Xj = ~ mt Xk, the m~ being integers ;> 0.] The orthogonality 
relations among the X; imply in addition: 

;=11 

(4)Iq,) = l: ml, 
;= I 

whence: 
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2.4: Decomposition of the regular representation 

Theorem 5. If </> is the character of a representation V, (<pI</» is a positive 
integer and we have (ct>I<p) = 1 if and only if V is irreducible. 

Indeed, ~ m'f is only equal to I if one of the m; ~ s is equal to 1 and the 
others to 0, that is, if V is isomorphic to one of the W;. 0 

We obtain thus'~a very convenient irreducibility criterion. 

EXERCISES 

2.5. Let p be a linear representation with character x. Show that the number of 
times that p contains the unit representation is equal to <XII) 
== (I/g) ~SEG x{s). 

2.6. Let X be a finite set on which G acts, let p be the corresponding permutation 
representation (1.2) and let X be its character. 
(a) The set Ox of images under 0 of an element x E X is called an orbit. 

Let c be the number of distinct orbits. Show that c is equal to the number 
of times that p contains the unit representation I; deduce from this that 
<XII) == c. In particular, if G is transitive (i.e., if c == I), p can be 
decomposed into I ED 9 and 9 does not contain the unit representation. 
If ~ is the character of 9, we have X == I + ~ and (~II) == o. 

(b) Let G act on the product X X X of X by itself by means of the formula 
s{x,y) == (sx, sy). Show that the character of the corresponding permuta­
tion representation is equal to x2• 

(c) Suppose that 0 is transitive on X and that X has at least two elements. 
We say that 0 is doubly transitive if, for all x, y, x', y' E X with x =#= y 
and x' =#= y', there exists s E G such that x' == sx and y' == sy. Prove the 
equivalence of the following properties: 

(i) G is doubly transitive. 
(ii) The action of G on X X X has two orbits, the diagonal and its 

complement. 
- (iii) <x2 11) == 2. 

(iv) The representation IJ defined in (a) is irreducible. 

[The equivalence (i) .. (ii) is immediate; (ii) 0:> (iii) follows from (a) 
and (b). If ~ is the character of 9, we have I + ~ == X and 
(III) == I, (~II) == 0, which shows that (iii) is equivalent to 
(~211) == I, i.e., to (I/g) ISEG 1/I(s)2 == I; since ~ is real-valued, 
this indeed means that 9 is irreducible, cf. tho 5.] 

2.4 Decomposition of the regular representation 
Notation. For the rest of Ch. 2, the irreducible characters of G are 

denoted XI' ••• , Xh; their degrees are written nl, ... ,nil' we have ni 
= X;(l), cf. prop. l. 

Let R be the regular repres~ntation of G. Recall (cf. 1.2) that it has a 
basis (e,)'EG such that pse, = est. If s =f:. I, we have st =f:. t for all t, which 
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shows that the diagonal terms of the matrix of Ps are zero; in particular we 
have Tr(ps) = O. On the other hand, for s = 1, we have 

Tr(ps) = Tr(l) = dim(R) = g. 

Whence: 

Proposition S. The character TO of the regular representation is given by the 
formulas: 

ro(l) = g, 

rG(s) = 0 

order ofG, 

ifs ¢ 1. 

Corollary 1. Every irreducible representation W; is contained in the regular 
representation with multiplicity equal 10 its degree ni • 

According to tho 4, this number is equal to (ro, Xi)' and we have 
. 

<rQ'Xi) = i s~Q rQ(s-I)X;(s) = ig· x;(l) = x;(l) = ni· 0 

Corollary 2. 

(a) The degrees ni satisfy the relation ~::~ nr = g. 

(b) If s EGis different from I , we have ~::1 n; X;(s) = O. 

By COf. I, we have ro(s) = ~ niX;(s) for all s E G. Taking s = 1 we 
obtain (a), and taking s ¥= I, we obtain (b). 0 

Remarks 
(1) The above result can be used in determining the irreducible represen­

tations of a group G: suppose we have constructed some mutually 
nonisomorphic irreducible representations of degrees nl' ... , nk; in order 
that they be all the irreducible representations of G (up to isomorphism)~ it 
is necessary and sufficient that nf + · · · + n'i = g. 

(2) We will see later (Part II, 6.5) another property of the degrees n;: they 
divide the order g of G. 

EXERCISE 

2.7. Show that each character of G which is zero for all s =#= 1 is an integral 
multiple of the character ro of the regular representation. 

2.5 Number of irreducible representations 

Recall (cf. 2.1) that a function f on G is called a class function if 
/(tst- I ) = f(s) for all s, t E G. 
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2.5: Number of irreducible representations 

Proposition 6. Let f be a class junction on G, and let p: G ~ GL(V) be a 
linear representation of G. Let PI be the linear mapping of V into itself 
defined by: 

PI = ~ f(/)p,. 
lEG 

If V is irreducible of degree n and character x, then PI is a homothety of ratio 
A given by: 

A =! ~ f(t)x(t) = ~(flx*). 
ntEG n 

Let us compute p;l PjPs. We have: 

p;1 PjPs = ~ !(t)p;1 PtPs = ~ f(/)Ps-lts. 
tEG tEG 

Putting u = s-J ts, this becomes: 

p;1 PIPs = ~ f(sus- l )Pu = ~ f(u)pu = Pj . 
. uEG uEG 

So we have PIPs = Ps PI" By the second part of prop. 4, this shows that PI is 
a homothety A. The trace of A is nA; that of PI is ~/EG f(t)Tr(p/) 
= ~/EG!(t)X(t). Hence A = (lin) ~/EGf(t)x(t) = (gln)(flx*)· 0 

We introduce now the space H of class functions on G; the irreducible 
characters Xl' · · . , Xh belong to H. 

lbeorem 6. The characters. XI' .•. , Xh form an orthonormal basis of H. 

Theorem 3 shows that the Xi form an orthonormal system in H. It 
remains to prove that they generate H, and for this it is enough to show that 
every element of H orthogonal to the X! is zero. Let f be such an element. 
For each representation P of G, put Pj = ~tEGf(t)pt. Sincefis orthogonal 
to the Xi*, prop. 6 above shows that PI is zero so long as P is irreducible; 
from the direct sum decomposition we conclude that PI is always zero. 
Applying this to the regular representation R (cf. 2.4) and computing the 
image of the basis vector e. under PI' we have 

Plel = ~ f(t)pt e• = ~ f(t)et · 
lEG I tEG 

Since Pj is zero, we have Pje. = 0 and the above formula shows that 
f(t) = 0 for all t E G; hence f = 0, and the proof is complete. 0 

Recall that two elements t and t' of G are said to be conjugate if there 
exists s E G such that I' = sts-I; this is an equivalence relation, which 
partitions G into classes (also called conjugacy classes). 

1beorem 7. The number of irreducible representations of G (up to isomor­
phism) is equal to Ihe number of classes of G. 
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Let CI , ... , Ck be the distinct classes of G. To say that a function f on 
G is a class function is equivalent to saying that it is constant on each of 
C1, ••• , Ck ; it is thus determined by its values A; on the C;, and these can 
be chosen arbitrarily. Consequently, the dimension of the space H of class 
functions is equal to k. On the other hand, this dimension is, by the 6, equal 
to the number of irreducible representations of G (up to isomorphism). The 
result f oHows. 0 

Here is another consequence of the 6: 

Proposition 7. ~t s E G, and let c(s) be the number of elements in the 
conjugacy class of s. 

(a) We have ~::~ X;(s)*X;(s) = g/c(s). 

(b) For t E G not conjugate to s, we have ~::~ X; (s)* X;(t) = O. 

(For s = 1, this yields cor. 2 to prop. 5.) 

Letfs be the function equal to I on the class of s and equal to 0 elsewhere. 
Since it is a class function, it can, by the 6, be written 

;=h 

is = ~ A;X;, 
;=1 

We have then, for each t E G, 

. I c(s) * wIth Ai = (is Xi) = -X;(s) . 
g 

;=h 

fs(t} = c(s} ~ X;(s)* x; (t). 
g. ;=1 

This gives (a) if t = s, and (b) if t is not conjugate to s. o 
EXAMPLE. Take for G the group of permutations of three letters. We have 
g = 6, and there are three classes: the element I, the three transpositions, 
and the two cyclic permutations. Let t be a transposition and c a cyclic 
permutation. We have t 2 = I, c3 = 1, tc = c2t; whence there are just two 
characters of degree I: the unit character XI and the character X2 giving the 
signature of a permutation. Theorem 7 shows that there exists one other 
irreducible character 9; if n is its degree we must have 1 + 1 + n2 = 6, 
hence n = 2. The values of 9 can be deduced from the fact that XI + X2 
+ 21J is the character of the regular representation of G (cf. prop. 5). We 
thus get the character table of G: 
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2.6: Canonical decomposition of a representation 

We. obtain an irreducible representation with character (J by having G 
permute the coordinates of elements of C3 satisfying the equation X + y 
+ z = 0 (cf. ex. 2.6c». 

2.6 Canonical decomposition of a representation 

Let p: G -+ GL(V) be a linear representation of G. We are going to 
define a direct sum decomposition of V which is "coarser'~ than the 
decomposition into irreducible representations, but which has the advan­
tage of being' unique. It is obtained as follows: 

Let XI' ... , Xh be the distinct characters of the irreducible representa­
tions -WI' ••• , Wh . of G and n), ••• , nh their degrees. Let V = V) ED • • ~.' 
ED Vm be a decomposition of V into a direct sum of irreducible representa­
tions. For i = 1, ... , h denote by V;, the direct sum of those of the 
VI' ... , Um which ~are isomorphic to W;. Clearly we have: 

(In other words, we have decomposed V into a direct sum of irreducible 
representations and collected together the isomorphic representations.) 

This is the canonical decomposition we had in mind. I ts properties are as 
follows: . 

Theorem 8 

(i) The decomposition V = V. E9 • • • ED Vh does not depend on the 
initially chosen decomposition of V into irreducible representations. 

(ii) The projection Pi of V onto V; associated with this decomposition is 
given by the formula: 

n· * Pi = g' ~ X;(t) PI' 
lEG 

We prove (ii). Assertion (i) will follow because the projections Pi 
determine the V;. Put 

n; * 
q; = g ~ Xi(t) P,· 

lEG 

Proposition 6 shows. that the restriction of qi to an irreducible representa­
tion W ,with character X and of degree n is a homothety of ratio 
(ni/n)(x;lx); it is thus 0 if X =F X; and I if X = Xi' In other words qi is the 
identity on an irreducible representation isomorphic to W;, and ·is zero on 
the others. I~ view of the definition of the V;, it follows thaJ qi is t~e identity 
on Vi and is 0 on Vj for j ¥- i. If we decompose an element x E V into its 
components X; E V;: 

X = XI + . · · +xh' 

we have then q;(x) = q;(xl) + · · · + qi(Xh) = Xi' This means that qi is 
equal to the projection Pi of V onto Vj. 0 
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Thus the decomposition of a representation Y can be done in two stages. 
First the canonical decomposition V. E9 • • • E9 ~ is determined; this can be 
done easily using the formulas giving the projections Pi. Next, if needed, one 
chooses a decomposition of V; into a direct sum of irreducible representa­
tions each isomorphic to W;: 

V; = W;E9 ••• E9 W;. 

This last decomposition can in general be done in an infinity of ways (cf. 
section 2.7, as well as ex. 2.8 below); it is just as arbitrary as the choice of 
a basis in a vector space. 

ExAMPLE. Take for G the group of two elements {l,s} with s2 = 1. This 
group has two irreducible representations of degree 1, W+ and W-, 
corresponding to Ps = + 1 and Ps = -1. The canonical decomposition of a 
representation Y is Y = y+ E9 Y-, where y+ (resp. Y-) consists of the 
elements x E Y which are symmetric (resp. antisymmetric), i.e., which 
satisfy Psx = x (resp. Psx = -x). The corresponding projections are: 

To decompose y+ and Y- into irreducible components means simply to 
decompose these spaces into a direct sum of lines. 

ExERCISE 

1.8. Let Hi be the vector space of linear mappings h: W; -+ V such that 
Psh = hps for all s E G. Each h E Hi maps W; into V;. 
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(a) Show that the dimension of Hi is equal to the number of times that W; 
appears in V, i.e., to dim V;/ dim W; [Reduce to the case where V = W; 
and use Schur's 'emma]. . 

(b) Let G act on Hi ® W; through the tensor product of the trivial 
representation of G on Hi and the given representation on W;. Show that 
the map. 

F: Hi ® W; -+ V; 

defined by the formula 

F<I ha · wa) = ~ ha(wa) 

is an isomorphism of Hi ® W; onto V;. [Same method.] 

(c) Let (hi' ... ,hk ) be a basis of Hi and form the direct sum W; ED • • • e W; 
of k copies of W;. The system (hJ , ••• ,hk ) defines in an obvious way a 
linear mapping h of W; e·· · e ~ into V;; show that it is an isomor­
phism of representations and that each isomorphism is thus obtainable 
[apply (b), or argue directly]. In particular, to decompose V; into a direct 
sum of representations isomorphic to W; amounts' to choosing a basis for Hi· 



2.7: Explicit decomposition of a representation 

2.7 Explicit decomposition of a representation 

Keep the notation of the preceding section, and let 

V=Vje···eVj. 

be the canonical decomposition of the given representation. We have seen 
how one can determine the ith component V; by means of the corresponding 
projection (th. 8). We now give a method for explicitly constructing a 
decomposition of V; into a direct sum of suhrepresentations isomorphic to W;. 
Let VI; be given in matrix form (Tap(s» with respect to a basis (e) , .. · ,en); 
we have Xi(s) = ~a Taa(s) and n = ni = dim W;. For each pair of integers 
a, {3 taken from I to n, let Pap denote the linear map of V into V defined by 

Proposition 8 

(a) The map Paa is a projection; it is zero on the ~,j =1= i. Its image V;,a 
is contained in V;, and V; is the direct sum oj the V;,ajor I , a , n. 
We have Pi = ~a Paa· 

(b) The linear map Pap is zero on the 'j,j =1= i, as well as on the Vi,yjor 
y =1= {3; it defines an isomorphism from V;,p onto \';,0' 

(c) Let Xl be an element =1= 0 of'l;,) and let Xa = Pal (xI) E '1,a. The 
Xa are linearly independent and generate a vector subspace W(XI) 
stable under G and of dimension n. For each s E G, we have 

Ps(Xa) = ~ 'i*x(s)xp 
p 

(in particular, W(xl) is isomorphic to W;). 
(d) If (xp> , ... ,xfm» is a basis of \i, I, the representation V; is the direct 

sum of the subrepresentations W(xfl), ... , W(x{m» defined in c). 

(Thus the choice of a basis of '1,1 gives a decomposition of Vi into a direct 
sum of representations isomorphic to W;.) 

We observe first that the formula (.) above allows us to define the Pap in 
arbitrary representations of G, and in particular in the irreducible represen­
tations ~. For W;, we have 

PaP(ey) = ~ ~ 'i*x(t-t )pt(ey) = ~ ~ ~ ~(t-l )'6y(t)e.,. 
g lEG g ., tEG 

By cor. 3 to prop. 4 we have then 

if y = {3 

otherwise. 
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We get from this the fact that ~ Paa is the identity map of \\,;, and the 
fornnulas a 

{
Pa8 if P = y 

Pa.P 0 Py8 = 0 otherwise 

Ps 0 Ptry = ~ '/Ja(s)ppy. 
p 

For ~ withj ::1= i, we use cor. 2 to prop. 4 and the same argument to show 
that all the Pap are zero. . 

Having done this, we decompose V into a direct sum of subrepresenta­
tions isomorphic to ~ and apply the preceding to each of these represen­
tations. Assertions (a) and (b) follow; moreover, the above formulas remain 
valid in V. Under the hypothesis of (c), we have then 

Ps(Xa) = Ps 0 Pal (XI) = ~ ~(S)Ppl (XI) = ~ '!Ja.(s)xp, 
p . p 

which proves (c). Finally (d) follows from (a), (b), and (c). o 

EXERCISES 

2.9. Let Hi be the space of linear maps h: \\j -+ V such that hops = Ps 0 h, cf. 
ex. 2.8. Show that the map h ~ h(ea ) is an -i~morphism of Hi onto V;,a. 

2.10. Let x E V;, and let V(x) be the smallest subrepresentation of V containing 
x. Let xf be the image of '*- under PIa; show that V(x) is the sum of the 
representations W(xi), a = 1, ... ,n. Deduce from this that V(x) is the 
direct sum of at most n subrepresentations isomorphic to W;. 
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CHAPTER 3 

Subgroups, products, 
induced representations 

All the groups considered below are assumed to be finite. 

3.1 Abelian subgroups 
Let G be a group. One says that G is abelian (or commutative) if st = IS 

for all s, t E G. This amounts to saying that each conjugacy class of G 
consists of a single element, also that each function on G is a class function. 
The linear representations of such a group are particularly simple: 

Theorem 9. The following properties are equivalent: 

(i) G is abelian. 
(ii) A 1/ the irreducible representations of G have degree I. 

I' Let g be the order of G, and let (nJ , ... ,nh) be the degrees of the distinct 
irreducible repres'entations of G; we know, cf. Ch. 2, that h is the number 
of classes of G, and that g = nl + · · · + n~. Hence g is equal to h if and 
only if all the nj are equal to 1, which proves the theorem. 0 

Corollary. Let A be an abelian subgroup of G, let a be its order and let g be 
that of G. Each irreducible representation of G has degree ~ gla. 

(The quotient gla is the index of A in G.) 

Let p: G --+ GL(V) be an irreducible representation of G. Through 
restriction to the subgroup A, it defines a representation PA: A -+ GL(V) of 
A. Let W C V be an irreducible subrepresentation of PA; by tho 9, we have 
dim(W) = l. Let V' be the vector subspace of V generated by the images 
Ps W of W, s ranging over G. It is clear that Viis stable under G; since P is 
irreducible, we thus have V' = V. But, for s E G and tEA we have 

Pst W = PsPt W = Ps W ... 
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It follows that the number of distinct Ps W is at most equal to g/a, hence 
the desired inequality dim(V) ~ g/a, since V is the sum of the Ps W. 0 

EXAMPLE. A dihedral group contains a cyclic subgroup of index 2. Its 
irreducible representations thus have degree 1 or 2; we will determine them 
later (5.3)_ 

EXERCISES 

3.1. Show directly, using Schur's lemma, that each irreducible representation of 
an abelian group, finite or not, has degree I. 

3.2. Let p be an irreducible representation of G of degree n and character x; let 
C be the center of G (i.e., the set of s E G such that st = ts for alIt E G), 
and let c be its order. 

(a) Show that Ps is a homothety for each sEC. [Use Schur's lemma.] 
Deduce from this that tx(s)t == n for all sEC. 

(b) Prove the inequality n2 <; glc. [Use the formula ~ lX(s)12 = g, com-
bined with (a).] sEG 

(c) Show that, if p is faithful (i.e., Ps =#= 1 for s ::1= I), the group C is cyclic. 

3.3. Let G be an abelian group of order g, and let (; be the set of irreducible 
characters of O. If XI' X2 belong to (;, the same is true of their product XI X2-
Show that this makes 0. an abelian group of order g; the group G is called 
the dual of the group G. For x E G the mapP!ng X ~ x(x) is an irreducible 
character .. of G and so an element of the dual G of G. Show that the map of 
G info G thus obtained is an injective homomorphism; conclude (by 
comparing the orders of the two groups) that it is an isomorphism. 

3.2 Product of two groups 

Let G. and G2 be two groups, and let G. x G2 be their product, that is, 
the set of pairs (SI , s2), with SI E G1 and S2 E G2• 

Putting 
(51' 52)· (t., t 2) = (SI t l , S2 t 2)' . 

we define a group structure on GJ x G2; endowed with this structure, 
G J X G2 is called the group product of G1 and G2• If G1 has order gl and G2 

has order g2'. GJ X G2 has order g = g. g2. The group G1 can be identified 
with the subgroup of G1 X G2 consisting of elements (s. , I), where s. ranges 
over G.; similarly, G2 can be identified with a subgroup of G. X G2• With 
these identifications, each element of G1 commutes with each element of G2• 

Conversely, let G be a group containing G1 and G2 as subgroups, and 
suppose the following two conditions are satisfied: 
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(i) Each s E G can be written uniquely in the form s = Sl s2 with s. E G) 
and s2 E G2• 

(ii) For s. E O. and.s2 E 02' we have Sl S2 = s2s.-



3.2: Product of two groups 

The product of twp elements s = sl s2' I = II 12 can then be written 

sl = s) s2 II t2 = (s) II )(S2 t2)· 

It follows that, if we let (s) ,S2) E G I X G2 correspond to the elemenl s, S2 
of G, we obtain an isomorphism ofG. X G2 onto G. In this case, we also say 
that G is the product (or the direct product) of its subgroups G. and G2 , and 
we identify it with G1 x G2• . ' 

Now let pi: 0) -+ GL(\'t) and p2: G2 -+ GL(\t2) be linear representa­
tions of G I and O2 respectively. We define a linear representation pi ® p2 
of G I X G 2 into Vi ® V2 by a procedure analogous to 1.5 by setting 

(pi ® p2)(SI ,s2) = pi (sl) ® p2(S2). 

This representation is called the tensor produci of the representations p. and 
p2. If Xi is the character of p; (i = 1,2), the character X of pi ® p2 is given 
by: 

When 01 and 02 are equal to the same group G, the representation 
pI ® p2 defined above is a representation of G x G. When restricted to the 
diagonal subgroup of G X G (consistin~ of (s, s), where s ranges over G), it 
gives the representation of G denoted p ® p2 in 1.5; in spite of the identity. 
of notations, it is important to distinguish these two representations. 

1beoremlO 

(i) If pi and p2 are irreducible, pi ® p2 is an irreducible representation 
ofGI X G2• 

'(ii) Each irreducible representation of O. X G2 is isomorphic to a 
represenlation pi ® p2, where pi is an irreducible representation ofG; 
(i=I,2). 

If pI and p2 are irreducible, we have (cf. 2.3): 

! ~ IXt(St)12 = 1. 
gl "I 

By multiplication, this gives: 

! ~ IriSt. s2)12 
= 1 

g "1,"2 

which shows that pi ® p2 is irreducible (th. 5). In order to prove (ii), it 
suffices to show that each class function f on G1 x 02' which is orthogonal 
to the characters of the form XI (51 )X2 (S2), is zero. Suppose then that we 
have: 
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Fixing X2 and putting g(s) = ~ f(sl, S2)X2(S2)* we have: 
S2 

~ g(3) )XI (Sl)* = 0 for all Xl · s. 
Since g is a class function, this implies g = 0, and, since the same is true 
for each X2, we conclude by the same argument that 1(sl, 32) = o. 0 

[It is also possible to prove (ii) by computing the sum of the squares of 
the degrees of the representations pi ® p2, and applying 2.4.] 

The above theorem completely reduces- the study of representations of 
G1 X G2 to that of representations of G1 and of representations of G2 • 

3.3 Induced representations 

Left cosets of a subgroup 
Recall the following definition: Let H be a subgroup of a group G. For 

3 E G, we denote by sH the set of products sl with I E H, and say that sH 
is the left coset of H containing s. Two elements s, s' of G are said to be 
congruent modulo H if they belong to the same left coset, i.e., if s -I s' belongs 
to H; we write then s' == s (mod H). The set of left cosets of H is denoted 
by G/H; it is a partition of G. If G has g elements and H has h- elements, 
G/H has g/h elements; the integer g/h is the index of H in G and is denoted 
by (G:H). 

If we choose an element from each left coset of H, we obtain a subset R 
of G called a system of representatives of G/H; each s in G can be written 
uniquely 3 = rl, with r E Rand t E H. 

Definition of induced representations 
Let p: G --+ GL(V) be a linear fepresentation of G, and let PH be its 

restriction to H. Let W be a subrepresentation of PH' that is, a vector 
subspace of V -stable under the Pt' t E H. Denote by 9: H --+ GL(W) the 
representation of H in W thus defined. Let s E G; the vector space Ps W 
depends only on the left coset 3H of 3; indeed, if we replace s by sl, with 
t E H, we have Pst W = PsP, W = Ps W since P, W = W. If G is a left coset 
of H, we can thus define a subspace Wg of V to be Ps W for any s E G. It is 
clear that the W(J are permuted among themselves by the PS ' s E G. Their 
sum ~aeG/H W(J is thus a subrepresentation of V. 

DermitioD. We say that the representation p of G in V is induced by the 
representation fJ of H in W if V is equal to the sum of the w" 
(0 EO/H) and if this sum is direct (that is, if V = ED ~). 

(JEG/H 

We can reformulate this-condition in several ways: 

(i) Each x E V can be written uniquely as ~ x(J' with X(J E ~ for 
each o. aEG/H 
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(ii) If R is a system of representatives of G/H, the vector space V is the 
direct sum of the P, W, with r E R. 

In particular, we have dim(V) = ~ dim(p, W) = (0: H) . dim(W). 
,eR 

EXAMPLES I. Take for V the regular representation of G; the space V has a 
basis (et)teG such that pset = est for s E G, t E G. Let W be the subspace 
of V with basis (et)tEH. The representation 9 of H in W is the regular 
representation of H, and it is clear that P is induced by 9. 

2. Take for V a vector space having a basis (eo) indexed by the elements 
a of G/H and define a representation p of G in V by pse(l = eS(l for s E G 
and CJ E G/H (this formula makes sense, because" if CJ is a left coset of H, 
so is sa). We thus obtain a representation of G which is the permutation 
representation of G associated with G/H [cf. 1.2, example (c»). The vector 
eH corresponding to the coset H is invariant under H; the representation of 
H in the subspace CeH is thus the unit representation of H, and it is clear 
that this representation induces the representation p of G in V. 

3. If PI is induced by 9. and if P2 is induced by 92, then PI EB P2 is induced 
by 9. E9 92• 

4. If (V, p) is induced by (W, 9), and if WI is a stable subspace of W, the 
subspace V. = ~'ER p, WI of V is stable under G, and the representation 
of G in Yt is induced by the representation of H in WI . 

5. If p is induced by 9, if p' is a representation of G, and if PH is the 
restriction of p' to H, then p ® p' is induced by (J ® PH. 

Existence and uniqueness of induced representations 

Lemma 1. Suppose that (V,p) is induced by (W,9). Let p':.G ~ GL(V') be a 
linear representation of G, and let f: W ---+ V' be a linear map such that 
f(9t w) = p;f(w) for all t E Hand w E W. Then there exists a unique 
linear map F: V ~ V' which extends f and sat;sfi~s Fops = p; 0 F for all 
s E G. 

If F satisfies these conditions, and if x E Ps W. we have p;1 x E W; 
hence 

F(x) = F(Psp;1 x) = p; F(p;1 x) = p;f(p;1 x). 

This formula determines F on Ps W, and so on V, since V is the sum of the 
Ps W. This proves the uniqueness of F. 

Now let x E Wo' and choose sEa; we define F(x) by the formula 
F(x) = p;f(p;1 x) as above. This definition does not depend on the choice 
of s in CJ; indeed, if we replace s by st, with t E H" we have 

I f( -I) , 'f(n-I -I) '(n (J-I -I) 'f( -I ) Pst PSI x = Ps P, U, Ps X = Ps U, I Ps X = Ps Ps x. 

Since V is the direct sum of the Wa, there exists a unique linear map 
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F: V -+ V' which extends the partial mappings thus defined on the ~. It is 
easily checked that Fops = p~ 0 F for all s E G. 0 

1beorem 11. Let (W, IJ) be a linear representation of H. There exists a linear 
representation (V, p) of G which is induced by (W, IJ), and it is unique up to 
isomorphism. 

Let us first prove the existence of the induced representation p. In view 
of example 3, above, we may assume that 9 is irreducible. In this case, IJ is 
isomorphic to a subrepresentation of the regular representation of H, which 
can be induced to the regular representation of G (cf. example I). Applying 
example 4, we conclude that 9 itself can be induced. 

It remains to prove the uniqueness of p up to isomorphism. Let (V, p) and 
(V', p') be two representations induced by (W, 9). Applying Lemma 1 to the 
injection of W into V', we see that there exists a linear map F: V ~ V' 
which is the identity on Wand satisfies Fops = p~ 0 F for all s E G. 
Consequently the image of F contains all the p~ W, and thus is equal to V'. 
Since V' and V have the same dilI'.ension (G: H) · dim(W), we see that F 
is an isomorphism, which proves the theorem. (For a more natural proof of 
Theorem II, see 7.1.) 0 

Character of an induced representation 

Suppose (V, p) is induced by (W, fJ) and let Xp and X8 be the correspond­
ing characters of G and of H. Since (W,9) determines (V,p) up to 
isomorphism, we ought to be able to compute Xp from XiJ. The following 
theorem tells how: 

Theorem 12. Let h be the order of H and let R be a system of representatives 
ofG/H. For each u E G, we have 

(In particular, Xp(u) is a linear combination of the values of XIJ on the 
intersection of H with the conjugacy class of u in G.) 

The space V is the direct sum of the Pr W, r E R. Moreover Pu permutes 
the Pr W among themselves. More precisely, if we write ur in the form rut 
with 'u E Rand t E H, we see that Pu sends Pr W into Pr" W. To determine 
Xp(u) = Trv (Pu), we can use a basis of V which is a union of bases of the 
Pr W. The indices r such that 'U =1= r give zero diagonal terms; the others give 
the trace of Pu on the Pr W. We thus obtain: 
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where Ru denotes the set of r E R such that Tu = rand Pu, is the restriction 
of Pu to p, W. Observe that r belongs to Ru if and only if 'ur can be written 
rt, with t E H, i.e., if r- I ur belongs to H. 

It remains to compute Trp, w(Pu,r), for r E Ru. To do this, note that P, 
defines an isomorphism of W onto p, W, and that we have 

p, 0 9, = Pu" 0 p" with t = r-1ur E H. 

The trace of Pu" is thus equal to that of 9/ that is, to x,(t) = x,(r- I ur). We 
indeed obtain: 

The second formula given for Xp(u) follows from the first by noting that 
all elements s of G in the left coset rH (r E Ru) satisfy x,(s-I us) 
= X8(r- 1 ur). 0 

The reader will find other properties of induced representations in part II. 
Notably: 
(i) The Frobenius reciprocity formula 

(fH IXtJ)H = (flxp)G 

wherefis a class function of G, andfH is its restriction to H, and the scalar 
products are calculated on Hand G respectively . 
. (ii) Mackey's criterion, which tells us when an induced representation is 
irreducible. 
(iii) Artin's theorem (resp. Brauer's theorem), which says that each character 
of a group G is a linear combination with rational (resp. integral) 
coefficients of characters of representations induced from cyclic subgroups 
(resp. from "elementary" subgroups) of G. 

EXERCISES 

3.4. Show that each irreducible representation of G is contained in a representa­
tion induced by an irreducible representation of H. [Use the fact that an 
irreducible representation is contained in the regular representation.] Obtain 
from this another proof of the cor. to th.9. . 

3.5. Let (W,8) be a linear representation of H. Let V be the vector space of 
functions f: G ~ W such that f(tu) == 8,1(u) for u E G, t E H. Let p be 
the representation of G in V defined by (p"f)(u) == j(us) for s, u E G. For 
w E W let fw E V be defined by fw(t) = 8, w for t E Hand fw(s) = 0 for 
s fl H. Show that w 1-+ fw is an isomorphism of W onto the subspace Wo of 
V consisting of functions which vanish off H. Show that, if we identify W 
and Wo in this way, the representation (V,p) is induced by the representation 
(W,9). 

3.6. Suppose that G is the direct product of two subgroups Hand K (cf. 3.2). Let 
p be a representation of G induced by a representation 8 of H. Show that p 
is isomorphic to 8 ® rK' where rK denotes the regular representation of K. 
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CHAPTER 4 

Compact groups 

The purpose of this chapter is to indicate how the preceding results carry 
over to arbitrary compact groups (not necessarily finite); for the proofs, see 
[1], [4], [6] cited in the bibliography_ 

None of, the results below will be used in the sequel, aside from ~xamples 
5.2, 5.5, and 5.6. 

4.1 Compact groups 
A topological group G is a group endowed with a topology such that the 

product s · land the inverse s~l are continuous. Such a group is said to be 
compact if its topology is ~hat of a compact space, that is, satisfies the Borel­
Lebesgue theorem. For example, the group of rotations around a point in 
euclidean space of dimension 2 (or 3, ... ) has a natural topology which 
makes it into a compact group; its closed subgroups are also compact 
groups. 

As examples of noncompact groups, we mention the group of translations 
x t-+ x + a, and the ~oup of linear mappings preserving the quadratic 
form x 2 + y2 + z2 - t 2 (the "Lorentz group"). The linear representations 
of tbesegroups have completely different properties from those in the 
compact case. 

4.2 Invariant measure on a compact group 
In the study of linear representations of a finite group G of order g, we 

have used a great deal the operation of averaging over G, i.e., attaching to 
a function f on G the element (l/g) ~tEGf(t) (the values of f could be 
either complex numbers or, more generally, elements of a vector space). An 
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analogous operation exists for compact groups; of course, instead of a finite 
sum, we have an integral fo f(t)dt with respect to a measure dt. 

More precisely, one proves the existence and uniqueness of a measure d.t 
carried by G and enjoying the following two properties: 

(i) fof(t)dt = fof(ts)dt for each continuous function f and each s E G 
(invariance of dt under right translation). 

(ii) fo dt = I (the tota/mass of dt is equal to I). 

One shows moreover that dt is invariant under left translation, i.e.: 

(i/) fo!(/)dl = fo !(S/) dl. 

The measure dt is called the invariant measure (or Haar measure) of the 
group G. We give two examples (see also Ch. 5): 

(1) If G is finite of order g, the measure dt is obtained by assigning to 
each element t EGa mass equal to I/g. 

(2) If G is the group Coo of rotations in the plane, and if we represent 
the elements t E G in the form t = ~a (a taken modulo 2'11'), the 
invariant measure is (1/2'11'}da; the factor 1/2'IT is used to insure 
condition (ii). 

4.3 Linear representations of compact groups 

Let G be a compact group and let V be a vector space of finite dimension 
over the field of complex numbers. A linear representations of G in V is a 
homomorphism p: G ~ GL(V) which is continuous; this condition is 
equivalent to saying that Psx is a continuous function of the two variables 
s E G, x E V. One defines similarly linear representations of G 'in a 
Hilbert splice; one proves, moreover, that such a representation is isoIpor­
phic to a (Hilbert) direct sum of unitary representations of finite dimension, 
which allows one to restrict attention to the latter. 

