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Preface

The book we offer to the reader was conceived as a comprehensive course of
homotopical topology, starting with the most elementary notions, such as paths,
homotopies, and products of spaces, and ending with the most advanced topics,
such as the Adams spectral sequence and K-theory. The history of homotopical, or
algebraic, topology is short but full of sharp turns and breathtaking events, and this
book seeks to follow this history as it unfolded.

It is fair to say that homotopical topology began with Analysis Situs by Henri
Poincaré (1895). Poincaré showed that global analytic properties of functions,
vector fields, and differential forms are greatly influenced by homotopic properties
of the relevant domains of definition. Poincaré’s methods were developed, in the
half-century that followed Analysis Situs, by a constellation of great topologists
which included such figures as James Alexander, Heinz Hopf, Andrey Kolmogorov,
Hassler Whitney, and Lev Pontryagin. Gradually, it became clear that the homo-
topical properties of domains which were singled out by Poincaré could be best
understood in the form of groups and rings associated, in a homotopy invariant way,
with a topological space which has to be “good” from the geometric point of view,
like smooth manifolds or triangulations. Thus, Analysis Situs became algebraic
topology.

Still the algebra used by the algebraic topology of that epoch was very elemen-
tary: It did not go far beyond the classification of finitely generated Abelian groups
(with some exceptions, however, such as Van Kampen’s theorem about fundamental
groups). More advanced algebra (which, actually, was not developed by algebraists
of that time and had to be started from scratch by topologists under the name
“homological algebra,” aka “abstract nonsense”) invaded topology, which made
algebraic topology truly algebraic. This happened in the late 1940s and early 1950s.
The leading item of this new algebra appeared in the form of a “spectral sequence.”
The true role of a spectral sequence in topology was discovered mainly by Jean-
Pierre Serre (who was greatly influenced by older representatives of the French
school of mathematics, mostly by Henri Cartan, Armand Borel, and Jean Leray).
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The impact of spectral sequences on algebraic topology was tremendous: Many
major problems of topology, both solved and unsolved, became exercises for
students.

The progress of the new algebraic topology was very impressive but short-lived:
As early as in the late 1950s, the results became less and less interesting, and the
proofs became more and more involved. The last big achievement of the algebraic
topology which was started by Serre was the Adams spectral sequence, which, in a
sense, absorbed all major notions and methods of contemporary algebraic topology.
Using his spectral sequence, J. Frank Adams was able to prove the famous Frobenius
conjecture (the dimension of a real division algebra must be 1, 2, 4, or 8); it was also
used by René Thom in his seminal work, becoming the starting point of the so-called
cobordism theory.

Reviving ailing algebraic topology required strong means, and such means were
found in the newly developed K-theory. Created by J. Frank Adams, Michael
Atiyah, Raoul Bott, and Friedrich Hirzebruch, K-theory (which may be regarded
as a branch of the broader “algebraic K-theory”) had applications which were
unthinkable from the viewpoint of “classical” algebraic topology. It is sufficient
to say that the Frobenius conjecture was reduced, via K-theory, to the following
question: For which positive integers n is 3" — 1 divisible by 2"? (Answer: for
n=1,2,and 4.)

Developing K-theory was more or less completed in the mid-1960s. Certainly,
it was not the end of algebraic topology. Very important results were obtained
later; some of them, belonging to Sergei Novikov, Victor Buchstaber, Alexander
Mishchenko, James Becker, and Daniel Gottlieb, are discussed in the last chapter of
this book. Many excellent mathematicians continue to work in algebraic topology.
Still, one can say that, from the students’ point of view, algebraic topology can now
be seen as a completed domain, and it is possible to study it from the beginning to the
end. (We can add that this is not only possible, but also highly advisable: Algebraic
topology provides a necessary background for geometry, analysis, mathematical
physics, etc.) This book is intended to help the reader achieve this goal.

The book consists of an introduction and six chapters. The introduction intro-
duces the most often used topological spaces (from spheres to the Cayley projective
plane) and major operations over topological spaces (products, bouquets, sus-
pensions, etc.). The chapter titles are as follows: “Homotopy”; “Homology”;
“Spectral Sequences of Fibrations”; “Cohomology Operations”; “The Adams Spec-
tral Sequence”; and “K-theory and Other Extraordinary Theories.” Chapters are
divided into parts called “Lectures,” which are numerated throughout the book from
Lecture 1 to Lecture 44. Lectures are divided into sections numerated with Arabic
numbers, and some sections are divided into subsections labeled with capital letters
of the Roman alphabet. For example, Lecture 13 consists of Sects. 13.1, 13.2, 13.3,
...,13.11, and Sect. 13.8 consists of the subsections A, B, ..., E (which are referred
to, in further parts of the book, as Sects. 13.8.A, 13.8.B, and so on).

To present this huge material in one volume of moderate size, we had to be very
selective in presenting details of proofs. Many proofs in this book are algebraic,
and they often involve routine verifications of independence of the result of a
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construction of some arbitrary choices within this construction, of exactness of this
or that sequence, of group or ring axioms for this or that addition or multiplication.
These verifications are necessary, but they often repeat each other, and if included in
the book, they will only lead to excessively increasing the volume and irritating the
reader, who will probably skip them. On the other hand, we did not want to follow
some authors of books who skip details of proofs which are inconvenient, for this
or that reason, for an honest presentation. We did our best to avoid this pattern: If a
part of a proof is left to the reader as an exercise, then we are sure that this exercise
should not be difficult for somebody who has consciously absorbed the preceding
material.

As should be clear from the preceding sentences, the book contains many
exercises; actually, there are approximately 500 of them. They are numerated within
each lecture. They may be serve the usual purposes of exercises: Instructors can
use them for homework and tests, while readers can solve them to check their
understanding or to get some additional information. But at least some of them
must be regarded as a necessary part of the course; in some (not very numerous)
cases we will make references to exercises from preceding sections or lectures. We
hope that the reader will appreciate this style. The most visible consequence of this
approach to exercises is that they are not concentrated in one special section (which
is common for many textbooks) but rather scattered throughout every lecture.

Being a part of geometry, homotopic topology requires, for its understanding,
a lot of graphic material. Our book contains more than 100 drawings (“figures”),
which are supposed to clarify definitions, theorems, or proofs. But the book also
contains a chain of drawings that are pieces of art rather than rigorous mathematical
figures. These pictures were drawn by A. Fomenko; some of them were displayed
at various exhibitions. All of them are supposed to present not the rigorous
mathematical meaning, but rather the spirit and emotional contents of notions and
results of homotopical topology. They are located in the appropriate places in the
book. A short explanation for these pictures can be found at the end of the book.

We owe our gratitude to many people. The first, mimeographed, version of the
beginning of this book (which roughly corresponded to Chap. 1 and a considerable
part of Chap. 2) was written in collaboration with Victor Gutenmacher; we are
deeply grateful to him for his help. The idea of formally publishing this book was
suggested to us by Sergei Novikov. We are grateful to him for this suggestion. Some
improvements to the book were suggested by several students of the University
of California; we are grateful to all of them, especially to Colin Hagemeyer. The
whole idea of publishing this book under the auspices of Springer belonged to Boris
Khesin and Anton Zorich; we thank them heartily. And the last but, maybe, the most
important thanks go to the brilliant team of editors at Springer, especially to Eugene
Ha and Jay Popham. It is the result of their work that the book looks as attractive as
it does.

Moscow, Russia Anatoly Fomenko
Davis, CA, USA Dmitry Fuchs
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Introduction: The Most Important
Topological Spaces

There exists a longstanding tradition to begin a course of homotopic (or other)
topology with an introductory lecture dedicated to the point set topology which
studies topological spaces in a maximal generality. We violate this tradition,
assuming that the reader either already has some knowledge of it, or is ready to
experience small inconveniences stemming from an insufficient knowledge of it, or
will look through some not too boring text (the first section of the book by Fuchs
and Rokhlin [40] will do). Anyhow, we acquire the right to use without explanations
terms like “Hausdorff space,” or “compact space,” or “countable base space,” and so
on, and also use (explicitly or implicitly) facts like “a bijective continuous map of a
compact space onto a Hausdorff space is a homeomorphism,” or “a compact subset
of a Hausdorff space is closed.” As to the introductory part of the book, we dedicate
it not to the general notion of a topological space, but rather to creating a list of the
most frequently used topological spaces which will serve as a source of examples
and motivations, and also will participate in various geometric constructions. First,
we will get acquainted with the most important, “classical” spaces, and then we will
describe major constructions involving topological spaces, which will amplify our
supply of topological spaces and will have a great importance of their own.

Lecture 1 Classical Spaces

1.1 Euclidean Spaces, Spheres, and Balls

The notations R” and C" will have the usual meaning. The spaces C" and R?" are
identified by the correspondence (x; + iy1,...,X;, + iyn) <> (X1, Y15+« Xn, Yu)-
The sphere S and the ball D" are defined, respectively, as the unit sphere and the
unit ball centered at the origin in spaces R"*! and R"; thus, the sphere §"~! is the
boundary of the ball D". The symbol R* always means the union (inductive limit)
of the chain R' € R? C R?® C ...; thus, R™ is the set of sequences (x;, X2, X3, ...)
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of real numbers with only finitely many nonzero terms a,. The topology in R* is
introduced by the rule: A set F C R is closed if and only if all the intersections
FNR" are closed in respective spaces R”. The symbols C*°, §°°, D*® have a similar
sense.

EXERCISE 1. Show that a sequence

N

(a1,0,0,...),(0,a,,0,...),...,(0,...,0,a,,0,...),...

n—1

has a limit if and only if it has only finitely many nonzero terms.
EXERCISE 2. Show that none of the spaces R, §°°, D*° is metrizable.

Remark. There are other definitions of R* in the literature. For example,
(1) the “Hilbert space” {, is the set of all real sequences (x,xp,x3,...)
for which the series Y x? converges; the topology is defined by the metric
d*((x1,x2,%3,...), 01,2, ¥3,...)) = >.(yi — x;)% (2) the Tychonoff space T
is the set of all real sequences (x1, x, X3, .. . ) with the base of topology formed by
the sets {(x,x2,x3,...) € T | (x1,...,x,) € U} for all n and all open U C R”
[a sequence X; = (xi1, X, X3, ... ) in T converges to X = (x1,xp,x3,...) € T if and
only if lim;_seo X; = X, for every n].

EXERCISE 3. Which of the inclusion maps R*® — £, R*® — T, £, — T (if any)
are continuous? Which of them (if any) are homeomorphisms onto their images?

EXERCISE 4. Is the space T metrizable?

EXERCISE 5. The unit cube of R®, £,, T is defined by the condition 0 < x; < 1 for
i=1,2,3,.... Which of these cubes (if any) are compact?

1.2 Real Projective Spaces

The real n-dimensional projective space RP" is defined as the set of all straight
lines in R"! passing through the origin equipped with the topology determined by
the angular metric: The distance between two lines is defined as the angle between
them.

EXERCISE 6. Prove that the real projective line is homeomorphic to the circle S'.

The coordinates (xg,xi,...,x,) of the directing vector of the line (defined,
obviously, up to a proportionality) are called the homogeneous coordinates of a
point of a projective space; the common notation is (xp : x; : --- : x,). The points
with x; # 0 form the ith principal affine chart. The correspondence (xp @ xj @ -+ :
Xn) < (X0/Xiy . .o Xim1 /X Xi+1/Xis - - -, Xu/X;) yields a homeomorphism of the affine
chart onto R" and equips the former with coordinates.
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If we assign to a point of S” C R"*! a line passing through this point and the
origin, we get a continuous map S” — RP". This map sends two different points of
S" into the same point of RP" if and only if these two points are antipodal (opposite).
Thus, every point of RP" has, with respect to this map, precisely two preimages
(the map itself is a rwofold covering; see Lecture 7). Having this map in mind,
we say that RP" is obtained from S” by identifying all pairs of opposite points.
(This statement has the following precise sense. Suppose that, in a topological
space X, there is some chosen set of pairs of points, subject to identification. After
the identification, there arise a set Y and a map X — Y. We introduce a topology
in Y declaring a subset of Y open if its inverse image in X is open; this is the
weakest of all topologies with respect to which the map X — Y is continuous'.) The
upper hemisphere of S" (composed of points with a nonnegative last coordinate) is
canonically homeomorphic to the ball D" (the homeomorphism is established by
an orthogonal projection of the upper hemisphere onto the equatorial ball). The
restriction of the last map §" — RP” to the upper hemisphere is, therefore, a map
D" — RP". This map sends to the same point only opposite points of the boundary
sphere S"~! C D". Thus, RP" may also be obtained from D" by identifying all pairs
of opposite points on the boundary sphere.

The infinite-dimensional real projective space RP*° may be defined by any of
these three constructions. We can also put RP® = | J, RP'.

1.3 Complex and Quaternionic Projective Spaces

If in the definition of RP", we replace R"*! by C"! and real lines by complex lines,
we will obtain a definition of a complex projective space CP". (The angular metric
still makes sense.)

Like RP", the space CP" is covered by n + 1 affine charts. If we assign to a
point of $"*! C C"*! a complex line passing through this point and the origin,
we will obtain a continuous map S?**! — CP" which sends to the same point the
whole circle {(zow. . .., z,w)}, where (zo, .. ., z,) is a fixed point of $>**! and w runs
through the circle |w| = 1. One can say that CP" is obtained from the sphere $?**!
by collapsing each such circle to one point. If we restrict the map S>**! — CP"
to the ball D*" embedded into S*"*! as the set of points (zo. ..., z,) € S***! whose
last coordinate is real and nonnegative, we get a description of CP”" as obtained from
D?" by the same identification which is performed only on the boundary {z, = 0}
of D*".

'In mathematics, the terms “weak topology” and “strong topology” do not have any commonly
accepted meaning. We call a topology weaker if it has more open sets, that is, fewer limit points
(for us, the weakest topology is the discrete topology). Informally speaking, we call a topology
weak if the attraction forces between the points are weak. The opposite terminology considers
points as repelling each other; from this point of view, the discrete topology is the strongest.
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A similar construction is possible if the field C is further replaced by the algebra
(skew field) H of quaternions. We get a definition of a quaternionic projective space
HP". One should notice, however, that , because of noncommutativity of the algebra
H, one has to distinguish between left and right lines. Considering HP", one should
choose one of these two possibilities and consider, say, left lines.

EXERCISE 7. Prove that projective lines CP' and HP' are homeomorphic, respec-
tively, to S? and S*.

There are also obvious definitions of CP*® and HP*°.

1.4 Cayley Projective Plane

The reader may find it unfair that quaternionic projective spaces occupy in our list
of classical spaces such an honorable place: next to spheres and balls. However, in
reality, not only quaternionic projective spaces, but even such an exotic object as the
Cayley projective plane are very important for topology.

Let us recall the definition of Cayley numbers or octonions. Suppose that in some
space R" two operations are defined: multiplication, a, b + ab, and conjugation,
a +— a. Then we define similar operations in R** = R" x R” by the formulas

(a,b) - (c,d) = (ac — bd, bc + ad), (a,b) = (a,—b).

Starting from the usual multiplication and identical conjugation (¢ = a) in
R! = R, we get (bilinear) multiplications and conjugations in R2,R* R® R'® .. ..
The multiplication in R? is the usual multiplication of complex numbers. The
multiplication in R* is the multiplication of quaternions. It is bilinear, associative,
and admits a unique division (that is, the equation ax = b has a unique solution if
a # 0) but is not commutative. The multiplication in R? is still worse: Not only it is
not commutative, but also it is not associative [although the associativity relations
involving only two letters, such as (ab)a = a(ba), (ab)b = ab?, (ab)a™' =
a(ba™"), etc., hold]. Still this multiplication possesses a unique division. The algebra
R® with this multiplication is called the Cayley algebra or octonion algebra and is
denoted as Ca. Much later in this book we will consider (and prove) the famous
Frobenius conjecture: If the space R" possesses a bilinear multiplication with a
unique division, then n = 1, 2, 4, or 8. (By the way, it is not right that even in these
dimensions any bilinear multiplication with unique division is isomorphic to one
of multiplications described above; there are, for example, nonassociative bilinear
multiplications with a unique division in R*.)

The nonassociativity of the Cayley multiplication impedes defining any lines in
the space Ca” with n > 3. Indeed, if we define a line £, through x € C" and the
origin as the set {tx | t € Ca}, then the line ¢,,, through a point of this line and the
origin will not, in general, coincide with £, (see Fig. 1).
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Fig. 1 Cayley lines in Cayley plane

For this reason, there is no satisfactory definition of a Cayley projective space
(we will see later that spaces with expectable properties of Cayley projective spaces
do not exist by purely topological reasons). Still, it remains possible to define a
Cayley projective plane. For this purpose, we consider not whole lines in Ca?, but
rather traces of these lines on the union 7' of three planes: x = 1,y = 1,z =
1 (x,y, and z denote the “Cayley coordinates” in Ca®). More precisely: A point
(@', b, c") € Ca’—0is called collinear to the point (a, b, ¢) € Ca® — 0 if there exists
at € Ca—O0suchthata’ = ta,b’ = tb, ¢’ = tc. The collinearity relation is reflective
and symmetric but, in general, not transitive. However, it becomes transitive if we
restrict ourselves to points in 7. For example, if (c, 1,d) = #(1,a,b) and (e,f, 1) =
u(c,1,d),thent = c=a ' =db ', u=ec! =f =d!,and (tu)(1,a,b) =
((ec™Ye, (fa=YYa, (d~"(db™"))b) = (e.f, 1). Moreover, a point of any of the three
planes is not collinear to any point of the same plane and collinear to no more than
one point of any of the other two planes. The space obtained from 7 by identifying
all collinear points is CaP?. Each of the three planes in 7 is mapped into CaP?
without folding; these three subsets of CaP? form a covering similar to the covering
by affine charts.

EXERCISE 8. What will we get if we identify all pairs of collinear points in Ca*—0?

1.5 Grassmann Manifolds

This is a generalization of projective spaces. A real Grassmann manifold G(n, k) is
defined as the space of all k-dimensional subspaces of the space R”".> The topology
in G(n, k) may be described as induced by the embedding G(n,k) — End(R")
which assigns to a P € G(n, k) the orthogonal projection R” — P combined with
the inclusion map P — R”"; a more convenient description of the same topology
arises from a realization of G(n, k) as a subspace of a projective space; see ahead.

2There exists another system of notation where the space which we denote as G(n, k) is denoted as
G(n—k, k).
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Obviously, G(n, k) = G(n,n — k) and G(n, 1) = RP""!. There are also obvious
embeddings G(n,k) — G(n + 1,k) (arising from the inclusion R" C R"*!) and
G(n,k) — G(n + 1,k + 1) (the space R"” and its k-dimensional subspaces are
multiplied by a line).

An analog of an affine chart in a Grassmann manifold (which is a generalization
of an affine chart in a projective space) is defined in the following way. Choose a
sequence 1 < i} < --- < iy < n and consider the subset G,1 ,,,,, i (n, k) of G(n k)
composed of subspaces whose projection onto the space Rk . C R” of ist, .

complement. Thus, the points of Gj, .
matrices, that is, by sets of k(n — k) real numbers This defines a homeomorphism
of Gy, ... ; (n, k) onto RK®=k) and yields a coordinate system in G, ,._; (1, k).

It is also possible to introduce a coordinate system in the whole space G(n, k).
For a P € G(n, k) choose a basis in P C R". Let (xj1,...,x5), i = 1,...,k, be
coordinates of vectors of this basis. For I <j; <--- <j; <n, put

. p(P)y=det| .........

The numbers &, __;, (P) are called Pliicker coordinates of P; they are not all zero,
and if we change the basis in P, they all will be multiplied by the same number (the
determinant of the transition matrix to the new basis). Thus, Pliicker coordinates of
P may be regarded as homogeneous coordinates of a certain point of RPM-1, We
get an embedding G(n, k) — RrRPM-1, Certainly, the image of this embedding does
not cover the whole space RP(D_I; that is, there are some relations between the
Pliicker coordinates of a point in G(n, k). For example, the six Pliicker coordinates
512, 513, %'14, 523, %'24, %'34 of a pOiIlt in G(4, 2) satisfy the relation 512534 — 513%'24 +
£14&23 = 0, and no other relations. Thus, G(4, 2) is homeomorphic to a hypersurface
in RP° defined by the equation of degree 2 given above.

All this can be repeated, with obvious modifications, in the complex and
quaternionic cases; the Grassmann manifolds arising are denoted as CG(n, k) and
HG(n, k). One more version of Grassmann manifolds arises as the set of oriented
k-dimensional subspaces of R"; the corresponding notation is G+ (n, k).

There are obvious complex and quaternionic versions of the equalities G(n, k) =
G(n,n—k),G(n,1) = RP";also, G4 (n,k) = Gy(n,n—k)and G4 (n,1) = S" .
The embeddings G(n, k) — G(n + 1,k) and G(n, k) — G(n + 1,k + 1) also have
complex, quaternionic, and oriented analogs.

Notice also that there are Pliicker coordinates in CG(n, k) and G4 (n, k). In
CG(n, k) they are defined up to a complex proportionality and yield an embedding
CG(n, k) — cP®-1.1n G (n, k) they are defined up to a multiplication by positive
numbers and give an embedding G+ (n, k) — sG-1,



1.7 Compact Classical Groups 7

Finally, the infinite-dimensional version of Grassmann manifolds is provided by
the Grassmann space G(0o, k), which is the union of the chain G(k 4+ 1,k) C
Gk + 2,k) C Gk + 3,k) C ..., and G(o0,00), which is the union of the
chain G(co,k) C G(oco,k + 1) C G(oco,k + 2) C .... There are also spaces
CG(00,k), CG(00, 00), HG(00, k), HG(00, 00), G+ (00, k), G4+ (00, 0).

1.6 Flag Manifolds

This is a generalization of Grassmann manifolds. Let there be given a sequence

of integers 1 < k < --- < ky < n. A flag of type (ki,...,ks) in
R" is a chain V; C -+ C V; of subspaces of the space R" such that
dimV; = k;. The set of flags has a natural topology [for example, as a subset

of G(n,k;) x --- x G(n, k)] and becomes a “flag manifold” F(n;ky,...,ks).
The versions CF(n;ky,...,ks), HF(n;ky,...,ks), and Fi(n;ky,...,ks) of this
definition are obvious. The spaces F(n;1,2,...,n—1), CF(n;1,2, ...,n — 1),
HF(n;1,2,...,n — 1), and Fy(n;1,2,...,n — 1) are called (understandably)
manifolds of full flags.

1.7 Compact Classical Groups

The compact classical groups include the group O(n) of orthogonal n x n matrices,
the group U(n) of unitary n x n matrices, the groups SO(n) and SU(n) of matrices
from O(n) and U(n) with determinant 1, and the group Sp(n) of quaternionic
matrices of unitary transformations of H".

Notice that the group SO(2) of rotations of the plane around the origin is homeo-
morphic to a circle. The group SO(3) is homeomorphic to RP?; the homeomorphism
assigns to counterclockwise rotation by an angle o < 7 of R?® around an oriented
axis £ a point of £ at the distance /7 from the origin (in the positive direction).
Since the rotation by the angle m around an oriented axis is not different from the
rotation by the angle 7 around the same axis with the opposite orientation, the image
of this map is the unit ball in R? with the opposite points on the boundary identified,
that is, RP3. Another construction of (the same) homeomorphism RP? — SO(3)
assigns to a line £ C R* = H the transformation p +— gpg~"' of the space R> of
purely imaginary quaternions where 0 # g € £ (we leave the details to the reader).
p i|, where
o

The group SU(2) is homeomorphic to S: It consists of matrices [ ¢

lee|?>+|B|* = 1, thatis, (o, B) € S* C C?. Finally, the groups U(1) and Sp(1), which
are isomorphic, respectively, to the groups SO(2) and SU(2), are homeomorphic to
S! and S°.
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1.8 Stiefel Manifolds

The spaces of orthonormal k-frames in R” (topologized as a subset of R” x - - - x R")
is called the Stiefel manifold and is denoted as V(n, k). This space has complex and
quaternionic analogs: CV(n, k) and HV (n, k). Stiefel manifolds generalize classical
groups: V(n,n) = O(n),CV(n,n) = U(n),HV(n,n) = Sp(n),V(n,n —1) =
SO(n),CV(n,n — 1) = SU(n). Notice also that V(n,1) = "', CV(n,1) =
S HV(n, 1) = $¥1.

1.9 Classical Actions of Classical Groups in Classical Spaces

The action of the group O(n) in R” gives rise to its actions in sl D", G(n, k), and
V(n, k). The subgroup SO(n) of O(n) acts also in G4 (n, k). There is also an action
of O(k) in V(n, k): The matrices from O(k) are applied to the vectors of the frame.
All these actions have complex and quaternionic analogs.

The actions of O(n) in $"~!, G(n, k), and V(n, k) are transitive. The same is
true for the complex and quaternionic analogs of these actions, and also for the
action of SO(n) in G4 (n, k). Thus, almost all classical spaces described above are
homogeneous spaces of compact classical groups; that is, they can be described as
quotient spaces of these groups over some subgroups. Here are these descriptions:

Sl =0m)/0(n—1) =50(n)/SO0(n—1);
§7"1 = Um)/Um—1) = SU(n)/SU(n — 1);
St = Sp(n)/Sp(n—1);
G(n, k) = 0O(n)/0(k) x O(n — k);
CG(n, k) = Un)/U(k) x U(n —k);
HG(n, k) = Sp(n)/Sp(k) x Sp(n — k);
Gy (n, k) = SO(n)/SO(k) x SO(n — k);
V(n, k) = O(n)/O(n—k) = (if n > k) SO(n)/SO(n — k);
CV(n, k) =Um)/Un—k) = (ifn > k) SU(n)/SU(n — k);
HV(n, k) = Sp(n)/Sp(n — k).

(O(k) x O(n — k) is a subgroup of O(n) consisting of block diagonal matrices with

k x k and (n — k) x (n — k) blocks; U(k) x U(n — k), etc., have a similar sense).
Similarly, for flag manifolds,

F(niky, ... k) = 0(n)/O(k1) x O(ky — k1) X -+ x O(ks — ks—1) X O(n — ky),

etc. In particular, the manifold of full flags, CF(n;1,2,...,n — 1), is the quotient
space of the group U(n) over its “maximal torus” U(1) x --- x U(1).
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The action of the group O(k) in V(n, k), as well as its complex and quaternionic
analogs, are free. With respect to these actions,

V(n.k)/OK) = G(n,k),  V(n,k)/SOKk) = G4 (n.k),
CV(n,k)/U(k) = CG(n, k), HV(n,k)/Sp(k) = HG(n, k).

1.10 Classical Surfaces

The most classical of classical surfaces are the two-dimensional sphere S2, the
projective plane RP2, and the Klein bottle, which, as is well known, can be realized
in R? only as a surface with self-intersection (see Fig. 2).

A similar self-intersecting surface representation, although not this broadly
known, exists for a projective plane (it is called Boy’s surface, by the name of the
discoverer). It is shown as the top left drawing in Fig. 3. To make this drawing
easier to understand, we show the sections of the surface by seven horizontal planes
numerated from the top to the bottom (right drawing in Fig. 3). Notice that there is a
saddle point between Sections 2 and 3, and a section by some horizontal plane has
a triple self-intersection point. This triple point is also visible in Fig. 3. There is a
theorem that a self-intersecting surface in space representing the projective plane
must have at least one triple self-intersection point.

There is a surface with a more complicated singularity called a cross cap also
representing the projective plane. It is shown as the bottom left drawing in Fig. 3.

We also count as classical all surfaces obtained from the sphere, the projective
plane, and the Klein bottle by drilling some (finite) number of (small, round) holes
and attaching some (finite) number of handles.

EXERCISE 9. Prove that the projective plane with one hole is homeomorphic to the
Moibius band (thus, the Mébius band is a “classical surface”).

Fig. 2 Klein bottle
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EXERCISE 10. Prove that a surface which is obtained by joining two Klein bottles
by a tube is homeomorphic to a Klein bottle with a handle.

EXERCISE 11. Prove that a surface which is obtained by joining a Klein bottle by
a tube with a projective plane is homeomorphic to a projective plane with a handle.

EXERCISE 12. Prove that a surface which is obtained by joining two projective
planes by a tube is homeomorphic to a Klein bottle.

EXERCISE 13. Deduce from Exercises 9-12 that a surface obtained by joining two
classical surfaces by a tube is again a classical surface.

There is also a classical procedure of constructing classical surfaces from
polygons (closed planar polygonal domains) by gluing together several pairs of
sides. The procedure is as follows. We take a planar polygon, for example, a regular
n-gon, and then form k pairs of 2k (< n) its sides. Furnish each of these 2k sides
by an orientation (shown by an arrow). After that, we attach to each other the two
sides of each pair in a way compatible with the orientations. (Sometimes, one can
make these attachments using glue, but more often it can be done only mentally, as
described in Sect. 1.2.)

EXERCISE 14. In Fig. 4, there are six polygons; some sides have numbers and
arrows, and every number is repeated twice. Prove that after attaching the sides
with equal numbers compatible with the arrows, we obtain the following classical
surfaces: (a) an annulus (that is, a sphere with two holes); (b) a Mobius band; (c) a
torus (that is, a sphere with one handle); (d) a Klein bottle; (e) a projective plane;
(f) a sphere with two handles.
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Fig. 4 For Exercise 14

Fig. 5 For Exercises 15 and 16

EXERCISE 15. Show that if one inserts into a polygon four sides labeled and
oriented as shown in Fig. 5a, then a handle is added to the surface.

EXERCISE 16. Show that if one inserts into a polygon two sides labeled and
oriented as shown in Fig. 5b, then a projective plane joined to the surface by a
tube is added (in other words, a hole is drilled in the surface, and a M6bius band is
attached by its boundary to the boundary of the circle).

EXERCISE 17. Show that any classical surface can be obtained from a polygon by
a procedure described above.

EXERCISE 18. Isittrue that the procedure described above always yields a classical
surface?



1.10 Classical Surfaces 13

A torus (a sphere with one handle) can be constructed in R3 as a surface of
revolution generated by revolving a circle around an axis in the plane of this circle
but disjoint from it. The curves, which are the positions of the circle at intermediate
moments of time, are called meridians of the torus, and the trajectories of points
of the circle are called parallels of the torus. According to this, circular coordinates
arise on the torus: The latitude is the angle measured counterclockwise from some
fixed parallel (for example, from the longest one) and the longitude is the angle
measured counterclockwise along a parallel from some fixed meridian (for example,
from the initial position of the circle).

EXERCISE 19. Factorizing the torus by the relation (¢, V) ~ (¢ + 7, ¥ + 7) (that
is, by identifying points symmetric with respect to the symmetry center of the torus)
provides a Klein bottle.

EXERCISE 20. Factorizing the torus by the relation (¢, ¥) ~ (¥, ¢) provides a
Mobius band.

In conclusion, we will calculate “the genus of complex curves” (it is useful to
know the term “genus” as it is used in algebraic geometry: The genus of a sphere
with handles is the number of handles).

EXERCISE 21. Prove that the subset of the complex projective plane CP? consisting
of points whose homogeneous coordinates satisfy the equation xj + x{ + x5 = 0 is

n—1n-2)

homeomorphic to the sphere with ) handles.

If you cannot do this exercise now, you can return to it later.
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Lecture 2 Basic Operations over Topological Spaces

2.1 Product Spaces

Recall that the product X x Y of two sets X and Y is the set of pairs (x,y) where
xeXandy e Y. If X and Y are topological spaces, then X x Y acquires a canonical
topology: The base of open sets in X x Y is formed by products U x V where U is
open in X and V is open in Y [so lim(x;,y;) = (x,y) if and only if limx; = x and
limy; = y]. The product of three or more topological spaces is defined in a similar
way.

We have already encountered product spaces in Sect. 1.9: The subgroup of the
group O(n) denoted here as O(k) x O(n — k) as a topological space is the product of
O(k) and O(n — k); the same is true for other products mentioned in Sect. 1.9.

Notice also that the torus is homeomorphic to the product S' x S' (see its
description at the end of Sect. 1.10). For this reason, the product §' x - - - x §! is also
called a torus (or an n-dimensional torus). Let us mention a less obvious product
presentation: The Grassmann manifold G4 (4,2) is homeomorphic to S? x S2.
Indeed, the Pliicker coordinates (§2, €13, £14, £23, £24, £34) in G4 (4, 2) (see Sect. 1.5)
are defined up to a multiplication by a positive (because it is G+) number, not all
equal to 0, and satisfy the relation £15&34 — £13624 + £14E23 = 0. We can assume
that the sum of the squares of these numbers is 1 (then we do not need to admit the
multiplication by positive numbers). Make a coordinate change:

X1+ X4 X + X5 X5 + Xg
512 - 2 5513 - 2 7514 - 2 ’

X5 — Xg X5 — X2 X1 — X4
£ = 5 = 5 34 = 5

Then our equation becomes
q+0+8-x-5-x=0
and the condition “the sum of the squares is 1” becomes
XX+ 4G+ + g = 2.
Together, these equations show that
B+ =landx]+x2+x =1,

which is the system of equations of §? x §? C R3 x R* = R®.

EXERCISE 1. Show that the complex quadric, that is, the subspace of the complex
projective space CP* defined in the homogeneous coordinates (zo : z1 : 22 : z3) by
the equation z3 + z3 4 23 + z3 = 0, is homeomorphic to 52 x S2.
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EXERCISE 2. Show that the group SO(4) is homeomorphic to $* x SO(3), that is,
to S3 x RP3.

Remark. One could expect that the group SU(3) is homeomorphic to $°xS3; indeed,
SU(3)/SU(2) = S°. Thus, there is a mapping of SU(3) onto S° such that the inverse
image of every point of S° is homeomorphic to SU(2), that is, to S3, or, as people
say, SU(3) is fibered over S with the fiber S°. However, SU(3) is not homeomorphic
to S° x §; we will not be able to explain this before Chap. 4.

Notice in conclusion that there are continuous projections of X x Y onto X and
Y, and a continuous mapping of a third space, Z, into X x Y is the same as a pair
of maps, Z — X and Z — Y (the composition of the map Z — X x Y with the
projections).

2.2 Cylinders, Cones, and Suspensions

For a topological space X and its subspace A, we denote as X/A the space obtained
from X by collapsing A to a point; we call X/A the quotient space of X by A.

We always denote the segment [0, 1] as /. The product ZX = X x [ is called the
cylinder over X; the subsets X x 0 and X x 1 of the cylinder (which are copies of X)
are called its (upper and lower) bases. Smashing the upper base of the cylinder into
one point gives the cone CX over X; thus, CX = (X x I)/(X x 1) [sometimes, it is
more convenient to define CX as CX = (X x I)/(X x 0); see Exercise 11 ahead].
The base of the cylinder not affected by the factorization is called the base of the
cone, and the point of CX obtained from the other base of the cylinder is called the
vertex of the cone (Fig. 6).

AR

:

Fig. 6 Cylinder, cone, and suspension
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If we further factorize the cone over its base, we get the suspension £X over X.
. . . . . 1
The suspension has two vertices. The image of the “middle section” (X X 5 -

X x [ is called the base of the suspension. (This term can be justified by the fact
that the suspension may be thought of as the union of two cones attached to each
other by the bases; these bases become the base of the suspension.) The points of
the cone and of the suspension will still be denoted as (x,f), x € X, 0 <t < 1 with
the understanding that in the cone (x’,1) = (x”, 1) for any x',x” € X, and in the
suspension (¥, 1) = (x”,1) and (x/,0) = (x”,0) for any x',x” € X. If we need to
specify that a point (x, 7) lies in the cone or in the suspension, we may write (x, f)¢
or (x,1)s.

EXERCISE 3. Show that the cone and the suspension over S" are, accordingly, D" !
and S"T1.

EXERCISE 4. Prove that no closed (that is, without holes) classical surface except
§? is homeomorphic to a suspension over any other space.

2.3 Attachings: Cylinders and Cones of Maps

Let X, Y be topological spaces, let A be a subspace of Y, and let p:A — X be a
continuous map. Take the sum X [ [ ¥ (that is, a space composed of X and Y as of
two unrelated parts) and make an identification: We attach every pointa € A C Y
to ¢(a) € X. The resulting space is denoted as X U, Y, and the procedure for its
construction described above is called attaching Y to X by means of the map ¢.

We distinguish two special cases of this construction. Let f:X — Y be an
arbitrary continuous map. The space obtained by attaching the cylinder X x I to

Y by means of the map X x 0 = X L) Y is called the cylinder of the map f and is
denoted as Cyl(f). The space obtained by attaching the cone CX to Y by means of
the same map is called the cone of the map f and is denoted as Con(f). (See Fig. 7.)
The cylinder of f contains both X and Y; the cone of f contains Y.

Fig. 7 Cylinder and cone of a map
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EXERCISE 5. Show that the cone of a canonical map $" — RP" (see Sect. 1.2) is
homeomorphic to RP"*!. In particular, the cone of a double-rotation map of a circle
onto itself [defined by the formula (cos 8, sin 8) > (cos 26, sin 26), or, in complex
coordinates, z — z2] is homeomorphic to RPZ,

EXERCISE 6. Formulate and prove the complex and quaternionic analogs of this
statement.

2.4 Joins

The join X * Y of topological spaces X and Y can be conveniently described as the
union of segments joining every point of X with every point of Y.

EXERCISE 7. Show that the join of two (closed) segments containing two skew
lines in R? is a tetrahedron.

The formal definition of the join is as follows: We take the product X x Y x [
(we think of x x y x I as a segment joining x € X with y € Y) and then
make a factorization: We glue together the points (x,y,0), (x,y”,0) for every
x € X,y,y’ € Y and the points (x,y, 1), (x",y, 1) for every x',x" € X,y € Y
(meaning that the segments joining x with y’ and joining x with y” have a common
beginning, and the segments joining x’ with y and joining x” with y have a common
endpoint). The “horizontal sections” X x Y x t are copies of X x Y for0 <t < 1;
the section X x ¥ x 0 is collapsed into X and the section X x Y x 1 is collapsed into
Y. This “stack of cards” structure of the join is shown in Fig. 8.

EXERCISE 8. Show that the join of a space X and a one-point space (= the zero-
dimensional ball D°) is the same as the cone CX over X.

EXERCISE 9. Show that the join of a space X and a two-point space (= the zero-
dimensional sphere S°) is the same as the suspension XX over X.

X xY

X xY

X xY

(kA

X

Fig. 8 The “horizontal sections” of a join
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EXERCISE 10. Show that the join " * §" is homeomorphic to S"*"+! (in view of
Exercise 9, this is a generalization of Exercise 3).

Remark. The stack of cards structure of the join $™ * S” has an interesting relation
to the geometry of the sphere S"*"*!, Namely, for 0 <t < 1, consider the subset

2 2 2 2
Or = {(x1, -+ Xfnt1) le Tt X =L G0 T X = 1—1}

of the sphere S"T"*1 If 0 < ¢ < 1, then Q; is the product of the spheres §” and S"
(of radii /¢ and /1 — 7). On the other hand, Qy is §” and Q is §™. This construction
is especially useful in the case when m = n = 1; it shows that the three-dimensional
sphere S° is made out of a one-parameter family of tori and two circles. (We will
return to it in Sect. 10.5.)

For sufficiently good spaces (say, Hausdorff and locally compact), the join
operation is associative: The joins (X % Y) x Z and X * (¥ * Z) are homeomorphic to
the “triple join” X * Y * Z, which is defined as the union of triangles with vertices
in X, Y, and Z*. (Formally, this triple join is defined as a result of an appropriate
factorization in the product X x ¥ x Z x A where A is a triangle.) For a better
understanding of this matter, we can use another construction of the join (see the
next exercise).

EXERCISE 11. For a space X, define a “height function” h:CX — [0, 1] by the
formula h(x,7)c = 1 — ¢ (so the height of the vertex is 0, and the height of the
base is 1). Consider the alternative definition of the join: X*Y = {(£,7) € CX x
CY | h(§) 4+ h(n) = 1}. This new operation is obviously associative [an n-fold join
X% ... %X, is defined as {(&,...,£&,) € CX; x---xCX,, | h(§&)) +---+h(,) = 1}].
Prove that for good spaces (for example, for Hausdorff locally compact spaces) the
operations * and * are the same. (This will imply the associativity of the usual join
for good spaces.)

2.5 Mapping Spaces: Spaces of Paths and Loops

The set C(X,Y) of all continuous maps of a space X into a space Y is furnished
by compact-open topology (which can be thought of as the topology of uniform
convergency on compact sets). The base of open sets of this topology consists of
sets of the form U(K, O), where K is a compact subset of X and O is an open subset
of Y; the set U(K, O) consists of continuous maps f: X — Y such that f(K) C O.

EXERCISE 12. If X is the one-point space, then C(X,Y) = Y; if X is a discrete
space of n points, then C(X,Y) = Y x---x Y (n factors). [The last equality provides
a reason for an alternate notation for the mapping space: C(X,Y) = YX ]

3For “bad spaces” this homeomorphism does not hold and the join operation is not associative.
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Let X, Y, Z be topological spaces. The formula

:CX. 1)} = {(ny) = FW]0))

defines amap C(X,C(Y,Z)) - C(X x Y, Z).

EXERCISE 13. Show that if the spaces X and Y are Hausdorff and locally compact,
then this is a homeomorphism. [In this case we can write (Z")X = Z¥*Y¥; this
formula provides an additional justification for the notation Y* and is called the
exponential law.]

A path in the space X is defined as a continuous map I — X. The points s(0)
and s(1) are called the beginning and the end of the path s:/ — X. A path whose
end coincides with the beginning is called a loop. The following subspaces of the
space E(X) = X' of paths are considered: the space E(X;xo, x;) of paths with the
beginning xy € X and the end x; € X; the space E(X, xo) of paths beginning at x
(with the end not fixed); the space (X, xo) of loops of X with the beginning (and
end) xg.

EXERCISE 14. Prove that the space E(S"; xo, x1) does not depend (up to a home-
omorphism) on xo and x; (in particular, on these two points being the same or
different). By what spaces can S" be replaced in this exercise?

EXERCISE 15. Construct a natural (see the footnote on Exercise 18) homeomor-
phism between C(X, E(Y; yo, y1)) and the subspace of C(XX, Y) consisting of maps
taking the upper and lower vertices of XX, respectively, into yo and y;.

By the way, a topological space, for which every two points can be joined by
a path, is called path connected. This notion is slightly different from the notion of
connectedness used in point set topology: A space is connected if it does not contain
proper subsets which are both open and closed.

EXERCISE 16. Prove that every path connected space is connected, but the converse
is false: Prove the first and find an example confirming the second (the fans of the

1
function sin  will not experience any difficulty with such an example).
X

Still for the spaces which are mostly used in topology, like manifolds or
CW complexes, the two notions of connectedness coincide. For this reason we
sometimes will omit the prefix “path” and speak of connected spaces when we mean
path connected spaces.

2.6 Operations over Base Point Spaces

Topologists often have to consider topological spaces with base points, that is, to
assume that for every space a base point is selected and all maps considered take
base points to base points; different choices of a base point in the same topological
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space yield different base point spaces. The transition to base point spaces leads to
various modifications of operations considered above. Sometimes the modification
consists only in a choice of a base point in the result of a construction. For example,
the base point of the product X x Y of spaces X and Y with the base points xy and
yo is chosen as (xp, yo). Sometimes, the modification affects the construction itself.
For example, the cone over a space X with a base point x is obtained from the usual
cone CX by collapsing the segment xo x I to a point which is chosen for the base
point of the modified cone; the latter may be denoted C(X, xp) (if it is not clear from
the context that the construction involves a base point). Suspensions and joins are
modified in a similar way (in the join the segment joining the base points is collapsed
to a point), and the images of segments collapsed are taken for the base points; if
necessary, the notations 3 (X, x¢) and (X, xo) * (Y, yo) are used. Cylinders and cones
of maps (which are supposed to take base points into base points) are modified in a
similar way.

EXERCISE 17. Show that the homeomorphisms CS" = D"T!, B§" = §nt1 gm x
§" = §mtntl hold after the modifications described above if we consider spheres
and balls as spaces with base points [which is always assumed to be (1,0, ...,0)].

The mapping space is reduced to the space of maps taking the base point into
the base point; the base point of the mapping space is chosen as the constant map
with the value at the base point. For a base point space X = (X, xo) the path space
EX is defined as the space E(X, xo) of paths beginning at x, and the loop space QX
is defined as the space Q2(X, x¢) of loops beginning (and ending) at xy; the constant
path and the constant loop become the base points of EX and QX.

EXERCISE 18. For base point spaces X,Y, construct a homeomorphism
C(XX,Y) = C(X, QY) that is natural with respect to X and Y.*

4The words “natural with respect to X and ¥” may mean “defined for all X and Y in a unified
way,” but it is possible to attach to them a more formal sense. Namely, if X, Y’ are other base
point spaces, then for every (base point-preserving) map ¢: X’ — X, ¥:Y — Y’ there arises a
commutative diagram

C(ZX.Y) —> C(X,QY)

|

C(EX,Y) —> C(X, QY

where the horizontal arrows denote the homeomorphisms above, and vertical arrows denote maps
induced by the given maps ¢, ¥. [In detail: The left vertical arrow takes an f: XX — Y to the
map XX’ — Y’ acting by the formula (x’, 1)y > ¥ (f(¢(x’),)x); the right vertical arrow takes
ag:X — QY into the map X’ — QY acting by the formula X' +— {t — ¥ (g(e(x'))(®))}.]
Actually, it is useful to keep in mind that all our constructions are “natural” in the sense that they
can be applied not only to spaces, but also to maps which should act in an appropriate direction; in
algebra, this phenomenon is described by the word functor.
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C oo

Fig. 9 The bouquet of two circles

In conclusion, we will describe two operations which exist only for base point
spaces. The bouquet (or wedge) of two base point spaces, X and Y, is obtained from
their disjoint union by merging their base points. For example, the bouquet of two
circles is “the figure eight” (Fig. 9). The notation for the bouquet: (X, xo) Vv (¥, o)
orXVvY.

Alternatively, one can define the bouquet X Vv Y as the subspace of the product
X x Y composed of points (x, y) for which x = xy or y = yy. The quotient space (see
Sect. 2.2) X#Y = (X x Y)/(X V Y) is called the smash product or tensor product’
of X and Y. The base points in X Vv Y and X#Y are obvious.

EXERCISE 19. Show that S"#S" = §™t".

EXERCISE 20. For a base point space X, construct a natural (with respect to X)
homeomorphism £X = X#S!.

SIn category theory, there exists a general notion of a tensor product; the definition of a smash
product matches the definition of the tensor product for the category of base point topological
spaces.
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Homotopy

Lecture 3 Homotopy and Homotopy Equivalence

3.1 The Definition of a Homotopy

Let X and Y be topological spaces. Continuous maps f,g: X — Y are called
homotopic (f ~ g) if there exists a family of maps #,:X — Y,t € I such that
(1) ho = f,hy = g 2)themap H:X x I — Y, H(x,t) = h,(x), is continuous.
[Condition (2) reflects the requirement that 4, depends “continuously” on z.] The
map H (or, sometimes, the family #,) is called a homotopy joining f and g.

It is obvious that the homotopy relation for maps is reflexive, symmetric, and
transitive.

Example. All continuous maps of an arbitrary space X into the segment / are
homotopic to each other: A homotopy /4,:X — [ joining continuous maps
f,g:X — I is defined by the formula 4,(x) = (1 — #)f(x) + tg(x). Here I can be
replaced by any convex subset of any space R" or R®, in particular, by the whole
spaces R or R*°.

3.2 TheSetsz(X,Y)

The equivalence classes for the homotopy relation in C(X, Y) are called homotopy
classes. The set of homotopy classes in C(X, Y) is denoted as 7 (X, ).

Example 1. The set (X, I) consists (for every X) of one element.

Example 2. The set (%, Y) (where x denotes a one-point space) is the set of path
components (maximal path connected components) of Y.

© Springer International Publishing Switzerland 2016 25
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Obviously, the set 7(X,Y) can be regarded as the set of path components
of C(X,Y).

Let X,X',Y,Y be topological spaces, and let ¢: X’ — X and ¥:Y — Y’ be
continuous maps. Obviously, for continuous maps f,g: X — Y, f ~ g = fop ~
gogpandf ~ g = Y of ~ 1 og. Thus, the operations ogp and /o can be applied to
homotopy classes of maps X — Y, which gives the maps ¢*: 7 (X,y) — 7(X’,Y)
and Y. t(X,Y) - 7(X,Y’).

EXERCISE 1. Prove the relations (1 © ¢2)* = ¢35 0 ¢f, (Y1 0 ¥2)x = Yix © You,
and ¢* o Yy = Yy 0 @™ (we leave to the reader the work of determining the exact
meaning of the notations in these equalities).

3.3 Homotopy Equivalence

We will give three definitions of this notion.

Definition 1. The spaces X, Y are called homotopy equivalent (X ~ Y) if there exist
continuous maps f: X — Y and g: Y — X such that the compositions g o f: X — X
and f o g:Y — Y are homotopic to the identity maps idy: X — X and idy: Y — Y.

In this situation, the maps f and g are called homotopy equivalences homotopy
inverse to each other.

Remark. If the conditions g o f ~ idyx, f o g ~ idy are replaced by conditions
gof = idy, f o g = idy, then mutually homotopy inverse homotopy equivalences
f, g become mutually inverse homeomorphisms. Having this in mind, we can say
that homotopy equivalences are homotopy versions of homeomorphisms.

Definition 2. X ~ Y if there exists a way to define for every space Z a bijective map
a?: 7 (Y,Z) — m(X, Z) such that for any continuous map ¥: Z — W the diagram

O[Z
n(X,Z) «—— n(Y,2)
lXW
a(X,W) «— n(Y,W)
is commutative (that is, " o V¥4 = V¥ 0 o).

Definition 3. X ~ Y if there exists a way to define for every space Z a bijective map
Bz:w(Z,X) — w(Z,Y) such that for any continuous map ¢: Z — W the diagram
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2(Z.X) 5 22, 7)

(W, X) 225 (W, Y)

is commutative (that is, 8z o ¢* = ¢* o Bw).
Theorem. Definitions 1, 2, and 3 are equivalent.

Proof. Let us prove the equivalence of Definitions 1 and 2. Assume that X ~ Y
in the sense of Definition 2. Then there is a bijection a?: 7 (X,Y) — 7(Y,Y), and
we take for f: X — Y any representative of the homotopy class (a?)[idy] (where the
square brackets mean the transition from a map to its homotopy class). Also, there is
a bijection a®: 7 (¥, X) — (X, X), and we take for g: ¥ — X any representative of
the homotopy class (a*)~![idx]. Consider the diagram in Definition 2 for v being
g:Y — X and then for ¢ being f: X — Y-

7(X,Y) L (Y,Y)  n(X.X) LA (Y, X)

.
(X, X) L (YV,X) n(X.,Y) LA 7(Y,Y)

¥ = a¥ o g.. Apply this to [idy]:

From the first diagram, g« o o
g« oo’ [idy] = gulf] = [g o f].
¥ o gu[idy] = a¥[g] = [idx].

Thus, [gof] = [idy]; thatis, gof ~ idx. From the second diagram, fyx oa® = oY ofs,
or (@)™ o fi = fi o (@¥)!. Apply the last equality to [idx]:

(@) o fulidy] = (@")7'[f] = [idyl.
fe o (@) 'idx] = filg] = [f o 8-

Thus, [f o g] = [idy]; that is, f o g ~ idy. We see that X ~ Y in the sense of
Definition 1.

Now let us assume that X ~ Y in the sense of Definition 1. Then there exist
continuous maps f: X — Y, g:Y — X such that go f ~ idy, f o g ~ idy. For an
arbitrary Z, let «” = f*:n(Y,Z) — m(X,Z). This is a bijection: The inverse map
is g*. Indeed, g* o f* = (fog)* = (idy)* = idyvz and f* o g* = (gof)* =
(idx)* = idy(x z). Also, for any y:Z — W the diagram
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21X, 2) <— 72(v.2)

f*

(X, W) «<— (Y, W)

is commutative. Indeed, for an h: Y — Z, Y, o f*[h] = Y«[hof] = [y o hof] and
f* oyu[h] =f*[W o h] = [¥ o hof] (areader who did not skip Exercise 1 may be
familiar with this argumentation). Thus, X ~ Y in the sense of Definition 2.

The equivalence of Definitions 1 and 3 is checked precisely in the same way, and
we leave it to the reader.

It is obvious that the relation of homotopy equivalence is reflexive, symmetric,
and transitive. A class of homotopy equivalent spaces is called a homotopy type.

EXERCISE 2. Prove that a space that is homotopy equivalent to a path connected
space is path connected.

An example of nonhomeomorphic homotopy equivalent spaces: X is a circle and
Y is an annulus. One can take for f: X — Y the inclusion of X into Y as the outer
boundary circle and put g = f~' o h:Y — X, where £ is the radial projection of
the annulus onto the outer boundary circle (see Fig. 10). The homotopy relations
gof ~idy, f o g ~ idy are obvious.

A space X is called contractible if the identity map idy: X — X is homotopic to
a constant map taking the whole space X to one point.

EXERCISE 3. Prove that a space is contractible if and only if it is homotopy
equivalent to a one-point space.

EXERCISE 4. Prove that the cone over any (nonempty) space is contractible.

EXERCISE 5. Prove that the space E(X, x¢) is contractible for any space X and any
point xy € X.

&/;h;

Fig. 10 A homotopy equivalence
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EXERCISE 6. Prove that the cylinder of any continuous map X — Y is homotopy
equivalentto Y.

EXERCISE 7. Prove thatif X ~ Y, then XX ~ XY.

EXERCISE 8. The previous statement is called the homotopy invariance of the
operation of suspension. Prove that the operations of product, join, mapping spaces,
path and loop spaces are homotopy invariant in a similar sense.

3.4 Retracts and Deformation Retracts

A subspace A of a space X is called a retract of X if there is a continuous map
r:X — X (“retraction”) such that r(X) = A and r(a) = a for every a € A. For
example, any point of a topological space is a retract of this space, but the union
of the two endpoints of a segment is not a retract of this segment (the intermediate
value theorem for continuous functions provides a reason for that). The boundary
circle of a disk, and, more generally, S~ C D" are not retracts; but at the moment
we do not have tools to prove that.

EXERCISE 9. Show that a retract of a path connected space is path connected.
EXERCISE 10. Prove that the bases of a cylinder are its retracts.

EXERCISE 11. Prove that the base of a cone CX is a retract of CX if and only if X
is contractible.

If a retraction r : X — X of X onto A is homotopic to the identity idx: X — X,
then A is called a deformation retract of X. If a homotopy joining » with idy may be
made fixed on A [that is, F;(a) = a forall r € I,a € A], then A is called a strong
deformation retract of X.

Obviously, a deformation retract of X is homotopy equivalent to X. Moreover, A
is a deformation retract of X if and only if the inclusion map A — X is a homotopy
equivalence (compare the example of a homotopy equivalence given above). Thus,
the notion of a deformation retract is essentially not new for us. This cannot be
stated regarding the notion of a strong deformation retract, but, as we will see later,
the difference between deformation retracts and strong deformation retracts arises
only in really pathological cases.

EXERCISE 12. A point is a deformation retract of a space X if and only if X is
contractible.

EXERCISE 13. Show an example of a deformation retract which is not a strong
deformation retract. (It is reasonable to regard this exercise as a sequel of the
preceding exercise.)

In conclusion, we exhibit a pair of homotopy equivalent spaces of which neither
is a deformation retract of the other one.
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Fig. 11 Homotopy equivalence with no deformation retraction

The two spaces shown in Fig. 11 (a pair of mutually tangent circles and an
ellipse with a diametrical segment) are homotopy equivalent since they both are
deformation retracts of an elliptical domain with two circular holes; but neither of
them is homeomorphic to a deformation retract of the other one.

3.5 An Example of a Homotopy Invariant:
The Lusternik—Schnirelmann Category

We say that a subspace A of a topological space X is contractible in X if the inclusion
map A — X is homotopic to a constant map A — X. It is clear that if A is
contractible (in our usual sense; see Sect. 3.3), then it is contractible in X, but
the converse is not necessarily true. The minimal n (maybe, co) for which there
exists a covering of X by n open subsets contractible in X is called the (Lusternik—
Schnirelmann) category of X and is denoted as cat X. If we replace in this definition
the condition that the open sets from the covering are contractible in X by the
condition that they are contractible, we will get a definition of a strong category
of X, which is denoted as cat® X.

Theorem. The category is homotopy invariant: If X ~ Y, then catX = catY.

Proof. Letf:X — Y and g:Y — X be mutually inverse homotopy equivalences,
and let #: X — X be a homotopy such that hy = idy and h; = g o f. Let
{U1, ..., Uy} be acovering of Y by open sets contractiblein Y, and letk; ,: U; — Y
be a homotopy with ky being the inclusion map of U; into Y and k; being a constant
map. Let V; = f~1(U;); the sets V; form an open covering of X. Consider two
homotopies V; — X: The first consists of maps x + h,(x), and the second consists
of maps x — g(k;,(f(x))) [this makes sense, since f(x) € U;]. The first homotopy
joins the inclusion map V; — X with the restriction map (g o f)|y,, and the second
homotopy joins this restriction map with a constant map. Together they show that
Vi is contractible in X. We see that cat X < catY and a similar argumentation shows
that cat Y < cat X; thus, catX = catY.

EXERCISE 14. Prove that for any nonempty space X, cat XX < 2. (Obviously,
catX = 1 if and only of X is contractible.)
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Y

Fig. 12 An example for studying relations between categories and strong categories

Later on, we will be able to compute the category for a broad class of spaces.

Now, let us discuss the relations between the category and the strong category.
It is obvious that the strong category is never less than the category.

Consider two spaces shown in Fig. 12.

The space X is obtained from the sphere S? by gluing together three points. The
space Y is obtained from the sphere not by gluing together the three points, but
rather by joining them by arcs attached to the sphere from the outer side. It is very
easy to see that X ~ Y.

EXERCISE 15. Prove thatcatX = catY = cat’ Y = 2, but cat’ X = 3.

This computation shows that the strong category does not need to be the same as
the category, and also that the strong category is not homotopy invariant.

3.6 The Case of Base Point Spaces, Pairs, Triples, etc.

The definitions of a homotopy and a homotopy equivalence are modified in an
obvious way for base point spaces. The set of (base point) homotopy classes of maps
between base point spaces X and Y is also denoted as 7 (X, Y), but, if necessary, the
specific notation 77, (X, Y) is used.

EXERCISE 16. Prove the base point homotopy invariance of the operations Vv, #, 2
and also the base point versions of suspensions and joins.

A further generalization of the base point homotopy theory is a homotopy
theory of pairs. A pair (X, A) is simply a topological space X with a distinguished
subspace A. A map of a pair (X, A) into a pair (Y, B) is simply a continuous map
X — Y taking A into B. Homotopies, homotopy equivalences, and so on are defined
for pairs in the obvious way. Similar theories exist for triples (X, A, B) (where it is
assumed that X D A D B), triads (X; A, B) (where it is assumed that X D A, X D B),
and so on.
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Lecture 4 Natural Group Structures in the Sets 7 (X, Y)

Homotopy topology studies invariants of topological spaces and continuous maps
which are discrete by their nature. Usually, these invariants have equal values
on homotopy equivalent spaces and homotopy maps. The most usual procedure
for constructing such invariants consists in a fixation of some space Y and then
assigning to a topological space X the set 7 (X,Y) or w(Y,X) and to a continuous
map f:X — X or f:X' — X the map f* or fx. (Certainly, there are invariants
of a completely different nature, like the Lusternik—Schnirelmann category—see
Sect. 3.5.)

It is much easier to deal with such invariants if they possess some natural
algebraic structure, most commonly a natural structure of a group. Before describing
and studying these structures, we want to make a remark regarding the form of
further exposition. We consider the invariants of two different kinds: X +— 7 (X, Y)
and X +— m(Y,X) (for a fixed Y). Each of these kinds gives rise to a theory, and,
for a long time, the two theories remain parallel or, better to say, dual. This duality
is important for homotopy topology; it is called the Eckmann—Hilton duality. We
will not explicitly describe it in this book, but, just to make it more visible, we
will arrange the majority of this section in a two-column format, so that the dual
statements will be written next to each other.

In this section, we assume that all spaces have base points and accordingly
understand all maps, homotopies, homotopy equivalences, etc. We fix, once and
forever, a space Y with a base point yy.

Suppose that for every space X a
group structure is introduced in
the set 7, (X, Y). This structure is
called natural if for every contin-

Suppose that for every space X
a group structure is introduced in
the set m,(Y, X). This structure is
called natural if for every continu-

uous map ¢: X — X', the map
" m (X, Y) = mp(X,Y)

is a homomorphism.

Definition. The space Y is called
an H-space if there are maps

nwYxY—Y
(multiplication) and
V.Y —>Y

(inversion) such that

ous map ¢: X — X', the map
0*:mp (Y, X) = mp (Y, X))

is a homomorphism.

Definition. The space Y is called
an H'-space if there are maps

nwYxY—Y
(comultiplication) and
VY —>Y

(co-inversion) such that
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(1) (homotopy unit). The compo-
sitions

y L yxy-Lsy

vy yxy-tsy

where

]l(y) = (yvyO)v ]2(y) = (yOsy)v

are homotopic to idy: Y — Y.

(2) (homotopy
The composmons
Y x (YxY)—d>Yx Y—>Y
(YXY)XY—)YXY—)Y
are homotopic.

associativity).

