Notas núm. 4

Sea SU₃ el grupo de matrices unitarias 3×3 con det = 1, \mathfrak{su}_3 su álgebra de Lie (matrices anti-hermíticas 3×3 con tr = 0), $H \subset \mathrm{SU}_3$ las matrices diagonales y \mathfrak{h} su álgebra de Lie (matrices diagonales con entradas imaginarias y con traza 0). Sea $\alpha_k \in \mathfrak{h}^*$ el funcional diag $(ia_1, ia_2, ia_3) \mapsto ia_k, k = 1, 2, 3$. Definimos un producto interior en \mathfrak{su}_3 por $\langle X, Y \rangle = -\mathrm{tr}(XY)$ (es el único poducto Ad-invariante en \mathfrak{g} , salvo escala). Este poducto se restringe a un producto en \mathfrak{h} . Ponemos el poducto dual en \mathfrak{h}^* (la base dual de una base otonormal en \mathfrak{h} es una base ortonormal en \mathfrak{h}^* .

- \rightarrow 4.1. Calcular la norma de los α_i y los ángulos entre ellos. Hacer un dibujo en el plano.
- \to 4.2. Sea $\rho: H \to \mathrm{GL}_1(\mathbb{C})$ una representación lineal 1-dimensional, $\rho' = d\rho(e): \mathfrak{h} \to \mathrm{End}(\mathbb{C}) = \mathbb{C}$ la representación asociada del algebra de Lie. Demuestra que existe un único funcional lineal $\alpha \in \mathfrak{h}^*$ tal que $\rho'(X) = i\alpha(X)$.

El funcional lineal α de ejercicio anterior se llama el peso de la representación 1-dimensional de H.

 \to **4.3.** Un elemento $\alpha \in \mathfrak{h}^*$ es un peso de H ssi es una combinacion lineal de α_1, α_2 con coeficientes enteros. Esto establece una biyección entre $\mathbb{Z}\alpha_1 + \mathbb{Z}\alpha_2 \subset \mathfrak{h}^*$ y el conjunto de pesos de H.

Llamamos a $\mathbb{Z}\alpha_1 + \mathbb{Z}\alpha_2$ la *retícula* de pesos del grupo H.

- \rightarrow **4.4.** Hacer un dibujo de la reticula de pesos $\mathbb{Z}\alpha_1 + \mathbb{Z}\alpha_2$.
- \rightarrow **4.5.** Si $\alpha \in \mathfrak{h}^*$ es el peso de una representación compleja 1-dimensional de H entonces $-\alpha$ es el peso de la representación dual.
- \rightarrow **4.6.** Si $\alpha, \beta \in \mathfrak{h}^*$ son dos pesos de dos representaciones complejas 1-dimensionales de H entonces $\alpha + \beta$ es el peso del producto tensorial de estas dos representaciones.

Como H es un grupo abeliano compacto, cada representación compleja n-dimensional (ρ, V) de H es la suma directa de n representaciones 1-dimensionales. El conjunto de los n pesos asociados (contando multiplicidad) es el sistema de pesos de la representación, denotado por $\Omega(\rho)$. (Nota: un peso en $\Omega(\rho)$ pueden aparecer varias veces). Un vector no nulo $v \in V$ asociado a un peso $\alpha \in \Omega(\Omega)$ se llama un vector de peso α (análogo a eigen vector de una transfrmacion lineal). Una representación compleja ρ de SU_3 se determina por su restricción a H (usando la teoría de caracteres de representaciones de grupos compactos) y por lo tanto por su sistema de Pesos $\Omega(\rho)$. Nuestra meta: entender los sistemas de Pesos de representaciones irreducibles complejas de Pesos de

 \to 4.7. Encuentra el sistema de pesos de la representación adjunta de SU₃ por dos métodos: (1) descomponiendo $\mathfrak{su}_3 \otimes \mathbb{C}$ en eigenespacios de H. (2) Usando $\mathfrak{su}_3 \otimes \mathbb{C} = \mathfrak{sl}_3(\mathbb{C}) \subset \operatorname{End}(\mathbb{C}^3) = \mathbb{C}^3 \otimes (\mathbb{C})^*$.

Al sistema de pesos de la representació adjunta de SU_3 se llama su sistema de raices (relativo a H).

- \to **4.8.** Sea V la representación estandar de SU₃ en \mathbb{C}^3 . Encontrar el sistema de pesos de las siguientes represenaciones : $V = \mathbb{C}^3$, V^* , $V \otimes V$, $S^2(V)$, $\Lambda^2(V)$. Dibujar los sistemas en la retícula de pesos.
- \rightarrow **4.9.** Sea V representación compleja de $\mathrm{SU}_3, v \in V$ un vector de peso $\alpha, X \in \mathfrak{su}_3$ una vector de raiz β . Si $X \cdot v \neq 0$ entonces es un vector de peso $\alpha + \beta$.

Introducimos el orden lexicográfico en la retícula de pesos $\mathbb{Z}\alpha_1 + \mathbb{Z}\alpha_2$. Esto es, $m_1\alpha_1 + m_2\alpha_2 < n_1\alpha_1 + n_2\alpha_2$ si $m_1 < n_1$, o si $m_1 = n_1$ y $m_2 < n_2$.

 \rightarrow 4.10. Sean α, β pesos maximales de dos representaciones de SU₃. Entonces $\alpha + \beta$ es un peso maximal del producto tensorial de las representaciones.

(Actualizado: 4 de mayo de 2020).