Most of the properties of representations of finite groups carry over to 
representations of compact groups; one just replaces the expressions 
" (l/g) ~tEG f(t) " by " fa f(t) dt " . For example, the scalar product (+11/1) 
of two functions q, and 1/1 is 

(+11/1) = fo +(/)1/1(/)* dl. 

More precisely: 
(a) Theorems I, 2, 3, 4, and 5 carry over wi~hout change, as well as their 

proofs. The same holds for propositions I, 2, 3, and 4. 
(b) In 2.4, it is necessary to define the regular representation R as the 

Hilbert space of square integrable functions on G with group action 
(Psf)(t) = /(S-I t ). If G is not finite, this representation is of infinite 
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dimension, and it is no longer possible to speak of its character, so 
proposition 5 no longer makes sense. Nevertheless, it is still true that each 
irreducible representation is contained in R with multiplicity equal to its 
degree. 

(c) Propositi<?n 6 and th.6 carry over without change (in the 6, take for H 
the Hilbert spaCe of square integrable functions on G). 

(d) Theorem 7 is true (but uninteresting) when G is not finite: there are 
infinitely many classes, and infinitely many irreducible representations. 

(e) Theorem 8 and prop. 8 carry over without change, as well as their 
proofs. The projections Pi of the canonical decomposition (th. 8) are given 
by the formulas 

PiX = ni fo ](;(/)* p,xdt. 

(f) Theorems 9 and 10 carry over without change, as well as their proofs. 
Note, with respect to the 10, that the invariant measure ,of the product 
0 1 X G2 is the product dsl ds2 of the invariant measures of the groups G1 
and 02. 

(g) So long as H is a closed subgroup of finite index in G, the notion of 
a representation of G induced by a representation of H, defined as in 3.3, 
and the II and 12, remain valid. When the index of H is infinite, the 
representation induced by (W,9) is defined as the Hilbert space of square 
integrable functions f on G, with values in W, such that f(tu) = lJ,f(u) for 
each t E H, and G acts on this space by Psf( u) = f( us), cf. ex. 3.5. 
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CHAPTER 5 

Examples 

5.1 The cyclic group en 
This is the group of order n c()nsisting of the powers 1, r, ... , rn-

1 of an 
element r such that rn = 1.. It can be realized as the group of rotations 
through angles 2k'IT/n around an axis. It is an abelian group. 

According to the 9, the irreducible representations of en are of degree 1. 
Such a representation associates with r a complex number x(r) = w, and 
with rk the number x(rk) = wk; since rn = 1, we have wn = 1, that is, 
w = e2wih/n, with h = 0, 1, ... , n - 1. We thus obtain n irreducible repre-
sentations of degree 1 whose characters Xo, Xl' ... , Xn-l are given by 

Xh(r k ) = e2f1ihk/n. 

We have Xh· Xh' = Xh+h', with the convention that Xh+h' = Xh+h'-n if 
h + hi ~ n (in other words, the index h of Xh is taken modulo n). 

For n = 3, for example, the character table is the following: 

where 

I 

I 
1 
1 

r 

I 
w 

w2 

1 
w2 
w 

w = e'lfTi/3 = -4 + ; ~3. 
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Chapter 5: Examples 

We have 
, 

Xo • Xi = Xi, XI · XI = X2, Xl · X2 = XI and XI · Xl = XO· 

5.2 The group Coo 

This is the group of rotations of the plane. If we denote by 'a the rotation 
through an angle a (determined modulo 2'1T), the invariant measure on Coo is 
(1/2'1T) do (cf. 4.2). 

The irreducible representations of Coo are of degree I. They are given by: 

Xn (,;.) = eina (n an arbitrary integer). 
IE 

The orthogonality relations give here the well known formulas: 

1 ~2'71. . - e-ma • e,mada = 8 2'1T 0 nm' 

and the 6 gives the expansion of a periodic function as a Fourier series. 

5.3 Th~ dihedral group Dn 

This is the group of rotations and reflections of the plane which preserve 
a regular polygon with n vertices. It contains n rotations, which form a 
subgroup isomorphic to Cn' and n reflections. Its order is In. If we denote 
by r the rotation through an angle 2'1T/ n and if s is anyone of the reflections, 
we have: 

rn = 1 , srs = r- I . 

Each element of Dn can be written uniquely, either in the form rk, witl) 
o ..; k , n - 1 (if it belongs to Cn), or in the form srk, with 0 , k 
~ n - I (if it does not belong to C,.). Observe that the relation srs = r- 1 

implies srks = r-k, whence (srk )2 = 1. 

Realization of Dn as a group of rigid motions of 3-space 

There are several such: 
(a) The usual realization (the one traditionally denoted Dn cf. Eyring [5]). 

One takes for rotations the rotations around the axis Oz, and for reflections, 
the reflections through n lines of the plane Oxy, these lin~s forming angles 
which are multiples of 'IT / n. 

(b) The realization by means of the group Cnv (notation of Eyring [5]); 
instead of the reflections with respect to the lines of Oxy, one takes 
reflections with respect to planes containing the axis Oz. 

(c) The group Dln can also be realized as the group Dnd (notation of 
Eyring [51). 
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5.3: The dihedral group D" 

Irreducible representations of the group Dn (n even ~ 2) 
First, there are 4 represent~tions of degree 1, obtained by letting ± 1 

correspond to rand s in all possible ways. Their characters 1/11' 1/12' l/I3' 1/14 are 
given by the following table: 

I ' ric sr lc 

1/11 1 1 

1/12 1 - 1 
1/13 ( _1)1c (_I)1c 

1/1 .. ( -1)1c (-1)"+1 

Next we consider representations of degree 2. Put w = e2fti
/
n and let h be 

an arbitrary integer. We define a representation ph of On by setting: 

A direct calculation shows that this is, indeed a representation. This 
representation is induced (in the sense of 3.3) by the representation" of en' 
with character Xh (5.1). It depends .only on the residue class of h modulo n; 
moreover ph and pn-h are isomorphic. Hence we may assume 0 ~ h 
~ n12 . . The extreme cases h = 0 and h = n/2 are uninteresting: the 
corresponding representations are re·ducible, with characters 1/11 + ~2 and 
1/13 + 1/14 respectively. On the other hand, for 0 < h < n12, the representa­
tion ph is irreducible: since wh =1= w-h, the only lines stable under ph(r) are 
the coordinate axes, and these are not stable under ph(s). The same 
argument shows that these representations are pairwise nonisomorphic. The 
corresponding characters Xh are given by: ' 

Xh(r k ) = whk + w- hk = 2 cos 2'IThk 
n 

Xh(sr k ) = o. 
The irreducible representations of degree I and 2 constructed above are the 
only irreducible representations of On (up to isomorphism). Indeed, the sum 
of the squares of their degrees is equal to 4 X 1 + «nI2) - I) X 4 == 2n, 
which is the order of Dn~ 

EXAMPLE. The group 0 6 has 4 representations of degree I, with characters 
1/11' l/I2, 1/13, 1/14 and 2 irreducible representations of degree 2, with characters 
XI and X2· 

Irreducible representations of the group Dn (n odd) 

There are only two representations of degree I, and .their characters ~I 
and .r2 are given by the table: 
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I 
I 

I 
- I 

The representations ph of degree 2 are defined by the same formulas as 
it\ the case where n is even. Those corresponding to 0 < h < nl2 are 
irreducible and pairwise nonisomorphic (observe that, since n is odd, the 
condition h < n/2 can also be written h ~ (n - 1)/2). The formulas giving 
their characters are the same. 

These representations are the only ones. Indeed, the sum of the squares 
of their degrees is equal to 2 x 1 + !(n - 1) x 4 = 2n, and this is the order 
of On' 

ExERCISES 

5.1. Show that in Dn, n even (resp. odd), the teftections form two conjugacy 
classes (resp. one), and that the elements of en form (n/2) + I classes (resp. 
(n + 1)/2 classes). Obtain from this the number of classes of Dn and check 
that it coincides with the number of irreducible characters. 

5.1. Show that Xh • Xh' = Xh+h' + Xh-h" In particular, we have 

XII • Xh == X2h + Xo == X211 + 1/1) + 1/12' 

Show that 1/12 is the character of the alternating square of ph, and that 
X2h + 1/1. is the character of its symmetric square (cf. 1.5 and prop. 3). 

5.3. Show that the usual realization of Dn as a group of rigid motions in R3 
(Eyring [5» is reducible and has character XI + 1/12' and that the realization 
of Dn as Cnv (Ioc. cit.) has XI + 1/11 for its character. 

5.4 The group Dnh 

This group is the product On X I, where I is a group of order 2 consisting 
of elements {I, ,} with ,2 = 1. Its order is 4n. If On is realized in the usual 
way as a group of rotations and reflections of 3-space [cf. 5.3, (a)] then Dnh 

can be realized as the group generated by On and the reflection , through 
the origin. ' 

According to tho 10, the irreducib'le repr~sentations of Dnh are the tensor 
products of those of On and those of I. The group I has just two irredueible 
representations, both of degree· I. Their characters g and u are given by the 
table: 
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5.5: The group Dco 

Consequently, Dnh has twice as many irreducible represeniations as Dn. 
More precisely, each irreducible character X of On defines two irreducible 
characters Xg and Xu of Dnh as follows: 

X LX 

X(x) 
x(x) 

x(x) 
-x(x) 

For example, the character Xl of Dn gives rise to characters Xig and Xlu: 

XI, 
XI" 

2 cos 2'ITI/ n 
2 cos i'ltk/n 

o 
o 

2 cos 2'ITk/n 
-2 cos 2'ITk/n 

The same applies to the other characters of Dn. 

5.5 The group Doo 

o 
o 

This is the group of rotations and reflections of the plane which preserve 
the origin. It contains the group Coo of rotations Fa; if s is an arbitrary 
reflection, we have the relations: 

S'a s = r-a· 

Each element of Doo can be written uniquely either in the form 'a (if it 
belongs to Coo) or in the form s'a (if it does not belong to Coo); as a 
topological space, Doo consists of two disjoint circles. The invariant measure 
of Doo is the measure da/4'1I. More precisely, the average fof(t)dt of a 
function f is given by the formula 

r 1 (~ I (k 
JG f(t) dt = 41r)0 1('0) da + 41r)0 l(s'a) da. 

In particular, the projections Pi of 2.6 are: 

n· (2ft. n· (2ft • 
PiX = ~)o X;('a) p,,.(x)da + ~)o X;(s'a) PST,.(X)da. 

Realizations of Do as a group of rigid motions in 3-space 
There are two of these: 
(a) The,usual realization (denoted Doo in Eyring [5]). Rotations are taken 

around Oz and reflections with respect to lines of the plane Oxy passing 
through O. 
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(b) The realization by means of the group Cae,., (notations of Eyring (5»: 
the reflections are taken with respect to planes passing through Oz, instead 
of lines of Oxy. 

., IrTeducib/~ representations of the group 0 00 

They are constructed like those for Dn. There are first two representations 
of degree I, with characters 1/11 and 1/12 given by the table: 

1;. S1;. 

1 
1 

I 
- 1 

There is a series of irreducible representations ph of degree 2 
(h = 1,2, ... ) defined by the formulas: 

Their characters XI' X2' ••• have the following values: 

-ilia e 

o 

It can be shown that these are all the irreducible representatiQns of D«J· (up 
to isomorphism). 

5.6 The group Dooh 

This group is the product Doo X I; it can be realized as the group 
generated by D«J and the reflection t through the origin. Its elements can 
be written uniquely in one of the four forms: 

tSIQ • 

As a topological space, it is the union of four disjoint circles. The invariant 
measure of Dooh is (1/8w)da. As above, this means that the averagefof(t)dt 
of a function! on Dooh is given by: 

We leave it to the reader to derive the explicit expressions for the 
proj~tions Pi of 2.6. 
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5.7: The alternating group ~4 

As in the case of Dd, Jhe irreducible representations of Dooh come in 
pairs from 0 00 : each character X of Doo gives rise to two· characters Xg and 
Xu of Deoh• 

So, for example, the character X3 of 0 00 gives: 

2 cOs 30 
2 cos 3a 

5.7 The alterna~ing group 2(4 

o 
o 

2 cos 30 
-2 cos 30 

&STa 

o 
o 

This is the group of even permutations of a set {a, b, c, d} having 4 
elements; it is isomorphic to the group of rotations in R3 which stabilize a 
regular tetrahedron with barycenter the origin. It has 12 elements: 

the identity element I; 
3 elements of order 2, x = (ab)(ed), y = (ae)(bd), z = (ad)(be), which' 
correspond toreftections of the tetrahedron through lines joining the 
midpoints of two opposite edges; 
8 elements of order 3: (abc), (aeb), ... , (bed), which correspond to rota­
tions of ± 120 0 with respect to lines joining a vertex to thebarycenter of the 
opposite face. 

We denote by (abc) the cyclic permutation a ...... b, b ..... c, c ..... a, d ..... d; 
likewise, (ab)(cd) denotes the permutation Q ...... b, b ~ a, c ..... d, d t-+ c, 
product of the transpositions (ab) and (cd). 

Set r = (abc), K = {I, I, 12} and H = {I, x,y, z}. We have 

txt-1 = z , tzt- I = y, tyt- I = x; 

moreover Hand K are subgroups of ~4' H is normal, and H n K= {I}. 
It is easy to see that each element of ~4 can be writtell uniquely as a product 
h · k, with h E Hand k E K. 

One also says that 9{4 is the semidirect product of K by the normal 
subgroup H;' note that this is not a direct product, because the elements of 
K do not commute with those of H. 

There are 4 conjugacy classes' in ~4: {I}, {x,y, z}, {I, tx, ty, tz}, and {t 2, t 2 x, 
t 2y, 12 z}, hence 4 irreducible characters. There are three characters of 
degree. I, corresponding to the three characters X()t XI, and X2 of the group 
K (cf. 5.1) extended to ~4 by setting x.;(h · k) =X;(k) for h E Hand 
k E K. The last character t/I is determined, for example, by means of cor. 2 
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to prop. 5; it is found to be the character of the natural representation of 
~4 inRl (extended to C3 by linearity). Thus we have the following 
character table for ~4 : 

x t t 2 

XO 1 1 1 1 

Xl 1 1 w w2 
X2 1 1 w2 w 

"'. 3 - 1 0 0 

with 

w = e2fti/3 . _ ~ + ; ~3 . 

EXERCISE 

5.4. Set 8(1) == IJ(x) = I and fJ{y) == 8(z) = -1; this is a representation of 
degree 1 of H. The representation of ~4 induced by IJ (cf. 3.3) is of degree 3; 
show that it is irreducible and has character .p. 

5.8 The symmetric group @54 

This is the group of all permutations of {a, b,e,d}; it is isomorphic to the 
group of aU rigid motions which stabilize ~a regular tetrahedron. It has 24 
elements, partitioned into 5 conjugacy classes: 

the identity element 1; 
6 transpositions: (ab), (ae), (ad), (be), (bd), (cd); 
the 3 elements of order 2 in ~4: x == (ab) (cd), y = (ae)(bd), z = (ad)(bc); 

8 elements of order 3: (abc), ... , (bed); 
6 elements of order 4: (abed), (abdc), (aebd), (aedb), (adbe), (adcb). 

Let H =.: {l,x,y,z} and let L be the group of permutations which leave d , .,. 
fixed. We see, as in the· preceding section, that e4 i~ the semidireet product 
of L by the normal subgroup H. Each representation p of L is extended to 
a representation of ~4 by the formula p(h · /) = p(/) for h E H, / E L. 
This gives three irreducible representations of· <54 (cf. 2.5), of ' degrees I, I, 
and 2. On the other hand, the natural representation of <54 in C3 is 
irreducible (since its restriction to ~4 . is), and the same is true oJ its tensor 
product by the non-trivial representation of degree 1 of (E4. Whence the 
following character table for '54: 
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5.9: The group of the cube 

1 (ab) (ab)(ctl) (abc) (abed) 

xo 1 1 1 1 I 
e 1 ·-l~ I 1 - I 
IJ 2 0 2 - I 0 

1/1 3 I - I 0 - I 
q, 3 - I - I 0 I 

Note that the values of the characters of <S4 are integers; this is a general 
property of representations of symmetric groups (cf. 13.1). 

5.9 The group of the cube 

Consider in R3 the cube C whose vertices are the points (x,y,z) with 
x = ±I, Y = ±I, and z = ±I. Let G be the group of isomorphisms of R3 
onto itself which stabilize the cube C, i.e., which permute its eight vertices. 
This group G can be described in several ways: 

(i) The group G contains the group ~3 of permutations of {x,>"z} as well 
as the group M of order 8 consisting of the transformations 

(x,y,z) ~. (±x, +y, ±z). 

One checks easily that G is the semidirect product of ~3 by the normal 
subgroup M; its order is 6 - 8 =48. 

'" (ii) Denote by, the reftection (x,y,z) ~ (-x, ~y, -z) through the origin. 
Let T be the tetrahedron whose vertices are the points (I, I, 1), (I, -I, -I), 
(-1, 1, -1), (-:-1, -1, 1), and let T' = ,T; each vertex of C is a vertex of T 

or of T'. Let S(T) be the group of isomorphisms of R3. onto itself which 
stabilize T; for s E S(T) we have sT' = SiT = ,sT = T', which shows that 
s stabilizes . the set of vertices of C, and thus belongs to G. Consequently 
S(T) C 0, and we see immediately that G is the direct product of S(T) with 
the group I = {I, I}. Since S(T) = ~4' the irreducible characters of G are 
obtained from those of <54 in pairs, just as those of Dnh are obtained from 
those of D,._ Thus there .are, 4 irreducible characters of degree 1, 2 of degree 
2, and 4 of degree 3; their exact description is left to the reader_ 

ExERCISES 

5.4. Recover the semidirect decomposition G == S3 - M from the decomposi­
tions G = S4 X I and S4 ==S3 . H (cf. 5.8). 

5.5 Let G+ be the subgroup of Gconsisting of elements with determinant I (the 
group of rotations of the cube). Show that, if Gis decomposed into S(T) X it 
the projection G -+ S(T) defines an isomorphism of G+ onto S(T) = S4. ' 
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II 

REPRESENT ATIONS 
IN CHARACTERISTIC ZERO 

Unless explicitly stated otherwise, all groups are assumed to be finite, and 
all vector spaces (resp., all modules) are assumed to be of finite dimension 
(resp., finitely generated). 

In Ch. 6 to 11 (except for 6.1) the ground field is the field C of complex 
numbers. 
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CHAPT·ER 6 

The group algebra 

/ 

6.1 Representations and modules 
Let G be a group of finite order g, and let K be a commutative ring. We 

denote by K[G] the algebra of Gover K; thiS" algebra has a basis indexed 
by the elements of G, and most of the time we identify this basis with G. 
Each elementf of K[G] can then be uniquely written in the form 

f = ~ ass, with as E K, 
sEG 

and multiplication in K[d] extends that in G. 
Let V be a K-module and let p: G -+ GL(V) be a linear representation 

of G in V. For s E G and x E V, set sx = P.sx; by linearity this defines 
ix, for f E K[G] and x E V. Thus V is endowed with the structure of a left 
K[ G ]-module; conversely, such a structure defines a linear representation of 
Gin V. In what follows we will indiscriminately use the terminology "linear 
representation" or umodule." 

Proposition 9. If K is a field of characteristic zero, the algebra K(G] is 
semisimple. 

(For the basic facts on semisimple algebras, see, for example, Bourba~i 
[8] or Lang [10].) 

To say that K[G] is a semisimple algebra is equivalent to saying that each 
K[G]-module V is semisimple, i.e., that each submodule V' of V is a direct 
factor in V as a K[G]-module. This is proved by the same argument of 
averaging as that in 1.3: we choose first a K-linear projection p of V onto 
V', then form the, average pO = (llg) ~SEG sps-I of its transforms by G. 
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The projection pO thus obtained is K[G]-linear, which implies that V'is a 
direct factor of V as a K[G]-module. . 0 

Corollary. The algebra K[G] is a product of matrix algebras over skew fields 
of finite degree over K. 

This .. is a consequence of the structure theorem for semisimple algebras 
(Ioe. cit.). \ -

EXERCISE 

6.1. Let K be a field of characteristic p > o. Show that the following two 
properties are equivalent: 
(i) KlG) is semisimple. 

(ii) p does not divide the order g of G. 
~ (The fact that (ii)~ => (i) is proved as above. To prove the converse, show 

that, if p divides g, the ideal of K[G) consisting of the I ass with 
I as = 0 is not a direct factor (as a module) of K[G).) 

6.2 Decomposition of erG] 

Henceforth we take K = C (though any algebraically closed field of 
characteristic zero would do as well), so that each skew field of finite degree 
over C is equal to C. The corollary to prop. 9 then shows that qG] is a 
product of matrix algebras Mn;(C). More precisely, let Pi: G ~ GL(\\j), 
I <; i <; h, be the distinct irreducible representations of G (up to isomor­
phism), and set n; = dim(W;), so that the ring End(W;) of endomorphisms 
of W; is isomorphic to Mn;(C). The map Pi: G ~ GL(W;) extends by 
linearity to an algebra homomorphism Pi: qG] --+ End(W;); the family 
(Pi) defines a homomorphism 

i==h i==h 

p: C[G] -+ II End(W;) ~ II Mn.(C). 
;=1 ;=1' 

. 
Proposition 10. The homomorphism p defined above is an isomorphism. 

This is a general property of semisimple algebras. In the present case, it 
can be verified in the following way: First, p is suTjective. Otherwise there 
would exist a nonzero linear form on II Mn;(C) vanishing on the image of 
p; this would give a nontrivial relation on the coefficients of the represen­
tations Pi' which is impossible because of the orthogonality formulas of 2.2. 
On the other hand, qG] and II Mn;(C) both have dimension g = ~ ni, cf. 
2.4; so since p is surjective, it must be bijective. 0 

It is possible to describe the isomorphism which is the inverse of p: 
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6.2: Decomposition of qG) 

Proposition 11 (Fourier inversion formula). Let (U;)I~;~h be an element of 
II End(W;), and let u = ~sEG u(s)s be the element of C[G] such that 
p;(u) = U; for all i. The sth coefficient u(s) of u is given by the formula 

I ;=-=h 
u(s) = - ~ ni Trw.(p;(s-I lUi)' where n; = dim(W;). 

g ;=1 ' 

. 
By linearity it is enough to check the formula when u is equal to an 

element t of G. We have then 

u(s) = 6s1 

where Xi is the irreducible character of G corresponding to W;. Thus it 
remains to show that 

I ;=h 
6s1 = - ~ n; X;(s-I t), 

g;==1 

which is a consequence of COT. I and 2 of prop. 5 of 2.4. 

EXERCISES 

o 

6.2. (Plancherel formula.) Let u = ~ u( s)s and v = ~ v( s)s be two elements of 
qG], and put (u,v) =g ~ U(S-I)V(S). Prove the formula 

sEG 

i':t=Ja 

(u,v) = ~ n; Trw (j);(uv». 
;:t=1 ' 

[Reduce to the case where u and v belong to G.] 

6.3. Let U be a finite subgroup of the multiplicative group of qG] which 
contains G. Let u = ~ u(s)s and u' = ~ u'(s)s be two elements of U such 
that u . u' == I; let u; (resp. uj) be the image of u (resp. u') in End(W;) under 

Pi· 
(a) Show that the eigenvalues of p;(s-I )u; = p;(s-I u) are roots of unity. 

Conclude that, for all s E G and all i, we have 

whence, applying prop. II, u(s)* = u'(s-I). 

(b) Show that ~ lu(s)1 2 = I [use (a)). 
sEG 

(c) Suppose that U is contained in Z[G) so that the u(s) are integers. Show 
that the u(s) are all zero except for one which is equal to :t l. Conclude 
that U is contained in the group ±G of elements of the form ±t, with 
lEG. 

(d) Suppose G is abelian. Show that each element of finite order in the 
multiplicative group of Z(G) is contained in ±G (Higman's theorem). 
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Chapter 6: The group algebra 

6.3 The center of erG] 
This is the set of elements of erG] which commute with all the elements 

in erG] (or, what amounts to the same thing, with all the elements of G). 
For c a conjugacy class of G, set ec = ~SEC s. One checks immediately 

that the ec form a basis for the center of qG); the latter therefore has 
dimension h, where h is the number of classes of G, cf. 2.5. Let 

Pi: G -+ GL(W;) 
be an irreducible representation of G with character X; and degree n;, and 
let Pi: erG] -+ End(W;) be the corresponding algebra homomorphism (cf. 
6.2). 

Proposition 12. The homomorphism p; maps the center of qG] into the set of 
homotheties of VI; and defines an algebra homomorphism 

Wi: Cent. C[G] -+ C. 

Ifu = ~ u(s)s is an elem..ent of Cent. qG], we have 

w;(u) = 1. TrwlP~u» =1. ~ u(s)X;(s). 
n;' n; seG 

This is just a reformulation of prop. 6 of 2.5. 

Proposition 13. The family (w;h ~i<h defines an isomorphism of Cent. erG] 
onto the algebra C h = ex·· · X C. 

If we identify qG] with the product of the End(W;), the center of erG] 
becomes the product of the centers of the End(W;). But the center of 
End(W;) consists of homotheties. We thus get an isomorphism of Cent. 
qG] onto ex· · · X C, and it is immediate that it is the one of prop. 13. 

EXERCISES 

6.4. Set 
n· I Pi =....! ~ X;(s- )$. 
g "EG 

o 

Show that the p;( I <;; ; <; h) form a basis of Cent. qG) and that pf = Pi' 
PiPj = 0 for; "* j, and PI + · · · + Ph = 1. Hence obtain another proof of 
tho 8 of 2.6. Show that Wi(Pj) = 8ij. 

65. Show that each homomorphism of Cent. C[G] into C is equal to one of 
the Wi. 

6.4 J)asic properties of integers 

Let R be a commutative ring and let x E R. We say that x is integral over 
Z if there exists an integer n ~ I and elements a), •.. , an of Z such that 
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6.4: Basic properties of integers 

xn + al x n- I + · · · + an = O. 

A complex number which is integral over Z is called an algebraic integer. 
Each root of unity is an algebraic integer. If x E Q is an algebraic integer, 
we have x E Z; otherwise we could write x in the form p/q, with p, q E Z, 
q ;> 2 and p, q relatively prime. The equation (.) would then give 

pn + Qtqpn-I + ... + anqn = 0, 

hence pn == 0 (mod. q) contradicting the fact that p and q are relatively 
prime. 

Proposition 14. Let x be an element of a commutative ring R. The following 
properties are equivalent: 

(i) x is integral over Z. 
(ii) The subring Z[x] of R generated by x is finitely generated as a Z­

module. 
(iii) There exists a finitely generated sub-Z-module of R which contains 

Z[x]. 

The equivalence of (ii) and (iii) follows from the fact that a submodule 
of a finitely generated Z-module is finitely generated, since Z is noetherian. 
On the other h~nd, if x satisfies an equation 

xn + at x n- l + · · · + an = 0, with a; E Z, 

the sub-Z-module of R generated by I, x, ... , xn- I is stable under multi­
plication by x, and thus coincides with Z[x], which proves (i) => (ii). 
Conversely, suppose (ii) is satisfied, and denote by Rn the sub-Z-module of 
R generated by I, x, ... , xn-I. The Rn form an increasing sequence, and 
their union is Z[x); since Z[x] is finitely generated we must have Rn = Z[x] 
for n sufficiently large. This shows that xn is a linear combination with 
integer coeffic~ents of 1, x, ... , xn

-
I , whence (i). 0 

Coronary 1. If R is a finitely generated Z-module, each element of R is integral 
over Z. 

This follows from the implication (iii) => (i). o 
Corollary 2. The elements of R which are integral over Z form a subring of R. 

Let x, y E'R; if x, yare integral over Z, the rings Z[x] and Z[y] are 
finitely generated over Z. The same is then true of their tensor product 
Z[x] ® Z[yJ and of its image Z[x,y] in R. Thus all the elements of Z[x,y] 
are integral over Z. 0 

Remark. In the preceding definitions and results it is possible to replace Z 
by an arbitrary commutative noetherian ring; for (i) ~ Oi) it is not even 
necessary to assume the ring is noetherian. 
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Chapter 6: The group algebra 

6.5 Integrality properties of characters. Applications 

Proposition 15. Let X be the character of a representation p of a finite group 
G. Then X(s) is an algebraic integer for each s E G. 

Indeed X(s) is the trace of p(s), hence is the sum of eigenvalues of p(s), 
which are roots of unity. 

Proposit'OD 16. Let u = ~ u(s)s be an element -of Cent. C[G] such that the 
u(s) are algebraic integers. Then u is integral over Z. 

(This statement makes sense because Cent. C[G] is a commutative ring.) 

Let c;(1 <; i <; h) be the conjugacy classes of G and put ei = ~,sEC. s, 
cf. 6.3. For Si E c; we can write u in the form u = ~;:~ u(s;)e;. In view'of 
cor. 2 to prop. 14, it suffices to show that the e; are integral over Z. But this 
is clear sin~e each product e;ej is a linear combination with integer 
coefficients of the eke The subgroup R = Ze, ED • • • ED Zeh of Cent. C[G] is 
thus a subring; as it is finitely generated over Z, each of its elements is 
integral over Z (cor. I to prop. 14). The result follows. 0 

Corollary 1. Let p be an irreducible representation of G of degree nand 
character x. If u is as above, then the number (lin) ~ u(s)X(s) is an 
algebraic integer. ,sEG 

Indeed, this number is the image of u under the homomorphism 

"W: Cent. qG) --+ C 

associated with p (cr. prop. 12). As u is integral over Z, the same is trutof 
its image under w. 

CoroUary 2. The degrees of the irreducible representations of G divide the order 
ofG. 

Let g be the order of G. We apply COf. 1 to the element u 
= l:,seG x(s-I )s, which is legitimate since X is a class function and since 
the X(s) are algebraic integers (prop. 15); we obtain that the number 

is an algebraic integer. Since this number is rational, it follows that it 
belongs to Z, i.e., that n divides g. 0 

Corollary 2 can be strengthened somewhat (cf. 8.1, cor. to prop. 24). Here 
is a first result in this direction: 
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6.5: Integrality properties of characters. Applications 

Proposition 17. Let C be the center of G. The degrees of the irreducible 
representations of G divide (G: C). 

Let g be the order of G and c that of C, and let p: G ~ GL(W) be an 
irreducible representation of G of degree n. If sEC, p(s) commutes with 
all the p(t), t E G; so by Schur's lemma, p(s) is a homothety. If we denote 
it by A(S), the map A: S ~ A(S) is a homomorphism of C into C*. Let m be 
an integer ~ 0, and form the tensor product 

pm: G m ~ GL(W ® · · · ® W) 

of m copies of the representation p; this is an irreducible representation of 
the group Gm = G x·· · x G, cf. 3.2 the 10. The image under pm of an 
element (SI, ... , Sm) of em is the homothety of ratio A(S) · · · sm). The 
subgroup H of em consisting of the (sJ ' ... , sm) such that sl ... sm = 1 acts 
trivially on W ® · · · ® W, so that by passing to the quotient we. obtain an 
irreducible representation of Gm/H. In view of cor. 2 to prop. 16, it follows 
that the degree nm of this representation divides the order gm/cm-I of 
Gm/H. We have then (g/cn)m E c-1Z for all m, which implies that (g/en) 
is an integer (cf. prop. 14, for example). 

(This proof is due to J. Tate.) 0 

EXERCISES 

6.6. Show that the ring Ze. ED • • • ED Zeh is the center of Z[G]. 

6.7. 

6.8. 

Let p be an irreducible representation of G of degree n and with character 
X. If s E G, show that Ix{s) I <; n, and that equality holds if and only if p(s) 
is a homothety [observe that X(s) is a sum of n roots of unity]. Conclude that 
p(s) = 1 .. X(s) == n. 

Let AI' ••• , An be roots of unity, and let a == ! l: Ai. Show that, if a is an 
algebraic integer, we have either a == 0, or Al n ... = An == a. [Let A be 
the product of the conjugates of a over Q; show thaI IAI <;; I.] 

6.9. Let p be an irreducible representation of G of degree n and with character 
X. Let s E G and c(s) be the number of elements in the conjugacy class of 
s. Show that (c(s)/n)x(s) is an algebraic integer [apply cor. I to prop. 16, 
taking for u the sum of the conjugates of s]. Show that if c(s) and n are 
relatively prime and if x{s) ~ 0, then p(s) is a homothety [Observe that 
(l/n)x(s) is an algebraic integer, and apply ex. 6.8]. 

6.10. Let s E G, s:;= 1. Suppose that the number of elements c(s) of the 
conjugacy class containing s is a power of a prime number p. Show that there 
exists an irreducible character X, not equal to the unit character, such that 
x{s) :;= 0 and x(1) '* ° (mod.p). [Use the formula 1 + ~x"l x{l)x(s} == 0, 
cf. cor. 2 to prop. S to show that the number lip would be an algebraic 
integer if no such character X existed.] Let p be a representation with 
character X, and show that p(s) is a homothety (use ex. 6.9]. Conclude that, 
if N is the kernel of p, we have N :;= G, and the image of s in GIN belongs 
to the center of G/N. 
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CHAPTER 7 

Induced representations; 
Mackey's criterion 

7.1 Induction 
Let H be a subgroup of a group G and R a system of left coset 

representatives for H. Let V be a qG]-module and let W be a sub.qH]­
module of V. Recall (cf. 3.3) that the module V (or the representation V) is 
said to be induced by W if we have V = (BsERsW, i.e., if V is a direct sum 
of the images sW, s E R (a condition which is in,dependent of the choice 
of R). This property can be reformulated in the following way: 

Let 

. W' = C[G] ®qH] W 

be the qO]-module obtained from W by scalar extension from qH] to 
qG]. The injection W --+ V extends by linearity to a C[G]-homomorphism 
i: W' -+ V. 

Proposition 18. In order that V be induced by W, it is necessary and.sufficient 
that the homomorphism 

i: qG] ®qH] W -+ V 

be an isomorphism. 

This is a consequence of the fact that the elements of R form a basis of 
qG] considered as a right qH]-module. 

Remarks 
(I) This characterization of the representation induced by W makes it 

obvious that the induced representation exists and is unique (cr. 3.3, tho 11). 
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7.2~: The character of an induced representation 

In what follows, the representation of G induced by W will be denoted 
by Inda(W), or simply Ind(W) if there is no danger of confusion. 

(2) If V is induced by Wand if E is a qG]-module, we have a canonical 
isomorphism 

HomH(W, E) ;;;: HomG(V, E), 

where HomG(V, E) denotes the vector space of C(G]-homomorphisms of V 
into E, and HomH(W,E) is defined similarly. This follows from an 
elementary property of tensor products (see also 3.3, lemma I). 

(3) Induction is transitive: if G is a subgroup of a group K, we have 

In~(Ind~(W» ~ Ind:i(W). 