(3) (the property of the homotopy
inversion). The maps

Y— Y XYy
Y— Y XYy

where the two left arrows mean,
respectively, the maps y >

(0. v(y) and y = (v(y). y), are

homotopic to the constant map.

An important example of an H-
space: the loop space 2Z of an
arbitrary space Z. The map

W:QZx QZ — QLZ

1  Homotopy

(1) (homotopy co-unit). The com-
positions

ytsyvrtsy

ytsyvr sy

where p; is the identity on the first
Y and maps the second Y into yy,
and p, is the identity on the second
Y and maps the first Y into y, are
homotopic to idy: Y — Y.

(2) (homotopy co-associativity).
The composmodns
Y—>YvY—d>Yv(Y\/Y)
Y—>YvY—>(Y\/Y)vY
are homotopic.

(3) (the property of the homotopy
co-inversion). The maps

Yy Lsyvy—y
Yy Lsyvy—y

where the two right arrows mean,
respectively, the map which is id
on the first Y and v on the sec-
ond Y, and the same with id and
v swapped, are homotopic to the
constant map.

An important example of an H’-
space: the suspension ¥XZ over an
arbitrary space Z. The map

w.xZ - 3X7Zv 37



is defined by the formula
(. I =
f(@2), ifr<1/2,

g2t—1),ift>1/2,

that is, ¢ assigns to two loops a loop
obtained by a successive passing
these two loops:

and the map v: QZ — QZ is defined
by the formula

LOI@ =f0 —0);

that is, v assigns to a loop the same
loop passed in the opposite direc-
tion.

Another important example of an H-
space is a topological group.

(The dual statement is formulated
in terms of category; the reader can
try to conceive of an appropriate
definition of this.)

Theorem. The set 7,(X,Y) pos-
sesses a natural (with respect to X)
group structure if and only if Y is an
H-space.

Lecture 4 Natural Group Structures in the Sets 7 (X, Y)

is defined by the formula

w(z, t)s =
(z.20k, ifr<1/2
(z.2t— DI ifr>1/2,

where the Roman numerals show
in which of the two X£Zs compos-
ing £Z Vv X¥Z the point is taken:

&

and the map v:¥XZ — XZ is
defined by the formula

v(z, )z = (z,1 = Oz

that is, v turns the suspension
upside down.

(no dual notion)

EXERCISE 1. Prove that the
Lusternik—Schnirelmann category
of an arbitrary H'-space is < 2.

Actually, the class of H’-spaces is
very close to the class of spaces of
category < 2, but we will not go
into the details of this statement.

Theorem. The set w,(Y,X) pos-
sesses a natural (with respect to X)
group structure if and only if Y is
an H'-space.

35
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Proof of the Only If Statement.

Let the set 7,(X, Y) have a natural
with respect to X group structure.
Take X = Y x Y and consider the
classes [p1],[p2] € mp(Y x Y,Y) of
the projections of ¥ x Y onto the
factors.

Set [1] = p1-[p2] (the multiplication
is in the group m,(Y x Y,Y)) and
choose an arbitrary map yu: Y XY —
Y of the class [u]. For v:Y — Y
we will take an arbitrary map of a
homotopy class [idy]™' (the inver-
sion is in the group 7, (Y, Y)).

Properties (1)-(3) of maps wu and
v are checked automatically. Let us
prove, for example, that poj; ~ idy.
The map j;: Y — Y x Y induces a
map jT:m(Y x Y, Y) — m(Y,Y)
which takes [p1] into [p; oj1] and [p5]
into [py o j1]; but p; o j; = idy and
P2 ©j1 = const.

Since the group structure in
mp(X,Y) is natural, the map j}
takes products into products; hence,
[ ojil = jilun] = ji(pil - [p2]) =
Jilpilitlp2] = [p1ojil - [p2oji] =
[idy] - [constf = [idy]. Thus,
/,L Oj1 ~ ldy

(We used the fact that the class of
the constant map const: Y 1y
is the unit of the group m,(Y,Y).
To prove that, we consider the one-
point space pt and the (unique)
map Y — pt. The homomorphism
wp(pt, Y) — mp(Y,Y) arising takes
the unique element of the group
7, (pt, Y), on one hand, into the unit
of the group m,(Y,Y), and, on the
other hand, into the class of the
constant map ¥ — Y.)

1  Homotopy

Proof of the Only If Statement.

Let the set 7, (Y, X) have a natural
with respect to X group structure.
Take X = Y Vv Y and consider the
classes [n1], [12] € mp(Y, Y VY) of
the natural embeddings of Y into
Yvy.

Set [u] = n1 - [2] (the multipli-
cation is in the group m,(Y,Y Vv
Y)) and choose an arbitrary map
wY — Y Vv Y of the class [u].
For v:Y — Y we will take an
arbitrary map of a homotopy class
[idy]~! (the inversion is in the
group 1,(Y, Y)).

Properties (1)—(3) of maps u and
v are checked automatically. Let
us prove, for example, that m; o
u ~ idy. The map 7:Y — Y x
Y induces a map my*x:mp(Y,Y Vv
Y) — m(Y,Y), which takes [1]
into [rr; ony] and [n;] into [71 0 n2];
but mTpron = ldy and Ty 0Ny =
const.

Since the  group
in mw,(Y,X) is natural, the
map s« takes products into
products; hence, [m; o u] =
mxlu] = mu(m] - ) =
Tix[mlmisna] = [mom]-[m o
2] = [idy] - [const] = [idy]. Thus,
T OM ~ ldY

(We used the fact that the class of
the constant map const:Y — 1y
is the unit of the group 7w, (Y, Y).
To prove that, we consider the one-
point space pt and the (unique)
map pt — Y. The homomor-
phism 7, (Y, pt) — m,(Y,Y) aris-
ing takes the unique element of the
group 7, (Y, pt), on one hand, into
the unit of the group 7, (Y, Y), and,
on the other hand, into the class of
the constant map ¥ — Y.)

structure



Proof of the If Statement. Let Y be
an H-space and X be an arbitrary
(base point) space. The map u:Y x
Y — Yinduces a map px: (X, ¥ x
Y) — m(X,Y) which can be
regarded, in view of the obvious
equality 7, (X, Y x Y) = m,(X, Y) %
(X, Y), as a map

Ma: (X, Y) X (X, Y)
— Nb(X, Y)

Furthermore, the map v:Y — Y
gives rise to a map vy mp(X,Y) —
7, (X, Y). Together, the multiplica-
tion us and inversion v, determine
in 7, (X, Y) a natural with respect to
X group structure. The verification
of the details is left to the reader.

EXERCISE 2. Show that the group

ﬂb(X, QQZ)

is commutative.

Since for n > 1, $" DI
the set 77, (8", X) is a group for any
X (natural with respect to X). This
group is called the nth homotopy
group of X and is denoted as 7, (X).
Exercise 2 shows that this group is
commutative for n > 2.

We will see ahead (in Lecture 15)
that

i | 0 fori#n,

R = Z fori =n.

Lecture 4 Natural Group Structures in the Sets 7 (X, Y)

Proof of the If Statement. Let Y be
an H'-space and let X be an arbitrary
(base point) space. The map pu: ¥ —
Y v Y induces a map p*:mp(Y Vv
Y,X) — m(Y,X) which can be
regarded, in view of the obvious
equality 7,(Y VY, X) = 7, (Y, X) %
(Y, X), as a map

w*: (Y, X) x (Y, X)
— Hb(Y,X).

Furthermore, the map v:Y — Y
gives rise to a map v*: 7, (¥, X) —
7, (Y, X). Together, the multiplica-
tion u* and inversion v* determine
in 7, (Y, X) a natural with respect to
X group structure. The verification
of the details is left to the reader.

EXERCISE 3. Show that the group

Nb(EEZ,X)

is commutative.

We will see ahead (in Lecture 11)
that for any n > 1 there exists
a (homotopically unique) space K,
(usually denoted as K(Z,n)) such
that

0 fori # n,
1 ,'Kn = .
(1) 7i(Ky) Z fori = n,

(2) Ky ~ QKpy1.

Since K, ~ QK,+1, the set
(X, K,) is a group for any X (nat-
ural with respect to X). This group is
called the nth (integral) cohomology
group of X and is denoted as H"(X)
[or H"(X; Z)]. Exercise 3 shows that
this group is always commutative.

37



38

Decades ago, the computation of the
homotopy groups of spheres seemed
to the topologists a very impor-
tant problem. This problem has not
been solved yet (see some details in
Chaps. 3-6).

1 Homotopy

The computation of the cohomology
groups of the spaces K, turned out to
be a very important problem. This
problem was solved in the 1950s,
mostly in the works of H. Cartan, A.
Borel, and J.-P. Serre (see the details

in Chap. 3).

Lecture 5 CW Complexes

Homotopy topology almost never considers absolutely arbitrary spaces. Usually, the
spaces studied are equipped with some additional structure, and, since the times of
the founder of algebraic topology, Henri Poincaré, two kinds of structures have been
considered. The structure of the first kind have their origin in analysis: differential,
Riemannian, complex, symplectic, etc. We will deal with structures of this kind (see
Lectures 17, 19, 30, 41-43), but not too often. Usually the structures of this kind are
natural: The spaces considered have such a structure from the very beginning, and
we do not need to construct it. The structures of the other, more important for our
type, are combinatorial structures. This structure consists of representing a space
as a union of more or less standard pieces, and then studying spaces is reduced to
studying the mutual arrangement of these pieces.

In this lecture we consider the most important combinatorial structure: the
so-called CW structure. Although we will prove in this lecture some properties of
CW complexes (this is how spaces with these structure are called) which will justify
the usefulness of the notion, its real role will show itself later, in the chapter entitled
“Homology,” where the CW structures will become a powerful computational mean.
Still we cannot postpone the preliminary study of CW complexes until the homology
chapter.

5.1 Basic Definitions

A CW complex is a Hausdorff space X with a fixed partition X = (J7Z, Ui I, el

of X into pairwise disjoint set (cells) e/ such that for every cell ¢! there exists a
continuous map f': DY — X (a characteristic map of the cell e/) whose restriction
to Int D? is a homeomorphism Int DY ~ ¢! whose restriction to $7~! = D4 — Int D4
maps S9! into the union of cells of dimensions < g (the dimension of the cell e,
dime? is, by definition, g). The following two axioms are assumed satisfied.

(C) The boundary ¢! = ¢! — ! = f7(597") is contained in a finite union of cells.
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(W) A set F C X is closed if and only if for any cell ¢! the intersection F N ¢ is
closed (in other words, (f;) ™! (F) is closed in DY).

Remarks. (1) We assume characteristic maps existing but not fixed. If we need
to consider a CW complex with characteristic maps selected, that is, we need to
have them as a part of the structure, we will explicitly specify this. (2) The term
“CW complex” is not universally used. People also say cell spaces, or a CW
decomposition. (3) The notations (C) and (W) of the axioms are standard. They
abbreviate the expressions “closure finite” and “weak topology”.

EXERCISE 1. Prove that the topology described in axiom (W) is the weakest of all
topologies with respect to which all characteristic maps are continuous.

A CW subcomplex of a CW complex X is a closed subset composed of whole
cells. It is obvious that a CW subcomplex of a CW complex is a CW complex.
The most important CW subcomplexes of a CW complex X are skeletons: The
nth skeleton X" or sk, X of X is the union of all cells e/ with ¢ < n. By the way,
sometimes people say “n-dimensional skeleton,” but this is not right: The dimension
of a CW complex is the supremum of dimensions of all its cells, and the dimension
of the nth skeleton may be less than n. Another example of a CW subcomplex: the
union of the nth skeleton and any set of (n + 1)-dimensional cells.

Later on we will refer to pairs (X, A) in which X is a CW complex and A is a CW
subcomplex of X as CW pairs.

A CW complex is called finite or countable if the set of cells is finite or
countable. By the way, for finite CW complexes the axioms (C) and (W) are not
needed: They are satisfied automatically.

EXERCISE 2. Prove that every point of a CW complex belongs to some finite CW
subcomplex.

A CW complex is called locally finite if every point has a neighborhood which
is contained in some finite CW subcomplex.

EXERCISE 3. Prove that every compact subset of a CW complex is contained in
some finite CW subcomplex.

EXERCISE 4. Prove that a CW complex is finite (locally finite) if and only if it is
compact (locally compact).

EXERCISE 5. Prove that a map of a CW complex into any topological space is
continuous if and only if its restriction to every finite CW subcomplex is continuous.

EXERCISE 6. The same with the words “finite CW subcomplex” replaced by the
word “skeleton.”

A continuous map f of a CW complex X into a CW complex Y is called cellular
if f(sk, X) C sk, Y for every n. Notice that this definition, which is, as the reader
will soon see, the most appropriate, gives to cellular maps a lot of freedom: A cell
does not need to be mapped into a cell, but can be spread along several cells of the
same or smaller (but not bigger!) dimensions.
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Fig. 13 For Exercise 7

Fig. 14 The closure of a cell is not a CW subcomplex

EXERCISE 7. Let X’ and X” be the segment I decomposed into cells as shown in
Fig. 13. Are the identity maps f: X' — X" and g: X” — X’ cellular? (Answer: yes
for f, no for g.)

5.2 Comments to the Definition of a CW Complex

Remark 1. The closure of a cell does not need to be a CW subcomplex. Here is the
example (Fig. 14). Let X = S' v 2. We decompose it into three cells: €’, ¢!, e2. For
¢" we take a point of S! which is not the base point. Then we pute! = §' —¢°, ¢? =
X — St Obviously, this is a CW decomposition, but 2 does not consist of whole

cells; thus, it is not a CW subcomplex.

Remark 2. (W) does not imply (C). The decomposition of D? into Int D* and all

separate points of S! satisfies (W) (since F N Int D> = F for every F), but does not
satisfy (C).

Remark 3. (C) does not imply (W). Take the infinite family {/; | k = 1,2,...} of
copies of the segment / and glue all the zero ends into one point. Topologize this set
by the metric: The distance between x € It,y € Iy is x + y if k # £ and is |y — x| if
k = £. Consider the decomposition of the resulting space X into cells where every

1
I, is a union of three cells: 0, 1, and Int /. The set{k el|k=1,2,...} CXhasa

one-point, hence closed, intersection with every I; but is not closed since it does not
contain its limit point 0.
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By the way, if a decomposition of a space into cells satisfies all the conditions
listed in the beginning of Sect. 5.1 with the exception of Axiom (W) (as in the last
example), we always can change (weaken) the topology, introducing it by Axiom
(W). We will have to use this trick, called the “cellular weakening of topology,” as
soon as in Sect. 5.3.

EXERCISE 8. Prove that a CW complex is metrizable if and only if it is locally
finite.

5.3 CW Structures and Constructions from Lecture 2

All the operations over topological spaces considered in Lecture 2, including the
specific operations over base point spaces, and excluding the operation involving
mapping spaces (like 2 and E), are defined in the CW setting. To begin with, the
cylinder, cone, and suspension over CW complexes are, in a natural sense, CW
complexes (for example, the cells of a suspension XX over a CW complex X are the
two vertices and suspensions over cells of X with vertices removed). The cylinder
and cone of a cellular map are also CW complexes (this appears to be our first
justification of the definition of a cellular map); the same is true for the spaces of
the form XU, Y if ¢ is a cellular map of a CW subcomplex of Y into X, and, certainly,
for the quotient space X/A of a CW complex X over a CW subcomplex A. But we
encounter an unexpected obstacle when we try to introduce a CW structure into a
product and, the more so, smash product or join of two CW complexes. Say, cells
of the product of two CW complexes, X x Y, are defined in the most natural way,
as products of cells of X and Y, but there arises trouble with Axiom (W): It does
not hold, in general. When topologists discovered this circumstance, they rushed to
investigate it, and they proved a variety of theorems. We will refrain from discussing
this matter, restricting ourselves to three exercises (see below) and the following
remark. If the natural decomposition of X x Y into cells does not satisfy Axiom
(W), we can apply the cellular weakening of topology [that is, redefine topology by
Axiom (W)] and get a CW complex. We will define the latter as X x,, Y. Luckily,
it turns out that the replacement of space X x Y by X x,, Y does not spoil anything
essential: The most important properties of the product remain true for this new
operation. This allows us to forget the difference between x and x,,, which we will
do. The same can be said regarding joins and smash products.

EXERCISE 9. Show an example when X x,, ¥ # X x Y.

EXERCISE 10. Prove that if one of the CW complexes X, Y is locally finite, then
Xx,Y=XxY.

EXERCISE 11. Prove that if both CW complexes X, Y are locally countable, then
Xx,Y=XxY.
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As to the mapping spaces, they are too big to have any hope of being decomposed
into cells. Still, there is the following theorem proven by Milnor.

Theorem (Milnor [56]). If X and Y are CW complexes, then the space Y is
homotopy equivalent to a CW complex.

(We will see ahead that to be homotopy equivalent to a CW complex is not
bad at all. Anyway, Milnor dedicated the work cited above to a propaganda of this
property.)

To finish our discussion of relations of CW complexes to constructions from
Lecture 2, we will notice that every CW complex can be obtained by applying
sufficiently many (sometimes, infinitely many) such constructions to the simplest
spaces: to balls. Indeed, let {e},} be the set of all n-dimensional cells of a CW
complex X, and let f: D" — X be corresponding characteristic maps. Since
£o(S" 1) C sk,—1 X, we can restrict /7 to amap g": "' — sk, X (the maps g" are
called attaching maps). Take the disjoint union D = [ [, D, of n-dimensional balls,
one for each n-dimensional cells of X, and put S = [[, S»~! C D. Then consider
the map g":§ — X, g"|g—1 = gq-

OI . I .
Skn X - Skn_ X l | D; k
( 1 ) n ( )

that is, sk, X is obtained from sk,— X by attaching n-dimensional balls by means of
attaching maps corresponding to all n=dimensional cells of X.

The equality (*) may be regarded as a step of a universal inductive procedure
which allows us to construct an arbitrary CW complex from a discrete space (sko X
is discrete) or even an empty space (sk—; X is empty) by successively attaching balls
of growing dimensions. By the way, if the CW complex is infinite dimensional, then
this inductive procedure includes a limit transition which is regulated by Axiom
(W). Directly or indirectly, this inductive procedure creates a base for a proof of any
statement about CW complexes: It allows us to reduce such a statement to the case
of spheres or balls.

EXERCISE 12. Prove that a CW complex is path connected if and only if its first
skeleton is path connected.

EXERCISE 13. Prove that a CW complex is path connected if and only if it is
connected.

EXERCISE 14. Prove that a finite-dimensional CW complex can always be embed-
ded into a Euclidean space of sufficiently large dimension.
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5.3 CW Structures and Constructions from Lecture 2
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5.4 CW Decompositions of Classical Spaces

A: Spheres and Balls

For a finite n, there are two canonical CW decompositions of the sphere S"; they are
shown for n = 2 in Fig. 15. The first consists of two cells: a point e’ (for example,
(1,0,...,0)) and the set " = §" — ¢°; a characteristic map D" — §" can be chosen
like the usual making a sphere from a ball by gluing all points of the boundary
sphere into one point:

sin 7T, sin 7
(xl,...,xn)»—>(—cos71p,x1 p...,xn '0,)
P

) ) sinrp

Wherep:\/x1+---+xnand =mforp=0.
P
The other classical CW decomposition of S consists of 2n + 2 cells e(ﬂ):’ e, e'j‘t,

where ezt = {(xl,...,x,H_l) e st I Xg42 = 0 = Xpg1 = 0, :txq+1 > 0} Here

we do not need to care about characteristic maps: Closures of all cells are obviously
homeomorphic to balls (see Fig. 15).

Notice that both CW decompositions described above are obtained from the only
possible cellular decomposition of S° (the two-point space) by the canonical cellular
version of the suspension (see Sect. 5.3). In the first case, we use the base point
version of suspension, and in the second case we take the usual suspension.

Certainly, there are a lot of other CW decompositions of the spheres. For
example, S" can be decomposed into 3! — 1 cells as the boundary of the (1 + 1)-
dimensional cube, or into 2"*2 — 2 cells as the boundary of the (n + 1)-dimensional
simplex (if you do not know what the simplex is, you will have to wait until Chap. 2).

All these CW decompositions, except the first one, work for $°.

A CW decomposition of the ball D" may be obtained from any CW decomposi-
tion of the sphere §"~! by adding one n-dimensional cell, namely Int D". Thus, the
smallest possible number of cells for D" with n > 1 is 3. Notice, however, that no
one of these CW decompositions will work for D*.

EXERCISE 15. Make up a CW decomposition for D*°.

Fig. 15 Two CW decompositions of S?
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B: Projective Spaces

The identification of the antipodal points of the sphere S” glues together the cells
ef’l_, e? of the above-described CW decomposition of S into 2n + 2 cells. This gives
a decomposition of RP" into n 4 1 cells e?, one in every dimension from O to n. The
other way of describing this CW decomposition of RP”" is provided by the formula

el ={(xo:x1 1 :1x,) €ERP" | x5 #0, xyq1 =+ =x, = 0}.
One more description is provided by the chain of inclusions
§=RP'CRPPCRP'C---CRP":

We set ¢ = RP? — R?97!. A characteristic map for e may be chosen as the
composition of the canonical projection D? — RP? (see Sect. 1.2) and the inclusion
RP? — RP". For n = oo, this construction provides a CW decomposition of RP*
with one cell in every dimension.

The construction also has complex, quaternionic, and Cayley analogs. In the
complex case, we get a CW decomposition of CP" into n+ 1 cells €, €%, e*, .. ., *"
and also a CW decomposition of CP* with one cell of every even dimension.
In the quaternionic case, we get a CW decomposition of HP”" into n + 1 cells
e et e®, ..., e" and also a CW decomposition of HP*> with one cell of every
dimension divisible by 4. For the Cayley projective plane CaP?, we get a CW
decomposition into cells of dimensions 0, 8, and 16. For example, for CP",

Pl ={(w: 2t 12) €CP' | 2y # 0,201 =+ =2, = 0}
= Cp7—Cpe~!

with characteristic maps D* — CP? — CP", where the first arrow is the canonical
projection (see Sect. 1.3) and the second arrow is the inclusion.

C: Grassmann Manifolds

The CW decomposition of the Grassmann manifold G(n, k) described below is very
important in topology (in particular, for the theory of characteristic classes; see
Lecture 19 ahead) and also in algebra, algebraic geometry, and combinatorics. The
cells of this decomposition are called Schubert cells (and the whole decomposition
is called sometimes the Schubert decomposition).

Let my, ..., ms be a finite (possibly, empty) nonincreasing sequence of positive
integers less than or equal to k, where s < n — k. We denote as e(my, ..., m;) the
subset of G(n, k) composed of all k-dimensional subspaces 7 of R” such that, for
0<j=<n-—k
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dim(zx NR") =m—j, ifk—mj+j<m<k—miy +(G+1).

where we put my = kand m; = 0 fors < j < n—k + 1. It is clear that the
sets e(my, ..., m;) are mutually disjoint and cover G(n, k). For example, G(4,2) is
covered by six sets,

e(@),e(l),e(1,1),e(2),e(2,1),e(2,2),

which are composed of two-dimensional subspaces of R* whose intersections with
R! RZ R3 have dimensions

(1,2,2),(1,1,2),(1,1,1),(0,1,2),(0,1, 1), (0,0, 1).
Differently, these six sets can be described the following way. Let

A={r=R*,B={R!' cnr CcR*,C={R! Cn},
D = {n C R*},E = {dim(r N R?) > 0}.

Then

cCcC
ACB ECG4,2),
cDcC

and

e(@) =A,e(1) =B—A,e(1,1) =C—B,e(2) =D —B,
e(2,1) = E— (CUD),e(2,2) =G(4,2) — E.

Let us provide a similar explanation in the general case.

Recall that the Young diagram of the sequence (partition) my, . . . , my is a drawing
on a sheet of checked paper as shown in Fig. 16, left (the columns, from the left
to the right, have the lengths my, ..., my). From the diagram in Fig. 16, left, we
create a slant diagram in Fig. 16, right. The boldfaced polygonal line is a graph of a
nondecreasing function d, and the condition in the definition of e(my, . . . , m;) can be
formulated as dim(;r NR™) = d(m). This simple description of the set e(my, . . . , m;)
justifies its notation as e(A), where A is the notation for the Young diagram of the
sequence (my, ..., ms). We will prove that the sets ¢(A) form a CW decomposition
of G(n, k) and thus the Schubert cells are labeled by Young diagrams contained in
the rectangle k x (n—k); moreover, the dimension of the cell e(A) equals the number
|A| = my + -+ + m, of cells of the Young diagram A.

We begin with this computation of dimension.

Lemma. The subspace e(my, ..., my) is homeomorphic to R™M T +ms,

Proof. Redraw the picture in Fig. 16, right, as shown in Fig. 17 (that is, place the
graph in Fig. 16, right, into the rectangle k x n, then for every horizontal segment
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—_——
[
| 2/
2/
Ur
k
_n—’k_/ 0 k—m k k+s n

Fig. 16 Young diagram and slanted Young diagram

7.

/

Fig. 17 Constructing a matrix from a Young diagram

of this graph construct a vertical strip with this segment as the lower base with the
upper base on the upper side of the rectangle, and then shadow all the stripes).

Next, we make a k x n matrix out of the diagram of Fig. 17 in the following way.
We place entries 1 on the slant intervals of the graph, arbitrary numbers (marked
below as *) into the shadowed strips, and zeroes elsewhere. We obtain a matrix

E R G R R R S
* X X X X X X X
* K X X X X X X

* K K K K K
* K X X ¥
EE SR O

*
—_—
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The k rows of this matrix are linearly independent and form a basis of a
k-dimensional subspace mw of R”, and it is clear that this gives a bijection between
matrices of this form and zs from e(m;, ..., my). These matrices are parametrized
by values of entries marked as *, these values are arbitrary real numbers, and there
are m; + - - - + my of them. This proves the lemma.

To prove that the decomposition G(n,k) = |, .., €(m1, ..., ms), we need to
extend the homeomorphism Int D™+t~ Rm+=+ms 5 o(my, ... my) of the
lemma to a continuous map D™ " . G(n, k) [it is not hard to see that
the boundary e(my, ..., ms) — e(my,...,my) is contained in the union of cells of
dimensions < m; + - - - + my]. There are explicit formulas for this map, but they are
complicated, and we do not give them here. An interested reader can find them in
the book [73] of J. T. Schwartz.

There is a remarkable property of Schubert cells: Embeddings of G(n, k) to
G(n+ 1,k) and G(n + 1,n + 1) map every cell e(my, ..., m,) onto a cell with the
same notation. For this reason, the spaces G(co, k) and G(oo, 0o) are decomposed
into cells corresponding to Young diagrams: In the second case they correspond
to all Young diagrams, while in the first case they correspond to Young diagrams
contained in the infinite horizontal half-strip of height k.

Complex and quaternionic versions of Schubert cells are obvious: They have
dimensions two and four times the dimensions in the real case. The Grassmann
manifold G4 (n, k) is decomposed into cells e+ (my, ..., my) of the same dimension
ase(my,...,my).

EXERCISE 16. The CW decompositions of RP" = G(n + 1,1), CP" = CG(n +
1,1), HP* = HG(n + 1, 1) constructed above are particular cases of the Schubert
decomposition.

D: Flag Manifolds

The flag manifolds have natural CW decompositions which generalize the Schubert
decomposition of the Grassmann manifolds. This decomposition as well as its cells
are also called Schubert. We will describe this decomposition only in the real case
(the complex and quaternionic cases differ from the real case only by doubling and
quadrupling of the dimensions of cells).

Schubert cells of a flag manifold are characterized by dimensions d; of intersec-
tions V; N /. The numbers d;;, however, must satisfy several, rather inconvenient,
conditions, and we prefer the following more reasonable definition.

The cells of the space F(n;k,...,ks) correspond to sequences m;, ...,m, of
integers taking values 1, ..., s+ 1 such that precisely k; — k;—; of these numbers are
equaltoj (G =1,...,5s + 1; we put kg = 0 and ks;+; = s. The cell e[my, ..., my,]
corresponding to the sequence my, ..., m, consists of those flags V| C --- C Vi

such that
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dim ViNnR/ _s O ifi=m,
Vit NR) + (VinR=Y 7 | 1L ifi #my

(we put Vo = 0 and V4| = R"), or, differently,
dim(V; N R) = card{p <i |k, <j}.

The dimension of the cell e[my,...,m,] is equal to the number of pairs (i,j) for
which i <j, m; > m;.

In particular, the manifold F(n; 1,...,n — 1) of full flags is decomposed into
the union of cells corresponding to usual permutations of numbers 1, ..., n, and the
dimension of a cell is equal to the number of inversions in a permutation.

If the flag manifold is the Grassmann manifold G(n, k), then s = 1 and the
sequence my, ..., n, consists of k ones and n — k twos. Using this sequence, we
construct an n-gon line starting at the point (0, —k) and ending at the point (n—k, 0)
with all edges having the length 1, such that the ith edge is directed up if m; = 1
and is directed right if m; = 2. This line bounds (together with the coordinate axes)
a Young diagram A, and it it is easy to see that e[my, ..., m,] = e(A).

Notice in conclusion that the cells e[m;, ..., m,] (as well as their complex and
quaternionic analogs) may be described in pure algebraic terms: They are orbits of
the group of lower triangular matrices with diagonal entries 1 in the flag manifold.
Namely, the cell e[m;, ..., m,] is the orbit of a flag whose ith space is spanned by
the coordinate vectors whose numbers p satisfy the condition m,, < i.

E: Compact Classical Groups

They also have good CW decompositions. These decompositions are described
(implicitly) in a classical work of Pontryagin [67].

F: Classical Surfaces

We already have CW decompositions of §? and RP?. For the other surfaces without
holes, we can use their construction by gluing sides of a polygon (see Exercise 14
in Lecture 1). The interior of a polygon becomes a two-dimensional cell (and the
projection of the polygon onto the surface becomes a characteristic map), the (open)
sides become one-dimensional cells, and the vertices become zero-dimensional
cells. The most common CW decomposition of every classical surface has one two-
dimensional cell and one zero-dimensional cell. Also, a sphere with g handles has
2g one-dimensional cells (see Fig. 18 for g = 2), a projective plane with g handles
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Fig. 18 A CW decomposition of a sphere with two handles

has 2g 4+ 1 one-dimensional cells, and a Klein bottle with g handles has 2g + 2
one-dimensional cells.

EXERCISE 17. Construct CW decompositions of classical surfaces with holes with
the minimal possible number of cells.

The rest of this lecture will be devoted to homotopy properties of CW complexes.

5.5 Borsuk’s Theorem on Extension of Homotopies

Definition. A pair (X, A) is called a Borsuk pair if for every topological space Y,
every continuous map F: X — Y, and every homotopy f;: A — Y such that fy = F|4,
there exists a homotopy F;: X — Y such that Fy = F and F;|4 = f;.

Theorem (Borsuk). Every CW pair is a Borsuk pair.

Proof. Let (X,A) be a CW pair. We are given maps ®:A x I — Y (this is the
homotopy f;) and F: X x 0 — Y such that F|sxo = ®|axo. To extend the homotopy
/i to a homotopy F; we need to extend the map F to a map F': X x [ — Y such that
F'|ax; = ®. We will construct this extension by induction with respect to dimension
of cells. The first step of this induction is the extension of the map ® to (A UX?) x I

Flg) = F(x,0), if x is a O-dimensional cell of X, x ¢ A,
’ d(x, 1), if x € A.

Assume now that the map F” has been already defined on (AUX") xI and is equal
to ® on A x I and to F on X x 0. Take an (n + 1)-dimensional cell e"*! C X —A. By
assumption, F’ is defined on the set (e"+1 — ¢"*1) x I (since the boundary &"*! =
et — "1 s contained in X" by definition of a CW complex). Let f: D"T! — X be
a characteristic map for the cell ¢"*!. We want to extend the map F’ to the interior of
the cylinder f(D"*!) from its side surface f(S") x I and the bottom base (D" 1) x 0.
But it is clear from the definition of a CW complex that it is the same as to extend the
map ¥ = F'of: (8" xI)U (D" x0) — Y to a continuous map ¢": D" xI — Y.
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/N

Dn+1

Fig. 19 The projection n: D"T! x I — (§* x I) U (D" x 0)

Let n: D" x I — (8" x I) U (D""! x 0) be the projection of the cylinder
D1 x I from a point slightly above the upper base of the cylinder; it is the identity
on (8" x I) U (D" x 0) (Fig. 19).

We define the map v’ as the composition

D X I (5" x DU (D" x 0)—> .

We can do this simultaneously for all (n + 1)-dimensional cells in X — A, and we
get an extension of the map F’ to (A U X"t!) x I.

In this way, skeleton after skeleton, we construct an extension of the map ® to a
map F': X xI — Y. Notice that if X — A is infinite dimensional, then the construction
will involve infinitely many steps. In this case, the continuity of the map F”’ obtained
will follow from Axiom (W).

5.6 Corollaries from Borsuk’s Theorem

Corollary 1. Let (X,A) be a CW pair. If A is contractible, then X/A ~ X. More
precisely: The projection X — X /A is a homotopy equivalence.

Proof. Let p be the projection X — X/A. Since A is contractible, there is a
homotopy fi:A — A such that fy = id4 and f; = const. By Borsuk’s theorem,
there exists a homotopy F;: X — X such that Fy = idy and F,|4 = f;; in particular,
F1(A) is a point. The latter means that F; “factorizes” through X/A; that is, there
exists a (unique) continuous map ¢: X/A — X such that F; = gop. Thus, gop ~ idx
(F; is a homotopy).

Let us prove that p o g ~ idx/4. Since Fy|4 = fi:A — A, we have F;(A) C A, so
F; can be factorized to a map h;: X/A — X /A, which means that p o F; = h; o p.
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Hence, i, o p is a homotopy between po Fp = poidy = p =idyjaopandpo F| =
po(gop) = (pog)op,soh isahomotopy between idx,4 and p o q.
Thus, p and g are mutually homotopy inverse, which completes the proof.

Corollary 2. If (X,A) isa CW pair, then X /A ~ XUCA, where CA is a cone over A.

Proof. X/A = (XUCA)/CA ~ XU CA. The latter follows from Corollary 1 applied
to the CW complex X U CA and its contractible CW subcomplex CA.

Remark. Both propositions may be regarded not as corollaries from Borsuk’s
theorem but as independent theorems, only the assumption of (X,A) being a CW
pair should be replaced, in the first case, by the assumption that (X, A) is a Borsuk
pair, and in the second case, by the assumption that (X U CA, CA) is a Borsuk pair.

5.7 The Cellular Approximation Theorem

Theorem. Every continuous map of one CW complex into another CW complex is
homotopic to a cellular map.

We will prove this theorem in the following, relative form.

Theorem. Letf be a continuous map of a CW complex X into a CW complex Y such
that the restriction f |4 is cellular for some CW subcomplex A of X. Then there exists
a cellular map g: X — Y such that g|l4 = f|a, and, moreover, g is A-homotopic to f.

The expression “g is A-homotopic to f” (in formulas, g ~4 f) means that there
is a homotopy /4, between g and f which is fixed on A; that is, f;(x) does not depend
on ¢ for every x € A. It is clear that if g ~4 f, then g|la = f|a. Certainly, g ~4 f
implies g ~ f, but not vice versa. For example, the maps f, g: I — S', where f is
the winding of the segment about the circle mapping both endpoints into the same
point of the circle and g is a constant map, are homotopic, but not (0 U 1)-homotopic
(strictly speaking, we will prove this only in Lecture 6).

Proof of Theorem. Assume that the map f has already been made cellular not only
on all cells from A, but also on all cells from X of dimensions less than p. Take a
p-dimensional cell & C X—A. Its image f (¢”) has a nonempty intersection with only
a finite set of cells of Y [this follows from the compactness of f (e”)—see Exercise 3].
Of these cells of Y, choose a cell of a maximal dimension, say, €, dime? = ¢q. If
q < p, then we do not need to do anything with the cell €. If, however, g > p, we
will need the following lemma.

Free-Point Lemma. Let U be an open subset of RP and ¢: U — IntD? be such
a continuous map that the set V.= ¢~'(d%) C U where d? is some closed ball
in Int D? is compact. If ¢ > p, then there exists a continuous map y:U — IntD?
coinciding with @ in the complement of V and such that its image does not cover the
whole ball di.
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We will postpone the proof of this lemma (and a discussion of its geometric
meaning) until the next section. For now, we restrict ourselves to the following
obvious remark. The map v is automatically (U —V)-homotopic to ¢: It is sufficient
to take the “straight” homotopy joining ¢ and y when, for every u € U, the point
@(u) is moving to ¥ (u) at a constant speed along a straight interval joining ¢(u)
and ¥ (u).

Now, let us finish the proof of the theorem. The free-point lemma implies that the
restriction fyxr—1uer s (AU XP~V)-homotopic to a map f: AUXP~'UeP — Y such
that f'(eP) has nonempty intersections with the same cells as f(e”), but f'(e?) does
not cover the whole cell €4. Indeed, let h: D — X and k: DY — Y be characteristic
maps corresponding to the cells e” and €. Let U = h~'(f~!(€) N e4) and define a
map ¢: U — Int D? as a composition

h f k1
u — x — Y — v=opu)

M M M M
U ePUfl(ed) et Int D1

Denote as d? a closed concentric subball of the ball DY. The set V = ¢~'(d9) is
compact (because it is a closed subset of a closed ball D?). Let ¢: U — IntD? be a
map provided by the free-point lemma. We define the map f” as coinciding with f in
the complement of #(U) and as the composition

ht Y k ,
r — u — v — y=f'(u)

i M M M
hU) U Int DI eI CY

in A(U). Tt is clear that the map f” is continuous [it coincides with f on the “buffer”
set A(U — V)] and (A U X?~1)-homotopic [actually, even (A U XP~! U (e” — h(V)))-
homotopic] to f|4uxr—1uer [because ¢ ~y—v) ¥1. Itis also clear that f'(¢”) does not
cover g4,

It is very easy now to complete the proof. First, by Borsuk’s theorem, we can
extend our homotopy fixed on A U XP~! between f|, x»—1u» and f’ to the whole
space X, which lets us assume that the map f” with all necessary properties is defined
on the whole space X. After that, we take a point yy € €7, not in f(e”), and apply
to f'|» a “radial homotopy”: If x € e” — f~!(g9), then f’(x) does not move, but if
f'(x) € €4, then f’(x) is moving, at a constant speed, along a straight path going
from yo through f’(x) to the boundary of €4 [more precisely, along the k-image
of a straight interval in DY starting at k~!(y) and going through k' (f(x)) to the
boundary sphere S9~!]. We extend this homotopy to a homotopy of /|4 U XP~! U e?
(fixed in the complement of ¢”), and then, using Borsuk’s theorem, to a homotopy
of the whole map f’: X — Y. In this way, we reduce the number of ¢g-dimensional
cells hit by f/(¢”) by one, and, repeating this procedure a necessary amount of times,
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Fig. 20 The proof of the cellular approximation theorem

we get an (A U XP~1)-homotopy of f to a map cellular on A U X?~! U ¢”. The whole
procedure is presented, schematically, in Fig. 20.

Notice now that the “correction” of the map f which we did for the cell ¢’ can be
done simultaneously for all p-dimensional cells in X — A. We will arrive at a map
cellular on A U X? and (A U XP~!)-homotopic to f.

To get an A-homotopy connecting f with a cellular map we need to perform this
construction successively for p = 0,1, 2, .... The number of steps may be infinite,
but this is not a problem: We can perform the pth homotopy at the parameter interval
1—-277 <t < 1-277~! The continuity of the whole homotopy is secured by Axiom
(W): For every cell e, the homotopy will be fixed starting with some #, < 1.

This completes the proof of the theorem.

5.8 Fighting Chimeras: A Proof of the Free-Point Lemma

For a reader not hopelessly spoiled by popular mathematical literature, the very
statement of the lemma looks awkward: How can a continuous image of a space
of a smaller dimension cover a space of a bigger dimension? But everybody knows
that there is the Peano curve which is propagandized not less than, say, the Klein
bottle and which is a continuous map of an interval onto a square. Therefore, we
have to prove the lemma, and it is especially difficult, because geometric intuition
cannot help: It persistently repeats that it is not possible at all. Difficulties of this
kind arise when a “rigorous” definition of this or that notion (in our current case, the
&-8-definition of continuity) does not fully correspond to the initial intuitive image:
We need to study the structure not of a real object, but rather of a chimera. But we
have no choice: The lemma needs a proof.

There are two common ways of proving propositions like this: One needs to
approximate the map ¢ by either a smooth map or a piecewise linear map. The first
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way looks more natural, but it requires a familiarity with Sard’s theorem, which
is not covered by a standard university calculus course. We will need this theorem
anyhow, but for now it is better to postpone a discussion of this matter. The second
way is based on the notion of a triangulation. Recall that a g-dimensional Euclidean
simplex is a subset of the space R", n > ¢, which is a convex hull of a set of
g + 1 points not contained in one (¢ — 1)-dimensional plane. (Euclidean simplices
of dimensions 0, 1, 2, 3 are points, closed intervals, triangles, tetrahedra.) These
q + 1 points are called vertices of a simplex. Subsimplices, that is, convex hulls of
nonempty subsets of the set of vertices, are called faces of the simplex. They are
simplices of dimensions < ¢g. A zero-dimensional face is a vertex. A remarkable
property of simplices is that a linear map of a Euclidean simplex into an arbitrary
space R™ is fully determined by its values at the vertices, while these values may
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Fig. 21 The barycentric subdivision of a (two-dimensional) simplex

be absolutely arbitrary. A finite triangulation of a subset of a Euclidean space is a
finite covering of this space by (different) Euclidean simplices such that any two of
these simplices either are disjoint or meet each other at a whole face of both. It is
convenient to include faces of simplices of a triangulation into the set of simplices
of this triangulation.

The barycentric subdivision of a g-dimensional simplex consists in a partition of
this simplex into (¢ + 1)! smaller g-dimensional simplices. The vertices of the new
simplices are barycenters (mass centers) of faces of the old simplex (including the
old simplex itself). A set {xo, x1,...,x,} of such centers is a set of vertices of an
r-dimensional simplex of the barycentric subdivision if and only if they are centers
of faces which form a chain of faces successively embedded into each other: x; is a
centerof I;and I'y C I'y C -+ C I, (See Fig. 21.)

Another description of the barycentric subdivision of a simplex is inductive: The
barycentric subdivision of a zero-dimensional simplex is just this zero-dimensional
simplex; to obtain the barycentric subdivision of a g-dimensional simplex, we take
barycentric subdivisions of all its ¢ — 1-dimensional faces (they are compatible
on g — 2-dimensional faces) and add simplices which are cones over simplices
of the subdivisions of faces with the vertex at the barycenter of the simplex. One
more description can be made in terms of “barycentric coordinates”: If vy, vy, ..., V4
are vertices of the given simplex, then every point of the simplex has the form
> tiv;, where o, 11, . . ., 14 are nonnegative numbers with the sum 1; these numbers
are uniquely defined and are called barycentric coordinates of the point. The (g+ 1)!
g-dimensional simplices of the barycentric subdivision correspond to permutations
(i, i1,...,ig) of 0,1,..., g and are described by the inequalities t;, < ;; <--- < li,-

The barycentric subdivision of a triangulation is a triangulation composed
of simplices of barycentric subdivisions of the simplices of the triangulation
(see Fig. 22).

Now turn to our map ¢. First of all, consider in d = d? concentric balls
d.ds.dy.dy of radii ©, 2P P P
55 55
a triangulated set K C R? such that V C K C U (for example, take a big
Euclidean simplex A D V and apply the barycentric subdivision to A so many
times that every simplex of the final subdivision that has a nonempty intersection
with V is contained in U; the union of simplices with this property is K). Then

where p is the radius of d. Then we consider
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Fig. 22 The barycentric subdivision of a triangulation

Fig. 23 Sewing ¢ and ¢’ into ¥

take a multiple barycentric subdivision of K such that for every simplex s of this

subdivision, diam ¢(s) < P

of K whose @-images hit d4. Then dy N @(U) C ¢(L) C d. Let ¢":L — d,
which coincides with ¢ at all vertices of L and is linear at every simplex of L. The
maps ¢|; and ¢’ are homotopic: They are connected by the straight-line homotopy

oL —d go=¢l.o1=¢"
Now, we “sew” the maps ¢ and ¢’ into a single map y: U — Int D?:

. Let L be the union of simplices of this triangulation

p(u), if p(u) ¢ ds,
Y(u) =9 ¢'(n), if (u) € dy,
©3—3p(u) (), if @(u) € d3 — dy.

Here p(u) is the distance from ¢(u) to the center of d. (See Fig. 23.)
The map ¥ is continuous, it coincides with ¢ on U — V, and the intersection of
its image with d is contained in the union of a finite set of p-dimensional planes.
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Thus, this image does not cover the whole ball d; (and hence does not cover the
whole ball d). These completes the proof of the lemma.

5.9 First Applications of the Cellular Approximation
Theorem

Theorem. If X is a CW complex with one vertex (= zero-dimensional cell) and
without other cells of dimensions < q and Y is a CW complex of dimension < q,
then every continuous map Y — X is homotopic to a constant map. The same
statement holds in the base point case (it is convenient to assume that a base point
of a CW complex is a zero-dimensional cell).

This follows directly from the cellular approximation theorem, since the gth
skeleton of Y is the whole Y, and the gth skeleton of X is one point.

In particular, if m < g, then 7 (S™, S?) = (8™, S?) = O (that is, consists of one
element).

Definition. A space X is called n-connected if for ¢ < n the set 7 (57, X) consists of
one element (that is, any two continuous maps $7 — X with g < n are homotopic).

EXERCISE 18. Prove that each of the following two conditions is equivalent to
n-connectedness. (1) For ¢ < n, the set 7,(S%, X) consists of one element. (2) For
q =< n, every continuous map S9 — X can be extended to a continuous map
DIt - X!

EXERCISE 19. Prove that O-connectedness is the same as path connectedness.

The term 1-connected(ness) is usually replaced by the term “simply con-
nected(ness).”

Theorem. Let n > 0. An n-connected CW complex is homotopy equivalent to
a CW complex with only one vertex and without cells of dimensions 1,2,...,n.
(In particular, every path connected CW complex is homotopy equivalent to a CW
complex with only one vertex.)

Proof. Choose in our CW complex X some vertex ey and join all other vertices,
er, e, es, ..., with eg by paths sy, 52, s3. This is possible since X is n-connected and
hence path connected. (The paths may cross.) The cellular approximation theorem
lets us assume that every path s; lies in the first skeleton of X. For every i, attach a
two-dimensional disk to X by s; regarded as a map of the lower semicircle to X (see
Fig. 24).

Condition (2) makes sense for » = —1 and means that X is nonempty. Sometimes it is convenient
to assume that (—1)-connected is the same as nonempty.
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Fig. 24 Attaching disks to a path connected CW complex

We get a new CW complex X which contains X and also cells eiz and e} (interiors
and upper semicircles of the disks attached). The boundaries of the cells ei2 are
contained in the first skeleton because the paths s; have this property.

It is clear that X is a deformation retract in X: Every attached disk can be smashed
onto the corresponding path s;.

Denote by Y the union of the closures of the cells e}. Obviously, Y contains
all the vertices of X and is contractible. Hence, X /Y has only one vertex and also
X/Y ~X ~X.

The rest of the proof is quite similar. We assume that X ~ X’, where X’ has
only one vertex and has no cells of dimensions 1,2,...,k — 1, where k < n. In
this case the closure of every k-dimensional cell is a k-dimensional sphere. Since X
(and hence X’) is n-connected, the inclusion of this sphere into X’ can be extended
to a continuous map D**! — X’, and by the cellular approximation theorem, we
can assume that the image of this map is contained in the (k + 1)st skeleton of X’.
Using this map, which we consider a map of the lower hemisphere of the sphere
Sk+1 we attach a ball D¥*2 to X’, and we do this for every k-dimensional cell
of X’. Thus, X’ acquires, for every k-dimensional cell, two new cells: one (k + 1)-
dimensional, and one (k + 2)-dimensional. The new CW complex X' is homotopy
equivalent to X’ (which is a deformation retract of X' ) and contains a contractible
CW subcomplex Y’, the union of all new (k + 1)-dimensional cells, which contains
the whole kth skeleton of X'. The quotient X’/ Y is homotopy equivalent to X', and
hence to X, and it does not have cells of dimensions < k, besides its only vertex.
This induction proves our theorem.

Corollary. If a CW complex X is n-connected, and a CW complex Y is
n-dimensional, then the set w(Y,X) consists of one element. The same is true
for (Y, X) if X and Y have base points which are zero-dimensional cells.

Remark. The procedure of killing k-dimensional cells used in the last proof includes
attaching cells of dimension k 4 2. If our CW complex has dimension n 4+ 1, this
could lead to increasing the dimension. However, as we will see in Chap. 2, an
n-connected n 4 1-dimensional CW complex must be homotopy equivalent to a
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bouquet of (n 4+ 1)-dimensional spheres, so no increasing the dimension is actually
taking place. In addition to that, in the important case when n = 0, there exists
another proof of last theorem, which does not involve any attaching of cells: See
Exercise 20.

EXERCISE 20. Prove that a connected CW complex X always contains a con-
tractible one-dimensional CW subcomplex (“a tree”) Y, which contains all vertices
of X. Then X/Y is a CW complex with one vertex which is homotopy equivalent
to X. (If the number of cells of X is infinite, then a proof of that requires Zorn’s
lemma.)

The last theorem has a relative version which requires a definition of an
n-connected pair. A topological pair (X, A) is called n-connected if any continuous
map (D¥, $¥=') — (X,A) with k < n is homotopic (as a map between pairs) to a
map which sends the whole ball D¥ into A.

EXERCISE 21. Make up equivalent definitions of an n-connected pair in the spirit
of Exercise 18 and the interpretation of O-connectedness and 1-connectedness in the
spirit of Exercise 19.

EXERCISE 22. Prove that every n-connected CW pair (X, A) is homotopy equiva-
lent to a CW pair (X’,A’") such that A’ contains all cells of X’ of dimensions < n
(that is, contains the nth skeleton of X’).

Lecture 6 The Fundamental Group and Coverings

6.1 Definition of the Fundamental Group

The fundamental group of a space X with a base point is its first homotopy group,
71(X) = (S, X). Since the definition in Lecture 4 was too general, we will repeat
it now in our particular case.

Recall that a homotopy s;: I — X of a path is always supposed to be fixed at the
ends: 5,(0) and s5,(1) do not depend on 7. Recall also that the product ss’ of two paths,

1
5,811 — X, is defined if s(1) = s'(0), and in this case (ss')(t) = s(2¢) if 1 < 5 and

ss'(t) =5t —1)ifr > ; A path s with equal ends, s(0) = s(1), is called a loop.

We consider the set (X, xo) of loops of the space X with a base point xy. The
product is defined for every two loops from €2(X, xo). This multiplication gives rise
to a multiplication in the set (X, xo) of homotopy classes of loops (it is easy to
check is that if s ~ s/ and r ~ ¥/, then rs ~ rs’). This multiplication determines
a group structure in the set 71 (X, x9) (unlike the multiplication in the set of loops,
where the group axioms hold only “up to a homotopy”: u(vw) ~ (#v)w, and so on).
The inverse to the class of a loop s: I — X is the class of the same loop passed in the
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opposite direction; that is, the inverse of the class of the loop s:/ — X is the class
of the loop s’, s'(t) = s(1 — ). The identity element in 71 (X, xo) is the class of the
constant loop.

A continuous map f: (X,x9) — (Y,yo) induces, in the obvious way, a homo-
morphism fi: (X, x0) — m1(Y,y0). It is clear that if maps f, g are (base point)
homotopic, then the homomorphisms fi, g« coincide.

We finish this section with the following simple observation.

Theorem. For any spaces with base points, (X, xo) and (Y, yo),
7'[1(X xY, (X(),y())) = ]T](X,X()) X ]T(Y,y()).

Proof. Indeed, a loop in X x Y with the beginning at (x, yo) is the same as the pair
of loops in X and Y with the beginnings at xo and yy; the same for products and
homotopies of loops.

6.2 Dependence of the Base Point

Theorem. If the space X is path connected, then ww1(X,xy) =~ m1(X,x1) for any
points xp, x1 € X.

Proof. Since X is path connected, there exists a path u:/ — X such that u(0) =
xo0, u(1) = x;. We will construct a map ugx: 71 (X, x0) — 71(X,x;): For the class
[s] € m1(X,x0) of aloop s, we put ug[s] = [(u~'s)u] € m1(X,x;). [It is clear that
if s ~ s, then (u='s)u ~ (u~'s")u.] It is clear also that if we replace the path u by
a homotopic path (a homotopy of paths is defined, like a homotopy of loops, as a
homotopy with ends fixed), then the map uy remains the same. The map inverse to
the map uy is defined similarly: u, ' [r] = [(ur)u™'].

It is easy to check that the map uy is a homomorphism (ug[ss'] = [(u~'(ss'))u] =
[(u"su)(u™"s")u] = ug[sug[s']), and hence an isomorphism.

Certainly, the isomorphism uy depends on the path u: If we replace the path
u by a path v not homotopic to u, we will get a different isomorphism. More
precisely: If » = v~'u, then for any loop s € Q(X,x0), vs[s] = [v™'sv] =
[V uuYsuu"v] = [r]ug[s][r]~". We see that the isomorphism vy is “conjugated”
to the isomorphism uz by means of [r] € m1(X, x;). Thus, if the fundamental group
of a connected space X is commutative (and only in this case), the isomorphism
between 71 (X, xo), 771 (X, x1) is “canonical”; that is, it does not depend on the path
joining xo and x;. In this case we can speak of the group 7, (X) without fixing a base
point. Otherwise, we can speak of the fundamental group of X only as of an abstract
group; that is, we can say that it is finite, or unipotent, or finitely generated, and so
on, but we cannot, say, specify an element in it.

Remark. The statement 7r; (X) is trivial means precisely that X is simply connected.
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EXERCISE 1. Prove that if f:X — Y is a homotopy equivalence, then
ferm (X, x0) = m1(Y,f(xo) is an isomorphism.

6.3 The First Computation: The Fundamental Group
of a Circle

There are two major ways to compute the fundamental groups of a given space. The
first one is based on the theory of covering, and we will consider it in this lecture.
The main ingredient of second way is the so-called Van Kampen theorem; in the next
lecture we will prove this theorem and apply it to the computation of fundamental
groups of CW complexes.

We begin with the computation of the fundamental group of the circle. It can
be regarded as the first application of the covering method; however, we will not
explicitly mention coverings in this section: The definition will be given in Sect. 6.4.

Theorem. The group 7\ (S') is isomorphic to the group 7 of integers.

Proof. For every point of the circle, we assign, in the usual way, a real number
defined up to a summand of the form 2km. For the base point, we take 0. A loop
s:1 — S!' becomes a multivalued function on the segment [0, 1] whose value at
every point is defined up to a summand 2kwr and whose value at 0 and 1 is the
set {2k} itself. This function has a “univalent branch” s%: [0, 1] — R, which is a
continuous function of the value s*(f) of which at every point ¢ € [0, 1] belongs to
the set of values of the multivalued function s at 7. This function will be unique if
we require that s*(0) = 0 (see Fig. 25).

8w

o NN

1o A
LY

2

0 1

Fig. 25 The function s* and its homotopy to a linear function
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[For a pedant, we give the details of the construction of the function s*. Let n be

1
so large that if |/’ — 7| < , then the points s(7'), s(t’) € S' are not diametrically
n
1
opposite. Then for 0 < t < , we take for s*(¢) the value of s(¢) which differs from
n

1 2
0 by less than m; after this, for <t < ~ we take for s*(f) the value of s(¢) which
n n

1
differs from s#( ) by less than m; and so on.]
n

Point out two important properties of the function s*: (1) Its value at r = 1 is a
multiple of 27; (2) it depends on s continuously in the sense that if s, is a homotopy,
then s¥ is a homotopy. Notice also that every continuous function 4: [0, 1] — R such
that 2(0) = 0 and A(1) is a multiple of 27 is a function s* for some loop s: 7 — S'.

To complete the proof, it remains to make the following four obvious remarks.

s*(1)
2

a continuous variation Of]ETln integer is constant; thus, k depends only on an element
of 71 (S"). Second, any k can be obtained in this way: One can take /() = 2kt
Third, any two functions & with the same h(1) are homotopic: A homotopy between
s* and hy(t) = 2kt is shown in Fig. 25. Fourth, if s*(1) = 2k and (s')*(1) = 24,
then (ss)*(1) = 2(k + ).

First, the number k = does not vary when we perform a homotopy of s, since

Remark. We are presenting this result as an example, but, actually, it is a crucially
important theorem. Just imagine, for a moment, that (Sl) be 0. Then the
fundamental groups of all spaces would be zeroes! Indeed, let 0 € (X, x() be
represented by a loop s: I — X. Then there is a map f: S' — X such that s = f o hy,
and [s] = fx[hi] = 0.

Our next goal is to generalize the last proof to a much broader context.

6.4 Coverings: Definition and Examples

Definition. We say that a path connected space T covers a path connected space X if
there is a continuous map p: T — X such that every point x € X has a neighborhood
U whose inverse image p~' (U) C T falls into a disjoint union of open sets U, C T
such that for every o, p maps homeomorphically U, onto U. in this situation, the
map p: T — X is called a covering. We will call open sets U with the described
property of p~!(U) “properly covered open sets.” Thus, properly covered open sets
form an open covering of X.

Example 1. p:R — S', p(t) = (cost,sin?), or, if we interpret S' as a unit circle in
C, p(t) = €.

Example 2. p:S' — S', p(z) = Z*, where k is a nonzero integer.

Example3. T = §",X = RP",p:T — X maps a point x € §" to a line passing
through 0 and x (compare with Sect. 1.2).
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It is clear that if p;: Ty — X; and p,: T, — X, are two coverings, then p; x
p2: Ty x T, — X; x X, is also a covering. For example, the square of the covering
in Example 1 is a covering of a torus by a plane, R?> — S! x S!. A product of two
coverings from Example 2 (with, possibly, different ks) is a covering of a torus by a
torus.

EXERCISE 2. Prove that for any g > 2 a sphere with g handles can cover a sphere
with two handles. (Think about which classical surfaces can cover other classical
surfaces; however, at the moment, we do not have sufficient technical means to
answer this questions. Such technical means will appear in Chap. 2.)

EXERCISE 3. Prove that for every n > 2 there exists a space homotopy equivalent
to the bouquet of 7 circles which can cover the bouquet of two circles (“the figure-
eight space”).

6.5 Lifting’ Paths and Homotopies

In many statements in this section, topological spaces considered are assumed
“sufficiently good.” Usually this means that the space is locally path connected;
that is, for every point x and every neighborhood U of x there exists a neighborhood
V of x such that V C U and any two points in V can be connected by a path in U.
Sometimes we also require that the space is “semilocally simply connected,” which
means that for every neighborhood U of x there exists a neighborhood V of x such
that V C U and every loop in V is homotopic to a constant loop in the whole space.
These properties will be needed to check the continuity of some maps. They will
usually routinely hold for spaces we will consider. For this reason, we will never
specify the meaning of being sufficiently good in the statements, but sometimes
(not always) we will explain in proofs, what and when is needed. However, for the
first statement that follows, no assumption like this is needed.

Lifting Path Lemma. Let p: T — X be a covering, Xy € T, and s: 1 — X be a path
such that s(0) = xy = p(xy). Then there exists a unique path’s:1 — T such that
5(0) =Xpandp os = s.

Proof of Existence of 5. Choose an n such that for every k, 1 < k < n, the set

k—1 k7. L
s|: , i| is contained in some properly covered set, U;. Assume that for some
n n

_ k _ _ ~
k, 0 < k < n, there exists a map s;: |:0, i| — T such that’sy(0) =X and p o's; =
n

2Sometimes, the terminology of the theory of coverings is based on a visual presentation of a
covering, in which 7 lies “above” X and the projection p is vertical and directed down. This is
reflected not only in terminology, but also in many pictures in this section.
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Skl

S(to)

U

Zo
Existence Uniqueness

Fig. 26 Proof of the lifting path lemma

~ _ . k
Sl[O K- For k = 0 this holds: s0: 0 — xp. Since s( ) € Uiy and p~ ' (Up41) =
' n
Ua Uk+1.« as in the definition of a covering, there exists precisely one ¢ such that
~ _(k ~
Uit1o = Uk > sk( ) Let pr+1: Ug+1 — Uiy be a restriction of p; it is
n

k+1}

~ k ~ .
a homeomorphism. Extend sj: [O, :| — T to 'Sg+1: [0, — T by setting
n

Skl |[k k1) = pk_-ll—l o s|[k k1] This completes the step of induction. The path’s’
n’ _n n’ n
arises as’s,.

Proof of Uniqueness of 5. Suppose that there are two different paths,s,5":1 — T,
satisfying the requirements of the lemma. Let 1, = inf{r | 5(f) # 5'(¢)}; then
$(to) =7 (10). Let U C X be a properly covered neighborhood of s(#). Then there
is aneighborhood U C T of's(to) ="5"(p) which is mapped homeomorphically onto
U by p. Since U is open and the maps?@;’ are continuous, there exists an € > 0 such
that’s(zo — &, 19 +¢),5"(to — &, 10 + &) C U. But since p o5 = pos’(= s) and p maps
U homeomorphically onto U, this means that’s'ands” coincide on (tp — €, + €),
which contradicts the definition of #,.