This can be seen directly, or by using the associativity of the tensor product. 

Proposition 19. Let V be a qG]-module which is a direct sum V = eiEI VI; 
oj vector subspaces permuted transitively by G. Let io E I, W = Wio and 
let H be the stabilizer oj W in G (i.e., the set oj all s E G such that 
sW = W). Then W is stable under the subgroup·H and the C[G]-modu/e V 
is induced by the C[HJ-module w. 

This is clear. 

Remark. In order to apply proposition 19 to an irreducible representation 
V = ED VI; of G, it is enough to check that the ~ are permuted among 
themselves by G; the transitivity condition is automatic, because each orbit 
of G in the set of W;'s defines a subrepresentation of V. 

EXAMPLE. When the W; are of dimension 1, the representation V is said to 
be monomial." ' 

7.2 The character of an induced representation; 
the reciprocity formula 

We keep the preceding notation. If f is a class function on H, consider 
the function J' on G defined by t4,e formula 

J'(S) =! ~ /(t- I st) 
h tEG 

t-IS/EH 

where h = Card (H). 

We say thatf' is induced by f and denote it by either Ind3(f) or Ind(J). 
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Chapter 7: Induced representations; Mackey's criterion 

Proposition 20. 

(i) The function Ind (f) is a class function on G. 
(ii) If f is the character of a representation W of H, Ind(f) is the 

character of the induced representation Ind(W) of G. 

Assertion (ii) has already been proved (3.3, the 12). Assertion (i) is proved 
by a direct calculation or can be obtained from (ii) and the observation that 
each class function is a linear combination of characters. 0 

Recall that, for fPI and fP2 two class functions on G, we set 

1 I \ 
<fPI, <P2) = - ~ fPl (s- )q>2(S), where g = Card(G), 

gsEG 

cf. 2.2; when we wish to be more explicit about the group G, we write 
<fPt, fP2)0 instead of <<PI' fP2). . 

Also, if "t and V2 are two C[G]-modules, we set 

<Vi, '\l)G = dim. HomG(V., V2)· 

Lemma 2. If fPI and fP2 are the characters of "t and \2, we have 

Decomposing \l and \1 into direct sums, we can assume that they are 
irreducible, in which case the lemma follows from the orthogonality 
formulas for characters (2.3, the 3). 0 

If fP (resp. V) is a function on G (resp. presentation of G), we denote 
by Res cp (resp. Res V) its restriction to the subgroup H. 

Theorem 13 (Frobenius reciprocity). If l/I is· a class function on H and fP a 
class function on G, we have 

Since each class function is a linear combination of characters, we can 
assume that \f; is the character of a C[H]-module Wand fP is the character 
of a C[G]-module E. In view of lemma 2, it is enough to show that 

<W, Res E)H = <Ind W, E)o, 

that is, 

dim.HomH (W, Res E) . dim.HomG (Ind W, E), 
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7.2: The character of an induced representation 

which follows from remark 2 in 7.1 (or from lemma I of 3.3, which amounts 
to the same thing). Of course it is also possible to prove theorem 13 by 
direct calculation. ' 0 

Remarks 
(I) Theorem 13 expresses the fact that the maps Res and Ind are adjoin Is 

of each other. 
(2) Instead of the bilinear form (a,p), we can use the scalar product 

(alP) defined in 2.3. We have the same formula: 

(""Res q»H = (Ind t/l1q»G. 

(3) We mention also the following useful formula 

Ind(t/I · Res q» = (Ind t/I) · q>. 

It can be checked by a simple calculation, or deduced from the formula 
Ind(W) ® E ~ Ind(W ® Res E), cf. 3.3, example 5. 

Proposidon 21. Let W be an irreducible representatioTJ. of Hand E an 
irreducible representation of G. Then the number (of times that W occurs in 
Res E is equal to the number of times that E occurs in Ind W 

This follows from tho 13, applied to the character '" of W and to the 
character cp of E (one may also apply formula (* ». 0 

EXERCISES 

7.1. (Generalization of the concept of induced representation.) Let a: H --+ G be 
a homomorphism of groups (not necessarily injective), and let ii: qH) 
--+ qG] be the corresponding algebra homomorphism. If E is a qG)-module 
we denote by Resa E the C[HJ-module obtained from E by means of ii; if q> 
is the character of E, that of Resa E is Resa q> = q> 0 a. If W is a qH]­
module, we denote by Inda W the qG]-module qO] ®qH] W, and if '" is 
the character of W, we denote by Indll '" the character of Inda W. 
(a) Show that we still have the reciprocity formula 

(1/1, Resa q»H = (Inda~' q»o· 

(b) Assume that a is surjective and identify G with the quotient of H by the 
kernel N of a. Show that Indo W is isomorphic to the module obtained 
by having G = U/N act on the subspace of W consisting of the 
elements invariant under N. Deduce the formula 

(Inda~)(s) =! ~ .xt) where n = Card(N). 
n a(t)-=s 

7.2. Let H be a subgroup of G and let X be the character of the permutation 
representation associated with G/H (cf. 1.2). Show that X = Ind~ (I), and 
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Chapter 7: Induced representations; Mackey's criterion 

that W = X - I is the character of a representation of G; determine under 
what condition the latter 'representation is irreducible [usc ex. 2.6, or apply 
the reciproci ty formula]. 

7.3. Let H be a subgroup of G. Assume that for each 1 fI. H we have 
H n IH/- 1 == {I}, in which case H is said to be a Frobenius subgroup of O. 
Denote by N' the set of 'elements of G which are not conjugate to any 
element, of H. 
(.) Let g == Card(G) and let h == Card (H). Show that the number of 

elements of N is (g/h) - 1. 
(b) Let f be a class function <;>n H. Show that th~re exists a unique class 

function J on G which extends f and takes the value 1(1) on, N. 
(c) Show that J == IndRf - /(1)1/1, where 1/1 is the character 'IndH(I) - I of 

0, cf. ex. 7.2. '. 
(d) Showlhat (11,12>H = <J1,J2)0· 
(c) Take 1 to be an irreducible character of H. Show, using (c) and (d), that 

, <]'J>o == I, j(l) > 0, an~ that J is a linear combination with integer 
coefficients of irreducible characters of G. Conclude that J is an 
irreducible character of O. If p is a corresponding representation of G t 

show that p(s) == 1 for each sE N (use ex. 6.7]. 
(f) Show that each linear representation of H extends to' a linear representa­

tion of G whose kernel contains N. Conclude that N U {I} is a normal 
subgroup of G and that G is the semidirect product of H and N U {I} 
( Frobenius' theorem). 

(g) Conversely, suppose G is the semidirect product of H and a normal 
subgroup A. Show that H is a Frobenius subgroup of G if and only if 
for each s E H - {I} and each 1 E A - {I}, we have SIS-I ::tI= 1 (i.e., H 
acts freely on A - {I}). (If' H =1= {I), this property implies that A is 
nilpotent, by a theorem of Thompson.) 

. 
7.3 Restriction to subgroups 

Let Hand K be two s~bgroups of G, and let p: H ~ GL(W) be a linear 
representation <;If H, and let V = Ind~(W) be the corresponding induced 
representation of G. We shall determine the restriction ResK V of V' to K. 

First choose a set of representatives S for the (H, K)double cosets of G; 
this means that G is the disjoint union of the KsH for s E S (we could also 
write s E K \G/H). For s E S, le~Hs = sHs- 1 n K, which is a subgroup 
of K. If we set 

we obtain a homomorphism t/: Hs -+ GL(W), and hence a linear representa­
tion of Hs' denoted Ws. Since Hs is a subgroup of K, the induced 
representation Ind~{Ws) is defined. 

s 

Proposition 22. The representation ResK Inda(W) is isomorphic to the direct 
sum oj the representations Ind~,(~),Jor s E S ~ K\G/H. 
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7.4: Mackey's irreducibility criterion 

We know that V is the direct sum of the images xW, for x E G/H. Let 
s E S and let V(s) be the subspace of V generated by the images xW, for 
x E KsH; the space V is a direct sum of the V(s), and it is clear that V(s) 
is stable under K. It remains to prove that V(s) is K-isomorphic to 
Ind~.r(~). But the subgroup of K consisting of the elements x such that 
x(sW) = sW is evidently equal to Hs' and V(s) is a direct sum of the images 
x(sW), x E K/Hs. Therefore V(s) = Ind~$(sW). Now it remains to check 
that sW is Hs-isomorphic to ~, and this is immediate: the isomorphism is 
given by s: ~ ~ sW. 0 

Remark. Since V(s) depends only on the image of s in K \G/H, we also 
see that the representation Indfi$(~) depends (up to isomorphism) only on 
the double coset of s. 

7.4 Mackey's irreducibility criterion 

We apply the preceding results to the case K = H. For s E G, we still 
denote by Hs t~e subgroup sHs-1 n H of H; the representation p of H 
defines a representation Ress (p) by restriction to Hs' which should not be 
confused with the representation pS defined in 7.3. 

Proposition 23. In order that the induced representation V = Ind~ W be 
irreducible, it is necessary and sufficient that the following two conditions be 
satisfied: 

(a) W is irreducible. 
(b) For each s E G - H the two representations pS and Ress(p) of Hs 

are disjoint. 

(Two representations V. and \l of a group K are said to be disjoint if they 
have no irreducible component in common, i.e., if <"t, \2)K = 0.) 

In order that V be irreducible, it is necessary and sufficient that 
(V, V)G = 1. But, according to Frobenius reciprocity, we have: 

/\ 

However, from 7.3 we have: 

Res V = ~ IndH (pS). 
H sEH\G/H H$ 

Once more applying the Frobenius formula, we obtain: 
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Chapter 7: Induced representat!ons; Mackey's criterion 

For s = 1 we have ds = (p,p) ~ I. In order that (V, V)o = I, it is thus 
necessary and sufficient that dl = I and ds = 0 for s =F I; these are exactly 
the conditions (a) and (b). 0 

Corollary. Suppose H is normal in G. In order that Ind~(p) be irreducible, it 
is necessary and sufJicient that p be irreducible and not isomorphic to any of 
its conjugates pS Jor s f/. H. 

Indeed, we have then Hs = Hand Ress(p) = p. 

EXERCISE 

I 

7.4. Let k be a finite field, let G = S~ (k) and let H be the subgroup of G 
consisting of matrices (~~) such that c == O. Let c.) be a homomorphism' of 
k* into C· and let Xc., be the character of degree I of H defined by 

x~(~ :)=..,(u). 
Show that the representation of G induced by Xc., is irreducible if ",,2 ~ I. 
Compute XW. 
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CHAPTER 8 

Examples of induced representations 

8.1 Normal subgroups; applications to the degrees of the 
irreducible representations 

Proposition 24. Let A be a normal subgroup of a group G, and let 
p: G -+ GL(V) be an irreducible representation of G. Then: 

(a) either there exists a subgroup H of G, unequal to G and containing 
A, and an irreducible representation 0 of H such that p is induced by 
0; 

(b) or else the restriction of p to A is isotypic. 

(A representation is said to be isotypic if it is a direct sum of isomorphic 
irreducible representations.) 

Let V = ED V; be the canonical decomposition of the representation p 
(restricted to A) into a direct sum of isotypic representations (cf. 2.6). For 
s E G we see by Utransport de structure" that p(s) permutes the V;; since V 
is irreducible, G permutes them transitively. Let V io be one of these; if V io is 
equal to V, we have case (b). Otherwise, let H be the subgroup of G 
consisting of those s E G such that p(s)\';o = V;o. We have A C H, 
H ::1= G, and p is induced by the natural representation 0 of H in V; , which 

• 0 
is case (a). 0 

Remark. If A is abelian, (b) is equivalent to saying that p( a) is a 
homothety for each a E A. 

Corollary. If A is an abelian normal subgroup of G, the degree of each 
irreducible representatiun p of G divides the index (G: A) of A in G. 

The proof is by induction on the order of G. In case (a) of the preceding 
proposition the induction .hypothesis shows that the degree of (J divides 
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(H: A), and by multiplying this relation by (G:, H) we see that the degree 
of p divides (0: A). In case (b) let 0' = p(G) and A' = P(A); since the 
canonical map G/A -+ G'/A' is surjective, (0': A') divides (0: A). Our 
previous remark shows now that the elements of A' are homotheties, thus 
are contained in the center of G' ~ By prop. 17 of 6.5, it follows that the 
degree of p divides (G': A') and a fortiori (G: A). 0 

Remark. If A is an abelian subgroup of 0 (not necessarily normal) it is no 
longer tru~ in general that deg(p) divides (G: A), but neverrheless we have 
deg(p) <; (0: A), cf. 3.1, cor. to the 9. 

8.2 Semidirect products by an abelian group 
Let A and H be two subgroups of the group 0, with A normal. Make the 

following hypotheses: 

(i) A is abelian. / 

(ii) G is the semidirect product of H by A. 

[Recall that (ii) means that 0 = A · H and that A n H = {I},' or in 
other words, that each element of 0 can be written uniquely as a product 
ah, With a E A and h E H.] . 

We are going to show that the irreducible representations of 0 can be 
constructed from those of certain subgroups of H (this is the method of 
Ulittle groups" of Wigner and Mackey). 

Since A is abelian, its irreducible characters are of degree I and form a 
group X == Hom(A,C*). The group 0 acts on X by 

(sx)(a) = x<s-Ias) for s E 0, X E X, a E A. 

Let (x;);EX/H be a system of ~epresentatives for the orbits of H in X. For 
each i E X/H, let Hi be the subgroup of H consisting of those elements h 
such that hX; == Xi, and let 0; == A · Hi be the corresponding subgroup of 
G. Extend the function Xi to 0; by setting 

x;(ah) == Xi(a) for a E A, h E H;. 

Using the fact that hx.; == Xi for all h E H;, we see that x.; is a character of 
degree 1 of 0;. Now let p be an irreducible representation of Hj; by 
composing p with the canonical projection OJ ~ Hi we obtain· an irreduci­
ble representation p of Gi . Finally, by taking the tensor product of X; and p 
we obtain an irreducible representation X/iJp, of G j ; let 8;,p be the corre-
sponding induced representation of O. 

Proposition 25 

(a) fI;,p is irreducible. 
(b) IjlJ;,p and lIi,,p' are isomorphic, then i == i' and p is isomorphic to p'. 
(c) Every irreducible representation of 0 is isomorphic to one of the 1I;,p. 

(Thus we have "all the irreducible representations of 0.) 
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8.3:, A review of some classes of finite groups 

We prove (a) using Mackey~ criterion (7 .. 4, prop. 23) as follows: Let 
s fi 0; = A . Hi' and let KJ' = Gi n sGis-_J

• We have to show that, if we 
compose the representation Xi ® P of Gi with the two injections Ks -+ G; 
defined by x f-+ x and x ~ s-l xs, we obtain two disjoint representations of 
Ks. To do this, it is enough to check that the restrictions of these 
representations to the subgroup A of Ks are disjoint. But the first 'restricts 
to a multiple of X~ and the second to a multiple of sX;; since s fi A · H; w~ 
have SXi ¢ Xi and so the two representations in question are indeed 
disjoint. 

N ow we prove (b)~ First of all, the restri~tion of 1J;,p to A only involves 
characters X belonging to the orbit HX; of Xi. This shows that 1J;,p determines 
i. Next, let W be the representation space for 9;,p' and let W; be the subspace 
of W corresponding t~ Xi [i.e., the set of x E W such that 1J;,p(a)x = x;(a)x 
for all a E A). The subspace W; is' stable under Hi' and one checks 
immediately that the representation of H; in W; is isomorphic to p; whence 
9;,p determines p. 

, Finally, let a: G ~ GL(W) be an irreducible representation of G. Let 
W = E9xEX W be tJie .canonical decomposition of ResA W. At least one of 
the Wx is nonzero; if s E G,a(s) transforms Wx into Ws(x)- The ,group f:I; 
maps Wx; into itself; l~t·W; be an irreducible sub - C[H;]-module of Wx; and 
.let p, be the corresponding representation of H j • It is clear that the 
representation of G; = A · H; is isomorphic to 'X; ® jJ. Thus the restriction 
of a to G; contains Xi ® P at least once. By prop. 21, it follows that a occurs 
at least once in the induced representation 9i,p; since 9;,p is irreducible, this 
implies that a and 9;,p ar~ isomorphic, which proves (c). 0 

EXERCISES 

8:1. Let Q, h, h; be the orders of A, H, Hi respectively. Show that Q == ~ (hlh;). 
Show that, for fixed i, the _ sum of the squares of the degrees of the 
representations Bi,p is h2/h;. Deduce from this another prO()f of (c). 

8.2. Use prop. 25 to recompute the irreducible representations of the groups Dn, 

~ ~4' and,®4 (cf. Ch. 5). ' 

8.3 A review of some classes of finite groups 

For more details ontbe .results of this section and the following, see 
Bourbaki, Alg. I, §7. , 

Solvable groups. One says that 0 is solvable if there exists a sequence 

{I} = 'Go C 0 1 c _ .. ' C Gn = G 

of subgroups of G, with 'Gi - J normal in Gi and G;/G;_I abelian for 
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Chapter 8: Examples of induced representations 

I < i <; n. (Equivalent definition: G is obtained from the group {I} by a 
finite number of extensions with abelian kernels.) 

Supersolvable groups. Same as above, except that one requires that all the 
G; be l)ormal in G and that G;/G;_I be cyclic. 

Nilpotent groups. As above, except that O;/G;_I is required to be in the 
center of 0/0;_1 for I < i ~ n. (Equivalent definition: 0 is obtained from 
the group {I} by a finite number of central extensions.) 

It is clear that supersolvable ~ solvable. On the other hand, one checks 
immediately that each central extension of a supersolvable group is 
supersolvable; thus nilpotent ~ supersolvable. 

p-groups. If p is a prime, a group whose order is a power of p is called a 
p-group. 

Theorem 14. Every p-group is nilpotent (thus supersolvable). 

In view of the preceding it suffices to show that the center of every 
nontrivial p-group G is nontrivial. This is a consequence of the following 
lemma: 

Lemma 3. Let G be a p-group acting on a finite set X, and let XG be the set 
of elements of X fixed by G. We have 

Card(X) == Card(XG ) (mod.p ). 

Indeed X - XG is a union of nontrivial orbits of G, and the cat:dinality 
of each of these orbits is a power pOl of p, with a ~ 1; hence Card(X - XG

) 

is divisible by p. 0 
Let us now apply this lemma to the case X = G with 0 acting by inner 

automorphisms. The set XG is just the center C of O. Thus 

Card(C) == Card(G) == 0 (mod.p), 

whence C ::1= {I}, which proves the theorem. 

We record another application of lemma 3 which will be used in Part III: 

Proposition 26. Let V be a vector space ~ 0 over a field k of characteristic p 
and let p: G ~ GL(V) be a linear representation of a p-group G in V. Then 
there exists a nonzero element of V which is fixed by all p(s), s E O. 

Let x be a nonzero element of V, and let X be the subgroup of V 
generated by the p(s)x, s E O. We apply lemma 3 to X, observing that X 
is finite and of order a power of p. Therefore XG ::1= {OJ, which proves the 
proposition. 0 
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8.4: Sylow's theorem 

CoroUary. The only irreducible representation of a p-group in characteristic p 
is the trival representation. 

EXERCISES 

8.3. Show that the dihedral group On is supersolvable, and that it is nilpotent if 
and only if n is a power of 2. 

8.4. Show that the alternating group 214 is solvable, but not supersolvable. Same 
question for the group <54" 

8.5. Show that each subgroup and each quotient of a solvable group (resp. 
supersolvable, nilpotent) is solvable (resp. suPersolvable, nilpotent). 

8.6. Let p and q be distinct prime numbers and let G be a group of order pQ qb 
where ~ and b are integers> O. 

(i) Assume that the center of G is {I}. For s E G denote by c(s) the number 
of elements in the conjugacy class of s. Show that there exists s =1= I such 
that c(s) _ 0 (mo(tq). (Otherwise the number of elements of G - {I} 
would be divisible by q.) For such an s, c(s) is a power of p; derive ff(~m 
this the existence of a normal subgroup of G unequal to {I} or G [apply 
ex. 6.10]. , 

(ii) Show that G is solvable (Burnside's theorem). [Use induction on the order 
of G and distinguish two cases, depending on whether the center of G is 
equal or unequal to {I}.] . 

(iii) Show by example th~t G is not necessarily supersolvable (cf. ex. 8.4). 
(iv) Give an example of a nonsolvable group whose order is divisible by just 

three prime numbers ISs, S6' G~(F7) will do]. 

8.4 Sylow's theorem 

Let p be a prime number, and let G be a group of order g = pn m, where 
m is prime to p. A subgroup of G of order pn is called a Sylow p-subgroup 
of G. 

1beorem 15 

(a) There exist Sylow p-subgroups. 
(b) They are conjugate by inner automorphisms. 
(c) Each p-subgroup of G is contained in a Sylow p-subgroup. 

To prove (a) we use induction on the order of G. We may assume n ~ 1, 
Le. Card (G) == 0 (mod. p). Let C be the center of G. If Card (C) is divisi­
ble of order p, an elementary argument shows that C contains a subgroup 
D cyclic of order p. By the induction hypothesis, GID has a Sylow p­
subgroup. and the inverse image of this subgroup in G is a Sylow p­
subgroup of G. If Card (C) _ 0 (mod. p) let G act on G - C by inner 

6S 



Chapter 8: Examples of induced representations· 

automorphisms; this gives a partitiQn of G - C into orbits (conjugacy 
classes). As Card(G - C) :iE 0 (mod .p), one of these orbits has a cardinal­
ity prime to p. It follows th~t there is a subgroup H unequal to G such th~t 
(G: H) _ 0 (mod.p). The order of H is' thus divisible by pn, and the 
induction hypothesis shows that H contains a subgroup of order pn. 

Now let P be a Sylow p-subgroup of G and Q a p-subgroup of G. The p­
group Q acts on X = G/P by left translations. By lemma 3 of 8.3 we have 

Card(XQ) == Card(X) _ 0 (mod.p), 

whence XQ *" 0. Thus there exists an element x E G such that QxP 
= xP, hence Q C xPx- l , which proves (c). If in addition Card(Q) = p", 
the groups Q and xPx-1 have the same order, and Q = xPx- l

, which 
proves (6). 0 

ExERCISES 

8.7. Let H be a normal subgroup of a group G and let III be a Sylow p-subgroup 
of O/H. 
(a) Show that there exists a Sylow p-subgroup P of 0 whose image in O/H 

is 1M [use the conjugacy of Sylow subgroups]. 
(b) Show that P is unique if H is a p-group or if H is in the center of G 

[reduce to the case where H· has order prime to p, and use the fact that 
each homomorphism from IH into H is trivial]. 

8.8. Let 0 be a nilpotent group. Show that, for each prime number p, 0 contains 
a uniqu~ Sylow p-subgroup, which is normal [use induction on the order of 
G, and apply the induction hypothesis tQ the quotient of 0 by its center, cf. 
ex. 8.7(b»). Conclude that G is a direct product of p-groups. 

l 
8.9. Let G == GLII (k), where k is" a finite field of characteristic p .. Show that the 

subgroup of G which consists of all upper triangular matrices having only 
I's on the diagonal is a Sylow p-subgroup of G. 

8.5 Linear representations of supersolvable groups 

Lemma 4. Let G be a nonabelian supersolvable group. Then there exists a 
normal abelian subgroup of G which is not containefJ in the center of G. 

Let C be the center of O. The quotient H = G/C is supersolvable, thus 
has a composition series in which the first nontrivial term HI is a cyclic 
normal subgroup of H. The inverse image of H. in G has the required 
properties. 0 

Theorem 16. Let G be a supersolvable group. Then each irreducible represen-
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tation of G is induced by a representation of degree 1 fJf a subgroup of G 
(i.e., is monomia/). 



8.5: Linear representations of supersolvable groups 

We prove the theorem by induction on the order of G. Consequently we 
may consider only those irreducible representations p which are faithful, i.e., 
such that Ker(p) = {I}. If G is abelian, such a p is of degree I and there is 
nothing to prove. Suppose G is not abelian, and let A be a normal abelian 
subgroup of G which is not Icontained in the center of G (cf. lemma 4). 
Since p is faithful, this implies that P(A) is not contained in the center of 
p(G); thus there exists a E A such that p(a) is not a homothety. The 
restriction of p to A is thus not isotypic. By prop. 24, this implies that p is 
induced by an irreducible representation of a subgroup H of G which is 
unequal to G·. The theorem now follows by applying induction to H. 0 

EXERCISES 

8.10. Extend Theorem 16 to groups which are semidirect products of a supersol­
vable group by an abelian normal subgroup [use prop. 25 to reduce to the 
supersolvable case J. 

8.11. Let H be the field of quatemions over R, with basis {I, i,j, k} satisfying 

i2 ==j2=k2 ==-1, 

ki == -ik == j. 
ij == - ji == k, jk =. -kj = i, 

Let E be the subgroup of H* consisting of the eight elements ± I, ±i, ±j, ±k 
( quaternion group), and let G be the union of E and the sixteen elements 
(±l ± ;:t:.j ± k)/2. Show that G is a solvable subgroup of H* which is a 
semidirect product of a cyclic group of order 3 by the normal subgroup E. 
Use the isomorphism H ®R C = M2(C) to define an irreducible'representa­
tion of degree 2 of G. Show t4at this representation is not monomial (observe 
that G has no subgroup of index 2). [The group G is the group of invertible 
elements of the ring of Hurwitz 66integral quatemions"; it is also the group 
of automorphisms of the elliptic curve y2 - )' == x3 in characteristic. 2. It is 
isomorphic to S~ (F3)· J 

8.12. Let G be a ~group. Show that, for each irreducible character X of G, we 
have I x'(l) '. 0 (mod.x(1)2), the sum being over all irreducible characters 
X' such that x'(l) < x(l). [Use the fact that x{l) is a power of p, and apply 
cor. 2(a) to prop. S.] 

67 



CHAPTER 9 

Artin's theorem 

9.1 The ring R(G) 

Let G be a finite group and let XI' ••• , Xh be its distinct irreducible 
characters. A class function on G is a character if and only if it is a linear 
combination of the Xi's with hon-negative integer coefficients. We will 
denote by R+(G) the set of these functions, and by R(G) the group 
generated by R+(G), i.e., the set of differences of two characters. We have 

R(G) = ZXI E9 • • • E9 ZXh. 

An element of R(G) is called a virtual character. Since the product of two 
characters is a character, R(G) is a subring of. the ring Fc(G) of class 
functions on G with complex values. Since the X; form a basis of Fc(G) over 
C, we see that C ® R(G) can be identified with Fc(G). 

We can also view R(G) as the Grothendieck group of the category of finitely 
generated qO]-modules; this will be used in Part III. 

If H is a subgroup of G, the operation of restriction defines a ring 
homomorphism R (G) --+ R (H), denoted by ResH or Res. 

Similarly, the operation of, induction (7.2) defines a homomorphism of 
abelian groups R(H) --+ R(G), denoted by IndH or Ind. The homomor­
phisms Ind and Res are adjoints of each other with respect to the bilinear 
forms <cp, .p>H and <cp, .p)G' cf. the 13. Moreover, the formula 

Ind(cp · Res(l/I» = Ind(cp) · '" 

shows that the image of Ind: R(H) --+ R(G) is an ideal of the ring R(G). 

68 



9.1: The ring R(O) 

If A is a commutative ring, the homomorphisms Res and Ind extend by 
linearity to A-linear maps: 

EXERCISES 

A ® Res: A ® R(G) ~ A ® R(H) 

A ® Ind: A ® R(H) ~ A ® R(G) 

9.1. Let cp be a real-valued class function on G. Assume that (cp, I) = 0 and that 
(J'{s) <; 0 for each s =1= I. Show that for each character X the real part of 

. (cp, X> is :> 0 [use the fact that the real part of q>(s-I )x(s) is greater than or 
equal to that of cp(s-I )x(l) for all s]. Conclude that, if cp belongs to R(O), cp 
is a character. 

9.2. Let X E R (0). Show that X is an irreducible character if and only if 
(x,X) = 1 and x(1) :> o. 

9.3. If f is a function on G, and k an integer, denote by \}fk(f) the f.unction 
s ~ f(sk). 

(a) Let p be a rerresentation of 0 with character x. For each integer k ~ 0, 
denote by xo (resp. X~) the character of the kth symmetric power (resp. 
kth exterior power) of p (cf. 2.1 for the case k = 2). Set 

and 

where T is an indeterminate. Show that, for s E 0, we have 

(JT(x)(S) = l/det(1 - p(s)T) and AT(x)(s) = det(l + p(s)T). 

Deduce the formulas 

and 

0T(x) = exp{ I +k(x)Tk/k}, 
k=1 

AT(x) = exp{ i (-I)k-l+k(x)Tk/k}, 
k=1 

II 

nX; == I yk <x >x;-k , 
k==1 

II 

nXA = ~ (_I)k-I 'l'k (x)XA-k, 
k==1 

which generalize those of 2.1. 

(b) Conclude from a) that R(O) is stable under the operators 'Ilk, k E Z. 

9.4. Let n be an integer prime to the order of O. 

(a) Let X be an irreducible character of G. Show that yll(x) is an irreducible 
character of G [use the two preceding exercises]. 
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Chapter 9: Artin's theorem 

(b) Extend by linearity x .... xn to an endomorphism 1/In of the vector space 
qG). Show that the restriction of 1/In to Cent. qG] is an automorphism of 
the algebra Cent. qO). 

9.2 Statement of Artin's theorem 

It is as follows: 

1beorem 17. Let X be a family of subgroups of a finite group G. Let 
Ind: E9~exR(H) -+ R(G) be the homomorphism defined by the family of 
Ind3, HEX. Then the jollowing properties are equivalent:"' 

(i) G is the union of the conjugates of the subgroups belonging to X. 
(ii) The cokernelofInd: EB R(H) -+ R(G) isfinite. 

HeX 

Since R(G) is ,finitely generated as a group, we can rephrase (ii) in the 
following way: 

(ii') For each character X of 0, there exist virtual characters 
XH E R(H), HEX, and an integer d;;' I such that 

dX = ~ Ind~<XH)· 
HeX 

Note that the family of cyclic subgroups of G satisfies (i). Hence: 

Corollary. Each character of G is a linear combination with rational coeffi­
cients of characters induced by charllcters of cyclic subgroups ofG. 

We will see in the next section that the above statement remains true 
when ·"rational" is replaced by "integer" and "cyclic" by "elementary." 

ExERCISE 

9.5. Take for 0 the alternating group _. and for X the family of cyclic subgroups 
of G. Let {Xo,X" Xl,1/I} be the distinct irreducible characters of G (cf. 5.7). 
Show that the image of E9 R+(H) under Ind is generated by the five 
characters: HeX 

Xo + XI + X2 + 1/1, Xo + 1/1, XI + 1/1, X2 + 1/1. 

Conclude that an element X of R(G) belongs to the image of Ind if and only 
if x{l) - 0 (mod. 2). Show that none of the characters Xo, XI' Xl is a linear 
combination with positive rational coefficients of characters induced from 
cyclic subgroups. 

9.3 First proof 

First, we show that (ii) ~ (i). Let S be the union of the conju~tes of the 
subgroups H belonging to X. Each function of the form l! IndH(/H)' with 
IH E R(H), vanishes off S. If (ii) is satisfied, it follows that each class 
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9.3: First proof 

function on G vanishes off S, which shows thett S = G. Hence (i) holds. 
Conversely, suppose (i) is satisfied. T () prove (ii), it suffices to show that 

the Q-linear map 

Q ® Ind: E9 Q ® R(H) --+ Q ® R(G). 
HeX . 

is surjective, which is also equivalent to the surjectivity of the C-linear map 

C ® Ind: E9 C ® R(H) --+ C ® R(G) 
HeX 

By duality this is equivalent to the injectivity of the adjoint map 

C ® Res: C ® R(G) --+ Ea C ® R(H). 
HeX 

But this injectivity is obvious: it amounts to saying that if a class function 
on G restricts to 0 on each cyclic subgroup, then it is zero. The theorem 
follows. 0 

EXERCISES 

We assume that the family X is stable under cOnjugation and passage to 
subgroups, and that G is the union of the subgroups belonging to X. (Example: the 
family of cyclic subgroups of G.) 

9.6. Denote by N the kernel of the homomorphism 

Q ® Ind: E9 'Q ® R(H) -+ Q ® R(G). 
HeX 

(a) Let H, H' e X, with H' c H; let i e R(H') and X = Ind:,(x') 
E R(H). Show that X - X' belongs to N. 

(b) Let HEX and s E G. Set "H == sHs-1• Let X E R(H) and let "X be 
the element of R("H) defined by sx(slu- I ) == x(h) for h E H. Show that 
X - "X belongs to N. 

(c) Show that N is generated over Q by the elements of type (a) and (b) 
above. [Extend scalars ~o C and use duality. One is led to prove that, if 
for each HEX a class function lH on H is given and if the lH satisfy 
conditions of ratriction and conjugation analogous to~) and (b) above, 
then there exists a class function! on G such that ResH! == !H for each 
H.J 

9.7. Show that Q e R(G) has a presentation * by generators and relations of the 
following form: 1 

Generators: symbols (H,X), with HEX and X E Q ® R(H). 

• This exercise gives a "presentation" of Q e R(G) in terms of induced characters (H,X). 
It would be very desirable, for application to the theory of L-series, to pve such a presentation 
for R(G) itself (without tensoring by Q). When G is solvable, this has been done by Langlands­
Deligne (Lecture Notes in Math. 349, p. S 17, tho 4). 

71 



Chapter 9: Artin's theorem 

Relations: 

(i) (H,AX + A'X') = A(H,X) + A'(H,X') for A, A' E Q, and X, X' E Q 
® R(H). 

(ii) For H' C H, X' E R(H'), and X = IndU,(x'), we hav~ (H,X) = (H',X'). 

(iii) For HEX, s E 0, X E R(H), we have (H,X) = ("H, "X), with the 
notation of ex. 9.6(b). 

[Use ex. 9.6]. 

9.4 Second proof of (i) => (ii) 

First let A be a cyclic group, and let a be its order. Define a function (JA 

on A by the formula: 

if x generates A 
otherwise 

Proposition 27. If G is a finite group of order g, then 

g = ~ IndX«(JA)' 
AcG 

where A runs through all the cyclic subgroups of G. 

(In this formula, the letter g denotes the constant function equal to g.) 

Put fJ'A = IndX«(JA). For x E G we have 

. fJ'A(X) =.!. ~ 8A(yxy-') 
a yEG 

yxy-I EA 

1 
= - ~ a = ~ 1. 

a yEG yEO 
yxy-lgen.A yxy~lgen.A 

However, for each y E G, yxy-l generates a unique,eyclic subgroup of G. 
So we have: 

~ 8'A(X) = ~ 1 = g. 0 
AcG yEG 

# 

Proposition 28. If A is a cyclic g"oup, then (JA E R(A). 

The proof is by induction on the order a of A, the case a = I being 
trivial. By prop. 27 we have 

72 



9.4: Second proof of (i) ~ (ii) 

The induction hypothesis gives 0B E R(B) for B #= A, hence Ind~(8B) 
belongs -to R(A); on the other hand, it is clear that a E R(A) and so it 
follows that 9A belongs to R(A). 0 

Application to the proof of (i) => (ii) 

First observe that, if A' is contained in a conjugate of A, the image of 
IndX, is contained in that of IndX. Hence we can assume that X is the 
family of all cyclic subgroups of G. Propositions 27 and 28 then show that 

g = ~ IndX«(JA)' 
AeX 

with 8A E R(A). 

Thus the element g belongs to the image of Ind. Since this image is an ideal 
of R(G), cf. 9.1, it contains every element of the form gX, with X E R(G), 
which proves (iii) (and even more, since we have an explicit denominator 
viz. the order of G). 

EXERCISE 

9.8. If A is cyclic of order a, put AA = cp(a)'A -IJA, where cp(a) is the number of 
generators of A, and IQ is the character of the regular representation. Show 
that AA is a character of A orthogonal to the unit character [apply ex. 9.1]. 
Show that, if A runs over the set of cyclic subgroups of a group G of order 
g, we have 

where 'G is the character of the regular representation of G [use prop. 27]. 

[Application (Aramata-Brauer): Let F be a finite extension of the number 
field E, and let .z.(s) = rF(s)/fE(s) be the quotient of their zeta functions. It 
is known that" is meromorphic in the entire complex plane. Now suppose 
that F IE is a Galois extension with Galois group G. Then the formula (.) 
above implies the identity 

where FA denotes the subfield of F corresponding to the cyclic subgroup A. 
The functions Lp/~ (s, AA) are "abelian" L-functions, and hence bolomor­
p~ic. So we see that. itself is holomorphic, i.e., that fE divides fF; it is not 
known if this result still holds for non-Galois extensions (this would follow 
from conjectures of Artin).] , 
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CHAPTER 10 

A theorem of Brauer 

In sections 10.1 through 10.4 the letter p denotes a prime number. 

10.1 p-regular elements; p-elementary subgroups' 

Let x be an element of a finite group G. We say that x is a p-element (or 
is p-unipotent) if x has order a power of p; we say that x is a p'-element (or 
is p-regular) if its order is prime' to p. 

Each x E G can be written in a unique way x = Xu xr where Xu is p~ 
unipotent, x, is p-regular, and Xu and xr commute; moreover, Xu and xr are 
powers of x. This can be seen by decomposing the cyclic subgroup 
generated by x as a direct product of itsp-component and itsp'-component. 
The element Xu (resp. x,) is called the p-component (resp. the p' -component) 
of x. 

A group H is said to be p-elementary if it is the direct product of a cyclic 
group C of order prime to p with a p-group P. Such a group is nilpotent and 
its decomposition C x P is unique: C is the set of p'-elements of H, and P 
is the set of p-elements. 

Let x be a p'-element of a finite group G, let C be the cyclic subgroup 
generated by x, and let Z{x) be the centralizer of x (the set of all s E G 
such that sx = xs). If P is a Sylow p-subgroup of Z(x), the group 
H == C · P is a p-elementary subgroup of G, which is said to be associated 
with x; it is unique up to conjugation in Z(x). 

EXERCISES 

10.1. Let H = C · P be a p-elementary subgroup of a finite group 0, and let x be 
a generator of C. Show that H is contained in a p-elementary subgroup H' 
associated with x. 
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10.2: Induced characters arising from p-elementary subgroups 

10.2. Let G = GLn (k), where k is a finite field of characteristic p. Show that an 
element x EGis a p-element if and only if its eigenvalues are all equal to 
1, i.e., if 1 - x is nilpotent; it is a p' -element if and only if it is semi~mple, 
i.e., diagonalizable in a finite extension of k. 

10.2 Induced characters arising from p-elementary subgroups 

The purpose of this and the next twosections is to prove the following 
result: 

Theorem 18. Let G be a finite group and let ~ be the subgroup of R(G) 
generated by characters induced from those of p-elementary subgroups of G. 
Then the index of ~ in R (G) is finite and prime to p. 

Let X(p) be the family of p-elementary subgroups of G. The group ~ is 
the image of the homomorphism 

Ind: E9 R(H) ~ R(G) 
HEX(p) 

defined by the induction homomorphisms·Ind~, H E X(p). Then ~ is an 
ideal of R(G), and to prove the theorem it is enough to show that there 
exists an integer m, 'prime to p, such that m E ~. In fact, we prove the 
following more precise result: 

Theorem 18'. Let g = pnl be the order ofG, with (p,/) = l. Then I E ~. 

The proof (due to Roquette and Brauer-Tate [12)) uses the subring A of 
C generated by thegth roots of unity. This ring is free and finitely generated 
as a Z-module; its elements are algebraic integers. We have Q n A = Z, 
since the elements of this intersection are simultaneously rational numbers 
and algebraic integers (cf. 6.4). The quotient group A/Z is finitely generated 
and torsion-free, hence free; it follows (by lifting to A a basis of A/Z) that 
A has a basis {I, at, ... ,ac } containing the element I. 

The homomorphism Ind defines, by tensoring with A, an A-linear map 

A ® Ind: EB A ® R(H) -+ A ® R(G). 
HEX(p) 

The existence of the basis {I, at , ••. ,(Xc) then implies the following: 

Lemma 5. The image· of A ® Ind ;s A ® ~; moreover we have 

(A ® ~) n R(G) = ~. 

Thus, to prove that the constant function I belongs to ~, it is enough to 
prove that I belongs to the image of A ® Ind, or in other words, that I is of 
the form ~ aH Ind~ (/H), with au E A and IH E R (H). 

H 

7S 



Chapter 10: A theorem of Brauer 

Remarks 
(I) The advantage of the ring A over the ring Z is that all the characters 

of G have values in A, since these values are sums of gth roots of unity. It 
follows that A ® R(G) is a subring of the ring of class functions on G with 
values in A. 

(2) It can be shown that A is the set of algebraic integers of the 
cyclotomic field Q · A, but we will not need this. 

10.3 Construction of characters 

Lemma 6. Each class function on G with integer values divisible by g is an 
A-linear combination of characters induced from characters of cyclic sub­
groups ofG. 

(Here, and in all that follows, the expression Uinteger values" means 
"values in Z.") 

Let f be such a function, and write it in the form gX, where X is a class 
function with integer values. If C is a cyclic subgroup of G, let fJe be the 
element of R(C) defin~d i_n 9.4. We have 

whence 

J = gX = ~ Indg(fJc)X = ~ Indg(fJc · Resgx). 
c c 

It remains to show that Be. Resc X belongs to A ® R(C) for each C. But the 
the values of Xc = fJc · Resc X are divisible by the order of C, so if 1/1 is a 
character of C, we have <Xc' '" > E A, which shows that Xc is an A-linear 
combination of characters of C, whence Xc E A ® R(C). 0 

Lemma 7. Let X be an element of A ® R(G) with integer values, let x E G, 
and let x, be the p'-component of x (cf. 10.1). Then 

x{x) == x(x,) (mod. p). 

By restriction, we are led to the case where G is cyclic and generated by 
x. Now X = ~ QiXb with a; E A and the Xi running over the distinct 
characters of degree I of G. If q is a sufficiently large power of p, we have 
xq = x1 and thus Xi(X)q = Xi(X,)q for all i. Hence 

x(x)q = (~ a;Xi(x»q == ~ aix;(x)q 

== ~ a'!Xi(x,)q) = x(x,)q (mod.pA). 

76 



10.3: Construction of characters 

Since pA n Z = P Z, this implies 

x(x)q == X(xr)q (mod.p), 

hence X(x) == X(x r ) (mod. p), since "Aq = "A (mod. p) for all'A E Z. 0 

Lemma 8. Let x be a p' -element of G, and let H be a p-elementary subgroup 
-of G associated with x (10.1). Then there exists a function 1/1 E A ® R (H), 
with integer values, such that the induced function 1/1' = Ind~ '" has the 
following properties: 

(a) ""(x) ~ 0 (mod. pl. 
(b) ~'(s) = 0 for each p' -element of G which is not conjugate to x. 

Let C be the cyclic subgroup of G generated by x, and let Z(x) be the 
centralizer of x in G. We have H = C X P, where P is a Sylow p-subgroup. 
of Z(x). Let c be the order of C, and let po be the order of P. Let 1/Ic be the 
function defined on C by 

l/Ic(X) = c and ~c(y) = 0 if y =1= x. 

We have l/Ic = ~x X(x- 1 lx, where X runs through the set of irreducible 
characters of C; it follows that 1/Ic belongs to A ® R(C) (which follows also 
from lemma 6). 

Let", be the function on H = C x P defined by 1/!{xy) = l/Ic(x) for 
x E C and yEP. This is the inverse image of 1/Ic under the pr.ojection 
H -+ C. So we have l/I E A ® R(H). We show now that l/I satisfies the 
conditions of the lemma: 

If s. is a p' -element of G and if y E G, ysy-l is a p' -element; if ysy-I 
belongs to H then it belongs to C, and we have 1/!{ysy-l) = 0 whenever 
ysy-I =1= x. It follows that 1/I'(s) = 0 if s is not conjugate to x, which proves 
(b). Moreover: I 

I I I __ Card(oZ(x» 
l/I'(x) = -.-0 ~ ~(x) = Ii ~ 

C P yxy-I =x P yxy-I ==x P 

whence If'(X) ~ 0 (mod. p) since po = Card(P) is the largest power of p 

dividing Card (Z(x) ). 0 

Lemma 9. There exists an element'" of A ® v" with integer values, such thaI 
1/.{x) • o {mod. p) for each.x E G. 

Let (x;)iEI be a system of representatives of the p-regular classes (i.e. 
those consisting of p' -elements). Lemma 8 gives us an element l/Ii of A ® v" 
with integer values, such that 

"';(Xi) ~ 0 (mod. p) and "'i(Xj) == 0 (mod. p) for j =F i. 
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Put 1/1 = ~ t/lio It is clear that t/I belongs to A ® V, and has integer values. 
For x E G, thep'-component of x is conjugate to a unique xi- From lemma 
7 we obtain 

\fI(x) == \fI{x;) == l/I;(Xj) :;E 0 (mod. p). o 

EXERCISES 

10.3. Extend lemma 6 to class functions with values in the ideal gA of A. 

10.4. Let '" be a prime ideal of A such that ~ n Z = pZ (which is equivalent to 
saying that Alp is a finite field of characteristic p). Let X E A ® R(G), let 
x E G, and let x, be the pi-component of x. Show that x{x) == x{x,) 
(mod .' p) (same proof as for lemma 7) but that we no longer always have 
x{x) a: X(x,) (mod.pA). 

10.4 Proof of theorems 18 and 18' 

Let g = pn I be the order of G, with (p, I) = l. It suffices to show that I 
belongs to A ® v" cf. 10.2. 

Let 1/1 be an element of A ® V, satisfying the conditions of lemma 9. The 
values of l/I are =!= 0 (mod. p). Let N = q>{pn) be the order of the group 
(Z/p"Z)*, so that AN == 1 (mod. p") for each integer A prime to p. Hence 
\fI{x)N == 1 (mod _ pn) for all x E G, and the function 1(t/lN - I) has integer 
values divisible by lp" = g. By lemma 6, this function is an A-linear 
combination of characters induced from cyclic subgroups of G. Since each 
cyclic group is p-elementary, we have 1(t/lN - 1) E;: A ® Vp' But A ® V, is 
an ideal of A ® R(G), whence 11/IN E A ® Vp. Subtracting, we get that I 
belongs to A ® V" which finishes the proof. . 

10.5 Brauer's theorem 

We wiil say that a subgroup of G is elementary if it is p-elementary for at 
least one prime number p. 

1beorem 19. Each character of G is a linear combination with integer 
coefficients of characters induced from characters of elementary subgr()ups. 

Let ~ be the subgroup of R(G) defined i~ tho 18. It suffices to show that 
the sum V of the v., for p prime, is equal to R(G). Now V contains v" so 
the index of V in ReG) divides that of V,. hence is prime to p by tho 18. Since 
this is true for all p, this index is equal to 1, which proves the theorem. 0 

1beorem 20. Each character of G is a linear combination with integer 
coefficients of monomial characters. 
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. (Recall that a ch~racter is said to be monomial If it is induced from a 
character of degree 1 of some ~ubgroup.) 

This follows from the 19 and the fact that each character of an elementary 
group is monomial, since such a group is nilpotent (cf. 8.5, the 16). 0 

Remarks 

(I) The linear combinations occuring in the 19 and 20 may have positive 
or negative coefficients. It is in general impossible to write a given character 
as a linear combination with positive coefficients (integral or even real) of 
monorniai characters, cf. ex. 10.5, below. 

(2) Theorem 20 plays an essential role in many applications of represen­
tation theory: to a large extent, it gives a reduction of questions pertaining 
to an arbitrary character X to the case where X has degree 1 (hence comes 
from a character of a cyclic group). It is by this method, for example, that 
Brauer proved the Artin L-functions are meromorphic in the entire complex 
plane. We will see other applications later. 

EXERCISES 

10.5. Let X be an irreducible character of a group G. 

(a) Suppose that X is a linear combination with positive real coefficients of 
monomial characters. Show that there exists an integer m ;> I sucb that 
mx is monomial. · 

(0) Take for G the alternating group 9ls• The corresponding permutation 
representation is the. direct sum of the unit representation and an 
irreducible representation of degree 4; take for X the character of this 
latter representation~ If mx were induced by a character of degree I of 
a subgroup H, the order of H would be equal to 151m, and m could only 
take the values 1,3,5, 15. Moreover, the restriction of X to H would have 
to contain a character of degree I of multiplicity m (observe that G has 
no subgroup of order 15). Conclude that X cannot be a linear combina­
tion with positive real coefficients of monomial characters. 

10.6. (Suggested by A. Weil.) We want to prove that each 1 E R(G) such that 
1(1) = 0 is a Z-linear combination of elements of the form Ind~(a - 1), 
where E is an elementary subgroup of G and a is a character of degree 1. 

(a) Let RO(G) be the subgroup of R(G) generated by the Ind~(a - I), and 
let R'(G) = Z + RQ(G). Show that, if H is.a subgroup of G, Indg maps 
RO(H) into RO(G). 

(b) Suppose that H is normal in G and t;hat G/H is abelian. Show that IndH 
maps R'(H) into R'(G). [It is enough to show that Indg(l) belongs to 
R'(G), and this follows from the fact that Ind3(1) is the sum of (0: H) 
characters of degree 1 of G whose kernel contains H.] 

(c) Suppose G is elementary. Let Y be the set of maximal subgroups of G. 
Show that if HEY, then Ii is normal in G, and GfH has prime order 
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[use the fact that G is nilpotent]. Deduce that R.~G) is generated by the 
characters of degree 1 of G together with the IndH(R(H», where H runs 
over Y [apply tho 16]. Show that R'(G) :::; R~G) [use induction on the 
order of G, and use (b) to prove that the IndH(R(H» are contained in 
R'(G»). 

(d) Return to the general case and denote by X the set of elementary 
subgroups of G. By tho 19 we have 1 = ~ Ind~(IE)' withIE E R(E). 
If q> E R(G) this gives . EeX 

fP = ~ Ind~(CJ>E) where CJ>E = IE · Res~(fP). 
EeX 

If CP(1) = 0, we have CJ>E E RO(E) by (c). Conclude that fP belongs to 
RO(G), whence R'(G) = R(G). 



CHAPTER 11 

Applicatio~s of Brauer's theorem 

11.1 Characterization of characters 
Let B be a subring of C and let G be a finite group. 

Theorem 21. Let q> be a class function on G such that, for each elementary 
subgroup H of G, we have Res~ 'P E B ® R(H). Then'P E B ® R(G). 

Let X be the set of all elementary subgroups of G. By the 19, we can 
write the constant function I in the form 

1 = ~ Ind~fH' with fH E R(H). 
HeX 

Multiplying by cp, this gives 

<P = ~ cp. Ind~fH = L Ind~(fH· Res~ 'P). 
HeX HeX 

Since fH belongs to R(H) and Res~cp belongs to B ® R(H), their product 
belongs to B ® R(H). It follows that cp belongs to B ® R(G). 0 

A similar argument, using Artin's theorem (ch. 9) gives1 

Theorem 21'. Suppose that B contains Q. If Res~ <P E B ® R(H) for each 
cyclic subgroup H ofG, then q> E B ® R(G). 

Remark. Theorem 21 can be interpreted as a coherence property. Suppose 
that we are given, for each HEX, an element <PH of B ® R(H), and 
suppose the following properties are satisfied: 

(i) If H' c H, then 'PH' = ResU, (<PH ). 
(ii) If H' = sHs-l, with s E G, then <PH' is obtained from <PH by means 

of the isomorphism x ~ sxs- I • 
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Then there exists a unique element cp of B ® R,{G) such that ResH q> 

= CPH for all HEX. 

1beorem 22. Let cp be a class junction on G such that, for each elementary 
subgroup H of G, and each character X of degree 1 of H, the number 

<x. ResH CP)H = Car~(H) S~H X(s-l )cp(s)' 

belongs to B. Then cp belongs to B ® ~(G). 

Let H be an elementary subgroup of G. Let 

Res~q> = ~ cww, where Cw = <w, ResHCP)H, 
w 

be the decomposition of Res~ cP into ·irreducible characters w of H. By 
the 16, each character w is' induced by a character ~ of degree I of a 
subgroup "", of H. By Frobenius reciprocity, we have 

c", = <Xc." Res[' q»H.,. 
, 

Since "", is an elementaTY group, the hypothesis on q> insures that Cw 
belongs to B. Consequently, ResHCP = ~ cww belongs to B ® ~(H), and 
the result follows by the 21. 0 

CoroUary. In order that cP be a' virtual characle~ (i.e., cp E R(G», it is 
necessary and sufficient that, whenever H is an elementary subgroup and 
x: H -+ c· ~s a homomorphism, the~ <X, ResH CP)H E Z. . 

This is the special case B = Z. 

Let Res denote the homomorphism from R(G) into EB R(H) defined 
by the restriction homomorphisms Res~. HeX 

Proposition 19. The homomorphism Res: R(G) -+ ED R(H) is a' split 
.. . HeX 
'lIJect,on. . 

(A module homomorphism!: L -+ M is said to be a split injection if there 
exists r: M --+ L such that r 0 f = 1; this is equivalent to saying that f is 
injective and f(L) is a direct factor of M.) 

It is immediate that Res is an injection. To show that it is split, it suffices 
to prove that its cokernel is torsion free, since the groups under considera­
tion are finitely generated free Z-modules. So we must show that, if 
f = (fH)Hex is an element of ED R(H), and there exists a non-zero n such 
that nf = Res cp, with cp E R(G), then! E Im(Res). But this follows from 
Th. 21, applied to the function cpln and the 'ring Z. 0 
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(The argument could also be given in terms of duality: since the groups 
involved are finitely generated free Z-modules, showing that Res is split, is 
equivalent to showing that its transpose is surjective. But its transpose is 

Ind: ED R(H) ~ R(G), 

which is indeed surjective by Brauer's Theorem.] 

1 1.2 A theorem of Frobenius 

As in Ch. 10, we denote by A the subring of C generated by the gth roots 
of unity, where g = Card(G). 

Let n be an integer ~ I, and let (g, n) be the g.c.d. of g and n. If J is a 
function on G, denote by 'Ynf the function x H J(xn). It is easily checked 
(cf. ex. 9.3) that the '~perator i'n maps R(G) into itself. Moreover: . 

Theorem 23. If f is a class junction on G with values in A, the junction 
(g/(g,n»,¥nf belongs to A ® R(G). 

If c is a conjugacy class of G, denote by fc the characteristic Junction of c, 
~hich takes the value 1 on c and 0 on G - c. The function +nfc is given by: 

if xn E c 

otherwise. 

Each class function with values in A is a linear combination of the fc. 
Theorem 23 is thus equivalent to: 

TIIeorem 23'. For each conjugacy class c of G, the function (g/(g,n»+nfc 
belongs to A ® R(G). 

This can be formulated in still another way: 

Theorem 23". For each conjugacy class c ofG, and each character X ofG, we 
have l/(g,n) ~ x{x) E A. 

x"Ec 

Taking for X the unit character, this gives: 

Corollary 1. .1 'he number of elements x E G such that xn E c is a multiple of 
(g, n). 

In particular: 

Corollary 2. If n divides the order oj G, the number of x E G such that 
xl'l = 1 is a multiple oj n. I 

(We mention at this point a conjecture of Frobenius: If the set Gn of those 
s E. P such that sn =.1 has n elements, then Gn is a subgroup oj G.) 
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PROOF OF THEOREM 23. (R. Brauer.) In view of the 21, it suffices to show 
that the restriction of the function (g / (g, n) )'tn f to each elementary 
subgroup H of G belongs to A ® R(H). Now, if h is the order of H, then 
g/(g, n) is tlivisible by h/(h, n). So it suffices to show that 

(h~n) +ft(ResHf) 

belongs to A ® R(H), that is, the proof is reduced to the case of elementary 
groups. Since an elementary group is a product of p-groups; it is enough to, 
treat the case of ap-group. Now, using the fact that an irreducible character 
of such a group is induced by a character of degree I, we are led finally to 
proving the following: 

Lemma 10. Let c be a conjugacy class of a p-group G, let X be a character of 
degree I of G, and let ac = ~ X(x). Then ac == 0 (mod. (g, n)A). 

x"Ec 

First, observe that the s~m of the Dc (for X fixed and c variable) is equal 
to l:xeG X(x), i.e., to g' if X = 1 and to 0 otherwise. So 

~c ac == 0 (mod. (g, n». 
Therefore it is enough to prove lemma 10 for those classes c which are 
differen .. from the unit class. 

Write n in the form pam, with (p,m) = I. Letpb be the order of the 
elements of c, and let C be the set of x E G such that xn E c. Since 
xft = xP"m has order pb > I, and since G is a p-group, the order of x is 
p"+b. It follows that, if z is an integer = 1 (mod. pb), then (XZ)" = x", 
whence x= E C; moreover, we have equality x= = x if and only if 
z == I (mod. pa+b).In other words, the subgroup r of (Z/pQ+bZ)· consisting 
of elements congruent to I mod. pb acts freely on C. Now the set C is 
partitioned into orbits under the action of r, and it suffices to show that the 
sum of the X(x) over each orbit is divisible by (g, n) in the ring A. Such an 
orbit consists of elements X l+pb" with t E Z/pQZ. The sum of the values of 
X on this orbit is therefore equal to 

ac(x) = x(x) I Zl, where z = X(xpb). 
Imod.pI' 

But X(x) is a pQ+b-th root of unity, and z is a paeth root of unity. Therefore 

{
PQ 

I Zl = 
I mod. pD 0 

if z = I, 

if z =1= I. 

Consequently ac(x) is divisible by pQ, and a fortiori by (g, n). 

EXERCISE 

o 

11.1. Let f be a class function on G with values in Q such that f(xm ) = f(x) for 
all m prime to g. Show that f belongs to Q ® R (G) [use tho 21' to reduce to 
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the cyclic case]. Conclude from tho 23 that, if in addition f has values in Z, 
then the function (g/(g,n»+njbelongs to R(G). Apply this to the.charac­
teristic function of the unit class. 

11.3 A converse to Brauer's theorem 

The letters A and g have the same meaning as in the preceding section. 

Lemma 11. Let p be a prime number. Let x be a p' -element of G, C the 
subgroup generated by x, and P a Sylow p-subgroup of the centralizer Z(x) 
of x in G. Let H be a subgroup ofG containing no conjugate ofC X P, let 
~ be a class junction on H with values in A, and let l/I' = Ind~ l/I. Th~n 
~'(x) == 0 (mod. p A). 

Let Sex) be the set of conjugates of x. Then 

l/I'{x) = Card Z(x) ~ 1/;(y). 
Card H yES(x)nH 

. Let (Yj)iEI be the distinct H-conjugacy classes contained in S(x) n H, and 
choose an element Yi in each Yj. The number of conjugates of Yi in H is 
equal to Card Y;, and also equal to (H: H n Z(y;». Therefore 

, Card Z(x) 
l/I (x) = Ca d H ~ Card Y; .l/I(y;), 

riEl 

. Card Z(y;) 
== .I n;1/;(y;). with n; = C d(H Z( »' 

leI ar n Yi 

Suppose we have n; :;: 0 (mod. p) for some i E I. Then Card Z(Yi) and 
Card(H n Z(y;» are divisible by the same power of p; thus a Sylow p­
subgroup Pi of H n Z(Yi) is also a Sylow p-subgroup of Z(Yi). If C; is the 
cyclic group generated by Yi' then Ci X Pi is contained in H, and is a p­
elementary subgroup associated with Yi in the group G. Since Yi and x are 
conjugate in G, the group C i x Pi is conjugate to C x P. This contradicts 
the hypothesis on H. Thus n; == 0 (mod.p) for all i, whence 

l/I'(x) , 0 (mod. p A). o 

1beorem 23'" (J. Green.) Let (H;)iEI be a family of subgroups ofG such that 
R(G) = Liel Ind~, R(H j }. Then each elementary subgroup of G is con­
tained in a conjugate of some Hi-

Let C x P be a p-elementary subgroup of G. We can assume that this 
subgroup is maximal, and thus associated with a p'-element x of G. If C x P 
were not contained in a conjugate of any Hi' the preceding lemma would 
show x(x) == 0 (mod. p A) for all X E L Ind~; R(H i ), in particular for X 
equal to the unit character of G, which is absurd. 0 
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In other words, the family of elementary subgroups is "the smallest" for 
which Brauer's theorem is true. 

11.4 The spectrum of A ® R(G) 

Recall that if C is a commutative ring, then the spectrum of C, denoted 
Spec(C), is the set of orime ideals of C, cf. Bourbaki, Alg. Comm., Ch. II. 

We want to determine the spectrum of the ring A ® R(G). (We could 
also describe that of R(G), but it would be more complicated.) 

Let CI(G) be the set of conjugacy classes of G. The ring AC1(G) can be 
identified with the ring of class f!lnctions on G with values in A; if f belongs 
to this ring, and if c is a conjugacy class, let f(c) denote the value of f on 
an arbitrary element of c. The injections A ~ A ® R(G) -+ AC1(G) define 
maps 

Spec(AC1(G» ~ Spec(A ® R(G» ~ Spec (A). 

These maps are surjective; this follows, for example, from the fact that 
ACl(G) is integral over A (and even over Z), cf. Bourbaki, Alg. Comm., Ch. 
IV, §2. 

On the other hand, we know that Spec(A) consists of the ideal 0 and the 
maximal ideals of A. Moreover, if M is maximal in A, the field AIM is 
finite; its characteristic is called the residue characteristic of M. 

The spectrum of AC1(G) can be identified with CI(G) x Spec(A): with 
each c E CI(G) and each M E Spec(A) we associate the prime ideal Me 
consisting of those f E AC1(G) such that f(c) E M. The image of Me in 
Spec(A ® R(G» is the prime ideal PM,c = Me n (A ® R(G». 
Proposition 30. If ' 

(i) with each class c E CI (G) we associate P O,C , 

(ii) with each p-regular class c and each maximal ideal M of A with 
residual characteristic p we associate PM,e' 

then we obtain once and only once each prime ideal of A ® R(G). 

(A conjugacy class is said to be p-regular if it consists of p' -elements, cf. 
10.1.) 

Since Spec(AC1(G» --+ Spec(A ® R(G») is surjective (cf. above), each 
prime idealll of A ® R(G) is of the form PM,e; since t:> n A is M, we see 
that t:> determines M, and it remains only to determine which pairs of 
classes cl and c2 are such that PM,cl = PM ,e2. Thus the proposition !ollows 
from: 

Proposition 30'. 
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(i) If M = 0, PO,CI = PO,e2 is equivalent to ci = c2. 
(ii) Suppose that M =1= 0 with residue characteristic p. Let cl (resp. c2) 

be the class consisting of the p' -components of the elements of 
c) (resp. C2). Then PM,c2 = PM ,c2 is equivalent to Ct = C2· 



11.4: The sPectrum of A ® R(G) 

Spec (A ® R(G» 

C2 

--..... --~-------- Spec (A) 

--.... --~------- Spec (Z) 

To prove (i) we must show that, if CI =F c2' then there exists an element 
f E A ® R(G) such that 1(cI) =1= 0 and !(C2) = 0, and this is clear (take 
for! the function equal to g on c) and 0 elsewhere). 

If M has characteristic p, an easy argument, analogous to the proof of 
lemma 7, shows that PM,Cl = PM,ci (cf. ex. 10.4). On the other hand, lemma 
8 shows that PM,ci =1= PM,C2 if ci =1= c2. Whence (ii). 0 

Remarks 

(1) Let I be an ideal of A ® R(G). To show that I is equal to A ® R(G), 
it suffices to show that I is not contained in any of the prime ideals PM,c; 
this is the approach taken in the proof of Brauer's theorem (see also ex. 11.7 
below). 

(2) We can represent Spec(A ® R(G» graphically as a union of "lines" 
Dc corresponding to the various classes c, each of these Jines ~epresenting 
Spec(A). These lines "intersect" in the following way: DCI and DC2 have a 
common point above a maximal ideal M of A with residue characteristic p 
if and only if the p' -components of ci and C2 are equal. 

Proposition 31. Spec(A ® R(G» is connected in the Zariski topology. 

(If C is a commutative ring, a subset F of Spec(C) is closed in the Zariski 
topology if and only if there exists H C C such that ~ E F <=> P ::J H.) 

Let x be an element of G of order p~ · pi2 • • • p'//; x decomposes into a 
product x = XPJ • XPl • • • xPk' where xPi is of order p7i• The classes associated 
with x and XPl • • • xPk have the same PI-regular component. Thus, the 

corresponding "lines" of Spec(A ® R(G» intersect; moreover, each of 
these lineS is connected, being isomorphic to Spec(A). Proceding step by 
step until we get to thee identity, we see that Spec(A ® R(G» is connected. 

o 
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Chapter 11: Applications of Brauer's theorem 

Corollary. Spec R(G) is connected. 

Indeed, this is the image of Spec(A ® R(G» under a continuous map. 

EXAMPLE. Take for G the symmetric group 53. There are three classes: I, C2 

(consisting of the elements" of order 2), and c3 (the elements of order 3). 
There is a unique prime ideal P2 in A of residual characteristic 2, and the 
same holds for 3. The spectrum of A ® R(G) consists of three "lines" 
which intersect as indicated below: 

--___ ------.1'---- 1 Spec (A ® R(G» 

Spec (A) 

Remark. The results of this section have been extended to compact Lie 
groups by G. Segal (Publ. Math. I.H.E.S., 34, 1968). 

ExERCISES 

11.2. Show that the residue field of 1M,c is A/M. 

11.3. If B is an A-algebra, determine Spec(B ® R(G» in terms of Spec(B) (use 
the proof of prop. 30 and 30'). -------

liA. Let K be the quotient field of A and let r be the Galois group of K/Q. We 
know that r is isomorphic to (Z/gZ)*. Let r act on A ® R(G) via its ~ction 
on A, and determine its corresponding action on Spec(A ® R(G». Obtain 
Spec(R(G») by observing that R(G) is the subring of A ® R(G) consisting 
of those elements fixed by r. 

115. Determine Spec (A[GD when G is abelian (observe that A[G] can be 
identified with A ® R(G), where 0 is the dual of G, cf. ex. 3.3). 

11.6. Let B be the subring of AO(G) consisting of those functions f such that, for 
every maximal ideal M of A with residue characteristic p, and every class c 
with p-regular component c', we have f(c) - f(c/)(mod .M). Show that 
A ® R(G) C B, and that these two rings have the same spectrum; give an 
example where they are distinct. 
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11.4: The spectrUm of A ® R(G) 

11.7. Let H be a subgroup of G, and let IH be the ideal of A·® R(G) ·which is the 
image of A ® Ind~. 

(a) Let c be a class of G. Show that IH is contained in PO,c if and only if 
H n c = 0. 

(b) Let c be a p-regular class, and let M be a maximal ideal of A containing 
p. Show that IH is contained in PM,c if and only if H contains no p­
elementary subgroup associated with an element of c. 

(c) Obtain from (b) another proof of tho 18 and 23. 
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CHAPTER 12 

Rationality questions 

So far we have only studied representations defined over the field C of 
complex numbers. In fact, all the proofs of the preceding sections still hold 
over an algebraically closed field of characteristic zero, for example, an 
algebraic closure of Q. Now we are going to see what happens for fields 
which are not algebraically closed. 

12.1 The rings RK(G) and RK(G) 
In this section, K denotes a field of characteristic zero and C an algebraic 

closure of K. If V is a K-vector space, we let Vc denote the C-vector space 
C ®K V obtained from V by extending scalars from K to C. If G is a finite 
group, each linear representation p: G --+ GL(V) over the field K defines a 
representation 

Pc: G --+ GL(V) --+ GL(Vc ) 

over the field C. In terms of "modules" (cf. 6.1), we have 

Vc = C[G] ®K(G] V. 

The character Xp = Tr(p) of p is the same as for Pc; it is a class function 
on G with values in K. 

We denote by RK(G) the group generated by the characters of the 
representations of Gover K; it is a subring of the ring R(G) = Rc(G) 
studied in Ch. 9, 10, 11. 
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We could also define RK (G) as the Grothendieck group for the category of 
K[G]-modules of finite type, cf. Part III, Ch. 14. 



12.I:
T

The rings RK(G) and l{K(G) 

Proposition 32. Let (V;, Pi) be the distinct (up to isomorphism) irreducible 
linear representations of Gover K, and let X; be the corresponding 
characters. Then 

(a) The Xi form a basis ofRK(G). 
(b) The X.i are mutually orthogonal. 

[As usual, this concerns orthogonality with respect to the bilinear form 
<rp,X) = (1/g) l:SEO cp(s-l )X(s).] 

It is clear that the x; generate RK (G). On the other hand, if i =1= j we have 
HomG(V;, \]) = o. But in general, if V and W have characters X.V and Xw, 
we have 

dimKHomG(V,W) = diD1cHomG(Vc ,Wc ) = <Xv,xw), 

cf. 7.2, lemma 2. It follows that <Xi, X;) = 0 if i #: j, and that (Xi, Xi ) 
= dim EndG(V;) is an integer ;> I tequal to I if and only if Vc is 
irreducible, i.e., if V is absolutely irreducible, cf. Bourbaki [8], § 13, no. 4). In 
particular, the X; are linearly independent. 0 

A linear representation of Gover C is said to be realizable over K .(or 
rational over K) if it is isomorphic to a representation of the form Pc, where 
P is a linear representation of Gover K; this amounts to saying that it can 
be realized by matrices having coefficients in K. 