Remark. This proof, like some other proofs below, does not use the connectedness
of T. If we exclude the condition of the connectedness of T from the definition of
the covering, we will get the definition of a “generalized covering,” a notion that in
many respects is not worse than that of a covering; in particular, the last lemma, as
well as several upcoming theorems (such as the next theorem), actually holds for a
generalized covering. Still, from the point of view of fundamental groups, we need
coverings rather than generalized coverings.
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Lifting Homotopy Theorem. Let p:T — X be a covering, and let Z be a
sufficiently good topological space. Let f;:Z — X be a homotopy and F:Z — T
be a continuous map such that p o F = fy. Then there exists a unique homotopy
Fi:Z — T such that Fy = F andp o F; = f; for all t.

Proof. For a z € Z, consider the path s;: I — X, s.(tf) = fi(z). By the lifting path
lemma, there exists a unique paths;: I — T such that p o’s; = s, ands;(0) = F(z).
Put F,(z) =5,(¢). We will prove that F; is a homotopy. It is obvious that F, satisfies
the requirements of the theorem, and the uniqueness follows from the uniqueness in
the lifting path lemma. It remains to prove the continuity of {F,}. The proof uses the
local path connectedness of Z.

We denote as h: Zx1 — X and H: Z x I — T the maps (z, 1) + fi(z) and (z,1)
F;(z). The continuity of /4 is given; we need to prove that H is also continuous. By
construction, H is continuous on each segment zo X I.

Let E = {(z,#) | H iscontinuous in a neighborhoodof (z,£)} C Z x I.
Obviously, E is open. First, remark that E O Z x 0. lr}deed, let zp € Z and
U be a properly covered neighborhood of %(zo,0). Let U be a neighborhood of
H (z0,0) homeomorphically mapped onto U by p. Since / is continuous, there exist
neighborhoods A C Z of zp and J C I of 0 such that (A x J) C U. By local
connectedness of Z, there exists a neighborhood B C A of zy such that every two
points in B can be joined by a path in A. We will show that H(B x.J) C U, and hence
H|px; = p~' o h|px; is continuous and (z9,0) € E. For a (z,7) € B x J, consider a
path u: I — Z x I from (2o, 0) to (z, f) consisting of a path from (zo) to (z, 0) within
A x 0 and a path from (z, 0) to (z, #) within z x [0, 7]. The path H o u is continuous;
hence, it coincides with p~! o & o u [both begin at H(z,0) and projected by p onto
hou],and hence H(z,f) = (Hou)(1) € V.

Suppose now that H is discontinuous at some (zo, f). Let 7y = inf{z | (z0,7) ¢ E}.
By the remark above, 7o > 0. Let U C X be a properly covered neighborhood
of h(zo,1t), and let U C T be a neighborhood of H(zo,%) which is mapped
homeomorphically by p onto U. Since % is continuous, there exist neighborhoods
A C Zof zpand J C I of ty such that h(A x J) C U. We choose successively: a
1) < ty in J; neighborhoods B C A of zp and K C I of #; such that H is continuous in
B x K; aneighborhood C C B of zj such that every two points in C can be connected
by a path in B. We will show that H(C x J) C V, which will mean, as before, that
H is continuous in C x J, in contradiction to the definition of #y. Fora (z,¢) € C xJ
take a path u from (2o, ) to (z, f) consisting of three paths: from (29, tp) to (zo, ?1)
in zo X [f1, fo]; then from (z9, 1) to (z, ;) in B x t1; and then from (z, #;) to (z,7) in
Z X [t1,1]. The composition H o u is continuous, covers & o u:1 — U, and hence
Hou(l) C V;thus, H(z,t) = hou(l) € V. Itis a pleasure to state that this boring
proof is over.

Corollary. If paths s,s':1 — X are homotopic [and in particular s'(0) = s(0)
and s'(1) = s(1)], then the lifted pathss3,5':1 — T (meaning that p oS = s and
p o’ = ") with’5(0) =75"(0) are also homotopic (in particular, 5(1) =75"(1)).
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Proof. The lifting homotopy theorem yields a homotopy 5;:1 — T covering a
homotopy s;: I — X between the paths s, s’ such that5y ="5. Since the sets p~! (s(0)
and p~'(s(1)) are discrete and s,(0), s;(1) do not depend on #, s07;(0),5;(1) also do
not depend on ¢. Thus,s; is a path homotopy. Finally,s; =", since both paths cover
s" and have the same beginning.

6.6 Coverings and Fundamental Groups

Theorem. If p:T — X is a covering, then p«:m (T, %) — m(X,x) is a
monomorphism (a one-to-one homomorphism).

Proof. Let s be a loop in Q(7T,Xp) and let p«[s] = 0. The latter means that the loop
pos € Q(X,xp) is homotopic to the constant loop I — xo. Hence, the loops s and
I — Xo cover homotopic loops p o s and const, and hence, they are homotopic by
the corollary in Sect. 6.5.

The subgroup p«m1(T,Xo) ~ (T, %) of m(X,x0) is called the group of
the covering. If we change the point Xy without changing xo, then the group of
covering will be replaced by a conjugated group (the conjugation is performed by
the homotopy class of the loop in X which is obtained by applying p to a path in T
joining the two points Xp; see Fig. 27).

For different points xy, the groups of coverings are taken into each other by
isomorphisms of the form uy (see Sect. 6.2).

Our next goal is to show that the difference between the groups m;(7) and
m1(X) is measured by the number of inverse images of a point of X in T.
Namely, we will construct a canonical bijection between the set p~'(xo) and the
set (X, x0) /px7101 (T, X0).

Consider a loop s in (X, xo). Lift it to a path 5" in T with the beginning X,.
Let us assign to s the endpoint 5(1) € p~!(xo) of the path 5. It is obvious that
this point depends only on the homotopy class [s] of s: A homotopy of the loop s
is lifted to a homotopy of the path’s, and this homotopy leaves the endpoint s(1)

[ ]
[ ]
~ T
0
Zo DxT1 (Ta §6)
Zo

. lp . = [s] "' p.mi (T, %o)[s]
X

<)

Fig. 27 Dependence of the group of the covering on x,
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T
So E0 %1
1
S92 X
Zo

Fig. 28 The construction of a map 71 (X, xo)/p« 1 (T, X0) = p~ " (xo), detail

unchanged, since it can vary only within the discrete set p~'(xo). It is clear also
that the loops s1, 52 € (X, xo) determine the same point in p~!(x,) if and only if
the loop s155 ! is lifted to a loop in T (see Fig. 28), that is, if and only [s;s5'] =
[s1] [s2]7" € ps«mi(T,Xo). Thus, our correspondence s +— 5(1) provides a one-to-
one map 1 (X, xo)/ps«m1(T,Xo) — p~'(x0), and this map is onto: Since T is path
connected, every point y € p~!(xp) can be joined by a path u with this point, and
u~! is the lifting of the loop s = p o u~! to T with the beginning Xo; thus, [s] > y.

This construction shows that the inverse images of different points x, y of the base
X of a covering p: T — X have the same cardinality. This fact also can be easily
deduced directly from the lifting path lemma. Indeed, let s:/ — X be a path joining
two points of X. We can lift this path to paths beginning at every point of p~' (x).
The ends of these paths belong to p~! (y), and this results in a map p~! (x) — p~'(y).
In a similar way, the path s~! yields a map p~'(y) — p~'(x), and these maps are
inverse to each other, because the products of the paths from the two collections
cover the path ss~! homotopic to zero.

If the cardinality of p~'(x) is n, we refer to the covering as an n-fold covering
(These terms are often abbreviated to “finite covering,” “infinite covering,” “count-
able covering,” and so on.).

9 <

6.7 Application: Noncommutativity of Fundamental Group

The results of Sect. 6.6 show that if a loop in X lifts to a path in 7" which is not a
loop (the endpoints are different), then this loop in X is not homotopic to a constant
(represents a nonidentity element of the fundamental group). Similarly, if two loops
in X are lifted to two paths in T with the same beginning but different ends, then
these two loops are not homotopic to each other. We can immediately apply this
result to discovering nontrivial element of fundamental groups. In particular, we
can show that fundamental groups are not necessarily commutative.

Theorem. Let X be the “figure-eight space,” S' v S, and let i,j:S' — X be the
two natural embeddings of S' into S' v S'. Let o, B € m(X) be the images of the
generator of w1 (S') = Z with respect to i and j«. Then af # Ba.

Proof. Consider a fivefold covering of the figure-eight space shown in Fig. 29. The
loop afa~! B! (we denote loops by the same letter as their homotopy classes) is
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Fig. 29 A fivefold covering of the figure-eight space

lifted to a path shown in the figure by a thick line. Its end does not coincide with its
beginning; thus, aBa™! B~ # 1.

Remark. This result has an importance comparable with that of the computation of
m1(S") (see the remark in Sect. 6.2). The commutativity of the group m;(S' v S')
would have implied the commutativity of the fundamental groups of all spaces.
Indeed, any two loops s, t with the same beginning of any topological space X form
amapf:S'vS!' — X,ands = foa, t = f o f; thus, [@] [8] = [B] [«] would have
implied [s] [¢] = [#] [s]-

Notice in conclusion that the fact that the fundamental group is not always
commutative makes it different from the majority of groups assigned in a homotopy
invariant way to topological spaces. For this reason, the study of fundamental
groups requires in many cases using specific, and not always standard, algebraic
means. To avoid this, topologists often prefer to impose (with or without sufficient
reasons) on the spaces considered the condition of simply connectedness, or, at
least conditions which imply the commutativity of the fundamental group. One such
condition is contained in the following exercise.

EXERCISE 4. Prove that if X is a topological group (not necessarily commutative!)
or, at least, an H-space, then the fundamental group of X is commutative.
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6.8 Deck Transformations

Definition. Letp: T — X be a covering. A deck transformation of this covering is a
homeomorphismf: T — T such that pof = p. [This condition means, in particular,
that f(p~' (x)) = p~'(x) for every x € X.]

Proposition 1. Lety € T. A deck transformation f: T — T is fully determined by
the image f(y) of y. In particular, if a deck transformation f has a fixed point, then
f=id

Proof. Let z € T. Choose a path s:I — T joining y with z. Let s': I — T be a path
obtained by lifting p o s: I — X with the beginning f(y). The paths f o s and s’ have
a common beginning and a common projection p o s in X. Hence, f o s = s’ and
f(@) =fos(1) =s'(1), which is determined by f(y).

Proposition 2. Ler y,y € T and p(y) = p(y'). A deck transformation f>T — T
such that f(y) = ' exists if and only if pxm1(T,y) = ps«m1(T,y'). (The if part
requires that X is sufficiently good.)

Proof. Let there be a deck transformation f: T — T with f(y) = y'. Lets: 1 — T be
a loop with the beginning y representing an arbitrarily chosen element o of 1 (7', y).
Consider the lifting s’: 1 — T of the loop p o s: I — X with the beginning y’. Then
s = fos (because the two paths have a common beginning and a common projection
in X). Hence, s’ is a loop, and if 8 € 1 (T, y’) is the class of s/, then p«(8) = p«().
This shows that p. 71 (T,y) C p«mi(T,y') and in the same way, using f ! instead of
[, we can prove that p,71 (T, ") C ps«m1(T,y). Thus, px1(T,y) = p«mi(T,Y).

Assume now that p.7(T,y) = p«m1(T,Y). Foraz € T, choose a path s joining
y with z. Lift the path p o s:1 — X to a path s": I — T with the beginning y" and put
f(z) = 5'(1). This point does not depend on the choice of 5. Indeed, let s; be another
path joining y with z. Since p«71 (T, y) = px7i(T,Y’), the loop p o (ss7!) is covered
by a loop with the beginning y’. But the latter is the product of paths covering p o s
andp o sl_l , which means that the lifting of the path p o s; with the beginning y" has
the same end as the lifting of the path p os;. Thus, the map s: T — T is well defined.
To check its continuity, we need the assumption that X is locally path connected (the
proof is similar to that in Sect. 6.5; we leave the details to the reader). It is obvious
that p o f = p and that f(y) = y' (for the latter we apply the construction to the
constant path s:/ — y). The inverse map f~! is constructed in the same way as f
with y and y swapped.

Theorem. Let p:T — X be a covering, and let Xy € T,xo = p(Xp). The group
D of deck transformations of the covering p is isomorphic to the quotient of the
normalizer N = {y € m1(X,x0) | yp«m1(T.X0)y™" = pxm1(T, %)} of the group of
covering px71(T,Xy) over this group.

Proof. We already have a bijection between the sets p~!(xo) and 71 (X,xo)/p«m1
(T, %o) (Sect. 6.6). The orbit of X with respect to the action of D is a subset
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of p~'(xo) which consists of cosets whose elements o satisfy the condition
apsm1 (T, X))o~ = pym (T, Xy). These are cosets of py7;(T,Xy) in the normalizer
of ps7t1 (T, Xo).

6.9 Regular Coverings and Universal Coverings

Definition. A covering p:7T — X is called regular if the group of covering
p«71(T,Xp) is a normal subgroup of 1 (X, xo) (we already know that this property
does not depend on the choice of Xy € T; see Sect. 6.6).

Equivalent Definition. A covering p:T — X is regular if the group of deck
transformations acts transitively on p~!(xo) (again, this property does not depend
on the choice of xyp € X; the equivalence of the two definitions is contained in the
theorem of Sect. 6.8).

Thus, for a regular covering p:T — X, the orbits of the group D of deck
transformations coincide with inverse images p~!(xp) of points of X in T. This
means that X = T/D, the orbit space of the group action (it is obvious that the orbit
space topology is the same as topology of X. This also provides a new approach
to a definition of regular coverings. Let T be a connected topological space with a
discrete action of a group D (meaning that every point y € T has a neighborhood
U such that sets d - U for all d € D are mutually disjoint). Then the projection
T — T/D is aregular covering, and all regular coverings can be constructed in this
way.

EXERCISE 5. Prove that any twofold covering is regular (this is equivalent to the
well-known algebraic fact: For any group, any subgroup of index 2 is normal).

EXERCISE 6. Construct an example of an irregular threefold covering over the
figure-eight space and over the sphere with two handles.

Definition. A covering p: T — X is called universal if the space T is simply
connected.

Obviously, all universal coverings are regular.

Our observation above shows that for every point xo € X there is a one-to-
one correspondence between 71 (X, xo) and p~! (xo). Moreover, it is possible to give
this correspondence an appearance of a group isomorphism. Namely, let there be a
discrete action of a group D in a simply connected space T; then m;(7/D) = D.
Actually, the computation of 71 (S') in Sect. 6.3 can be regarded as an application
of this theorem (see the following examples).

Example 1. The covering p:R — S' (see Sect. 6.4) is a universal covering
corresponding to the action of Z in R, (n € Z): x — x + 2nr.
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Example 2. The covering p: $" — RP" (again see Sect. 6.4) is a universal covering
with the group Z, acting in §" by the antipodal map. Thus, the fundamental group
of RP" is isomorphic to Z,.

Example 3. If T is a discrete subgroup of a topological group G, then there arises a
regular covering G — G/ T". For example, there are many known discrete subgroups
in the group SO(3): the dihedral groups, the groups of symmetries of Platonic solids,
and so forth. For each of these groups I' there arises a regular covering SO(3) —
S0O(3)/T'; since SO(3) is (canonically homeomorphic to RP?; see Sect. 1.7), we can
combine this covering with the covering S> — RP3 from the previous example and
obtain a universal covering over SO(3)/T".

Example 4. Let X be the union of all linesx = n,n € Zandy = n,n € Z (an
infinite sheet of graph paper). The group Z x Z acts in X in the obvious way (and
this action is discrete). The quotient X /(Z x Z) is, obviously, the figure-eight space
(the map p: X — S' v S! maps every vertical segment [(m, 1), (m,n + 1)] onto the
left S' and every horizontal segment [(m, n), (m + 1,n)] onto the right S'). Thus,
we have a regular covering X — S' v S!.

Example 5. Figure 30 presents a space of a universal covering over S' v §' (we
leave details to the reader).

(There is a similar construction of a universal covering over a bouquet of a set of
circles.)

EXERCISE 7. Prove that every classical surface (Sect. 1.10) without holes, except
5% and RP? has a universal covering with the space homeomorphic to R?.

6.10 Lifting Maps

Theorem. Let p:T — X be a covering, and let Z be a path connected space. Let
X0 €T, xo=pQo) € X,andzy € Z be base points and let f: Z — X be a continuous
map such that f(z9) = xo. Then

(1) There exists no more than one continuous map F:Z — T such that F(z0) = X
andpoF = f.

(2) If the space Z is good enough, then the map F with the properties listed in (1)
exists if and only if fx71(Z, 20) C p«71(T, X0).

Proof. Let F', F” be two such maps. Let z € Z be an arbitrary point, and let s: ] — Z
be a path joining zo with z. The paths F' os, F” os:1 — T both begin at’x; and both
are projected by p into the path f o s:I — X. Hence, they coincide, and F'(z) =
Flos(1)y=F'os(l) =F"(z),soF' = F".

The same argumentation gives a clue to constructing the map F. For a point
z € Z, we take a path s: 1 — Z joining 7 with z, then lift the pathf o s:/ — X toa
path’s: I — T beginning at Xy and put F(z) ="s(1). However, we need to verify that
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Fig. 30 For Example 5: the space of a universal covering over the figure-eight space

this s(1) does not depend on the choice of s. For this, the inclusion fi7(Z, z9) C
p«71(T,Xp) provides a necessary and sufficient condition. Indeed, if s’ is another
path joining zo with z, then s(s')~! is a loop in Z, and the equality 57(1) = (1)
means precisely that the loop f o (s(s')™!) is lifted to a loop with its beginning at
o in T. In other words, we need that fi[s(s")~'] € p«m1 (T, %o). It remains to check
that the map F constructed is continuous. This holds if Z is locally path connected;
the proof is a replica of the proof of a similar statement in Sect. 6.5, and the reader,
who prefers to do that, can recover it.

Corollary. If the sufficiently good space Z is simply connected, then for every
covering p: T — X, the map p establishes a homeomorphism between base point
mapping spaces Cy(Z, T) and Cy(Z,X) (the base points zo € Z, %o € T,xo € X are
as in the theorem). Subsequently, there arises a bijection px: wp(Z, T) — wp(Z, X).

6.11 A Ciriterion of Equivalence of Coverings

Definition. Coverings p;: T) — X and p,: T — X (with the same base) are called
equivalent if there exists a homeomorphism f: Ty — T, such that the diagram
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T —>T2

N/

is commutative. Such a map f is called an equivalence.

Theorem. Let p;:Ty, — X, p:T» — X be coverings and x € X,X| €
T\, X, € T, be points such pi(x]) = p,(x2) = x. If the space X is good
enough, then the coverings pi,p» are equivalent if and only if the subgroups
(PD)«m1(T1,%1), (p2)«71(T1,%2) of the group 71 (X, x) are conjugated.

In particular, two universal coverings over a sufficiently good space are always
equivalent.

Proof of Theorem. In one direction (if the coverings are equivalent, then the groups
are conjugated), this is, essentially, known to us (see Sect. 6.6). Let us prove the
statement in the other direction. Let the subgroups (p1) <71 (T1,%1), (p2)«71(T1,%2)
of the group 71 (X, x) be conjugated. We can change, if necessary, the point X, in
such a way that the subgroups (p1)«m1(T1,%1), (p2)«71(T1,%2) will be equal, not
just conjugated (see again Sect. 6.6). Then we apply the theorem from Sect. 6.10
to the map p;: 77 — X and the covering p,: T, — X, and get a continuous map
f: Ty — T, such that p, o f = p;. In the same way (swapping p; and p,), we get
a continuous map g:7» — T such that p; o g = p,. Both maps are unique. This
uniqueness implies the equalities g o f = idy,, f o g = idyr,; indeed, both maps g o f
and idy, satisfy the conditions imposed on f in the case when 7, = Ty, p» = p; and
similarly for f o g and idr,.

6.12 Existence, Classification, and Hierarchy of Coverings

Theorem. Let X be a sufficiently good path connected space with a base point x.
Then

(1) For every subgroup H C m(X,x0) there exists a unique, up to a base point
equivalence, covering p: (T, %) — (X, xo) such that p«71(T, %) = H

(2) Let Hy, H, be subgroups of m(X,xy) and let Hi C H,. Let p1: (T, X19) —
(X, x0), p2: (T2, %20) — (X,x0) be the coverings with (p;)«m(T;,X0) = H;
existing and unique by the part (1). Then there exists a unique covering
q. (Tlv’)\{lo) — (Tz,f)\clzo) such l‘hdl‘pz oq =pi.

Proof. The only thing which we still need to prove is the existence statement of part
(1). Notice that this is the first (and last) case, when we need to use not only local
connectedness, but also semilocal simply connectedness of the space X.

Define an equivalence relation in the set E(X, xo) of paths on X beginning at x:
Two paths s, s’ € E(X,x) are equivalent if s(1) = s/(1) and the homotopy class of
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the loop s(s)™' € Q(X, xo) belongs to H. Let T be the set of equivalence classes.
Define a topology in T in the following way. Let V. C U be open sets in X, and let
s € E(X,xo) be a path with s(1) € V. Denote by N(U, V, s) the set of equivalence
classes of paths sw where w:I — X is a path with w(0) = s(1),w(1) € V, and
w(l) C U. The sets N(U, V,s) form a base of topology in T (recall that a family
F of subsets of some set Z is a base of a topology in Z if and only if for every
U, Ve Fandz € UN V thereexistsa W € F suchthatz € W C U N V; this
condition obviously holds for 7 = {N(U, V,s)}). Thus, T becomes a topological
space.

Let p: T — X take the class of a path s € E(X, xo) into s(1) € X; obviously, it
is well defined. It is clear also that p is continuous: For an open V C X, p~ (V) =
Usiyer NX, V. 9).

For a path s € E(X, xo) and t € I, let s;: I — X be a path defined by the formula
s¢ () = s(zt), Obviously, the function t > s; defines a continuous map / — 7, and
it is a path joining the class of s with the class Xy € T of the constant path I — xo.
In particular, T is path connected.

Let us prove now that p is a covering. Let x € X, let U be a neighborhood of x
such that every loop in U is homotopic to a constant loop in X, and let V. C U be a
neighborhood of x such that every point in V can be joined with x by a path in U. We
will prove that V is properly covered with respect to p. Let y € p~!(x) be represented
by a path s € E(X,xp) [thus s(1) = x]. Then the neighborhood N(U, V,s) of y is
one-to-one projected by p onto V. Indeed, for an X’ € V, there exists a path w joining
x with X’ in U. Moreover, this path is unique up to a homotopy. Hence, there exists
aunique y’ € N(U, V,s) (the class of the path sw) such that p(y') = x'.

Finally, let us prove that the group of the covering p: T — X is H. We need to
prove that a loop s € Q(X, x¢) is covered by a loop in Q(T, %) if and only if the
homotopy class of this loop belongs to H. But the loop s is covered by the loop
S = {1t — 5.}, and’s(1) =Xy if and only if the path s and the constant path I — x
belong to the same equivalence class, which means precisely that [s] € H.

Corollary. Any sufficiently good path connected space possesses a (unique) univer-
sal covering.
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Lecture 7 Van Kampen’s Theorem and Fundamental
Groups of CW Complexes

7.1 Van Kampen’s Theorem

Let X be a topological space, and let U;, U, C X be open subsets such that U; U
U, = X and U; N U, # @. We assume also that X, U;, U, and U; N U, are (path)
connected. Let xo € U; N U,. Then the inclusion maps of U; and U, into X and of
U, NU, into U; and U, induce homomorphisms of fundamental groups which form
a commutative diagram

1(U, o)

X.Y()

(U1 N U3z, 29 < >
Our goal is to reconstruct the group (X, xp) (and homomorphisms i, i;) from

the groups 1 (Uy, x0), 71 (Ua, x0), 71 (U N Uz, xp), and homomorphisms ji, j,. We
formulate the result in terms of generators and relations.

1(Ua2, o)

Theorem (Van Kampen®). Let A;, R; be systems of generators and relations for
the groups w1(U;,x0) (i = 1,2). Let B be a system of generators for the group
71(Uy N Uy, x0). Then the group 71 (X, xo) is generated by the set Ay | [ Ay with the
set of relations Ry | | Ry | [ B where the relation corresponding to b € B is ji(b) =
J2(b), where, in turn, j(b) is regarded as a word in A| and j,(b) is regarded as a
word in Ay. The homomorphisms iy, i, map generators from Ay, A, into the same
elements of Ay, A, regarded as generators of w1 (X, xo).

This theorem is covered by the following two propositions.

Proposition 1. Every element of 71 (X, xo) may be presented as a product

i () - .l (oy), €))

where ks = 1 or 2 and oy € m(Uy,, xo).

Proof. Let 0:1 — X be a loop representing the chosen element of (X, xo).
A simple fact from analysis states that there exists an n such that for each r =

-1
1,....n,0 ([r , ri|) is contained in U; or U, (or both). Define o,:1 — X by
n n

141t
cr,(t):cr(r ).Thenazalaz...an.
n

3This theorem is often called Seifert—Van Kampen Theorem.
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Foreach r = 1,...n — 1, fix a path 7,:/ — X such that (i) 7.(0) = xo; (ii)
o(l) = o (’); (iif) ifcr(r) € U, then t,(I) C U; (i = 1,2). [Condition (i)
n n

implies that if o (r) € U N Us, then 7,(I) C U; N Uy; the existence of such paths
n
7, follows from the connectedness of Uy, U,, and U; N U,.]
We have

—1 —1 1
0 =0102...0, ~ 01T T102T, T2...T,_1Ty—10p.

The latter is the product of loops

-1 -1 -1 1
017, ,T102T, , 720373 ..., Tp—20n—1T,_|, Tn—10n,

each of which lies either in Uy, or in U,. The proposition follows.
To state Proposition 2, we describe what we will call admissible transformations
of expression (1). There are two sorts of admissible transformations.
(Splitting/Merging). If k; = ke+1, we can replace i (as)ix ., (@s+1) by

ir, (0;054+1); and vice versa: If oy = ola?, then we can replace i (¢;) by

i, (et (er)).
(Renaming). If a; = ji, (B), then we can replace i (as) by iy; (ct;), where k; # ks
(thatis, k{ = 3 — k) and o] = ji (B).

Proposition 2. The word (1) is equal to 1 € m(X,x0) if and only if it can be
reduced by admissible transformations to the trivial word (i1 (1) or iz(1)).

Proof. The if part of this proposition is obvious [admissible transformations do not
change the product (1)]. Prove the only if part.
Suppose that a product (x) is equal to 1 € m;(X,x0). Let 0,:1 — U, C X
be a loop (of X) representing i (o), and let 0:/ — X be the loop
t
e =o0,(t) (t€l). Then 0 ~ const; let S:/ x I — X be a homotopy,
that is, S(t,0) = S(t,1) = S(1,1) = xp, S(0,7) = o(¢). Choose a big m such that
r r+1 s s+1 o .
forall r,s, S , X , C U, or U,; it will be convenient to
m m m m
assume that n | m, that is, m = £n.
For each r,s between O and m, fix a path 7,,:1 — X such that 7,,(0) =
xo0, Trs(1) = S( r’ s) and if S( r’ s) is contained in Uy, Uy, U; N U,, or xo,
then so is t,,(7). Consider short “horizontal” and “vertical” paths

r—14+¢t s
al = X, a() =S , 1 <r<m 0<s<m.
m m

14t
Bl = X, ﬁ,s(t)zs(r,s + ),Ofrfm, l<s<m

m m
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Then set

/I —1 /o -1
o = ‘C”Sa”srr-l—l,s’ ﬁrs - ‘CVSIB"J‘CV,S-H'

These are loops; each is contained in U; or U, (or both). We will transform the
product loop oy ...0,; in 71(X, xg), each of the factors represents an element of
the form i (), and we will see that, at the level of 7| (X, x¢), our transformations
will be admissible. For this purpose, we fix for the homotopy type of each loop
o, Br. arepresentation as i (&), or i>(«), or, if the loop is contained in U; N U, as
i1(ji(B)) = i2(j2(B)) with the understanding that switching this last representations
is an admissible transformation of renaming.

First, we replace each o, by the product o, ;1| 0% —1)r420- - ¥eo- AS @
result, our product is replaced by o] 4o . . . @, , and, in 771 (X, xo), this transition is
a sequence of the splitting transformations (and, possibly renaming). Then multiply
this product from the left by m trivial loops (which also may be regarded as a
sequence of splittings and renamings):

! ’ ’ ! ! !/
U090 -+ - U 0Bt Pz - - - Brnn-
Using a sequence of admissible transformations, we join this product with

i ! i A I I
Bo.1Boz -+ - Bomt m@m - - - oy s

which is a product of trivial loops. An intermediate step is

I o Y ’ / ’ ’
1801 te IBO‘VO[IS ce e O r,S+lar+1,s+l te am,‘v+113m,s+2 te IBmm

@if r or s is equal to 0 or m, some groups of factors may be missing). The steps
are labeled with pairs (r,s) and are performed in the following order: (m,0) —
m-10 —----—> (0,00 > (m-1,1) > (m-2,1) » --- > (0,1) > (m—
1,2) - --- — (1,m) — (0,m). One step consists in replacing &, | B, |\ —
, , rr+1 s s+1
By si1% 11 g1 Assume that S ([m . :| X |:m’ ” :|) C U, (the case of U,
is absolutely similar). Then e, | (1), B), | 11 (D), B (D), and ;|\, (]) are all
contained in U; and the products are, obviously, homotopic in U;. So our transition
is made by (if needed) renaming the homotopy classes of o/, ., B,y ; then
merging these two classes; then splitting them into the product of homotopy classes
of B .11, 45 then (if needed) renaming these classes. These procedure proves
Proposition.

In these exercises, U; and U, are open subsets of a space X with U; U U, = X,
and xg € U; N U,.

EXERCISE 1. Prove that if U; and U, are simply connected and U; N U, is path
connected, then X is simply connected.



82 1  Homotopy

EXERCISE 2. Prove that if U; and U, are simply connected and U; N U, consists
of two path components connected, then 7 (X) = Z.

EXERCISE 3. Prove that if U; and U, are path connected and U; N U, is not path
connected, then X is simply connected.

Terminological remarks. The operations over groups used in the statement and the
proof of Van Kampen’s theorem have standard names and notations in algebra. For
groups G, G, with the sets of generators Aj, A, and the set of defining relations
Ry, R, their free product G| * G, is defined as the group with the set of generators
A; ][ Az and the set of defining relations R | [ R;. A more invariant (not depending
on the sets of generators and relations) definition: G| * G, is the group of words

818283 -.-8n, 8k € Gior Gy

with obvious identifications (if gk, gx+1 belong to the same group, then we have the
right to replace them by their product; the inverse operation is also allowed) and
group structure. Examples: Z x Z is a free group with two generators; Z * Z * Z is
a free group with three generators; and so on.

One more equivalent, axiomatic, definition: A group P given with monomor-
phisms i;: G; — P, i: G, — P is called a free product of G; and G, if for any
homomorphisms f1: G; — H, f>: G, — H there exists a unique homomorphism
f:P — Hsuchthatfi = f oij, fo = f o i>. The existence and uniqueness, up to a
canonical isomorphism of a thusly defined free product are easily checked.)

There is a generalization of this notion. Let I' be one more group, and let
y1: 't = Gy, y2: ', = G, be homomorphisms. The amalgamated product G 1G>
is defined as the set of words as before with one more admissible operation: If
gk € Gy and gy = yi1(h), then we can replace g; by y»(h); and the same for
8k € G,. The axiomatic definition also can be modified to give the amalgamated
product: A group H with given homomorphisms i;: Gy — P, i: G — P such that
i1 oY1 = ip oy is Gy *r Gy if for any homomorphisms fi: Gy — H, f2: G, — H
such that fj o y; = f; o y, there exists a unique homomorphism f: P — H such that
fi =foii, fo =f oi. (The notation G; *r G, may be misleading since it does not
specify y; and y»; in some cases additional explanations may be necessary.)

Thus, Van Kampen’s theorem states that

m1(X, x0) = w1 (U1, X0) *m,(0,n0s.x0) T1 (U2, X0).

EXERCISE 4. Prove that the group Z, * Z, has a (normal) subgroup of index 2
isomorphic to Z.

EXERCISE 5. Prove that SL(2,7Z) = Z4 %7z, Zs.
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7.2 First Applications of Van Kampen’s Theorem

Theorem. For sufficiently good spaces X, Y with base points, t;(XVY) = m(X) *
T (Y)

Proof. All we need from X and Y is that base points have base point contractible
neighborhoods U and V in X and Y. Then, by Van Kampen’s theorem, 7 (X V Y) =
(X VvV V) %5 wvyy T (U Vv Y), but X is a deformation retract of X vV V, Y is a
deformation retract of U Vv Y, and U Vv V is contractible. Hence, 7 (X vV Y) =
JT](X) * 7'[1(Y).

Corollary. The fundamental group of a bouquet of n circles is a free group with n
generators.

Remark. Actually, the fundamental group of a bouquet of any set of circles is a
free group with generators corresponding to the circles, provided that the bouquet is
endowed by the weak topology. Indeed, any loop of such a bouquet is contained in
a finite subbouquet, and the same for a homotopy of loops.

EXERCISE 6. Prove that the suspension over any nonempty path connected space
is simply connected. (See Exercise 1.)

EXERCISE 7. Prove that the join of two nonempty path connected spaces is simply
connected,

EXERCISE 8. (A generalization of Exercise 7.) Prove that the join of two nonempty
spaces, of which one is path connected, is simply connected.

7.3 A More Serious Application of Van Kampen’s Theorem:
Groups of Knots and Links

A knot is a closed nonself-intersecting smooth curve in R3. Knots K, K’ are
called isotopic if there exists a homotopy h,:R?> — R3 consisting of smooth
homeomorphisms such that 4y = id and ;(K) = K’. An important invariant related
to a knot is the fundamental group of its complement; sometimes it is briefly called
the group of a knot. The following is obvious.

Theorem 1. If the knots K and K’ are isotopic, then m(R* — K) = m(R* — K').

The circle x* + y?> = 1 in R? C R? is, by definition, unknotted. We say that K is
an unknot if it is isotopic to this circle.

EXERCISE 9. If K is an unknot, then 7 (R? — K) =~ Z.
The following result is highly nontrivial.

Theorem 2. If 7| (R? — K) = Z, then K is an unknot.
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2

Fig. 31 Knot diagrams: trefoil knot and figure-eight knot

It could be expected that if 7;(R3 — K) = m;(R? — K’), then the knots K and
K’ are isotopic. However, it is wrong. The simplest example: The trefoil knot (see
ahead) is known to be not isotopic to its mirror image, but the two knots (the trefoil
and the mirror trefoil), certainly, share the fundamental group of the complement.
There are more interesting examples, when 71 (R?* — K) = m;(R? — K’), but K is
not isotopic to either K’, or to the mirror image of K’. Still, the fundamental group
of the complement is a very effective tool for distinguishing nonisotopic knots.

Knots are usually presented by knot diagrams, like the two shown in Fig. 31.
These are projections of knots onto a plane; the knots are nonself-intersecting, the
projections have self-intersections; the breaks in the curves in the diagram should
indicate which of the two strands is above the other one in space. Every knot has
a diagram, and a diagram determines the isotopy type of a knot. But isotopic knots
may have diagrams that look very differently (see Exercise 10 ahead).

Transformations of a knot diagram which do not change the knot are called
Reidemeister moves. They are described in the next exercise.

EXERCISE 10. (This exercise has nothing to do with a fundamental group; it is
purely geometric. Still, it may be useful for some exercises ahead.) Prove that two
knot diagrams represent the same knot (the same isotopy class of knots) if and
only if they can be obtained from each other by a series of transformations called
Reidemeister moves.

_ = _)
O = >

Move 1.

Move 2.
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Move 3.

The knots in the preceding diagrams are called a trefoil knot (or simply a trefoil)
and a figure-eight knot. For many reasons, they are usually considered the simplest
knot and the second simplest knot.

Here we will develop a machinery for computing fundamental groups for
complements of knots with given diagrams. We will begin with the case of a trefoil,
but, as will be explained later, the construction is actually quite general.

Our knot K will consist of the diagram (several disjoint curves, that is, smooth
curvilinear intervals in the plane) and the arcs (gates) joining the ends of the curves
below the plane (our sheet of paper).

We apply Van Kampen’s theorem. Let U be the intersection of R® — K with
the half-space above the plane, and let V be the intersection of R* — K with the
half-space below the plane. (To make U and V open, we should take slightly
overlapping open half-spaces and make the knot solid, thicker than the width of
the intersection of the half-spaces; we will not be this scrupulous.) Then U N V is
the complement to the diagram in the plane. Obviously, U is contractible, and thus
1 (U) = {1}. Furthermore, V is, essentially, a half-space minus the arcs, that is, the
gates (our diagram, the engraving on the boundary, does not affect the homotopy
type of V); thus, (V) is a free group “generated” by the gates. Finally, U N V is
a perforated plane; its fundamental group is a free group “generated” by the curves.
Thus, 71 (R? — K) has a system of generators and relations where the generators
correspond to the gates and the relations correspond to the curves. Obviously, there
are equal numbers of gates and curves. We mark the gates as a, b, . . . and the curves
as A, B, .... To specify the generators in 71 (V), we need to orient the gates; for this
purpose, we simply fix an orientation of the knot and then take for the generators of
71 (V) loops which go through the gates in the direction of the knot. For the trefoil
diagram all this is done in Fig. 32.

Now, let K be the trefoil, as shown in the diagram. The group m;(R® — K) is
generated by a, b, and c. To find the relations, we need an explicit description of
generators of the group 711 (U N V), that is, of the complement to the diagram in the
plane. Choose a point xj in this complement; for each of the components of the
diagram (curves), take a disjoint from the diagram path from x( to a point near
the curve (B on the diagram), and compose a loop from this path, a loop closely
encircling the curve and following at the beginning the orientation of the knot, and
the same path back to xj (see Fig. 32).

Obviously, loops like this for all the curves represent a system of generators for
1 (U N V). Moreover, it is easy to express the classes of this loop in 77 (V) in terms
of generators a, b, . ... The loop in Fig. 32 obviously belongs to the class cac™'b™";
the similar loops around the other two curves correspond, similarly, to the classes
aba™'¢™" and becb™'a™'. Thus, the fundamental group of the complement to the
trefoil is a group with three generators, a, b, ¢, and three relations,
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Fig. 32 Calculating the group of a trefoil

cac'b V' =1, aba”'¢' =1, beb a7 =1,
that is,
a = bcb_l, b= cac_l, ¢ =aba .

The number of generators may be reduced: If we use the last relation to express ¢
in terms of a and b, and plug these expressions into the first two relations, we get
a = baba='b~" and b = aba~'aab™'a~", which are actually the same:

aba = bab.

We arrive at the following result.

Theorem 3. The fundamental group of the complement to the trefoil is a group with
two generators, a and b, and one relation: aba = bab.

One can take for the generators u = ab and v = bab; then the relation takes the

form u® = v2.

Theorem 4. The fundamental group of the complement to the trefoil is not commu-
tative.

Indeed, the formulas f(a) = (213), f(b) = (132) define a homomorphism of the
group 71 (R? — K) onto S(3) [because (213) and (132) satisfy the above relation and
generate the group S(3)].

Corollary. The trefoil knot is not isotopic to an unknot.

The general case is presented in Fig. 33. As before, we orient the gates according
to the chosen orientation of the knot.
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Fig. 33 Calculating the group of a knot: general case

The relation arising from this picture is
di'dycsesbe; ey ey e taT erepdy Ty = 1.

First of all, a relation ABA™! = 11is always equivalent to the relation B = 1, so we
can drop the ds, and we can always ignore the gates that we pass on our way from
Xo to the curve. The relation takes the form

cseabey eyt e ta ey = 1.

Next, we change this relation into

a_1C1C2C3C4bC4_1C3_1C2_1C1_1 =1,
that is, a~!CbC™!, where C = ¢|cacica, the product of generators, corresponding
to the gates on our way from a to b. And this is what this relation always looks like.

We summarize our results in the following theorem.

Theorem 5. Let K be an oriented knot in space presented by a knot diagram. This
diagram has some number of components (oriented segments) and an equal number
of gates. The group w1 (R® — K) has a system of generators corresponding to the
gates with generating relations corresponding to the segments. Namely, if there
is a segment beginning at the gate a, ending at the gate b, and passing through
the gates c1, . ..cy (ordered according to the orientation of the segment), then the
corresponding relation is

€1

afley...epbet L eT =1,
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Borromeo link Hopf link

Fig. 34 Links for Exercises 12 and 13

where &1 and &, are determined by the following picture:
a a b b
81:*1 81:1 82:1 82:71
EXERCISE 11. Find the fundamental group of the complement to the figure-eight

knot (it should be presented as a group with two generators and one relation).

EXERCISE 12. Prove that the fundamental group of the complement of Borromeo
link* (see Fig. 34, left) has three generators, a, b, and c, with three relations,

[a, [b,c_l]] =1,[b,[c, a_l]] =1,]c, [a,b_l]] = 1.

EXERCISE 13. The Hopf link H, is presented in Fig. 34, right (for n = 6; n is
the number of components). Prove that the group m,(R*> — H,) has n generators
ai,da,...,a, with n — 1 relations:

ajay ...a, = aa1dz ...dy—1 = ayx—1a,Ad1 ...4Ay—p = -+ = d2d3...4a,A].

Prove (algebraically) that the same group is isomorphic to a product of Z and a free
group with n — 1 generators. (Actually, S* — H, is homeomorphic to the product of
S' and §? minus n points; you can try to prove this.)

EXERCISE 14. Let A € R? be a diagram of a knot K € R?. An admissible
3-coloring of A is a coloring A into the colors #1, #2, and #3 such that at every
crossing, either only one color is used or all three colors are used. Prove that the
number of admissible colorings is an isotopy knot invariant; that is, Reidemeister

4“Borromeo” is not the name of a mathematician. It belongs to a family of Ttalian noblemen who
had the picture of the link on their coat of arms.
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moves (see Exercise 10) do not change this number. (Use this invariant to prove that
the trefoil is not isotopic to an unknot.)

EXERCISE 15. (Sequel of Exercise 14) Prove that the number of admissible
colorings from Exercise 14 is precisely 3 less than the number of homomorphisms

m1(X, x0) = S3.

"'f!f!{!((f((ﬁ‘ﬁ!ﬂf!fﬂﬂﬂH"‘"‘

A
( l{l{lﬂfﬂl’f il 3 Wﬁ
il ‘.(W .

=

. SO\

"
_4
=
=
=
=
—1
=
—
—
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7.4 Another Presentation of the Fundamental Groups
of Knots and Links

In Sect. 9.3, we derived a presentation of the fundamental group of a knot or a link,
in which the generators correspond to gates and relations correspond to arcs. There
exists a presentation, also coming from Van Kampen’s theorem, in which generators
correspond to arcs and relations correspond to gates. Many people find it more
convenient than the presentation of Sect. 9.3. It is known by the name Wirtinger
presentation.

To obtain his presentation, we cut, as in Sect. 7.3, the space with the knot deleted
by a plane, but this time it is not the plane containing the knot or link diagram, but the
parallel plane slightly below the plane of the diagram, so that the underpasses of the
gates cut short curves in the intersection of the two pieces. The part U; below this
dividing plane is contractible (the underpasses carve short pitches on its surface),
while the part U, above the dividing plane has tunnels corresponding to the curves
of the diagram. (As before, we assume that U; N U, has some small thickness, and
the knot has small thickness exceeding, however, the thickness of U; N U,.) The base
point xg is chosen in U} N U,. Thus, 1 (Uy, X¢) is trivial, and each of 771 (U; N Uy, xo)
and 71 (Us, x¢) is a free group with generators corresponding, respectively, to gates
and curves of the diagram. To specify the relations, we need to orient the diagram.
For every gate, there arises a relation between the three generators corresponding to
the three curves involved,; it is shown in Fig. 35.

(The orientations of the curves y and z are irrelevant.) We leave the details to the
reader (see Exercise 16).

EXERCISE 16. Prove that the Wirtinger presentation is a valid presentation for a
group of a knot or a link.

EXERCISE 17. Redo Exercises 11-15 using the Wirtinger presentation.

7.5 Fundamental Groups and Attaching Cells

Theorem. Let X be a path connected topological space with a base point x, let
f:8" — X be a continuous map, and let s be a path in X joining, for the base point

Relation: zy = zx

Fig. 35 Wirtinger’s relations



7.5 Fundamental Groups and Attaching Cells 91

20 of S", the point f(zo) with the point xo. Let Y = X Uf D" and let j: X — Y be
the inclusion map.

(1) Ifn > 1, then ji: 11 (X, x0) = m1(Y,x0) is an isomorphism.

Q) If n = 1, then j.«:m(X,x0) — m(Y,x0) is onto and Kerjy is the normal
subgroup of w1 (X, xo) generated (as a normal subgroup) by s4|f|; in particular,
this normal subgroup does not depend on the choice of s.

Proof. Take two concentric balls in D"*! and cover Y with two open sets: U; is
the union of X and the complement to the smaller ball, and U, is the interior of the
bigger ball (see Fig. 36).

Take a point yo € U; N U, on the same radius as zo. By Van Kampen’s theorem,

m1(Y,y0) = (U1, Y0) *m,(0inUs.y0) T1 (U2, Y0)-

Obviously, U, is contractible and Uy N U, ~ S"; also, (Uy,y0) ~ (X,f(z0)) (the
latter is a deformation retract of the former). Hence, 1 (U,,y0) = 1 and if n > 1,
then 1 (U} N Uy, yo) = 1. Thus, if n > 1, then the inclusion map U; — Y induces
an isomorphism between fundamental groups, and hence so does the inclusion map
X — Y; this proves (1).

If n = 1, then m(Y,y0) = mi(U1,¥0) *n,vinUsy) 1. But this means that
(Y, f(z0)) = m(X,f(z0)) *z 1, where Z is generated by [f]. In other words,
m1(Y.f(z0)) is obtained from 7;(X,f(z)) by imposing an additional relation
[f] = 1, or by factorizing by the normal subgroup generated by [f]. The same is
true for 71(Y,xp) and 71 (X, x9), only [f] should be replaced by sx[f]. Since the
conjugacy class of s[f] does not depend on s, the same is true for the normal
subgroup generated by sy[f].

Fig. 36 Proof of the attaching cell theorem
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7.6 Fundamental Groups of CW Complexes

Let X be a CW complex with precisely one zero-dimensional cell, xy (according to
the theorem in Sect. 5.9, every connected CW complex is homotopy equivalent to
such a CW complex). Obviously, the skeleton sk; X is a bouquet of circles. Thus,
71 (sky X, xp) is a free group with generators corresponding to the one-dimensional
cells (see the corollary in Sect. 7.2; to specify the generators, we need to orient all
one-dimensional cells).

The transition from sk; X to sk X consists in attaching a certain number of
two-dimensional cells. According to part (2) of the theorem in Sect. 7.5, attaching
every cell imposes a relation on 7 (skj X, x¢); this relation equates to 1 the class
of the attaching map. Thus, m; (sk, X, xo) is a group with generators corresponding
to one-dimensional cells and relations corresponding to two-dimensional cells; in
particular, any group can be the fundamental group of a two-dimensional CW
complex.

Finally, according to part (1) of the theorem in Sect. 7.5, attaching cells of
dimensions 3 and more does not affect the fundamental group; thus, (X, xo) is
the same as 71 (sk; X, xp).

Remarks. (1) If the number of cells is infinite, we need to make a reference to
Axiom (W): Every spheroid, as well as every homotopy between spheroids, is
contained in a finite CW subcomplex of X. (2) Some of our earlier statements follow
directly from the cellular approximation theorem (Sect. 5.7). Moreover, in this way
we can drop the assumption that X has only one zero-dimensional cell. Namely,
let X be a connected CW complex, and let xy be a zero-dimensional cell. Then the
inclusion maps sk; X — X and sk, X — X induce, respectively, an epimorphism
(a homomorphism onto) and an isomorphism of the m; groups with the base point
Xo. Indeed, any loop is a continuous map of the CW complex I to the CW complex
X which is cellular on the CW subcomplex dI of I; hence, it is d/-homotopic to a
cellular map, that is, to a loop in sk; X. Similarly, a homotopy between two loops
in sky X is a continuous map I x I — X which is cellular on d(I x I); hence, it is
d(I xI)-homotopic to a cellular map, that is, to a homotopy between the two loops in
Sk2 X.

We summarize everything just said in one proposition.

Theorem. Let X be a connected CW complex, and let xy be a zero-dimensional
cell. Then the inclusions of sk; X and sko X into X induce an epimorphism
mi(sk; X, x0) — mX,x0) and an isomorphism m (sky X,x9) — m1(X.xp).
Moreover, if X has no zero-dimensional cells different from xy, then m(X,xp)
has a system of generators corresponding to one-dimensional cells (classes of
characteristic maps D' = I — X) with a system of relations corresponding to
two-dimensional cells (classes of attaching maps S' — X).

Examples. We begin with classical surfaces (without holes). A CW structure of
these surfaces is described in Sect. 2.4(F) (which is based, in turn, on the polygonal
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construction described in Exercise 14 of Lecture 1). We already know that 771 (S?) =
1 and m;(RP?) = Z,. The standard CW decomposition of the Klein bottle K
has two one-dimensional cells and one two-dimensional cell. Thus, 7| (K) has two
generators, denoted by ¢ and d, and one relation, which can be read in Fig. 4d in
Lecture 1: cdc™'d = 1. Every handle results in two additional generators to the
system of generators and in modifying the only relation by the multiplication of its
left-hand side by the commutators of these additional generators. With this in mind,
we get the following description of the fundamental groups:

71 (S? with g handles) = (ay, by, ..., ag, bg | [a1,b1]. .. [ag, bg] = 1);
71 (RP? with g handles) = (c, ay, by, . .. ,ag, by | Alay, b]. .. [ag, by] = 1);
1 (K with g handles) = (c,d, a1, b1,...,a,, b, | cdc_ld[al,bl] .. ag, byl = 1).

As to the other classical spaces, we can easily deduce from the CW structure of
projective spaces that m; (RP") = Z, for all n > 2 (including n = o0), which we
already know (see Example 2 in Sect. 6.9). In addition to that, we can use the CW
decompositions of the Grassmannian manifolds to compute the fundamental groups.

EXERCISE 18. Prove that 7(G(n,k)) = Z, forl <k <n-—1andn > 2.

It is easy to see that complex and quaternion Grassmann and flag manifolds are
all simply connected (as well as the Cayley projective plane).

Lecture 8 Homotopy Groups

8.1 Definition: Commutativity

Homotopy groups 7,,(X, x9) (n > 1) of a space X with a base point xy were defined
in Lecture 4 as a particular case of a general group-valued homotopy functor. Recall
that the set m,(X,x0) was defined as the set of base point homotopy classes of
continuous maps of the sphere $” into X. These maps are called spheroids. In a
different way, a spheroid can be defined as a continuous map of the cube /" into X
taking the boundary d7" of the cube into xj.

The sum of two spheroids, f, g:S" — X, is defined as the spheroid f 4+ g:
S$" — X which is constructed in the following way: First, the equator of the sphere
S" (containing the base point) is collapsed into a point, so the sphere becomes the
bouquet of two spheres, and then these two spheres are mapped into X according to
f and g (see Fig. 37).

Another description uses cubic language. If f,g:I" — X are two “cubic”
spheroids (each takes 0I" into xg), then the spheroid f + g can be defined as the
continuous map of /" into X, where on the left half of the cube, {x; < 1/2} if
the composition of f with the double compression of the cube in the direction of
the x;-axis, and on the right half is defined in a similar way, with g instead of f.
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Fig. 37 The sum of spheroids

4 g g g g g 4
f ! f

Fig. 38 A homotopy between f + gand g + f

The operation of adding spheroids is not a group operation, but it becomes a
group operation after the transition to homotopy classes. Thus, 7, (X, xo) becomes a
group (the inverse to [f] is [f o r], where r is the reflection of the cube in the plane

x = _; the identity element is the class of the constant spheroid). (We leave the

details to the reader.)
EXERCISE 1. Prove that 77,,(X X Y, (x0, v0)) = m,(X, x0) X 7,(Y, yo).

For n = 1 the homotopy group is the fundamental group. For #n > 1 the homotopy
group acquires a new feature: It is commutative.

Theorem. Ifn > 1, then the group m,(X, xo) is commutative for any (X, xo).

Proof. We need to prove that f + g ~ g + f. In the language of cubic spheroids,
the homotopy is shown in Fig. 38. (The picture shows the homotopy for n = 2; if
n > 2, then we need to take the direct product of this picture and the cube "2 in
the plane perpendicular to the plane of the picture.)

There is a slightly different way to visualize the sum of spheroids, which makes
the commutativity of , with n > 2 still more obvious. If n-dimensional spheroids
f, g of some space with a base point are given, we choose two small balls on the
sphere S and define a new spheroid which maps the complements of the balls into
the base point and maps the balls according to f and g (see Fig. 39). It is clear that
if n > 2, then the order of the balls is insignificant.

Notice in conclusion that a continuous map ¢: (X, x0) — (¥, yo) can be applied
to spheroids, f + ¢ o f, and, consequently, to a homomorphism ¢.: 7, (X, xo) —
7,(Y, y0). The latter depends only on the homotopy class of ¢. It is clear also that
idx = id and (p o ¥)x = @« o V¥«. Hence, homotopy equivalent spaces with base
points have isomorphic homotopy groups.
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Fig. 39 Another proof of (f + g) ~ (g + 1)

= f
Y -
T

Fig. 40 Base point change

8.2 Dependence on the Base Point

A path u:I — X joining points xp,x; € X gives rise to an isomorphism
uy: 7, (X, x9) — m,(X,x1). The construction of ug is shown in Fig. 40: First, we
construct a map w of the sphere S” onto a bouquet S” Vv I (taking the base point of
S" into the endpoint of 7 distant from S") and then assign to a spheroid f: $" — X
taking the base point of S” into x( the spheroid

PR LEG CVS EALN '

taking the base point of S” into x;.

It is easy to check that ug(f + g) ~ us(f) + ux(g) and that (u™ ")y = (ug)™'.
It is clear also that for n = 1 the isomorphism uy coincides with the isomorphism
us constructed in Sect. 6.2.

As seen in the example of the fundamental group, the isomorphism uy may
be different for different paths u although it remains the same when the path
u is replaced by a homotopic path. In particular, loops representing an element
a € m1(X, x9) determine the same automorphism of 7, (X, xo), which we can denote
as ay. In this way, we get a group action, or a representation, of (X, xp) in
Ty (X s X()).
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If for some n the isomorphism u4 does not depend on the path u at all, the space X
is called n-simple. It follows from results of Lecture 6 that X is 1-simple if and only
if the group 71 (X) is commutative. We should remark that for n > 1, the property of
being n-simple has nothing to do with the commutativity of the fundamental group.

Spaces which are n-simple for all n are called simple. For example, simply
connected spaces are simple.

EXERCISE 2. Prove that topological groups and H-spaces are simple (compare with
Exercise 4 in Sect. 6.7).

8.3 Coverings and Homotopy Groups

Theorem 1. Let p: T — X be a covering, let Xy € T, and let xo = p(xy) € X. If
n > 2, then py: 7,(T, %0) — m,(X, X0) is an isomorphism.

This follows from results of Sect. 6.10 (see the corollary in this section) and from
the simply connectedness of the sphere $” for n > 2.

Theorem 1 may be immediately used for the computation of homotopy groups
of some spaces. Here is an example.

Theorem 2.

Z,ifn=1
; Sl — ) )
)= 00, i > 2.
The first is already known (Sect. 6.3), the second follows from the fact that there
is a covering R — S!. and the line R is contractible.

EXERCISE 3. Prove that if X is a bouquet of circles, then 7,(X) = 0 for all n > 2.
(Prove that the universal covering of X is contractible; see Example 5 in Sect. 6.9.)

EXERCISE 4. Prove that if X is a classical surface (Sect. 1.10) different from S?
and RP?, then 7, (X) = 0 for all n > 2. (Classical surfaces with holes are homotopy
equivalent to bouquets of circles; thus, the statement follows from Exercise 3. The
universal covering of classical surfaces without holes different from S? and RP?
is homeomorphic to the plane, which is contractible. Another way of proving the
statement in this case is to consider a nonuniversal covering, as described ahead.)

Let X be a surface S with a handle. We consider the infinite covering p:’}? — X,
where X is a cylinder with infinitely many copies of S attached (see Fig. 41).

By Theorem 1, 7, (35) = 71,(X) (for n > 2). But every spheroid of X is contained
in a “finite part of X like the one shown in Fig. 41. This finite part is a surface
with (at least two) holes, and for this surface with holes, 7, = 0 by the first case
considered. Thus, this spheroid is homotopic to a constant, and the group (35) is
zero. (This proof does not cover the case of the Klein bottle, but the Klein bottle is
doubly covered by a torus; thus, its 7, groups are zero forn > 2.)
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X X

Fig. 41 A covering over a surface S with a handle

8.4 Relative Homotopy Groups

Let (X,A) be a pair with the base point xy € A. Let n > 2. The relative homotopy
group 1m,(X,A,x¢) is defined as the set of homotopy classes of n-dimensional
relative spheroids. Relative spheroids (like the absolute® ones) can be defined in
two ways: the ball one and the cubic one. A ball relative spheroid is a continuous
map f:D" — X such that f(S"™') C A and f(S"7!) = xo. (""" is the “upper
hemisphere”; that is, the set {(xi,...,x,) € R" | x3 +---4+x2 = 1,x, > 0}.)
A cubic relative spheroid is a continuous map f: " — X such that f(dI") C A and
f(@I" — I"™1) = x;. The sum of two cubic relative spheroids f, g: I" — X is a cubic
relative spheroid f + g: I" — X defined by the formula (the same as in the absolute
case)

1

S Qxi,x2, ..., %), ifx; < 5

(f+g)(xlsx27---7xn): 1
g2x1—1,x2,...,x,), ifx; > 5

It is clear that f + g is a relative spheroid and that if f ~ f" and g ~ g, then
f+g~f + g The last property makes it possible to define the + operation in the
set 77, (X, A, xo).

EXERCISE 5. Check the group axioms for 7, (X, A; xp); in particular, the identity
element is the class of the constant spheroid.

EXERCISE 6. Show thatif n > 3, then the group 7,,(X, A; x¢) is commutative. (Like
we did in the absolute case, it is convenient to use the construction of f 4 g as shown
in Fig. 42; the shadowed domain is mapped into xo; if n > 3, then the order of
domains marked as f and g is insignificant.)

>To distinguish relative homotopy groups and spheroids from homotopy groups and spheroids
considered before, we will sometimes call the latter absolute.
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Fig. 42 Another description of f + g

EXERCISE 7. Find the relative analog of Exercise 1.

If (X,A), (Y, B) are pairs with base points xo € A, yo € B, then a continuous
map f:X — Y such that f(A) C B and f(xyp) = yo [in writing, f: (X,A,x)) —
(Y, B, y0)] induces a homomorphism fi: 7, (X, A, x0) — m,(Y,B,yo). Homotopic
maps (X,A,x0) — (Y,B,yo) induce the same homomorphism; in particular,
homotopy equivalent pairs have isomorphic homotopy groups.

The dependence of relative homotopy groups on the base point is similar to that
for absolute homotopy groups: A path u:/ — A joining xp € A with x; € A gives
rise to an isomorphism uy: 7, (X, A, x9) — m,(X, A, x1).

8.5 ‘“Homotopy Groups” my(X,x) and 71(X,A, xq)

The definition of the sets 7,(X, xo) and 7, (X, A; xo) makes sense if we take n = 0
in the first case and n = 1 in the second case. In particular, 7y(X, xo) is the set
of path components of X [the set 71(X,A,xo) does not have such a transparent
meaning]. However, there is no natural group structure in these sets [for o (X, x¢),
this follows from the results of Lecture 4; for 1 (X, A, x¢), we leave the explanation
to the reader]. Still these sets possess a distinguished element, “the unity”: This is
the class of the constant spheroid SO — xporI' = x.

Although 77y (X, x9) and 7 (X, A, x¢) are not groups, one should not totally ignore
them. For example, the statement “the space X is n-connected if and only if 7;(X) =
0 for i < n” is valid for n = 0 as well as for n > 0 [the equality 7y(X) = 0 means
that X is path connected]. Moreover, we will have the courage to say that although
the notation 77_; (X) makes no sense at all, the notion of (—1)-connectedness exists
and means being nonempty (every map ¥ — X can be extended to a map pt — X).
One can say that 7_;(X) is not a group and even is not a set, but that there are
two possibilities: 7_;(X) = 0 (X is nonempty) and 7—_;(X) # 0 (X is empty). All
this gives the impression of idle talk, but it may clarify the similarity which exists
sometimes between a proof of existence of, say, a map of some kind, or a solution
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of some equation (a computation of the 7_; group) and a description of the set of
homotopy classes of such maps or of solutions of the equation (a computation of the

T group).

8.6 Relations Between Relative and Absolute Homotopy
Groups

First, absolute homotopy groups may be regarded as a particular case of relative
homotopy groups. Namely, 7, (X, xo) = (X, x0,x0) forn > 1.