Proposition 33. In order that a linear representation ofG~over C be realizable 
over K, it is necessary and suffiCient that its character belong to RK(G). 

The condition is obviously necessary. Suppose conversely that it is 
satisfied, and let X be the character of the given representation. In view of" 
prop. 32, we have X = ~ n;x;, with n; E Z, and we obtain: 

Since X is the character of a representation of Gover C, the scalar product 
<X, 'Xi> is ~ O. It follows that n; is positive, and that the given representa­
tion can.·be realized as the direct sum of the V;, each repeated n; times. 0 

The same argument shows that the realization in question is unique, up to 
K -isomorphism. 

In addition to the ring RK(G), we shall consider the subring "RK(G) 
consisting of those elements of R(G) which have values in K. Obviously, 
RK(G) c "RK(G). Moreover: 
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Chapter 12: Rationality questions 

Proposition 34. The group R K (0) has finite index in RK (G). 

First, observe that each irreducible representation of Gover C can be 
realized over a finite extension of K (that generated by the coefficients of a 
corresponding matrix representation). Hence there exists a finite extension 
L of K, such that RL(G)"= R(O). Let d = [L: K] be the degree of this 
extension; the proposition then follows ftom the following lemma: 

LelDma 12. We have d· RK(G) C RK(G). 

First, let V be a linear representation of Gover L with character x; by 
restricting scalars we can consider V as a K-vector space (of dimension d 
times as large) and even as a linear representation of Gover K. We see 
immediately that the character of this representation is equal to TrL/K (x), 
where TrL/K denotes the trace associated with the extension L/K. It follows 
by linearity that TrL/K(x) E RK(G),'for each element X of RL(G). 

In particular, take X E RJ(G), i.e. suppose that the values of X belong 
to K. Then TrL/K(x) = d· X; hence d· X E RK(G), and the proof is 
complete. 0 

12.2 Schur indices 

The" results of the preceding section can also be obtained, and even 
refined, by using the theory of semisimple algebras. We sketch this briefly: 

The algebra K [G] is a product of simple algebras Ai' corresponding to 
the distinct irreducible representations Y; of Gover K. If Di = HomG(y;, 
V;) is the commuting algebra of 0 in End(Y;), then Di is a field (noncom .. 
mutative, in general), and A; can be identified with the algebra Endo;(\';) 
of endomorphisms of the D;vector space V;. If [V;: Di ] = nit then 
Ai ~ Mn;(Dj), where DC; is the opposite ring of D;. Moreover, the degree 
of D; over its center K; is a square, say" m;; the integer m; is called the Schur 
index of the representation Y; (or of the component Ai). 

Let s E G, and let Pi(S) be the corresponding endomorphism of \';. We 
have to consider three kinds of "traces" of p;(s): 

(a) Its trace as ,a K-endomorphism; this is the element of K denoted 
above by X;(s); 

(b) Its trace as a K;endomorphism; this is an element of K; which we will 
denote by qJ;(s); 

(c) Its reduced trace as an element of the simple algebra A; (cf. for 
example (8], no.12.3); this is an element of K; which we will denote 
by 1/I;(s). ' 

The various traces_are related by the formulas 

and 
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12.2: Schur indices 

Now let ~; be the set of K-homomorphisms of the field K; into the 
algebraically closed field C. If (J E ~;" scalar extension from K to C by 
means of (J makes D; into a matrix algebra Mm.(C), and Ai becomes , , 
Mnim;(C). Composing G --+ Ai --. Mn;m;(C), we obtain an irreducible rep-
resentation of Gover C, of degree n; miJ and with character 1/I;,a = a( l/Ii). 
For fixed i, the characters 1/I;,a are conjugate: the Galois group of Cover K 
permutes them transitively. Moreover, each irreducible character of Gover 
C is equal to one of the 1/1; o. We have ) , 

v. = Tr,K./K(q>·) = ~ a(~.) = m· ~ 1/1. , 
~ J' ~ I '~I,O aE.w; oE,,-; 

which gives the decomposition of x.; as a sum of irreducible characters over 
C. 

Now let X = ~;,o d;,01/l;,o be an element of R(G), where '-"the d;,a are 
integers. In order that X have values in K, it is necessary and sufficient that 
it be invariant under the Galois group of Cover K, i.e., that the d;,a depend 
only on i. If this is indeed the case, and we let d; denote their common 
value, we have 

Hence we have the following proposition, which refines prop. 34: 

Proposition 35. The characters 1/1; = x.;/m;jorm a. basis oj'RK(G). 

Let us say that K[G] is quasisplit if the D j are commutative,· or, what 
amounts to the same thing, if the Schur indices mi are all equal to 1. Then 
prop. 35 implies: 

Corollary. In order that RK (G) = ltK (0), it is necessary and suffiCient that 
K[G] be quasisplit. 

In particular, we have RK(G) = RK(G) in each of the following cases: 

(i) G is abelian (because then K[G] and the D; are commutative). 
(ii) The Brauer groups of the finite extensions of K are trivial. 

EXERCISES 

11.1. Show that all the Schur indices for the finite groups considered in Ch. 5 are 
equal to 1. 

11.1. Take for G the alternating group \14' cf. 5.1. Show that the decomposition of 
Q(G] into simple factors has the form 

Q[G] = Q x Q(w) x M3(Q), 

where Q( CA» is the quadratic extension of Q obtained by adjoining to Q a 
cube root of unity w. 

93 



Chapter 12: Rationality questions 

12.3. Take for G the quatemion group {± I, ±i, ±j, ±k}. The group G has 4 
characters of degree 1, with values in {± I}. On the-other hand, the natural 
embedding of G in the division ring ~ of quatemions over Q defines ~ ~ 
surjective homomorphism Q[G] ~~. Show that the decomposition of 
Q[G] into simple comp~nents is 

Q(G] = Q x Q x Q x Q x HQ . 

The Schur index of the last component is equal to 2. The corresponding 
character", is given by 

~l) = 2, ~-l) = -2, ~s) = 0 for s :1= ±l. 

Hence K(G] is quasisplit if and only if K ® HQ is isomorphic to M2{K); 
show that this is equivalent to saying that -I is a sum of two squares in K. 

12.4. Show that the Schur indices mi divide the index a of the center of G. 
[Observe that the degree of the irreducible representation with character l/I;,a 

is nim; and apply prop. 17.] Deduce that a · RK{G) is contained in RK{G). 

125. Let L be a finite extension of K. Show that, if L(G] is quasisplit, then [L: K] 
is divisible by each of the Sch.ur indices mi' 

12.3 Realizability over cyclotomic fields 

We keep the notation of the preceding sections, and denote by m the least 
common multiple of the orders of the elements of G; it is a divisor of g. 

Theorem 24 (Brauer). If K contains the mth roots oj unity, then RK(G) 
= R(G). 

In view of prop. 33, this implies: 

Corollary. Each linear representation of G can be realized over K. 

(This result had been conjectured by Schur.) 

Let X E R(G). By the 20 of 10.5, we can write X in the form 

X = ~ niInd~i('P;)' (n; E Z) 

where the 'Pi are characters of degree 1 of subgroups H; of G. The values of 
the 'Pi are mth roots of unity; they belong to K. Thus 'P; E R K (H;). But, if 
H is a subgroup of G, it is clear that Ind~ maps RK{H) into RK(G). 
Therefore Ind~i(q>;) E RK(G) for all i, which proves the theorem. 0 

EXERCISE 

12.6. Show that the Schur ~dices of G (over an arbitrary field) divide the Euler 
function .,,{m) (use ex. 12.5]. 
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12.4: The rank of RK (0) 

12.4 The rank of RK(G) 

We return now to the case of an arbitrary field K of characteristic zero. 
We shall determine the rank of RK(G), or equivalently, the number of 
irreducible representations of Gover K. 

Choose an integer m which is a multiple of the orders of the elements of 
G (for example, their least common mUltiple or the order g of G), and let 
L be the field obtained by adjoining to K the mth roots of unity. We know 
(cf. for example Bourbaki, A/g. V, § II) that the extension L/K is Galois and 
that its Galois group Gal(L/K) is a subgroup of the multiplicative group 
(Z/mZ)* of invertible elements of Z/mZ. More precisely, if (J E Gal(L/K), 
there exists a unique element t E (Z/mZ)* such that 

o(W) = w' if wm = l. 

We denote by fK the image of Gal(L/K) in (Z/mZ)*, and if t E rK~ we let 
a, denote the corresponding element of Gal(L/K). The case considered in 
the preceding section w.as that where fK = {I}. 

Let s E G, and let n be an integer. Then the element s" of G depends 
only on the class of n modulo the order of s, and so a fortior; modulo m; in 
particular s' is defined for each t E fK• The group rK acts as a permutation 
group on the underlying set of G. We will say that two elements s, s' of G 
are fK-conjugate if there exists t E fK such that s' and s' are conjugate by 
an element of G. The relation thus -defined is an equivalence relation and 
does not depend upon the choice of m; its classes are called the fK-c/asses 
(or ~e K-classes) oj G. 

Theorem 25. In order that a class Junction J on G, with values iii L, belong to 
K ®z R(G), it is necessary and sufficient thai 

(*) o,(f(s» = 1(s') for all s E G and all t E rK • 

(In other words, we must have a,(J) = \{1'(/) for all t E rK, cf. 11.2.) 

Let P be a representation of G with character x. For s E G, the 
eigenvalues Wi of p(s) are mth roots of unity, and the eigenvalues of p(s') are 
the wI. Thus we have 

a,(x(s» = o(~ Wi) = ~ w: = X(s'), 

which shows that X satisfies the condition (*). By linearity, the same is true 
for all the elements of K ® R(G). 

Conversely, suppose / is a class function on G satisfying condition (*). 
Then 
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Chapter 12: Rationality questions 

where X runs over the set of irreducible characters of G. We have to show 
that the Cx. belong to K, which, according to Galois theory, is equivalent to 
showing that they are invariant under the a" t E rK. But, if fP and X are two 
class functions on G, then we have 

(i"fI), '1" X) = (fI), X), 

~ can be easily verified. Whence 

Cx = (J,X) = (~'J, i"X> = (o,(f),ot(x» = a,«J,x» = a,(cx)' 

which finishes the proof. o 
Corollary 1. In order that a class function / on G with values in K belong to 

K ® RK(G), it is ';ecessary and sufficient that it be constant on the rK-
classes of G. 

Iff E K ® RK(G), thenf(s) E K for all s E G, and formula (.) shows 
that/(s) = f(s') for all t E rK. Hencefis constant on the rK-classes of G. 

Conversely, suppose that f has values in K, and is constant on the rK -

classes o~ G. Then condition (.) is satisfied, and we can write 

f = ~ (J, X)X, with (J, X> E K 

as above. Moreover, the fact thatfis invari~nt under the a" t E rK, shows 
that (J, X> = (1, C7t (x», so the coefficients of the two conjugate characters 
X and at(x) ar~ the same. Collecting characters in the same conjugacy class, 
we can write / as a linear combination of characters of the form TrL/ K (x). 
Since the latter belong to R K (G), cf. 12.1, this proves the corollary. 

[AlternateO': Let rK act on K ® R(G) by /1-+ a,(/) = 'V'(f), and 
observe that the set of fixed points is K ® RK(G).] 0 

Corollary 2. Let X; be the characters of the distinct irreducible representations 
of Gover K. Then the X; form a basis for the space of functions on G which 
are constant on rK-classes, and their number is equal to the number of rK-

classes. 

This follows from cor. I. o 

Remark. In COf. 1, we can replace RK(G) by RK(G). Indeed prop. 34 
shows that 

12.5 Generalization of Artin's theorem 
If H is a subgroup of G, it is clear that 

and IndH : R(H) ~ R(G) 
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map RK(G) into RK(H) and RK(H) into RK(G). So we can ask if the 
theorems of Artin and Brauer remain valid when R is replaced by R K . In 
the case of Artin's theorem, the answer is affirmative: 

1beorem 26. Let T be the set of cyclic subgroups of G. Then the map 

Q ® Ind: ED Q ® RK(H) ~ Q ® RK(G) 
HeT 

defined by zhe maps Q ® Ind~, H E T, is surjective. 

The two proofs given_in Ch. 9 apply without change. The first is a duality 
argument; one must show that the mapping 

Q ® Res: Q ® RK(G) --+ ED Q ® RK(H) 
HeT 

is injective, which is clear. 
The second proof consists of using the formula 

cf. prop. 27 (9.4) , 

and proving that 8H belongs to R K (H). The latter can be verified either by 
induction on the order of H, or by observing that (JH has integer values and 
thus belongs to RK(H); since H is abelian we have RK(H) = RK(H). 
Now the identity above shows that the constant function 1 belongs to the 
image of Q ® Ind. Since this image is an ideal, it must be the whole ring 
Q®RK(G). 0 

12.6 Generalization of Brauer's theorem 

We keep the notation of the preceding sections. It is easy to see that" if 
X is the family of elementary subgroups of G, the map 

is not, in general, surjective (example: G = G3 " K = R). I t is necessary to 
replace X by a slightly larger family XK, that of "rK - elementary" 
subgroups: 

Let p be a prime "number. A subgroup H of G is said to be rK-p­
elementary if it is the semidirect product of a p-group P and a cyclic group 
C of order prime to p such that-: 

(*K) For each yEP, there exists t E rK such that yxy-l = Xl for each 
x E C. 

• The subgroup C should not be confused with the algebraic closure of K chosen in 12.1; 
the latter will not ap~r in this section. 
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(When rK = {I}, this condition just means that C and P c'ommute, so that 
H = C X P is a p-elementary group.) A subgroup of G is said to be 
rK-elementary if it is rK-p-elementary for at least one prime number p. 

Denote by XK(resp.XK(p» the family of rK-elementary (resp.fK-p­
elementary) subgroups of ·G. Then we have the following analogue of 
th.19: 

Theorem 27. The map Ind: EB RK(H} ~ RK(G) is surjective. 
HEXK 

As in 10.5, we obtain theorem 27 from a more precise result, relative to 
a fixed prime number p: I 

Theorem 28. Let g = pn I be the order of G, where (p, I) = 1. The constant 
functio.n I belongs to the image VK,p of the map 

Ind: E9 RK(H) ~ RK(G). 
HEXK(p) 

In particular, the index of VK,p in- R K (G) is finite and prime to po. 

The proof of this theorem is completely analogous to that of tho 18' (to 
whicb it reduces when K is algebraically closed). We will give the proof in 
the next section and, for the time being, just indicate two consequences: 

Proposition 36. Let cp be a class junction on G. In order that cp belong to' 
RK (0), it is necessary and sufficient that, for each fK-elementary subgroup 
H ofG, we have Res~tcp E RK(H). _ 

Using tb. 27, we have an identity 

1 = ~ Ind~jH' withfH E RK(H). 
HEXt(. 

MUltiplying by <p, this gives 

So, if ResHfP E RK(H) for all H E XK, we have cp E RK(O); the 
converse is clear. 0 

Proposltton 37. If each of the algebras K[H], H E XK, is quasisplit (cf. 12.2), 
the same is true oj K[G]. 

Let <p E RK(G). For H E XK, we bave ResHcp E RK(H), and RK(H) 
is equal to RK (H) since K[H] .is quasisplit (cf. cor. to prop. 35). The 
preceding proposition then shows that cp belongs' to °RK(G). Whence 
RK(G) = RK(O), and K[G] is quasisplit. 0 
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12.7: Proof of theorem 28 

EXERCISE 
c . 

12.7. Show th,at the map Ind: ED RK (8) ~ RK (0) is surjective. [Use the 
proof of prop. 36.] HE XK 

12.7 Proof of theorem 28 

We denote by A the subring of L generated by the nith roots of unity. 

Lemma 13. If J belongs to A ® VK,p' then I E VK,p. 

This is proved by the same argument as the one used in 10.2 for lemma 5. 
o 

Lemma 14. There are finitely many prime ideals lJl' ... , Ph of A containing p. 
The quotients A/lJ; are finite fields of characteristic p, and there exists an 
integer N such that pA :::> (lJl n ... n ~h)N. . 
The ~; correspond to prime ideals of A/pA, which is a finite ring of 

characteristic p. The first two assertions follow from this. The third follows 
from the fact that (.pI n ... n .ph)/pA is the radical of the artinian ring 
A/pA, thus is nilpotent. 0 

Lemma 15. Let J be a Junction on G, constant on fK- classes, and with values 
in gAo Then J can be written in the form 

f = ~ In<tg(cpc), with CPc E A ® RK(C), 

where C runs over the set of cyclic subgroups of G. 

Let cp = fig. In the notation of lemma 6, we have 

f = ~ In<tg(8c · Resgcp), 

and it remains only to show that CPc = 8c · Resg cp belongs to A ® RK (C) 
for all C. ~ut the values of CPc are divisible by the order of C; it follows that, 
if X is a character of degree I of C, we have <CPc, X> E A. Moreover, the 
fact that f is constant on fK-classes implies that 

<CPc,X) = <i"cpC' v/X> = (CPc, v'X), if t E fK • 

The coefficients in CPc of characters conjugate over K are thus equal, and 
we can express CPc as an A-linear combination of traces over K of 
characters X; thus <Pc E A ® RK(C). 0 

Lemma 16. Let x, y E G be elements whose p'-components are fK-conjugate. 
Iff E A ® RK(G), then 

f(x) == f(y) (mod . .pi) for i = I, ... , h. 
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We know that f is constant on fK-classes (cor. I of tho 25). So we can 
assume that x is the p'-component of y, in which case the same argument 
appIies- as in the proof of lemma 7. 0 

Lemma 17. Let x be a p'-element ofG, let C be the cyclic subgroup generated 
by x, let N(x) be the set of y E G such that there exists t E rK with 

'yxy-l = Xl, and let P be a Sylow subgroup ofN(x). Then: 

(a) H = C · P is a rK-p-elementary subgroup of G. 
(b) 'Each linear representation of Cover K extends to H. 
(c). The map Res: RK(H) -+ RK(C) is surjective. 

Assertion (a) is clear. To prove (b), it suffices to consider the case of an 
irreducible representation over K. Such a representation can be obtained by 
choosing a homomorphism x: C --+ L*, taking as vector space the subfield 
~ generated by X(C), and defining p: C --+ GL(Kx) by the formula 

p(s)", = X{s)", if sEC and", E Kx. 

The group rK = Gal(L/K) act's K-linearly on Kx. If yEP, let t E fK be 
such that yxy-J = Xl, and define p{y) as the restriction of 0 1 to Kx. One 
checks that p(y) does not depend upon the choice of t, and that 

p(y)p(x)P(y)- J = P(X/). 

It follows that the homomorphisms of C and of Pinto GL(Kx) thus defined 
extend to a homomorphism of H into GL(Kx)' which proves (b). Assertion 
(c) follows from (b). 0 

In 10.3 we had fK = {I}, whence H = C x P, so that the lemma above 
was trivial. 

Lemma 18. Keep the notation of lemma 17. Then there exists 

l/; E A ® RK(H) 

such that the induced function "" = Ind~ '" has the following properties: 

(i) ~'(x) ~ O(mod. ~;) for i = 1, ... , h. 
(ii) ""(s) = 0 for each p'-element s of G which is not fK-conjugate to x. 

Let c be the order/ of C, and let l/Ic be the function defined on C by 
t/lc{Y) = c when y has the form Xl, with t E fK' and 1/Ic(Y) = 0 otherwise. 
Then l/Ic -e A ® RK (C): this follows, say, from lemma 15 applied to C. By 
lemma 17, there exists l/I e A ® R K (H) such that Res~ If = lfc. We show 
that l/I works: 

If s is a pi-element of G, and if y E G, ysy-I is a pi-element. If 
ysy-I E H, then ysy-I E C and l/J(ysy-I) is zero whenever ysy-I is not of 
the form Xl, for t E rK. It follows that ~'(s) = 0 if s is not fK-conjugate to 
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x, which proves (ii). For the rest, let Z be the set of x', I E fK. Then 

1/I'(x) = 1 ~ c = Card ( N(x}) 
Card(H) yxy-I eZ Card(P)' 

~DQ ~ince P is a Sylow p-subgroup of N(x} (cf. lemma 17) .. we see that \(I'(xl 
is an integer prime to p., whence (i). 0 

Lemma 19. There exists cP E A ® VK.p such that cp(x) ¢ 0 (mod. t>;)Jor each 
x E G and each i = I, ... , h. 

Let (x")A e A be a system of represen ta lives for the pi -regular rK -classes 
i.e., those consisting of p' -elements. For each A E A. the preceding lemma 
allows us to construct CPA E A ® VK.p such that 

and cP" (x,,) = 0 if A =1= p.. 

Put cp = ~A CPA' Then cp belongs to A ® VK.p and we have cp(x) ~ 0 
(mod. t>;) for each p'-element x in G. Lemma 16 shows that the same holds 
for each x in G. 0 

Completion of the proof of Iheorenl 28 

Let cP E A ® VK•p satisfy the conditions of lemma 19. For each x E G 
and each i, the class of qJ(x) mod. Vi belongs to the multiplicative group of 
the field A/P;. Since the field A/t>; is finite (lemma 14), there is an M ~ 1 
such that cpM(x) == I(mod. t>;) for all i and all x E G. Then by lemma 14 
we have cpMN(X) == 1 (mod. pA), and raIsing cpMN to the power pn, we 
obtain l/J E A ® V K. p such that 

l/!{x) == I (mod. pn A) for all x E G. 

The function I(t/I - I) thus has values in pn J A == g A. In view of lemma 15. 
we have I(t/I - I) E A ® VK~p. By subtraction .. we obtain that I belongs to 
A ® VK.p ' and now the theorem follows from lemma 13. 0 

EXERCISE 

12.8. Determine the spectrum of the ring A ® RK(G). (The result is the same as in 
11.4. except that conjugacy classes are replaced by r K-classes.) 
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CHAPTER 13 

Rationality questions: examples 

We keep the notation of Ch. 12. 

13.1 The field Q 

Let G be a finite group of order g, and let m be a multiple of the orders 
of all the elements of G. Take as ground field K the field Q of rational 
numbers, and let Q(m) be the field obtained by adjoining the mth roots of 
unity to Q. The Galois group of Q(m) over Q is the group denoted rQ in 
12.4; it is a subgroup of the group (Z/mZ)*. In fact: 

lbeorem (Gauss-Kronecker). We have rQ = (ZjmZ)*. 

(This amounts to saying that the mth cyclotomic polynomial ~m IS 

irreducible over Q.) 

We assume this classical result; for a proof, see, for example, Lang [10], 
p.204. ~ 

Corollary. Two elements of G are rQ-conjugate if and only if the cyclic 
subgroups they generate are conjugate. 

Applying the results of 12.4, we have: 

1beorem 29. Let f be a class function on G with values in Q(m). 
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(a) In order that f belong to Q ® R(G), il is necessary and sufficient 
that at (f) = +1 (f) for each t prime to m. 

(b) In order that f belong to Q ~ RQ(G)., it is necessary and sufficient 
that f have values in Q, and that +1 (j) = f for each t prime to m 



13.1: The field Q 

(i.e., we must have f(x) = f(y) if x and y generate the same 
subgroup of G). 

(Recall that 0t is the automorphism of Q(m) which takes an mth root of 
unity to its tth power, and that 'I'1(f) is the function x r+ f(x t ).) 

Corollary 1. The number of isomorphism classes of irreducible representations 
of Gover Q is equal to the number of conjugacy classes of cyclic subgroups 
ofG. 

This follows from cor. 2 to tho 25. 

Corollary 2. The following properties are equivalent: 

(i) Each character of G has values in Q. 
(if) Each character of G has values in Z. 
(ii) Two elements ofG which generate the same subgroup are conjugate. 

The equivalence of (i) and (i') comes from the fact that character values 
are algebraic integers, thus are elements of Z whenever they belong to Q. 
The equivalence of (i) and (ii) follows from tho 29. 0 

Examples 

(1) The symmetric group <Sn satisfies (ii), hence (i). Moreover, one can 
show that each representation of (Sn is realizable over Q, i.e., that R(Sn) 
= RQ(Sn)· . 

(2) The quaternion group G = {+ 1, ±i, + j, ±k} satisfies the conditions of 
the corollary. Hence RQ(G) = R(G); the group RQ(G) is a subgroup of 
index 2 of R(G), cf. ex. 12.3. 

If H is a subgroup of G, denote by IH the unit character of H and by 1~ 
the character of G induced by IH (in other words the character of the 
permutation representation on GIH, cf. 3.3, example 2). 

Theorem 30. Each element of RQ(G) is a linear combination, with coefficients 
in Q, of characters Ig, where C runs over the set of cyclic subgroups of G. 

!'his amounts to l~aying that Q ® RQ(G) is generated by the 19. Since 
Q ® RQ(G) is endowed with the nondegenerate bilinear form 

( qJ, 1/1) ~ < ff' \f! >, 
we can just as well show that each element (J of RQ(G) orthogonal to all 
the Ig is zero. However, we have 

<0, Ig> = <ResgO, Ie> =! ~ 8(s), where c = Card C. 
csEc 

So theorem 30 is equivalent to the following: 
, 

1beorem 30'. If fJ E RQ(G) is such that ~ O(s) = 0 for each cyclic 
subgroup C of G, then 0 = o. sEC 
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We prove this result by induction on Card(G). Let s E G, and let C(s) 
be the cyclic subgroup of G generated by s. Let x E C(s); if x generates 
C(s), we have 9(x) = fJ(s) since x and s are fQ-conjugate; if x generates a 
proper subgroup of C(s), the induction hypothesis (applied to the restriction 
of 9 to this subgroup) shows that 9(x) = O. So we get that 

~ IJ(x) = a · 9(s), 
X EC(s) 

where a is the number of generators of C .(s). But by hypothesis we have 

and therefore 9{s) = o. 

~ 9{x) = 0, 
xEC(s) 

o 
CoroUary. Let V and V' be two linear representations of Gover Q. In order 

that V be isomorphic to V' it is necessary and sufficient that, for each cyclic 
subgroup C of 0, we have 

dim VC = dim V,c, 

where VC (resp. V,c) denotes the subspace of V (resp. V') consisting of the 
elements invariant under C. 

The necessity is obvious. To see that the condition is sufficient, let X and 
X' be the characters of V and V'. We have: 

dim VC = (Resg X, Ie >c 
and hence (Resg(x - X'), Ie) = 0 for each C, whence X - X' = 0 by tho 
30. "Thus V and V' are isomorphic. 0 

Remarks 
(1) It is not true in general that each element of RQ(G) is a linear 

combination with integer coefficients of characters l~, even if H runs over 
the set of all subgroups of 0 (cf. ex. 13.4). 

(2) Theorem 30 implies the following result: let F IE be a finite Galois 
extension of number fields, and let X be the character of a linear 
representation of Gal(F IE) realizable over Q. Then we can write the Artin 
L-function relative to X as a product of fractional powers of zeta functions 
of sub fields Fe of F corresponding to cyclic subgroups C of Gal{F IE). 

EXERCISES 

13.1. Let G be a cyclic group of order n. For each divisor d of n, denote by Gd the 
subgroup of G of index d. 
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(a) Show that G has an irreducible representation over Q, unique up to 
isomorphism, whose kernel is equal to 0d. Let 'Xd denote its character; 
then Xd(l) = fP{d). The Xd form an orthogonal basis of RQ(G). 
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(b) Define an isomorphism from Q(G] onto II Q(d). 
dIn 

(C) Put 1/Id == t8d• Show that l/Id == l:d'id 'Xd' and that'Xd == ~d'id P{d/d')1/Id" 
where" denotes the MObius function. Deduce that the l/Id form a basis for 
RQ(G). 

13.2. Prove tho 30 by reducing to the cyclic case using tho 26, and then applying 
ex. 13.1. 

13.3. Let p be an irreducible representation of Gover Q, let A = Mn (0) be the 
corresponding simple component of Q( G) (0 being a field, not necessarily 
commutative), and let X be the character of p. Assume that p is faithful (i.e., 
ker p = I) and that every subgroup of G is normal. Let H be a subgroup of 
G. Show that the permutation reresentation on O/H contains the represen­
tation p n times if H = {I} and 0 times if H =#= {I}. Conclude that, if n ;> 2, 
X is not contained in the subgroup of RQ(G) generated by the characters IH· 

13.4. Let E be the quatemion group, C the cyclic group of order 3, and let 
G == E x c. If HQ denotes the usual field of quaternions (over Q), show that 
E and C can be embedded in the multiplicative group HQ. This gives an 
action of E (resp. C) on the vector space HQ by right multiplication (resp. by 
left mUltiplication). Obtain from this an irreducible representation p of G 
over Q of degree 4. Show that the corresponding simple algebra is isomor- oil 

phic to M2 (K), where K is the field of cube roots of unity. Verify the 
conditions of ex. 13.3 and deduce that the character of p is not a linear 
combination of characters IH, H C G. 

135. Let X and Y be two finite sets on which the group r acts. If H is a subgroup 
of r, denote by XH (resp. yH) the set of elements of X (resp. Y) fixed by H. 
Show that the f-sets X and Y are isomorphic if and only if Card(XH) 
== Card(yH) for each subgroup H of f. Next, show that the properties listed 
below are equivalent to each other: 

(i) The (linear) permutation representations Px and Py associated with X 
and Y are isomorphic. 

(ii) For each cyclic sublroup H of f, we have Card(XH) == Card(yH). 
(iii) For each subgroup H of r, we have Card(X/H) == Card(Y/H). 
(iv) For each cyclic subgroup H of r, we have Card(X/H) == Card(Y/H). 

When these properties hold, we shall say that X and Yare weakly 
isomorphic. 

[The equivalence of (i) and (ii) is obtained by calculating the characters 
of Px and Py. The equivalence of (i) with (iii) and (iv) comes from the 
fact that Card (X/H) is the inner product of the character of Px. with the 
character l~.], -
Show that, if r is cyclic, the r -sets X and Y are isomorphic if and only 
if they are weakly isomorphic. Give an example in the general case of 
weakly isomorphic sets which are not isomorphic (take for r the direct 
product of two groups of order 2). 
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13.6. Let X be the set of irreducible characters ofG over Q(m), and let Y be the 
set of conjugacy classes of G; Let the group rQ = (Z/mZ)* act on X by 
X 1-+ ul(x) and on Y by x 1-+ Xl. 

(a) Show that the fQ-sets X and Y are weakly isomorphic (cr. ex. 13.5). 

(b) Show that X (resp. Y) can be identified with the set of homomorphisms 
from the Q-algebra Cent. Q(G] (resp. Q ® R(G» into Q(m). Deduce that 
the rQ-sets X and Y are isomorphic if and only if the center of Q[G] is 
isomorphic to Q ® R(G). 

(c) Show that the center of Q[G] is isomorphic to Q ® R(G) in each-of the 
following cases: 

(el) G is abelian (use an isomorphism from G onto its dual 0, and observe 
that Q[G] = R(G». 

(e2) G is a p-group and p ::1= 2 (use the fact that; rQ is cyclic). 
(For an example of a group G such that X and Yare not fQ­
isomorphic, see J. Thompson, J. of Algebra, 14, 1970, pp. 1-4.) 

13.7. Let p be a prime number ;#= 2. Let G be a Sylow p-subgroup of GL3 (F,,) and 
let G' be a nonabelian semidirect product of Z/pZ with Z/p2 Z. Thus 
Card(G) = Card(G') = p3. 

(a) Show that G and G' are not isomorphic. 

(b) Construct the irredu~ible representations of G and G'. Show that Q[G] 
and Q[G'] are products of th~ field Q, p + I copies of the field Q(p), and 
the matrix algebra Mp{Q(p». In particular, Q[G] and Q[G'] are isomor­
phic. 

(c) Show that ~[G] and ~[G'l are not isomorphic. 

13.8. Let {CI , ... ,Cd} be a system of representatives for the co~ugacy classes of 
cyclic subgroups of G. Show that the characters 19., ... , led form a basis of 
Q ® RQ(G). 

13.2 The field R 
We keep the preceding notation, and take as ground field K the. field R 

of real numbers. The corresponding group fR is the subgroup {± I} of 
(Z/mZ)*; two elements x,y ofG are fR-conjugate if and ,only if y is 
conjugate to x or to X-I. The automorphism 0-1 corresponding to the 
element - I of fR is just complex conjugation z ~ z*. If X is a character of 
Gover C, the general formula 0t(X) = 'It' (X) reduces here to the standard 
formula 

X(s)* = X(s-I), cf. 2.1, prop. I . 

Theorem 31 (Frobenius-Schur). Let p: G -+ GL(V) be a linear representa­
tion of Gover C with character x. In order that X have values in R (resp. 
that p be realizable over R), it IS necessary and sufficient that V have a 
nondegenerate bilinear form (resp. symmetr.ic bilinear form) invariant under 
G. 
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The group G acts naturally on the dual V' of V, and it is easy to see th~t 
the corresponding character X' is given by 

For X to have real values, it is necessary and sufficient that X = X', i.e., that 
the representations of G in V and V' are isomorphic. But an isomorphism 
of V onto V' corresponds to a nondegenerate bilinear form on V invariant 
under G. So the existence of such a form is necessary and sufficient for X 
to have real values. 

Suppose now that p is realizable over R. This is equivalent to saying that 
we can write V in the form 

V = Vo E9 i Vo = C ®R VO, 

where Vo is an R subspace of V stable under all Ps. One knows that there 
exists a positive definite quadratic form Qo on \h invariant under G (take 
the sum of the transforms of an arbitrary positive definite form). By scalar 
extension, Qo defines a quadratic form on V, and the associated bilinear 
form is nondegenerate, symmetric, and invariant under G. 

Conversely, suppose V is endowed with such a form B(x,y). Choose a 
positive definite hermitian scalar product (xly) on V, invariant under G; the 
argument given above shows that such a product exists (cf. 1.3). For each 
x E V, there exi,ts a unique element q>{x) in V such that 

B(x,y) = (cp(x)IY)* for ally E V. 

The map fP: V --+ V so defined is antilinear and bijective. Its square cp2 is an 
automorphism of V. For x, y E V, we have 

(fP2(x)ly) = B(cp(x)ty)* = B(y,cp(x»* = (CP(y)lqJ{x». 