Second, relative homotopy groups may be regarded as a particular case of
absolute homotopy groups. Namely, there exists a construction which assigns to a
pair X, A with a base point x( a space Y with a base point yy such that 7,,(X, A, xp) =
wn—1(Y, yo) for n > 1. This explains why m,,(X, A, x¢) is a group only for n > 2 and
a commutative group only for n > 3. We postpone the construction of Y to Lecture 9
(see Sect. 9.10).

Third, there are natural homomorphisms m,(X,x)) — m,(X,A,x). These
homomorphisms arise from the observation that an absolute spheroid (I, 0I") —
(X, x0) can be regarded as a relative spheroid

(1", 01", 91" — """y — (X, A, x0);

differently, one can say that these homomorphisms coincide with j., where j is the
identity map X — X regarded as a map (X, xo) — (X, A).

EXERCISE 8. Prove that the image of the homomorphism
Jx:m2 (X, x0) = m2(X, A, X0)

is contained in the center of the group m, (X, A, xp).

Fourth (and the most important!), there are connecting homomorphisms
d: (X, A, x0) = m—1(A, xp).
The homomorphism 9 takes the class of a relative spheroid
fam o, or — 1 — (X, A, x)
into the class of the absolute spheroid
flpm: ("0 — (A, x0)

[or the class of a relative spheroid f: (D", st Sﬁ__l) — (X, A, xo) into the class of
the absolute spheroid f|g—1:S"~! — A].
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8.7 The Homotopy Sequence of a Pair

The “homotopy sequence of a pair” is the name given to the sequence

3 i s 3
. ——> (A, xp) — 1,(X, x0) AN (X, A, x0) —> m—1 (A, X0)
LN 71 (X, x0) —> 71 (X, A, x0) — 70 (A, Xo) LN o (X, x0),

where j, and 0 are homomorphisms described earlier in this chapter and ix is
induced by the inclusion map i: A — X.

The main property of this sequence is that it is exact; that is, the image of every
map coincides with the kernel of the next map (for the last three arrows, the kernel
is the inverse image of the “unity element””). We recommend that the reader proves
this as an exercise; but for those who do not want to do this work, we present a proof
now.

Proof of Exactness. (1) Imi, C Kerj.. We need to prove that for every spheroid
[, 0I")y — (A,x0), jx o ix[f] = 0. The class ji o ix[f] is represented by the
same map f regarded as a map (I", aI", I" — I""') — (X, A, xo), and the spheroids
fo(@,or,or — 1= — (X, A, x0), (X1, ..., Xn—1, %) = f(x1, ... X1t + (1 —
1)x,) form a homotopy connecting f with a constant spheroid.

(2) Kerjx C Imi,. We need to show that if a spheroid f: (I, dI") — (X, x¢) is
homotopic to the constant within the class of relative spheroids, then it is homotopic
(as an absolute spheroid) to a spheroid whose image is contained in A. Let F: I" x
I — X be a homotopy between f and the constant spheroid in the class of constant
spheroids within the class of relative spheroids of the pair (X, A). Then F is the map
"t — X, which is f on the face I" = {x,;; = 0} that maps the face {x, = 0} into
A and maps the remaining part of 3/""! into xo. Let I' C I"*! be the intersection
of the cube I"*! with the plane tx, + (1 — f)x,—; = 0 (see Fig. 43). It is clear that
I' ~ I" and that F|p:I] = I, — X is a homotopy joining (within the class of
absolute spheroids of X) the spheroid f with a spheroid g whose image is contained
in A.

(3) Imj,. C Kerd. Indeed, if f:I" — X is an absolute spheroid, then f|p—1 is a
constant map.

(4) Ker d C Imfy. Let f: I" — X be a relative spheroid, and let g:I""! — Abea
homotopy connecting the absolute spheroid F|;—1 of A with the constant spheroid.
Consider the homotopy f;: dI" — X coinciding with g; on I"~! and taking 31" —I"~!
into xp and extend it (using Borsuk’s theorem) to a homotopy #,:I" — X of the
spheroid f. It is clear that /" is a homotopy connecting f with the constant spheroid
within the class of relative spheroids.

(5) Imd C Keriy. If an absolute spheroid f: "' — A is a restriction of an
absolute spheroid g: I" — X, then g, = g|p—1x,:I""! xt = I""! — X is a homotopy
connecting f with the constant spheroid.

(6) Kerix, C Imad. If g:I""! is a homotopy connecting (in X) a spheroid
f = go:I""' — A with a constant spheroid, then g:I" — X, g(x,....,x,) =
8x, (X1, ..., x,—1) is a relative spheroid of the pair (X, A) whose restriction to A is f.
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Fig. 43 Proof of Kerj,. C Imi,

EXERCISE 9. Define a natural (right) action of the group m;(X,xp) in the set
m1(X, A, xp) and prove that the orbits of this action coincide with the inverse images
with respect to d of elements of the set 7o(A, x) [thus, the exactness in the term
1 (X, A, xo), which means the boundary between group and nongroup terms of the
homotopy sequence of a pair has a group nature].

EXERCISE 10. Let (X,A,B) be a triple with a base point xp € B. Prove the
exactness of the “homotopy sequence of a triple”

<o = 7,(A, B,x0) = m,(X, B, x0) = m,(X,A, x0) = m,—1(A,B,xp) ...

[in this sequence the dimension-preserving homomorphisms are induced by inclu-
sion maps of the pairs (A,B) — (X,B) — (X,A) and the “connecting
homomorphism” 9:7,(X,A,x) — —1(A,B,xp) is the composition
. (X, A, x0) —> -1 (A, X0) LN 7, (A, B, x0)].

8.8 Properties of Exact Sequences and Corollaries
of Exactness of the Homotopy Sequence of a Pair

In this section, we consider sequences of groups and homomorphisms. The trivial
group (consisting of one element) is denoted by the symbol 1, but in the situation
when all the groups considered are Abelian, we can use the symbol 0.

EXERCISE 11. The sequence 1 — A—Y5B is exact if and only if ¢ is a
monomorphism (that is, Ker ¢ = 1); a sequence A—— B — 1 is exact if and only
if ¥ is an epimorphism Im ¢ = B. In particular, the sequence 1 — A—25B > 1is
exact if and only if ¢ is an isomorphism.

EXERCISE 12. A sequence 1 — A “.B L) C — 1 (such sequences are called

short) is exact if and only if ¢ is a monomorphism, C =~ B/¢(A) and ¥ is the natural
projection.
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COROLLARIES. If A is contractible, then 7, (X) = 7,(X,A) (more precisely, j« is
an isomorphism); if X is contractible, then 7, (X,A) =~ m,—1(A) (more precisely, d
is an isomorphism); if A is a deformation retract of X, then 7,,(X,A) = 0 forn > 1.

EXERCISE 13. If A is a retract (not necessarily a deformation retract) of X, then,
for all n,

— ix: 7y (A) > 7, (X) is a monomorphism,
— Jx: 7, (X) > m,(X, A) is an epimorphism,
- 0:7,(X,A) = m,—1(A) is a zero homomorphism;

moreover, 77,(X) = 7,(X,A) ® m,(A).
EXERCISE 14. If A is contractible to a point within X, then

— Jx:my(X) > m,(X, A) is a monomorphism,
— 0:m,(X,A) = m,—1(A) is an epimorphism,
— ix:7y(A) = m,(X) is a zero homomorphism;

moreover, 7,(X,A) = m,(X) ® m,—1(A).

EXERCISE 15. If there exists a homotopy f;: X — X driving X into A, that is, such
that fo = id and f; (X) C A, then

- 0:m,(X,A) = m,—1(A) is a monomorphism,
— ix:7y(A) — 1,(X) is an epimorphism,
— Jx:my(X) > m,(X, A) is a zero homomorphism;

moreover, 7,(A) = 71,(X) ® 7,41 (X, A).
Theorem (“Five-lemma’). If

h f2 f fa

Al —> Ay —> A3 —> Ay — As
Bl 81 Bz 82 B3 83 B4 84 BS

is a commutative diagram with exact rows, and @1, 2, ¢4, @5 are isomorphisms, then
@3 is also an isomorphism.

This theorem is covered by the following two propositions.

Proposition 1. If
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is a commutative diagram with exact rows, ¢y is an epimorphism, and ¢», @4 are
monomorphisms, then @3 is also a monomorphism.

Proposition 2. [If

A f As 53 A fa As
B 82 B g3 B, 84 B

is a commutative diagram with exact rows, ¢s is a monomorphism, and ¢;, ¢4 are
epimorphisms, then @3 is also an epimorphism.

Remark. Thus, of eight assumptions of the theorem (¢, @2, ¢3, ¢3 are monomor-
phisms, @1, @2, @3, @3 are epimorphisms), three are needed to establish that ¢; is a
monomorphisms, three more are needed to establish that ¢; is an epimorphism, and
two are not needed at all. In the following, we will sometimes use these additional
features of the five-lemma.

Proof of Proposition 1. Let a3 € As and ¢3(a3) = 0. Then g3 o ¢3(az) =
0 = ¢4 0 f3(az) = 0 (commutativity of the third square) = f3(a3) = 0 (¢a
is a monomorphism). Hence, there exists an a, € A, such that fr(ay) = a3
(Kerf; C Imf3). Furthermore, go0¢5(az) = ¢30f>(az) (commutativity of the second
square) = ¢@3(az) = 0; hence, there exists a b; € B such that g{(b1) = ¢z(az)
(Kerg, C Img;). Choose an a; € A; such that ¢;(a;) = by (¢; is an epimorphism).
Then ¢, o fi(a;) = g1 o ¢1(a;) (commutativity of the first square = g(b;) =
@2(az). Thus, g2(fi(a1)) = @a(az) = fi(a1) = az (g2 is a monomorphism) and
a3 = folas) = frofi(ar) = 0 (Imf; C Kerfy).

Proof of Proposition 2. Let by € Bs. Choose an a4 € A4 such that g4(as) = g3(b3)
(¢4 is an epimorphism). Then ¢s o fi(as) = g4 o @4(as) (commutativity of the
third square) = g4 o g3(b3) = 0 (Img; C Kergs). Hence, fi(as) = 0 (ps is a
monomorphism), and hence there exists an a; € Aj such that f3(a3) = a4. Then
g3 0 @3(az) = @40 f3(az) (commutativity of the second square) = ¢4(as) = g3(b3);
that is, g3(bs — @3(az) = 0. Hence, there exists a b, € B, such that g(b;) =
b3 — ¢3(a3) (Kergs C Im g;). Choose an ay € A, such that ¢,(az) = by (p; is an
epimorphism). Then @3 o f5(az) = g2 o ¢2(az) (commutativity of the first square)
= g2(b2) = b3 — ¢3(a3). Thus, b3 = @3(as + f2(a2)) € Img;.

Remark. One can see from these proofs that the exactness of the rows is also used

only partially. This may be less important than the previous remark, but we prefer
to point this out.

EXERCISE 16. If one removes the arrow @3 from the diagram in the five-lemma,
leaving all the other assumptions intact, will it be true that A3 = B3?
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Corollary. Let (X,A), (Y, B) be pairs with base points xo € A,yo € B, and let
f:X — Y be a continuous map such that f(A) C B,f(x0) = yo. Consider the
following statements:

Dy furmnX,x0) — mwu(Y,y0) is an isomorphism for all m < n and an
epimorphism for m = n.

) fermm(X,A,x0) = 7w,(Y,B,y) is an isomorphism for all m < n and an
epimorphism for m = n.

3)r (fla)s:wm(A,x0) — 7,u(B,yo) is an isomorphism for all m < n and an
epimorphism for m = n.

Then (2)a&(3)n = (Dn: (Da&2)nt1 = Bt B)at1&(Dut1 = (2)n. In part-

icular, any two of the statements

(D) fi: (X, x0) = 7, (Y, y0) is an isomorphism for all n,
2) furm (X, A, x0) = m,(Y, B, yo) is an isomorphism for all n,
B) (fla)«: ma(A, x0) = 7, (B, yo) is an isomorphism for all n

imply the third.

EXERCISE 17. Letl - Ag —> - —> A, —> 1 bean exact sequence. (1) Prove that
if all the groups A; are finite and ¢; = |A;], then []}_, qf_l) ' = 1. (2) Prove that if all

A, are finitely generated Abelian groups and r; = rank A;, then Y ;_,(—1)'r; = 0.

Lecture 9 Fibrations

In Lecture 6, we considered coverings which locally look like products of more or
less arbitrary topological spaces (“bases”) and discrete spaces. Coverings turned out
to be intimately related to fundamental groups. In this lecture (and many subsequent
lectures) we will consider a more general notion of fibrations whose main difference
from coverings is that the second factor is not assumed to be discrete any more.
One can say that fibrations for homotopy groups are the same as coverings for
fundamental groups; but it would be fair to say that the notion of a fibration by
itself is at least not less important than the notion of a homotopy group.

Before proceeding to definitions, we will make a terminological remark. In
topology, many different kinds of fibrations are considered, and the word “fibration”
not accompanied by any explanatory adjectives may be ambiguous. What we call a
fibration in this lecture (and in some subsequent lectures) is more usually called a
locally trivial fibration. Some other kinds of fibrations (such as Serre fibrations or
Hurewicz fibrations) will be introduced in this lecture.
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9.1 Definitions and Examples

A fibration, or a locally trivial fibration, is a quadruple (E, B, F, p), where E, B, and
F are topological spaces and p is a continuous map £ — B such that for every point
x € B there exist a neighborhood U and a homeomorphism f: p~! (U) — U x F such
that the diagram

—> UxF
\ /prqec‘mon

is commutative. The map p is called the projection, and the spaces E, B, and F
are called, respectively, the total space, the base, and the fiber of the fibration.
Sometimes, the term fibration is attributed to the map p: E — B; the term fibered
space is also used: This is what the space E may be called. The inverse image p~' (x)
of a point x € B is called the fiber over x; it is homeomorphic to F, but in general,
there is no canonical homeomorphism.

The fibrations (E, B, F, p), (E', B, F, p’) with the same base and the same fiber are
called equivalent if there is a homeomorphism 4: E — E’ (called an equivalence)
making the diagram

commutative (compare to the definition of equivalent coverings in Sect. 6.11).

The most obvious example of a fibration is the standard trivial fibration (B x
F,B,F,p), where p: B x F — B is the product projection. A fibration equivalent
to the standard trivial fibration is called trivial; an equivalence hi: E — B x F of a
fibration (E, B, F, p) with the standard trivial fibration is called a trivialization of the
former.

Example -1. Trivial fibrations.

Example 0. Coverings (including “generalized coverings” as defined in the remark
in Sect. 9.5).

Example 1. The projection of a Mobius band onto its middle circle; the fiber is /

(this is probably the most popular example of a nontrivial fibration).

ExampleZ LetE =8 ={(z1.220) € C* | |z21* +|22/* =1}, B=S>*=CP!, F =
=1{zeC|lz =1} p(z1,22) = (21 : 22).
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EXERCISE 1. Prove that (E, B, F, p) is a fibration. (This fibration is called the Hopf
fibration.)

EXERCISE 2. In Lecture 1 (see Sect. 1.3) a map §2+1 . CP" was introduced.
Denote this map by p and prove that (S**!, CP", ', p) is a fibration. (This fibration
generalizes the fibration from Exercise 1 and is also called the Hopf fibration.)

Example 3. Let G be a Lie group and H be its compact subgroup. Let p: G — G/H
be the natural projection.

EXERCISE 3. Prove that (G,G/H,H,p) is a fibration. (The Hopf fibration from
Exercise 1 is a particular case of this fibration.)

Example 4. Let a compact Lie group G act in a smooth manifold X.

EXERCISE 4. If the action is free, then (X, X/G, G,p), where p is the projection
X — X/G, is a fibration. (All fibrations from Exercises 1-3 are particular cases of
this fibration.)

Example 5. Let X, Y be compact smooth manifolds and f: X — Y be a submersion,
that is, a smooth map whose differential at every point is an epimorphism. Let yy be
apoint of Y.

EXERCISE 5. Prove that if the space Y is (path) connected, then (X, Y, £~ (yo).f)
is a fibration.

9.2 Covering Homotopies

Fibrations, like coverings, possess a covering homotopy property (CHP). What is
lost when we pass from coverings to fibrations is the uniqueness. Here is the precise
statement.

Theorem. Let (E, B, F,p) be a fibration, let X be a CW complex, let?p’ X — E be
a continuous map, and let ®:X x I — B be a homotopy such that ® [xxo=po 78
Then there exists a homotopy &: X x I — E such that ® |xx0= @ and p o d = .

We will prove this theorem in a stronger, relative version. Namely, if for some
CW subcomplex Y of X there is already given a homotopy V.Y x I — E such that
7 lyxo= @ |y and p o \IJ D |yxy, then & can be constructed with an additional
property that @ lysi= G

To prove the theorem, we need two definitions and a lemma.

Definition 1. Let £ = (E, B, F, p) be a fibration, and let B C B,E' = p~'(B’). The
locally trivial fibration (E’, B, F,p’ = p |g’) is called the restriction of the fibration
& to B’ and is denoted as & |p.

Definition 2. Let § = (E, B, F, p) be a fibration, and let f: B" — B be a continuous
map. Denote by E’ the subset of E x B’ consisting of all points (e, b’) such that
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f(@") = p(e). Then define a map p’: E’ — B’ by the formula p’(e,b’) = b'. The
locally trivial fibration (E’, B, F, p’) (EXERCISE 6; check the local triviality of this
fibration) is called the fibration induced by £ by means of f and is denoted as f*¢.

Clarification of Definition 2. Obviously,
@)~ =p~(F(Y')

[we mean the canonical homeomorphism established by the map E' — E,
(e,b’) — e]. Thus, we can say that the fibered space E’ is made out of fibers of
the fibration £ in such a way that the fiber over b is used as a fiber over b’ whenever
f(b') = b; if f is not one-to-one, the same fiber of & can be used many times as a
fiber of f*£.

Remark. The notions introduced by Definitions 1 and 2 are interrelated. First, £ |
is i*&, where i: B — B is the inclusion map. Second, f*§ = (B’ X §) |graph(r)» Where
B' x& = (B'xE,B' X B, F,idg xp) and graph(f) = {(0',b) € B xB | b = f(b)};
obviously, graph(f) is canonically homeomorphic to B'.

EXERCISE 7. Leté = (E, B, F, p) be a fibration, and let f: B* — B be a continuous
map. Prove that if & = (E',B',F,p’) is a fibration for which there exists a
continuous map h: E' — E which maps every fiber p~!(b’) of £ homeomorphically
onto the fiber (p’) ! (f(b')) of &, then the fibration £’ is equivalent to f*£.

Lemma (Feldbau’s Theorem). Every locally trivial fibration whose base is a cube
(of any dimension) is trivial.

Proof. Let& = (E,I", F, p) be our fibration.
Step 1. Let

A

1
I = {(xl,...,xn)elwn_ 2},

v

1
Ig: {(xlw‘-yxn)61n|xﬂ— 2} ’

andlet§ = § [, & = & |. We will prove that if &, & are trivial, then & is trivial.
Lethy:p~! (I7) — I X F, hy:p~'(I3) — I} X F be trivializations of &, &. The maps
Iy, hy do not form any map of E = p~'(I}) U p‘l(Ig‘) into I" x F, because they

1
are not compatible on p~!(I}) N p~1(I5) = Il”_l X, Actually, for x € I"™!, there
hy h
arises a homeomorphism ¢,: F = x X F;p_l(x) —5xx F = F. We define
h:E — I'" x F by the formula
hi(e), if p(e) e I},

= 1
h(e) (idp x@x) 0 ha(e), if p(e) € x x |:2, 1:| crn

(see Fig. 44). This is a trivialization of &.
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Fig. 44 Proof of Feldbau’s theorem, step 1

L]
L) o)k | I [ 1 [I] J5 | Ji

Bl M 7] [1o]

1
.[1 I4 17 J5 |—6 JG J7

Fig. 45 Proof of Feldbau’s theorem, step 2

1
Step 2. Cut the cube I into N" small cubes with the side _, where N is so big

that the fibration is trivial over every small cube, and numerate these small cubes as
I, I, ..., Iy in lexicographical order. For 1 <m < N",letJ,, = I} U---Ul,. Then
every J,, is homeomorphic to /", and for m > 2, the homeomorphism g,,: J,, — I"
can be chosen in such a way that g,,(J,,—1) = I} and g,,(I,,) = I5. Then, according
to step 1, if the fibration is trivial over J,,—1, it is also trivial over J,,.

Since the fibration is trivial over J; = I;, the induction shows that it is trivial
over Jy» = I" (Fig. 45).

9.3 Proof of CHP

In this section we will prove (the relative version of) the theorem of Sect. 6.2. We
will successively consider four cases.

Case 1: The given fibration is trivial. In this case we can assume that E = B X F
and identify maps X — E with pairs of maps X — B, X — F. We are given a pair
of maps ¢1: X — B, ¢»: X — F, a homotopy ®;: X x I — B of ¢y, and, in addition
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to Wy = @ |yxs, a homotopy W, | Y x I of ¢, |y. We need to extend the homotopy
W, to a homotopy ®,: X x I — F of ¢,. But this is precisely what Borsuk’s theorem
(Sect. 2.5) provides.

Case 2: The fibration is arbitrary, (X,Y) = (D", S"'). The induced fibration
®*(E,B,F,p) = (E',D" x I,F,p') is trivial by Feldbau’s theorem (D" x I is
homeomorphic to I"*!). Recall that E' C (D" xI)xE. The map &: D" — E', @ (x) =
((x,0),9(x)) and homotopies 2 = id:D" x I — D" x I and ASTUx T —
E', K(x, 1) = ((x,1), F\i(x, 1)) satisfy the requirements of the theorem, and, by case
1, there exists a homotopy Q:D" x I — E’ of @ which covers € and extends A. If
§(x, 1) = ((x,1), 5(x, 1)), then &:D'"x1—> Eisa homotopy of @ which covers ®
and extends .

Case 3: The fibration is arbitrary, and the CW complex X is finite. The obvious
induction makes it possible to assume that X — Y is one cell, e. Let f D' — X
be a characteristic map of e [so f(S"!) C Yand X = Y Ufl . The map

G = @of:D" — X and homotopies & = CIJOQ‘xI)D"xI—>BandT—
‘-IJ o (f |1 xI): 8"V x I — E satisty the requirement of the theorem, and, by case
2, there exists a homotopy o D'xI—E of & which covers X and extends T. The
homotopies U:YxI—>EandX:D"x1—E compose a homotopy <I> XxI—>E
that is required by the CHP. (We leave to the reader to check that VU and T are
compatible with the attaching of D" x I to Y x I by the map f |gn—1 xI.)

Case 4: General. If X has infinitely many cells of one dimension not contained in
Y, then we need to apply the construction of case 3 to these cells simultaneously. If
X —Y contains cells of unlimited dimensions, then we have to apply this construction
infinitely many times. In both cases, the continuity of the resulting homotopy
follows from Axiom (W).

9.4 Serre Fibrations

A Serre fibration is a triple (E, B, p) where E, B are topological spaces and p is
a continuous map £ — B which satisfies the relative form of CHP (as stated in
Sect. 9.2). A Serre fibration is not necessarily a locally trivial fibration (see Fig. 46)
although the theorem in Sect. 9.2 states that a locally trivial fibration is a Serre
fibration.

There are equivalent definitions of a Serre fibration.

Proposition 1. The definition of a Serre fibration is equivalent to the definition
which states CHP only for the case when (X,Y) = (D", S" ") for all n.

Proof. Repeat cases 3 and 4 of the proof in Sect. 9.3.)

Proposition 2. The definition of a Serre fibration is equivalent to the definition
which states CHP only in the absolute form.
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I
Iy

Fig. 46 A Serre fibration is not necessarily locally trivial
\_/Q

same
as

Fig. 47 The absolute CHP for D" is the same as the relative CHP for (D", ")

Proof. By Proposition 1, it is sufficient to deduce the relative CHP for (X,Y) =
(D", 8"~ 1) from the absolute CHP for X = D". But the two statements are essentially
the same, as Fig. 47 shows.

One more version of the definition of a Serre fibration (not equivalent to the
initial one) may be obtained if we require the absolute CHP for X being an arbitrary
topological space, not necessarily a CW complex. In this way, we arrive at a
definition of a strong Serre fibration, or a Hurewicz fibration. Obviously, every
Hurewicz fibration is a Serre fibration, but the converse is known to be not always
true.

Notice also that definitions of a restriction of fibrations and induced fibrations as
given in the local trivial case in Sect. 9.2 can be repeated for Serre fibrations and
strong Serre fibrations with all accompanying remarks and clarifications.

Example 1. Locally trivial fibrations.

Example 2 (Path fibration). Let W be an arbitrary topological space with a base
point wg. Put E = E(W,w) (the space of paths of W beginning at wy), B = W,
and define p: E — B by the formula p(s) = s(1). Then (E, B, p) is a strong Serre
fibration. Indeed, let ¢: X — E be a continuous map, and let ®: X x I — B = W
be a homotopy such that ®(x,0) = (¢(x))(1) for every x € X (see Fig. 48). The
covering homotopy &:XxI—>E may be defined by the formula

)] (1 +12), ifr(1+4+1 <1,

[@(x.0)] () = O, t(1+6)—1),if t(l +1) > 1.
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Fig. 48 The path fibration

Example 3 (A generalization of Example 2). Let (X,Y) be a Borsuk pair (for
example, a CW pair), and let W be an arbitrary space. Put E = WX, B = WY
(mapping spaces, see Sect. 2.5), and let P: E — B be a restriction map (p(f) = f |y)-

EXERCISE 8. Prove that (E, B, p) is a strong Serre fibration.

9.5 A Digression: Weak Homotopy Equivalences

The example of a Serre fibration in Fig. 46 shows that the fibers of a Serre fibration,
that is, inverse images of points of the base, do not need to be homeomorphic to
each other. Still these fibers turn out to have some resemblance to each other.

Definition. We will say that a topological space S is weakly homotopy equivalent
to a topological space T if, for CW complexes X, there exist bijections 7 (X, S) <
(X, T), natural with respect to X. More precisely, for every CW complex X there is
fixed a bijection @x: 7w(X,S) — w (Y, T) such that for every continuous (or cellular;
it makes no difference in view of the cellular approximation theorem) map f: X —
Y, the diagram

(X, S) — 7(X,T)
r* r*
Py
a(Y,S) — (Y, T)

is commutative (compare with Definition 3 of a homotopy equivalence in Sect. 3.3).

Remark. Ttis obvious that the relation of a weak homotopy equivalence is homotopy
invariant: If X ~ X', y ~ Y/, and X and Y are weakly homotopy equivalent, then
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so are X’ and Y’. In particular, homotopy equivalent spaces are weakly homotopy
equivalent.

According to Definition 1 in Sect. 3.3, usual homotopy equivalences are estab-
lished by continuous maps. Weak homotopy equivalences are established by
continuous maps sometimes, but not always. Namely, a continuous map ¢:S — T
is called a weak homotopy equivalence if g: w(X,S) — 7 (X, T) is a bijection for
every CW complex X. It is obvious that if there is a weak homotopy equivalence
@:S — T, then S and T are weakly homotopy equivalent (just put x = @x); but it
is not true that weakly homotopy equivalent spaces can always be connected by a
weak homotopy equivalence.

There are some important properties of weak homotopy equivalences which we
can state but not prove now (they will be proved in Lecture 11; see Sects. 11.4
and 11.6). The main two statements are as follows. (1) A continuous map between
path connected spaces with base points ¢: (S,s0) — (T, ty) is a weak homotopy
equivalence if and only if ¢« 7,(S,s0) — m,(T,1y) is an isomorphism for all
n > 1. (2) Every topological space is weakly homotopy equivalent to a CW complex,
and this CW complex is unique up to a homotopy equivalence. There is one more
statement which we can prove now.

Proposition. If CW complexes X and Y are weakly homotopy equivalent, then they
are homotopy equivalent.

The proof is the same as the proof of the equivalence of Definitions 1 and 2 in
Sect. 3.3. The bijections

ox:t(X,X) > n(X,Y)and ¢py: 7 (Y, X) - n(¥,Y)

associate to the classes of the identity maps idxy and idy homotopy classes of
continuous maps f: X — Y and g: ¥ — X, and the commutativity of diagrams

(X, X) — 7(X,Y) 7(Y,X) - 7(Y,7)
T
(Y7, X) -2 (v, Y) (X, X) 25 7(X,Y)

show that

[f o gl = f*[g] =f* o (¢y)""[idy]
= (px) "' of*[idy] = (ox)"'[f] = [idx]
[gof] = g*[f] = g" o pxlidx] = ¢y o g*[idx] = @r[g] = [idy].
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9.6 Fibers of Serre Fibrations

Theorem. If (E, B, p) is a Serre fibration, then for any points xg, x| from the same
path component of B, the fibers p~' (xo), p~' (x1) are weakly homotopy equivalent. If
(E, B, p) is a strong Serre fibration, then p~(xo), p~ ' (x1) are homotopy equivalent.

Proof. We begin with the first statement. The proof is based on the following
construction. Let X be a CW complex, let f: X — p~'(x) be a continuous map,
and let s:1 — B be a path joining xo with x;. Define ¢: X — E as the composition
of f with the inclusion of p~!(xy) into E and define ®: X x I — B by the formula
®(x,t) = s(¢). CHP yields a homotopy &:X x I — E which can be regarded as
a family of maps 4,:X — p~!(s(¢)); in particular, there arises a continuous map
g = h: X — p~'(x1), and we want to use the correspondence [f] - [g] to establish
a weak homotopy equivalence between p~! (xo) and p~! (x}).

For this purpose, we will prove that the homotopy class of g does not depend on
the choice of the covering homotopy & and also on the path s within a homotopy
class of paths. Let s':1 — B be a path homotopic to s (and also joining x
with x1), and let @’ D ,h), and g’ be constructed with the use of s" in the same
way as @, ®, h,, and g are constructed with the use of s. Using the homotopy
between s and s, we define a map S:[—1,1] x I — B that is a homotopy of
the path s~!s’ to the constant path I — x; (see Fig. 49). Next, we define a map
W:(X x [-1,1]) x I — B by the formula \Ig(x, u),t) = S(u,t), and a map

— <
g/(z;, u;t,)’ EZ ; 8’ An application
of CHP provides a homotopy U (X x [-1,1]) x I — E, and the restriction of it to
XX (((=1)x DU (—1,1] x 0) U (1 x I)) is a homotopy between g and g’.

Thus, the correspondence [f]— [g] provides a well-defined map v/: [X, p~' (s(0))]
— [X, p~!(s(1))] that depends only on the homotopy class of s, and it is obvious that
Vs, = Vs, © Yy, In particular, ¥, o ¥—1 = id, so ¥ is a bijection. The bijections
Y, for all CW complexes X compose the required weak homotopy equivalence.

J:Xx [-1, 1] — E by the formula J(x, u) =

T s’

S xg T
xr1 Tl —

Fig. 49 To the proof of a weak homotopy equivalence of the fibers
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The second statement can be proved in the same way with X being an arbitrary
space, not a CW complex. An easier way to obtain a homotopy equivalence
p~ 1 (x0) — p~'(x1) is to apply the previous constructionto X = p~'(xp) and f = id;
then g: p~'(xo) — p~'(x1) will be the desired homotopy equivalence.

Example. A fiber of the path fibration E(W,wy), W, p (see Example 2 in Sect. 9.2)
over a point w; € W is E(W;wy,w;) (see Sect. 2.5). Thus, all path spaces
E(W;wp,w;) of a path connected space W, in particular, all loop spaces, are
homotopy equivalent.

9.7 Every Continuous Map Is Homotopy Equivalent
to a Serre Fibration

We say that continuous maps f: X — Y and f': X’ — Y’ are homotopy equivalent
if there are homotopy equivalences ¢: X — X’ and ¥:Y — Y’ which make the
diagram

homotopy commutative (¥ o f ~ f’ o ¢).

Theorem. For every continuous map, there exists a strong Serre fibration homotopy
equivalent to this map.

ADDITIONAL PROPERTIES. First, a strong Serre fibration homotopy equivalent
to a given continuous map f:X — Y is provided by a canonical construction.
Second, this construction preserves Y; that is, a Serre fibration homotopy equivalent
to f has the form (Y, Y, p(f)), and the homotopy equivalence ¥ — Y required by
the definition of a homotopy equivalence between maps is just idy [and there is
also a homotopy equivalence qo(f):y — X such that p(f) ~ f o ¢(f)]. Third, the
construction is natural in the sense that for a homotopy commutative diagram
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there arises in a canonical way a continuous map @: X — X’ such that the diagrams

XX XX
Jp(f) Jp(f’) and [w(f) [w(f’)
y Ly X2 x

are homotopy commutative.

Proof of Theorem. For X, we take the space of pairs (x,s), where x € X and s
is a path if Y beginning at the point f(x). The projection p(f):? — Y and the
homotopy equivalence ¢(f): X — X are defined by the formulas [p(f)](x,s) = s(1)
and [¢(f)](x, s) = s. The verification of all necessary properties is immediate.

Remark. This theorem is dual (in the sense of duality considered in Lecture 4) to
the following simple statement: For every continuous map f: X — Y there exists an
embedding i(f): X — Y homotopy equivalent to f; moreover, we can request that
(7, [i(f)](X)) be a Borsuk pair. Proof: We can take for Y the cylinder Cyl(f) of the
map f (see Sect. 2.3) and for i(f) the natural embedding. Because of this duality, the
space X constructed in the proof is sometimes called the cocylinder of the map f.

9.8 The Homotopy Sequence of a Fibration

Lemma. Let (E,B,p) be a Serre fibration, let ey € E be an arbitrary point, let
bo = p(eg), and let F = p~'(by). Then the map

P (E, F, e0) — 1,(B, bo)

is an isomorphism for all n.

Proof. In this proof we use a slightly modified definition of relative spheroids:
A relative spheroid of a pair (E, F) with the base point ¢ is defined as a map
(D", 5" ', y0) — (E.F,ep) (where yy is the base point in D" and §"~!) rather
than a map (D", S"~', Sﬁ__l) — (E, F, ep); this does not make any difference, since
(Dn,Sn_l,y()) ~ (Dn,Sn_l,Sz__l).

First, prove that p, is a monomorphism. Let;{: D" — E be a relative spheroid of
(E,F), and let f: S" — B be its projection into B. Let H: " x I — B be a homotopy
joining the spheroid f* with the constant spheroid. It may be regarded as a homotopy
of the map p o f: D" — B. As such it is covered by a homotopy H: D" x I — E of f
which may be regarded as a homotopy of the relative spheroid f (H S 'x1I)CF,
since H, regarded as a homotopy of p o f: D" — B, maps §"~1 x I to by; also we
can assume, using the relative version of CHP, that H(yy x I) = e¢). The homotopy
H joins f with a relative spheroid whose image is contained in F, that is, with the
relative spheroid of the zero class. Thus, [f] = 0.
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[SIEN

Fig. 50 Proof of the lemma: p, is an epimorphism

Now prove that p, is an epimorphism. Let ¢;: "' — §" be a homotopy
sweeping the sphere S" as shown in Fig. 50, left. Let f: S — B be a spheroid.
Consider the homotopy f o ¢;: " — B and lift it, using the (relative) CHP to
a homotopy g;:S" — E such that gy(S") = eo and g,(yo) = eo for all 7. This
homotopy may be considered as a map G:D" — E (the ball D" is covered by
spheres S;’_l, 0<t<1,and G | s is’g;). This map G is a relative spheroid of the
pair (E, F), and obviously p«[G] = [7]

Now replace in the homotopy sequence of the pair (E, F') the groups 7;(E, F) by
the isomorphic groups 7;(B). We get an exact sequence

<o > m,(F,e0) > m,(E, eq) = m,(B,by) = mu—1(F,e0) — ...
— w1 (B, bo) — mo(F,eq) — mo(E, eg) — mo(B, bo)

consisting only of absolute homotopy groups (not all of them are groups, as we
know). This sequence is called the homotopy sequence of the fibration.

Remark 1. The homomorphisms 7, (F, eg) — m,(E, ) and 7, (E, eg) — 7,(B, by)
of this sequence are induced by the inclusion map F — E and the projection
p:E — B. The construction in the second part of the proof of the lemma yields
a direct construction, not involving relative homotopy groups, of the “connecting”
homomorphism 7, (B, by) — 7,—1(F, ep): Using a spheroid f: S” — B, we construct
a spheroid homotopy f o ¢;: S"~! — B, lift it to a spheroid homotopy g;: "' — E,
and observe that g; is, actually, a spheroid of F.

Remark 2. The term mo(B) of the homotopy sequence of the fibration does not
actually come from the homotopy sequence of the pair (E, F), so the exactness in
the term 7o (E, o) must be checked independently.
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9.9 First Applications of the Exactness of the Homotopy
Sequence of a Fibration

Let us begin with the Hopf fibration p: S* — S? with fiber S' (see Example 2 in
Sect. 9.1). The homotopy sequence of this fibration contains fragments

1(S%) = m(8?) = 1 (SY) = 71 (S?),
(8" = 1,(S%) = 71, (S?) = w1 (SY),

and, since 7;(S%) = 0 fori = 1,2 and 7;(S') = 0 for i > 2 (see Sects. 5.9 and 8.3),
we obtain isomorphisms 7, (5?) = m(S") and 7,(S?) = m,(S?) for all n > 3. The
first isomorphism shows that ,(S?) = Z; in particular, we have a proof (at last!)
of the fact that the sphere S? is not contractible. It is interesting that this result will
not be covered by a more general theorem of Lecture 10, so it has its independent
value. The second isomorphism looks unexpected, especially for n = 3. We expect
that the group 73(S?) is nontrivial (actually, we will prove soon that it is isomorphic
to Z); thus, 73 (Sz) must also be nontrivial, a fact that is not readily offered by naive
geometric intuition.

Some other applications of the exactness of the homotopy sequence of a fibration
are contained in the following exercises.

EXERCISE 9. Analyze the homotopy sequence of a covering. Deduce from it the
major results of Sects. 6.6 and 6.8.

EXERCISE 10. Deduce from the homotopy sequence of the Hopf fibration
p:S¥+1 — CP" (Example 3 of Sect. 9.1) that 7, (CP") is Z for r = 2 and
zero for 3 < r < 2n — 1; in particular, CP* has only one nontrivial homotopy
group: 2 (CP*>®) = Z.

EXERCISE 11. Using the path fibration from Sect. 9.4, prove that 7,(2X) =
7,+1(X) for all X and n > 0. (This fact can be easily proved directly, by comparing
spheroids of X and QX. By the way, it shows that the group 7, (R2X) is always
commutative, in accordance with Exercise 4 of Sect. 6.7).

EXERCISE 12. Prove that if the base of a Serre fibration is contractible, then the
inclusion of (any) fiber in the total space induces an isomorphism of homotopy
groups. Prove that if the base of a Serre fibration is connected and one of the fibers
is contractible, then the projection induces an isomorphism of homotopy groups of
the total space and the base. Note. According to a theorem promised in Sect. 9.5
(but not proven so far), these statements mean, respectively, that the inclusion map
F — E and the projection E — B are weak homotopy equivalences.

EXERCISE 13. Prove that if all the homotopy groups of the base and the fiber
are finite, then so are homotopy groups of the total space, and the orders of
the homotopy groups of the total space do not exceed the product of orders of
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corresponding homotopy groups of the base and the fiber. Formulate and prove a
similar statement concerning finitely generated groups and their ranks.

EXERCISE 14. Prove that if a Serre fibration (E, B, p) has a section (that is, a
continuous map s:B — E such that p o s = idg) or if F is a retract of E, then
7, (E) = m,(B) ® m,(F) for n > 2 (and for n = 1 if | (E) is commutative).

EXERCISE 15. Prove that if the fiber of the Serre fibration E, B, p is contractible in
E, then 7, (B) = 7,(E) @ 7,—1 (F) forall n > 2.

9.10 A Construction Promised in Lecture 8

In Sect. 8.6, we promised to construct for a topological pair (X,A) a space Y with
an isomorphism 7, (X,A) =~ m,—1(Y). We present this construction here with an
additional remark that both Y and the isomorphism will be natural in all possible
senses.

Following Sect. 9.7, construct a (strong) Serre fibration p’: A’ — X homotopy
equivalent to the inclusion map A — X and denote by Y a fiber of this fibration
(over some point xg € A C X). Let f: A’ — A be a canonical homotopy equivalence.
We assume that p’ and f are constructed by the canonical construction, so Y is the
space of paths in X beginning at xy and ending in A. This observation provides a
canonical map m,—;(Y) — m,(X,A): For a spheroid g: ("', y9) — (Y, const) we
define a spheroid G: D" = CS"™! — X of the pair (X, A) by the formula G(s,?) =
[g(s)](1), s € S" .t € I. It is obvious that these canonical maps are included in the
commutative diagram

o A > 1(X) = 71 (V) > 1 (A) > e (X)) — L

l I l l [

oo m(A) = (X)) > T(XA) > 1-1(A) > T (X)) — .

whose rows are homotopy sequences of the fibration (A’, X, p’) and the pair (X, A). It
follows from the five-lemma that the maps 7,—; (Y) — m,(X,A) are isomorphisms
(it can be also proved directly: Our map is already bijective at the level of spheroids).

Thus, not only have we established the promised interpretation of relative
homotopy groups as absolute homotopy groups, but we have also discovered one
more relation between homotopy sequences of pairs and of fibrations.
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Lecture 10 The Suspension Theorem and Homotopy
Groups of Spheres

10.1 Main Theorem

Let f:S7 — X be a g-dimensional spheroid of a topological space X (with a base
point). The map %f: 8¢ = S9! — X, [Tf](r. ) = (f(y).t)x is a (g + 1)-
dimensional spheroid of the space XX. It is clear also that if spheroids f, g: S — X
are homotopic, then the spheroids ¥f, ¥ g: 57 1 5 ¥ X are also homotopic, and the
spheroid X (f + g) is homotopic to the spheroid ¥f 4+ Xg. Thus, the correspondence
f +— Zf gives rise to a homomorphism 77,(X) — m,441(ZX). This homomorphism
is called the suspension homomorphism and is also denoted by . In particular, for
every g and n, there arises a homomorphism

Ximy(S") — Jrq+1(S”+1).

Theorem (Freudenthal). This homomorphism is an isomorphism if ¢ < 2n—1 and
is an epimorphism if ¢ = 2n — 1.

This statement is sometimes called the “easy part” of Freudenthal’s theorem.
We will discuss the “difficult part” later in this lecture. Let us mention one more a
generalization of Freudenthal’s theorem which we will be able to prove in Chap. 3:
If X is an n-connected CW complex, then X: 7w (X) — myq1(2X) is an isomorphism
for g < 2n+ 1 and an epimorphism for ¢ = 2n + 1. (This is a generalization of the
easy part of Freudenthal’s theorem; the difficult part has a similar generalization.)

Proof of the Epimorphism Part. Let f: St — §"*1 be a spheroid. We want to
prove that (if ¢ < 2n — 1) there exists a spheroid 4: S¢ — S” such that f ~ Xh.
We may assume that n > 0, in which case the sphere $"*! is simply connected and
we may forget the base points.

Let N and S be the poles of the sphere S"*!. We will present the sphere S9! as
R+ U 0o assuming that f(oco) is neither of the poles.

First, we apply a construction similar to that of Sect. 5.8 (where we used
it to prove a free-point lemma): We assume that there are triangulations of
neighborhoods U and V of N and S (“polar caps”) and of a big ball B C RI*!
containing both f~!(U) and f~'(V) such that f is simplicial on the union of all
simplices of B whose images are not disjoint from U U V. Also, we may assume that
both N and S are interior points of (n+ 1)-dimensional simplices. Then P = f~!(N)
and Q = f~1(S) are disjoint polyhedra of dimension < ¢ — n [that is, each of P and
Q is compact and is contained in a finite union of (¢ — n)-dimensional planes].

Second, we want to construct a homotopy of f to such a map that the inverse
images of N and S will be separated by a hyperplane in R?T!. Choose such a
hyperplane IT such that P lies on one side of IT and on the other side of IT choose
a point X such that the cone with the base Q and the vertex X is disjoint from P.
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Fig. 51 Separating inverse images of poles

The existence of such an X follows from the inequality ¢ < 2n — 1 (and this is
the only place in the proof where we use this inequality): The point X should not
belong to any line joining a point of P with a point of Q. If we replace P and Q
by two planes of dimension g — n, then the union of such lines is (contained in) a
plane of dimension 2(g — n) + 1, so for our P and Q the set of forbidden points X is
contained in a finite union of such planes, and the inequality ¢ < 2n — 1 is the same
as2(¢—n) + 1 < g+ 1, so we can choose a point not belonging to this union. Now
we choose a positive continuous function F on the set of all lines through X such that
F(£) is some very big number K for lines hitting P and F({) is 1 for every line hitting
Q. Consider a homeomorphism ¢ of R?*! onto itself which compresses every line
£ through X to X with the coefficient F({) (see Fig. 51). This homeomorphism does
not move P and, if K is big enough, pulls Q into a polyhedron on the other (with
respect to P) side of IT. (We can assume that our homeomorphism RY*! Uoo ~ S9!
takes the plane IT into the equator of S7t!.) Moreover, this compression may be
done gradually, so we get an isotopy (a homotopy consisting of homeomorphisms)
of id to @. So f o ¢! is a spheroid homotopic to F which possesses the desirable
property: The inverse images of the poles are polyhedra separated by a hyperplane.
For brevity’s sake, we will denote a spheroid with this property again by f. (This
argument, and actually the whole proof of Freudenthal’s theorem, is based on the
fact that polyhedra of dimensions p and g cannot be linked in a space of dimension
> p + q + 1. For example, two disjoint closed polygonal lines can be linked in R?,
but not in R*; see Fig. 52.)

Thus, we now have a rather good spheroid: The inverse images of “polar caps” U
and V of §"*! are contained in, respectively, the northern and southern hemispheres
of §9*! and the image of the equator S of S7*! does not touch the polar caps of
§™+1 (see Fig. 53).

Next we make the spheroid f still better by combining it with a homotopy of §"*!
which stretches the polar caps U and V to the whole hemispheres and compresses
the equatorial belt to the equator. The new spheroid, which we still denote by f, maps
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Fig. 52 Linked curves in space

1)

N

L=
V)

Fig. 53 The spheroid f with inverse images of polar caps separated

the equator S7 of ST into the equator S" of §"*! (thus we get the map S¢ — S"!)
and maps the northern hemisphere into the northern hemisphere and the southern
hemisphere into the southern hemisphere. If we look at the spheres from above, we
will see the maps f and g as shown in Fig. 54.

The spheroid f is still different from Xg: It takes meridians into some arbitrary
looking curves while X g takes meridians into meridians (see Fig. 54). However, for
no point of y € S9! are the points f(y) and Xg(y) opposite, so there is a convenient
big circle homotopy joining f and Xg. This completes the proof of X being onto.

Proof of the Monomorphism Part. Now we assume thatg < 2n—1.Let go, g1: 57 —
S" be two spheroids, and let f;: S9! — §"*! be a homotopy between Tgo and Xg;.
We want to prove that there exists a homotopy g,:S? — S§" between go and g;.
For this, we will deform the homotopy f; to the homotopy of the form Xg,. Let
us apply the previous construction to every f;. The only arbitrary choice in that
construction was the choice of the point X. Now we have to require that this X
depends continuously on ¢, which we will achieve by requesting that X not depend
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Fig. 54 The maps f, g, and Xg

S n+1

Fig. 55 Proof of the monomorphism part of Freudenthal’s theorem

on ¢ at all. In the previous construction there was a prohibited set for X, which was
(the union of planes of) dimension 2(g — n) + 1. Now we have to deal with a one-
parameter family of such sets, which creates one additional dimension. Thus, to
apply the construction we now need the inequality 2(q¢ — n) + 2 < g + 1, which is
the same as g < 2n — 1.

In other words, the inverse images P, Q of the poles of S"*! with respect to a
(piecewise linear approximation of a) homotopy {f;} = F: S9! x I — §"*! are
polyhedra of dimensions < ¢ — n + 1 (see Fig. 55). These polyhedra live in R972,
and they are not linked, if 2(g —n + 1) + 1 < g + 2, which again means that
qg<2n-—1.

This completes the proof of the easy part of Freudenthal’s theorem.

10.2 First Applications

Theorem (Hopf). 7,(S") = Z.

Proof. Forn = 1,2, we already know this (see Sect. 6.3 for n = 1 and Sect. 9.9 for
n = 2). For n > 3, we have an isomorphism X: 7,1 (S"~") — m,(S").
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Additional remarks. 1. By Freudenthal’s theorem, ¥:m(S') — m»(S?) is an
epimorphism. But since 7 (S') = m,(S?) 2 Z, it is actually an isomorphism.

2. The group 7, (S") is generated by the class of the identity spheroid. Forn = 1,
it was proved in Sect. 6.3; for n > 1, this follows from the obvious fact that the
suspension over the identity map is the identity map. From now on, we choose
the class of the identity spheroid for a generator of 7, (S") and thus establish a
canonical isomorphism 7, (S") = Z.

Corollary. The sphere S" is not contractible for any n.

This statement, whose proof turned out to be unexpectedly long, is very
important: If $" were contractible, the group m,,(X) would have been zero for any X.

One More Corollary. 73(S?) = Z.

This follows from the isomorphism m3(S?) 2= m3(S?) established in Sect. 9.9.
Actually, it also follows from the results of Sect. 9.9 that the group m3(S?) is
generated by the class of the Hopf map $* — §2.

10.3 The Degree of a Map S$" — §"

A continuous map f:S" — S" regarded as an n-dimensional spheroid of S"
determines an element of 7, (S") = Z, that is, an integer. This integer is called the
degree of f and is denoted as deg f. Let us observe the properties of the degree which
are already known to us. There are maps §” — S" of an arbitrary degree. Two maps
S§" — §" are homotopic if and only if they have equal degrees. A continuous map
S§" — §" of degree d induces a homomorphism 7, (S") — 7,(S"), that is, Z — Z,
which is a multiplication by d. Homeomorphisms have degrees 1. A suspension
over amap S" — S" of degree d is amap S"T! — §"*! of the same degree d.

Now we will describe a way of computing the degree of a map f: 5" — S".
A point y € S" is called a regular value of f if there is a neighborhood U in y
homeomorphic to a ball D" such that f~!(U) is a disjoint union of open sets U,
such that f maps every U, homeomorphically onto U. [A ridiculous but important
example: If y ¢ F(S"), that is, if y is not a value of f at all, it is a regular value
of f.] For example, smooth maps and piecewise linear maps have ample sets of
regular values (in the piecewise linear case it is obvious; in the smooth case it is
a standard theorem of analysis). If y € S" is a regular value of f, then the inverse
image f~!(y) is finite [otherwise, f~!(y) contains limit points, and no neighborhood
of a limit point of f~!(y) can be homeomorphically mapped onto a neighborhood of
y]. For every point z € f~!(y), the map f either preserves or reverses the orientation
[in the smooth case this is determined by the sign of the Jacobian of f at z; in the
continuous case, we can say that z belongs to some U,, and the map f determines
a homeomorphism §"/(S" — U,) onto S§"/(S" — U), which is a homeomorphism
between two copies of S”; its degree is £1 and we define the preserving or reversing
orientation accordingly].
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Theorem. Ify is a regular value of f, then

degf = #{z € f~'(y) | f preserves the orientation at 7}
—#{z € f~1(y) | f reverses the orientation at z}

= ) ¢

2€f71()

where €(z) is 1 if f preserves the orientation in the neighborhood of z and is —1
otherwise.

Remark. As arule, a map f has many regular values y, and the numbers of points
in f~'(y) may be different for different ys. However, our theorem shows that the
difference in our equality depends only on f.

Proof of Theorem. Let U be a neighborhood of y as in the definition of a regular
value. We combine the spheroid f with a (homotopic to the identity) map S" — S”
which collapses the complement of U into the base point and stretches U to the
whole sphere. The new spheroid will be the sum of spheroids corresponding to
points in f~!. Each of these spheroids will be a homeomorphism, and the degree of
a spheroid corresponding to z € f~!(y) is &(z). Thus, degf = Zzeffl(y) £(2).

10.4 Stable Homotopy Groups of Spheres and Other Spaces

Thus, the homotopy groups of spheres are arranged into stabilizing series of groups
T4x(S") with a fixed k:

b b > s E
> Tk (S") = T 1 (ST = M2 (S — L
with the stabilization occurring in the term ;4> (Sk+2):
z k41 epi k+2 iso k+3 iso
1 (8T) — o m2(8TT) —— w3 (8T —— L

The groups m,4+4(S") with n > k + 2 do not depend on n. They are called stable, and
for them the notation Jr,f is used; the group mox+1 (Sk'H) is called metastable. So far,
we have almost no information on the homotopy groups of spheres; what we know

is contained in the following table.
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m(S™") | ¢=1 q=2 q¢=3 q=4 q=5 q=6

n=1 Z_: 0 0 0 0 0

n =2 0 Z_ i Z_e ? ? ?
\ ||H\ HH\ ||H\ |H
\ \
n=4 0 0 0 Z ? ?

In this table, slanted arrows denote X, the letter H means Hopf isomorphism,
and the letters i and e mean, respectively, isomorphism and epimorphism. We can
add that since 3: 73(S?) — m4(S?) is an epimorphism and 73(S?) = Z, the group
74(S*) must be cyclic, and so must be the groups 74(S?) and ;.

The homotopy groups of spheres has not been calculated yet, but ample
information about them exists, of both a general and a tabular nature. In this book,
we will address these groups many times, and we will learn a lot about them.

In conclusion, we remark that stable homotopy groups do not exist only for
spheres. For any topological space X, we can consider a sequence

P P P z
T (X) —— M1 (ZX) — M2 (B2X) — mp3(23X) — ...

This sequence has a “limit” (algebraists call it the direct limit), but we actually do
not need it, since this sequence always stabilizes at the term n2k+2(2k+2X). We will
prove this later, but we have already mentioned the necessary result (see a remark
after the statement of Freudenthal’s theorem in Sect. 10.1).

For stable homotopy groups of X we use the notation 7 (X); thus, 7 = 7 (S°).

10.5 Whitehead Product and the Difficult Part
of Freudenthal’s Theorem

The product S x S" of two spheres has a CW decomposition into four cells, of
dimensions 0,m,n, and m + n. The union of the first three cells is the bouquet
§™ v S". The attaching map of the fourth cell, S"*"~! — §" v §", is called the
Whitehead map.

This construction describes the Whitehead map up to a homotopy; there exists a
canonical, completely concrete, description of the map w: §”"~! — §" v §". The
sphere S”7"~1 is cut into the union of two closed domains,

U:{(xls---,xm.y_n)ES’”"'"_l |x%+"'+'xr2n
V:

1
<
=

{(xl,...,xm+n) € gmtnl |x%+---+x,2n2;

)
}.
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SOx DU V a D! x St

v

Fig. 56 §"T"~!1 = (D" x §"~1) U (§"~! x D")

Obviously, U ~ D" x 8" ', V ~ §" ! x D" UNV = §" ! x §! (the case
whenm = 2,n = 1 is shown in Fig. 56; another important example is the cut of the
sphere S* by a torus S' x S! into the union of two solid tori; we mentioned this in a
remark in Sect. 2.4).

The decomposition ST~ = U U V may also be constructed in the following
way: S"Hl = 9Dt ~ (D™ x DY) = (D™ x dD") U (dD™ x D) = (D™ x
S U (S x D).

Our map w: S"t"~1 — §" v/ §" consists of two projections,

U=D"xS§"!—= D" pr/sm! =§mcCSmv S
V=S"1xD'- D' D'/S" =8 CS§"VvS",
and takes the “cutting surface” $"~! x §"~! into a point.

Now let 1: S" — X, g:S" — X be two spheroids of some space X with a base
point xo. Together, they form a map S v " — X, and the composition of this map
with w is a spheroid A: S"*"~! — X. It is clear that the homotopy class of & is
determined by the homotopy classes of f and g. Thus, we get an operation which
assigns to o € 7, (X,x0) and B € 7,(X, xp) some element of 7,,4+,—1(X,x0); this

element is called the Whitehead product of o and § and is denoted as [«, B].
In these exercises, o, a1, oz € m,(X, x0), B, B1, B2 € mu(X, x0), ¥ € mp(X, x0).

EXERCISE 1. Prove thatif m = n = 1, then [0, 8] = aBa™!B7".
EXERCISE 2. Prove thatif m = 1,n > 1, then [a, 8] = ax(B) — B.
EXERCISE 3. Prove thatif n > 1, then [, 81 + B2] = [, B1] + [, B2].
EXERCISE 4. Prove thatif m,n > 1, then [B, @] = (—1)"" " [, B].
EXERCISE 5. Prove thatif m, n, k > 1, then

(=)™ [, [B,y1] + ()" B, [y, ] + (=1 ™[y, [, Bl = 0
(“super-Jacobi identity”).
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COMMENT. Although the higher homotopy groups are commutative, the Whitehead
product may be regarded as a substitute for a commutator in these groups. The
properties above create for homotopy groups (more rigorously, for the direct sum
@:2, ) a structure similar to that of a Lie superalgebra.

EXERCISE 6. Prove that the suspension over the Whitehead product X[a, ] €
Tm+n(2X) is 0. This implies (and, actually, is implied by) the fact that X (5™ x S")
is homotopy equivalent to S"+! v §7F1 v/ gmtntl. why?

EXERCISE 7. Lett, € m,(S") be the class of the identity spheroid and 7, € m3(S?)
be the class of the Hopf map. Prove that [i2, 1] = 2n,.

EXERCISE 8. Prove that if X is a topological group, or an H-space, then [, 8] = 0
forany « € 7,,(X), B € m,(X). (In view of Exercises 1 and 2, this is a generalization
of Exercise 4 of Sect. 6.7 and of Exercise 2 of Sect. 8.2.)

Theorem (Difficult Part of Freudenthal’s Theorem). The kernel of the homo-
morphism X: 13,1 (S") — m2,(S"*1) is a cyclic group generated by the Whitehead
square (i, ty] of the class t,.

We will not prove this theorem here although it has a purely geometric proof
based on the following argument. The inverse images of the poles with respect to a
homotopy §?" x I — §"*! cannot be deformed to polyhedra separated by $>*~! x I,
but we can do it if we let these inverse images transversely cross each other finitely
many times at isolated points. In this way, a homotopy f;: S?* — §"*! between
the suspensions of spheroids go,g1: S~ — §” can be deformed to a piecewise
continuous homotopy of the form X g, with finitely many discontinuity points #;, and
each such discontinuity can be compensated by adding or subtracting a spheroid of
class [tn, t]-

The reader who does not feel inclined to get involved in detailing this idea can
return to this theorem after reading Chap. II (or, even better, Lecture 24) and use
algebraic means developed there.

Notice that in combination with Exercise 6, this theorem shows that 774(S 3 ) = 7o,
and hence Jrls = 7,. By the way, the alternative 74(S*) = Z; or 0 follows directly
from (rather easy) Exercises 6 and 7.

Notice also that if n is even, then the cyclic group generated by [i,, t,] is infinite
(we will prove this in Lecture 16). For n odd, this group is Z; or 0 (this follows from
Exercise 2).

Lecture 11 Homotopy Groups and CW Complexes

This lecture is devoted to different relations between homotopy groups and CW
structures. It is rather heterogeneous. We will calculate the first nontrivial homotopy
group of a CW complex, will clarify the role of homotopy groups in homotopy
classification of CW complexes, and will construct CW complexes with homotopy
groups prescribed.
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11.1 Homotopy Groups and Attaching Cells

Theorem. Let X be a path connected topological space, and let f:S" — X be a
continuous map. Let Y = X Uy D"t The homomorphism

ﬂi(X,X()) g ﬂi(Y,.X()), (*)

where xg € X C Y is an arbitrarily chosen base point, induced by the inclusion map
X — Y is an isomorphism if i < n; if i = n, then it is an epimorphism whose kernel
is generated by all classes of the form us[f], where u is a path joining f(yo) with xo
(here yy is a base point of §") and [f] € m,(X,f(yo) is the homotopy class of the
spheroid f.

Remark 1. A similar theorem for fundamental groups was proved in Sect. 7.3.
The proof, however, cannot be the same, because in Sect. 7.3 we could use Van
Kampen’s theorem, which has no satisfactory generalizations to higher-dimensional
homotopy groups.

Remark 2. It is convenient to assume that f(yg) = xo. Then the kernel of the
homomorphism (*) is generated by the elements of the (X, xg)-orbit of [f] €
7, (X, x0). The case when X is simply connected is especially important. In this
case the theorem shows that attaching an (n 4+ 1)-dimensional cell does not affect
homotopy groups of dimension less than n, and the n-dimensional homotopy group
is factored by the cyclic group generated by the class of the attaching map.

Lemma. Let E™ be the sphere S or the ball D™ where m < n+ 1, andletT C E™
be the base point yo if E" = S™ and S"~' if E" = D™. In both cases, we identify
E™ — T with R™. Then let h: E™ — Y be a continuous map such that h(T) C X.
Then there exists a map h;: E™ — Y which is T-homotopic to h and possesses the
following properties:

(1) hy coincides with h on h='(X).

(2) If m < n, then h(E™) C X.

(3) If m = n + 1, then there is a finite family of pairwise disjoint small balls
di,....dy in E™ such that hi(E" — | J;d;) C X and h1|1mdl_ is, for every i,
a linear (orientation preserving or reversing) homeomorphism of Intd; onto
IntD"t! C Y.

This lemma is not much different from the free-point lemma proved in Sect. 5.8
and repeated several times after it (last time in Sect. 9.3). We leave further details to
the reader.