Since (CP(y)lcp(x» = (cp(x)lq>{y»*, we get 

(cp2(x)Jy) = (fP2(y)lx)* = (xlcp2(y», 

which means that cp2 is hermitian. Moreover, the formula 

(cp2(x)lx) = (q>{x)lfP(x» 

shows that fP2 is positive definite. But we know that, whenever u is hermitian 
positive definite, there is a unique hermitian positive definite v such that 
u = v 2

, and'v can be written in the form P( u), where P is a polynomial with 
real coefficients (if the eigenvalues Qf u are A I' ... ,A n' choose P so that 
P(~i) = If: for all i). Apply this to u = fP2, and put (1 = fPV-'. Since 
v = p(fP2), fP and v commute, and we have (12 = fP2V-2 == 1. Let V 
= \h ED V. be the decomposition of V with respect to the eigenvalues + I 
and - 1 of o. Since (J is antilinear, multiplication by i maps Yo onto VI. Thus 
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v = Vo EB iVo. On the other hand, the fact that B(x,y) and (xly) are 
invariant under G implies that q>, v, and (1 commute with all Ps. It follows 
that Vo and Yt are stable under the PS' and we have a realization of V over 
R, which proves the 31. 0 

Remarks 

(I) ·Theorem 31 carries over to representations of compact groups, cf. Ch. 
4. The same is true of the other results in this section. 

(2) Denote by On(C) (resp. 0n(R» the complex (resp. real) orthogonal 
group in n variables. The last part of the above proof shows, in fact, thflt 
each finite (or even compact) subgroup of On(C) is conjugate to one 
contained in 0n(R); this is a special case of a general theorem on maximal 
compact subgroups of Lie -groups. 

The three types of irreducible representations of G 
Let p: G ~ GL(V) be' an irreducible representation of Gover C of 

degree n, and let X be its character. There are three possible cases (mutually 
exclusive): _ 

(1) One of the values of X is not real. By restriction of scalars, P defines 
an irreducible representation over R of degree 2n with character X + x. The 
commuting algebra for this representation is C. The corresponding simple 
component of R[G] is isomorphic to M~(C); its Schur index is 1. 

(2) All values of X are real, and p is realizable by a representation Po over 
R. The representation Po is irreducible (and even absolutely irreducible) 
with character x. Its commuting algebra is R. The corresponding simple 
component of R[G] is isomorphic to Mn{R); its Schur index is l. 

(3) AIr values of X are real, but p is not realizable over R. By restriction 
of scalars, p defines an irreducible representation over R of degree 2n and 
with character 2X. Its commuting algebra has degree 4 over R; it is 
isomorphic to the field H of quatemions. The corresponding simple. 
component of R[G] is isomorphic to Mn(H); its Schur index is 2. 

Moreover, every irreducible representation of Gover R can be obtained 
by one of the three procedures above: this can be proved by decomposing 
R[G] as a product of simple components, and observing that such a 
component is of the form Mn(R), Mn(C), or Mn(H). (The fact that R[G] is 
a group algebra is not important here: the same result holds for any 
semisimple algebra over R.) 

The types I, 2, and 3 can be characterized in various ways: 

Proposition 38. 

lOS 

(a) If G does not have a nonzero invariant bilinear form on V, then p is 
of type 1. 

(b) If such a form does exist, it is' unique up to homothety, is nondege­
nerate, and is either symmetric or alternating. If it is symmetric, p is 
of type 2, and if it is alternating, p is of type 3. 
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An invariant bilinear form B =F 0 on "v ·corresponds to a G-homomor.: 
phism b =F 0 of V into its dual V'. Since V and V' are irreducible, b is an 
isomorphism, and this shows that B is nondegenerate. By tho 31, the 
existence of B means that p is of type 2 or 3. Moreover, Schur's lemma 
shows that B is unique up to homothety. If we write B in the form 
B = B+ + B_, with B+ symmetric and B_ alternating, then B+ and B_ are 
also invariant under G. Since B is unique, we have either B_ = 0 (and B is 
symmetric) or B+ = 0 (and B is alternating). By tho 31, the first case 
corresponds to type 2; thus the second corresponds to type 3. 0 

Proposition 39. In order that p be of type I, 2, or 3, it is necessary and sufficient 
that the number 

(I, q,2(X» =! ~ X(s2), 
gsEG 

where g = Card(G), 

be equal to 0, + 1, or -1, respectively. 

Let x;(resp. X;) be the character of the symmetric square (resp. the 
alternating square) of V. Then 

cf. 2.1, Prop. 3. Let Q+ and a_ denote the number of times that the 
symmetric and alternating squares of p contain the unit representation. 
Then 

and 

On the other hand, the dual of the symmetric (resp. alternating) square of 
V can be identified with the space of symmetric (resp. alternating) bilinear 
forms on V. Since dual representations contain the unit representation the 
same number of times, we obtain from Prop. 38 that: 

a+ = a_ = 0 

Q+ = I, a_ = 0 

Q+ == 0, a_ = 1 

in case I, 

in case 2, 

in case 3 . 

Since (I, \jI2(X» = a+ - Q_, we indeed get 0, + I, and -1 In the three 
respective cases. The proposition follows. 0 

EXERCISES 

13.9. If c is a conjugacy class of G, let c -I~ denote the class consisting of all x-I 

for x E c. We say that c is even if c = c- 1• 

(a) Show that the number of real-valued irreducible characters of Gover C 
is equal to the number of even classes of G. 
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(b) Show that, if G has odd order, the only even class is that of the identity. 
Deduce that the only real-valued irreducible character of G is the unit 
character (Burnside). 

13.10. Show that the R-algebras (Cent. R[G) and R"® R(G) are isomorphic. 

13.11. Let X2 and Xl denote tke sets of irreducible characters which are of type 2 
and 3, respectively. Show that the integer 

~ x(1) - ~ x(1) 
XEX2 XEX3 

is equal to the number of elements $ E G such that $2 = I. (Observe that 
this integer is equal to I x(I)(I, 'It 2 (x» = (I, +2(rG»' where rG is the 
,character of the regular representation of G.) 

Deduce that, if G has even order, at least two irreducible characters are of 
type 2. 

13.12. (Burnside). Suppose G has odd order. Let h be the number of conjugacy 
classes of G. Show that g iii h (mod. 16). 

[Use the formula g = ~ih_1 x(1)2, and observe that the X; ¢ 1 are 
conjugate in pairs (cf. ex. 12.9), and that the X;(I) are odd.] 
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If each prime factor of g is congruent to 1 (mod. 4), show that g == h 
(mod. 32) by the same method. 
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III 

INTRODUCTION TO BRAUER THEORY 

We are concerned here with c"mparing the representations of a finite 
group in characterisJic p with those in characteristic zero. The results, due 
essentially to Brauer, can be described most conveniently in terms of 
"Grothendieck groups"; this approach was introduced by Swan (cf. [21], 
[22]), who also obtained a number of results not discussed here. 

Ch. 14 and 15 are preliminary. Ch. 16 contains the statements of the main 
theorems; they are proved in Ch. 17. In Ch. 18 we express these results in 
terms of "modular characters." Ch. 19 contains applications to the Artin 
representations. Some standard definitions are collected in an appendix: 
Grothendieck groups, projective modules, etc. 

The exposition which follows is just an introduction; in particular, the 
theory of blocks is not touched upon. The interested reader is referred to 
Curtis-Reiner [9] and Feit's book [20], as well as to the original papers by 
Brauer, Feit, Green, Osima, Suzuki, and Thompson. 
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CHAPTER ,14 

The groups RK(G), Rk(G), and Pk(G) 

Notation 
In Part III, G denotes a finite group, and m is the I.c.m. of the orders of 

the elements of G. A field is said to be sufficiently large (relative to G) if it 
contains the mth roots of unity (cf. 12.3, the 24). 

All modules considered are assumed to be finitely generated. 
We denote by K a field complete with respect to a discrete valuation v 

(cf. Appendix) with valuation ring A, maximal ideal m ~nd residue field 
k = Aim. We assume that K has characteristic zero and that k has 
characteristic p > 0 (so that "reduction modulo m" goes from characteris­
tic zero to characteristic p). 

14.1 The rings RK(G) and Rk(G) 
If L is a field we denote by RL(G) the Grothendieck group of the 

category of finitely generated L[G]-modules (cf. Appendix). It is a commu­
tative ring with unit with respect ,to the external tensor product (relative to 
L). If E is an L[G]-module, we let [E) denote its image in RL(G); the set of 
all [E] is denoted by Rt(G). 
Let SL denote the set of isomorphism classes of simple L[G]-modules (i.e., 
irreducible representations of Gover L). 

Proposition 40. The family of all elements [E], with E E SL' is a basis for the 
group RL(G). 

Let R be the free Z-module with basis SL. The family of the various [E), 
E E SL' defines a homomorphism a: R --+ RL(G). On the other hand, if F 
is an L[G]-module, and if E E SL' let IE(F) denote the number of times 
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Chapter 14: The groups RK(G), Rk(G), and Pk(G) 

which E appears in a composition series of F; it is clear that IE is an additive 
function of F. Thus there exists a homomorphism PE: RL(G) ~ Z such 
that f3E([F) = IE(F) for all F. The PE's define a homomorphism 

fJ: RL(G) --+ R, 

and it is immediate that a and fJ are inverses of one another. The 
proposition follows. 0 

More generally, the same argument applies to the category of modules of 
finite length over an arbitrary ring. 

N9te also that the elements of Rt(G) are just the linear combinations 
with non-negative integer coefficients of elements of the basis ([E])EESL. 
The preceding discussion applies in particular to the fields K and k. Since 
K has characteristic zero, the character XE of a K[G]-module E is already 
defined; it is an additive function of E. By linearity, we obtain a linear map 
x ~ Xx from RK (G) into the ring of class functions of G. This map is in 
fact an isomorphism of RK (G) onto the group of virtual characters of Gover 
K, and we often identify the two groups (this explains the notation used in 
12.1). We also say that Xx is the character (or the virtual character) of an 
element x E RK(G). 

We will see in Ch. 18 that there is an analogous result for k, in terms of 
Brauer's modular characters. 

Remark. If E and E' are two K[G]-modules such that [E] = (E'] in 
RK(G), then E and E~ are isomorphic: this follows from the fact that E and 
E' are semisimple. The analogous result is not true for 'k[G]-modules if p 
divides the order of G, because of the existence of modules which are not 
semisimple. 

14.2 The groups Pk(G) and PA (G) 
These are defined as the Grothendieck groups of the category of k[G]­

modules (resp. of A[G]-modules) which are projective (cf. Appendix). 
Similar definitions are made for P{(G) and P;(G). 

If E (resp. F) is a k(G]-module (resp. a projective k[G]-module), then 
E ®k F is a projective k(G]-module (it suffices to check this when F is free, 
in which case it is obvious). We obtain thereby an Rk(G)-module structure 
on Pk(G). 

14.3 Structure of Pk(G) 
Since k[G] is artinian, we can speak of the projective envelope of a k(q]­

module M (cf. Gabriel [23] or Giorgiutti [24]). We recall briefly what this 
means: 

A module homomorphism f: M' ~ M is called essential if f(M') = M 
and if j(M") :#= M for all proper submodules M" of M'. A projective 
envelope of M is a projective module P endowed with an essential homomor­
phism/: P --+ M. 
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14.3: Structure of Pk (G) 

Proposition 41. 

(a) Every module M has a projective envelope which is unique up to 
isomorphism. 

(b) If Pi is the projective envelope of M;"(i = 1, ... , n), the direct sum 
of the Pi's is a projective envelope for the direct sum of the Mi's. 

(c) If P is a projective module, and if E is its largest sem;s;mple quotient 
module, then P is a projective envelope for E. 

We prove (a). Write M in the form L/R, where L is projective and R is 
a submodule of L (we can take L free, for example). For NCR, letfN be 
the canonical homomorphism of LIN onto M = L/R. Now let N be 
minimal in R such that!N is essential; such a submodule exists, sincefR is 
essential, and k[G] is artinian. Put P = LI N, and let Q be a submodule of 
L minimal among those whose projection Q --+ P is surjective. Since L is 
projective, the projection p: L --+ P = LI N lifts to q: L --+ Q, and the 
minimality of Q shows that q(L) = Q. Let N' be the kernel of q. The 
projectionfN': LIN' --+ L/R factors into LIN' = Q --+ LIN --+ L/R and 
the two factors are essential. Since N' is contained in N, the minimality of 
N implies that N' = N, i.e., that Q --+ P is an isomorphism. The module L 
is thus a direct sum L = N E9 Q, which shows that P = LI N is projective. 
It is then clear that P --+ M is a projective envelope of M. 

Let P' --+ M be another projective envelope of M. Using the fact that P 
is projective, we see that there exists g: P --+ P' such that the triangle 

P -4 P' 

\a " 
M 

is commutative. The image of g(P) in M is M; since P' --+ M is essential, 
this implies g(P) = P', and so g is surjective. Since P' is projective, the 
kernel S of P --+ P' is a direct factor in P, which shows that P decomposes 
into S E9 P'. Using the fact that P -+ M is essential, we conclude that 
S = 0, i.e., that P -+ P' is an isomorphism. This completes the proof of (a). 
Assertions (b) and (c) are easy, and left to the reader (see [23], (24J for more 
details). 0 

Note that, in case (c), E is the quotient of P by rP, where r is the radical 
of k[G] (maximum nilpotent ideal); this follow~ from the fact that the 
semisimple k[G]-modules are those which are annihilated by r. Moreover, 
by (b), each .decomposition of E as a direct sum of simple modules gives a 
corresponding decomposition of P. Hence we have: 
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Corollary I. Each projective k[G]-module is a direct sum oj projective 
indecomposable k[G]-modules; this decomposi/Jon is unique up to isomor­
phism. The projective indecomposable k[G]-modules are the projective 
envelopes oj the simple k[G]-modules. 

Corollary 2. For each E E Sk' let PE be a projective envelope oj E. Then the 
[PEl, E E S",jorm a basis ojPk(G). 

Corollary 3. Two projective k[G]-modules P and P' are isomorphic if and only 
if their classes [P] and [P'] in Pk(G) are equal. 

More precisely, if [P] = ~ nE[PE], the module P is isomorphic to n (PE)nE• EESk 

ExERCISE 

14.1. Show that k[G] is an injective k[G]-module. Conclude that a k[G]-module is 
projective if and only if it is injective, and that the projective indecomposable 
k[G]-modules are the injective envelopes of the simple k[G]-modules (cf. ex. 
14.6). 

14.4 Structure of PA (G) 

The following result is well known: 

Lemma 20. Let A be a commutative ring, and P a A[G]-module. In o;der thaI 
P be projective over A[ G], it is necessary and sufficient that it be projective 
over A, and that there exists a A-endomorphism u of P such that 

~ s· u(s-I x) = x for all x E P. 
sEG 

If P is projective over A[G] it is projective over A: this follows from the 
fact that A[G] is A-free. Conversely, suppose that the underlying A-module 
Po of P is projective, and set Q = A[G] ®A Po. The A[G]-module Q is 
projective. Moreover, the identity map Po --+ P extends to a surjective A(G]­
homomorphism q: Q -+ P. It follows that P is projective if and only if there 
exists a A[G]-homomorphism v: P --+ Q such that q 0 v =.1. It is easily 
seen that every A[G]-homomorphism v: P --+ Q has the form 

x H ~ s ® u(s-I x) 
sEG 

with u E EndA (Po). To have q 0 v = 1 it is necessary and sufficient to 
have l: s· u(s-I x) = x for all x E P. This proves the lemma. 0 

sEG 

liS 



14.4: Structure of PA (0) 

Lemma 21. Suppose that A is a local ring, with residue field kA = A/mA. 

(a) Let P be a A-free AlG} module. In order tJt.at P be A[G]-projective, 
it is necessary and sufficient that the kA[G]-module P = P ® kA be 
projective. 

(b) Two projective A[G]-modules P and P'are isomorphic if and only if 
the corresponding kA[G]-modules P and P' are isomorphic. 

If P is A[G]-projective, then P is kA[G]-projective. Conversely, if this 
condition is satisfied, the preceding lemma shows that there exists a k A­
endomorphism i1 of P such that ~SEG s . Ii · s-t = l. By lifting u, we 
obtain a A-endomorphism u of P such that u' == I (mod. rnA P), where 
u' = ~SEG s · U • S-I. Consequently u' is an automorphism of P, which 
moreover commutes with G. Thus ~SEG s • (UU'- I ) . s-I = 1, which shows 
that P is projective over A[G] and proves' (al. 

If P and P' are projective, and if w: P ~ p' is a kA[G]-homomorphism, 
the fact that P is projective shows that there exists a AlG]-homomorphism 
w: P ~ P' which lifts w. If in addition w is an isomorphism, then Nakaya­
ma's lemma (or an elementary determinant argument) shows that w is an 
isomorphism. This proves (b). 0 

We now return to the ring A: 

Proposition 42. 

(a) Let E be an A [G]-module. In order thaI E be a projective A[G]­
module it is necessary and sufficient that E be free over A and that 
the reduction E = E/rnE of E be a projective k[G]-module. 

(b) If F is a projective k[G]-module, there exists a unique (up to 
isomorphism) projective A[G]-module whose reduction mod. m is 
isomorphic to F. 

Part (a) and the uniqueness in (b) follow from lemmas 20 and 21. It 
remains to prove existence in (b): 

Let F be a projective k[GJ-module. If n ~ I is an integer, let An denote 
the ring A/mn; thus AI = k and A is the projective limit of the An. The 
rings An and An[G] are artinian. The arguments in the preceding section 
show that the An [G]-module F has a projective envelope Pn, and that p" is free 
over An. The projection p" ~ F factors through p,,/mPn ~ F, which is 
surjective. Since F is k[G]-projective, there exists a k(G]-submodule F' of 
Pn/mp" which maps isomorphically onto F. The inverse image P' of F' in P,. 
has image F. Since p" ~ F is essential, it follows that P' = P,., i.e., that 
Pn/mPn ~ F is an isomorphism. Moreover, the Pn's form a projective 
system. Their projective limit P is an A-free A[G]-module, such that 
P = PImP is isomorphic to F. In view of (a), this completes the proof 
of (b). 
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Corollary 1. Every projective A[G]-module ;s a direct sum of projective 
indecomposable A[G]-modules; this decomposition is unique up to isomor­
phism. A projective indecomposable A[G]-module ;s characterized up to 
isomorphism by its reduction mod.m which is a projective indecomposable 
k[G]-module (i.e., the projective envelope of a simple k[G]-module). 

This follows from the preceding proposition and known results for 
projective k(G]-modules. As a consequence we get: 

Corollary 2. Two projective A[G]-modules are isomorphic if and only if 
[P] = [Q] in PA(G). 

Corollary 3. Reduction mod. m defines an isomorphism from PA(G) onto 
Pk(G); this isomorphism maps P;(G) onto Pt(G). 

As a result we may identify PA(G) and Pk(G). 

For a general exposition of projective envelopes in "proartinian" catego­
ries, see Demazure-Gabriel (23]. 

ExER.CISES 

14.2. Let A be a commutative ring, and let P be a A[G]-module which is projective 
over A. Prove the equivalence of the following properties: 

(i) P is a projective A[GJ-module. 

(ii) For each maximal ideal t;) of A, the (A/'fJ ) [G]-module P/'fJP is projective. 

14.3. (a) Let B be an A-algebra which is free of finite rank over At and let Ii be an 
idempotent of II = B/mB. Show the existence of an idempotent of B 
whose reduction mod. mB is equal to u. 

(b) Let P be a projective A[G]-module, and let B == EndG(p). Show that B is 
A-free, and that IJ can be identified with the algebra of G-endomorphisms 
of II == PimP. Deduce fro~ this, and (a), that each decomposition of P 
into a direct sum of k(G]-modules lifts to a corresponding decomposition 
of P. 

(c) Use (b) to JIve another proof of existence in Prop. 42(b).[Write F as a 
direct factor of a free module P, lift Ii to a ,free module, and apply (b).] 

14.5 Dualities 

Duality between RK(G) and RK(G) 
Let E and F be K.(G]-modules, and put 

(E, F) = dim HomG(E, F), 
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14.5: Dualities 

. The map (E, F) t-+ <E, F) is 66bilinear" (with respect to exact sequences), 
and so defines a bilinear form 

RK(G) x RK(G) -+ Z, 

which we denote by <e,f) or <e,f)K. The classes [E) of simple modules 
E E SK are~ mutually orthogonal, and <E,E) is equal to the dimension dE 
of the field EndG(E) of endomorphisms of E; hence dE ~ I, and equality 
holds if and only if E is absolutely simple (i.e., if the corresponding 
representation is absolutely irreducible), cf. 12.1. 

When K is sufficiently large, it follows from the 24 that every simple 
K(G]-module is absolutely simple. Consequently the above bilinear form is 
nondegenerate over Z, in the sense that it defines an isomorphism of RK(G) 
onto its dual. 

Duality between Rk(G) and Pk(G) 
If E is a projective k[G]-module and F an arbitrary k[G]-module, put 

<E, F) = dim Homo (E, F). 

We thus obtain a bilinear function of E and F (thanks to the assumption 
that E is projective), hence a bilinear form 

Pk(G) X Rk(G) -+ Z, 

denoted <e,f) or <e,f)ke If E, E' E Sk' we have 

HomG(pE , E') = HomG(E, E'), 

where PE denotes the projective envelope of E. If E =F- E' we see that [PEl 
and [E'] are orthogonal; for E = E' we have 

<PE , E) = dim. EndG (E). 

As before, dE = 1 if and only if E is absolutely simple. 

Suppose that K is sufficiently large, so that k contains the mth roots of 
unity. We then have dE = 1 for each E E Sk (see below). Consequently the 
bilinear form < , )k is nondegenerate over Z and the bases [E] and [PE] 

(E E Sk) are dual to each other with respect to this form. 

Remark 

The fact that dE == 1 if K is sufficiently large can be proved in various 
ways: 

(I) We can obtain this from the 24 by ureduction mod. m"once we know 
that the homomorphism d: RK(G) -+ Rk(G) is surjective (cf. Ch. 16, 
the 33). 
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(2) We could also use the fact that Schur indices over k are equal to 1 (cf. 
14.6). This reduces the proof to showing that characters of represen­
tations of G (over an extension of k) always have values in k, and this 
follows from the fact that they are sums of mth roots of unity. 

EXERCISES 

14.4. If E is a k[O]-module, we let E' denote its dual. We define HO(O, E) as the 
subspace of E consisting of the elements fixed by 0, and "0(0, E) as the 
quotient of E by the subspace generated by the sx - x, with x E E and 
s E G. 
(a) Show that, if E, is projective, the map x ..... ~SEG sx defines, by passing 

to quotients, an isomorphism of Ho(O, E) onto HO(O, E). 
(b) Show that HO(O, E) is the dual of "0(0, E'). Conclude that HO(O, E) 

and HO(G, E/) have the same dimension if E is projective. 

14.5. Let E and F be two k[G]-modules, with E projective. Show that 

dim HomG(E, F) == dim HomG(F, E). 

[Apply part (b) of exercise 14.4 to the projective k[O]-module Hom(E, F), 
and observe that its dual is isomorphic to Hom(F, E).] 

14.6. Let S be a simple k[O]-module and let Ps be its projective envelope. Show 
that Ps contains a submodule isomorphic to S. [Apply exercise 14.5 with 
E = Ps, F = S.] Conclude that Ps is isomorphic to the injective envelope of 
S, cf. exercise 14.1. In particular, if S is not projective, then S appears at least 
twice in a composition series of Ps. 

14.7. Let E be a semisimple k[G]-module, and let Pe. be its projective envelope. 
Show that the projective envelope of the dual of E is isomorphic to the dual 
of Pe [reduce to the case of a simple module and use exercise 14.6]. 

14.6 Scalar extensions 

If K' is an extension of K, each K[G]-module E defines by scalar 
extension a K'[G]-module K' ®K E. We thus obtain a homomorphism 

RK(G) --+ RK,(G). 

This homomorphism is an inje·ction. This can be seen by determining the 
image of the canonical basis {[E]} (E E SK) of RK(G): if DE is the (skew) 
field of endomorph isms of E, the tensor product K' ® DE decomposes as a 
product of matrix algebras Ms;(D;), where the D; are fields. Each of the D; 
corresponds to a simple K'[G]-module Ej, and the image of [E) in RK,(G) 
is equal to ~ si[Ej). Moreover each simple K'[G]-module is isomorphic to 
a unique Ej. This description of R K (G) --+ R K' (G), which generalizes that 
of 12.2, shows in particular that: 
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14.6: Scalar extensions 

If all the DE'S are commutative, the Si are equal to J, and the homo­
morphism RK(G) ~ RK,(G) identifies the first group with a direct 
factor of the second, i.e., is a split injection. If all the E E SK are absolutely 
simple, the RK(G) ~ RK,(G) is an isomorphism. 

Analogous results hold for the homomorphisms 

defined by scalar extension from k to k'. The situation is even simpler: the 
endomorphism field of a simple k[G]-module is always commutative and 
separable over k. (This is clear when k is finite, and the general case follows 
by scalar extension.) Consequently Rk(G) ~ Rk,(G) is a split injection. The 
same applies for Pk(G) --+ Pk,(G): since the "scalar extension" functor 
takes a projective envelope to a projective envelope. 

Suppose now that K' is a finite extension of K. Let A' be the ring of 
integers of K' (i.e., the integral closure of A in K"), and k' its residue field. 
If E is a projective A[G]-module, then E' = A' ®A E is a projective A'[G)­
module; moreover, the reduction k' ®A' E' of E' is isomorphic to 

The diagram 

is thus commutative. Since the two vertical arrows are isomorphisms, it 
follows from the above that the homomorphism PA (G) --+ PA,(G) is a split 
injection. 

Remark. The injections RK(G) -+ RK,(G), Rk(G) --+ Rk,(G), etc., are 
compatible with the bilinear forms of the preceding section. Mo.reover, they 
commute with the homomorphisms c,d,e defined in the next chapter. 
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CHAPTER 15 

The cde triangle 

We shall define homomorphisms c, d; and e which form a commutative 
triangle: 

15.1 Definition of c: Pk(G) ~ Rk(G) 

Associate with each projective k[G]-niodule P the class of P in the group 
Rk(G). This class is an additive function of. P, and so we get a homomor­
phism 

c: Pk(G) -+ Rk(G) 

called the Cartan homomorphism. If we express c in terms of the canonical 
bases [Ps] and (S] (S E Sk) of Pk(G) and Rk(G), we obtain a square matrix 
C, of type Sk X Sk called the Cartan matrix of G (with respect to k). The 
(S,T) -cpefficient CST of C is the number of times that the simple module 
S appears in a composition series for the projective envelope PT of T: we 
have 
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EXERCISE 

IS.I. Prove that C{X • y) = x · c{y) if x E Rk(G), y E Pk(G). 

15.2 Definition of d: RK(G) -+ Rk(G) 

Let E be a K[G]-module. Choose a lattice E) in E (i.e., a finitely generated 
A-submodule of E which generates E as a K-module); replacing EI by the 
sum of its images under the elements of G, we can assume that E) is stable 
under G. The reduction EI = ElfmEI of El is then a k[G]-module. 

Theorem 32. The image of E) in Rk(G) is independent of the choice of the 
stable lattice E10 

(Two k[G]-modules EI and ~ obtained by reduction of stable lattices EI 
and E2 need not be isomorphic, cf. ex. 15.1. What the above theorem says 
is that they have the same composition factors.) 

Let Ez be a lattice of E stable under G. We must show that [EI ] = [E2] 

in Rk(G). We begin with a special case: 

We have mEl C E2 eEl. Let T be the k[G]-module ElfE2. Then we have 
an exact sequence 

o ~ T -+ ~ --+ EI --+ T --+ 0, 

where the homomorphism T --+ E2 is obtained from multiplication by a 
generator 'It of the ideal m. Passing to Rk(G), we have 

[T] - [E2] + [EI ] - [T] = o. 
Thus [EI ] = [£2] which proves the theorem in this case. 

The general case. Replacing E2 by a scalar multiple (which does not effect 
Ell, we can assume that E2 is contained in E1• Thus there exists an integer 
n ~ 0 such that 

mnE1 C E2 eEl, 

and we pr~eed by inductio~ on n. Let E3 = mn- I EI + E2• Then 

mn
-

I El C E3 C EI and mE3 C ~ C E3. 

By (a) and induction we get 

which proves the theorem. 0 

It is now clear that the map E ~ lEI] extends to a ring homomorphism 
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called the decomposition homomorphism. It takes R~(G) into Rt(G). The 
corresponding matrix D. (relative to the canonical bases of RK(G) and 
Rk(G» is called the -decomposition matrix. It is a matrix of type Sk x SK 
with nonnegative integer coefficients. For F E- Sk and E E SK the corre­
sponding coefficient DFE of D is the number of times that F appears in the 
reduction mod. m of a stable lattice EJ of E: thus 

[E I ] ~ ~ DFE[F] 
F 

Remarks 
(1) The hypothesis that K be complete plays no role in the proof of tho 

32 nor in the definition of the homomorphism d. 
(2) There are analogous results for algebraic groups, cf. Publ. Sci. I.H.E.S. 

no. 34, 1968, pp. 37-52. 

ExERCISES 

15.1. Take p = 2 and G of order 2. Let E = K[G). Show that E has stable lattices 
whose reductions are semisimple (isomorphic to k ED k) and others whose 
reductions are not semisimple (isomorphic to klG)). / 

15.3. Let E be a nonzero K[G] .. module and EI a lattice in E stable under G. Prove 
the equivalence of the following: 

(i) The reduction EI of E) is a simple k[G]-module. 
(ii) Every lattice in E stable under. G has the form a E I with a E K *. 

Show that these imply that E is a simple K[G]-module. 

15.4. (After J. Thompson.) Let E be a Z-free Z[G]-module, with rank n ;;;;as 2. 
Assume that, for each prime number p, the reduction E/p,E of E is a simple 
(Z/pZ) [G)-module. . 
(a) Show that there is a bilinear form ·B(x,y) on E with values in Z such that 

B(x,x) > 0 for all x ¢ o. 
(b) Let B be chosen as in (a) and extend it by linearity to the Q-vector space 

Q ® E. Show that the set E' of x E Q ® E such that B{x,y) E Z for all 
y E E has the form E' = aE with a E Q* (same =t:gument as for ex. 
15.3). Conclude that B can be chosen nondegenerate over Z, Le., such 
that E' = E. If (e;, ... ,e,,) is a basis of E, the determinant of the matrix 
of the B(e;, ej) is then equal to I. 

(c) Assume that B has been chosen as in (b). Show that there exists e e E 
such that B( x, x) E B( e, x) (mod. 2) for all x e E, and that such an e 
is invariant under G mod. 2E. Conclude that e == 0 (mod. 2E), i.e., that 
the quadratic form B( x, x) takes only even values. 

(d) Obtain from (c) the congruence n liE 0 (mod. 8). [Use the fact- that every 
positive definite integer quadratic form which is even and has discrimi­
nant I has rank divisible by 8.] 

(e) Show that the reflection representa~ of a Coxeter group of type Ea has 
the above properties (cf. Bourbaki, Gr. el Alg. de Lie, Ch. VI, §4, no. 10). 

- See, for example, A Course in Arithmetic, GTM 7, Springer-Verlag (1973), p. 53 and 109. 
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IS.3: Definition of e: Pk(G) -+ RK(G) 

15.3 Definition of e: Pk(G) ~ RK(G) 
> 

The functor "tensor product with K" defines a homomorphism from 
PA(G) into RK(G). Combining it with the inverse of the canonical 
isomorphism PA (G) -+ Pk(G), cf. 14.4, we obtain a homomorphism 

Its matrix will be denoted by E; it is of type SK X Sk. 

EXERCISE 

15.5. We have e(d(x) . y) = x . e(y) if x E RK (G), y E Pk(G). 

15.4 Basic properties of the cde triangle 

(a) It is commutative, i.e., c = doe, or equivalently C = D · E. This is 
clear. 

(b) The homomorphisms d and e are adjoints of one another with respect 
to the bilinear forms of 14.5: 

(x,d(Y»k = (e(x),Y)K 

Inde~d, we can assume that x = [X], where X is a projective A[G]-module, 
and that y = [K ®A Y), where Y is an A[G)-module which is A-free. The 
A-module HomG(X, Y) is then free; let r be its rank. Then we have 
canonical isomorphisms: 

K ® HomG(X, Y) = Hom(i(K ® X, K ® Y) 

and 

k ® HomG(X, Y) = HomG(k ® X,k ® V). 

This shows that (e{x),y) = r = (x,d(y». 
(c) Assume that K is sufficiently large. In view of 14.5, the canonical bases 

of Pk(G) (resp. of RK(G» and of Rk(G) (resp. of Rk(G» are dual to each 
other 'with respect to the bilinear form (a, b)k (resp. the form (a, b )K). This 
implies that e can be identified with the transpose of d; in particular we have 
E = to. Since C = D · E = D . tD, we see that C is a symmetric matrix. 

EXERCISES 

15.6. Let S, T E Sk and let Ps, Pr be their projective envelopes. We put 

ds = dim EndG(S), dT = dim EndG(T), 
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and let CsT (resp. eTS) be the multiplicity of S (resp. T) in a composition 
series of Pc (resp. Ps), cf. 15.1. 
(a) Show that eSTds = dim Homo (Ps,Pc). 
(b) Show that CsTds = CrsdT [apply ex. 14.5}. When K is sufficiently large, 

the ds are equal to. I, and we obtain again the fact that the matrix 
e = (CsT). is symmetric. 

IS.7. Keep the notation of Ex. 15.6. Show that either S is projective, Ps ~ Sand 
ess = I, or ess ;> 2 [use ex. 14.6J. 

IS.8. If x E Pk(G), we have (x, c(X»k = (e(x),e(x»K' Conclude that, if K is 
sufficiently large, the quadratic form defined by the Cartan matrix C is 
positive definite. 

15.5 Example: p'-groups 

Proposition 43. Assume that the order of G is prime to p. Then: 

(i) Each k[G]-modu/e (resp. each A-free A[G]-modu/e) is projective. 
(ii) The operation of reduction mod. m -defines a bijection from SK onto 

Sk' 
(iii) If we identify SK with Sk as in (ii), the matrices C, 0, E are all 

identity matrices. 

(More briefly: the representation theory of the group G is "the same" 
over k as over K.) 

Let E be an A[G)-module which is free over A. We can write E as a 
quotient L/R of a free A[G]-module L. Since E is A-free, there exists an A­
linear projection 'If of L onto R; since the order g of G is invertible in A, 
we can replace 'It by the average (l/g) ~sEG S'lts- 1 of its conjugates, and the 
projection thus obtained is A[G]-linear. This shows that E is A[G]­
projective. The same argument applies for k[G]-modules. This proves (i), as 
well as the fact that the Cartan matrix is the identity. 

If E E Sk' the projective envelope E} of E relative to A[G] is a projective 
A(G]-module, whose reduction El = E1/mEJ is E. If we put F = K ® EJ, 

then d([F]) = [E). Since E is simple, this implies that F is simple, thus 
isomorphic to one of the elements of SK' We thus obtain a map E ~ F of 
Sk into SK' and it is clear that this map is the inverse of d. This proves (ii) 
and (iii). 0 

Remark. The fact that D is an identity matrix shows that d maps R~ (G) 
onto Rt(G); in other words, every linear representation of Gover K can 
be lifted to a representation over A, a result which can easily be verified 
directly (cf. ex. 15.9, below). 
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15.7: Example: products of p' -groups and p-groups 

EXERCISE 

15.9. Suppose that g is prime to p. Let E be a free A-module. 
(a) Let n ;> I be an integer, and let 

. Pn : G ~ GL(E/mnE) 

be a homomorphism of G into the group of automorphisms of E/mnE. 
Show that Pn can be lifted to 

Pn+l: G ~ GL(E/mn+1 E) 

and that this lifting is unique, up to conjugation by an automorphism of 
E/mn+1 E congruent to 1 mod .mn. [Use the fact that the cohomology 
groups of dimension 1 and 2 of G with values in En~(E/mE) are zero.] 

(b) Obtain from (a) the fact that every linear representation 

Pi: G ~ GL{E/mE) 

of Gover k can be lifted, in an es~entiaUy unique way, to a representa­
tion of Gover A. 

15.6 Example: p-groups 

Suppose that G is a p-group, of order pn. We have seen (8.3, cor. to prop. 
26) that the only irreducible representation of G in characteristic p is the 
unit representation. It follows that the artinian ring k[G] is a local ring with 
residue class field k. The projective envelope of the simple k[G]-module k 
is k[G], i.e., the regular representation of G. The groups Rk(G) and Pk(G) 
can be both identified with Z, and the Cartan homomorphjsm c: Z -+ Z is 
multiplication by pn. The homomorphism d: RK(G) -+ Z corresponds to the 
K-rank; the homomorphism e: Z -+ RK(G) maps an integer n onto n times 
the class of the regular representation of G. 

15.7 Example: products of p' -groups and p-groups 

Suppose that G = S X P, where S has order prime to p, and P is a p­
group. We have k[G] = k[S] ® k[P]. Moreover: 

(a) A k[G]-module E is semisimple if and only if P acts trivially on E. 
The sufficiency follows from the fact that every k[S]-module is semisim­

pIe, cf. 15.5; To prove the necessity, we can assume that E is simple. By 15.6 
the subspace E' of E consisting of elements fixed by P is not zero. Since P 
is norm,,1 in' G, the subspace E' is ~table under G, and thus equal to E, 
which means that P acts trivially. 

2 

(b) A k[F]-module E is projective if and only if it is- isomorphic to F ® k[P), 
where F is a k[S]-module. 

Since F is a projective k[S]-module (cf. 15.5), F ® k[P] is a projective 
k[G)-module. Moreover, it is clear that F is the largest quotient of F ® k[P] 
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on which P acts trivially. Because of (a) this means that F ® k[P] is the 
projective envelope of F. However, every projective module is the projective 
envelope of its largest semisimple quotient. We thus see that every 
projective module has the form F ® kIP]. 

(c) An A(G]-module £ is projective if and only if it is isomorphic to 
F ® A[P], where P is an A-free A[S]-module. 

Clearly a module of the form ~ ® AlP] is projective. The converse is 
proved by applying (b) to E = E/m~: if E is projective, we have E 
~ F ® kIP], and we know that F can be lifted to an A[S]-module F which 
is free over A (and even A[S]-projective, cf. above). The module F' ® A[P] 
is the projective envelope of F ® k[P], and thus is isomorphic to E. 

Properties (a) and (b) show in particular that the Cartan matrix of G is 
the scalar matrix pn, where pn = Card (P). 

130 



16. 1 Properties of the cde triangle 
The main result is the following·: 

CHAPTER 16 

Theorems 

Theorem 33. The homomorphism d: RK(G) ~ Rk(G) is surjective. 

The proof will be given in 17.3. 

Remarks 
( 1) This applies in particular to k = Z/ pZ, taking for K the p-adic field 

Qp; the ring A is then the ring Zp of p-adic integers. 
(2) Roughly speaking, the theorem asserts that every linear representation 

of Gover k can be lifted to characteristic 0 if we are willing to accept 
"virtual representations", i.e., elements of the Grothendieck group RK (G). 
This is an extremely useful result for many applications. 

Theorem 34. The homomorphism e: Pk(G) ~ RK(G) is a split injection. 

When K is sufficiently large, e is the transpose of d (cf. 15.4), and the fact 
that d is su( ~tive implies that e is a split injection. In the general case, let 
K' be a finite sufficiently large extension of K, and let k' be its residue field. 
Consider the diagram: 

e' 
~ 

• In the first French edition of this book, theorem 33 was stated only for a sufficiently large 
field K. Claude Chevalley and Andreas Dress have independently observed that it is valid in 
general. 
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As we have just seen, e' is a split injection. In view of 14.6, the same is true 
for Pk(G) -+ Pk,(G). Their composition is a split injection as well, hence the 
same holds for e. 0 

At the same time we have proved: 

CoroUary 1. For each finite extension K' of K, the homomorphism 

Pk(G) ~ RK(G) -+ RK,(G) 

is a split injection. 

The injectivity of e is equivalent to: 

CoroUary 2. Let P and P' be projective A[G]-modules. If the K(G)-moduJes 
K ® P and K ® P' are isomorphic, then P and P' are A[G]-isomorphic. 

(Indeed we know that the equality [P] = (P'] in RA(G) ~ Rk(G) is 
equivalent to P :::::: P'.) 

Theorem 35. Let p" be the largest power of p dividing the order of G. Then 
every element of Rk(G) divisible by p" belongs to the image of the Cartan 
map ': Pk(G) -+ Rk(G). 

The proof will be given in 17.4. 

Corollary 1. The map c: Pk(G) -+ Rk(G) is injective, and its cokernel is a 
finite p-group. . 

The second assertion is immediate from the 3S; the first then follows, 
since Pk(G) and Rk(G) are free Z-modules with the same- rank, namely 
Card (Sk). 

CoroUary 1. If two projective k(G)-modules have the same composition/actors 
they are isomorphic. 

This is a restatement of the injectivity of c. 

Corollary 3. Assume K is sufficiently large. The Cartan matrix C is then 
symmetric, and the corresponding quadratic form is positive definite. The 
determinant of C is a power of p. 

The quadratic form in question is 

X 1-+ (x,c(x»k == (x,d(e(x»)k = (e(x),e(X»K, 

Since the form (a, b >K is clearly positive definite, and e is injective (th. 34), 
we see that the above form is also positive definite. The determinant of C 
is thus > O. This implies that det(C) is a power of p, since the cokemel of 
C IS a p-group. ' 0 
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16.2: Characterizations of the image of e 

Remarks 
(1) The above argument shows that the injectivity of c follows from that 

of e. 
(2) Theorem 35 is equivalent to the assertion that there exists a 

homomorphism c': Rk(G) -+"Pk(G) such that c 0 c' = pn (which implies 
c' 0 c == p"). 

(3) The exponent ninth. 35 is best possible, cf. ex. 16.3. 

EXERCISES 

16.1. Show that, when K is not complete, theorem 33 remains valid provided K is 
sufficiently large. (If It denotes the completion of K, observe that the 
homomorphism RK(G) -+ Rlt(G) is an isomorphism, and apply tho 33 to 
It.) 

16.1. Show that d: RQ(G) -+ Rz/sz(G) is not surjective if G is cyclic of order 4. 

16.3. Let H be a Sylow p-subgroup of G. Show that, if E is a projective Ie( G J­
module, then E is a free k(H]-module (cf. 15.6), and so dim E is divisible by 
pn. Conclude that the map [E) t-+ dim E defines, by passing to quotients, a 
surjective homomorphism Coker (c) ~ Z/pnZ. In particular, the element 
pn-l of Rk(O) does not belong to the image of c. 

16.2 Characterization of the image of e 

An element of G is said to be p-s;ngular if it is notp-regular (cf. 10.1), i.e., 
if its order is divisible by p. Recall also that every element of RK(G) can 
be identified with a class function on G, namely its character (cr. 12.1 and 
14.1). 

Theorem 36. The image oj e: Pk(G) -+ RK (G) consjsts of those elements oj 
R K (G) whose character is zero on the p-singular elements of G. 

We even have the more precise result: 

Theorem 37. Let K' be a finite extension oj K. In order that an element of 
RK,(G) belong to the image ojPA(G) == Pk(G) under e, it is necessary and 
suffiCient that its character take values in K, and be zero on the p-singular 
elements ofG. 

For the proof, see 17.5. 

EXERCISE 

16.4. (Swan.) Let A bea Dedekind domain with quotient field F. Assume that, for 
each prime number p dividing the order of G, there exists a prime ideal t:J of 
A such that A/'fJ has characteristic p. Let P be a projective A{G]-module.­
Show that F ® P is a free F[G]-module. [Apply tho 36 to the modules 
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obtained from P by completion at such primes ~. Deduce that the character 
of F ® P is zero off the identity element of G.] c 

This exercise applies in particular to the case where A is the ring of 
integers of an algebraic number field. 

16.3 Characterization of projective A[G]-modules 
by their characters 

Such a characterization amounts to determining those representations of 
Gover K which contain a lattice stable under G which is projective as an 
A[G]-module. In other words, it amounts to characterizing the image of 
pt(G) = P;(G) under e. Only partial results are known. First: 

Lemma 22. Let x E PA(G), and let n ;> I be an integer.lfnx E P.t(G), we 
have x E P:(G). 

This is clear: if r = Card(Sk)' then PA(G) can be identified with Z' and 
P-t(G) with N', cf. 14.3 and 14.4. 0 

Proposition 44. Let K' be a finite extension of K, and lei A' be the ring of 
integers of K'. Assume the following two conditions on an element 
x ojRK,(G): 

(a) The character of x has values in K. 
(b) There exists an integer n ;> 1, such that nx arises, by scalar 

extension, from a projective A'[G]-mod~/e. 

Then x arises from a projective A[G]-module, uniquely determined up to 
isomorphism. 

Let N = [K': K] = [A': A). Let E' be a projective A'[G]-module with 
image nx in RK,(G), and let E be the A[G)-module obtained from E' by 
restriction to A[G]. One checks easily that the character of K ® E is equal 
to nN times that of x. 

Thus 

e([E]) = nN · x in RK,(G). 

By tho 36, the character of e{[E) is zero on the p-singular elements of G; 
hence the same is true for x. $0, by tho 37, we have x = e(y), with 
y E PA (G). Since e is injective (th. 34), this implies [E] = nN · y, and 
lemma 22 shows that y belongs to PI (0). Consequently, there exists a 
projective A[O]-module Y such that [K ® Y) = x in RK (0); the unique­
n~s of Y (up to isomorphism) follows from cor. 2 to the 34. . 0 

One can ask whether e(P;(G» = e(PA(G» n Rt(G). This is not true 
in general (cf. ex. 16.5 and 16.7). However, we have the following criterion: 
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Proposition 45. Suppose the following condition is satisfied: 
(R) ·There exists a finite extension K' of K, with residue field k', such that 
d(Rt,(G» = Rt,(G). 
Then we have e(P;(G» = e(PA(G» n Rj(G). 

By prop. 44 it is enough to prove that 

e(P;(G» = e(PA(G» n Rt(G) 

when K is sufficiently large, in which case condition (R) just means that d 
maps Rt (0) onto Rt(O). Now let 

x E e(PA(G» n R~(G). 

Since x E e(PA (0»), we can write x as 

x = ~ nEe([PE), 
EESk 

where ~E denotes a projective A[G]-module whose reduction mod. m is the 
projective envelope PE of E (cf. 14.4). We must show that the integers nE 

are nonnegative. By (R), for each E E Sk there exists zE E Rt (0) such 
that d(zE) = [E]. Since x E Rt(O), we have (x,zE>K ~ o. On the other 
hand, the fact that d and e are adjoint shows that <x, zE)K = nEe In 
particular nE is non-negative, and the proof is complete. 0 

Combining prop. 45 and the 36, we get: 

Corollary. Suppose that G satisfies condition (R) of prop. 45. A linear 
representation ofG over K comes from a projective A[G]-module, if and only 
if its character vanishes on the p-singular elements of G. 

Remark. Condition (R) is equivalent to the following: 
(R') If K is sufficiently large, every simple k{G)-module is the reduction mod. 
m of a K(G]-modu/e (necessarily simple). 

(In other words, each irreducible linear representation of Gover k lifts 
to K.) 

1beorem 38. (Fong-Swan). Suppose'that G is p-solvable, i.e., has a normal 
composition series whose factors are either p-groups or groups of order prime 
to p. Then G satisfies conditions (R) and (R') above. 

For the proof, see 17.6. 

EXERCISES 

16.5. With notation as in prop. 44, show that 
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16.6. Show that, for K sufficiently large, condition (R) is equivalent to the 
condition e(Pt(G» == e(PA(G» n Rt(G). (Observe that an element x 
of Pk(G) belongs to pt(G) if and only if (x'Y)k > 0 for.aUy E Rt(G).) 

16.7. Take for G the group SL(V) where V is a vector space of dimension 2 over 
the field ~ == Z/ pZ. Show that the natur~ representations of G in the ith 
symmetric powers V; of V are absolutely irreducible for ; < p. (Since the 
number of p-regular classes of G is p, it follows that these are, up to 
isomorphism, all the irreducible representations of G, cf. 18.2, cor. 2 to the 
42.) Give examples where these representations cannot be lifted to charac­
teristic zero even over a sufficiently large field K. (For p = 7,; == 4, we have 
dim V; = 5, and 5 does not divide the order of G; hence Vi cannot be lifted.) 

16.4 Examples of projective A[G]-modules: irreducible 
representations of defect zero 

, 

In this section we assume that K is sufficiently large. 

Proposition 46. Let E be a simple K[G]-module, and let P be a lattice in E 
stable under G. Assume that the dimension N of E is divisible by the largest 
power p" of p dividing the order g of G. Then: 

(a) P is a projective A(G]-module. 
(b) The canonical map A[G] -+ EndA (P) is surjective, and its kernel is 

a direct Jactor in A[G] (as a two-sided ideal). -
(c) The reduction P = PimP oj P is a simple and p':ojective A[G)­

module. 

Observe that (a) implies (cf. the 37): 

Corollary. The character XE of E is zero on p-singular elements of G. 

First of all, since N is divisible by pn, the quotient N/ g belongs to the ring 
A. This enables us to apply Fourier inversion (6.2., prop. 11) without 
introducing any "denominators," i.e .. , within the ring A. More precisely, let 
Sp be the endomorphism of P defined by s E G; if q, E EndA (P), the trace 
Tr(spl q,) of spl q, belongs to~A, so we can define the element " 

". = N l: Tr(splcf»s of the ring A [GJ. 
g sEG 

1t follows from prop. 11 that u." has image 1 ® cp in EndK (E), and 0 in 
EndK(E') for each simple K[G]-module E' not isomorphic to E. In 
particular, u. has image cp in EndA (P), which proves (b). Assertion (a) then 
follows from the elementary fact that P is projective over the ring EndA(P); 
the same argument works for (c). 0 

Remark. In the language of block theory (cf. [9], [20]),.prop. 46 is the case 
of a block with a unique irreducible character (or of deject zero). 
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16.4: Examples of projective A(G]-modules 

EXAMPLE. If G is a semisimple linear group over a finite field of character­
istic p, there exists a linear irreducible representation of G (over Q) whose 
degree is equal to pn; it is the special representation of G discovered by R. 
Steinberg (cf. Canad. J. of Math., 8, 1956, p. 580-591 and 9, 1957, p. 
347-351). By a result of Solomon-Tits it may be realized as the homology 
representation of top dimension for the Tits building associated ~th G*. 

EXERCISES 

16.8. Take G = ~4' cf. 5.7. Show that, for p = 2, the group G has no irreducible 
representation of the type described by prop. 46, but that there is such a 
representation for p = 3. Same questi0D: for (;4. 

16.9. Let S E Sk. Prove the equivalence of the following properties: 
(i) S is a projective k[ G)-module. 

(ii) S is isomorphic to the reduction mod. m of a module P satisfying the 
conditions of prop. 46. 

(iii) The diagonal coefficient Css of the Cartan matrix of G is equal to I. 
(For the equiv~lence of (i) and (iii), see ex. 15.7.) 

• Cf. L. Solomon, The Steinberg cllaracter of a finite group with a BN-pair. Theory of Finite 
Groups, edited by R. Brauer and C.-H Sah. W. A. Benjamin, New York, 1969, p. 213-221. 
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CHAPTER 17 

Proofs 

11.1 Change of groups 

Let H be a subgroup of G. We have already defined restriction and 
induction homomorphisms relative to R K : 

and 

The same definitions apply to Rk and Pk : by restriction, every k[G]-module 
defines a k[H] module, which is projective if the given module is projective. 
Passing to Grothendieck groups, we get homomorphisms 

and 

On the other hand, if E is a k[H]-module, then Ind E = k(G] ®k[Hl E is a 
k(G]-module (said to be induced by E), which is projective if E is proJective. 
Hence we have homomorphisms 

and 

Using the associativity of the tensor product, we easily obtain the formula 

Indg(x · Res~y) = Ind~(x) · y. 

in each of the following situations: 

(a) 

(b) 

(c) 
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x E RK(H), y E RK(G) and 

xE Rk(H), y E Rk(G). and 

x E Rk(H), y E Pk(G) and 

Ind~(x) · y E R"K(G), ' 

Ind~(x) · y E Rk(G), 

Ind~(x) · y E Pk(G). 



17.2: Brauer's theorem in the modular case 

[Case (c) makes sense because Pk(O) is a module over Rk(O).] 

Moreover, the homomorphisms- c, d, e of Ch. 15 commute with the 
homomorphisms Resn and Ind~. 

EXERCISE 

17.1. Extend the definitions Qf Res~ and IndH to the case of a homomorphism 
H ~ G whose kernel has order prime to p (cf. ex. 7.1). 

17.2 Brauer's theorem in the modular case 

Theorem 39. Let X be the set of all rK-elementary subgroups of 0- (cj. 12.6). 
The homomprphisms 

and 

Ind: E9 Pk(H) -+ Pk(G) 
HEX 

defined by the Ind~, for HEX, are suTjective. 

(In other words, tn. 27 holds for Rk and Pk .) 

Let lK(resp. Ik ) denote the identity element of the ring RK(G) 
(resp. Rk(O». We haved(IK) = lk. By the 27 we can write lK in the form 

lK = ~ IndH(xH) with XH E RK(H). 
HeX 

Applying d, and using the fact that d commutes with Ind~, we obtain an 
analogous formula for Ik : 

Ik = ~ IndH(xH), with xii = d(XH) E Rk(H). 
HEX· 

For y E Rk(G) (resp. Pk(O», we get by multiplication: 

y = Ik · Y = ~ IndH(xH)· y = l:: Ind~(xH· Res~y), 
HeX HeX 

which proves the theorem. o 

CoroUary. If K is sufficiently large, each element of Rk(G) (resp. of Pk (0» 
is a sum of elements of the form IndH(YH), where. H is .an elementary 
subgroup olG, andYH belongs to Rk(H)(resp. to Pk(H». 

Indeed, when K is sufficiently large, then X is just the set of all 
elementary subgroups of O. 
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Remark. The argument used in the proof of the 39 applies to many other 
situations (cf. Swan [21], §§ 3,4.) For example it gives the following 
analogue of Artin's theorem (cf. the 26): 

1beorem 40. Let T be the set oj all cyclic subgroups ojG. The homomorphisms 

and 

are surjective. 

17.3 Proof of theorem 33 

We have to show that d: RK (G) -+ Rk(G) is surjective. By the 39, Rk(G) 
is generated by the various Ind~(Rk(H», where H is rK-elementary. Since 
d commutes with Ind3, it is enough to show that Rk(H) = d(RK(H». 
Hence we are reduced to the case where G is rK-elementary. In this case we 
have the following more precise result: 

TIIeorem 41. Let I be a prime number. Assume that G is the semidirecl product 
of an I-group P by a cyclic normal subgroup C oj order prime to I. Then every 
simple k[G]-module E can be lifted (i.e., is the reduction mod m of an A­
free A [G)-module)., 

(In other words, d maps Rit(G) onto Rt(G).) 

Suppose I ~ p. Let Cp be the p-Sylow subgroup of C, and let E' be the 
vector subspace of E consisting of those elements fixed by Cp• Since Cp is a 
p-group, we have E' ~ 0, cf. 8.3., prop. 26. Since Cp is normal in G, the 
space E' is stable under G. Thus E' = E, which means that Cp acts trivially 
on E, and that the representation of G in E comes from a representation of 
o/ep• Since the order of G/Cp is prime to p, it is immediate that such a 
representation can be lifted (cf. 15.5). 

Suppose now that I = p. We proceed by induction on the order of G. 
I 

Since C has order prime to p, the representation of C in E is semisimple. 
Decompose it into a direct sum of isotypic k[C]-modules (cf. 8.1 prop. 24): 

E = EB ECI • 
a 

The group G permutes the ECI 's; since E is simple, G permutes transitively 
the nonzero E CI 's. Let Ell be one of these, and let Gil be the subgroup of 
.G consisting of those elements s such that sEll = Ell. It is clear that Ell is a 
k[GIl]-module and that E is isomorphic to the corresponding induced 
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module In<!8I1(Ep). Moreover, Gil is the semidirect product of a subgroup 
of P and the group C. If Ell ¢ E, we have Gp ¢ G, and the induction 
hypothesis applied to Gil shows that Ep can be -lifted; the same is then true 
for E. 

Thus we may assume that E is an isotypic k[C]-module. Let p denote the 
homomorphism from k[G] into Endk(E) which defines the k[G] ... module 
structure on E. The fact that E is k[C]-isotypic is equivalent t~ saying that 
the image of k[C] under p is afield k', which is a finite extension of k. The 
restriction of p to C is a homomorphism cp: C -+ k'·, and k' is generated 
over k by </> (C). The module E is thus endowed with the structure of a k' ... 
vector space. Now choose an element v =1= 0 of E invariant under P; -again 
this is possible since P is a p-group, cf. 8.3, prop. 26. For x E C, s E P, put 
Sx = sxs- I • We have . 

p(s)(cp(x) · v) = p(sxs-1 )p(s) · v =f cp(sx) · v. 

Hence the subspace k'v of E generated by the <p{x). v, x E C, is stable under 
C and P, thus is equal to E. Hence dimk' E = l. This allows us to identify 
E with k' in such a way that v becomes the unit element of k'. For all t E G 
p(t) is an endomorphism at of the k-vector space k'. For s E P we have 
(Js(l) = 1 by construction. Moreover, the above formula shows that 

hence 

as(<p{x)cp(x'» = as(</>(x»as(</>(x'» for all x, x' E C. 

Since k' is generated by the q,(x), we get 

in other words, as is an automorphism of the field k' and the map s ~ as is 
a homomorphism a: P -+ Gal(k'/k), where the latter denotes the Galois 
grQuP of k'/k. The lifting of E is now easy to define: let K' be the un ramified 
extension of K corresponding to the residue extension k'/k, and let A' be 
the ring of integers of K'. The canonical isomorphism 

Gal(K'/K) -=-+ Gal(k'/k) 

gives an action of P on K' and on A' (using a). On the other hand, the 
homomorphism </>: C ~ k'* lifts uniquely (using, say, multiplicative repre­
sentatives) to a homomorphism +: C ~ A'·, which gives an action of C on 
A' by multiplication. It is then immediate (from uniqueness) that we still 
have 

as(4)(x» = 4)(sx) for x E C, s E P. 
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This means that the actions of C and P on A' combine to give an action of 
G. Endowed with such an A[G]-module structure, A' is the desired lifting. 

o 

Remark. When K is sufficiently large, we only need tho 41 in the case 
where G is elementary, thus a direct product of C with P. The above proof 
becomes much simpler: the group P, acts trivially on the simple module E, 
which can thus be viewed as a simple k[C]-module and lifted without 
difficul ty~ 

17.4 Proof of theorem 35 

Letpft be the largest power of p dividing the order of G. We have to show 
that the cokemel of c: Pk(G) ~ Rk(G) is killed by pn. We distinguish two 
cases: 

(a) K is sufficiently large 

By the cor. to tho 39, Rk(G) is generated by the Ind~(Rk(H» with H 
elementary. We are thus reduced to the case where G is elementary, hence 
decomposes as a product S X P, where S has order prime to p and P is a p­
group. We have seen in 15.7 that the Cartan matrix of such a group is the 
scalar matrix pft. The theorem follows in this case. 

(b) General case 

Let K' be a finite sufficiently large extension of K, with residue field k'. 
Scalar extension from k to k' gives us a commutative diagram: 

o~ Pk(G) -.. Pk,(G) ~ P -+0 

J,c J, c' !y 
O~ Pk(G) -:+ Rk,(G) ~ R -+ 0, 

where P = Pk,(G)/Pk(G) and R = Rk,(G)/Rk(G). Whence the exact 
sequence: 

o ~ Ker(c) ~ Ker(c') -+ Ker(y) ~ Coker(c) ~ Coker(c'). 

By (a), Coker(c') is killed by 1"'. Since Pk,(G) and Rk,(G) have the same 
rank, it follows that c' is injective, whence the same is true for c, and so 
~ker(c) is finite. But we know (cf. 14.6) that Pk(G) ~ Pk,(G) is a split 
injection. The group P is thus Z-free, and so is Ker(y). Since Ker(c') = 0, 
and Coker(c) is finite, the exact sequence above shows that Ker(y) = 0; 
hence Coker(c) embeds in Coker(c'). Since the latter is killed by pft, the 
same is true of Coker(c), which proves the theorem. 0 
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17.5 Proof of theorem 37 

By extending K' if necessary, we can assume that K' is sufficiently large. 

(i) Necessity 
Let E be a'projective A[G]-module, and let X be the character of the 

K'[GJ-module K' ®A' E. If s EGis p-singular, we must show that x(s) = o. 
Replacing G by the cyclic subgroup generated by s, we can assume G IS 
cyclic, hence of the form S x P, where S has order prime to p, andP is a p­
group. By 15.7, E is isomorphic to F ® A'[P], where F is an A'-free A'[S]­
module. The character X of K' ® E is thus equal to t/I ® rp, where t/I is ,a 
character of Sand rp is the character of the regular representation of P. 
Such a character is evidently zero off S, so in particular X{s) = O. 

(ii) Sufficiency (first part) 
Let y E R k' (G), let X be the corresponding virtual character, and 

suppose X{s) = 0 for every p-singular element s of G. 
We will show that y belongs to PA,(G) (where this group is identified with 

a subgroup of Rk,(G)by means of e). 
By the cor. to tho 39, we have 

where H runs over the set of all elementary subgroups of G.Multiplying by 
y, we get: 

y = ~ Ind(YH)' with YH = XH . ResH(Y) E RK,(H). 

The character of YH. is zero on the p-singular elements of H. If we knew that 
YH belonged to PA,(H), it would follow that y belongs to PA,{G). Hence, 
we are reduced to the case where G is elementary. 

Now decompose G = S x P as above. We have 

Since X is zero off S, we can write X in the form f ® rp, where f is a class 
function on S, and rp is the character of the regular representation of P. If 
p is a character of S, then 

< 1 ® rp, p ® I > = < J, p> . <~r. I > = < j, p>. 

Since the left-hand side is equal to <X, p ®' I). it is an integer; thus 
<I, p> E Z for all p, which proves that 1 is a virtual character of S. Thus we 
can write Y in the form 

y-== Ys ® YP' 

withys E RK,(S), andyp the class of the regular representation of P. Since 
Ys E PA,(S) and YP E PA,(P), we in~eed have y E PA,(G). 
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(iii) S_ufJiciency (second part) 
Keep the notation (ii), and suppose in addition that the character X of y 

has values in K. We must show that y belongs 10 PA (G). By (ii), we at least 
know that y E PA,(G). 

Let r be the degree of the extension K'/K. Every A'[G]~module defines 
an A[G)-module by restriction, and this module is projective whenever the 
original module is. Thus we have a homomorphism 

'IT: PA,(G) -+ PA (G). 

Put z = '1T(y). Then z = r . y. Indeed, it suffices to verify this equality in 
RK,(G), and for this it is enough to show that the character Xz associated 
with z is equal to r · x. But we have 

Xz = TrK'/K (X), 

and since X has values in K, we get XZ = r · x. 
Thus y E PA,(G) and r · y E PA (G). But the inclusion PA (G) --+ PA,(G) 

is a split injection, cf. 14.6. Since r · y is divisible by r in PA,(G), the same is 
true in PA (G), which means that y E PA (G), and completes the proof. 0 

17.6 Proof of theorem 38 

We say that a group G is p-solvable of height h if it is a successive 
extension of h groups which are either of order prime to p or of order a 
power of p. We want to show that, if K is sufficiently large, then every 
simple k[G]-module lifts to an A-free A[G]-module. 
We proceed by induction on h (the case h = 0 being trivial) and, for groups 
of height h, by induction on the group order. 

Let I be a normal subgroup of G, of order either prime to p or a power of 
p, such that Gil has height h - 1. Let E be a simple (and thus absolutely 
simple) k[G]-module. If I is ap-group, the subspace EI of all elements of E 
left invariant by I is =1= 0 and therefore equal to E; thus E is a ·simple 
k[G/I]-module. By induction it can be lifted to an A-free AlG/I) module, 
and the result follows in this case. 

Suppose now that I has order prime 10 p. Decompose E as a direct sum of 
isotypic k[I]-modules (i.e., sums of isomorphic simple modules): 

E = E9 E«, 

where Eo is an isotypic k[I]-module of type Ser. 
The group G permutes the Eer; since E is simple it permutes transitively 

those which are nonzero. Let Eo be one of these, and let Ga be the subgroup 
of G formed by all s E G such that s(Ea) = Ea. Then Ea is a k[Ga ]­

module, and it is clear that E is the corresponding induced module. If 
Ea =1= E, we have Ga =1= G, and the induction hypothesis, applied to Go' 
shows that Eo can be lifted; consequently the same is true for E. 
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We can now assume that E is an isotypic k[I]-module of type S where S 
is a simple k [I]-module. Since I has order prime to p, we can lift S in an 
essentially unique way to an A-free A[I] module, say S, and it is clear that 
K ® S is absolutely simple. By cor. 2 to prop. 16 of 6.5, it follows that 
dim S divides the order of I; .in particular, dim. S is prime to p. 

Now let s E G, and denote by is the automorphism x ~ sxs- J of I. Since 
E is isotypic of type S, it follows that S (and hence S) is isomorphic to its 
transform by is. This can be expressed as follows: 

Let p: I -+ Aut(S) be the homomorphism defining the I-module struc­
ture of S, and let Us be the set of t E Aut (S) such that 

tp(x)t- J = p(sxs- I ) for all x E I. 

Then Us is not empty. 
Let G J be the group of all pairs (s, t) with s E G, t E Us. The map 

(s, t) ~ s is a surjective homomorphism G 1 -+ G; its kernel is equal to u., 
which is the multiplicative group A * of A. The group G 1 is thus a central 
extension of G by A *; it acts- on S via the homomorphism (s, t) ~ t. 

We shall now replace 0 1 by afinite group. Let d = dim S. If s E 0, the 
elements det(t), t E Us, form a coset of A * modulo Ad. By enlarging K 
(which is all right, since it does not change RK(G», we may assume that 
these cosets are all trivial, in other words that each Us contains an element 
of determinant 1. This being done, let C be the subgroup of A * formed by 
all det(p(x», x E I, and let G 2 be the subgroup of 01 formed by all (s, t) 
with t E Us and det(t) E C. The group G2 maps onto G; the kernel N of 
G 2 -+ G is isomorphic to the subgroup of A· formed by all a with ad E C. 
Since d and Card (C) are prime to p, we conclude that N is a cyclic group 
oj order prime to p. 

Denote by P2: G2 -+ Aut(S) the representation (s, t) ~ t of 02. If I is 
identified ~ith a subgroup of 02 by means of x ~ (x, p(x», we see that the 
restriction of P2 to I is equal to p. Thus we have extended p, not to G itself, 
but at least to a central extension of G (we have a "projective" representa­
tion of G in the sense of Schur). Observe that I is normal in 02' and that 
InN = {I}. 

Return now to the original k[G]-module E. Let F = HomI(S, E) and let 
u: S ® F ~ E be the homomorphism which associates with a ® I (a E S, 
b E F the element b(a) of E.) From the fact that E is isotypic of type S we 
deduce easily that u is an isomorphism of S ® F onto E. . 

The group 02 acts on S through the reduction of P2; it also acts on E via 
G 2 -+ 0; hence it acts on F. The isomorphism · 

u: S ® F -+ E 

is compatible with this action of °2- Thus E, viewed as a k[G2 ]-module, can 
be identified with the tensor product of the k[G2 J-modules Sand F. In 
order to lift E, it thus suffices to lift Sand F and take the tensor product of 
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these liftings. We will then get an A-free A[G]-module E. Since N has order 
prime to p and acts trivially on the reduction -E of E, it will follow that N 
acts trivially on E (cf. 15.5) and that E can be viewtd as an A[G]-module­
indeed, we will have lifted E. 

Hence it remains to show that F can be lifted (the case of S being already 
settled). But F is a simple k[G2]-module (since E is) upon which I acts 
trivially by ·construction., So we may consider it as a-simple k[H]-module, 
where H = G2/I. 

The group H is a central extension of Gil (which is p-solvable of height 
<; h - I) by the group N, which is cyclic of order prime to p. If h = I, we 
have H = N, and the lifting of F is immediate (15.5). If h ~ 2, the group 
H/N contains a normal subgroup MIN satisfying the following two 
conditions: 

(a) HIM = (H/N)/(M/N) has height < h - 2. 
(b) MIN is either a p-group or a group of order prime to p. 

H MIN is a p-group, then since N has order prime to p, M can be written 
as a product N X P where P is a p-group. The argument given at the 
beginning of the proof shows that P acts trivially on F, so F can be viewed 
as a k[H/P)-module. But it is clear that the height of HIP is < h - I, so F 
can be lifted by induction. There remains the case where MIN has order 
prime to p. The order of M is then prime top, and since HIM has height 
<; h - 2, the height of H is ~h - I, and again induction applies. This 
completes the proof. 0 

146 



CHAPTER 18 

Modular characters 

The results we have been discussing are due, for the most part, to R. Brauer. 
He stated them in a slightly different language, that of modular characters, 
which we shall now describe. 

For simplicity, we assume that K is sufficiently large. 