Proof of Theorem. The facts that the map (x) is an epimorphism if i < n and a
monomorphism if i < n follow directly from the lemma. Suppose that the class of
spheroid g: S — X belongs to the kernel of the map (x); that is, g can be extended to
amap h: D"*! — X. Using the lemma, we replace the map & with another extension
h; of g which has the properties listed in part (3) of the lemma. On th%_bounda%y ad;
of each small ball dy, the map h; coincides with a composition dd; —S"—X,
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Fig. 57 The main construction in the proof of the theorem

where ¢; is a linear map. Set y; = £;'(yo) and for every i join the point y; with y, by
a path u; such that the interiors of these paths are disjoint from the balls d; and from
each other. In D"*! —| J, Intd,, there is a natural homotopy connecting the inclusion
spheroid §" — D"*! with the sum of the spheroids (u;)#(¢; ") (see Fig. 57).

Then we transfer to this homotopy to X by the map ;. We obtain a homotopy
connecting the spheroid g with the sum of spheroids (hou;)«(f;) where f; is a spheroid
obtained from f by a linear transformation of the sphere S”. Since [f;] = %[f] (where
the sign depends on this linear transformation preserving or reversing orientation),
we see that [g] is indeed a linear combination of generators listed in the theorem.
This completes the proof of the theorem (the fact that sy[f] always belongs to the
kernel of the map (x) is obvious).

Corollary. IfY is a CW subcomplex of a CW complex X and the difference X — Y
does not contain cells of dimension < n, then the homomorphism 7;(Y) — m;(X)
induced by the inclusion map is an isomorphism for i < n and an epimorphism for
i = n. In particular, 7,(X) = m,(sky,4+1 X).

11.2 Application of the Attaching Cell Theorem:
The Homotopy Groups of Bouquets

Theorem. Let X,Y be CW complexes.

(1) If X is p-connected and Y is q-connected where p,q > 1, then m,(X VY) =
7, (X) ® m,(Y) forn <p+q.
(2) For any n, m,(X V Y) contains a direct summand isomorphic to 7w,(X) ® m,(Y).

Proof. According to a theorem in Sect. 5.9, the spaces X and Y are homotopy
equivalent to CW complexes with one vertex and without cells of dimensions
I,...,pand 1,...,q,respectively. The bouquet X VY is a CW subcomplex of X XY,
and all the cells in (X x Y) — (X Vv Y) have dimensions > p + g + 2. Thus, part (1)
follows from the corollary in Sect. 11.1 and the fact that 77,,(XxY) = 7,(X)® 7, (Y).
To prove part (2), we note that the composition
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70(X) @ 1y (Y) = 10 (X V'Y) = 1, (X X Y) = m,(X) @ 7 (Y),

where the first arrow denotes the sum of homomorphisms induced by the inclusion
maps X - XV Y, Y — X VY and the second arrow is induced by the inclusion
map X VY — X x Y, is the identity.

Corollary. If n > 2, then ﬂn(g’ VeV S_’i) = Z @ ®ZL; the system of free
q q

generators is composed by the classes of q natural embeddings §* — S" vV --- Vv §".

(Here g may be c0.)

EXERCISE 1. For X,Y,p, and q as in the theorem, prove that 7, 441(X V Y) is
isomorphic to mp4g11(X) @ Mpigr1(Y) @ [mpr1(X) @ myr1(Y)], where the last
summand is embedded into 7,441 (X VY) be means of the map o ® B — [ixa, j«B].
In particular, m3(S> vV $?) = Z D Z ® 7.

Remark. There is a result called the Hilton—Milnor theorem stating that the
homotopy groups of an arbitrary bouquet of spheres, S™' Vv --- Vv §™, are generated
by elements of homotopy groups of spheres " and their Whitehead products.

11.3 The First Nontrivial Homotopy Group of a CW
Complex

This is an extension of the result of Sect. 7.6 to higher-dimensional homotopy
groups. Since the case of the fundamental group is settled by that result, we assume
now that the CW complex considered is (n — 1)-connected where n > 1. Then we
can assume that X has only one vertex and has no cells of dimension 1, ...,n—1. We
assume that n-dimensional and (n 4 1)-dimensional cells e, e}‘“ of X are indexed
by elements i € 1,j € J of some sets I and J. In this case, sk, X is homeomorphic to
the bouquet \/, S” of n-dimensional spheres corresponding to n-dimensional cells of
X (the homeomorphism is established by characteristic maps of the n-dimensional
cells). Thus, 7,(sk, (X)) = 7,(\/;S?) = €D, Z (the isomorphism depends on the
choice of characteristic maps of the n-dimensional cells, but this dependence is
limited to the multiplication of some generators of P, Z by —1). Let f;: $" — sk, X

be an attaching map of a cell e}‘“.

Theorem. Let X be a CW complex with one vertex and with no other cells of
dimension < n. The group w,(X) has a system of generators corresponding to n-
dimensional cells (the classes of characteristic maps of n-dimensional cells) and
defining system of relations corresponding to (n + 1)-dimensional cells [the classes
of attaching maps of (n + 1)-dimensional cells are equated to zero].

This follows directly from the results of Sects. 11.1 and 11.2.



134 1 Homotopy

EXERCISE 2. Prove the following relative version of the theorem. Let (X, A) be a
CW pair with connected A such that X — A contains no cells of dimension < n,
where n > 3. Then the first nontrivial group of the pair (X, A), that is, the group
7, (X,A), is generated as a m;(A)-module by n-dimensional cells in X — A with
relations corresponding to (n + 1)-dimensional cells in X — A.

EXERCISE 3. State and prove a similar statement in the case n = 2.

EXERCISE 4. Let (X,A) be a CW pair with simply connected A, and let all cells in
X — A have dimensions > n > 2. Prove that the natural map ,(X,A) — 7,(X/A)
is an isomorphism.

Remark. This proposition has a generalization: If A is k-connected and all cells in
X — A have dimensions > n > 2, then the natural map 7,(X,A) — 7,(X/A) is
an isomorphism for g < n + k — 1 and an epimorphism for g = n + k. At the
moment, we do not have the necessary technique to prove this theorem. The reader
may return to it after reading Chap. II or, better, Lecture 24.

11.4 Weak Homotopy Equivalence Revisited

We are going to prove (a slightly enhanced version of) one of the propositions
promised in Sect. 9.5 (another one will be proven in Sect. 11.6 ahead).

Theorem. For a continuous map f:X — Y (X and Y are arbitrary topological
spaces) the following properties are equivalent:

(1) f is a weak homotopy equivalence (see Sect. 9.5).

2) fu:m (X, x0) = m,(Y,f(x0)) is an isomorphism for every n and x, € X.

(3) If (W,A) is a CW pair and h:A — X, g: W — Y are such continuous maps that
foh~g |4, then there exists a continuous map h:W — X such that b la=h
andf o o~ 8.

Proof. The implication (1) = (2) is obvious. The implication (3) = (1) is almost
obvious: If we put (W,A) = (Z,0), we arrive at the conclusion that the map
feim(Z,X) - n(Z,7) is onto, and, taking (W,A) = (Z x I, (Z x0) U (Z x 1)), we
see that f is also one-to-one.

It remains to prove the implication (2) = (3). Let the map f: X — Y satisfy
condition (2), and let (W,A) be a CW pair. We assume first that W is different
from A by just one cell: W = A, D"*1 where a: S" — A is a continuous map.
Since the composition S” A —Wis homotopic to a constant (the natural
map D"t! — W is its extension to the ball), the composition (g |4) o a: 8" — Y is
also homotopic to a constant. Hence, the spheroid f o h o o: " — Y is homotopic
to zero, and hence so is the spheroid & o o: §" — X [since fi: m,(X) — m,(Y)
is a monomorphism]. Hence, the map 4 o @:S" — X can be extended to a map
B: D" — X, and we can combine the maps / and 8 into a continuous mapF};’: W —
X (see Fig. 58).
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Fig. 58 The construction in the proof of the weak homotopy equivalence theorem

Here we use the prime notation because this is not the map we need. We want
fo H o~ g, but we have only f o " |a~ g |4 Choose a homotopy ®:A X I — Y
joining f o 3 |a= f o h with g |4 and consider the (n + 1)-dimensional spheroid
y: 8"t = 3(D"*! x I) — Y composed of the maps

D x0=Dp+ w5y,
ax] ]
"X ——AXxI—>Y,

Dl 1 :D"+1i>XL> Y.

If we want the homotopy @ to be extendable to a homotopy between f oh and g, we
need the spheroid y to be homotopic to zero, but we cannot count on that, because
we did nothing to achieve it. To amend the construction, we have only one thing at
our disposition: the choice of the map 8 extending h o a: " — X. If we choose a
different map, B, then y will be replaced by y — (f o §), where §: S"t! — X is the
spheroid composed of the maps B, B’: D"*! — X (which are compatible on dD"*1).
It is clear that the spheroid § can be made (homotopically) arbitrary, but then the
class of the spheroid f o § also can be made arbitrary [since fx: 7,+1(X) = 7,41 (X)
is an epimorphism]. This completes the proof in the case when W — A is one cell.
In the general case, we perform this construction simultaneously for all cells of the
same dimension; if the total number of cells in W — A is infinite, then the continuity
of the final map # is secured by Axiom (W).

11.5 Whitehead’s Theorem

Theorem. Let X and Y be CW complexes, and let f: X — Y be s continuous map If

Jxr (X, x0) — (Y, f(x0))

is an isomorphism for all n and xo, then f is a homotopy equivalence.
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(If X and Y are connected, then it is sufficient to check the condition for one
point xo.)

This theorem is a direct corollary of the previous theorem and the fact that for
CW complexes a weak homotopy equivalence is the same as the usual homotopy
equivalence (see Sect. 9.5).

It follows from Whitehead’s theorem that if all the homotopy groups of some
(nonempty, connected) CW complex are trivial, then this CW complex is con-
tractible (homotopy equivalent to a point). However, in a general case coincidence
of homotopy groups is not sufficient for a homotopy equivalence; it is required
additionally that the isomorphism between homotopy groups is established by some
continuous map. (See, however, Sect. 11.8.)

EXERCISE 5. Show that the spaces S? and S x CP* have equal homotopy groups,
but are not homotopy equivalent.

EXERCISE 6. Show that the spaces §” x RP" and §" x RP™ (m # n) have equal
homotopy groups, but are not homotopy equivalent.

11.6 Cellular Approximations of Topological Spaces

Theorem. For every topological space X there exists a CW complex Y with a
weak homotopy equivalence f:Y — X. [Such a pair (Y,f) is called a cellular
approximation of X.]

Proof. We can restrict ourselves to the case when X is path connected. We are going
to construct a chain of CW complexes (and cellular inclusions) Yo C Y} C Y» C

. and a chain of continuous maps f;: ¥; — X that successively chain each other
such that (f;)«:my(Y;) — m,(X) will be an isomorphism for i < g. For Yy, we
will take a point, while for f; we will take an arbitrary map. Assume that for some
n > 1, the chain Yy C Y} C -+ C Y,— and the maps f;: ¥; — X with the required
properties have already been constructed. Put yy = Yy, xo = fo(yo). Choose a family
of generators {¢,} in the group 7, (X, x0), fix for every generator ¢, a representing
spheroid go, put Y, = Y,—1 v (\/, (8% = $")), and define the map f: ¥, — X as f,—
on Y,_; and as g, on S?. By the theorem in Sect. 11.2, the inclusion map ¥,,—; — Y},
induces an isomorphism for every group 7, with ¢ < n, so (f))«:7,(Y},,y0) —
4(X, o) is an isomorphism for ¢ < n. For ¢ = n it is an epimorphism, since its
image contains all generators of 7, (X, xo). It is not necessarily a monomorphism.
Choose a system of generators {¥g} in Ker((f))«: 7, (Y}, y0) = 7.(X,x0)), fix for
every ¥ a representing spheroid hg:S" — Y, (we can require that g be a cellular
map, but our construction guarantees that dim Y,/, < n, so it may be not necessary),
and then attach to Y, an (n + 1)-dimensional ball by every hg. The CW complex
arising is our Y,. Since (f)«(¥g) = 0, the map f, can be continuously extended
to every attached ball, and we get a continuous map of Y, into X, and this is our
Jn- Since attaching (n + 1)-dimensional balls does not affect groups 7, with g <
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n, the map (fy,)« is still an isomorphism for homotopy groups of dimensions less
than #. In dimension n, it is still an epimorphism (since Y, D Y,’l), and it is also a
monomorphism, since 7,(Y,, yo) = m,(Y),y0)/ Ker((f;)«) [here we used the fact
that Ker((f))«) is a 7r;-submodule of 7, (Y, yo)].

As soon as we have the chain Yy C Y} C Y, C ... constructed, we put ¥ =
(U, Y» (with the weak topology) and get a CW complex Y with a continuous map
f:Y — X which induces isomorphisms for all homotopy groups and hence is a weak
homotopy equivalence.

EXERCISE 7. Prove that a cellular approximation of any topological space X is
homotopy invariant. This means that if (Y,f) and (Z, g) are two cellular approxi-
mations of the same topological space X, then there exists a homotopically unique
homotopy equivalence h: Y — Z such that g ~ f o h.

The main raison d’étre of this theorem consists in a possibility to generalize
some homotopy results from CW complexes to (more or less) arbitrary topological
spaces. As an exercise, the reader can do this with the theorem in Sect. 11.2. Another
application of this theorem is a new clarification of the notion of the weak homotopy
equivalence, as stated in the following exercise.

EXERCISE 8. Prove that topological spaces X and Y are weakly homotopy equiva-
lent if and only if there exist maps

X<LZL>Y,

where Z is a CW complex and f, g are weak homotopy equivalences.

11.7 Eilenberg-MacLane Spaces (K(rr, n)s)

Theorem. Let n be a positive integer, and let w be a group which is supposed to be
commutative if n > 1. Then there exists a CW complex X such that

m, if g = n,
X) =
7y (X) 0, if g # n.

(compare with the end of Lecture 4.)

Such spaces are called Eilenberg—MacLane spaces or spaces of type K(m,n).
People sometimes say that X is a K (7, n).

Proof of Theorem. Nothing new for us. First, we choose a presentation of the group
7 by systems of generators and relations 7 = (¢o, o € A | ¥5,8 € B). Then
we take the bouquet of n-dimensional spheres labeled with elements of A, X, =
V, € A(S"a = §"). Then 7,(X,) = 0 for g < n, and 7,(X,) is a free group with
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generators labeled with elements of A. For every § € B, we can regard ¥ as an
element of ,(X,). Choose spheroids hg: S" — X, representing v/, and for every 8
attach to X, an n-dimensional cell by the map hg. We get a CW complex X, 11, of
dimension at most n + 1, such that 7,(X,,+1) = 0if ¢ < n and  if ¢ = n. Then
we take an arbitrary system of generators in ,+1(X,+1), represent these generators
by spheroids, and attach (n 4 2)-dimensional cells by these spheroids. We get some
Xn+2 D Xu+1 with the same homotopy groups as X,,+ in dimensions < n and with
Tn+1Xy+2) = 0. Then we do the same with 7,45 (X,,+2), get an X;,13, and so on. In
the end, we get a CW complex X with all the required properties.

Remark. The construction in the proof is very far from being explicit: We do
not know the groups 7,41 (X+1), Tu+2(Xn+2), . . . and have no technical means to
compute them. Certainly, we can extinguish all arbitrary choices in this construction
attaching (n + 2)-dimensional cells by all possible (n + 1)-dimensional spheroids
of X,,+1, then attach (n + 3)-dimensional cells by all possible (n + 2)-dimensional
spheroids of X,+», and so on. This will make the construction natural (functorial),
but it will become tremendously inconvenient. This makes especially interesting the
relatively few known explicit constructions of K (7, n)s.

Explicit constructions. (1) The space CP* is a space of type K(Z,2). This is the
only case when a K (i, n) with n > 2 has a geometrically explicit construction. (2) S'
isa K(Z,1).(3) RP* has the type K(Z,, 1). (4) The infinite-dimensional lens space
L>* = §°°/Z,,, where the generator T of the group Z,, acts in S*° C C* by the
formula T'(z1,22,...) = (z1€7™/™, z¢*>™/™ .. .), and is a space of type K(Z,,, 1).
(5) Since K (71, n) X K(7r2, n) = K (7| X w3, n), constructions (2)—(4) give us spaces
of type K (7, 1) for every finitely generated Abelian group .

There are lots of known spaces of type K (s, 1) with non-Abelian 7, for example,
all classical surfaces, except 52 and RP? (see Exercise 4 in Sect. 8.3), and also
bouquets of circles (see Exercise 3 in Sect. 8.3).

EXERCISE 9. Prove that the space of all unordered sets of n points in R> (or $°°)
is a K(Sy, 1).

EXERCISE 10. Prove that the space of all unordered sets of n points in the plane is
a K(m, 1) for a certain group . This group is called the Artin n-thread braid group.

EXERCISE 11. Do the same for the space of ordered n-point subsets of the plane.
(The group arising is called the group of pure braids. It is better to do this exercise
before the previous one.)

EXERCISE 12. Prove that a complete nonpositively curved Riemannian manifold is
a space of type K (7, 1) for some 7. (The proof is based on the fact that in a simply
connected complete negatively curved Riemannian manifold every two points are
connected by a unique geodesic.)

Remark. A complement to a knot in S is also a space of type K(r, 1), but it is not
likely that the reader is able to prove it with the technical means currently at hand.
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EXERCISE 13. Prove that QK(r,n) = K(;r,n— 1). [This shows that every K (7, n)
with an Abelian 7 is an H-space, and even a homotopy commutative H-space.
Actually, every K(w,n) with an Abelian 7 can be constructed as an Abelian
topological group.]

11.8 The Uniqueness of K(x, n)s

Theorem. Any two spaces of type K (i, n) are weakly homotopy equivalent. Hence,
any two CW complexes of type K(7t, n) are homotopy equivalent.

Proof. Let X be a K(i,n), and let be a CW complex which is a K (7, n) with one
vertex and without other cells of dimension < n. Our theorem will be proved if
we construct a weak homotopy equivalence f: Y — X. The latter means only that
fe:m,(Y) = m,(X) is an isomorphism.

The nth skeleton of Y is a bouquet of n-dimensional spheres which represent
generators of 77,(Y) = m. Since 7, (X) is also 7, we can choose the same generators
for ,(X) and then map every sphere of the bouquet sk, Y into X according to some
spheroid representing the corresponding element of ,(X). We get a continuous
map f,:sk, Y — X. Let e be an (n + 1)-dimensional cell of Y, and let g: S" — sk, ¥
be the attaching map. The spheroid g represents a zero class in ,(X); hence, the
composition f o g is a homotopic to a zero spheroid of X, and we can extend the map
f continuously to the cell e and, in this way, to the whole skeleton sk, Y. The map
Jut+1:8kn41 Y — X induces an isomorphism (f,4+1)«: 7, (sky1Y) = 7 — 7,(X).
The extension of f,, 1 to cells of dimensions > n+ 1 does not meet any obstructions:
Attaching maps are maps S — sk, Y with ¢ > n, and their composition with f,
forms spheroids homotopic to zero. This completes the construction.

EXERCISE 14. Prove thatif X, Y are K (i, n)s and Y is a CW complex, then a weak
homotopy equivalence Y — X is homotopically unique. Moreover, if X is a K(r, n)
and Y is a K(p, n) and also a CW complex, then for every homomorphism ¢: p — 7
there exists a homotopically unique continuous map f: ¥ — X such that fi.: 7, (Y) —
7, (X) is .

Remark. This property of K (7, n)s that their (weak) homotopy type is determined
by their homotopy groups is not generalizable to spaces with multiple homotopy
groups. There exist CW complexes X, Y such that each has two nontrivial homotopy
groups, and these groups for X and Y are the same, but, however, X and Y are not
homotopy equivalent. In Chap. III we will be able not only to find such examples,
but even to provide a sort of a classification for them.
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11.9 Capping and Killing Homotopy Groups

In conclusion, we will discuss two constructions for CW complexes which affect
their homotopy groups in a prescribed way. The first of them is known to us, and
we have used it several times without naming it: It is capping homotopy groups.
Namely, if X is a CW complex, then for any number n we can construct a CW
complex X’ which contains X and has homotopy groups

7,(X') = me(X), %fq <n,

0, if g > n;
moreover, the inclusion map X — X’ induces isomorphisms for all homotopy
groups of dimensions < n. This is achieved by multiple attaching cells of
dimensions > n 4+ 1. This capping operation is homotopically unique, as the
following exercise shows.

EXERCISE 15. Let a CW complex X and a number n be given. Let X{ D X, X} D
X be two CW complexes with the properties listed above. Then there exists a
(homotopically unique) homotopy equivalence X; — X’ whose restriction to
X C X} is homotopic to the inclusion map X — X}.

Let 7,(X) be the first nontrivial homotopy group of a CW complex X. Then
the capping operation gives rise to a homotopically unique map (embedding) X —
K (7,(X),n). We turn this map into a homotopy equivalent (strong) Serre fibration
(see Sect. 9.7) and denote the fiber of this fibration as X|,+;. This space which is
defined canonically up to a homotopy equivalence is sometimes called the first and
sometimes the (n + 1)st killing space of X.

Theorem.

w,(X), if ¢ # n,

Tg(X|n+1) = 0 ifg=n

moreover, the inclusion map X|,+1 induces isomorphisms for all homotopy groups
7y With q # n.

Proof. The fragment
(%)
g1 (K(m, n)) — 7y (X|ny1) — 74(X) — 7,(K (7, n))

[where 7 = m,(X)] of the homotopy sequence of the fibration shows that the map
() is an isomorphism for g # n,n — 1. The fragment

>~

0 (X 1) —— 7u(X) — 7,(K (. )

—> Tyt (X |t 1) —> -1 (K (77, 1))
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(the homomorphisms of an exact sequence surrounding an isomorphism are both
zeroes) shows all the rest.

One can iterate the construction of the killing space and get, for every m, the
killing space X|,, and a map f: X|,, — X such that

w,(X), if g > m,
7g(Xlm) = 0‘1 ifg<m

and the isomorphisms 77,(X|,,) — 7,(X) are established by f.

EXERCISE 16. Prove that for every connected CW complex X, the canonical map
X|, — X is homotopy equivalent to the universal covering.

EXERCISE 17. Prove that SZ|3 ~ 3 generalization: CP"|3 = CP"|2,41 ~ S+l

EXERCISE 18. Prove that in the situation of the theorem above, the fiber of the
fibration homotopy equivalent to a canonical map X|,4+; — X is K(w,n — 1).

Additionally, the cellular approximation of topological spaces (Sect. 11.6) makes
possible the generalization of both capping and killing to arbitrary spaces, and only
homotopy equivalences become weak homotopy equivalences.

Thus, we have two constructions of extinguishing homotopy groups, which are,
actually, dual in the sense of Lecture 4. We can kill homotopy groups of a space
X above a certain dimension, and X is canonically mapped into the new space. Or,
we can kill homotopy groups of X below a certain dimension, and the new space is
canonically mapped into X.



Chapter 2
Homology

Lecture 12 Main Definitions and Constructions

Besides the homotopy groups 7, (X), there are other series of groups corresponding
in a homotopy invariant way to a topological space X; the most notable are
homology and cohomology groups, H,(X) and H"(X). Compared with homotopy
groups, they have an important flaw—their accurate definition requires substantial
algebraic work—and important advantages: Their computation is much easier,
we will calculate them more or less immediately for the majority of topological
spaces known to us, and also they are geometrically better visualizable [there are
no counterintuitive phenomena like 73(S?) = Z]. The information of a simply
connected topological space contained in homology groups is comparable with that
contained in homotopy groups.

The main geometric idea of homology is as follows. Spheroids are replaced
by cycles; an n-dimensional cycle is, roughly, an n-dimensional surface, maybe
a sphere, but it may be something different, say, a torus. The relation of being
homotopic is replaced by a relation of being homological: Two n-dimensional
cycles are homological if they cobound a piece of surface of dimension n + 1. How
do we define cycles and those pieces of surfaces which they bound, the so-called
chains? One can try to present them as continuous maps of some standard objects,
spheres and something else (k-dimensional manifolds?). But this leads to severe
difficulties, especially in dimensions > 2. It is easier to define cycles and chains
as the union of standard “bricks.” The role of these bricks is assumed by “singular
simplices.”

Notice that the construction of homology (and cohomology) groups does not
require a fixation of a base point.
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12.1 Singular Simplices, Chains, and Homology

Let Ag,Ay, ...,A, be points of the space R",n > g, not contained in one
(¢ — 1)-dimensional plane. The convex hull of these points is called the Euclidean
simplex with vertices Ag,Ar,...,A, (this notion is known to us from Lecture 5;
see Sect. 5.8). The convex hulls of (nonempty) subsets of the set of vertices are
called faces of the simplex; they are also Euclidean simplices. Euclidean simplices
of the same dimension are essentially the same, and this motivates us to choose one
standard Euclidean simplex. The usual choice of the standard simplex is the simplex
A" in R"! with the ends of coordinate vectors taken for vertices. Thus,

A" = {(to,tl,...,tn)eR‘f“ 0> 0,11 >0,....1, zO,Z'?_Oti: 1}.

Let X be an arbitrary topological space. We define an n-dimensional singular sim-
plex of X simply as a continuous map of A" into X. An n-dimensional singular
chain of X is a formal finite linear combination of n-dimensional singular simplices
with integral coefficients: ), kif;, fi: A" — X. The set of all n-dimensional singular
chains of X is denoted as C,(X). The usual addition of linear combinations makes
C,(X) an Abelian group; thus, C,(X) is the free Abelian group generated by the set
of all n-dimensional singular simplices of X.

Next we describe the boundary homomorphism 0 = 0,: C,(X) — C,—1(X).
Since the group C,(X) is free, it is sufficient to define 0 for the generators, that is,
for singular simplices. For a singular simplex f we put

o =) (DT,
i=0

where I';f is the ith face of f, which is defined as the restriction of f to the ith
face I'; A",

Fl‘An = {(to,ll,...,tn) e A" I i = 0}

[we identify I'; A" with A"~! using the correspondence

(o, -+ tim1, 0, tip 1y oo ty) < (fos oo timt tigets - o 1))

Theorem. The composition

an n
Cot1 () —25 €, (X) —2 €1 (X)

is trivial; in other words, Im(0,+1) C Ker(d,).
Proof. A direct verification is based on the equality

i Tf. if > .

FiF' = .
7 [T f, ifj < i.
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To make our upcoming life slightly easier, we assume that C,(X) = 0 forn < 0
and extend the definition of d accordingly. The theorem is not affected.

Main Definition. The quotient group
H,(X) = Kerd,/Imd,1

is called the nth homology group of X. In particular, Hy(X) = Cy(X)/Imd; and
H,(X) =0forn <0.

There are also common notations Kerd, = Z,(X) and Imd,+; = B,(X).
Thus, H,(X) = Z,(X)/B,(X). Elements of the groups Z,(X) and B,(X) are called,
respectively, cycles and boundaries. (Thus, every boundary is a cycle, but the
converse is, generally, false.) If the difference of two cycles is a boundary, then these
cycles are called homologous. Thus, the homology group is the group of classes of
homologous cycles (which may be called homology classes).

If the group H,(X) is finitely generated, then its rank is called the nth Betti
number of X.

12.2 Chain Complexes, Map, and Homotopies

A chain complex, or simply a complex, is an (infinite in both directions) sequence
of groups and homomorphisms

Ont2 Ont1 n On—1
Cn+l Cn Cn—l

such that d,, 0 0,41 = 0 for all n.
The group H, = Kerd,/Imad,y; is called the nth homology group of the
complex.

EXERCISE 1. Let

8n+2 an-ﬁ-l an 3,171
. Cn+l Cn Cn—l

Ee a complex. Put al = C, & C,+1 and define AB;: 5,1 — al_l by the formula
0n(c, ) = (0pc, 0yt1c” + (—1)"¢), c € C,, ¢’ € Cpy1. Prove that

Ot ~ Ot1 ~ 3 ~ D1

Cn+1 Cn Cn—l

is a complex and that the homology of this complex is trivial (H, = 0 for all n).

Our main example of a chain complex, so far, is the singular complex of a space
X: C, = C,(X). This complex is positive, which means that C, = 0 forn < 0.
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Mostly, we will consider positive complexes, but there will be exceptions, and the
first exception appears immediately: The augmented or reduced singular complex
of a space X,

s ~ Bt ~ b~ I
2 G (X) S () —2 Gy (X) 225

is defined by the formula

Co(X), ifn # —1,

C,(X) =
&) 7.  ifn=—1,

and d,, are all as before, except dy: Co(X) — Z, more commonly denoted as € and
called an augmentation, which takes every zero-dimensional singular simplex of X
into 1 € Z. Thus, the reduced complex of X looks like

a d
O (X) — Co(X) —— T ——> . ..

[Thus, for a zero-dimensional chain ¢ = ) kifi, €(c) = )_ k;; the number €(c)
is sometimes called the index of the zero-dimensional chain c; it may be denoted
as ind(c).] A natural question arises: Why is this complex called reduced? It looks
bigger than the unreduced complex. The answer is in the following proposition.

Proposition 1. The homology H, #(X) of the reduced singular complex (called the
reduced homology of X) is related to the usual homology as follows. If X is not
empty, then

H,(X), ifn#0,
H,X)=1{~ ]
*) Ho(X)® Z, ifn = 0;

if X is empty, then the only nonzero reduced homology group of X is H_, X) =7

Proof. Obvious.
Back to algebra. If C = {C,,d,} and ¢’ = {C], 9/} are two chain complexes,

then a chain map, or a homomorphism ¢:C — C’, is defined as a sequence of group
homomorphisms ¢,: C, — C, which make the diagram

8”+2 8”+1 On On—1
cee Cn+l Cn Cn—l
I/‘/’rﬂ»l I/(ﬂn Jfﬂnl
4 /
42 o D e o, c -
. n+1 n n—1

commutative.

From this commutativity, ¢,(Kerd,) C Ker(d;) and ¢,(Imd,+1) C Im(d,,_ ),
so there arise homomorphisms ¢« = @«,: H,(C) — H,(C’) with obvious properties,
like (Y o@)« = ¥« o@s. For our main example, a continuous map /#: X — Y naturally
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induces homomorphisms hy = hu,: C,(X) — C,(Y), hs (Zl kifi) =) ki(hof)
and also ha,: a, X) — al(Y) (with hg —; = id) which comprise homomorphisms
between both unreduced and reduced singular complexes. Thus, there arise maps
fe:Hy(X) — H,(Y) and H, X) — ﬁ,,(Y) (with the same obvious properties).

Again back to algebra. Let C = {C,,d,} and ' = {C},d,} be two chain

complexes and ¢ = {¢,}, ¥ = {¥,,}: C — C’ be two chain maps. A chain homotopy
between ¢ and v is a sequence D = {D,: C,, — C,_ ,} satisfying the identities

D,_o0 8n + a:’t-l—l oD, = Wn — @n-

For the reader’s convenience (or inconvenience?) we show all the maps involved in
this definition in one diagram (which, certainly, is not commutative):

an an
—_— Cn+1 + Cn Cn—l —_—
1/Jn+1ll‘f9n+1 wnl\lfo’n ¢n+lll<pn+1
Dn anl
— Chy — cl - Cl_, —
n+1 871

If chain maps ¢, ¥ can be connected by a chain homotopy, they are called (chain)
homotopic.

Proposition 2. If chain maps ¢,¥:C — C' are homotopic, then the induced
homology maps ¢«, V«: H,(C) — H,(C') are equal.

Proof. Let D = {D,} be a homotopy between ¢ and ¥. If ¢ € Kerd,, C C,, then
Yn(€) = @u(c) = Dy 0 0,() + 94y © Dulc) = ;41 (Dn(c)) € Im 3,y

that is, ¢,(c) and ¥, (c) are homologous for every cycle ¢ € C,. Thus, @, = Yup.

EXERCISE 2. A complex (C) is called contractible if the identity map id:C — C is
homotopic to the zero map 0:C — C. A complex (C) is called acyclic if H,(C) = 0
for all n.

(Warmup) Prove that a contractible complex is acyclic.

(a) Prove that the complex {Cn, 3 } from Exercise 1 is not only acyclic but also
contractible.

(b) Prove that the complex

e 007y X 7 T 00, ..

is acyclic but not contractible.
(c) Let (C) = {C,, d,} be apositive (C, = 0 for n < 0) free (all C, are free Abelian
groups) complex. Prove that if (C) is acyclic, then it is contractible.
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Finally, we will establish a connection between chain homotopies considered
here with homotopies between continuous maps. (This connection is actually a
justification for the term “chain homotopy.”) Namely, we will show how a homotopy
between continuous maps f, g: X — Y determines a chain homotopy between the
maps f, g# of singular complexes.

We begin with a geometric construction which presents a covering of a cylinder
A" x1by n+ 1 Euclidean simplices (in the language of Sect. 5.8, it is a triangulation
of A" x I). Recall that A" = {(tg,...,t,) € R |, >0, 1, = 1}. The vertices
of A" are v; = (0,...,0,1,0,...,0) with 1 = ¢. For0 <i <n, put

Ai={((to, ... 1)), ) €A XTI |tg+ -+ ticg St =to+...1:}

(where the empty sum is regarded as 0). It is easy to see that A; is the convex
hull of (v, 1),..., (v, 1), (v;,0),..., (v,,0), that is, the Euclidean simplex with
the vertices (vo, 1),..., (v;, 1), (v;,0), ..., (v,, 0). Indeed, all these points belong to
A;,andif y = ((l‘(), ..., 1), 1), then y = to(vo, 1) + -+ + tic1 (vi—1, 1) + l‘;(vi, 1) +
(v, 0) + tiy1(Vig1,0) + -+ + £,(v,,0), where £; = ¢t — (tp + --- + t,—1) and
! =t—1t = (to+---+1)—t,s0if y € A;, then the sum of the coefficients is 1
and all of them are between 0 and 1.

For n = 1 and 2, this triangulation is shown in Fig. 59 (familiar to the reader
from elementary geometry textbooks).

Let a; = a;(A"): A" — A" x I be the affine homeomorphism of A"*! onto A;
preserving the order of vertices. These ¢;s are singular simplices of A” x 1. Consider
the faces I'jey; (0 < i < n, 0 <j < n+1). First, Ie; = Ty (1 < i < n);in
addition to that, ['gatg = idar X0, I', 410, = idan X 1. Second,

i1 (FjAn)v 1f.] < ia

Tjo;(A") = )
jeilA%) { a(Tii Ay, ifj > i + 1.

Next, let us calculate the boundary of a(A") = Y_.(—1)'e;(A™).

Fig. 59 Triangulations of cylinders over simplices
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da(A") = Y0E0 S (=D T (A") = idar X0 +
[0 I+ Ym0 Yo | (D Ten(A) — idan x1
= idar X0 + Y i) Yo (=D H (T A") — idan x 1
= idan X0 — idan X1 — (DA™,

Now letf, g: X — Y be two continuous maps and let H: X xI — Y be a homotopy
connecting f with g. For an n-dimensional singular simplex b: A" — X, define an
(n+1)-dimensional singular chain B of Y as (Ho (bxI))sa(A"); the correspondence
b — B is extended to a homomorphism C,,(X) — C,+(Y), which we take for D,,.
The previous computations show that for any chain ¢ € C,(X),

0D, (c) = fa(c) — gu(c) — Dy—1(dc),

which means that {D,} is a chain homotopy between f; and g4 (see Fig. 60).
We arrive at the following result.

Theorem. If continuous maps f,g:X — Y are homotopic, then the chain maps
f#, g# are chain homotopic.

Corollary 1. If continuous maps f,g:X — Y are homotopic, then for all n the
induced homology homomorphisms fy, g«: H,(X) — H,(Y) coincide.

Corollary 2. A homotopy equivalence f:X — Y induces for all n isomorphisms
fe: H,(x) —> H,(Y). In particular, homotopy equivalent spaces have isomorphic
homology groups.

(Question: And what about weak homotopy equivalence? The answer is in
Lecture 14.)

EXERCISE 3. Prove the last three statements for reduced homology.

Fig. 60 From a homotopy to a chain homotopy
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12.3 First Calculations

The groups of singular chains are usually huge and difficult to deal with; they are not
fit for systematic calculations of homology groups. There are some efficient indirect
methods of homology calculations which will be presented in the nearest future.
Still, some direct calculations are possible and, actually, necessary for developing
those indirect methods.

A: Homology of the One-Point Space

Let pt denote the one-point space. Then in every dimension n > 0 there is only
one singular simplex f,: A" — pt. In particular, I';f, = f,— for all i, and df, =
foct = faet + fot — -+ + (=1)"f,_1, which is 0 if n is odd and f,_; if n is even and
positive. Thus, the (unreduced) singular complex of pt has the form

“ Z 0 Z “ Z 0 Z—-0—-0—...,

and

Z,ifn =0,

Hypy = ) &
®Y =10, ifn£0.

Add to this that ﬁo(pt) = 0; this shows that H,, (pt) = 0 for all n.
A space whose homology is the same as that of pt is called acyclic.

Corollary (of homotopy invariance of homology). Contractible spaces are acyclic.

. SR B :
The converse is not true; fans of the function sin ~ will appreciate an example

X
in Fig. 61. There are more interesting examples, say, the Poincaré sphere with one
point deleted.

Fig. 61 A noncontractible acyclic space
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B: Zero-Dimensional Homology

Theorem. If X is path connected, then Hy(X) = Z.

Proof. Zero-dimensional singular simplices of X are just points of X; one-
dimensional simplices are paths, and the boundary of a path joining xo with x;
is x; — xp. If X is connected, then every zero-dimensional chain Zi kif; (which
is always a cycle) is homological to (Zl ki) Jfo, where fy is an arbitrarily fixed
zero-dimensional singular simplex; indeed, if s; is a path joining fy with f;, then
azikisi = szl(ﬁ —f()) = szlﬁ — (szl)ﬁ) We see that if Ziki = 0,
then the chain is homological to zero. The converse is also true: The sum of the
coefficients of the boundary of a one-dimensional singular simplex, and hence of
the boundary of every zero-dimensional singular chain, is zero. We see that the map
€ : Co(X) = Zy(x) — Z establishes an isomorphism Hy(X) — Z.

Equivalent statement (for a path connected X): Ho X)=0.

EXERCISE 4. Prove that if f:X — Y is a continuous map between two path
connected spaces, then fi: Hy(X) — Hy(Y) is an isomorphism.

C: Homology and Components

Standard simplices are connected. Hence, every singular simplex of a space belongs
to one of the path components of this space. This shows that C,(X) = @, Cu(Xo),
where the X, s are path components of X, and also Z,(X) = @, Z,(Xy), B,(X) =
D, B.(Xe), Hi(X) = P, Hi(Xy). In particular, the two previous computations
imply the following. (1) For an arbitrary X, Hy(X) is a free Abelian group generated
by the path components of X; (2) If the space X is discrete, then H,(X) = 0 for

any n # 0.

12.4 Relative Homology

Let (X, A) be a topological pair; that is, A is a subset of a space X. Then C,(A) C
C,(X). The group C,(X,A) = C,(X)/C,(A) is called the groups of (relative)
singular chains of the pair (X,A) or of X modulo A. Obviously, C,(X,A) is a free
Abelian group generated by singular simplices f: A" — X such that f(A") ¢ A.
Since d(C,(A)) C C,—1(A), there arise a quotient homomorphism 9: C,(X,A) —
C,—1(X,A) and a complex

3 3 3 3
— X, A)—C,X,A)—C 1 (X, A)— ...
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The homology groups of this complex are denoted H, (X, A) and are called relative
homology groups. One can say that H,(X,A) is the quotient Z,(X,A)/B,(X,A) of
the group of relative cycles over the group of relative boundaries. Here a relative
cycle is a singular chain of X whose boundary lies in A, and a relative boundary is
a chain of X which becomes a boundary after adding a chain from A. (Obviously,
relative boundaries are relative cycles.)

EXERCISE 5. Compute Hy(X, A) in the case when X and A are both connected and
in the general case.

EXERCISE 6. Construct for an arbitrary space X and an arbitrary point xo € X a
natural isomorphism H,(X) = H,(X, x¢).

The boundary of a relative cycle is an absolute (that is, usual) cycle in A; the
correspondence ¢ > dc determines (for every n) a boundary homomorphism

s Hy (X, A) — H,_1(A)

(indeed, if ¢ — ¢’ is a relative boundary, then dc — d¢’ is an absolute boundary in A).
The homomorphism 9 is included in a homology sequence of a pair (similar to a
homotopy sequence of a pair; see Sect. 8.7; but it looks simpler than the homotopy
sequence, since it involves only Abelian groups):

0% % jx 05 Ix
s Ho(A) —s Hy(X) 25 Hy (X, A) — Hyoy (A) —— ...,

where iy is induced by the inclusion map i:A — X and jx is induced by the
projection C,(X) — C,(X)/Cn(A) = C,(X, A).

Theorem. The homology sequence of a pair is exact.

We prefer to have this theorem in a “more general” algebraic form. Let C =
{Cy, 0,,} be a complex and let ' = {C), 9/} be a subcomplex which means C, C
Ca, 0,(C;)) C C_, foralln and 9, (c) = 9,(c) for all ¢ € C),. There arise a quotient
complex " = C/C' = {C] = C,/C), 3!} with a naturally defined 9/, and also

inclusion and projection homomorphisms ¢:C’ — C and n:C — C”. There also
arise “connecting homomorphisms”

35 Hy(C") — Hy_y (C)).

Namely, let y” € H,(C") be an arbitrary homology class and let ¢’ € Kerd! C
C! = C,/C, be a representative of y”. Let ¢ € C, be a representative of (the
coset) ¢”’. The equality 0/c” = 0 means precisely that ¢’ = 9,c¢ € C,_,. Moreover,
0/ _,c" = 0,—1¢’ = 0,—1 0 0yc = 0. Thus, ¢’ € Kerd,_, and hence belongs to the
homology class in y’ € H,_1(C’); we take this class for d«(y").

EXERCISE 7. Prove that the correspondence y” +> 7y’ provides a well-defined
homomorphism 0«: H,(C") — H,—1(C’). In particular, y’ does not depend on
the choice of ¢”” in y” and of c in ¢”. Moreover, one needs to check that d, is a
homomorphism.
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Algebraic Theorem. The sequence
I HA(C) = Hy(C) 5 Ho(C) —25 H, 1 (C) —2

is exact.

EXERCISE 8. Prove the algebraic theorem. (The proof has some resemblance to the
proof of exactness of the homotopy sequence of a pair in Sect. 8.7.)

The algebraic theorem implies the theorem above; it will be used many more
times in this book, including exercises later in this section.

Notice that a map f:(X,A) — (¥,B) between topological pairs (that is, a
map f:X — Y such that f(A) C B) induces homomorphisms fi: H,(X,A) —
H,(Y,B) and a homomorphism of the homology sequence of the pair (X, A) into
the homology sequence of the pair (Y, B), that is, a “commutative ladder”

e = Hy(A) = Ho(X) = Ho(X,A) — Hp_1(A) — ...

N O S

---—> H,(B) -> H,(Y) > H,(Y,B) > H,_1(B) —> ...

with exact rows. Add to that H,(X) = H,(X, ) (in this sense relative homology
is a generalization of absolute homology) and that the mysterious homomorphism
Jx:Hy(X) = H,(X, A) is actually induced by the map j = id: (X, 4) — (X, A).

EXERCISE 9. Construct the homology sequence of a triple,
--+—> H,(A,B) - H,(X,B) »> H,(X,A) > H,—1(A,B) — ...

(B C A C X) and prove its properties, including the exactness. (Compare to
Exercise 10 in Sect. 8.7.) (In the case when A is not empty, a combination of this
exercise with Exercise 5 gives rise to a reduced homology sequence of a pair, with
the absolute groups H replaced by H ).

The exactness of homology sequences of pairs and triples (combined with the
five-lemma; see Sect. 8.8) has a standard set of corollaries. Among them, there is a
homotopy invariance of relative homology: If f: X — Y is a homotopy equivalence,
f(A) C B, and the map A — B arising is also a homotopy equivalence, then
f«:Hy(X,A) - H,(Y, B) is an isomorphism for all n.

(We have to disappoint a reader who expects an exact “homology sequence of a
fibration” relating homology groups of the total space, the base, and the fiber of a
fibration. The relations between homology and fibrations are more complicated, and
we will thoroughly study them in the subsequent chapters of this book.)
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12.5 Relative Homology as Absolute

The results here provide the main technical tool to effectively compute homology.
Theorem. Let (X,A) be a topological pair.

(1) The inclusion X — X U CA, where X U CA is obtained from X by attaching the
cone over A, induces for every n an isomorphism

H,(X,A) =~ H,(X UCA, CA) = H,(X U CA,v) = H,(X U CA),

where v is the vertex of the cone CA.
(2) If (X,A) is a Borsuk pair (see Sect. 5.0), for example, a CW pair (see again
Sect. 5.6), then

psiHy(X,A) — H,(X/A,a) = H,(X/A)

[where p:X — X/A is the projection and a = p(A)] is an isomorphism for
all n.

COMMENTS. 1. Part (2) follows from part (1) because of the homotopy equivalence
X U CA ~ X/A for Borsuk pairs (see Sect. 5.6 again). Thus, we need to prove
only part (1).

2. In Sect. 9.10, we showed how relative homotopy groups can be presented as
absolute homotopy groups of a certain space. Here we do the same for homology
groups, and it is obvious that for homology the construction is much simpler
than for homotopy. This may be regarded as a first illustration of a reason why
homology groups are way easier to compute than homotopy groups.

The proof of the theorem is based on the so-called refinement lemma, whose proof
is based on the so-called transformator lemma. Both lemmas (especially, the first)
have considerable independent value. We arrange the proof in the following order.
First, we state the refinement lemma. Then we state and prove the transformator
lemma. Then we prove the refinement lemma. And after that we prove our theorem.

Let X be a topological space and let &/ = {U,} be an open covering of X. We say
that a singular simplex f: A" — X is subordinated to the covering U if f(A") is
contained in U, for some o. Let CY(X) be a subgroup of C,(X) generated by
singular simplices subordinated to /. It is obvious that d(C¥ (X)) C CY  (X): If
a singular simplex is subordinated to ¢/, then all its faces are subordinated to /.
Thus, the groups Cnl’{ (X) form a subcomplex of the singular complex of X.

Refinement Lemma. The inclusion of the complex {CY(X)} into the complex
{Cn(X)} induces a homology isomorphism. In other words, (1) every singular cycle
of X is homologous to a cycle composed of singular simplices subordinated to U and
(2) if two such cycles are homologous in X, then their difference equals a boundary
of a chain composed of singular simplices subordinated to U.
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To prove this lemma, we need “transformators.”

Definition. A transformator t is a rule which assigns to every topological space X
and every integer n a homomorphism ¥: C,(X) — C,(X) such that

(1) tf = id forevery X.
(2) 3, 01F =1, 00, for every X and every n.
(3) If h:X — Y is a continuous map, then iy o ¥ = 7} o hy for every n.

Example 1 (Barycentric Transformator). The barycentric subdivision of the stan-
dard simplex A" (see Fig. 21 in Sect. 5.8) consists of (n + 1)! n-dimensional

Euclidean simplices corresponding to chains §° c §' C --- C §" of faces of
dimensions O, 1, ..., n; the vertices of the simplex corresponding to this chain are
centers of §°, 8!, ..., 8" In other words, simplices of the subdivision correspond to

permutations ¢ € S,+1: The simplex S, A" corresponding to a permutation o of
0,1,...,n has vertices

o vg(o)+va(l)+"'+va(k),k=0,1a- ., n,
k41

where vy, vy, . .., v, are the vertices of A" in their natural order. The correspondence
v; > uf is extended to an affine map B,: A" — A", which may be regarded as an
n-dimensional singular simplex of A”". Put B(A") = ZGES,, “ sgn(o)PBs. A direct
computation shows that d(B(A")) = Y " (—1)'B(T;A") (the faces inside A" are
cancelled; there remain only simplices of barycentric subdivisions of faces of A”,
and they appear in 9(8(A")) with proper signs).

EXERCISE 10. Reconstruct the details of this direct computation.

Now to the transformator. For a chain ¢ = Y, ki € C,(X), we put fX(c) =
> ki(f)#(B(A™)). This is a transformator: Properties (1) and (3) are immediately
clear, and property (2) follows from the formula for d(8(A")).

Example 2 (Backward Transformator). Let w: A" — A" be the affine homeo-

morphism reversing the order of vertices (w(v;) = v,—1). For ¢ = Y . kfi €

Ci(X), put 0¥(c) = Y, k,-(—l)"("zrl)(ﬁ o w). It is immediately clear that {wX}

satisfies conditions (1) and (3) from the definition of a transformator, and a direct
computation shows that condition (2) is also satisfied.

EXERCISE 11. Reconstruct the details of this direct computation.
We will use the backward transformator later, in Lecture 16.

Transformator Lemma. Let 1 = {t*} be a transformator. Then for every X
the chain map t* = {t¥:C,(X) — C,(X)} is homotopic to the identity. Thus,
(T)sn: Ho(X) = Hy(X) is idp, x)-

Moreover, a homotopy DX: C,,(X) — C,41(X) between t* and id can be defined
in such a way that fy y11 0 DX = DY o fu, for every continuous map f: X — Y.

Proof of Transformator Lemma. We put Dg = 0 for all X. Let n > 0. Assume
that for all X and m < n we have already defined homomorphisms DX: C,,(X) —
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XUC'A

Fig. 62 The two-set covering of X U CA

Cp+1(X) which satisfy all the conditions required (including the condition 9,,41 ©
DX +DX_ 09, = tX —id). The construction of DX we begin with is D2" (id). The
desired property is
DY (id) = t2"(id) — id —D2", (3id).

ButdoD2" (did) = 2", (9id)—did —D2",(3did) = 3(¢2" (id) —id), which shows
that 3(z2"(id) — id—D2",(3did)) = 0. Since H,(A") = 0 (A" is connected), the
cycle 2" (id) —id —Dﬁ_ﬂl (0id) € C,(A") is a boundary of some chain in C,,4(A");
we choose such a chain and take it for Df" (id). After that, for an arbitrary X and
arbitrary ¢ = Y kfi € C,(X), we put DX(c) = Y. ki(f)#(D2"(id). This D¥
obviously satisfies the conditions in the “moreover” part of the lemma.

Proof of the Refinement Lemma. We use the barycentric transformator 5. We need
to prove that (1) every cycle from C,(X) is homologous to a cycle in C¥(X) and
(2) if a cycle from CY¥(X) is a boundary of some chain from C,1(X), then it is
a boundary of some chain from C,Z;{+1(X). This follows from the following three
facts. (A) For every chain ¢ € C,(X) the chain (8X)"(c) with a sufficiently big N is
contained in C¥ (X) (it is obvious). (B) A cycle ¢ is homologous to B(c), and hence
to BV(c) (the transformator lemma). (C) If a cycle ¢ belongs to C¥(X), then the
difference ¢ — B(c), and hence the difference ¢ — 8V (c), is a boundary of a chain
from Cf;{+1 (X) (the “moreover” part of the transformator lemma).

Proof of Theorem. We need to prove only part (1). Consider the covering f of C U
CA by two open sets: CA (without the base) and X U C’'A, where C’'A is the lower
half of the cone (without the upper base): See Fig. 62.

It follows from the relative version of the transformator lemma (which, on one
side, can be proved precisely as the absolute version, and, on the other side, follows
from the absolute version and the five-lemma) that the homology of the pair (X U
CA, CA) can be computed with the chain groups
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CY(X U CA, CA) = CY(X U CA)/CH(CA);

the covering of the cone CA, induced by the covering I/, we denote again by /. But
obviously

CY(X U CA)/CU(CA) = C,(X U C'A)/C,(C'A) = C,(X U C'A, C'A).
Thus,

H,(X U CA) = H,(X U CA,pt) = H,(X U CA, CA)
= H,(X UCA,CA) = H,(X,A)

(the last equality follows from the homotopy invariance of homology).

12.6 Generalizations of the Refinement Lemma: Sufficient
Sets of Singular Simplices

The refinement lemma says that for computing homology groups of spaces and
pairs it is possible to consider only singular simplices satisfying some additional
condition. This additional condition (for the refinement lemma this is the condition
of being subordinated to an open covering) may be different.

Definition. A set S of singular simplices is called sufficient if all faces of a singular
simplex from S also belong to S, so the groups CS (X) C C,(X) form a subcomplex
of the singular complex of X, and if the inclusion map of this subcomplex induces
a homology isomorphism. In other words, for every n, every cycle from C,(X) is
homologous to some cycle belonging to C5(X), and if a cycle belonging to C5(X)
equals the boundary of some chain from C,+;(X), then it is also a boundary of
a chain in C3 '+ 1(X). The usual procedure of proving sufficiency of some set S of
singular simplices is to find some way of “approximating” singular simplices with
all faces in S by chains in C(X) with the same boundary. We will not prove any
general result of this kind but will list several sufficient sets in the form of exercises
(the statement in the last of these exercises will actually be proved quite soon).

EXERCISE 12. If X is a smooth manifold (say, a smooth surface of some dimension
in some Euclidean space), then smooth singular simplices form a sufficient set.

EXERCISE 13. If X is adomain in an Euclidean space, then affine singular simplices
form a sufficient set.

EXERCISE 14. If X is a triangulated space, then affine isomorphisms of standard
simplices onto the simplices of the triangulation form a sufficient set.
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12.7 More Applications of the Refinement Lemma

We will give here in the form of exercises two additional properties of homology
groups. In the next lecture we will prove similar statements in the CW context.

EXERCISE 15. Let (X, A) be a topological pair, and let B C A. The inclusion map
(X —B,A—B) — (X,A) induces a homomorphism

H,(X — B,A — B) > H,(X,A)

called an excision homomorphism. Prove that if B C IntA, then the excision
homomorphism is an isomorphism. (This statement is called the excision theorem,
or, within a certain axiomatic approach to homology theory, the excision axiom. The
conditions on X, A, B which imply the excision isomorphism may be different.)

EXERCISE 16. LetX = AUB, ANB = C. We suppose that the excision homomor-
phisms H,(B,C) — H,(X,A) and H,(A, C) — H,(X, B) are isomorphisms. Then
the homomorphisms

; —1
Hy(X) 25 Hy(X, A) 250 H, (B, C) —2 H,_1(C)
j exc. ! *
Hy(X) =2 Hy(X, B) 255 Hy (A, C) =2 H,_1 (C)

are the same, and we denote them as y,. The sequence

e S Ho(C) = Hy(A) @ Hy(B) 2 Hyy(X) " Hy_y (C) — ...,

where «,, is the difference of the homomorphisms induced by the inclusions C — A
and C — B and f,, is the sum of the homomorphisms induced by the inclusions A —
X and B — X, is called the Mayer—Vietoris homology sequence or the homology
sequence of the triad (X; A, B). Prove that this sequence is exact.

Lecture 13 Homology of CW Complexes

In this lecture, we will see that it is possible to compute the homology groups of
CW complexes via a complex way narrower than the singular complex. We have to
begin with the homology of spheres and bouquets of spheres.
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13.1 Homology of Spheres: Suspension Isomorphism

Theorem 1. Ifn > 0, then

Z,ifm=0,n
Hm Sﬂ — ’ ) ’ ’
(5%) 0, if m # 0,n.

The homology of the (two-point) sphere S° looks different: Hy(S°) = Z &
Z, H,,(S%) = 0, if m # 0. To make the statement better looking, we may consider
the reduced homology.

Theorem 1. For all n,

~ Z,ifm=n
H,S") = T ’
(5%) 0, if m # n.

Proof of Theorem 1 Consider a portion of the reduced homology sequence of the
pair (D", $"!):

H,(D") = Hu(D",S"™") = Hpei (") = Hpt (577)

I I [
0 H,,(S") 0

[the equalities come from Sect. 12.3.A and Sect. 12.5 (part (2) of the theorem)].
From the exactness of the sequence, we have Hm(S”) = H,_1(5™!), which
completes the proof, since for n = O the statement is known to us.

The 1somorphlsmH (8™) = H,,—1 (5" ") constructed in the proof is generalized
as the following suspension isomorphism.

Theorem 2. For any topological space X and any n,
ﬁn(EX) = ﬁn—l(X)'

Proof. 1t follows from the reduced homology sequence of the pair (CX, X), the
contractibility of CX, the equality XX = CX/X, and the (obvious) fact that (CX, X)
is a Borsuk pair.

Remark. From the point of view of the Eckmann—Hilton duality (Lecture 4), this
isomorphism is dual to 7, (X) = m,—(22X). Freudenthal’s theorem (Lecture 10) is
dual to a relation between the homology groups of X and 2X which will be studied
in Chap. 3.

EXERCISE 1 (A more precise version of Theorem 2). Let f: A"! — X be a
singular simplex of X. The composition

n n—1 proj.
A"=CA"™" — CX— 32X
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is a singular simplex of £X, which we denote as 3f. Prove that the maps

o1 (X) = Ca(EX), ) kifi > ) ki(Ef)

commute with d and induce the isomorphism Ho,_y (X) =, ﬁn(EX).

EXERCISE 2. Using Exercise 1, construct singular cycles representing the homol-
ogy of spheres.

EXERCISE 3. Prove that a generator of a group H,(D", ") = Z is represented
by a one-simplex relative cycle f: A" — D", where f is a homeomorphism.

EXERCISE 4. Construct a relative version of the isomorphism X of Exercise 1 and
prove that it commutes with maps fi and 0.

13.2 Homology of Bouquets of Spheres and Other Bouquets

Theorem 1. Let A be an arbitrary set and let S}, a € A, be copies of the standard
n-dimensional sphere. Then

ﬁn (\/ S") — % ®aeA Zo, if m = n,

acA ¢ 0, if m # n.

Here @, c, Za is the free Abelian group generated by the set A, that is, the sum of
groups 7 corresponding to the spheres of the bouquet.

Proof. This follows from Theorem 2 of Sect. 13.1, since \/,c, S% is homotopy
equivalent to the suspension of \/,c, S"~! (and even is homeomorphic to this
suspension if the latter is understood in the base point version), and for the bouquet
of the zero-dimensional spheres the statement is true. Also, this follows from the
next theorem.

Theorem 2. If (X, x,) are base point spaces which are Borsuk pairs, then for
any m,

Hy (\/aeA XO‘) - @ﬁm(xa)-

a€A

Proof. A bouquet is the quotient space of a disjoint union under the union of the
base points.

EXERCISE 5. Construct the previous isomorphism at the level of cycles, establish
its relative version, and prove the compatibility with fi and 0.
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13.3 Maps of Spheres into Spheres and of Bouquets
of Spheres into Bouquets of Spheres

Recall that a continuous map of S” into S" has a degree, an integer which
characterizes its homotopy class (Sect. 10.3). A continuous map

g \/aeA SZ - \/ﬂeB Sg

(where S, Sg are copies of the sphere S”) has a whole matrix of degrees {d.p | o €
A, B € B}, where d,g is the degree of the map

A VA B

where i, is the identity map of §" onto S, and pg is the identity map of Sg of §" and
the constant map on the other spheres of the bouquet.

EXERCISE 6. Do the degrees d,g determine the homotopy class of the map g?

Theorem. The matrix of the map

Hi (Veen $2) = Ho (Vpe S§)
[ |
Doea Za @ﬂeB Zp

coincides with {dupg}. In particular, the map

H (8" —2 H,(s")

[ [
Z Z

induced by the map f:S" — S" of degree d is the multiplication by d.

Proof. Since X preserves the degrees, both for maps §” — S" and homomorphisms
H,(S") — H,(S"), our statement for some dimension » and some matrix {dug}
implies our statement for dimension n 4 1 and the same matrix. On the other side,
in dimension 0 everything is known (obvious). However, this does not resolve our
problem: The trouble is that a base point—preserving map S° — S° can have only
degree O or 1. Thus, this suspension argumentation proves our theorem only for
maps g:\/, Sh — \/ﬂ Sg which are n-fold suspensions of maps \/, S2 — \/ﬂ Sg.
Still, there are such maps, in particular, i, and pg. Thus, (i¢)«: Z — @a Zo takes a
¢ € Z into ca and (pg)«: @ﬁ ZB — Z takes Y _ cgf into cg. We want to prove that
g« takes Za CoQ Into Za, B dupcq B, which (because of the computation of (i, )+ and
(pg)+ above) is the same as proving that (pg o g 0 iy)«: Z — Z is the multiplication
by dyg. In other words, all we need is to prove that a map §" — S§" of degree d
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induces a homomorphism H, (S") — H,(S") which is the multiplication by d. Let
us prove this (for d = 1, it is obvious).

Let B = S Vv---Vv§), and let :§" — B be a map whose composition with
each pi:B — S"(k = 1,...,d) has degree 1 (obviously, such a map exists). Let
s: B — S" map every sphere of the bouquet onto S" by the identity map. Then sor is
amap of degree d. Since deg(pyor) = 1, the homomorphismry:Z — Z&---DZ (d
summands) takes a ¢ € Z into (c, .. ., ¢). Since deg(s o i) = 1, the homomorphism
sx:Z D ---®7Z — Ztakes (cy,...,cq) into ¢; + --+ 4+ c4. Hence, (s o r)«(c) =
¢+ -+ 4 ¢ = dc, which is what we needed to prove.

13.4 Cellular Complex

Let X be a CW complex and let X" = sk, X (n = 0,1,2,...) be its skeletons. Let
{el | o € A,} be the set of all n-dimensional cells of X.