18.1 The modular character of a representation 

Let 4eg be the set of p-regular elements of G, and let m' be the I.c.m. of 
the orders of elements of Grego By hypothesis, K contains the group I'.,of 
m'th roots of unity; moreover, since m' is prime to p, reduction mod. m is 
an isomorphism of I'K onto the group J.Lk of m'th roots of unity of the residue 
field k. F or A E J.Lk we let A denote the element of J.LK whose reduction 
mod. m is A. 

Let E be a k(G]-module of dimension n, let s E ~eg' and let sE be the 
endomorphism of E defined by s. Since the order of"s is prime to p, sE is 
diagonalizable, and its eigenvalues (AI' ... ,An) belong to J.'k. Put 

i=n 

CPE(s) = ~ Ai· 
;=1 

The function CPE: ~eg --+ A thus defined is called the modular character (or 
Brauer character) of E. The following properties are immediate: 

(i) We have cpE(I) = n = dim E. 
(ii) <PE is a. class function on Greg' that is, 

<PE(tst- l
) = cpE(s) if s E ~eg and t E G. 
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(iii) If 0 -+ E -+E' -+ E" -+ 0 is an exact sequence of k[G]-modules, we 
have 

(iv) We have 

«PEt GDE2 = +E, • 4>E2 • 

(v) If lEG has pi -component s E 4eg' the trace of the endomorphism 
'E of E is the reduction mod. m of q,E(s): we have 

Tr(/E) = q,E(S), 

where the'~ar denotes reduction modulo,m.(This can be seen by observing 
that the eigenvalues of (/-IS)E are path roots of unity, hence equal to 1 since 
k has characteristic p. It follows that the. eigenvalues of 'E are the same as 
those of sE' whence the desired formula.) 

(vi) Let F be a K[G]-module with character X' let E. be a lattice of F 
stable under G, and let E = E./mE. be its reduction mod. m. Then q>E is 
~resl,iclion ofx 10 Greg. (It is enough to see this when G is cyclic of order 
prime to p. Moreover, tho 32 shows that q,E does not depend on the choice 
of a stable lattice E.. This allows a reduction to the case where EI is'~ 
generated by eigenvectors of G, in which case the result is clear.) 

(vii) If F is aprojeclive k[G]-module, and ifF is a projective A[G]-module 
whose reduction is F, we shall denote the character of F (i.e., of the K[ G)..; 
module K ® F) by tj)F. If E is any k[G]-module, we know that E ® F is a 
projective k[G]-module, and so tj)EGDF makes sense. We have 

dIIo ( ) __ {q,E(S)cI»F(S) 
'J"E®F S - o 

if S E Greg 

otherwise, 

a formula which can be more concisely written as cz,EGDF = CPE • cIlF, even 
though q,E is not defined off Greg. (We know that tj)EGDF (s) = 0 if s fl Greg' 
d. tho 36. And by (vi) the restriction of tj)EGDF to Greg is equal to the modular 
character of E ® F, ,which is CPE • cl»F by (iv).) 

(viii) With the same hypothesis as in (vii), we have 

(F,E)k = ~ I ~F(S-')~ds) = (ch'~F)' 
sE Greg 

where g = Card(G). (By definition, (F, E)k is the dimension of the largest 
subspace HG of H = Hom(F,E) which is fixed by G. However, H is a 
projective k[GJ-module, so if A: is the corresponding projective A(G]-mod­
ule, we see easily that dimkH G = rankAH G

• If fbHis the character of K ® ft 
we have 
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But H is isomorphic to the tensor product of E and the dual of F. By (vii) 
we have cIlH(s) = cIlF(s-1 >+E(s) for s E o..eg' and cIlH(s) = 0 otherwise. 
The result follows.) 

We note the special case where E is the unit representation: 
(ix) The subspace FG formed by the elements invariant under G has . . 

LlmenSlon 

Remark. Property (iii) allows us to define the virtual modular character «Px 
:>f an arbitrary element x of Rk(G). By (vi), if x = d(y) with y E Ro(G), 
then q,x is just the restriction to ~eg of the virtual character Xy of y. 

It is possible to give analogous definitions for any linear algebraic group G 
over k (assuming here k algebraically closed, for simplicity). The set Ore. 
is then defined as the set of semisimple elements of G. If E is a linear 
representation of G, and if s E Grea, then +E (s) is defined to be the sum 
of the multiplicative representatives of the eigenvalues of SE; the modular 
character +E thus defined is a class function on Greg with values in A. 

18.2 Independence of modular characters 

Recall that Sk denotes the collection of isomorphism cl.asses of simple 
k[G]-modules. The various «PE corresponding to elements E of Sk are called 
the irreducible modular characters of the group G. 

Theorem 42 . (R. Brauer). The irreducible modular characters «PE (E E Sk) 
form a basis of the K-vector space of class functions on o,eg with values in 
K. 

This can be stated in the following equivalenrfonn: 

Theorem 42'. The map x t-+ «Px extends to an isomorphism ofK ® Rk(G) onto 
the algebra of class functions on <lreg with values in K. 

These theorems immediately give: 

COrollary 1. Let F and F' be two k(G)-modu/es wit" the same modular 
character. Then [F) = (F'] in Rk(G); if F and F' are semisimple, they are 
isomorphic. 

Corollary 2. The kernel of the homomorphism d: RK (G) -+ Rk(G) consists of 
those elements x whose virtual character Xx is zero on G,eg. 

(Since d is surjective, this gives an explicit description of Rk(G) as a 
quotient of RK(G).) 
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Corollary 3. The number of classes of simple k[G)-modules is equal 10 the 
number of p-regular conjugacy classes of G. 

PROOF OF THEOREM 42. 
(a) We prove first that «PE(E E Sk) are linearly independent over K. 

Indeed, suppose that we had a relation I aE «PE = 0, with aE E K, not all 
zero. Multiplying the aE by some element of K, we can assume that they all 
belong to the ring A, and that at least one does not belong to m. By 
reduction mod. m, we then have . 

where the bar denotes reduction mod. m, and one of the liE is not zero. 
From formula (v) of the preceding section, we get 

thus also for all 1 E k[G). However, since K is sufficiently large, the 
modules E are absolutely simple, so by the density theorem ([8], 14, no. 2), 
the homomorphism k[G] -+ $Ees.Endk(E) is surjective. Now let E E Sk 
such that DE =1= 0, let u E Endk(E) have trace I (a projection on a .line, for 
example), and .let 1 be an element of k[G] having image u in Endk(E) and 
o in Endk(E') for E' #: E. Then we find that DE • 1 = 0, a contradiction. 

This part of the proof applies just as well to iinear algebraic groups. 

(b) We have to show that the 4»E generate the vector space of class 
functions on Grcs. Letfbe such a function. and extend it to a class function 
I' on G. We know thatf' can be written in the form I A;x; with A; E K 
and Xi E RK(G). Consequently f = ~ Aid(X;) where d(x.;) is the restric­
tion of x; to ~eg. Since each d(X;) is a linear combination of the tPE' we 
obtain the desired result. 0 

EXERCISES 

18.1. (In this exercise we do not assume that G is finite or that k has characteristic 
,. 0.) Let E and E' be semisimple k[G]-modules. Assume that, for each 
s E G, the polynomials det (I + sE T) and de~ (I + SE' T) are equal. Show 
that E and E' are isomorphic. [Reduce to the case where k is algebraically 
closed and argue as in part (a) of the proof of tho 42.] As a consequence, 
show that, if E is semisimple and if all the sE are unipo'tent, then G acts 
trivially on E (Ko!chin's theorem). 

18.l. Let H be a subgroup of 0, let F be a k(H)-modu)e, and let E = Ind~ F. 

ISO 

Show that the modular character +E of E is obtained from +F by the same 
formul!l as in the characteristic zero case. 



18.3: Reformulations 

18.3. What is the spectrum of the ring Rk(G)? 

18.4. Show that the irreducible modular characters form a basis of the A-module 
of class functions on Greg with values in A. (Use lemma 8 of 10.3 to show 
that each class function on Greg with values in A extends to a class function 
on G which belongs to A ® R.K (G).] 

18.3 Reformulations 

We have just seen that x t-+ 4>x defines an isomorphism of K ® R K (G) 
onto the space of class functions 'on Greg. On the other hand, the map 
K ® e: K ® Pk(G) -+ K ® RK(G) identifies K ® Pk(G) with the vector 
space of class functions on G zero off Greg (this can be checked, for 
example, by comparing the dimensions of the two spaces). Tensoring with 
K, the cde triangle becomes: 

K®c 
Class functions on G--..Class functions on Greg 

zero off Greg 

K®e\ K0d 

Class functions on G, 

the maps K ® c, K ® d, K ® e being the obvious ones: restriction, restric­
tion, inclusion. Observe that K ® c is an isomorphism, in accordance wi th 
cor. I to the 35. 

The matrices C and D can be interpreted in the following way: if 
F E SK' let XF denote the character of F; if E E S", let <PE denote the 
modular character of E, and t)E the character of the projective envelope of 
E. Then 

~E = ~ DEFXF 
FESK 

~E = ~ CE'E <PE' 
E'ESk 

and we have the orthogonality relations 

on G 

on 4eg, 

(4lE,4>E') = 8EE" where (4)>E'~E'> =! ~ ~E(s-I~E'(S). 
g sECire, 

We also mention the following version of tho 35: 
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Theorem 35'. Let pn be the largest power of p dividing the order of G. If cp is 
a modular character of G, and if fIl is defined by the formula 

4l(s) = pncp(s) 

4»{s)·= 0 

ifs E 4eg 

if s f£ Greg 

then 4» is a virtual character of G. 

We leave to the reader the task of making further reformulations of this 
type. 

ExERCISES 

11.5. If s E Greg' denote by pZ(s) the order of a p-Sylow subgroup of the centralizer 
of sin G. 

(a) Let ~ be a class function on 0 which has values in K. Show that 
~ E A ® Pk(O) if and only if ~ is 0 off o..eg and «s) E pz(s) A for 
every s E G.-eg (use ex. 18.4, together with the orthogonality relations 

<~E,CPE' > = BEE')· 
(b) Use (a) to prove that 

Coker(c) ~ II Z/pz(s)Z and det(Cl = pIz(s) , 

where s runs through a system of representatives of the p-regular classes 
ofO. 

18.6. Assume that Gis p-solvable (cf. 16.3). If F E SK' let CPF denote the restriction 
of XF to Greg. Show that a function cP on 0reg is the modular character of·a 
simple k[O]-module if and only if it satisfies the following two conditions: 

~ . 
(a) There exists F E SK such that cP = +F. 
(b) If (nF)FE~ is a family of integers ~ 0 such that cp • ~ nF+F, then one 

of the nF IS equal to I and the others are O. [Use the Fong-Swan 
theorem.] 

18.4 A section for d 

The homomorphism d: RK(G) -+ Rk(G) is surjective (th. 33). We shall 
now describe a section for d, i.e., a homomorphism 

such that d 0 (1 = l. 
For s E G let s' denote the p' -component of s. If f is a class function on 

~, define a class function f' on G by the formula 

f'(s) = f(s'). 
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Theorem 43. 

(i) If I is a modular character ofG, f' is a virtual character o/G. 
(ii) The map f J-+ I' defines a homomorphism of Rk(G) into RK (G) 

which is a section for d. 

To prove that f' is a virtual character of G (i.e., belongs to R K (G», it is 
enough to prove that, for each elementary subgroup H of G, the restriction 
of f' to H belongs to RK(H) (cf. 1l.1, tho 21). We are thus reduced to the 
case where G is elementary, and so decomposes as G = S X P where S has 
order prime to p and P is a p-group. Moreover, we can assume that f is the 
modular character of a simple k(G]-module E. By the discussion in }'.7, E 
is even a simple k[S]-module, and we can lift it to a simple K[S]-moduJe on 
which P acts trivially. The character of this module is evidently f', which 
proves (i). 

Assertion (ii) follows from (i) by observing that the restriction of f' to 
Greg is equal to f. 0 

EXERCISES 

18.7. Let m be the I.c.m. of orders of the elements of G. Write m in the formpftm' 
with (p,m') = 1 (cf. 18.1.) and choose an integer q such that q = 0 
(mod. pn) and q !!! 1 (mod. m'). 
(a) Show that, if s E 0, the p'-component s' of 9 is equal to sq. 
(b) Let f be a modular character of G, and let 4> De an element of R K (G) 

whose restriction to Greg is f (such an element exists by tho 33). In the 
notation of tho 43, show thatf' = i'qq" where i'q is the operator defined 
in ex. 9.3. Deduce from this another proof of the fact thatf' belongs to 
RK(G) [observe that RK(G) is stable under i'q]. 

18.8. Prove tho 43 without assuming K sufficiently large [use the method of the 
preceding exercise]. 

18.5 Example: Modular characters of the symmetric group ~4 

The group ®4 is the group of permutations of {a, b, c, d}. Recall its 
character table (cf. 5.8): 

1 (ab) (ab)(cd) (abc) (abed) 

XI I I I I 1 

Xl 1 - 1 I I - 1 

X3 2 0 2 - 1 0 
X .. 3 1 - 1 0 - 1 
X, 3 - I - 1 0 I 
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Chapter 18: Modular characters 

We shall determine its irreducible modular characters in· characteristic p. 
We may assume that p divides the order of G, i.e., p = 2 or p = 3. 

(a) The case p = 2 

There are two p-regular classes: that of I and that of (abc). By cor. 3 to 
tb. 42, there are two irreducible representations in characteristic 2 (up to 
isomorphism.) The only representation of degree I is the unit representa­
tion, with modular character <I>J = 1. On the, other hand, the irreducible 
representation of degree 2 of t;4 upon reduction mod. 2 gives a representa­
tion P2 whose modular character 4>2 takes the value -) for the element 
(abc). Consequently, piis not an extension of two representations of degree 
I (otherwise we would have 4>2 = 2tPl = 2), hence is irreducible. The 
irreducible modular characters of e4 are thus <PI and <h.: 

1 (abc) 

1 
2 

1 
- 1 

The decomposition matrix D is obtained. by expressing the restrictions to 
~eg of the chara,cters XI' •.• , Xs as a function of tPl and CP2. We find 

XI = CPt on Greg 

X2 = 4» on Greg 

X3 = ch on Greg 

X4 = <PI + 4>2 on Greg 

Xs = <PI + 4>2 on Greg 

hence 

D = (~ I 0 I !). 0 1 1 

The characters 4>1 and tIl2 of the projective indecomposable modules 
corresponding to tPl and 4>2 are obtained by means of the transposed matrix 
of D: 

~l = Xl + X2 + X4 + Xs 

~2 = X3 + X4 + Xs· 

The corresponding representations have degree 8. The Cartan matrix 
C = D · tD is the matrix (~~) with determinant 8. It -expresses the 
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18.4: A section for d 

following decomposition of «Ill and «Il2 on Greg: ., 

till = 4q,1 + 24>2 

«1>2 = 24>1 + 34>2 

(b) The case p = 3 

on Greg 

on Greg. 

There are four p-regular classes: I, (ab), (ab)(ed), (abed), hence four 
irreducible representations in characteristic p = 3. On the other hand, the 
reductions of the characters XI' X2' X4 and Xs are irreducible: this is clear 
for the first two, which have degree I, and for the two others it follows from 
the fact that their degree is the largest power of p dividing the group order 
(cf. 16.4, prop. 46). Since their modular characters are distinct, they are all 
the irreducible modular characters of ~ 4- If we denote·them by 4>,,4>2,4>3,4>4' 
we have the table: 

1 (Db) (ab)(ed) (abed) 

+1 I I I 

+2 I - I 1 - 1 

+3 3 I - t - 1 

4»4 3 - I - I I 

Since X3 = 4>1 + 4>2 on Greg we obtain the following decomposition matrix 
D and Cartan matrix C: 

D= 

o 100 
1 I 0 0 
o 0 I 0 

000 

C = D· to = 

I 

2 
0 
0 

0 
0 

'I det(C) = 3 
1 
0 

The characters <1>1' _ • _ , «1>4 of the projective indecomposable modules are: 

«Ill = XI + X3 

~2 = X2 + X3 

«1>3 = X4 

cr-4 = Xs 

(Note the simple expression of «Il) and ~4'1 cf. prop. 46.) 
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ExERCISESr 

18.9. Verify the Fong-Swan theorem for ®4 [check that each <Pi is the restriction of 
some Xj to Greg]· 

18.10. Show that the irreducible representations of ®4 are realizable over the prime 
field (in any characteristic). 

18.11. The group ®4 has a normal subgroup N of order 4 such that C5JN is 
isomorphic to ®3. Show that N acts trivially in each irreducible representa'­
tion of 54 in characteristic 2. Use this to classify such representations. 

18.6 Example: Modular characters of the alternating group ~s 

The group ~5 is the group of even permutations of {a, b, c, d, e}. It has 60 
elements, divided into 5 conjugacy classes: 

the iden ti ty element 1, 
the 15 conjugates of (ab)(cd), which have order 2, 
the 20 conjugates of (abc), which have order 3, 
the 12 conjugates of s = (abcde), which have order 5, 
the 12 conjugates of s2, which have order 5. • 

There are 5 irreducible characters, given by the following table: 

1 (ab)(cd) (abc) s jl 

XI 1 1 

Xl 3 - 1 0 1 + vIS 
z == 2 z' 

Xl 3 - 1 0 ' I - vIS z z -- 2 

X4 4 0 1 - I - I 

X5 5 1 - I 0 0 

The corresponding representations are: 

Xl: the unit representation 

X2 and X3: two representations of degree 3, realizable over the field 
Q(y'S), and conjugate over Q. They can be obtained by observing that 
{±1} X ~5 is a "Coxeter group" with graph 0-1-0_5_0, and then consider­
ing the reflection representation for this group (cf. Bourbaki, Gr. et A/g. de 
lie, Ch. VI, p. 231, ex. 11). 

X4: a representation of degree 4, realizable over Q, obtained by removing 
the unit representation from the permutation representation of ~5 on 
{a, b, c, d, e}, cf. ex. 2.6. 
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18.6: Example: modular characters of the alternating group ~s 

Xs: a representation of degree 5, realizable over Q, obtained by removing 
the unit representation from the permutation representation of ~ts on the. 
set of its 6 subgroups of order 5. 

We determine the modular irreducible characters of ~(s for p = 21 3; 5: 

(a) The case p = 2 

There are four p-regu)ar classes, hence 4 modular irreducible characters. 
Two of these are obvious: the unit character. and the restriction of X4 (cf. 
prop. 46). On the other hand, we have 

X2 + X3 = 1 + Xs on Greg' 

which shows that the reductions of both the irreducible representations of 
degree 3 are not irreducible (their characters are conjugate over the field Q2 
of 2-adic numbers since V5 f£ Q2). Each must decompose in Rk(G) as a 
sum of the unit representation and a representation· of degree 2, necessarily 
irreducible. Therefore, the irreducible modular characters-cpt. <1>2' <1>3' cf>4 are 
given by the table: 

We have 

+. 1 

4>l 2 
+3 2 
+4 4 

Xl = tPl 

X2 = tPl + tP2 

X3 = 4>. + tP3 

X4 = tP4 

(abc) 

I 
- I 
- I 

I 

Xs = cf>J + <1>2 + CP3 

Whence the matrices D and C: 

I I 0 

D= 
0 I 0 0 c= 
0 0 I 0 I 

0 0 0 0 

4 

2 
2 

0 

s 

z - 1 
z' - I 

- 1 

on Greg 

on Greg 

on Greg 

on Greg 

on Greg. 

2 2 
2 I 
I 2 
0 0 

S2 

z' - 1 
z - I 

- 1 

det(C) = 4. 
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(b) The case p = 3, 

One finds 4 irreducible representations in characteristic 3. namely the 
reductions of the irreducible representations of degree I, 3, and 4 (two of 
degree 3). Moreover, we have Xs = 1 + X4 on Greg. Hence: 

0 0 0 0 0 

D= 
1 0 0 

C= 
I 0 

det(C) = 3. 
0 0 0 1 

0 0 I 0 0' 

(c) The case p =- 5 
There are 3 irreducible representations in characteristic 5. the reductions 

of the irreducible representations of degree 1, 3 .. and 5 (note that the two 
representations of degree 3 have isomorphic reductions). Moreover, we 
have X4 = XI + X3 on Greg· Hence 

(
2 1 o~ 

C = I 3 0 , 

001 

det(C) =5. 

EXERCISES 

18.12. Check assertions (b) and (c). 

18.13. Prove that the irreducible representations of degree 2 of ~15 in characteristic 
2 are realizable over the field F4 of 4 elements; obtain from this an 
isomorphism of ~5 with the group S~(F4). 

18.14. Show that ~5 is isomorphic to SL2(F5)/{:t I}, and use this isomorphism to 
obtain the list of irreducible representations of m5 in characteristic 5. 

18.15. Show that X5 is monomial, and that X2' Xl' X4 are not. 
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CHAPTER 19 

Applications to Artin representations 

19. r Artin and Swan representations 

LetE be a field complete with respect to a discrete valuation, let F IE be 
a finite Galois extension of E, with Galois group G, and assume for 
simplicity that E and F have the same residue field. If s ::#= 1 is an element 
of G and if 'IT is a prime element of F, put 

iG(s) = vF(s('IT) - 'IT), 

where vF denotes the valuation of F, normalized so that vF(w) = I. 
Put 

QG(S) = -iG(s) if s =#= 1 

ao(l) = ~ ;0 (s) . . 
s~) 

Clearly VF is a class function on G with integer values. Moreover: 

Theorem. The Junction ao is the character oJa representation oj G (over a 
sufficiently large field). 

In other words, if X is any character of G, then the number 

is a non-negative integer. 

Using the formal properties of aG (cf. [25], ch. VI), we see thatJ(X} > 0, 
and easily reduce the integrality ql!estion to the case where G is cyclic (and 
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Chapter 19: Applications· to Artin representations 

even, if we like, to the case where G is cyclic of order a power of the residue 
characteristic of E). We can then proceed in several ways: 

(i) If X is a character of degree 1 of G, one shows thatf(x) coincides with 
the valuation of the conductor of X in the sense of local class field theory, 
and this valuation is evidently an integer. This method works, either in the 
case of a finite residue field (treated initially by Artin) or in the case of an 
alg~braically closed residue field (using a "geometric" analogue of local 
class field theory); furthermore, the general case follows easily from the 
case of an algebraically closed residue field. 

(ii) The assertion that f(x) is an integer is equivalent to certain congru­
ence properties of the "ramification numbers" of the extension FIE. These 
properties can be proved directly, cf. [25], chap. V, §7, and S. Sen, Ann. of 
Math., 90, 1969, p. 33-46.. 0 

Now let 'h be the character of the regular representation of G, and put 
110 = 'b - 1. Let sWo = ao - "0. Then 

sWo(s) = I - io(s) if s :f:= 1 

swo(l) = ~ (io(s) - I). 
s+1 

It is easily checked that, if X is a character of G, the scalar product 
(swo,X) is ~ O. Using the above theorem, one sees that (swo,X) is a non­
negative integer for all X, that is, SWo is a character of G. 

The character ao(resp.swo) is called the Artin (resp. Swan) character of 
the Galois group G; the corresponding representation is called the Artin 
(resp. Swan) representation of G. An explicit construction of these repre­
sentations is not known. Nevertheless we can give a simple description of 
the characters g · ao and g · sWo, where g = Card(G): 

Let G; (i = 0, 1, ... ) denote the ramification groups of G; thus s E G; if 
and only if io(s) ~ i + 1 or s = 1. Put Card(Gi ) = gj. Then one checks 
that 

00 

g · ao = ~ g .. InAQ.(uo.) . 0' "'0, , ,== 

and 

00 

g · sWo = ~ gi· Ind8.(uo.) 
;== I " 

with uo; = ro; - l. 
In particular we have SWo = 0 if and only if G1 = {I}, i.e. the order of 

G is prime to the residue characteristic of E. (In other words, SWo = 0 if 
and only if FIE is tamely ramified.) .. 
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19.2: Rationality of the Artin and Swan representations 

19.2 Rationality of the Artin and Swan representations 

Even though ao and SWo have values in Z, one can give examples where 
the corresponding representations are not realizable over Q, nor even over 
R (cf. [26], §4 and §5). Nevertheless: 

Theorem 44. Let I be a prime number unequal to the res,iJue characteristic 
ofE. 

(i) The representations of Artin and Swan are realizable over the field 
Q/ oj I-adic numbers. 

(ii) There exists a projective Z/[G]-module SWo, unique up to isomor­
phism, such that Q/ ® SWo has character swo. 

It is enough to prove (ii); assertion (i) then follows, since ao is obtained 
from sWo by adding to it "0, which is realizable over any field. 

For this, we apply prop. 44, taking p = I, K = Q/, n = g = Card(G), 
and choosing for K' a sufficiently large finite extension of Q,. Condition (a) 
of that proposition is satisfied, cf.. 19.1. 

To check (b), we use the formula 

g · sWo = ~ g .. Ind8.(uo.) 
;"> I' " 

given above. By ramification theory, these G; (i ;> I) have orders prime to 
I; it follows that every A'[G;]-module is projective (cf. 15.5), where A' 
denotes the ring of integers of K'. Hence uO; is afforded by a projective 
A'[O;]-module (even by a projective Z,[G;]-module if we wish), and the 
corresponding induced A'[O]-module is projective as well. Taking the direct 
sum of these modules (each repeated g; times), we obtain a projective A'[O]­
module with character g · swG. All the conditions of prop. 44 are thus 
satisfied, and the theorem follows. 0 

Remarks 

(I) Part (i) of tho 44 is proved in [26] by a somewhat more complicated 
method, which, however, gives a stronger result: the algebra Q/[G] is 
quasisplit (cf. 12.2). 

(2) One could get (ii) from (i) combined with the Fong-Swan theorem (th. 
38), and with COf. to prop. 45. 

(3) There are examples where the Artin and Swan representations are not 
realizable over Qp' where p is the residue characteristic of E. However, J.­
M. Fontaine has shown (cf. [27]) that these representations are realizable 
over the field of Witt vectors of eo, where eo denotes the largest subfield of 
the residue field of ~E which is algebraic over the prime field. 
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19.3 An invariant 

Let I be a prime number unequal to the residual characteristic of E. Put 
k = Z!IZ and let M be a k[G]-module. We define an invariant b(M) of M 
by the formula 

b(M) = (SwG , M)JJ: = dim HomG(SwG, M) = dim Hom Z,[G] (SwG , M), 

where SWo = Swo/I· SWo denotes the reduction mod. I of the Z,[G]­
module SWo defined by tho 44. The scalar product (Swo, M)k makes sense, 
since SWo is projective, cf. 14.5. 

The invariant b(M) has the following properties: 

(i) If 0 -+ M' ~ M ~ Mil -+ 0 is an exact sequence of k[G]-modules, 
then b(M) = b(M') + b{M"). 

(ii) If ~M denotes the modular character of M, then 

(iii) 

cf. 18.1, formula (viii). 

where MG; denotes the largest subspace of M fixed by the ith 
ramification group G;. 

(This follows from the formula g · SWo = ~;>I gj In<i8;("o;) by observ-

ing that (In<i8;(uO
i
),CPM) is equal to dimk(M/MGi) if i ~ 1.) 

(iv) We have b(M) = 0 if and only if G1 acts trivially on M, i.e., the 
action of G on M is "tame." [This follows from (iii).] 

Thus b(M) measures the "wild ramification" of the module M. This 
invariant enters into many questions: cohomology of algebraic curves, local 
factors of zeta functions, conductors of elliptic curves (cf. [28], [29], [30]). 
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Appendix 

Artinian rings 

A ring A is said to be artinian if it satisfies the following equivalent 
conditions (cf. Bourbaki, A/g. Ch. VIII, §2): 

(a) Every decreasing sequence of left ideals of A is stationary. 
(b) The left A-module A has finite length. ~ 
(c) Every finitely generated left A-module has finite length. 

If A is artinian, its radical r is nilpotent, and the ring S = Air is 
semisimple. The ring S can be decomposed as a product II S; of simple 
rings; each S; is isomorphic to a matrix algebra Mn. (D;) over a (strew) ;fl:~ld '" -"',' ; 

Dj , and possesses a unique simple module E;, which is a D?-vectorsp,ace of 
dimension n j • Every semisimple A-module is annihilated by r arid'itbus may 
be viewed as an S-module; if the module is simple, it is isomorPhic to one of 
the E i . 

EXAMPLE. An algebra of finite dimension over a field k is an artinian ring; 
this applies in particular to the algebra k[G] of a finite group G. 

Grothendieck groups 

Let A be a ring, and let UJ be a category of left A-modules. The 
Grothendieck group of '?f, denoted K(GJ), is the abelian group defined by 
generators and relations as follows: 
Generators. A generator [E] is associated with each E E '!f. 
Relations. The relation [E] = [E'] + [E"] is associated with each exact 
sequence 

o ~ E --+ E' --+ E" --+ 0 where E, E', E" E ~ 
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If H is an abelian group, the homomorphisms j: K(~) --. H correspond 
bijectively with maps +: GJ ~ H which are "additive," i.e., such that 
+(E) == +(E/) + +(E") for each exact sequence of the above type. 

The two most common examples are those where GJ is the category of all 
finitely generated A-modules, or all finitely generated projective A-modules. 

Projective modules 
Let A be a ring, and P be a left A-module. We say that P is projective if 

it satisfies the following equivalent conditions (cf. Bourbaki, A/g., Ch. II, 
12): 

<a> There exists a free A-module of which P is a direct factor. 
(b) For every surjective homomorphism f: E --+ E' of left A-modules, 

and for every homomorphism g/: P --+ E', there eXIsts a homomor­
phism g: P --. E such that g' = jog. 

(c) The functor E t-+ HomA(P'E) is exact. 

In order that a left ideal a of A be a direct factor of A as a module, it is 
necessary and sufficient that there exist e E A with ez = e and a' = Ae; 
such an ideal is a projective A-module. 

Discrete valuations 
Let K be a field, and let K* be the multiplicative group of nonzero 

elements of K. A discrete valuation of K (cf. [25]) is a surjective homomor­
phism v: K * ..... Z such that 

v{x + y) ~ Inf(v(x), v(y» for x, y E K*. 

Ilere v .s'extended to K by setting v(O) = +00. 
The ~et A of elements x E K such that v(x) > 0 is a subring of K, called 

the val~ti9n ring of v (or the ring of integers of K). It has a unique maximal 
ideal, namely the set m of all x E K such that v(x) > I. The field 
k == Aim is called the residue field of A (or of v). 

In order that K be complete with respect to the topology defined by the 
powers of m, it is necessary and sufficient that the canonical map of A into 
the projective limit of the A/mn be an isomorphism. 
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Index of notation 

N umbers refer to sections, i.e., "1.1" is Section 1.1. 

V, GL(V): 1.1 

p, Ps = p(s): 1.1 ' 
C* = C - {OJ: 1.2 
V = W E9 W': 1.3 
g = order of G: 1.3, 2.2 

V. ® \1, PI ® P2' Sym
2 

(V), 
Alt2 (V): 1.5 

Tr(a) = ~ a;;, Xp(s) = Tr(ps): 2.1 
z* = Z = x - iy: 2.1 
X;, X;: 2.1 

B;,j( = I if i = j, = 0 otherwise): 
2.2 

('P, l/I> = (I/g) ~/EO q;(t- l )l/I(t): 
2.2 

ip(t) = q;(t- I )*: 2.3 

('PI1/!) = ('P, ~ > 
= (I/g) ~/EO cp(t)l/I(t)*: 2.3 

Xl' · · • , Xh; nl' · · · , nh; ~, • • • , 
~: 2.4 

C1, • , • , C k; C s: 2.5 

• 

V = Vi ED · • · E9 ~ (canonical 
decomposition) : 1.6 

Pi (canonical projection onto Vj) : 
2.6 

Pap: 2.7 
G = OJ X~: 3.2 

p, 8, Xp' XiI: 3.3 
GjH, sH, R: 3.3 

So 1(t) dt: 4.2 
(cpl1/!) = So cp(t)l/I(t)* dt: 4.2 
Cn : 5.1 

Coo: 5.2 

On' Cnv: 5.3 
I = {I,,}; Dnh = On X I: 5.4 

X" Xu: 5.4 
0 00 : 5.S 
Dooh = 0 00 X I: 5.6 
~4 = H · K: 5.7 
®4 = H · L: 5.8 

G = <53 • M = ®4 X I: 5.9 
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K[G)= 6.1 
Cent. C[G], Wi: 6.3 
Ind~(W), Ind W: 7.1 

f' = Indf = Ind~f: 7.2 
Res 'P, Res V: 7.2 
K \G/H, -w" pI: 7.3 

1I;,p: 8.2 
R+(G), R(G), FC(G):9.1 

Resa, Res, Ind~, Ind: 9.1 
ylc(f), X!' x~, aT(X)' AT(x): 9.1, 

ex. 3 
,1A : 9.4 
x=x,·xu,H=C·P: 10.1 
g = pili: 10.2 

V" Ind, A : 10.2 
~ g, +n: 11.2 

Spec, Cl (G), Me' PM,e: 11.4 
K, C, RK(G), RK(G): 12.1 

A,., \j, Pi' Xi' 'Pi' \fIi' m;: 12.2 
fc, a" +1: 12.4 
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XK, XK (p), g = pn I, VK,p: 12.6, 
12.7 

A, tJi, N(x): 12.7 
Q(m), l~: 13.1 
K, A, m, p, G, m: 14, Notation 

SK' Sk' RK(G), R~(G), Rk(G), 
Rt(G): 14.1 

Pk(G), Pk+ (G), PA (G), P; (G): 14.2 
PE : 14.3 

P = PimP: 14.4 
<e,f>K' <e,f>k: 14.5 
c, C, Csr: 15.1 
d, D, DFE : 15.2 
e, E: 15.3 

Res~, Ind~: 17.1 

Greg' P,K' P,k' A, 'PE' 'Px ' SE' c)F; 18.1 
XF(F E sK)' 'PE' c)E(E E Sk): 18.3 

Qo' io, swo' '0' Uo: 19.1 
SWo: 19.2 
b{M): 19.3 



Index of terminology 

N umbers refer to sections, i.e., "1.1" is Section 1.1. 

Absolutely irreducible (representation): 
12.1 

Algebra (of a finite group): 6.1 
Artin (representation of): 19.1 
Artin's theorem: 9.2, 12.5, 17.2 
Artinian (ring): Appendix 
Associated (the .,..elementary 

subgroup ... with a pl.-element): 10.1 

Brauer's theorem (on the field affording 
a representation): 12.3 

Brauer's theorem (on induced 
characters): 10.1, 12.6, 17.2 

Brauer's theorem (on modular 
characters): 18.2 

Center (of a group algebra): 6.3 
Character (of a representation): 2.1 
Character (modular): 18.1 
Class function: 2.1, 2.5 
fK-class: 12.6 
Compact (group): 4.1 
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representations): 1.5, 3.2 
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