Pre-lemma. The space X"/X"~! is homeomorphic to the bouquet \/aeAn Seyif
characteristic maps f,: (D", 8" — (X", X"™") are fixed, then there arises a
canonical homeomorphism between X" /X"~! and Vaen, Sa-

Indeed, the maps f, compose a continuous map [ [, (D%, S"~!) — (X", X"~ '), and
itis obvious [follows from the properties of characteristic maps and Axiom (W)] that
the map ([, D*)/(11, S=™") =V, S» — X"/X"~! is a homeomorphism.

Lemma.

free Abelian group generated by
H, (X", X" ") =~ n—dimensional cells of X, if m = n,
0, if m # n.

The group C,(X) = H,(X", X" ") is called the groups of cellular chains of X.
The cellular differential or cellular boundary operator 0 = 9,,: C,(X) — Cp—1(X) is
defined as the connecting homomorphism

Proof. Hy(X".X"™") = Hu(X"/X"™") = Hu(V yen, S

0
Hn(Xn,Xn_l) N Hn_l(Xn—l’Xn—Z)

I |
Cn(X) C,n—l()()

from the homology sequence of the triple (X", X"~!, X"~2) (see Exercise 7 from
Sect. 12.4).

AN OBVIOUS FACT: 0,1 © 3,:C,(X) — C,—1(X) is zero (follows from the
equality d o d = 0 in the singular complex).
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We obtain a complex

e —— . L om—am—cx)——o0...,

which is called the cellular complex of X. If we add the term C™'(X) = Z and
augmentation dy = €: Co(X) = Hy(X") — Z, and then replace the notation C by C,
we will get a definition of a reduced or augmented cellular complex.

There are two important things concerning cellular complexes. First, it is far
from being as big as the singular complex; for example, for finite CW complexes
the cellular chain groups are finitely generated. Moreover, not only the cellular chain
groups, but also the cellular boundary operators have an explicit description that is
easy to deal with. Second, we will prove that the homology of the cellular complex
is the same as the homology of the singular complex. We will show how these results
can be applied to calculating the homology of many classical CW complexes.

We will begin with the second part of this program.

13.5 Cellular Homology

Theorem. For an arbitrary CW complex X, the homology of the cellular complex
{C,(X), 0} coincides with the singular homology H,(X).

Proof The proof consists of three steps.

Step 1. H,(X) = H,(X"*'). Let m > n. From the exactness of homology
sequence of the pair (X" *1, X™),

Hyp 1 (X" X™) > H, (X™) = Hy (XD — H, (X", X
I [
0 0

we see that all homomorphisms
H,(X"*") - H,(X"*?) > H,(X"") — ...

induced by the inclusion maps are isomorphisms. If X is finite dimensional, this
settles our statement. In the general case, consider the map H,(X"™!) — H,(X).
Every « € H,(X) is represented by a finite sum of singular simplices, and every
singular simplex is covered by a finite number of cells. This implies that « is
represented by a cycle contained in some XV, that is, belongs to the image of the map
H,(X") — H,(X) (and we can assume that N > n). Since H,(X" ') — H,(X") is
an isomorphism, « also belongs to the image of the map H,(X"™!) — H,(X), so the
latter is onto. Now let 8 € H,(X"*") be annihilated by the map H,(X"*!) — H,(X).
Then a cycle representing f is the boundary of some singular chain of X. But, as
before, this chain must be contained in some X". Hence, 8 is also annihilated by
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some map H,(X"T!) — H,(X"), which is an isomorphism. Thus, 8 = 0 and our
map H,(X"") — H,(X) is one-to-one.

Step 2. H,(X"™!) = H,(X"*!,X"7?). Let m < n — 1. From the exactness of the
homology sequence of the triple (X"+!, X" X"~ 1),

H,(X", X" ") - H,(X", X" ") - H,(X",X") = H,_ (X", X" )
|
0 0

we see that all homomorphisms

Hn(X"+l,X"_2) < Hn(XVl+l’Xn—3) e Hn(XVl'f'l’X—l)

[
H,(X"™")

are isomorphisms. This proves our statement.

Ker(9,: Co(X) = Co1(X))
IM(941: Cpy1(X) = Cu(X))
H, (X" 1, X"2) =0

Step 3. H,(X" ™!, X""2%) = Consider the diagram

CVL+1(X)
|’!L+ 1 n a* n n—2 o n+1 n—2 n+1 n
Hypp (X X)) —= Hp (X", X"72) —= H, (X", X" 2) — H, (X"t X™)
: : H
dn+1 / 0
H,,L(X",X"_l) — C”(X)

8”

anl(Xn_17Xn_2) = Cn—l(X)

where the row is a fragment of the homology sequence of the triple (X" !, X", X"2)
and the column is a fragment of the homology sequence of the triple
(X", X1 X”_Z); in particular, both are exact. There are two zeroes in the diagram,
and they show that « is an epimorphism, and § is a monomorphism. From this (and
again the exactness of the sequences) we obtain

H,(X"T!, X"2) = H,(X",X"~?)/Kera. = H,(X",X""2)/ Im 0x
= B(H,(X",X"7%))/B(Imdx) = Im B/ Tm(B 0 3x)
= Keran/1m8n+1.

This completes step 3, and the combination of the three steps gives the isomorphism
we need.
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13.6 A Closer Look at the Cellular Complex

We already know that for a CW complex X, the group C,(X) is isomorphic to a free
Abelian group generated by n-dimensional cells of X. But the isomorphism is not
genuinely canonical: It depends on a choice of characteristic maps of cells, which
is not convenient because usually characteristic maps are not fixed—we know only
that they exist. Actually, what we need to fix for every cell is not a characteristic
map, but an orientation. A characteristic map of an n-dimensional cell establishes
an isomorphism between two_groups isomorphic to Z: H,(D",S" — 1) = H,(S")
and H,(X" ' U e, X" ) = H, (X" ' Ue)/X" ) or H,(X"/(X" — ¢)) (which is
the same group). One can say that the orientation of e is a choice of a generator
in H,(X" ' Ue)/X"") =~ Z. Geometrically this indeed is an orientation: Say, if
n = 1, then a choice of orientation is a choice of a direction of an arrow on e. In
other words, characteristic maps f and f o r always determine opposite orientations.
(Zero-dimensional cells have canonical orientations.)

Thus, chains in C,(X) can be presented as finite integral linear combinations of
oriented n-dimensional cells, ) k;e;. An orientation change for e; results in a sign
change for k;.

There also exists a good description of the boundary homomorphism
On+1:Cry1(X) = Cu(X). Let e and f be cells of X of dimensions n + 1 and n. In the
homology sequence of the triple (X" U ¢, X", X" — f), there is a homomorphism

i i 0
f Mt
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D%
Z=H,1(X"Ue,X")— H,X" X" —f) = Z.

The choice of the isomorphisms with Z corresponds to the orientations of the cells
e, f. Every homomorphism Z — Z is a multiplication by some integer. This integer
is called the incidence number of the oriented cells e and f and is denoted as [e : f]
(certainly, if e and f are disjoint, then [e : f] = 0). The orientation change for any of
the cells e and f results in the sign change for [e : f].

Theorem. Let e be an oriented (n+1)-dimensional cell of X regarded as an element
of Ch+-1(X). Then

dur1(e) = Y _le: fIf,
f

where the sum is taken over all n-dimensional cells of X with fixed orientations.
[This sum is always finite: The intersection e N f may be nonempty for only finitely
many n-dimensional cells f—this is Axiom (C).]

EXERCISE 7. Prove this. Recommendation: It may be useful to consider the
commutative diagram

0
H,1(X"Ue, X") — H,(X", X" —f)

0y,
Hyp (X" xm) 255 |, (xm, XY,

where the vertical maps are induced by the inclusion maps between pairs.

(A clarification is needed and possible in the case when n = 0. An oriented
one-dimensional cell e is a path joining two zero-dimensional cells, fy and f;. Then
de = fi — fo; in particular, if fy = fi, then de = 0.)

The description of the boundary map in the preceding theorem motivates a better
understanding of the incidence numbers. They can be described as degrees of maps
S§" — §". Namely, if ¢: " — X" is an attaching map for e (determined by a certain
characteristic map for ¢) and ¥: X" /(X" — f) = f/f — S" is a homeomorphism
determined by a certain characteristic map for F, then [e : f] is nothing but the
degree of the map

51— xn 2 xnyxn — ) s .

The description of the degree of a map S — $” given in Sect. 10.3 may be used as
a geometric description of incidence numbers. Namely, take a regular value x € f
of the attaching map ¢:S" — X" [rather of the map ¢: ¢~ !(f) — f] and compute
the “algebraic number” of inverse images of x (that is, the number of inverse images
where ¢ preserves the orientation minus the number of inverse images where ¢
reverses the orientation); this is [e : f].
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Having this in mind, we can give our theorem an aggressively tautological form:
The boundary of a cell is the sum of cells which appear in the boundary of this cell
with coefficients equal to the multiplicity of their appearance in this boundary.

13.7 First Applications

Theorem 1. If the number of n-dimensional cells of a CW complex X is N, then
the group H,(X) is generated by at most N generators; in particular, the nth Betti
number B,(X) does not exceed N. For example, if X does not have n-dimensional
cells at all, then H,(X) = 0, in particular, if X is finite dimensional, then H,(X) = 0
for all n > dim X. (Compare with homotopy groups!)

It follows directly from previous results.

Algebraic Lemma (Euler—Poincaré). Let

Opt2 On+1 0 Op—1
. Cn+l Cn Cn—l

be a complex with the “total group” @, C, finitely generated. Let c, be the rank of
the group C, and h, be the rank of the homology group H,. Then

DD = (D

EXERCISE 8. Prove this.

Corollary. Let X be a finite CW complex, and let c, be the number of n-dimensional
cells of X. Then

D (=D =Y (—=1)"Bu(X).

n n

Thus, the number ), (—1)"c, does not depend on the CW structure; it is determined
by the topology (actually, be the homotopy type) of X. This number is called the
Euler characteristic of X and is traditionally denoted by y(X).

Historical Remark. This number is attributed to Euler because of the Euler polyhe-
dron theorem, which states that for every convex polyhedron in space, the numbers
V, E, and F of vertices, edges, and faces are connected by the relation V—E+F = 2.
Certainly, this is a computation of the Euler characteristic of the surface of the
polyhedron, that is, of the sphere. It is worth mentioning that Euler was not the
first to prove this theorem: It was proved, a century before Euler, by Descartes.

Now let us revisit the excision theorem and the Mayer—Vietoris sequence
(Exercises 13 and 14 of Lecture 12).
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Theorem 2 (Excision Theorem). Let X be a CW complex and let A,B be CW
subcomplexes of X such that A U B = X. Then (for every n)

H,(X,A) = Hy(B.AN B).

Indeed, X/A and B/(A N B) are the same as CW complexes.

Theorem 3 (Mayer—Vietoris Sequence). Let X be a CW complex and let A, B be
CW subcomplexes of X such that A U B = X. Then there exists an exact sequence

co = H,(ANB) — H,(A) ® H,(B) — Hy(X) — H,_i(ANB) — ...

(see the description of maps in Exercise 14 of Lecture 12).

Proof. LetY = Ax0)U(ANB)xI)UBx1) C XxIandletC C Y be
(ANB)x1I.Then Y/C and X (A N B) (actually with the vertices merged,; this slightly
affects the case of dimension 0) are the same CW complexes (see schematic picture
in Fig. 63).

Notice, in addition, that C = A[[B and Y ~ X. The last homotopy equivalence
is established by the obvious map f:Y — X (the restriction of the projection
XxI—X) and a map g:X — Y which is defined in the following way. The
homotopy h:ANB — Y, h(x) = (x,1 — 1) is extended, by Borsuk’s theorem, to
a homotopy H;:A — Y of the map A — Y, x — (x,1). Then maps H;:A — Y
and B — Y, x + (x,0) agree on A N B and hence compose a map X — V;
this is g; the relations f o ¢ ~ id, g o f ~ id are obvious. Thus, H,(Y) =
H,(X),H,(C) = H,(A) & H,(B), and H,(Y,C) = H,—;(A N B) (with small
corrections in dimension 0), and the homology sequence of the pair (Y, C) is the
Mayer—Vietoris sequence of the triad (X; A, B).

A
——

/ y
o —
N

T Y/C = X(AnN B)/{vertices}

Fig. 63 To the proof of the Mayer—Vietoris theorem
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13.8 Some Calculations

A: Spheres

We already know the homology of spheres, but let us calculate them again for
practice in the technique based on cellular complexes. The sphere S” has a CW
structure with two cells, of dimensions 0 and n. Thus (if n > 0), Co(S") = C.(S") =
Z, and all other cellular chain groups are trivial. The differential d has to be 0 (if
n > 1, then this follows from the “dimension argumentations”; for n = 1, we use
the remark after Exercise 7); hence,

Z,ifi=0,n
Hi(S") =Ci(S") = T T
(§") = C(SY) 0, ifi # 0,n.

EXERCISE 9. Prove this using another CW decomposition of S" described
in Sect. 5.4.

B: Projective Spaces

The cases of complex, quaternionic, and Cayley projective spaces are not more
difficult than the cases of spheres: For the CW structures described in Sect. 5.4, there
are no cells of adjacent dimensions, the differential d is trivial, and the homology
groups coincide with the cellular chain groups. Thus,

Z,ifi =0,2,4,...,[2n,if nis finite],
H;(CP") =

(CP") { 0 for all other i;

oV Z,ifi=0,4,8,...[, 4n,if n is finite],
Hi(HP") = { 0 for all other i;
Z,ifi=0,8,16
Hi P2 — ’ s Oy 3
(CaP?) { 0 for all other .

The real case is more complicated, since RP" has cells e, e, ... [e"ifnis
finite].

Lemma. [¢t!:¢] = £2, ?fn > odd,

0, ifniseven.
Proof. The attaching map f: ' — RP' is the standard twofold covering. The inverse
image of (actually, any) point of RP' consists of two points, and the restrictions
of f to neighborhoods of these points are related by the antipodal map §' — §'.
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This antipodal map preserves the orientation if i is odd and reverses the orientation
if i is even. Thus, the contributions of these two points in [ei+1, ¢'] have the same
sign if i is odd and have different signs if i is even. This implies the formula of the
lemma.

Thus, the cellular complex of RP" is as shown below.

(if nis odd) 0 2 0

(if n is even) 2 0 2 } 0 2 0
Z Z Z e 4 4 Z
Cn Crn-1 Crn—2 Co Ci Co

Since Im(——) = 0, Ker(——) = Z, Im(——) = 2Z, and Ker(——)
= 0, the factorization yields

Z, ifi=0o0ri =nandnisodd,
H;(RP") = Z,, ifiisodd and i < n,
0 in all other cases.

EXERCISE 10. Find the Euler characteristics of all finite-dimensional projective
spaces.

C: Grassmann Manifolds

Again, in the complex and quaternion cases, there are no cells of adjacent dimen-
sions, so the ith homology group is a free Abelian group of rank (= Betti number)
equal to the number of i-dimensional cells. The Betti numbers are as follows.
For i odd, B;(G(n,k)) = 0; for i even, this is the number of Young diagrams
of ' cells contained in the k x (n — k) rectangle. For quaternionic Grassmann
manifolds everything is doubled: B;(HG(n,k)) = Bi;»(CG(n,k)); in particular,
B;(HG(n, k)) = 0if i is not divisible by 4.
In the real case the situation is more complicated.

EXERCISE 11. Let A and A’ be two Young diagrams with i and i—1 cells contained
in the kX (n—k) rectangle. Prove that if A’ ¢ A, then[e(A) : e(A)] =0.If A’ C A
and the difference A — A’ consists of one cell with the coordinates (s, ), then

+2, if s + ¢ is even,

[e(A) 2 e(AD = L iodd.

Use this for computation of the homology of G(n, k) with reasonably small #, k.
Also, compute Hy(,—k)(G(n, k)).

EXERCISE 12. Find incidence numbers for the case of the manifold G4 (n, k). In
particular, find Hy,—) (G4 (n, k)).
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D: Flag Manifolds

Again, the complex and quaternionic cases are relatively easy. The reader can try to
investigate the real case.

E: Classical Surfaces

Classical surfaces with holes are homotopy equivalent to bouquets of circles, so
we will consider classical surfaces without holes. The cellular complex for such a
surface has the form

7 27200225 2
62 Cl COs

where the number of the summands Z in C; is 2g, 2g + 1, or 2g + 2 if our surface
is a sphere with g handles, a projective plane with g handles, or a Klein bottle
with g handles, respectively. The differential 0, is zero (every one-dimensional
cell has equal endpoints). To find d,, we consider the construction of the classical
surface from a polygon (Sect. 1.10). Each of the 2g one-dimensional cells arising
from the handles is obtained by attaching differently oriented sides of the polygon,
so the incidence numbers of the two-dimensional cell with each of these 1-cells is 0.
On the other hand, the other one-dimensional cells (if there are any) are obtained by
attaching coherently oriented sides, and the incidence number with these cells is 2.
Thus,

©,...,0) for a sphere with g handles,
02(1) = § (0,...,0,2) for a projective plane with g handles,
0,...,0,2,2) for the Klein bottle with g handles.

This leads to the results for homology:

Hy(X) = Z always,

7@ - D7, if X is a sphere with g handles,
Ps
H(X) = 7& - ®7Z DLy, if X is a projective plane
1X) =1~ s - with g handles,
7.& --- D Z D7y, if X is a Klein bottle
= e - with g handles,

Z, if X is a sphere with handles,

H>(X) =
2(%) 0 in all other cases

EXERCISE 13. Find the Euler characteristics of classical surfaces.
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13.9 Chain Maps of Cellular Complexes

Let h:X — Y be a cellular map of a CW complex into a CW complex. Then
h(X") C Y" for all n, and hence & induces a map H,(X",X"™") — H,(Y",Y"™"),
that is, C,(X) — C,(Y), which we denote as hs or hs,. Such maps induce a
homomorphism between cellular complexes of X and Y, and the induced homology
map is just hy: H,(X) — H,(Y). To prove this, we need to consider every step of the
proof of the theorem in Sect. 13.5, and to consider maps between the diagrams
in these steps for X into similar diagram for Y. The commutativity of (three-
dimensional) diagrams arising will imply our statement.

We can add that if ¢ = ), kje; € C,(X), where e; are n-dimensional cells of X,
then hy(c) = Y- ki( X, di(ei.f))f;), where the f; are n-dimensional cells of ¥ and
the number dj (e, f) is defined with the help of characteristic maps ¢ and i of e and
f as the degree of the map

S = Dn/sn—l (,0‘; Xn/xn—l h N Xln/Yn—l
2y — ) S D5 = s,

Using the description of the degree of a map " — S” in Sect. 10.3, we can say that
dp(e,f) is the algebraic number of inverse images of a regular value x € f of the
map h:e N h™\(f) — f.

Certainly, this construction works only for cellular maps, but it is not a big deal,
since every continuous map is homotopic to a cellular map. (Not a big deal? We
will cast a doubt on this statement in Lecture 16.) Thus, one can say that the cellular
theory can be used as a substitute for the singular theory. But without the singular
theory (which is topologically invariant from the very beginning) we would have had
to prove that homeomorphic CW complexes have isomorphic homology groups.

13.10 Classical Complex

A cellular complex appears especially attractive when a CW structure is actually a
triangulation (see Sect. 5.8). We consider a triangulated space X with an additional
structure (a substitute for fixing characteristic maps): We suppose that the set of
vertices of X is ordered, or, at least, vertices of every simplex are ordered in such a
way that the ordering of vertices of a face of a simplex is always compatible with
the ordering of vertices of this simplex. We refer to such triangulations as ordered
triangulations. (For example, the barycentric subdivision of any triangulation is
naturally ordered: Vertices of simplices of a barycentric subdivisions are centers of
faces of simplices of the given triangulation and these are ordered by the dimensions
of the faces.)
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For a simplex with the vertices ordered, there is a canonical affine homeo-
morphism of the standard simplex onto this simplex; this homeomorphism can
be regarded as a singular simplex of an ordered triangulated space X. We obtain
a set of special singular simplices of X, and it is clear that faces of “special
singular simplices” are also special. By this reason, linear combinations of special
singular simplices form a subcomplex of the singular complex, and it is also clear
that this subcomplex is precisely the cellular complex of the triangulation.

Historically, the complex described above is the first chain complex of a
(orderly triangulated) topological space ever considered. It can be described very
directly: Chains are integral linear combinations of simplices (remember the
ordering!), and the boundary is given by the very familiar formula 8( > k,-s,-) =
> k,-( Zj(—l)ijs,-), where the s; are simplices of our triangulation and the Is;
are their faces. Obviously, the inclusion of the classical complex into the singular
complex induces the isomorphism of the homology groups [to show this, the only
thing we need to add to what we already know is that n-dimensional simplices
regarded as singular simplices are relative cycles of (X", X"~!), and their homology
classes form the usual basis in C,(X) = H, (X", X" 1)].

For the classical chain groups, the notation C&*%(X) is often used.

Historical Remark. The classical definition of homology created the necessity of
proving a topological invariance theorem: Homeomorphic triangulated spaces have
isomorphic homology groups. The initial proof, due to J. Alexander, was long and
complicated (hundreds of pages in old topology textbooks). There was an attempt
to deduce the topological invariance of classical homology from the so-called
Hauptvermutung (German for main conjecture) of combinatorial topology: Any
two triangulations of a topological space have simplicially equivalent subdivisions.
But the Hauptvermutung turns out to be false: The first counterexample was
found by J. Milnor in 1961, and many other counterexamples were constructed
later, in particular for simply connected smooth manifolds. The whole problem
of topological invariance disappeared mysteriously when singular homology was
defined. The first definition of singular homology was given by O. Veblen in the late
1920s but became broadly known some 10 years later.

EXERCISE 14. Using the classical complex, find the Betti numbers of the skeletons
of the standard simplex. (Make your computations as explicit as possible.)

EXERCISE 15. (An algebraic lemma) Let {C,, 0,},{C,, 0} be two positive C,, =
C, = 0 (for n < 0) complexes of free Abelian groups, and let f be a homomorphism
of the first complex into the second one. Prove that if f, is an isomorphism for all,
then f is a homotopy equivalence. Deduce that the classical complex is homotopy

equivalent to the singular complex.
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EXERCISE 16. Prove that the cellular complex of a CW complex is homotopy
equivalent to its singular complex. (There are several different ways of proving that,
so we refrain from giving any hint.)

13.11 The Singular Complex as a CW Complex

We finish this lecture with a construction which may seem amusing to some readers
but actually is quite useful (we will use it in the beginning of the next lecture).
Let X be a topological space, and let Sing,(X) be the set of all n-dimensional
singular simplices of X. Consider a (monstrous, we agree) topological space

oo
Y = ]:[0 ]_[aesmgn(x) A}, (where A is a copy of the standard simplex A") and make,

for every n and every o, the identification IA! = A’lii_al (both are copies of
A" contained in Y). We denote the resulting space as Sing(X). This space has
a natural CW stmcturl)gojgimages of Int A}, C Y are cells of Sing(X) and the maps
A" A? Y Sing(X) can be taken for characteristic maps. [Notice
that although the cells of Sing(X) look like simplices, its CW structure is not a
triangulation: The intersection of closed simplices is not a face.] There is also a
natural map Sing(X) — X, which induces the identity homomorphism in homology
[just take a: A" — X on Al C Sing(X)].

It is immediately obvious that the cellular complex of Sing(X) is the same as the
singular complex of X; in particular, H,(Sing(X)) = H,(X) for all X. Actually, the
spaces Sing(X) and X are weakly homotopy equivalent (and homotopy equivalent
if X is a CW complex). We will see that later.

Let us add that the Sing construction is natural in the sense that a continuous map
X — Y gives rise to a cellular map Sing(X) — Sing(Y) with the same induced map
in homology. Also, if A C X, then Sing(A) C Sing(X) and there arises a continuous
map

(Sing(X), Sing(A)) — (X, A)
which induces isomorphisms

H,(Sing(X), Sing(A)) — H,(X,A).
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Lecture 14 Homology and Homotopy Groups

The connection between homology and homotopy groups is seen always from the
preliminary description of homology in the beginning of Lecture 12: Spheroids
are cycles and homotopical spheroids are homological cycles. This suggests that
there must be a natural map from homotopy groups into homology groups. This
map, called the Hurewicz homomorphism, is the main subject of this lecture. We
will see that the connection between homotopy and homology groups is deeper than
it may seem at the beginning, but we also will show examples which should serve
as a warning to a reader who expects too much of this connection.

14.1 Homology and Weak Homotopy Equivalences

Theorem. If f: X — Y is a weak homotopy equivalence, then fy: H,(X) — H,(Y)
is an isomorphism for all n.

Proof. Since both weak homotopy equivalences and homology homomorphisms are
homotopy equivalent, we can replace the map f by the inclusion map X — Cyl(f)
of X into the mapping cylinder of f (see Sects. 2.3 and 3.3). Because of this, we can
assume that the given map f is an inclusion, so we have a pair (¥, X). Also, we have
a pair (Sing(Y), (Sing(X)) and a continuous map h: (Sing(Y), Sing(X)) — (¥, X)
which induces isomorphisms

h«: H,(Sing(Y), Sing(X)) — H,(Y,X)

(see Sect. 13.11).

On the other hand, since f is a weak homotopy equivalence, the map
fw:m(Sing(Y),X) — n(Sing(Y),Y) is a bijection, which means that the map
h: Sing(Y) — Y is homotopic to a map whose image is contained in X. Hence, the
map h«: H,(Sing(Y), Sing(X)) — H,(Y, X) is zero, which shows that H, (Y, X) = 0
for all n. By exactness of the homology sequence of the pair (Y, X), this shows that
all the homomorphisms f: H,(X) — H,(Y) are isomorphisms.

Recall that according to another result from Sect. 11.4, a map is a weak homotopy
equivalence if and only if it induces an isomorphism in homotopy groups. Because
of this, our theorem assumes the following memorable form.

Corollary. Ifa continuous map induces an isomorphism between homotopy groups,
then it also induces an isomorphism between homology groups.

This will be further developed in the last section of this lecture.

To finish this section, we will formulate some exercises which will show that
some statements looking similar to the preceding theorem and corollary are actually
false.
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EXERCISE 1. Prove that the spaces S? and S* x CP* have isomorphic homotopy
groups but nonisomorphic homology groups. Same for the spaces §” x RP" and §" x
RP™ withm # n,m # 1,n # 1. (Compare with Exercises 5 and 6 in Lecture 11.)

EXERCISE 2. Prove that the spaces S' x S' and S' v S' v §? have isomorphic
homology groups but nonisomorphic homotopy groups.

EXERCISE 3. Prove that the Hopf map S° — S? induces a trivial homomorphism
in reduced homology groups but a nontrivial homomorphism in homotopy groups.

EXERCISE 4. Prove that the projection map S' x §' — (S' x §)/(S' v §') = §2
induces a trivial homomorphism in homotopy groups but a nontrivial homomor-
phism in reduced homology groups.

14.2 The Hurewicz Homomorphism

Let X be a topological space with a base point Xj. Let s, be the canonical generator
of the group H,(S") = Z,n =1,2,....Fora¢ € m,(X,xo) put

h((p) :f*(sn) € Hn(X)v

where f:S" — X is a spheroid of the class ¢ [obviously, 4(¢) does not depend on
the choice of the spheroid f]. The function ¢ +— h(p) is a homomorphism

h: (X, x0) = Hy(X).
Indeed, let the spheroid f be the sum of spheroids /', f”:S" — X, that is, f is the
composition

s ey Y x

(see Fig.37). Then u«(s) = s + s” where s',s” € H,(S" v §") are generators
corresponding to the two spheres of the bouquet, and fx(s) = (f' Vf")«(s' +57) =
Ja(s) + 1 ().

This homomorphism is called the Hurewicz homomorphism; it is natural with
respect to continuous maps (taking a base point into a base point).

EXERCISE 5. Prove that the diagram

(X, o) —>7Tn (X, 1)

\/

is commutative for any path u joining xo with x;.
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Theorem (Hurewicz). Let 7o(X, xo) = -+ = w1 (X, x9) = 0, where n > 2. Then
H(X)=---=H,—1(X,x0) = 0and h: 7,(X, xo) > H,(X, x0) is an isomorphism.

Proof. By the theorem of Sect. 11.6, there exists a CW complex weakly homotopy
equivalent to X. Since a weak homotopy equivalence induces isomorphisms both in
homotopy groups and in homology groups (the first by Sect. 13.11, the second by
Sect. 14.1), we can assume that X itself is a CW complex. Then Sect. 5.9 allows us
to make an additional assumption that X has one vertex and no cells of dimensions
1,...,n — 1. This already shows that H;(X) = --- = H,—;(X) = 0 (Theorem 1 in
Sect. 13.7), and H,(X) = C,(X)/Imd,—, is not different from 7, (X) according to
the theorem in Sect. 11.3.

Corollary (The Inverse Hurewicz Theorem). If X is simply connected and
HyX) =---=H,-1(X) =0 > 2), then m;;(X) = -+ = m,—1(X) = 0 and
h: 7, (X) — H,(X) is an isomorphism.

Together these theorems mean that the first nontrivial homotopy and homology
groups of a simply connected space occur in the same dimension and are isomor-
phic.

EXERCISE 6. Prove that a simply connected CW complex with the same homology
groups as $" is homotopy equivalent to S”. [Hint: Apply Whitehead’s theorem to a
spheroid $" — X representing a generator of the group 7,(X) = Z.] Do the same
for the bouquet of spheres of the same dimensions.

Remark. Thus, we see that the triviality of the homotopy groups, as well as the
triviality of the homology groups, implies the homotopy triviality (contractibility)
of a simply connected CW complex. At the same time, we have the examples which
show that neither the triviality of induced homotopy groups homomorphisms nor
the triviality of induced homology homomorphisms secures homotopy triviality of
a continuous map. It turns out that even these two trivialities together do not imply
the homotopy triviality of a continuous map.

EXERCISE 7. Prove that the composition
10j. opf
St x st x st 2% (8" x S' x SN/ sko(S! x §' x §') = §3 2>52
induces a trivial map of both homotopy and homology groups but is not homotopic
to a constant map.
EXERCISE 8. Do the same for the map

22y g3 P (5272 x §%) /(S22 v §%) = §2+! HoPl o pn.
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14.3 The Casen =1

Theorem (Poincaré). For an arbitrary path connected space X, the Hurewicz
homomorphism h: w\(X) — H{(X) is an epimorphism whose kernel is the com-
mutator subgroup [7t1(X), w1 (X)] of the group 7\ (X). Thus,

Hl(X) = nl(X)/[m(X),m(X)].

(Recall that the commutator subgroup [G,G] of a group G is its subgroup
generated by commutators [g1, g2] = gi1g287'g; " for all g1,g> € G. The com-
mutator subgroup is always normal. The group G/[G,G] is obtained from g
by Abelianization, that is, by imposing additional relations: Any two generators
commute with each other.)

Proof of Theorem 1is a copy of the proof of the theorem in Sect. 14.2: We can assume
that X is a CW complex with only one vertex, and for such spaces, it is sufficient to
compare the procedures of computing the groups m; and Hy; see Sects. 7.6 and 13.5.

EXERCISE 9. Show that a loop f:S' — X determines an element of the kernel of
the map 4: 7 (X) — H;(X) (“homologous to zero”) if and only if it can be extended
to the map into X of the disk (with the boundary S') with handles. Moreover, the
minimal number of these handles is equal to the minimal number of commutators
in 711 (X) whose product is [f].

EXERCISE 10. The space Xap is called an Abelianization, or Quillenization, of a
path connected space X if the fundamental group of X, is Abelian and there exists a
continuous map X — X}, inducing an isomorphism H,(X) — H,,(Xap) for every n.
Prove that X possesses an Abelianization if and only if

[71(X), 11 (X)] = [71(X), [m1(X), 1 (X)] ],

that is, if every element of [m;(X),(X)] can be presented as a product of
commutators of elements of 71 (X) with elements of [ (X), 1 (X)].

Remark. Our definition of an Abelianization is a simplified version of a more
common definition in which the space Xup is assumed simple (see Sect. 8.2), or
even an H-space (see Exercise 2 in Sect. 8.2) or even a loop space (see Lecture 4).
This enhanced definition of an Abelianization plays an important technical role in
one of the versions of constructing an algebraic K-functor. The problem of the
existence of an Abelianization in this sense is much more complicated, and there
are no general theorems about it. But there are several remarkable examples of
the Abelianization, two of which we will mention. The first was discovered in
1971 by M. Barratt, D. Kahn, and S. Priddy: The Abelianization of the space
X = K(Seo, 1), where Soo = U,S, is the group of finite permutations of the set
Zo, 18 Xap = (R2%°85%°)¢ = U, (2"S"), (the subscript 0 indicates that we consider
only one component of the set). Another example belongs to G. Segal (1973) and
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states that if X = K(B(00), 1) where B(co) is the infinite braid group and hence
X is the set of (unordered) countable subsets of the plane consisting, for some N
(depending on the subset), of points (n + 1,0), (n + 2,0),... and n more points
different from each other and from the points listed above, then Xap, is Q253. In both
cases, the space X has a complicated fundamental group and trivial higher homotopy
groups, and the space Xap has a simple fundamental group (Z, in the first case and Z
in the second case) and complicated, so far unknown, homotopy groups. For further
details, see Barratt and Priddy [20], Segal [74], and Fuchs [37].

EXERCISE 11. Prove that any two-dimensional homology class of an arbitrary
space X can be represented by a sphere with handles; that is, for every a € H(X),
there exist a sphere with handles S and a continuous map f: S — X such that the
map fi: Hy(S) — H,(X) takes the canonical generator of H,(S) = Z into «.

14.4 The Relative Hurewicz Theorem

The relative Hurewicz homomorphism 4: 7, (X,A) — H, (X, A) is defined similarly
to the absolute one. If f: (D", S"~') — (X, A) is a relative spheroid representing the
class ¢ € m,(X,A), then h(yp) is the image of the canonical generator if the group
H,(D",S"~") = Z with respect to the homomorphism fi: H,(D", S"') — H,(X,A).

Theorem. Let (X, A) be a topological pair such that the space X is path connected
and A is simply connected. Let n > 3.

(1) Suppose that 1,(X,A) = -+ = m,—1(X,A) = 0. Then H|(X,A) = Hy(X,A) =
- =H,_1(X,A) =0and h: 7,(X,A) - H,(X,A) is an isomorphism.
(2) Suppose that Hy(X,A) = --- = H,—1(X,A) = 0. Then my(X,A) = --- =

wp—1(X,A) = 0and h: 7,(X,A) — H,(X,A) is an isomorphism.

Proof The proof can be obtained from the proof of the theorem in Sect. 14.2 by
modifications characteristic for a transition from the absolute case to a relative case.

We begin by constructing a cellular approximation of the pair (X,A). For this
purpose, we first find a cellular approximation (B, g) of A (see Sect. 11.6). Then we
attach additional cells to B and successively expand the map io g: B — X (where i is
the inclusion map of A into X) to the new cells in such a way that B is expanded to
a CW complex Y and i o g is expanded to a weak homotopy equivalence f: Y — X
(this is a replica of the construction in the proof of the theorem in Sect. 11.6). Since
flg = g, the maps f and g compose a map (¥, B) — (X,A). We already know that
f and g induce isomorphisms in both homotopy and homology groups, and the five-
lemma implies that the map between the pairs induces isomorphisms for relative
homotopy and homology groups. After this, we can assume that the pair (X,A) in
the theorem is actually a CW pair.

According to Exercise 22 in Sect. 5.9, there exists a CW pair (X', A”) homotopy
equivalent to (X, A) and such that A’ contains all cells of X’ of dimension less than
n. We can assume that the pair (X, A) itself has these properties. Then the relative
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version of the theorem in Sect. 11.3 (see Exercise 2, or, even better, Exercise 4 in
Sect. 11.3) describes the group 7,(X,A), and this description is not different from
the description of H,(X, A).

EXERCISE 12. If A is not simply connected, then part (1) of the theorem remains
true with the following modification: H, (X, A) is isomorphic to r, (X, A) factorized
over the natural action of 1 (A).

14.5 Whitehead’s Theorem

(Not to be confused with a different theorem of the same Whitehead, in Sect. 11.5.)

Theorem. Let X and Y be simply connected spaces, and let f:X — Y be a
continuous map such that fy: 7, (X) — m2(Y) is an epimorphism.

(1) If the homomorphism fy: 7w, (X) — 7, (Y) is an isomorphism for m < n and an
epimorphism for m = n, then the same is true for fy: H,(X) = H,,(Y).
(2) The same with & and H swapped.

Proof. We may assume that f is an embedding, so (¥, X) is a topological pair. The
exactness of homotopy and homology sequences of this pair yields a translation of
conditions and claims of the theorem into the language of relative homotopy and
homology groups. Namely, the condition “fi: 72 (X) — m»(Y) is an epimorphism”
means precisely that m,(Y,X) = 0; the condition “f: 7, (X) — m,(Y) is an
isomorphism for m < n and an epimorphism for m = n” means that ,,(¥,X) = 0
for m < n; the same for homology groups. Thus, the theorem is equivalent to the
relative Hurewicz theorem in Sect. 14.4.

Corollary. If a continuous map f:X — Y between simply connected topological
spaces induces an epimorphism fy: w5 (X) — m,(Y) and isomorphisms fy: H, (X) —
H,,(Y) for all m, then f is a weak homotopy equivalence (a homotopy equivalence,
if X and Y are CW complexes).

Lecture 15 Homology with Coefficients and Cohomology

One can apply to the singular or cellular complex of a topological space the
standard algebraic operations — ® G and Hom(—, G). In this way, we obtain new
complexes which also have homologies; these homologies are called homology and
cohomology of the space with coefficients (values) in G. Certainly, the transition to
these homology and cohomology may be regarded as a purely algebraic operation,
but the experience shows that a too frankly algebraic presentation of this subject
may scare a geometrically oriented reader off. To avoid hurting the feelings of such
a reader, we will refer to tensor products, Homs, and other such things only when it
is absolutely necessary. Still, we will have numerous such necessities.
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15.1 Definitions

Let G be an Abelian group. A singular n-dimensional chain of a space X with
coefficients in G is a formal linear combination of the form ), g;f; where g; € G and
fi A" — X are singular simplices. The group of n-dimensional singular chains of X
with coefficients in G is denoted as C,(X; G); obviously, C,(X; G) = C,(X) ® G.
Our previous group of chains, C,(X), is, in this notation, C,(X;Z). A singular n-
dimensional cochain of X with coefficients (values) in G is defined as a function on
the set of all n-dimensional singular simplices of X with values in G (no conditions
like continuity are imposed). The group of n-dimensional cochains of X with
coefficients in G is denoted as C"(X; G); obviously, C*(X; G) = Hom(C,(X), G).
The value of a cochain ¢ on a chain a is denoted as (c,a); thus, {c, )", gfi) =
> e(fi)gi. A generalization: if a bilinear multiplication (pairing) G; x G2 — G3
is given, then for ¢ € C'(X;Gy) and a € C,(X;G;) there arises the “value”
(c,a) € Gs.
Boundary and coboundary operators

d =0, C,(X;G) —> C,—1(X;G),
§=68" C"(X;G) — C""(X:G)
are defined by the formulas
0y afi= gy (~IVTifi, G() =Y (—1Ye(Ty).
i i j=0 j=0
Obviously, for every ¢ € C"(X; G) and a € C,4+1(X; G),

(c, da) = (8¢, a).

A simple computation shows that d0 = 0 and 66 = 0 (the second follows from the
first and the formula for (—, —) above), and we set

Ker[d,: C,(X; G) — C—1(X; G)]

H,(X;G) = ,
( ) Im[an+lzcn+l(X; G) - Cn(X; G)]

Ker[§": C"(X; G) — C"T(X; G)]

H'(X;G) = Im[§"—!: C"~1(X; G) — C*(X;G)] .

The related terminology is homology, cohomology, cycles, cocycles, boundaries.
coboundaries, homological cycles, cohomological cocycles.
Chain and cochain complexes may be augmented by maps

€:Co(X;:G) = G, €*:G— C°(X;G)
€y gfi = ) giand [¢*(9)](f) = g.
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The reduced homology and cohomology, H,(X;G), ﬁ"(X G), are the same as
unreduced ones with obvious exceptions: Hy(X; G) = HO(X G)®G, H'(X;G) =
H(X; G) ® G, if X is nonempty, and H_; (X: G) = G = H~'(X; G) if X is empty.

15.2 Transfer of the Known Results

All major results of Lectures 12 and 13 and some results of Lecture 14 can be
transferred to the new context without serious changes, either in statements or in
proofs (for the proofs, we have an option to deduce new results from the old results
using simple algebraic means; we will not do this, at least now).

A continuous map h:X — Y induces homology and cohomology homomor-
phisms, the latter of which acts in the “opposite direction”:

he: H,(X; G) — H,(Y;G), h*:H"(Y;G) — H"(X;G)

[the cochain map A*: C*(Y, G) — C"(X:; G) is defined by the formula [i*(c)](f) =
c(hof), where f is a singular simplex of X].

Homology with coefficients and cohomology are homotopy invariant: If g ~ A,
then g« = hs and g*¥ = h*; in particular, homology with coefficients and
cohomology of homotopy equivalent spaces are the same.

For a disjoint union X = X; U --- U Xy,

H,(X;:G) = @iHn(Xi; G), H'(X;G) = ED,- H"(X; G).

For infinite disjoint unions, a difference appears between homology and cohomol-
ogy: H,(X; G) is the direct sum of the groups H,(X;; G), while H"(X; G) is the direct
product of the groups H"(X;; G).

For the one-point space pt,

Hoy(pt; G) = G = H'(pt; G),
H,(pt; G) = 0 = H"(pt; G) forn # 0,
H,(pt; G) = 0 = H"(pt; G) for all n.

Relative homology with coefficients is defined precisely as usual (integral)
relative homology, while in the definition of relative cohomology there arises a
small (and expectable) new feature: The group C"(X,A; G) is a subgroup, not a
quotient group, of C"(X; G); it consists of cochains from C"(X; G) which have zero
restriction to C,,(A) C C,(X) (or, equivalently, assume zero value at every singular
simplex in A).

The homology sequence of a pair (X, A) with coefficients in G looks the same as
in the integral case (just insert ““; G where necessary). The cohomology sequence
has all the arrows reversed:
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oo HYA:G) S (X, A: G) — H'(X:G) — H'(A:G) — ...

The homomorphism §*: H" ' (A; G) — H"(X:A) is defined in the following
(expectable) way. For a class y € H'A;G), choose a representing cocycle ¢ €
C"'(A; G). Then expand the function c [on (n — 1)-dimensional singular simplices
of A] to all (n — 1)-dimensional singular simplices of X (for example, set it
equal to 0 on simplices not contained in A) and take the coboundary of the chain
¢’ € C"'(X: G) arising. Then 8¢’ is zero on C"(A; G) (since c is a cocycle). Thus,
8¢’ € C"(X,A). It is a (relative) cocycle (since §§ = 0), and its cohomology class
B € H"(X,A; G) does not depend on the arbitrary choices of the construction (c in
y and the extension ¢’ of c; it is similar to Exercise 7 in Lecture 12). The function
y > Bis §*.

Both homology with coefficients and cohomology sequences of a pair are exact.
There are also exact reduced homology with coefficients and cohomology sequences
of pairs (no reducing for relative homology and cohomology groups) and exact
homology with coefficients and cohomology sequences of triples.

For a Borsuk pair (X, A), there are isomorphisms

H,(X,A; G) = H,(X/A; G), H'(X,A; G) = H'(X/A; G)

established by the projection X — X/A. For an arbitrary pair there are similar
isomorphisms with X/A replaced by X U CA. Under the same assumptions as in
Sect. 12.7, there are excision isomorphisms H,(X — B,A — B; G) = H,(X,A;G)
and H"(X — B,A — B; G) = H"(X, A; G) and exact Mayer—Vietoris sequences; the
cohomology Mayer—Vietoris sequences assume the form

.-+ H" (AN B;G) > H"(X; G)
— H'(A;G) ® H'(B;G) —» H'"(ANB:G) — ....

For a CW complex, homology with coefficients and cohomology can be calcu-
lated through the cellular complex. Namely, for a CW complex X, C,(X; G) is the
group of linear combinations ) _, g;e;, where ¢; are oriented n-dimensional cells (an
orientation change for a cell ¢; results in a replacement of g; by —g;). Furthermore,
C"(X; G) is the group of G-valued functions on the set of oriented n-dimensional
cells of X, where the orientation change for e; leads to a sign change for the value at
e;. The boundary and coboundary operations act by the formulas

9 (Z g) =Y &) lei: I, [Belle) = D _le: fle(f),
i i f

f

where the inner summation on the right-hand side of the first formula is spread to all
(n — 1)-dimensional cells f of X and the summation in the second formula is spread
to all n-dimensional cells of X.
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Let us now show the results of calculating homology with coefficients and
cohomology for the most important CW complexes. For spheres,

7 n. __ pmoqn. _ G, 1fm:n?
H,(S";G)=H"(S";G) = 0. if m £ n

(this fact certainly can be obtained with the cellular complexes, but the reader
who wants to reconstruct all the proofs will have to do it at an earlier stage, as
in Sect. 13.1). For complex, quaternion, and Cayley projective spaces, as well as for
complex and quaternion Grassmann manifolds and flag manifolds, the homology
with coefficients and cohomology are not different from the corresponding cellular
chains and cochains. For example,

G, itm=0,2,4,...[,2n,
H,(CP";G) = H"(CP";,G) = if n is finite],
0 for all other m.

In the real case, the computation may be more complicated (compare Sect. 13.8),
but it becomes much simpler if G = Zj, since in this case all the boundary
and coboundary operators (in cellular complexes) are zero and homology with
coefficients and cohomology again do not differ from the corresponding cellular
chain and cochain groups. For example,

Zy, for0 <m < n,

Hy(RP" Zo) = H"RP" Zo) = ™ L other m

Notice in addition that for a classical surface X (without holes),
Ho(X; Z) = H(X; Zo) = Ho(X; Zo) = H*(X; Z) = Zo,
H((X;Z,) = H'(X;Z,) = 20 &L,

r

where

2g, if Xis a sphere with g handles,
r =4 2g+ 1, if X is a projective plane with g handles,
2g + 2, if X is a Klein bottle with g handles.

EXERCISE 1. Find the homology and cohomology of real projective spaces and real
Grassmann manifolds with coefficients in Z,, where m is odd.

To finish the section, let us notice that if f:X — Y is a weak homotopy
equivalence, then

foH,(X;G) - H,(Y;G) and f*: H'(Y; G) — H"(X;G)

are isomorphisms for all G and n.
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15.3 Coefficient Sequences

We begin studying relations between homologies and cohomologies with different
coefficients. There is an obvious fact that any homomorphism ¢: G; — G, between
Abelian groups induces, for every X and n, homomorphisms

@« Hy(X; G1) — H,y(X; Ga) and ¢« Hy(X; G1) — H,(X; Gy)

(in the same direction). However, as many examples (including some known to us)
show, the homomorphism ¢ being a monomorphism, or an epimorphism, or just
nontrivial, does not imply similar properties for any of the ¢.s. For a deeper
understanding of the subject, let us consider the following situation. Let G be an
Abelian group, H be a subgroup of G, and F be the quotient group G/H. Usually,
all of this is presented as a short exact sequence,

0O—-H—>G—>F—0.

Besides the homomorphisms H,(X; H) — H,(X;G) — H,(X;F) and H"(X; H)
— H"(X; G) — H"(X; F), there arise “connecting homomorphisms”

8x:Hy(X;F) = H,_(X; H) and §*: H"(X; F) — H""'(X; H).

Here is the construction of the first of them. For an « € H,(X;F), choose a
representative a € C,(X; F). Since G — F is an epimorphism, a possesses an
inverse imaged € C,(X; G). The projection C,— (X; G) — C,—;(X; F) takes dd into
da = 0; hence, da actually belongs to C,—;(X; H). This is a cycle, and its homology
class in H,—(X; H) is taken for d«(«). The construction of the homomorphism 6*
is similar [(y € H'"(X;F)) —~ (c € C'(X;F)) — (¢ € C'(X;G)) — (6¢ €
CH (X H)) > (8 (y) € H™ (X H))).

EXERCISE 2. Check that the preceding constructions provide well-defined homo-
morphisms 0 and §*.

EXERCISE 3. Prove that the coefficient sequences

o> H,X;:H) - H,(X:G) - H,(X;F) > H,_(X:H) — ...,
-. > H'(X;H) - H'(X;:G) - H'(X;F) - H'""'(X;H) — ...

are exact.

HISTORICAL AND TERMINOLOGICAL REFERENCE. The homomorphisms 0«
and §* were discovered, in a particular case, by M. Bockstein long before exact
sequences became commonplace in algebraic topology. Here is how the Bockstein
homomorphism was first described. Let « € H,(X;Z,,). Take a representative a
of a. All the coefficients involved in a are residues modulo m; we can regard them
as integers 0, 1,...,m — 1. Then the cycle a becomes an integral chain a@. The
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1
boundary da is divisible by m; let us divide. The result,  da, is an integral cycle.
m
It represents some class B,,(«) € H,—(X;Z) [by the way, mB,,(e) = 0]; after
reducing modulo m, it becomes a class b, (o) € H,—1(X; Z,,). We have constructed
“Bockstein homomorphisms”

Bm: Hn(X; Zm) - Hn—l(X; Z) and bm: Hn(X; Zm) - Hn—l (X, Zm)
In a very similar way, cohomological Bockstein homomorphisms
B":H"(X; Zy) — H" "' (X;Z) and b™: H"(X; Z) — H"T'(X; Z,)

are defined.
Actually, all of these Bockstein homomorphisms are connecting homomor-
phisms d. and §* of coefficient sequences induced by the short exact sequences

0>Z—57—>7,—0and0 — Z,, — Z,2 — Z — 0.

From the exactness of the coefficient sequences, it follows then that (1) an element
of H,(X;Z,) belongs to the kernel of B, if and only if it is “integral,” that is,
belongs to the image of the reducing homomorphism H,(X;Z) — H,(X;Z,); an
element of H,(X; Z) belongs to the image of B,, if and only if it is annihilated by the
multiplication by m; similarly for the cohomological Bockstein homomorphisms.

15.4 Algebraic Preparation to Universal
Coefficients Formulas

Let A and B be Abelian groups. Then let B = Fy/F,, where F) is a free Abelian
group and F; is a subgroup of F; which must also be free (such a presentation exists
for any Abelian group). What are the interrelations between A ® F;, A ® F», and
A ® B? To answer this question, we need a lemma which can be regarded as the
most fundamental property of tensor products.

Lemma 1. The tensor product operation is right exact. This means that if the
sequence

is exact, then the sequence
GQu GRp
GRA—GRB—GRC——0

is exact.
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Proof. Recall that, by definition, the tensor product K ® L is F(K x L)/R(K, L),
where F(K x L) is the free Abelian group generated by the set K x L and R(K, L) is
the subgroup of F(KxL) generated by elements of the form (k, £)+ (k', £)—(k+k', £)
and (k,£) + (k,€') — (k, £ 4+ £'). The image of (k,£) in K ® L is denoted as k ® £.

It is obvious that G ® B is onto: Y_,(g; ® ¢;) = [G R B] (X;(gi ® b;)), where the
b; are chosen to satisfy the condition 8(b;) = ¢;. It is also obvious that (G ® B) o
(G ® @) = 0. It remains to prove that Ker(G ® B) C Im(G ® ).

Let [G® B] (>_:(gi ® b;)) = 0. This means that }_,(g;. B(b;)) € R(G, C); that is,
>".(gi, B(b))) is a linear combination of elements of F(G x C) of the form (g, ¢) +
(g.c) — (g + &g,c)and (g,¢) + (g.¢") — (g,c + ). For all ¢, ¢ involved, find
b,b’ € B whose B-images are c, ¢, and the subtract from ) ;(g;, B(b;)) the same
linear combination with ¢, ¢’ replaced by the corresponding b, b’. We get an element
of F(G x B) which also represents Y .(g; ® b;) but also belongs to the kernel of
the map F(G x B): F(G x B) — F(G x C). This kernel is generated by differences
(g, b") — (g, b") with B(b' —b") = 0, thatis, b’ — b” €€ «. Thus, ) ;(g; @ b)) =

() ® (] — b)) and hence X5 ® b) = [G ® a] ((s] ® a))). where
a(a) = b;— b}
Lemma 1 shows that the sequence
ARF, >AQF, - A®B—0
is exact; that is, A ® B is a quotient of A ® F; over the image of the natural map

A ® F, — A ® F1, but this map is not necessarily a monomorphism.

Lemma 2. The kernel Ker(A ® F, — A ® F) does not depend on the choice of
presentation B = F,/F.

Proof The proof consists in constructing a canonical isomorphism
KerAQ F), > AQF)) xKer(A® F, > A® F)

for an arbitrary other presentation B = F|/F. First, we construct homomorphisms
a: F| — Fy, ax: F, — F>, making the diagram
-/

FéZ—>F{ P

1/ b

Fgﬁ-Fl p
7

/

(where the i,i’ are inclusion maps and the p,p’ are projections) commutative.
Here o takes a generator x of F| into y € F such that p(y) = p’(x) (which exists,
since p is an epimorphism). This « takes Kerp’ = F) into Kerp = F», thus giving
rise to an ap: F, — F. Since y in the previous construction is determined (by x) up
to an element of Ker p = F, any other choice of «; has the form «; + i’ o 8, where
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B is a homomorphism F i — F3, and then the new o5 is @y + B o i. Take the tensor
product of (the square part of) this diagram with A:
-/

A®1
AQF), ——= AQ F]

A@Oégl A®ﬁ lA@OZl
A®F2 éA@Fl
A®i

The map A ® «; takes Ker(A ® i’ into Ker(A ® i). This map does not depend on the
choice of @y and &5, since AQ (Boi’) = (AR B)o(A®{’) is zero on Ker(A®1i'). The
map Ker(A ® i’) — Ker(A ® i) is constructed in the same way, and the composition
of these maps in any order is the identity, because of the same uniqueness (this time,
applied to F| = Fi, F} = F>).

Definition. The kernel Ker(A ® F» — A ® F) is called the periodic product of A
and B and is denoted as Tor(A, B).

EXERCISE 4. Show that the operation Tor is natural with respect to both arguments;
that is, homomorphisms A — A’, B — B’ induce a homomorphism Tor(4, B) —
Tor(A’, B') with all expectable properties (for A it is obvious, while for B this
requires a construction like the one in the beginning of the proof of the lemma).

EXERCISE 5. Prove a natural isomorphism Tor(A, B) — Tor(B,A). (This might
be harder than one can expect. The most common idea of proving that is the
following. Consider two presentations A = F/F,, B = G1/G, with free Abelian
Fy, F», Gy, G, form the complex

0->F®G, - [(FI®G)®dF.8G)] - FI®G, — 0,
and prove that the homology groups H», H;, and H of this complex are 0, Tor(A, B),
and Hom(A, B). This provides a definition of Tor symmetric in A, B.)
EXERCISE 6. Prove that if A (or B) is a free Abelian group, then Tor(A, B) = 0.

EXERCISE 7. Prove that Tor(Z,,, Z,) = Zy ® Zy [= Zgcd(mn) [this isomorphism
is not canonical; it depends on the choice of generators in Z,, and Z,]. Thus, for
finitely generated Abelian groups A, B,

Tor(A, B) =~ Tors A ® Tors B

(Tors A = torsion of A, the group of elements of finite order).

EXERCISE 8. For infinitely generated A, B, the last isomorphism, in general, does
not hold: Construct an example.

EXERCISE 9. Prove thatis A = Q, R, or C, then Tor(A, B) = 0 for any B.
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The “dual” operation Ext is defined in a similar way. First, we dualize Lemma 1:

Lemma 3. [fthe sequence

is exact, then the sequence

Hom(4, G) “? Hom(B, G) " Hom(C, G) «— 0

is exact.
Proof The proof is left to the reader; it is easier than the proof of the Lemma 1.

EXERCISE 10. Prove that the operation Hom(G, —) is left exact. This means that if
the sequence

is exact, then the sequence

Hom(G, Hom(G.,p)
0 —— Hom(G, A) —> Hom(G,B) —— Hom(G, C)

is exact.

Let A, B be Abelian groups, and let A = F/F,, where F| and F, are free Abelian
groups. Lemma 3 says that the kernel of the map Hom(F, B) — Hom(F>, B), f
f |F, is Hom(A, B), but this map is not onto. The cokernel of this map, which is the
quotient of Hom(F,, B) over the image of this map, is taken for Ext(A, B).

EXERCISE 11. Prove that Ext is well defined (this is a dualization of Lemma 2).

EXERCISE 12. Show that the operation Ext is natural with respect to both argu-
ments; that is, homomorphisms A — A’,B — B’ induce a homomorphism
Ext(A’, B) — Ext(A, B’) with all expectable properties. (Notice the reversion of
the arrow A — A’))

EXERCISE 13. Prove that Ext(Z,B) = 0 for any B; prove also that Ext(Z,,, Z,)
=~ Hom(Zy, Zy) = Zy & Zy = Zm,yy (not canonically!), and Ext(Z,,, Z) = Z
(unlike Tor(Z,,, Z) = 0).

EXERCISE 14. The set Ext(A, B) has another definition (due to Yoneda) as the set
of equivalence classes of “extensions” of A by B, that is, short exact sequences

0—-B—>C—>A—>0

where C is an Abelian group. Prove the equivalence of the two definitions of Ext
and make up a direct definition of a group structure in the set Ext(A, B) described as
the set of extensions.
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EXERCISE 15. Prove that if one of the groups A,B is Q,R, or C, then
Ext(A,B) = 0.

15.5 The Universal Coefficients Formula

Now we will show that the usual (integral) homology of X (actually, of any complex
consisting of free Abelian groups) determine homology and cohomology of X with
arbitrary coefficients.

Theorem. For any X, n, and G,
H,(X;G) = (H,(X) ® G) & Tor(H,—(X), G)
H'(X;G) = (H'(X) ® G) @ Tor(H""(X;Z), G)
H"(X; G) =~ Hom(H,(X), G) & Ext(H,—(X), G).

IMPORTANT ADDITION. The isomorphisms of the theorem are not canonical.
What is canonical are the following three exact sequences:

0—H,X)® G— H,(X;G) = Tor(H,—(X),G) — 0,
0 — H'(X;Z) ® G — H"(X; G) — Tor(H"t'(X;Z), G) — 0,
0 < Hom(H,(X), G) < H"(X; G) < Ext(H,—(X),G) < 0.

Proof. The first two exact sequences are easily obtained from coefficient sequences.
The first sequence is obtained in the following way. Let G = F;/F,, where F and
F), are free Abelian groups. Then /| = Z & Z @ ... ,, and hence

H,X.F\)=H,X;Z®Z&...)=H,X)®H,X)&®--- = H,(X) ® Fy,
and, similarly, H,(X; F») = H,(X) ® F,. Hence, the fragment
H,(X;F>) - H,(X; F1) - H,(X;:G) —» H,1(X; F») = H,—1(X; F»)

of the coefficient sequence takes the form

H,(X) ® F; — H,(X) ® F'1 — H,(X;G)
—>H, 1 (X) @ F, - H,_1(X) ® F>.

A five-term exact sequence A B> C—>D i) E can be transformed into
a short exact sequence 0 — Coker¢p — C — Keryy — 0 (where Coker is the
quotient over the image, Coker¢p = B/Img). This transformation converts the
last sequence into the first of the three exact sequences in the theorem. The second
sequence is obtained in the way from the cohomological coefficient sequence (and
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the isomorphisms H"(X; F;) = H"(X;Z) ® F;). The last sequence can hardly be
obtained in a similar way, because it contains both homology and cohomology. But
there exists a different approach which yields isomorphisms from the theorem rather
than the exact sequences.

Since for every n, B,(X) = Im[0,41: Cyh+1(X) = C,(X)] is a free Abelian group,
there exists a (nonunique) homomorphism s,,: B,(X) — C,+1(X) such that 9,4+ o
s, = id. Thus,

Co+1(X) = Ker 0,41 ® Ims, = Z,1+1(X) & B,(X).

The boundary operator looks like this:

Cotr1(X) = Zp11(X) @ Bu(X)

[3n+1 Jinclusion

This shows that the whole singular complex C = {C,(X), 9,,} is isomorphic (not
canonically) to the direct sum of very short complexes C(n),

incl.
050 BuX) 25 72 (X)>0-0...

(n+1) (n)

[for this complex, the n-dimensional homology is H,(X); all the other homology
groups are zero]. Since the tensor product has the distributivity property, the
complex C ® G = {C,(X;G) = C,(X) ® G,0, ® G} is the sum of complexes
C(n) ®G,

0—>0—>Bn—l®G—>Zn—l®G—)0—)0

Since B,(X) and Z,(X) are free Abelian groups and Z,(X)/B,(X) = H,(X), the
homology groups of the complex C ® G are

dimension n + 1: Tor(H,(X), G);
dimension n: H,(X) ® G.

The summation over n gives the first formula of the theorem: H,(X; G) =~ (H,(X) ®
G) @ Tor(H,—1(X), G). The second formula is obtained in the same way; we leave
this job to the reader.

To prove the last part of the theorem, consider again the decomposition of the
singular complex C of X into the sum of “very short complexes” C(n):
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17}

. Cn+2(X) - 7L+1(X) —>C,L(X) _>Cn—l(X) (C)
0 — By(X) m'>Z,L(X)—> 0 o (C(n)

We see that although the decomposition C = € C(n) is not canonical, and hence
there is neither a canonical projection C — C(n) or a canonical embedding
C(n) — C, there are still the canonical projection C,4+(X) — B,(X) and the
canonical embedding Z,(X) — C,(X), as shown in the diagram. Now apply to
this diagram the operation Hom(—, G). We obtain the diagram

Hom(Cpi2(X),G) — 0

f f

Hom(Cp4+1(X),G) ——  Hom(B,(X),G)

f f

Hom(C,(X), G) _— Hom(Z,(X),G)
Hom(C,_1(X),G) —— 0
For the (co)homology H"(C; G) of the complex Hom(C, G), we have

H"(C(n); G) = Ker[Hom(Z,(X), G) — Hom(B,(X), G)]
= Hom(H,(X), G),

H""1(C(n); G) = Coker[Hom(Z,(X), G) — Hom(B,(X), G)]
= Ext(H,(X), G)

and H"(C(n)) = 0 for m # n,n + 1. From this,

H"(X;G) = P H"(C: G) = Hom(H,(X). G) & Ext(H,1(X). G).
k

as stated. Moreover, as we have seen, there are canonical homomorphisms
H"(X;G) - Hom(H,(X), G), Ext(H,—1(X),G) — H"(X; G),
which form the exact sequence
0 < Hom(H,(X), G) < H"(X;G) < Ext(H,—1(X),G) < 0.

This completes the proof of the theorem.
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We can add that the map
C"(X; G) = Hom(C,(X), G) - Hom(Z,(X), G)

considered above is simply the restriction to Z,(X); moreover, if ¢ € C*(X; G) is
a cocycle, then the restriction of ¢ to B,(X) is zero, which provides an element
of Hom(H,(X),G) depending only on the cohomology class of c¢; this is how
our homomorphism H"(X;G) — Hom(H,(X),G) acts. In other words, this
homomorphism sends a cohomology class y € H"(X;G) to a homomorphism
a — (y,a) of Hy(X) into G. The fact that this homomorphism is onto yields the
following important proposition.

Corollary 1. For every homomorphism f: H,(X) — G, there exists a cohomology
class y € H'(X; G) such that f () = (y, «) for every o € H,(G).

Remark also that this y is defined up to an element of Ext(H,(X),G); in
particular, if H,(X) and G are finitely generated, then this Ext group is finite, so
y is defined by f up to adding an element of finite order.

Before the final exercises of this section, we will mention one more interesting
corollary.

Corollary 2. [f the groups H,(X) are finitely generated, then
H"(X;Z) =~ Free part of H,(X) & Torsion part of H,_; (X).
In particular, H (X; Z) is a free Abelian group.
EXERCISE 16. If K = Q, R, or C, then
H,(X;K) = H,(X) ® K and H"(X; K) = Hom(H,(X), K).

Thus, the transition from the integral coefficients to the rational, real, or complex
coefficients Kkills the torsion. On the other hand, the Betti numbers of X become the
dimension of homology or cohomology with coefficients in Q, R or C. (Actually,
the same is true for any field of characteristic zero.)

EXERCISE 17. If K is a field, then homology and cohomology with coefficients in
K possess a natural structure of vector spaces over K. Prove that

H"(X;K) = Homg (H,(X; K), K).

[It is better not to deduce this formula from the universal coefficients formula, but
rather to prove it directly using the equality C"(X; K) = Homg (C,(X; K), K).]

EXERCISE 18. Prove that if X is a finite CW complex and K is a field, then

> (=)™ dimg H,(X: K)

does not depend on K and is equal to the Euler characteristic of X (see Sect. 13.7).
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15.6 Kiinneth’s Formula

By its contents, Kiinneth’s formula is closer to the next lecture than to the
current one. But by sight, this formula has so strong resemblance to the universal
coefficients formulas (actually, these formulas can be deduced from the same
general algebraic result; thus, they have a common ancestor) that it would be unfair
to try to separate them.

Theorem 1. Let X, X, be topological spaces. Then for any n,
(1) There is a (noncanonical) isomorphism

Hn(Xl X Xz) =
D H(X)®H(Xz)) D D Tor(Hi(X1), Hj(X>)).

i+j=n i+j=n—1
(2) There is a canonically defined exact sequence

0 — D4y (Hi(X1) ® Hi(X2)) — Hu(X1 X X2)
- @i+j=n—1 Tor(H;(X1), Hj(X2)) — 0.

We will deduce Theorem 1 from an algebraic result related to the tensor product
of complexes.

Definition. Let

© .2,
)

be two positive complexes. Let

— . !
In= @i+j=n(cl ®C)
andlet 7,: T, - T, take c ® ¢’ € C; ® C; C T, into
T(c® C/) = (0ic® C/) + (—1)i(c ® 3]/-6‘/) €e(Cu1 ® Cj) b (C® Cj_l) C Th—1.

A direct verification (see below) shows that 7,—; o t, = 0. The complex arising,

Tn+1 T Tn Th—1

is called the tensor product of the complexes C and C’ and is denoted as C ® C'.

VERIFICATION OF 7,107, = 0.Letc € C;, ¢’ € CI/.. Then
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L1 0 G (e ® ¢) = 1,1 (Bic @ ¢') 4+ (=) i (¢ ® )

(3i-1 0 3i(c) ® ¢) + (1) (3ic ® i)
+(=1D)((3ic ® 9c") + (1Y (e ® 9}_, 0 3(c)))
= (=)' (3ic ® 3¢) + (=1)'(dic ® ') = 0.

Our next goal is to express the homology of the tensor product of two complexes
in terms of homologies of these complexes.

Theorem 2. If the complexes C, and C' are free (that is, all C,, C), are free Abelian
groups), then, for every n,

(1) There is a (noncanonical) isomorphism

Hn(c ® C/) =
O HOBHC) © O TortC).HC).
i+j=n i+j=n—

(2) There is a canonically defined exact sequence

0— @H.j:n(Hi(C) ® HI(C/)) — H,C®C)
— @i+j=n—1 Tor(H;(C), H;(C")) — 0.

Proof. Begin with part (2). Let Z, = Ker d,,, B,—; = Im d,,. Consider the diagram

0 0 0
| Il Il
0 0 0 0
Zn+1 Zn Zn—l
C C C
+ + +
bl d ) )
Cn+l Cn Cn—l
d d d
+ + +
0 0 0 0
Bn Bn—l Bn—Z
\ \ \
0 0 0

The rows of this diagram are complexes, the columns are exact sequences, and
the diagram is commutative. Thus, this diagram can be regarded as a short exact
sequence of complexes:

0—-Z—->C—>B—0,
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where Z and B are complexes with trivial differential composed of groups Z, and
B, [but the nth group of the complex B is B,—1]. Since the complex C’ is free, the
sequence remains exact after tensoring with C’:

0>Z2Z2QC >CRC ->BC — 0.

Since Z and B have trivial differentials and consist of free Abelian groups,

H(Z2®C)= P ZeH(C). HBeC)= O BeH(C)).

i+j=n i+j=n—1

Thus, the homology sequence corresponding to the last short exact sequence of
complexes takes the form

P (B ® Hi(C)) —— @ (Z ® H{(C') > H,(C®C)
it+j=n it+j=n

S D BIHC) - D (ZHC)).

i+j=n—1 i+j=n—1

Itis easy to see also that the connecting homomorphisms ¢ and ¥ are induced by the
inclusion maps B; — Z; [before tensoring with C’, they consist first in applying 9!
and then 0; tensoring with C’ does not change anything]. Since the Abelian groups
B; and Z; are free and H;(C) = Z;/B;, the exact sequence 0 — Coker¢p — H,(C ®
C') — Keryr — 0 is precisely the exact sequence from part (2) of Theorem 2.

To prove part (1), first notice that if H,(C) = 0 for n # i and H,(C') = 0 for
n # j, then part (2) shows that the homology of C ® C’ is zero, except

Hi+j(c ® C/) = HL(C) by PI](C/)7
Hij-1(C ® C") = Tor(Hi(C). H;(C").

so the isomorphism of part (1) holds. In general,

incl.

C =~ @PC(i), whereC(i)is ...0>0— B —>Z;—>0—>0...,
(i+1) (i)

incl.

C'=dC(), whereC'()is ...0 >0~ B} —> Z —>0—0...
G+ ()

(noncanonical isomorphisms; compare with Sect. 15.5), and all the homology
groups of C(i) and C’(j) are zero besides H;(C(i)) = H;(C) and H;(C'(j)) = H;(C’).
This implies part (1) in full generality.

Proof of Theorem 1. In the case when X; and X, are CW complexes, it is sufficient
to remark that the cellular chain complex of X; x X, is the tensor product of the
cellular complexes of X| and X, (e x €’ <> e ® ¢'). To extend the result to arbitrary
topological spaces, we use two previous results: (1) Every topological space is
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weakly homotopy equivalent to a CW complex (Sect. 11.6); and (2) homology is
weakly homotopy invariant (Sect. 14.1).

Remarks. (1) It is not true, in general, that the singular complex of the product
X x X, of two topological spaces is isomorphic the tensor product of the singular
complexes of X; and X,. But these complexes are homotopy equivalent (there exists
a homotopy equivalence canonically defined up to a homotopy between them).
This fact, known as the Eilenberg—Zilber theorem, is proved in many textbooks in
topology.

(2) A comparison of the universal coefficients formula with Kiinneth’s formula
gives the following result (which may be useful in Chap. 3):

Hy(Xi x Xo) = (D), _ HilX; Hj(X2).

EXERCISE 19. The last equality can be modified to the case of homology and
cohomology with coefficients:

H,(X\ X X2:G) = D=, Hi(X1; Hi(X2: G))
H"(X1 X X2, G) = @ 4= H' (X1; H' (X2: G)).

(These equalities, as well as the equality in the preceding remark, can be proven
without any references to the universal coefficients and Kiinneth’s formulas: They
hold, actually, at the level of cellular chains. This provides a direct way to deduce
the noncanonical part of Kiinneth’s formula from the similar part of the universal
coefficients formulas.)

Here is a small but significant application of Kiinneth’s formula.

EXERCISE 20. Find the homology of RP? x RP?. (If the result seems unexpected
to you, check it using a direct cellular computation.)

Like the universal coefficients formula, Kiinneth’s formula simplifies a lot in the
case of coefficients in a field.

EXERCISE 21. Prove that if K is a field, then
H,(X1 x X2;K) = @1, Hi(X1: K) ®x H;(X2; K),
H'(X) x X2:K) = @4, H' (X1: K) @k H (X2: K).
In conclusion, here are two more formulas.
EXERCISE 22. B,(X| X By) = Ziﬂ:n Bi(X1)B;(X>).

EXERCISE 23. x(Xi x X») = x(X1)x(X2). (In both exercises, we assume that the
right-hand sides of the formulas are defined.)
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Lecture 16 Multiplications

16.1 Introduction

Although homology is geometrically much more transparent than cohomology,
cohomology is immensely more useful because it possesses many naturally defined
additional structures. The first of these structures is a multiplication: If G is a
ring, then for « € H"(X;G) and § € H"™(X; G) there exists a naturally defined
“product” af € H™T™(X;G) which has good algebraic properties. Nothing like
this is possible for homology (see Exercise 14 ahead). We will discuss these products
(and some other products) in this lecture and will describe many other structures in
later chapters (starting with Chap. 4).

The simplest way to introduce the cohomological multiplication is as follows.
Let G be a commutative ring, and let X;, X, be two CW complexes. For cellular
cochains ¢; € C"(Xy;G), ¢, € C"™(Xy; G), we define a cellular cochain ¢ X ¢; €
CM¥m(X| x X,; G) in the most natural way: For the oriented cells e; C X, es C X
of dimensions ny, n,, the value of ¢; Xc; on e] Xey is ¢i(e1)ca(ez) (productin G). It is
easy to check that 6(c; xc2) = (§c1)xca+(—1)" ¢y x8¢s; thus, if ¢q, ¢ are cocycles,
then ¢; X ¢; is also a cocycle. The same formula shows that the cohomology class
of the cocycle ¢; x ¢, depends only on the cohomology classes of cocycles cy, ¢,
so we get a valid (bilinear, associative) multiplication

[y1 € H" (X1:G). y2 € H*(X2: G)] > y1 X y2 € H" ™ (X; x X5; G).

A similar construction exists for homology. Namely, if a; = Zi gieli €
Cn (X15G), a2 = ), gjesj € Cpy (X2; G), then we put

ay xay =Y _(gig))(e1i X €3) € Cuy 4y (X1 X X2: G).
iy
A check shows that d(a; X a;) = (da;) x az + (—1)"ay x da,, which gives rise to
a homological multiplication
[061 € Hnl(Xl; G),Oéz (S an(Xz; G)] = o) X0y € Hn1+n2(X1 X Xz; G)

The two x-products (usually called cross-products) are connected by the formula

(Y1 X y2, 1 X a2) = (=1)""(y1, a1)(y2, 02).

EXERCISE 1. Another definition of the homological x-product can be obtained
from Kiinneth’s formula: This formula yields a canonical map H,, (X;) ® H,, (X2) —
Hy, +4,(X1 x X5), and the image of oy ® o, with respect to this map is taken for
o1 X op. Prove the equivalence of the two definitions.
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At this moment, however, the difference between homology and cohomology
becomes important. For any topological space X, there exists the diagonal map
A:X — X x X, A(x) = (x,x). This maps induces homomorphisms

Ay H,(X; G) —> H,(X x X; G),
A*: H'(X x X; G) - H'(X; G);

of these homomorphisms; the first one is useless for us now, but the second one
provides cohomological multiplication: For y; € H"(X;G),y, € H™(X;G), we
put

Y1 — 1= A1 ® ») € H"T(X;G).

(The classical notation ~—, “cup,” is not very convenient, so often instead of y; — y,
we will simply write y;y5.)

However, this way of defining the cohomological product has two important
disadvantages. First, we must still prove the independence of the CW structure.
Second, the diagonal map is not cellular, and to apply it to a cellular cochain we
need to choose a cellular approximation, which cannot be done in a canonical way,
at least, in the context of arbitrary CW complexes. To avoid these difficulties we will
use the opposite order of the definition. First, we will define a —-product (usually
called the cup-product) by a singular, topologically invariant, construction, and then
we will use it to define the cross-product.

Terminological Remark. The cup-product was initially called the Kolmogorov—
Alexander product, after the two remarkable mathematicians who (independently
of each other) conceived of this operation in the mid-1930s. Unfortunately, the next
generation of topologists found this term too long.

16.2 The Cup-Product: A Direct Construction

In the standard simplex A", n = n; + n, with the vertices vy, . . ., v,, consider two
faces of dimensions n; and ny: I'"! A" with the vertices vo, . . ., vy, and F:‘_z A" with
vertices vy, , . .., U,. These faces have dimensions n; and n, and have one common
vertex, v,,. Accordingly, for an n-dimensional singular simplex f: A" — X, we will
consider faces I'"'f = f |m o, and T2f = f | T2 Ans which are singular simplices
of dimensions n; and 75.

Let X be an arbitrary topological space and let G be a commutative ring. Then let
c1 € C"(X;G) and ¢; € C™(X; G). We define a cochain ¢; — ¢, € C"T2(X; G)
by the formula

[c1 — &(f) = ci(Tf)ea(TPS),

where f is (n; + n,)-dimensional singular simplex of X.
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Proposition (Properties of the Cochain Cup-Product). Let ¢; € C"(X; G), ¢, €
C"(X; G). Then

0) 8(c; — c2) = (8c1) — 2+ (—=1)"¢cy — bcs.

(1) 1 = (2 —c3) = (c1 — 2) — 3 [c3 € CP(X; Q)]

(2) Let w be the backward transformator (Example 2 in Sect. 12.5). Then for any
(n1 + ny)-dimensional singular chain a,

e1 — eal@) = (=1)""[c; — er](@] 4.,,a).

(3) For a continuous map g:X — Y,

g1 — ) = (%) — (%)
(4) For a ring homomorphism h: G — H,

hy(c1 ~— ¢2) = (hxc1) — (hxc2).

Proof The proof is obvious [only property (0) requires a simple calculation] and is
left to the reader.

Remark. The noncommutativity (even the non-plus-minus-commutativity) of the
chain cup-product is an unavoidable property which has important consequences
(which will show themselves in Chap. 4).

Property (0) shows that the cup-product of two cocycles is a cocycle whose
cohomology class depends only on the cohomology classes of the factors. This gives
rise to the cohomological cup-product

[y1 € H" (X1:G).y2 € H(X2: G)] > y1 X y2 € H" ™ (X; x X5; G).

Theorem (Properties of the Cohomology Cup-Product). Let y; € H" (X; G), y; €
H™(X;G). Then

(D) yi— (2 —y3) =1~ y2) — y3lys € H*(X; G)].

@) ri—=ry2=ED"y — 1
(3) For a continuous map g:X — Y,

g =y = ("y) — ().
(4) For a ring homomorphism h:G — H,
ha(yr — y2) = (hay1) — (hxy2).

This follows from the proposition [the proof of property (2) uses the transforma-
tor lemma; see Sect. 12.5].
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Notice that there is an obvious generalization of the previous construction: If
y1 € H"(X;Gy), y» € H”?(X;G,) and there is a pairing u: G; x G, € G, then
there arises a cup-product y; —, y» = y1 — y2 € H"*""(X; G). For example, if
y1 € H"(X; G) (where G is just an Abelian group) and y, € H"(X; Z), then there
is a cup-product y; — y, € H" 2 (X; G).

EXERCISE 2. Prove that if X is connected and y € H°(X;G) = G, theny — y; =
yy1 for any y; € H"(X; G). In particular, if 1 € G is the unity of the ring G, then
1 € G = H°(X; G) is the unity of the cohomological multiplication.

EXERCISE 3. Construct a relative version of cup-product: If y; € H"'(X,A;G)
and y € H™(X,B:;G), then y; — y, € H"'(X,A U B;G). [To prove this,
it is convenient to regard H,(X,A U B) not as the homology of the complex
consisting of the groups C,(X)/C,(A U B), but rather as the complex of groups
C,(X)/(Cy(A) & C,(B)); the homology remains the same (for sufficiently good A
and B) by the refinement lemma.]

16.3 The Cross-Product: A Construction via
the Cup-Product

As before, let X, X, be topological spaces, let G be a commutative ring, and let
y1 € H"(X1; G), y2 € H™(X>; G) be cohomology classes. Put

Y1 Xy = (piy1) — (P312) € H" (X1 x X2; G),

where p; and p, are projections of X| x X, onto X; and Xj.
EXERCISE 4. Make up a definition of the relative cross-product,
[y1 € H"(X1,A1;G), y2 € H? (X3, A2; G)]
= Y1 XY € Hn1+n2(X1 X Xz, (Al X Xz) @] (Xl XAz); G)
EXERCISE 5. Check all kinds of naturalness for the cross-product.
Theorem. This definition of the cross-product is equivalent to that in Sect. 16.1.

Proof. Tt turns out to be sufficient to compute explicitly the cross-product in one
particular case. Since standard simplices and their products are homeomorphic
to balls,

I{Vll(AVll7 aAﬂl’Z) — Z’ an(Anz, aAnz;Z) — Z;
Hn1+n2(An1 X A"Z, a(Anl % Anz);Z) =7,

Similar formulas hold for homology.
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w3
vertices:
w2
(an ’LU()), (Ula U)o), (Ula U)1)7 (U27 wl))
w1 (v37w1)a(v37w2>7(v3aw3)7(v47w3)-
Wo

Vo U1 (%] V3 Vg

Fig. 64 Triangulation of a product of simplices

What we want to check is that the cross-product of the generators of the groups
H"(A™M,0A™;7) = Z, H™(A"™,dA";7) = Z is, up to a sign, the generator of
HMHm (A" x A", 9(A" x A™);Z) = Z.

Obviously, the singular simplex id: A" — A" is a relative cycle representing the
generator of Z = H,, (A™,dA™), and similarly for A™. As to Z = H"T"2(A™ x
A" 9(A™ x A");7Z), to describe the generator, we will construct a triangulation
(actually, quite standard) of the product A" x A™, generalizing the triangulation of
the product A" x I constructed in Sect. 12.2; see Fig. 59.

Let vo, vy, ..., v, be the vertices of A™, and let wy, wy, ..., w,, be the vertices
of A™.In A™ x A™, take (n; + ny)-dimensional affine simplices whose vertices
make a sequence of the form

(vim Wj())v (vil ’ le)s (Ul'z7 sz)’ cees (Uin1+,,2 ’ Wj,,1+,,2)s
where

O=iy<ii =i =+ Zlptn, =1,
O=jo<ji <= ZJn4m =n;
is +Jjs =s.

In other words, in an (n; + 1) x (ny + 1) grid with horizontal bars labeled by

wo, - . . , W, and vertical bars labeled by vy, . . ., v,,, we choose a path from (v, wo)

to (v, ws,) and take the sequence of crossings of the bars on this path (see an
example in Fig. 64).

2

There are (m + }f;_ such paths, and accordingly A™ x A™ falls into
ni

the union of this amount of (n; + ny)-dimensional simplices. These simplices

can be described in terms of barycentric coordinates: to which of them the point

((tos - - s tny), (o, - . ., uy,) € A" x A™ belongs depends on the ordering of numbers

fo,to +ti, ..., to + 11 + o+ ty—15 U0, Uo + UL, ... U0 U At Uy

For example, the seven-dimensional simplex corresponding to the path in Fig. 64 is
described in A3 x A* by the inequalities
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O<to<uwy=<toy+t <to+t+t <u+u
Suptur+up<to+t+n+n =<1

(the rule is as follows: We move along the path and after a horizontal edge we place
the sum of s, and after a vertical edge we place the sum of us). Since the vertices
of each simplex of the subdivision are ordered, there arise canonical maps of the
standard simplex onto the simplices of the subdivision, that is, singular simplices of
AM x A" Letc(ny, ny) € Cpy4n, (A™ x A") be the sum of these singular simplices
with the coefficients &1 where the sign is determined by the parity of the number
of squares of grid below the chosen path (left unshadowed in Fig. 64; for the path
shown there this number is 5 and the sign is minus). It is obvious that c(ny, ny)
is a relative cycle modulo d(A™ x A"): Two of our simplices have a common
(n; 4+ np — 1)-dimensional face in the interior of A™ x A™ if and only if the two
paths have precisely one square between them; then they appear in c(ny, ny) with
opposite signs, and the faces have the same number in them; so the faces cancel. To
prove that o Xa; is plus—minus the standard generator of H"' T2 (A™ x A", 9(A™ x
A™);7) = Z, it is sufficient to check that {«; X oy, c¢(ny,n;)) = £1. Foran (n; +
ny — 1)-dimensional singular simplex f of A" x A2, the value of o] x o of f (here
by a1, @y we mean rather cochains than cohomology classes) is «; (p1 o I f )tz (pa 0
I'2f). But for a simplex f with vertices

(Uim Wjo)7 (Uil ’ le)’ (Uiz’ sz)’ s (vin1+112 ’ wj111+112)’
. . . n
the glmplex p1(I''f) has the vertices vj, ..., v;, and thg mmplex p2(T2f) has. the
vertices wj, ..., w;, ;. . The only case when these two simplices are not contained

in dA™ and dA™ is when

l.0=0,~wl.n1—1 =n1_19in1 :in1+1 ="'=in1+n2 = ny;

Jo=ji=-- :jnl = Osjn1+l = 1s---vjn1+n2 = na.

Thus, only one summand in ¢(n;, n,) makes a contribution into (¢ X 2, c(ny, nz)),
and this contribution is £1.

The rest of the proof uses only the naturalness of the cross-product. It consists of
six steps.

Step 1. The cross-product
H" (S™,pt; Z) x H™(S™,pt; Z) — H" T (8" x §", 8™ v §™; 7)

is, up to a sign, the standard multiplication Z x Z — Z. Indeed, the projections
(A™M, 9A™) — (8™, pt), (A", 0A™) — (S§™,pt), (A™ x A", 9(A™ x A™)) —
(8™ x §™,8" v §™) induce isomorphisms in the cohomology of dimensions
ni,ny,ny + no.

Step 2. The cross-product

H"(S™Z) x H™ (8" Z) — H" 2 (S™ x §™; )
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is, up to a sign, the standard multiplication Z x Z — Z. Indeed, the maps (S, pt) —
(8™, 9), ... induce isomorphisms in the cohomology of appropriate dimensions.

Step 3. Similar statements for the bouquets of spheres (we leave precise
statements to the reader).

Step 4. The ring Z can be replaced by an arbitrary ring G. This follows from the
naturalness of the cross-product with respect to ring homomorphisms Z — G.

Step 5. X;1,X, are CW complexes of the respective dimensions np, 1y, and
cohomology classes y; € H"(X1; G), y» € H™(X3; G) are represented by cellular
cocycles ¢y, cp; then y; X y, € H" T2 (X X Xo; G) is represented by the cellular
cocycle

[c1 x c2](er x e2) = Eci(er)ca(er).

For the proof we can consider the projections X; — X;/sk,—1X1,.Xo —
X5/ skp,—1 X»; the induced cohomology homomorphisms are epimorphisms.

Step 6. The general case. For the transition to this case we consider the inclusion
maps sk, X1 — Xi, sk, Xo — Xo,sk,, X1 X sk, Xo — X; x Xp; the induced
cohomology homomorphisms in the appropriate dimensions are monomorphisms.

This completes the proof.

16.4 Cup-Product and Diagonal Map

Now let us briefly investigate the connection between the definition of the
cup-product in Sect. 16.2 and the preliminary definition from the introduction
(Sect. 16.1). The first statement is almost obvious.

Theorem. Forany X, G, and y; € H"(X; G), y, € H2(X; G),

Y1 = 2 = A"(y1 X y2),

where A: X — X x X is the diagonal map.
Proof. Obviously, pj o A = p; o A = id. Hence,

A*(y1 xy2) = A*@Ivi = p3y2) = 1o A) Y1 — (P20 A)* vy = y1 — 2.

In addition to that, we remark that actually the definition of cup-product in
Sect. 16.2 can be regarded as a combination of the definition in Sect. 16.1 and a
particular choice of a cellular approximation of the diagonal map. Let us describe
the latter, first in the case when X is a triangulated space. First, in the product
A" x A", let us consider the CW subcomplex Up+q:n(l"£ A" x 1"3_ A"); forn; =
ny, = 2, it is shown in Fig. 65 (surely, a picture of a four-dimensional figure on
a two-dimensional paper sheet cannot be awfully clear). The dashed triangle is
the diagonal image of A?; it is not a cellular subspace of A? x A2. The cellular
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Wo

U1

Fig. 65 A cellular approximation of the diagonal in A2 x A?

approximations of the diagonal edges [(vo, wo), (vi, w1)], [(v1, w1), (v2, w2)], and
[(v2, w2), (vo, wo)] are broken lines [(vo, wo), (vo, w1), (i, wi)], [(V1,w1), (V1, w2),
(v2, w2)], and [(v2, w2), (v2, wo), (v, wo)]; the diagonal triangle is approximated by

the union of three pieces: two triangles and one parallelogram, as shown in Fig. 65.
In general, the approximation Ay: A” — | J (TP A" % Ff{_ A") C A" x A"
is defined by the formula

p+q=n

(t(),...,l‘n)l—)((21‘0,...,21‘[,_1,2(1‘1,+"'+tn)—1,0...,0),
0,...,0,2(f0 + -+ 1) = 1,2t,41,...,21,))),
iftg+ 41, > 0+t > )

It is clear that the restriction of Ay to any face of A" (of any dimension) is a similar
map for this face.

If X is an ordered triangulated space (see Sect. 13.10), then this construction can
be applied to each simplex of the triangulation, and we obtain a canonical cellular
approximation Ag: X — X x X of the diagonal map (here we mean the CW structure
of X x X which is obtained as the product of two copies of the triangulation of X
regarded as a CW structure; thus, the cells of X x X are products of simplices). Now
it is clear that for the two cochains ¢; € C"(X;G),c; € C™(X;G), the cochain
c1 — ¢ € C"2 (X x X; G) is nothing but (Ag)x(c; X c3); this sheds light on the
connection between the definitions of cup-product given in Sects. 16.1 and 16.2. We
can add that the construction above can be applied not only to triangulated spaces;
for example, it works perfectly well for the cellular realization Sing(X) of the
singular complex of an arbitrary topological space, and hence gives an explanation
for the construction of the —-product of singular cochains.
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16.5 First Application: The Hopf Invariant

To demonstrate at once the power of the cohomological multiplication, we will
immediately, before any serious computations of this multiplication, prove a highly
nontrivial statement concerning the homotopy groups of spheres.

Theorem. The group m4,—1(S*") is infinite for any n > 1. Moreover, the Whitehead
square [1o, 12,] of the generator of 1, (S*") has an infinite order in mwy,—1 (S™).
(Compare this theorem with the results of Sects. 9.9 and 10.5.)

The proof of this theorem is based on the Hopf invariant, which is an integer
assigned to every element of ¢ € m4,—1(S?"). Its definition is as follows. Consider
a spheroid f: $*"~! — §?" and form the space X, = $** U; D*" (aka the cone of f).
The space X, depends, up to a homotopy equivalence, only on ¢ (which justifies the
notation). It has a natural CW structure with three cells of dimensions 0, 2n, and 4n.
Thus,

HI(X,:Z) = Z for g = 0,2n, 4n,
0 forg # 0,2n,4n.

The groups H*'(X,;Z), H*(X,;Z) (isomorphic to Z) have natural generators

(determined by the canonical orientations of §?" and D*"), and we denote these

generators by a and b. Since the cup-square a’> = a — a has dimension 4n, we have

a*> = hb, where h € Z. The number h = h(p) is, by definition, the Hopf invariant

of . ! Our theorem is covered by the following two lemmas.

Lemma 1. The Hopf invariant is additive: h(¢ + ¥) = h(p) + h({).

Lemma 2. The Hopf invariant is nontrivial; in particular,

h([e2n, t2n] = 2.

Proof of Lemma 1. In addition to the spaces Xy, Xy, X,+y (constructed using the
spheroids f, g.f + g: S*~! — $2%), we will consider the space

Y(p"w — (SZn Uf D4n) Ug D4n — SZn Ung (D4n \V; D4n)'

This space has a CW structure with four cells of dimensions 0, 2n, 4n, 4n and has
the following cohomology:

7 & 7Z for g = 4n,
H1(Y,y:Z) =\ Z forg = 0,2n,
0 for g # 0,2n, 4n.

'In the homotopy theory, there are interesting generalizations of the Hopf invariant; see Whitehead
[88] and Hilton [44].
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Denote the canonical generators of the cohomology groups Hz”(YW,,,,;Z) and
H*(Y,.;Z) by d’ and b}, b,. There are natural CW embeddings X, — Y, and
Xy — Y, y. There is also a natural map X,y — Y, y; it consists of the identity
map §¥" — §?" and the map D** — D*' v D* which collapses the equatorial
plane to a point (these maps compose a continuous map X,y — Y, y because the
diagram

S4n 1 9 S4n 1/equator — S4n 1 \/54" 1

wiy

is commutative by the definition of the sum of spheroids). The induced cellular chain
maps for all three maps described above are obvious; the cohomology maps act like
this:

Xp—=>Yoy: d—a bbb by—0
Xy —>Yy: dia bi—00,—b
Xp+y > Yoy d+>a, by b by b.

We must have (a1)2 = hlb’1 + hybl,, where hy, h, € Z. By the naturalness of the
cup-product,

a* = hbinX,, a*> = hbin Xy, a* = (h1 + ha)b in Xyqy.
On the other hand,
a* = h(p)binX,, a® = h(Y)bin Xy, a® = h(p + ¥)b in X,4y.

Hence, by = h(¢),h, = h(¥),hy + hy = h(p + ), from which k(e + ¥) =
h(p) + h(¥).

Proof of Lemma 2. Consider the product 2 x §%. Its cohomology is H**(S*" x
§": 7)) = Z.® 7 (the generators c1, ¢2) and H*'(§%" x $?*; 7)) = Z (the generator d).
The multiplication: c% = c% = 0 (proof: Consider the projections $*" x §%* — §?1)
and cjc; = d (follows from step 2 of the proof in Sect. 16.3 plus the definition of
the cup-product in Sect. 16.2).

Make a factorization of §*" x $" using the relation (xo,x) ~ (x,xo) for all
x € S, where x is the zero-dimensional cell of $?*. That is, we glue to each
other the two two-dimensional cells of §?* x §?". The resulting space X has three
cells, of dimensions 0, 2n, and 4n; that is, it has the form S Uy D*", where fis
a certain map S*"~! — §%". Moreover, if we compare this construction with the
definition of the Whitehead product in Sect. 10.5, we notice that this f is nothing
but the canonical spheroid representing the Whitehead product [tp,, t2,]. Thus,
X = X{i,.15,]- The cohomology of X is H*'(X;Z) = H*(X;Z) = Z, and if a, b are
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canonical generators of these cohomology groups, then a?> = h([t2,, t2,])b. But the
cohomology homomorphism induced by the projection §** x §** — X takes a and b
into ¢ + ¢; and d. Thus, in the cohomology of §%" x $?*, (¢1 + ¢2)? = h([t2n, t24])d,
and, since (c; + ¢2)?> = c% + 2c1¢3 + c% = 2d, we have h([t, t2,]) = 2.

Remark 4. As we will see in Chap. 3, 74,1 (5*") = Z®® a finite group. In particular,
Jr3(SZ) = Z (we already know this), 717(S4) =7 & 7>, 7111(56) =7, 7115(58) =
Z @ Zia. It is also true that all the homotopy groups of spheres are finite besides
7,(S") = Z and 4,1 (S7").

Remark 5. Lemma 2 shows that the image of the Hopf homomorphism
h: 740—1(S*") — 7 is either the whole group Z or the group of even integers.
The choice between these two options is reduced to the question: Does 74,—1 (S*")
contain an element with the Hopf invariant one? This question has several
remarkable equivalent statements. For example, it is possible to show that S”
possesses an H-space structure if and only if m is odd, that is, m = 2n — 1, and
T4n—1(S?") contains an element with the Hopf invariant one. The same condition is
necessary and sufficient for the existence in R”! of a bilinear multiplication with a
unique division. The combination of Lemma 2 and Exercise 7 in Lecture 10 shows
that the Hopf invariant of the Hopf class 7, € m3(S?) equals 1 (this corresponds to
the complex number multiplication in R? or to the natural group structure in S*).
In 1960, J. Adams showed that elements with the Hopf invariant one are contained
only in 73 (%), 717(54), and 7115(58) (we mentioned his results in Sect. 1.4; we will
discuss two proofs of it: in Chaps. 5 and 6).

16.6 An Addendum: Other Multiplications

A: Homological x-Product

We already mentioned this in the introduction. Its definition corresponds to the
general spirit of this lecture: Singular simplices fi: A" — X;,f2: A™ — X, give
rise to a map f; X fo: A x A™ — X; x X;; then we triangulate the product
A™ x A™ as in the proof of the theorem in Sect. 16.3. Then we define the product
of the singular simplices f] and f, the singular chain of X; x X, which is the sum
with the coefficients =1 (the same as in Sect. 16.3) of the singular simplices which
are restrictions of the map f; x f, to the (n; + ny)-dimensional simplices of the
triangulation. This chain is also denoted as f; X f,. By bilinearity, this x-product

is extended to singular chains: (Ziglifli) X (Zj gzjfzj) = Zw 8182 (fii X f5)
(where gi;, g2; are elements of the coefficient ring G). A verification shows that
d(c1 X ¢3) = (dcy) X c3 + (—=1)" ¢y X dcy (where ny = dim¢y). Thus, there arises
a homology multiplication: For oy € H, (X1;G),a2 € H,,(X2;G), there is the
product a; X oy € Hy 44, (X1 X X2; G). The proof of coincidence of this product
with the homological cross-product described in Sect. 16.1 is a replica of the proof
of the similar cohomological result in Sect. 16.3.
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EXERCISE 6. Prove that for oy € H,,(X1;G), a2 € H,,(X2;G), y1 € H"(X1; G),
y2 € H?(X3; G),

(Y1 X y2, 01 x aa) = (=1)""(y1, a1)(y2, a2).

B: Cap-Product

This is a mixed operation involving both homology and cohomology. Let a =
> 8 € Cyy(X; G), c € C(X; G), where n; > ny. Put

a —~¢c= Zg,-c (Fﬁz) Ff:_l_nz € Cnl—nz(X; G)

1
(we use the notation introduced in Sect. 16.2).

EXERCISE 7. Prove the formula

(0a) ~c=a ~ éc+ (—=1)?d(a —~ ¢).

EXERCISE 8. Deduce from this that if a is a cycle representing a homology class
a € H,, (X; G) and c is a cocycle representing a cohomology class y € H?(X; G),
then a —~ c is a cycle whose homology class is fully determined by o and y.

In the notation of Exercise 9, the homology class of a —~ c is denoted as @ —~ y.
Thus, we get the cap-product

@ € H,(X;G),y e H*(X;G)]| —> a ~ y € Hy—,(X; G).

EXERCISE 9. Prove that if n; = n; and X is connected, then @ —~ y = (y,a) €
G = Hy(X; G).

EXERCISE 10. Prove the “mixed associativity”: ¢ —~ (y; — y2) = (@ —~ y1)
—~ )/2_

EXERCISE 11. Prove the naturalness of the cap-product: If @ € H, (X;G),y €
H™(Y;G), and f: X — Y is a continuous map, then (fxa) —~ y = fi(@ —~ f*y).

C: Pontryagin—-Samelson Multiplication

EXERCISE 12. Prove that if n;,n, are positive integers, then there is no way to
introduce for all X a nonzero bilinear multiplication

H, (X;G) xH,,(X;G) = Hyp, 41, (X; G)

natural with respect to continuous maps.



17.1 Smooth Manifolds 215

However, it is possible to define a multiplication in homology groups of X if X
itself possesses a multiplication making it a topological group or, at least, an H-
space. The definition is obvious: If ©:X x X — X is the multiplication in X and
a) € Hy (X;G),an € Hy,(X;G) where G is aring, then ajap = ps(0p X @2).
This product is called the Pontryagin—Samelson product. We have no opportunity
to discuss this product in detail, but we recommend to the reader, after reading
Chap. 3, to return to this product and to calculate it for the homology groups of
major topological groups and H-spaces.

Final Remark. All multiplications considered in this lecture can be generalized, in
an obvious way, from the case of ring coefficients to the case when there is a pairing
G| x G, — G, the factors lie in the homology/cohomology with coefficients in
G and G, and the product belongs to the homology/cohomology with coefficients
in G.

Lecture 17 Homology and Manifolds

Among the natural computational tools used by homology theory, the most efficient
ones are delivered by the topology of smooth manifolds, and we cannot help
considering this subject. However, the foundations of the theory of manifolds, rooted
in geometry and analysis, require a thick volume by themselves. The most common
way to overcome this difficulty is to replace the notion of a smooth manifold by
various combinatorial substitutes like homology manifolds or pseudomanifolds (see
Sects. 17.2 and 17.3 ahead). By doing this, we can achieve a rigor of the proofs at
the expense of geometric visuality. To compensate for the latter, we will sometimes
provide geometric explanations based on statements which are easy to believe, but
not always easy to prove.
We begin with a short sightseeing tour in the theory of smooth manifolds.

17.1 Smooth Manifolds

A Hausdorff topological space with a countable base of open sets (these topological
assumptions are not in the spirit of this book, but we have to impose them, since
without them many statements that follow would be plainly wrong) is called an n-
dimensional (topological) manifold if every point of it possesses a neighborhood
homeomorphic to the space R" or the half-space R* = {(x1,...,x,) € R" |
X, < 0}. A point of an n-dimensional manifold X which has no neighborhood
homeomorphic to R" is called a boundary point. Boundary points of X form an
(n — 1)-dimensional manifold dX called the boundary of X. Obviously, dX is a
manifold without boundary: 00X = @.
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Examples of manifolds: Euclidean spaces, spheres, balls, classical surfaces, pro-
jective spaces, Grassmann manifolds, flag manifolds, Lie groups, Stiefel manifolds,
products of the spaces listed above, open sets in these spaces, closed domains with
smooth boundaries in these spaces, and so on.

A homeomorphism between R" or R” (or an open set in one of these spaces) and
an open set U in a manifold X determines coordinates in U which are called local
coordinates. If the domains U, V of local coordinate systems f: U — R:’_), gV -
R:‘_) (also called charts) overlap, then there arises a transition map

1

funv) s unv =5 qunv
N N
R R",

which is described by usual functions of n variables. These functions can be smooth
(as usual in topology, we understand the word smooth as belonging to the class
C®), analytic, algebraic, etc. A set of charts which cover the manifold is called
an atlas. An atlas is called smooth (analytic) if such functions are all transition
functions between charts of this atlas. Two smooth (analytic) atlases are called
smoothly (analytically) equivalent if their union is smooth (analytic) atlas. A class
of equivalent smooth (analytic) atlases is called a smooth (analytic) structure on
a manifold. A manifold with a smooth (analytic) structure is called a smooth
(analytic) manifold. The boundary of a smooth (analytic) manifold is, in a natural
way, a smooth (analytic) manifold. In the following, we will not consider analytic
manifolds any seriously.

All manifolds listed above possess a natural smooth structure. Add one more
example: Smooth surfaces in a Euclidean space, that is, closed subsets of R™ locally
determined by systems of equations

ﬁ(‘xlv"'axm) = 09 l: 1,...,k
and, possibly, one inequality

Jir1(xr, ..o x,) >0,

where fi,....fi (,fi+1) are smooth functions whose gradients in their common
domain are linearly independent.

There are two fundamental theorems in the theory of smooth manifolds (also
called differential topology).

Theorem 1. Every smooth manifold is diffeomorphic (that is, homeomorphic with
preserving the smooth structure) to a smooth surface in an Euclidean space.

Theorem 2. Every compact smooth manifold is homeomorphic to a triangulated
subset of an Euclidean space, and the homeomorphism can be made smooth on
every simplex of the triangulation.
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Remarks. (1) In both theorems, the dimension of the Euclidean space can be as
small as twice the dimension of the manifold.

(2) Theorem 2 also holds for noncompact manifolds, but the triangulation in this
case has to be infinite.

We do not prove these theorems. Theorem 1 is proved in many textbooks in
differential topology. Its proof is not hard. The situation with Theorem 2 is worse.
Since the 1920s, the topologist regarded this fact as obvious. There are many
geometric approaches to this result which look promising. For example, take a
compact smooth surface in an Euclidean space and decompose this space into a
union of small cubes. If the decomposition satisfies some general position condition
with respect to the surface, we can expect that the intersections of the surface
with the cubes will be close to convex polyhedra and we can easily triangulate
these polyhedra. Or, choose a random finite subset of the smooth surface which is
sufficiently dense, and take the Dirichlet domain; again we should get a subdivision
of the surface into smooth polyhedra. However, numerous attempts to make this
proof rigorous turned out to be unsuccessful. The first flawless proof of this theorem
(actually, of a stronger relative result) was given in the 1930s by H. Whitney. This
proof was based on entirely different ideas and did not look easy. We know two
textbook presentations of this proof, in the books Whitney [89] and Munkres [64].

EXERCISE 1. Construct a realization as smooth surfaces in Euclidean spaces of
projective spaces, Grassmann manifolds, flag manifolds, and Stiefel manifolds.

EXERCISE 2. Prove that all classical surfaces can be presented as smooth surfaces
in R" withn < 4.

EXERCISE 3. Construct smooth triangulations of classical surfaces; try to minimize
the number of simplices needed.

EXERCISE 4. Prove that the number of n-dimensional simplices adjacent to an
(n — 1)-dimensional simplex of a smooth triangulation of an n-dimensional smooth
manifold is 2 if this (n — 1)-dimensional simplex is not contained in the boundary,
and is 1 otherwise.

EXERCISE 5 (a generalization of Exercise 4). Let s be a k-dimensional simplex of a
smooth triangulation of an n-dimensional smooth manifold. Consider the simplices
of the triangulation which contain s, and in each of these simplices take the face
opposite s (that is, spanned by the vertices not belonging to s). Prove that the union
of these faces (which is called the link of the simplex s) is homeomorphic to §**~!
if 5 is not contained in the boundary and is homeomorphic to D" *~! otherwise. (For
a warmup, begin with the case whenn =3 and k = 1.)

Remark. The notion of a link will be used later, so the reader who is not interested
in this exercise still has to understand the definition of a link.

An atlas of a smooth manifold is called oriented if for every two overlapping
charts the transition map has a positive determinant at every point. Two oriented
atlases determine (belong to) the same orientation if their union is an oriented atlas.
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A manifold is called orientable (oriented) if it possesses (is furnished by) an
oriented atlas, that is, an orientation.

EXERCISE 6. Which projective spaces and Grassmann manifolds are orientable?
(Answer: Only real projective spaces and Grassmann manifolds can be nonori-
entable. Namely, RP" is orientable if and only if n is odd, and G(n, k) is orientable
if and only if n is even.)

EXERCISE 7. Prove that spheres with handles are orientable and projective planes
and Klein bottles are nonorientable; drilling holes does not affect the orientability.

EXERCISE 8. Prove that a connected orientable manifold of positive dimension has
precisely two orientations.

EXERCISE 9. Prove that every connected chart of an orientable manifold can be
included in an oriented atlas; thus, if an orientable manifold is connected, then every
connected chart determines an orientation.

EXERCISE 10. Prove that a manifold is orientable if and only if a neighborhood of
every closed curve on this manifold is orientable.

EXERCISE 11. Prove that every simply connected manifold is orientable.

EXERCISE 12. Prove that every connected nonorientable manifold possesses an
orientable twofold covering.

EXERCISE 13. Prove that the boundary of an orientable manifold is orientable.

It is also possible to define orientations using the language of triangulations. An
orientation of an n-dimensional simplex is the order of its vertices given up to an
even permutation. An orientation of an n-dimensional simplex induces orientations
of its (n — 1)-dimensional faces (using an even permutation of the order of vertices,
we make the number of the vertex complementary to the face to be n, after which
we orient the face by the order of remaining vertices). (Some modification is needed
in the cases of n = 0,1: An orientation of a zero-dimensional simplex is just
+ or —, the orientation of faces vy and v; of a one-dimensional simplex [vg, vi]
are — and +.) If two n-dimensional simplices share an (n — 1)-dimensional face,
then their orientations are coherent if they induce opposite orientations on this
face. A triangulated n-dimensional manifold is orientable if all its n-dimensional
simplices can be coherently oriented.

EXERCISE 14. An orientation of a connected orientable n-dimensional manifold
is determined by an orientation of any of its n-dimensional simplices. [It may be
reasonable to do this exercise after reading (the beginning of) the next section.]
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17.2 Pseudomanifolds and Fundamental Classes

Definition. A triangulated space X is called an n-dimensional pseudomanifold if it
satisfies the following three axioms.

1 (Dimensional homogeneity). X is the union of its n-dimensional simplices.

2 (Strong connectedness). For any two n-dimensional simplices s,s” of X, there
exists a finite chain of n-dimensional simplices, so, s1, ..., Sk, such that 5o =
s,sr = ', and for every i = 1,...,k, the simplices s;,—1,s; share an (n — 1)-
dimensional face.

3 (Nonbranching property). Every (n — 1)-dimensional simplex of X is a face of
precisely two n-dimensional simplices of X.

If X is a connected smooth n-dimensional manifold without boundary furnished
with a smooth triangulation, then the triangulation obviously satisfies Axiom 1,
satisfies Axiom 3 as stated in Exercise 4, and satisfies Axiom 2 as stated in Exercise
below.

EXERCISE 15. Prove that a smoothly triangulated smooth connected manifold
without boundary is strongly connected (see Axiom 2). [All we need to establish is
that two interior points of n-dimensional simplices can be joined by a path avoiding
an (n — 2)-dimensional skeleton.]

Thus, a smoothly triangulated connected smooth manifold without boundary
is a pseudomanifold. The converse is wrong: A pseudomanifold is not always a
manifold. See the simplest example in Fig. 66.

There are fewer artificial examples of pseudomanifolds topologically different
from manifolds: complex algebraic varieties, and Thom spaces of vector bundles
(these will be extensively studied later, in Lecture 31 and further lectures).

Fig. 66 A pseudomanifold which is not a manifold (a pinched torus)
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An orientation of a pseudomanifold is defined as in the end of the previous
section (Exercise 14 is also applied to this case). If a pseudomanifold is a manifold,
then an orientation of this pseudomanifold is the same as an orientation of the
manifold (in the sense of Sect. 17.1).

Theorem. Let X be an n-dimensional pseudomanifold. Then

Hy(X) = Z,if X is ?ompact and orientable,
0 otherwise;
Hy(X: 7,) = Zy, if X is ?ompact,
0 otherwise.

Proof. We consider the classical complex {C,(X), d,}, corresponding to an arbitrary
ordering of vertices (see Sect. 13.10). Since C,+(X) = 0, H,(X) = Z,(X), the
group of n-dimensional cycles of the classical complex. Let ¢ = ), k;s; be such a
cycle (k; are integers, s; are n-dimensional simplices). If the simplices s; and s; share
an (n— 1)-dimensional face, then this face does not belong to any other simplex, and
dc = 0 implies k; = =k; (the sign depends on the orientations). Since X is strongly
connected, this shows that ¢ involves all n-dimensional simplices of X, with all the
coefficients of the form +k, where k is a nonnegative integer, the same for all the
simplices. From this we immediately see that if the number of simplices is infinite,
then there are no nonzero cycles, and H,(X) = 0. If the number of simplices is
finite, then let us reverse the orientations of simplices with a negative value of the
coefficient. Since c is a cycle, these new orientations induce opposite orientations
on every (n — 1)-dimensional face; that is, they are coherent. We see that a nonzero
cycle exists if and only if X is orientable. This proves our result for H,(X). The
case of Z,-coefficients is similar, but it does not involve signs, and hence does not
involve orientations.

This proof provides a canonical generator for the group H,(X) for a compact
oriented pseudomanifold X: This is the homology class of the cycle, which is the
sum of all n-dimensional simplices of X with orientations compatible with the
orientation of X and with the coefficients all equal to 1. This homology class is
called the fundamental class of X (and the cycle is called the fundamental cycle).
In the orientation-free case, we have fundamental classes and fundamental cycles
with coefficients in Z, (certainly, only for compact pseudomanifolds). Notation:
[X] € Hn(X) or Hn(X; ZZ)-

Since connected smooth manifolds without boundary are pseudomanifolds, the
preceding theorem holds for them. In particular, for compact connected smooth
manifolds without boundary there are fundamental classes. (It is time to mention
a broadly used term: A compact manifold without boundary is called closed.) This
has an obvious generalization to the disconnected case: For a closed oriented n-
dimensional manifold X, H,(X) = @a H,(X,), where X,, are components of X,
and [X] is simply {[X,]}.
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EXERCISE 16. Prove that if X is a connected n-dimensional manifold with
nonempty boundary, then H,(X) = H,(X;Z,) = 0.

EXERCISE 17. Prove that if X has a boundary, then the same construction as above
gives a class [X, 0X] € H,(X, 0X) or H,(X, 0X; Z,) and d+[X, 0X] = [dX].

EXERCISE 18. Prove the relation [X; x X5] = [X;] x [X2] in all possible versions
(including the boundary one).

EXERCISE 19. Prove that for any homology class @« € H,(Y) of an arbitrary
topological space Y there exists a compact oriented (not necessarily connected)
pseudomanifold X and a continuous map f: X — Y such that fix[X] = «. Prove
a similar statement for an @« € H,(Y;Z,) and nonoriented pseudomanifolds.
(Actually, the Z,-case is easier, and so it may be advisable to begin with it;
a construction in Sect. 13.11 may serve as a pattern for both the oriented and
nonoriented cases.)

There arises a natural question regarding the possibility to present a homology
class of a topological space as an image of the fundamental class of a manifold. The
answer is negative, for homology classes with coefficients in Z as well as for those
with coefficients in Z,. We will return to the discussion of this in the last lecture of
this book.

A more popular question arises in the topology of manifolds: If Y is a manifold
and ¢ € H,(Y), then when is it possible to find a closed oriented n-dimensional
submanifold X of Y (we assume that the reader understands what it is) such that
the homomorphism induced by the inclusion map sends [X] into « (as people say,
X realizes «)? Again, a similar question exists for the Z, homology classes and
nonoriented submanifolds. There are many remarkable results regarding submani-
fold realizations; for example, for any homology class « of a manifold, there exists a
number N such that No can be realized by a submanifold. (For this result and other
results, see the classical paper by Thom [84].)

EXERCISE 20. Prove that the generators of groups
Hm(RPn; Z2)a Hm(RPn)v HZm(CPn)v H4m(HPn)

are realized by projective subspaces of RP", CP", HP". (Compare also to Exer-
cise 11 in Lecture 14.)

Mention in conclusion that if X, Y are oriented pseudomanifolds of the same
dimension, and f: X — Y is a continuous map, then fi[X] = k - [Y], where k is an
integer. This k is called the degree of f and is denoted as degf; it is a homotopy
invariant. In the nonoriented case, the degree degf may be defined as an element
of Z,. We have already had this notion in the particular case X = Y = S”" (see
Sects. 10.3 and 13.3). In the manifold case, there exists a description of the degree
similar to the description given in Sect. 10.3 for spheres; we formulate the result in
the form of an exercise.
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EXERCISE 21. Let f:X — Y be a (piecewise) smooth map between two closed
oriented n-dimensional manifolds, and let y: Y be a regular value of this map. Then
there is a neighborhood U of y such that f~!(U) is a disjoint union of a finite
collection of sets U; with all restrictions f|;; being homeomorphisms U; — U.
Prove that degf is the number of i for which this homeomorphism preserves the
orientation minus the number of i for which it reverses the orientation.

17.3 Homology Manifolds

The most general definition of a homology manifold is formulated in terms of local
homology: For a topological space X, its mth local homology at the point xy € X is
defined as H}fl’jco (X) = H,(X, X — x0).

Definition. A space X is called an n-dimensional homology manifold if, for any m,
H)Y (X) = H,(S"), that is,
Z, if m = n,

H (X) = :
X) 0, if m # n.

m,xq

For us, the most important will be the case when X is triangulated. Recall that the
star St(s) of a simplex s of triangulation is the union of simplices that contain s. The
link Lk(s) is the union of faces of simplices that contain s opposite to s. Figure 67
shows examples of stars and links of a vertex and a one-dimensional simplex of the
standard triangulation of the plane.

Proposition 1. (1) A triangulated space X is an n-dimensional homology manifold
if and only if for every vertex v of X, the link Lk(v) is a homological (n — 1)-
dimensional sphere (that is, has the same homology groups as S"~1).

(2) A triangulated space X is an n-dimensional homology manifold if and only if
for every simplex s of X, the link Lk(s) is a homological (n—k — 1)-dimensional

sphere where k = dim s.
- /Link

Link ~77

Star

Fig. 67 Stars and links
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Proof. Open stars of vertices, st(v) = St(v) — Lk(v), for an open cover of X. Also,
St(v) is a cone over Lk(v) with the vertex v. Thus, if xo € st(v), then
HI% (X) = Hy(X, X — xo) = Hp(X, X — st(v))

m,xo

= H,(St(v), Lk(v)) = Hy—1(Lk(v))

[the four equalities follow from the definition of local homology, homotopy
invariance of homology, excision theorem, and reduced homology sequence of the
pair (St(v), Lk(v))]. This proves (1).

To prove (2), notice that for a simplex s, St(s) = s * Lk(s). Hence, for every
interior point xy of s,

HY, (X) = Hy(X, X = x0) = Hy(s % Lk(s), (3s) % Lk(s))
= Hy,—1((3s) * Lk(s)) = Hyp—1 (ZLk(s)) = Hp—t—1(LK(s)),

where k = dim s. This proves (2).

Proposition 2. Every connected n-dimensional homology manifold is an
n-dimensional pseudomanifold.

Proof. Let X be an n-dimensional homology manifold. Since the link of every
vertex of X is an (n — 1)-dimensional homological sphere, this link contains
simplices of dimension > n — 1; hence, every vertex is a vertex of an n-dimensional
simplex. There cannot be simplices of dimension > n, because the link of every n-
dimensional simplex must be empty (homological S™!). Every simplex of dimension
< n must have a nonempty link, so it must be a face of a simplex of a bigger
dimension. Hence, X must be the union of n-dimensional simplices (dimensional
homogeneity axiom holds). The link of an (n — 1)-dimensional simplex s consists of
isolated points, one for every n-dimensional simplex containing s; since the link is a
homological §°, this number is 2 (unbranching axiom holds). A path connecting two
points of X can be made straight within every simplex; since the links of simplices
of dimension < n — 2 are connected, the path can be pushed from every point of a
simplex of dimension < n — 2 to simplices of bigger dimensions. Hence, there is a
path disjoint from the (n — 2)nd skeleton of X (the strong connectedness holds).

Remark 1. Proposition 2 shows that everything said in Sect. 17.2 about pseudomani-
folds can be applied to homological manifolds. In particular, homological manifolds
can be orientable or nonorientable, there are fundamental cycles and classes, and the
theorem of Sect. 17.2 holds for a connected homology manifold.

Remark 2. This argumentation shows a difference between pseudomanifolds and
homology manifolds. While in homology manifolds all links are homological
spheres of appropriate dimensions, in n-dimensional pseudomanifolds this holds
for links of simplices of dimensions n and n — 1. Add to that that a pseudomanifold
in Fig. 66 is not a homology manifold.
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Remark 3. A smooth manifold without boundary is a homology manifold (and in the
smooth case, links are homeomorphic to spheres, not just are homological spheres).

Remark 4. A homology manifold is not always a topological manifold. For example,
there are manifolds with the same homology as a sphere, but not simply connected
(the best known example is the Poincaré sphere defined in §° = {(z1,22.23) € C? |
211> + |22/* + |z3/*> = 1} by the equation z] + z3 + z3 = 0). The suspension
over such a manifold is a homology manifold, but no neighborhoods of vertices are
homeomorphic to a Euclidean space.

17.4 Poincaré Isomorphism

The main result of the homological theory of manifolds is the following:

Theorem. Let X be a compact n-dimensional homology manifold, and let
0 <m < n. If X is orientable, then for any G,

H,(X;G) =~ H" " (X; G).
In the general case,
H,(X;Z,) =~ H™™(X; Z,).
In both cases, there are canonical isomorphisms
D:H" ™(X;G) - H,(X; G)

which act by the formula D(a) = [X] ~ «, where [X] is the fundamental class (see
Sect. 17.2) and —~ denotes the cap-product (see Sect. 16.6).

Remarks. (1) The isomorphism D is usually referred to as the Poincaré isomor-
phism.

(2) By Remark (3) in Sect. 17.3, the theorem holds for closed (compact and
boundary-less) smooth manifold.

The proof of the theorem will consist of two parts: First we will give (the
most classical) construction of Poincaré isomorphism, and then we will prove
the formula involving the cap-product. This formula will show, in particular, that
the isomorphism provided by the classical construction does not depend on the
triangulation.

For a simplex s of the triangulation of X, denote as Bast(s) the union of all
simplices of the barycentric triangulation whose intersection with s is the center
of 5. Using the fact that the simplices of the barycentric triangulation correspond to
the increasing chains so C --- C s; of the initial triangulation, we can describe
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Fig. 68 Barycentric stars

Bast(s) as the union of simplices of barycentric triangulation corresponding to
chains as above with 59 = s. Obviously, Bast(s) is the union of its simplices of
the maximal dimension, n — k (where k = dims), that is, simplices corresponding
to chains s = so C s1--+ C s,— with dims; = k + i. This important that
dim Bast(s) = n — dim(s).

The reader may see in Fig. 68 (where n = 2) what barycentric stars look like.
Barycentric stars of vertices are polyhedra of dimension 2 (“centered” at these
vertices), barycentric stars of one-dimensional simplices have dimension 1, and
barycentric stars of two-dimensional simplices are centers of these simplices (this
is true for any dimension n: The barycentric star of an n-dimensional simplex is
its center).

Besides barycentric stars, there are barycentric links: For a simplex s, Balk(s)
is the union of faces of barycentric simplices in Bast(s) opposite the center of s.
Obviously, Bast(s) is the cone over Balk(s) and Balk(s) is homeomorphic to Lk(s)
(the reader who has any doubt can observe all this in Fig. 68). Also, there are open
barycentric stars, bast(s) = Bast(s) — Balk(s). Obviously, X is a disjoint union of
open barycentric stars of all its simplices.

If X is a homology manifold, then

H,,(Bast(s), Balk(s)) = H,,(C(Balk(s)), Balk(s))
= H,—1(Balk(s)) = H, 1 (LK(s))
N Z,if m = n—dim(s),
" 10 otherwise

In other words, although the decomposition of X into open barycentric cells is not
necessarily a CW structure, still it can be used for computing homology in the
same way. We can define “skeletons” skp. (X) as unions of barycentric stars of
dimensions < m (that is, barycentric stars of simplices of dimensions > n —m), and
the complex {C?*'(X), d,,}, where
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C)l;}asl(x) — Hm(s glast(X)’S m—l(X)),

bast

B = O Hyn(sKfy (X). skily! (X)) — Hyn (ki (X). Sk (X)),
has homology equal to that of X.
Our next remark is that if the homology manifold X is oriented, then there exists
a natural way to establish a correspondence between orientations of a simplex s and
of the barycentric star Bast(s). Namely, let the orientation of s be determined by an

order of its vertices, v, vy, ..., Vx. Consider an (n — k)-dimensional (barycentric)
simplex u belonging to Bast(s); it corresponds to a sequence s = so C --+ C Sp—
withdims; = k +i. Fori = 1,...,n —k, let vg4; be the vertex of s; not belonging
to si—1. Then vy, ..., Vg, Vg+1, . . . , Uy s the full set of vertices of the n-dimensional
simplex s,—x, and we assign to u the orientation determined by the order vy, ..., v,
of its vertices if the order vy, ..., v, of vertices of the simplex v,—; determines the

orientation of v,—; compatible with the orientation of X, and we assign the opposite
orientation otherwise. If the simplex u shares an (n — k — 1)-dimensional face with
another simplex u’ C Bast(s), then u’ corresponds to a sequence s = 5o C ...sj—1 C
sj’» C Sjp1-++ C Sy with sjf # s;. If j < n — k, then the simplex s, stays the
same, but the vertices v;, vj4+ are swapped; thus, the orientation of i’ is determined
by the order of vertices vg, ..., Vj+1,Vj, ..., U,— only if the orientation of u is not
determined by the order of vertices vo, ..., Vj, Vjt1, ..., Usp—; their common (n —
k — 1)-dimensional face has the vertices vo, ..., Vj—1, Vjt1, ..., Up—k, and it obtains
opposite orientations from u and u'. The case j = n — k is similar: In this case
Sh_i 7 Sn—k, the simplices s/,_, and s,— have a common (n — 1)-dimensional face,
let it be ¢, and ¢ obtains opposite orientations from s, and s/_,. The orientations of
the common face of u and u’ are determined by the orientations of s and ¢ (precisely
as the orientation of u is determined by the orientations of s and s,—x) and thus they
are also opposite each other.

C®'(X; G) is the group of linear combinations ) _; g; Bast(s;) where the summa-
tion is taken over oriented k-dimensional simplices s; and g; € G. If X is a compact
oriented n-dimensional homology manifold, consider an isomorphism

D: Ch (X;G) — C™\(X;G), D(s*) = Bast(s),
where s* is a k-dimensional cochain of the classical complex of X which takes value
1 on s and value 0 on every other k-dimensional simplex, and the orientations of s
and Bast(s) are compatible as above. Fact: For a cochain ¢ € CX__ (X; G),

D(8¢) = (—1)*aD(c) (%)

(see ahead). This shows that D established a dimension-reversing isomorphism
between cohomology and homology of X; this is Poincaré isomorphism (also
denoted by D).
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It remains to establish two facts: the relation (x) and the relation D(x) =
[X] ~ o. Begin with the first. The boundary of Bast(s) € C’*!(X) consists of
barycentric simplices lying in Balk(s) [faces inside Bast(s) are cancelled as follows
from the preceding argumentations regarding the orientations]. The face of the
barycentric simplex corresponding to the sequence s = so, 51, ..., S,— lying in
Balk(s) corresponds to the sequence sy, ..., s,— and thus is contained in Bast(s;).
In this way, we see that Bast(s;) is contained in the boundary of Bast(s) if and
only if s is a face of s;. The coefficient is (—1) (this requires comparing the
orientations, which we leave to the reader). Now, go to the second relation. Let
bX be the barycentric subdivision of X with the ordering of vertices described in
Sect. 13.10, and let ¢ € C¥__ (bX;G) and [X] be the fundamental cycle of bX. The

class
cellular map id: X — bX induces a map

s q#. ~k
id™: Cclass

(bX: G) = Cipos(X: G,

and the cochain id” ¢ takes on a k-dimensional simplex s of X on s, the value equal
to the sum of the values, with appropriate signs, of ¢ of k-dimensional simplices of
bX contained in 5. On the other hand, the chain [bX] —~ c is the sum of faces of
n-dimensional simplices of bX spanned by the last vertices (see the definition of —~
in Sect. 16.6). These are simplices in barycentric stars of k-dimensional simplices of
X; each barycentric star of s appears in [X] ~ ¢ with the coefficient equal to the sum
of values of ¢ on the barycentric parts of s, that is, to id* ¢(s). Thus, idg(D(id"* ¢)) =
[bX] —~ ¢, where the last idy is

idg: CPL(bX; G) — C™5(X; G).

This finishes the proof in the oriented case. In the nonoriented case everything is the
same with the usual simplification—we do not need to care about orientations and
signs (since the coefficient group is Z,).

Corollary. The Euler characteristic of a closed homology manifold of odd dimen-
sion equals 0.

For the proof, it is more convenient to use Poincaré isomorphism with coeffi-
cients in Z,, since it also holds in the nonorientable case. If n = dim X, then

xX) =3, (=D)"dimg, H,(X;Zy) = }_,,(=1)" dimz, H" " (X; Zy)
=), (=D"dimz, H,—(X: Z) = }_,(=1)""" dimz, H,,(X: Z)
= (=" 3, (=D)"dimz, H,(X; Zo) = —x(X).
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17.5 Intersection Numbers and Poincaré Duality

The results of Sect. 15.5 give the possibility to restate Poincaré isomorphisms
between homology and cohomology as (noncanonical) isomorphisms between
homology and homology. Namely,

Hm(Xv ZZ) = Hn—m(X; ZZ)
for an arbitrary n-dimensional homology manifold X and

Free Part of H,,(X) =~ Free Part of H,_,,(X)
Torsion Part of H,,(X) = Torsion Part of H,—,,—(X)

in the oriented case. It turns out that these noncanonical isomorphisms reflect a
very canonical duality called Poincaré duality which is much more classical than
Poincaré isomorphisms. We will postpone (until Sect. 17.7) a discussion of torsion
parts and concentrate our attention on the free parts of homology groups.

Poincaré duality is based on the notion of the intersection number. Let ¢; =
> ki Bast(s;) be some m-dimensional chain of the barycentric star complex of some
compact triangulated oriented n-dimensional homology manifold X, and let ¢, =
Zi {;s; be some (n — m)-dimensional chain of the classical complex of X. Thus,
both summations are taken over the set of (n — m)-dimensional simplices of X. The
integer

(e, ) = Zkiei = (D¢, )

is called the intersection number of ¢; and c,. It follows from the last formula
and the properties of Poincaré isomorphism that the intersection number of two
cycles depends only on the homology classes of these cycles, and we can speak of
intersection numbers of homology classes: If «; € H,(X) and oy € H,—,(X),
then ¢(oy, ) = (D_lOll,Olz), or p(a,a3) = ap —~ D7 la; € Hy(X) = Z
(see Exercise 10 in Sect. 16.6). Differently, the homology invariance of intersection
numbers can be deduced from the formula ¢ (dc1, ¢3) = ¢(c1, dcz), which follows,
in turn, from relation () in Sect. 17.4:

¢ (dc1,c2) = (D '0cy, c2) = (8D 'c1,c2) = (D7 ey, Bea) = ¢(c1, Oca).

Another interesting relation arises from the “mixed associativity” of cup- and cap-
products (see Exercise 11 in Sect. 16.6):

d(ar, ) =y ~ D'y = ([X] ~ D7'o) ~ D7 'eyy
= [X] ~ (D_lOlz — D_lOll) = D(D_lOlz — D_l()ll).
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This provides a more symmetric definition of the intersection number, which
implies, in particular [in view of commutativity relation for the cup-product; see
the theorem in Sect. 16.2, part (2)], the commutativity relation

P, ) = (=1)"" ™M@ (ar, 1) (1 € Hu(X), 02 € Hpyi(X)).

In the nonoriented case, the intersection number can be defined for cycles and
homology classes modulo 2; they take values in Z,. It is also possible to define
“intersection numbers” corresponding to an arbitrary pairing G; X G, — G.

A remarkable property of the intersection numbers is their geometric visualiz-
ability. A simplex and its barycentric star transversely intersect each other at one
point, so the intersection number of two cycles may be regarded as the number of
their intersection points taken with the signs determined by their orientations. This
statement has a convenient differential statement.

Theorem 1. Let X be a smooth closed oriented n-dimensional manifold, and let
oy € Hy(X),ap € Hy—y(X). Let Yy and Y, be closed oriented submanifolds of
X of dimensions m and n — m which realize ay and ay in the sense that oy =
(i)«[Y1] and o = (ip)«[Y2] where iy, iy are inclusion maps. We assume also that
Y1, Y, are in general position (which means that they intersect in finitely many points
and transverse to each other at each of these points). We assign a sign to every
intersection point: plus if the orientations of Y1 and Y, (in this order) compose the
orientation of X at this point, and minus otherwise. Then the intersection number
¢ (a1, az) equals to the number of the intersection points of Y1 and Y, counted with
the signs described above.

Similar statements hold for homology classes modulo 2 (in which case no
orientation is needed) and for manifolds with pseudomanifold-like singularities
(away from the intersection points).

As usual (see the warning in the beginning of this lecture), we do not give a
rigorous proof of these statements; but from the point of view of common sense
they are obvious. We can make the simplices of a triangulation of X much smaller
than the distances between the intersection points of Y7 and Y, and then approximate
Y1 and Y, by cycles of, respectively, classical and barycentric star complexes. Then
the statements become obvious.

Notice that the general position condition is not really harmful: We can make the
position of Y; and Y, general by a small perturbation of one of those.

Example. Natural generators y,,y,—, of the groups H».(CP"), Hy,—r(CP") have
the intersection number 1. Indeed, they are realized by projective subspaces
CpP",CP"" of CP" which (in the general position) intersect in one point. Regarding
the sign, we will make an important remark. If X is a complex manifold, that
is, its charts are maps into C" and the transition maps are holomorphic, then
X possesses a natural, “complex,” orientation. The matter is that the Jacobian
of a holomorphic map C* — C" regarded as a smooth map R — R?" is
equal to the square of the absolute value of the complex Jacobian and, hence,
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Fig. 69 Dual Young diagrams

is always positive. Moreover, if Y|, Y, are complex (that is, locally determined
by holomorphic equations) submanifolds of X of complementary dimensions in
a general position, then every point in Y, Y, contributes +1 into the intersection
number of the homology classes. Thus, ¢ (y,, y,—) = 1, not —1.

EXERCISE 22. Let A be a Young diagram inscribed into a rectangle k x (n — k),
and let A* be the “dual” Young diagram obtained from the complement of A in
the rectangle by the reflection in the center of the rectangle (see Fig. 69). Then
the intersection number of the homology classes of CG(n, k) corresponding to the
Young diagrams A, A’ (see Sects. 5.4.C and 13.8.C) is 1 if A’ = A* and is 0
otherwise. (The same is true for modulo 2 intersection numbers for real Grassmann
manifolds; the proof is the same).

The fact that the intersection number of two cycles depends only on the
homology classes of these cycles is often used in solving geometric problems. Of a
huge set of problems of this kind we give two.

EXERCISE 23. Prove that on any smooth closed orientable surface in R* = C?,
there exist at least two different points for which the tangent planes are complex
lines. (Hint: The orientation takes care of the existence of more than one such point.)

EXERCISE 24. Prove that if X;, X, are two closed orientable surfaces in R*, then
there are at least four pairs of points (x; € X;, x, € X») such that the tangent planes
to X;m, x, at x1, x, are parallel.

Return to our definition of the intersection number. Together with Corollary 1 in
Sect. 15.5, it implies the following statement.

Theorem 2. Let X be compact oriented homology manifold. (1) For every homo-
morphism f: H,(X) — Z, there exists a homology class o € H,—,,(X) such that
f(a) = ¢(a, B) for every B € Hy(X). (2) The class B is determined by f uniquely,
up to adding an element of finite order.

A similar result holds in the nonoriented case for homology and intersection
numbers modulo 2; moreover, in this case f, for a given f, is genuinely unique.
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Thus, the intersection numbers determine a nondegenerate duality between the
free parts of the groups H,,(X) and H,—,(X) in the oriented case and between the
vector spaces H,,(X; Z,) and H,—,,(X; Z,) in general. This duality is called Poincaré
duality. (One can notice that in the topological literature confusion exists between
the terms “Poincaré isomorphism” and “Poincaré duality.” It is especially surprising,
since in other cases mathematicians have a tendency to be supersensitive to the
difference between a vector space and a dual vector space.)

Notice that in the middle-dimensional homology of an even-dimensional mani-
fold, Theorem 2 has the following, more algebraic restatement.

Theorem 3. Let X be a connected closed orientable manifold of even dimension
2k, and let H)(X) be the free part of Hy(X). Then the integral bilinear form ¢ (the
intersection index) on HY(X) is unimodular [that is, the matrix || (o, ;) || where
o1,q, ... IS a system of generators in H,?(X) has determinant +1].

This matrix is symmetric if k is even and is skew-symmetric if k is odd. Since
any skew-symmetric matrix of odd order is degenerate, we have the following:

Corollary. The middle Betti number of any closed orientable manifold of dimension
= 2 mod 4 is even; hence, the Euler characteristic of such a manifold is even.

For nonorientable manifolds neither is true; examples: the first Betti number of
the Klein bottle is 1, and the Euler characteristic of the real projective plane is 1.

Proof of Theorem 3. Consider the homomorphism w;: H)(X) — Z, wi(e) = 8.
By part (2) of Theorem 2, there exists a 8; € H*(X; Z) such that (B;, @) = w;(«), in
particular, (8, ;) = ¢(DBi, ;) = 6. Let DB; = >, bty + a finite order element
(where by; are integers). Then

¢ (DB, ) = Zbik¢(akvaj) = Jj.
k

That is, the product of integer matrices ||b;|| and ||¢ (o;, ;)| is the identity matrix;
hence, each of them has the determinant £1.

Theorem 3 demonstrates the importance of the theory of integral unimodular
(det = %1) forms in topology of manifolds, especially of dimensions divisible by
4: For an oriented closed manifold of such dimension, there arises a unimodular
integral quadratic form as the intersection form in the middle dimension. For
example, the famous Pontryagin theorem states that a homotopy type of a simply
connected closed four-dimensional manifold is fully determined by this form. A lot
is known about the classification of such forms (the best source is Milnor and
Husemoller [58]), but the question of which forms can be intersection forms for
smooth closed four-dimensional simply connected manifolds is very far from being
resolved.

In conclusion, let us prove a useful statement on Poincaré duality in products of
manifolds.
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Theorem 4. Let X, X, be a compact oriented homology manifold of dimensions
ni, ny, and let y; € H"(X1; G), y» € H(X3; G). Then

Dy, xx,(y1 X y2) = (=)™ 1Dy y; x Dy, y».

(Here Dy denotes Poincaré isomorphism in X.)

Proof. We use the obvious relation (a1 X az) —~ piy = (a —~ y) x B), where
ap € Hy(X1), a0 € Hy(X2),y € H(X1;G),pi: X1 x Xo — X; is the projection
(this relation holds at the chain—cochain level), and the relation («; X &) —~ p3y =
(=19 ey x (e —~ y), which is obtained from the previous relation by applying the
swapping homeomorphism X; x X, < X, x X;.

Back to the theorem:
(X1 x Xo] ~ (y1 X y2) = [Xi x Xao] ~ (pTy1 ~ p3y2)
= (X1 xX3] ~ piy1) ~piy
= (((X)] x [X2]) ~ piyv1) ~ P32

= (([X1] ~ y») x [X2]) ~ p3v2
= (—D)mme(X)] ~ y) x ([X2] ~ 72).

17.6 Application: The Lefschetz Formula

Let X be a compact topological space with finitely generated homology €D, H,(X),
and let f: X — X be a continuous map. The number

LE) =Y (1) Tefun

is called the Lefschetz number of f [here Trfi, denotes the trace of the lattice
homomorphism

Jfeni Hy(X)/ Tors H,(X) — H,(X)/ Tors H,(X)].

Obviously, £(f) is a homotopy invariant of f. The goal of this section is to establish
a relation between the Lefschetz number of f and the behavior of fixed points of f.

Algebraic Lemma. Let

© ... Crt1 C, Cpi
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be a complex with finitely generated @, C,, and let f = {f,:C, — C,}
be an endomorphism of C. Let fyx,: H,(C) — H,(C) be the induced homology
endomorphism. Then

D (=D Tefy =Y (=1 Trfan.

n n

EXERCISE 25. Prove the algebraic lemma.

For example, if X is a finite CW complex, then the Lefschetz number of a
continuous map f:X — X can be calculated as the alternated sum of traces of
homomorphisms gx: C,(X) — C,(X) induced by a cellular approximation g of f.
This observation alone yields the first, and maybe the most important, application
of Lefschetz numbers (not related to manifolds, the more so to Poincaré duality).

Theorem 1. Let X be a finitely triangulated space, and let f:X — X be a
continuous map. If f has no fixed points, then L(f) = 0.

Proof. We assume that X is furnished with a metric in which every simplex is iso-
metric to the standard simplex. Then there is a positive § such that dist(x, f(x)) > §
for every x € X. By applying to X the barycentric subdivision sufficiently many
times, we can make the diameters of the simplices much less than §. After this, a
simplicial approximation g of f will be such that g(s) Ns = @ for every simplex s
of X. In this case, the simplicial chain gx(s) will not involve s, so all the diagonal
entries of the matrix of gu, will be zero. Hence, all the traces are zero, and the
Lefschetz number is 0.

Let us return to manifolds (but, for now, not to Poincaré duality).

Theorem 2. Let X be a compact smooth manifold (not necessarily orientable, and
maybe with a nonempty boundary), and let £ be a vector field on X. Suppose that &
has no zeroes and that on the boundary 0X it is directed inside X. Then y(X) = 0.

This result implied the immensely popular “hairy ball theorem”: There is no
nowhere vanishing vector field on S? (one cannot comb a hairy ball).

Proof of Theorem 2. A vector field £ on X (with or without zeroes) determines a
“flow” f;: X — X, and for a sufficiently small positive ¢ the fixed points of f; are
zeroes of . Since f; is homotopic to the identity, £(f;) = L£(id) = y(X), and if §
has no zeroes, then y(X) = 0.

(We will see in Lecture 18 that the converse is also true: If a closed manifold,
orientable or not, has zero Euler characteristic, then it possesses a nowhere vanishing
vector field.)

So far, regarding Lefschetz numbers, we were interested only in their being zero
or not zero. But in reality, in the case of manifolds, the Lefschetz number gives some
count of fixed points. This can be expressed by the following proposition.

Theorem 3. Let X be a triangulated compact orientable n-dimensional homology
manifold (we will discuss later how much the orientability is really needed) and let
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f:X — X be a continuous map. Let F:X — X x X, F(x) = (x,f(x)) be the graph
of f, and let A: X — X x X be the diagonal map, A(x) = (x,x). Then

P (Fx[X], AxlX]) = L(f).

Before proving this theorem, let us briefly discuss its meaning. The intersection
points of F(X) and A(X) correspond precisely to fixed points of f. In the smooth
case, the intersection number is described in Theorem 1 of Sect. 17.5. First, we need
to assume that all the intersections of the graph and the diagonal are transverse. This
condition may be formulated in the language of calculus. If xj is a fixed point of a
smooth map f: X — X, then there arises the differential, dy,f: Ty, X — Ty, X. The
graph and the diagonal are transverse at xy if the matrix of d,f —id is nondegenerate,
that is, if f,f has no eigenvalues equal to 1. If this condition holds, then every
intersection point acquires some sign, and the intersection number, equal to the
Lefschetz number by Theorem 3, is the “algebraic number of fixed points.” The
sign can be described as the parity of the number of real eigenvalues of d,f less
than 1.

A very similar thing can be said about the vector fields. A nondegenerate zero
of a vector field can be assign a sign, and then the algebraic number of zeroes of a
vector field must be equal to the Euler characteristic of the manifold.

Now, let us turn to proving Theorem 3. We will need a couple of lemmas.

Lemma 1. ¢(fiar, ) = (—1)5M0p(Fi[X], 01 X @2).

(On the left-hand side the intersection number is taken in X, while on the right-
hand side it is taken in X x X.)

Proof of Lemma 1. Let ay = Dy, 2y = Dy,. Then

G (F«[X], a1 X o) = ¢ ((id xf)x 0 Ax[X], 01 X @2)
= (D7 Yoy x a2), (id Xf)« 0 Ax[X])
= E(y1 X y2, (ild Xf)« 0 Ax[X]) = £(A*(y1 X [*12), [X])
= x(y1 — [y, [X]) = £[X] ~ (11 — [*y2)
= x([X] ~y1) ~f*y2 = Fa1 ~ fFy2 = £y, 1)
= (y2. fu1) = P (fuor, a2)

(the signs are determined in Theorem 3 of Sect. 17.5).

Lemma 2. Let ay,...,ay be a basis in the free part of the full homology group of
a compact oriented homology manifold X [first, the basis in Hy(X), then H,(X), and
so on], and let oy, ..., ay be the dual basis [that is, ¢ (o, ;) = 8;;]. Then, up to a

summand of finite order, A4 [X] =) (af x a;).

Proof. By part (2) of Theorem 2 in Sect. 17.5, it is sufficient to prove that

P(Ax[X].0p X 0tg) = ¢ (Zi(“i* X ), 0p X O‘q)



17.6  Application: The Lefschetz Formula 237

for every p, g. But
D (A[X], o)y X aq) = (_l)dimapd)(aps aq)

by the lemma, and

¢ (Zl(al* X ai)v O{P X aﬁ]) = Zi (]5((0(1* X O{i)v (ap X O5q))
= Y (—Dydimedimer o (¥ )b (ati, 0tg))
= (—D)Em%’ ¢ (0, aty)

by Exercise 7 in Sect. 16.6. This proves Lemma 2.

Proof of Theorem 3. Since the intersection numbers are not sensitive to terms of
finite order, we can replace in Theorem 3 A, [X] by ), o xo; and F[X] = (id xf)*
oA«[X] by Zj oc]?k X fxaj. Also, since the diagonal A is invariant with respect to the
coordinate swapping map X xX — X xX, we have Y, a* xo; = Y, (= 1), x
o where d; = dima;. Put fyoj = ), ajoy and perform the calculations:

O (F«[X], Ak[X]) = ¢ (Zi’k O{I* X A, Z(_l)di(n—di)ai X az*)

= > (=D (—1)4%app(af, ai) (=1) "% (o, o)
ik

— Z (_1)d,-(n—d;)+d;dk+(n—d;)dkaik8ii5ik — Z(_ l)diza,'i = L(f).
ij.k i

Let us now briefly discuss the applicability of the Lefschetz theory to the
nonorientable and boundary cases. We begin with vector fields. For a nonoriented
(even nonorientable) closed manifold the equality between the algebraic number
of zeroes of a vector field and the Euler characteristic obviously holds modulo
2. But in reality, mod 2 reduction is not needed. First, the definition of signs
attributed to zeroes of vector fields does not require orientation. Second, a connected
nonorientable manifold X has an orientable twofold covering, X , and a vector field
& on X can be lifted to a vector field /é\ on X. It is clear also that X(}?) = 2x(X)
(follows from Corollary in Sect. 13.7) and the (algebraic) number of zeroes of § is
twice the same number for £. This implies the statement.

EXERCISE 26. Let X be a connected closed nonorientable manifold, and let f: X —
X be a smooth map which takes orientation preserving loops into orientation
preserving loops and orientation reversing loops into orientation reversing loops.
Prove that if all fixed points of f are nondegenerate, then the algebraic number of
these points is L(f).

Another extension of the Lefschetz theory may be obtained by admitting, for a
manifold considered, a nonempty boundary. Namely, if X is a compact manifold
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Fig. 70 Doubling a manifold with boundary

with the boundary dX, then we can double X by attaching to it a second copy of X
to the common boundary of the two copies (see Fig. 70).

Letf: X — X be a continuous map without fixed points on dX, and let XX be the
double of X. We can extend f to a map ff: XX — X C XX defining this map on the
second half to be the same as on the first half [thus ff(XX) is contained in the first
half of XX]. It is obvious that ff has the same fixed points as f and L(f) = L(ff);
hence, the statement of the relation of Lefschetz numbers with fixed points holds
for compact manifolds with boundary (orientable or not). Also, we can state that the
algebraic number of zeroes of a vector field £ on a manifold X with boundary such
that £ has no zeroes and directed inside X on dX is equal to y(X).

EXERCISE 27. There exists a different approach to the Lefschetz theory. First we
prove Theorem 1: The Lefschetz number of a fixed-point—free map is zero. Then we
consider a map f: X — X with a nondegenerate fixed point, and, at a neighborhood
of this point, we modify both X and f in such a way that the fixed point disappears
and the Lefschetz number is changed in a controllable way. Try to recover the
details.

In conclusion, let us give one of countless applications of the Lefschetz theory.

EXERCISE 28. The n-dimensional torus 7" can be regarded as R”/Z". Hence, a
linear map R” — R" determined by an integral matrix A can be factorized to
some continuous map 7" — T"; denote it as f4. (Certainly, every continuous map
T" — T" is homotopic to a unique map of the form fs; you may try to prove
this.) Calculate the Lefschetz number for f3 (the best possible answer expresses
this Lefschetz number in terms of the eigenvalues of A).

EXERCISE 29. Denote the Lefschetz number from Exercise 28 as £,4. Prove that a
map homotopic to f has at least |£4| different fixed points.

EXERCISE 30. Prove that a map f: 7" — T" homotopic to f with A = (? i ) has

infinitely many periodic points. [A point y € Y is called a periodic point of a map
g Y — Yif g"(y) = y for some n.]

[The last two statements are taken from the note by Ginzburg [43] (Russian).]
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17.7 Secondary Intersection Numbers and Secondary
Poincaré Duality

Let us return to Poincaré duality. The duality between
Tors H,,(X) and Tors H,,—,,—1 (X)

is based on secondary intersection numbers, which are defined ahead. (We need to
warn the reader that the main results of this section will be given in the form of
exercises.)

Let X be a compact oriented n-dimensional homology manifold, and let @ €
H,(X) and 8 € H,—,—1(X) be homology classes of finite order. Let a and b be
cycles representing o and f in the barycentric star and classical complexes of X,

1
and assume that Na = dc. We define w(a, ) to be the rational number N¢(c, b)
reduced modulo 1 [thus w(a, B) € Q/Z].

EXERCISE 31. Check that (e, B) is well defined. (It is this statement that requires
the assumption that 8 has a finite order.)

EXERCISE 32. Prove that if No = 0 and M8 = 0, then Ko(x, f) = 0, where
K = gcd(M, N).

EXERCISE 33. Prove that w(f, @) = w(«, B) (what is the sign?).

The main property of secondary intersection numbers is the following secondary
Poincaré duality.

Theorem. The correspondence o — {B — w(«a, B)} yields an isomorphism
Tors H,,(X) = Hom(Tors H,—,,—1(X), Q/Z).

EXERCISE 34. Prove this theorem.

17.8 Inverse Homomorphisms

Let X and Y be compact oriented homology manifolds of, possibly, different dimen-
sions m and n, and let f: X — Y be a continuous map. Poincaré isomorphism allows
us to construct “wrong direction” homology and cohomology homomorphisms

£ H (VG Z B (Y G) — s H1(X: G) —2 Hyyyy (X G,
—1

F H(X G) 2 Hp g (X; G) —2 oy (Y; G) 2 HP"H(Y; G).
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Both homomorphisms change dimensions by m — n: The homomorphism f*
“increases” the dimension by m — n (we use quotation marks because m — n may be
negative or zero), and the homomorphismf, “decreases” the dimension by m—n. We
will not say much about the cohomology homomorphism f,. It can be regarded as
the simplest case of a general construction called “direct image.” Its analytic sense
(and it belongs rather to analysis than to topology), at least in the case when f is
the projection of a smooth fibration, can be best described by the words “fiberwise
integration” (people familiar with the de Rham theory can easily understand them).
As to the homology homomorphism f* (called the inverse Hopf homomorphism),
it has a transparent geometric sense which is described, in the smooth case, by the
following proposition.

Theorem. Let a homology class o € H,(Y) be represented by a q-dimensional
submanifold Z of Y (that is, @ = i[Z], where i:Z — Y is the inclusion map), and
let f be transversely regular with respect to Z (that is, the composition

dyf proj
1Y —> Ty()X —> Ty X/ Ty Z

is onto for every point y € f~1(Z)). Then f~Y(Z) is a (¢ + m — n)-dimensional
submanifold of X which represents the homology class f'(ct) € Hyym—n(X).

We will not prove this theorem but will restate it in a form in which it can be
easily translated into an easy-to-prove statement concerning homology manifolds.
Let W be an oriented (g +m—n)-dimensional submanifold of X transverse to f ! (Z)
which may have pseudomanifold-like singularities not in a neighborhood of f~!(Z).
Then, at least in a neighborhood of Z, f(W) is an (n — ¢g)-dimensional manifold of
Y, and f establishes a (sign-preserving) bijection between W N f~'Z and f(W) N Z.
Now let us turn to the homology manifold case.

Proposition 1. Let X, Y, and f be as above, andleta € Hy,(Y), B € Hy—4(X). Then

Px(fa, B) = dr(a.fiB)

(¢x and ¢y denote the intersection number in X and Y).

Proof.

ox(f'a, B) = ¢x(Df*D~'a, B) = (f*D~'a, B)
= (D_l(){’f*ﬂ) = ¢Y(O{vf*:3)‘

By part (2) of Theorem 2 in Sect. 17.5, this relation determines f'a up to a
summand of finite order.

Here is one more illustration of the fact that geometrically f' may be regarded as
a preimage.
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Proposition 2. Let X, Y be compact oriented homological manifolds, and let p: X x
Y — Y be the projection. Then, for any o € H,,(Y),

pla = [X] xa.
Proof. Letae = Dy,y € H"(Y;Z). Then
p!O{ = DXxyp*)/ = DXxy(l X )/) = Dxl X Dy)/ = [X] X .

EXERCISE 34. Prove the formula («, f'8) = (fo, B).
Let us now turn to the case when dimX = dim Y.

Proposition 3. Let X,Y be connected compact oriented manifolds of the same
dimension n, and let f:X — Y be a continuous map of degree d. Then the
compositions

Hp(Y) =2 Hy(X) = Hy(Y),
H™(Y; Z) — H"(X; Z) ——> H"(Y; Z)

are both multiplication by d.

Here is a proof of the first statement. Let @ € H,,(Y), « = Dyy,y € H"™"(Y; Z).

Then fuf'@ = fiDxf*y = fi([X] ~ f*y) = f«[X] ~ y = d[Y] ~ y = dDyy =
do (we used Exercise 12 of Sect. 16.6).

EXERCISE 35. Prove the second statement of Proposition 3.
Corollary. If d = *£1, then fx is an epimorphism, and f* is a monomorphism.

GENERALIZATION. If d # 0, then every homology class of Y multiplied by d
belongs to the image of fx, and every cohomology class of Y belonging to Kerf*
is annihilated by the multiplication by d.

For example, there is no map > — S! x S! of a nonzero degree, but there is a
map S' x S! — $? of degree 1: factorization over S' v/ S!.
Everything said in this section has an obvious nonorientable Z,-analog.

17.9 Poincaré Duality and the Cup-Product

Again, we begin with a statement for the smooth case.

Theorem 1. Let Yy, Y, be closed oriented submanifolds of a smooth closed oriented
manifold X transverse to each other, the latter means that the inclusion map i, of
Y1 in X is transversely regular to Y. Then the intersection Z = Y NY, = il_l(Yz)
is a submanifold of X whose dimension k is related to the dimensions n, my, my of
X, Y1, Y, by the formulak = m;+mp—n. Leta; € H' "™ (X;Z),a, € H" ™ (X Z),
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and B € H*"™~™(X;7) be cohomology classes such that homology classes
Day, Dy, and DB are represented by Y1, Y,, and Z. Then

a — oy = B.

There is a similar Z,-statement for the nonorientable case.

Proof of Theorem 1.

D(a; — ap) = [X] ~ (a1 — a2) = ([X] ~ 1) ~ a2 = (Day) ~ a2
= il*[Yl] —~ 0y = il*([Yl] ~ iT(Xz) = il*(DiTOlz)
= i1 (DIt D™ (i24[Y2]) = i1+ (i} (24 [Y2]))
= i1+[i]'(Y2)] = ix[Z] = DB.

(Here i, and i are inclusion maps of Y, and Z in X; we used in this the proof
of Theorem 1 from Sect. 17.9, which was not proven there; if we use instead
Theorem 2, then the equality o; — «; = B will be proven in a broader context
of homology manifolds, but only modulo summand of a finite order.)

This theorem provides a very powerful tool for determining multiplicative
structure in cohomology, mainly for manifolds, but actually for all spaces, because
of the naturality of the multiplicative structure.

Example. If g + r < n, then the product of canonical generators of the groups
H?*(CP";Z) and H*”(CP";Z) is the canonical generator of H>@*t"(CP";Z);
indeed, Poincaré isomorphism takes the three generators into the homology classes
of projective subspaces of dimensions n — g,n — r, and n — g — r, and, in general
position, the intersection of the first two is the third. Thus, the ring H*(CP";Z) =
@, H'(CP"; Z) has the following structure: There is 1 € H°(CP";Z) and the
generator x € H?(CP";Z); the group H*?(CP";Z) with 1 < g < n is generated
by x4. If n is finite, then X" = 0. In more algebraic terms, H*(CP"; Z) is the ring
of polynomials of one variable x factorized by the ideal generated by x**!,

H*(CP":Z) = Z[x]/ ("), dimx = 2;
similarly,

H*(HP": Z) = Z[x]/ (), dimx = 4;
H*(RP"; Z,) = Zs[x]/ (x"T1), dimx = I;
H*(CaP* 7) = Z[x]/ (), dimx = 8.

In all cases, excluding RP”", the ring Z may be replaced by any commutative ring.

EXERCISE 36. Prove that the integral cohomology ring of the sphere S; with g
handles is as follows: there are generators ai, ..., d,, b1, ..., bg of HI(SZ; Z) such
that a1by = axby, = --- = a,b, is the generator of H2(S§; 7)) and all other products
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of generators of H'(S?;Z) are zeroes. Describe the multiplicative structure in Z;-
cohomology of the projective plane with handles and the Klein bottle with handles.

EXERCISE 37. Prove that any continuous map CP" — CP™ with n > m induces a
trivial map in cohomology of any positive dimension (with any coefficients). Prove
a similar statement for real projective spaces.

EXERCISE 38. Prove that if g < h, then there are no continuous maps S; — Sﬁ of
a nonzero degree.

Theorem 1 shows that the multiplicative structure in cohomology of a closed
orientable manifold is rich (many nonzero products). Actually, we already have a
strong statement of this kind: Theorems 2 and 3 of Sect. 17.5 show that if X is a
compact oriented n-dimensional homology manifold, then for every infinite order
class « € H™(X;Z) there exists a § € H"™(X;Z) such that (& — B,[X]) = 1. If
dimX = 2k and o, a», ... is a basis in the free part of H"(X; 7)), then the matrix
|{ct; — e, [X]}| is unimodular (that is, its determinant is +1).

The remaining part of this lecture is devoted to several modifications (general-
izations) of Poincaré duality.

17.10 The Noncompact, Relative, and Boundary
Cases of Poincaré Isomorphism

Suppose that a connected triangulated space X is an oriented n-dimensional
homology manifold which, however, is not assumed to be compact; that is, the
triangulation may be not finite. In this case we still have a correspondence
between (oriented) simplices and barycentric stars of complementary dimensions,
but no isomorphism between chains and cochains, since chains are supposed to
be finite linear combinations of simplices (or barycentric stars), and cochains are
allowed to take nonzero values on infinitely many simplices. To construct Poincaré
isomorphism, we need to modify the definition either of chains or of cochains. Both
modifications are well known in topology; moreover, they exist on the singular level.
Here, we restrict ourselves to a brief description of these modifications.

Let X be a locally compact topological space. An n-dimensional open singular
chain of X is a possibly infinite, linear combination of n-dimensional singular
simplices of X with integer coefficients, Zi kifi, fi A" — X, such that for any
compact subset K C X the coefficients k; may be nonzero only for finitely
many singular simplices f; such that f;(A”) N K # @. Open chains form a group
C"*"(X), and the usual definition of the boundary operator gives homomorphisms
9: CP"(X) — CX(X) with 89 = 0 and, finally, open homology groups H,™" (X).
Proper (preimages of compact sets are compact) continuous maps f: X — Y induce
chain and homology homomorphisms fi: Cp* (X) — Co*"(Y) and fi: H,"" (X) —
H,""(Y) with all usual properties (including proper homotopy invariance for open
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homology). In particular, if X is a locally finitt CW complex, then H,""(X) can be
calculated by means of cellular chains which are not assumed to be finite.

There is also a similar (dual) definition of compact or compactly supported coho-
mology of a locally compact topological space X. Namely, a cochain ¢ € C"(X; G)
is called compactly supported if there exists a compact set K C X such that
c¢(f) = O for any singular simplex f: A" — X such that f(AYNK = 0.
There arise groups of compactly supported cochains, C(,,, X;G), coboundary
operators 8: Coomp(X: G) — ngn}p (X; G), and compact(ly supported) cohomology

Honp(X: G). For compactly supported cochains and cohomologies, homomor-
phisms f# and f* are induced by proper continuous maps. For locally finite CW
complexes, compact cohomology can be calculated by means of complexes of finite
cochains. Remark also that the usual definition of multiplications gives (in the
presence of a pairing G; x G, — G) the following binary operations:

[y1 € Hmp(X; G1), y2 € H2(X; G2)] > y1 — 12 € Homd?(X; G);
[@ € Hy ™ (X; Gy).y € H2(X:Gy)| = o ~ y € HJ 2%, (X; G):
[ € Hi"(X; G1), ¥ € Homp(X: G2)] > @ ~ y € Hyy—4,(X; G).

All these operations are defined in the usual way on the chain/cochain level.

Consider again a connected triangulated oriented n-dimensional homology
manifold X. The barycentric star construction of Sect. 17.4 provides Poincaré
isomorphisms

D:H"(X: G) — H®"(X;G) and D: H",_(X:G) — H,_n(X:G):;

comp

both can be expressed by the formula Dy = [X] —~ y, where the fundamental
class [X] is an element of H,""(X). These isomorphisms may not look appealing
because they involve exotic homology and cohomology groups. However, in many
important cases this may be avoided. This possibility is provided by the following
general proposition.

Proposition 1. Let X be a compact topological space and let A C X be a closed
subset. Then there are natural (make the statement precise: in what sense natural?)
isomorphisms

H (X — A;G) = H,(X.A; G) and H".,_(X — A: G) = H"(X.A:; G).

comp
In particular, if X is locally compact and X* is the one-point compactification of
X, then
HYP"(X;G) = H,(X*:G) and H!,  (X;G) = H"(X*: G).
Proposition 1 shows that the preceding Poincaré isomorphisms, in the case when
the given homology manifold is a complement to a CW subcomplex A of a compact
CW complex X, take the form
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Fig. 71 A barycentric star complex approximation of X — A

D:H"(X —A;G) > H,—,(X,A; G)
and H"(X,A; G) —> H,—,(X — A; G).

(Moreover, both isomorphisms can be described as cap-products with the “funda-
mental class” [X,A] € H,(X,A).) We do not prove this proposition, and we do not
even offer it as an exercise. Instead, we will give a direct construction of the last
isomorphisms, at least in the triangulated case.

Let X be a compact triangulated space, and let A be a triangulated subspace
of X such that X — A is a homology manifold. We assume that A satisfies the
“regularity condition”: If all vertices of some simplex s of X belong to A, then s
is contained in A. Let Y be the union of barycentric stars of simplices of X not
contained in A (see Fig. 71). Then Y is a closed subset of X, even a triangulated
subspace of the barycentric subdivision of X; moreover, Y is homotopy equivalent
to X — A (we do not give a formal proof of this homotopy equivalence, but we hope
that Fig. 71 may serve as a convincing confirmation of that). The correspondence
between simplices and their barycentric stars provides isomorphisms between free
Abelian groups generated by simplices in X not contained in A and barycentric stars
in Y. These isomorphisms may be considered as either C[" (Y; Z) = C*5(X, A) or
Ch X AZ) = Cgis,‘n(Y ); in both cases, the commutativity with d and § [similar to
() in Sect. 17.4] holds, so there arise homology/cohomology isomorphisms

D:H"(X —A;7Z) > Hyp—n(X,A) and D: H"(X,A; Z) — Hp—m(X — A)

as stated above (it is easy to extend them to an arbitrary coefficient group G).

EXERCISE 39. Prove that both isomorphisms can be expressed as [X,A] —~. (For
one of them, we will have to reverse the ordering of vertices in the barycentric
subdivision.)

EXERCISE 40. For homology classes o € H,,(X —A), 8 € H,—,(X, A), define the
intersection number ¢ (o, 8) which has the usual geometric sense. (This must be a
replica of Sect. 17.5.) Prove the relative Poincaré duality: The homomorphism
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Free H,,(X — A) - Hom(Free H,—,(X,A), Z), a — {8 — ¢(a, B)}

is an isomorphism. Do similar work with the torsion subgroup and the secondary
intersection numbers.

There are two especially important cases of the relative Poincaré duality: the case
when X is a sphere and the case when X is a manifold with boundary and A = 9X.
We postpone the first case to the next section and will consider the second case now.

Although there exists a theory of homology manifolds with boundary (see,
for example, Mitchel [62]), we will not discuss it here; instead of this, we will
restrict ourselves to the smooth case. Let X be a connected oriented compact
(n 4+ 1)-dimensional smooth manifold with a boundary dX; we suppose that X
possesses a smooth triangulation such that simplices contained in 0X form a smooth
triangulation of dX. Since, obviously, X — 0X is a homology manifold, the previous
construction yields (for an arbitrary coefficient group G) Poincaré isomorphisms

D:H"(X; G) = Hyi1—m(X, 3X; G),
D: Hm(X, 3X, G) —> Hn+1_m(X; G)

(we use the obvious fact that X — dX is homotopy equivalent to X). Both
isomorphisms have the form y +— [X,dX] —~ y, where [X,0X] € H,+(X, dX)
is the fundamental class of X [represented in the classical complex by the sum of all
(n + 1)-dimensional simplices of X oriented in accordance to the orientation of X].

Proposition 2. Poincaré isomorphisms described above, together with Poincaré’s
isomorphisms for the manifold 0X, form an isomorphism between homology and
cohomology sequences of the pair (X, 0X),; more precisely, there arises a plus—minus
commutative diagram

Hp(0X:G) —  Hp(X;G)  —= Hp(X,0X;G) — Hp1(0X;G)

o to o o

L. Hn—m(aX; G) e H’ILJrlf"L(X’ GX, G) _)HnJrlfm(X; G) —>H"+17"L(0X; G) ..

Proof. We will prove the plus—minus commutativity of the first square; for the third
square the proof is more or less the same, while the commutativity of the second
square is obvious.

Take a ¢ € C"™(0X;G) and extend it to ¢ € C"™(X;G). Here we use the
notations [X, dX] and [dX] for chains; thus, [X,dX] € C,+1(X) and J[X, 0X] =
[0X] € C,(0X) C Cu(X). As we know from Sect. 16.6 (Exercise 8),

(X, 9X] ~7) = £(O[X, 3X] ~T) £ ([X, IX] ~ 60 (%)

Since d[X,0X] = [0X] € C,(0X) C C,(X), the cap-product d[X,dX] ~ ¢ €
C,,(X; G) belongs to C,,(dX; G) and, in this capacity, is [0X] —~ (aax) = [0X] ~ c.
If ¢ is a cocycle representing a class y € H"™(dX; G), then 9[X, dX] —~ ¢ and
[X,0X] —~ &8¢ are cycles (in C,,(X; G)) representing ix([0X] —~ y) = ix o Dy and
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[X,0X] ~ §*y = Do§*y. Since the sum or difference of these cycles is a boundary
[formula ()], this proves the plus—minus commutativity of the first square.

We will reformulate the last proposition by passing from Poincaré isomorphisms
to Poincaré duality. To avoid separately considering free parts and torsion, we will
assume that the coefficient domain is Q, and, for brevity’s sake, we will omit the
indication of the coefficient domain. We will replace the bottom line of the diagram
in Proposition 2 by the dual (with respect to {, }) homology sequence. We get the
following “duality diagram.”

[

Jx o
H,(0X) —= Hyp(X) L Ha(X,0X) —=  Hyo1(0X)
dual dual dual dual
Ox Jx ik
anm(aX) - Hn+17m(X7 GX) I Hn+17m(X) e — HnJrlfm(aX)

The spaces of each vertical are dual to each other with respect to the intersection
number, while the arrows of each vertical are plus—minus dual to each other. The
last fact (equivalent to Proposition 2) means the following:

¢ (ixa, B) = LP(a, 0+P) forevery a € H,,(3X), B € Hy—ppt1(X, 0X),
(s, B) = £d(a,j«B) forevery a € H,(X), B € Hy—p+1(X),
¢ (0«0, B) = £ (a, ixp) forevery o € H,,(X, 0X), B € H,—,+1(0X).

These results appear the most interesting when #n is even: n = 2k. Consider the
fragment

Hier (X, 9X) —5 H(0X) — H(X)

of the homology sequence of the pair (X, dX) (with the coefficient in Q). The middle
space is self-dual, the left and right groups are dual to each other, as well as the
homomorphisms i, and d.« (all the dualities are with respect to the intersection
number ¢). The exactness of the sequence implies the equality dim H(dX) =
rank d, + ranki,, and the duality shows that rank . = ranki.. Together, these
equalities show that B(0X) = dim Hy(dX) = 2rank 0. In other words, the space
H;(0X) is even-dimensional (we already know this in the case when k is odd;
see Theorem 3 of Sect. 17.5), and the dimension of Keri, = Imd. C Hy(dX)
is half of dim H;(0X). For example, the torus 7 can be presented as a boundary
of an orientable compact three-dimensional manifold in many different ways (for
example, the torus is the boundary of the solid torus). But if 7 = 0X (where X is a
compact orientable three-dimensional manifold), then the inclusion homomorphism
ix: H(T) — H;(X) must have a one-dimensional kernel, not less and not more (if
X is a solid torus, then i, annihilates the homology class of the meridian, but not the
homology class of the parallel).

Furthermore, if o, 8 € Hy+1(X, 0X), then, since 0, and iy are ¢-dual to each
other,
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$(0+a, 05 B) = P(a,ix0+B) = ¢(a,0) = 0,

which shows that the restriction of the form ¢ to this subspace is zero. In the
case when k is odd, the form ¢ determines a symplectic structure in Hy(3dX),
and the last statement means that Keri, = Im 0. is a Lagrangian subspace of
H;(0X). This, however, does not impose any condition on the manifold 0X. The
case when k is even, however, is very much different. A real vector space V with
a nondegenerate symmetric bilinear form @ can have a subspace W of dimension
one half of dim V with a zero restriction a)|W if and only if the signature of w (the
difference between the positive and negative inertia indices) is zero. For a compact
oriented 4£-dimensional manifold Y, the signature of the form ¢ in H,¢(Y) is called
the signature of Y and is denoted as 7(Y).

EXERCISE 41. Prove that 7 is multiplicative: If ¥; and Y, are two closed oriented
manifolds of dimensions divisible by 4, then 7(Y; x Y3) = t(¥1)7(Y>).

EXERCISE 42. Prove that if Y; and Y, are two closed orientable manifolds whose
dimensions are not divisible by 4, but sum up to a number divisible by 4, then
(Y xY;) =0.

EXERCISE 43. Prove that the reversion of the orientation leads to the negation of
the signature.

EXERCISE 44. Let Y; and Y, be two connected orientable closed manifolds of the
dimension 4¢, and let Y = Y #Y, be the connected sum of Y, Y, (that is, Y is
obtained from Y, ¥, by drilling holes in both of them and then attaching to the
boundaries of the holes the tube S*~! x I). Prove that t(Y) = z(Y;) + t(Y>).

Theorem. If a closed oriented 4{-dimensional manifold Y is a boundary of a
compact oriented manifold X, then ©(Y) = 0 [in particular, By¢(Y) is even].

Proof. We showed that By, (0X) must be even and that H,,(0X) contains a subspace

1
of dimension 2B24 (0X) with zero restriction of ¢. Hence, t(dX) = 0.

Example. The manifold CP?¢ cannot be a boundary of a compact orientable (4£ +
1)-dimensional manifold, because B¢ ((CPZZ) = 1 is odd. But the connected sum
CP24#CP?" (see Exercise 44), which has even middle Betti number, is also not a
boundary since its signature is not zero (it is 2). The same is true for a connected
sum of a number of copies of CP?. But the connected sum CP*#(—CP?") (where
the minus sign stands for the orientation reversion) has zero signature and may be a
boundary. Actually, it is a boundary (see Exercise 45 ahead).

EXERCISE 45. Let Y be a connected closed oriented manifold. Prove that the
manifold Y#(—Y) is a boundary of some compact manifold. (Hint: Drill a hole in Y
and then multiply by 1.)
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17.11 Alexander Duality

Let A C S" be a simplicial subset of S”, that is, a union of some simplices of some
triangulation of $”. The goal of this section is to construct Alexander isomorphisms,

L: H"(A; G)—>Hn 1-m(S" — A; G)
and L: H"(S" — A: G) — Hy—1—m(A: G),

and then to reformulate them as a duality between homology groups of A and " —
We begin with an obvious remark: If A is empty of is equal to §”, then the existence
of the isomorphisms follows from the definition of groups H_, and H™' (which
demonstrates one more time that these definitions are right). From now on, we
assume that neither A, nor §" — A, is empty. For brevity’s sake, we will always
omit the indication to the coefficient group (which may be arbitrary).

Remember that, according to Sect. 17.10, the cap-product [S",A]~ yields
isomorphisms

D:H"(S" —A) — H,—,(5",A)
and D: H’”'H(S”,A) — Hy— (8" — A).

Consider the reduced homology sequence of the pair (5", A):
Hy(8") = Hye (8", A) = Hymon(A) = Hpmon(8") ... (+)

If m # 0, 1, then the first and last groups in this exact sequence are zeroes, and we
obtain an isomorphism 0«: H,—,,(S",A) — Hn 1—m(A) and the composition

L =3y 0D H"(S" — A) — Hy_1-m(A)
as was promised [for these m, H"(S" — A) = ﬁ”’(S" — A)]. It remains to settle the
casesm = 0, 1.

Lemma. IfA # S", then the inclusion homomorphism H,(A) — H,(S") is zero.

Proof. If xy ¢ A, then this homomorphism factorizes as H,(A) — H,(S" — xp) —
H,(S"), and H,(S" — x¢) = 0, since S" — x¢ is homeomorphic to R".

[Actually, H,(A) = 0, since H,+1(58",A) = 0; but we do not need this.]
If m = 1, then the last homomorphism of the sequence () is zero, and d. remains
an isomorphism. If m = 0, we get the exact sequence

YL HL(S") (= Z) = Hy(S",A) — H,_1(A) — 0,

which provides an isomorphism H,(S",A)/Z — H,_ (A) which gives, in combina-
tion with D, the promised isomorphism
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LH(S" — A) = HY(S" — A)/Z—25 Ho(S", A) )7 — Hy1(A)

(the reader is granted the right to replace Z everywhere with G).

The isomorphism L: ﬁm(A) — ﬁn_l_m(S” — A;G) is obtained from the
isomorphism D: H"T1(8",A) — H,—_,,(S" — A) precisely in the same way, with
use of the reduced cohomology sequence of the pair (5", A).

Like Poincaré isomorphism, Alexander isomorphism may be turned into a
homology-homology duality, with the role of intersection numbers played by so-
called linking numbers. From the point of view of Alexander isomorphism, the
definition of linking numbers is immediately clear. Let A C S" be as above, and
leta € H,(S" —A), B € Hy(A) be two homology classes with p + g = n — 1. Then

M, B) = (L7'a, B)

is called the linking number of @ and f8, and the isomorphism L (rather L™') becomes
a duality

Free H,(A) —> Hom(Free H,(S" — A),Z). B {a > A(a, B)}.

But, like intersection numbers, linking numbers have a clear geometric sense, which
we will describe now.

Let a, b be two cycles of a compact oriented n-dimensional homology manifold X
whose dimensions p, g sum up to n— 1. [It is convenient to assume that a € C;la“(X)
and b € C;*“‘(X).] Suppose also that both a, b are homological to zero. Choose a ¢
with dc = b and put

Ala,b) = ¢(a,c)

(see Fig. 72).

EXERCISE 46. Prove that A(a, b) does not depend on the choice of c.

Fig. 72 Definition of the linking number A(a, b)
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EXERCISE 47. Prove that A(a,b) = (—1)??T!A(b,a). (For example, the linking
number of two disjoint oriented closed curves in R? is symmetric with respect to
these curves.)

Let us now transfer the definition of a linking number into a context closer to
the Alexander duality. Let A, B be disjoint closed subsets of a compact oriented
n-dimensional homology manifold X (we can conveniently assume that both are
union of simplices of X), and let « € H,(A), B € H,(B) be homology classes
which are annihilated by homology homomorphisms induced by the inclusions
A — X, B— X. Then 8 = 04y for some y € H,11(X,B), and we put A(a, B) =
¢ (a, y) (in the last formula, we can think of « on the right-hand side as of the image
of « in the homology of X — B).

EXERCISE 46’. Prove that A(«, 8) does not depend on the choice of y.
EXERCISE 47’. Prove that A(a, ) = (—=1)*T'A(B, ).

In particular, we can take S” for X, and the complement to a thin neighborhood
of A (which is as above) for B (thEt is, B maylook like Y in Fig. 71). Then linking
numbers are defined for any o € H,(A), B € H,(B) withp + g =n—1.

Theorem. The equality

Mo, B) = (L7'a. B)

holds.

This follows from the definition of L: L = 04 o D.
Thus, linking numbers provide Alexander duality similar to the Poincaré duality.

EXERCISE 48. Make up the definition of “secondary linking numbers” u(eo, 8) €
Q/Z for a € Tors H,(A), B € Tors H,(S" — A) with p + g = n — 2 and prove that
Tors H,(A) — Hom(Tors H,(S" — A), Q/Z), a +— {f — u(a,B)}

(where p + g = n — 2) is an isomorphism.
In conclusion, several exercises.

EXERCISE 49. (The Alexander isomorphism in R") Let A be a compact polyhedron
in R". Prove that H,(A) = H,(R" —A) forp + g =n— 1.

EXERCISE 50. Let A be a k-component link (= the union of k disjoint non-self

intersecting closed curves in $%). Find the homology of S — A.

EXERCISE 51. (A continuation of Exercise 50) Assume that the linking numbers
of the components of A are known. Find the multiplicative structure in the integral
cohomology of $3 — A.
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5

Fig. 73 Borromeo rings

EXERCISE 52. The following is a description of a “secondary multiplicative struc-
ture in cohomology” provided by “Massey products.” Let « € HP(X;G), B €
HY(X;G), y € H"(X;G) be cohomology classes of some topological space with
coefficients in a ring. Assume that « — f = 0Oand § — y = 0. Leta €
CP(X;G), b € C1 € C1(X;G), ¢ € C'(X;G) be (singular) cocycles representing
a,B,y,andleta — b = Su, b — ¢ = 8v. Thenh =u — c— (=1)’a — v €
Crtatr=1(X; G) is a cocycle, and its cohomology class is determined by «, B, and
y up to a summand of the forma — o + v — y witho € HIT1(X;G), t €
HPT471(X; G). This (not always and not uniquely) defined cohomology class is
called the (triple) Massey product of «, B, y and is denoted as {«, B, y). Check all
this and compute the cohomology, with cup-products and Massey products, of the
complement of the “Borromeo rings” (see Fig. 73).

There exists an extensive theory of “triple linking numbers” and their relations
to Massey products (with further generalizations); see Milnor [54] and Turaev [87].

17.12 Integral Poincaré Isomorphism for Nonorientable
Manifolds

These isomorphisms have the form
H"(X;Z) ~H"™(X;Zr), H"(X; Z1) = H)—(X; Z).

Here X is a connected compact n-dimensional nonorientable homology manifold,
and homology and cohomology with coefficients in Zy (“twisted” integers) are
defined in the following way. Let X be the oriented twofold covering of X. Then
there is a canonical orientation reversing involution ¢ : X — X. There arise a
transformation t: C, ()F(V) — Cy ()7) with the square 1, and a decomposition

Cq(}?{) = C;_(}?) @ Cq_(}?),
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where qu()?) = {c € Cq()?) | t4(c) = Zc}. Obviously, Cj ()7) is the same as
C,(X); we take the other summand, Cq_()?), for C4(X; Zr). The groups Cy(X; Zr)
form, in the obvious way, a complex. The homology of this complex is denoted as
H,(X; Zr), and the corresponding cohomology is taken for H?(X, Zz). We will not
discuss in any detail these homology and cohomology with “twisted coefficients”;
moreover, we will have to do it in a much bigger generality in Chap. 3. Now
we restrict ourselves to a recommendation to the reader to reconstruct Poincaré
isomorphism given above [they are cap-products with a “fundamental class” [X] €
H,(X;Zr)], and Poincaré duality with appropriately defined intersection numbers
and secondary intersection numbers.

Lecture 18 The Obstruction Theory

18.1 Obstructions to Extending a Continuous Map

Most problems in homotopy topology consist in a homotopy classification of
continuous maps between two topological spaces. A natural intermediate problem
is the question of whether a given continuous map A — Y can be extended to a
continuous map X — Y for some X D A (with a subsequent classification of such
extensions). This is what the obstruction theory was designed for. We will begin
with a technically important particular case.

Let X be a CW complex, and let Y be a connected topological space which is
assumed homotopically simple (that is, the action of the fundamental group in all
homotopy groups is trivial; later, we will discuss several possibilities of removing or,
at least, weakening this condition). Consider the problem of extending a continuous
map f: X" — Y to a continuous map X"t! — Y (where X", X"*! are skeletons).
Let e C X be a cell of dimension n + 1, and let 4: D"*! — X be a corresponding
characteristic map. There arises a continuous map f, = f o h|g:S" — Y. It is
obvious that f can be continuously extended to X" U e if and only if f, is homotopic
to a constant, that is, if f, represents the class 0 € ,,(Y) (since Y is homotopically
simple, we do not need to fix a base point in Y).

Furthermore, the possibility of extension of f to X"*! is the same as the
possibility of its extension to every (n + 1)-dimensional cell of X. If we construct,
as above, a map f,: " — Y for every e and denote by ¢, the class of f, in 7,(Y),
we arrive at the following, essentially tautological, statement: A continuous map
f:X" — Y can be extended to a continuous map X"*! — Y if and only if every ¢,
is equal to O.

The function e + ¢, can be regarded as an (n 4 1)-dimensional cellular cochain
¢r of X with coefficients in 7, (Y). (This cochain does not depend on the choice of
characteristic maps. Indeed, from the homotopy point of view there are only two
characteristic maps corresponding to the two orientations of e; the replacement of &
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by a characteristic map of the opposite orientation changes the sign at ¢,, but also
reverses the orientation of e, so the cochain ¢f stays unchanged.) Thus,

cr € C"M (X ma(Y)),

and f can be extended to X"*! if and only if ¢; = 0. The cochain ¢y is called the
obstruction cochain to the extension of f to X" !,

Notice that the obstruction cochains have a naturality property: If p: X’ — X is a
cellular map and ¥: Y — Y’ is a continuous map, then cyofop = @ Yscy.

Up to now, everything said was a sheer triviality. Here is the first nontrivial
statement.

Theorem 1. The obstruction cochain is a cocycle: ¢y = 0.

Proof. The statement may be regarded as a variation on the theme of 00 = 0
[we need to prove that ¢s(da) = 0, but the cochain ¢ itself is defined by means
of boundaries], but the accurate proof requires some work. For example, it can
be deduced from the relative Hurewicz theorem (Sect. 14.4). According to this
theorem, if X satisfies some conditions (we will discuss them later), then the
Hurewicz homomorphism h:nq(Xq,Xq_l) — Hq(Xq,Xq_l) is an isomorphism.
Consider the diagram

-1
Cn+2(X) — Hn+2(X”+2,Xn+1) _L_ 7Tn+2(Xn+2,Xn+1)
9]
9 7Tn+1(Xn+1)
B!
Cn+1 (X) = Hn+1 (Xn+17 X'n) —_— 7Tn+1(Xn+1, X'n) 0

7]

Tn(X™)

fu

T (Y)

This diagram is commutative by the definition of the cochain c¢; and the
homomorphism 9:C,4+2(X) — C,+1(X). Also, the part of the vertical column
marked by a brace is a fragment of the homotopy sequence of the pair (X", X"),
and hence the composition os homomorphism within this part is 0. Thus, ¢; 0 9 =
SQf =0.

However, the reference to the relative Hurewicz theorem forces us to respect its
assumptions, that is, to assume that X is simply connected and that n + 1 > 1.
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We will ignore the second assumption (it is easy to see that our arguments are
valid when n = 0), and we can get rid of the simply connectedness assumption
in the following way. Let p:f — X be the universal covering of X. The CW
decomposition of X induces a CW decomposition of X, and the map p*: C4(X) —
C‘i(f) is a monomorphism. For a map f: X" — Y, the obstruction cochain ¢, €
C"HN (X, m,(Y)) is ptes, pPoe; = 8ptes = 8cgop = 0, and hence 8¢ = 0.

The cohomology class C; € H""!'(X;m,(Y)) of the cocycle ¢ is called the
cohomology obstruction, or simply the obstruction to extension of f to X" 1.

Theorem 2. The condition C; = 0 is necessary and sufficient to the existence of
extending f |yn—1 to X", In other words, Cr=0if and only if it is possible to extend
£ to X"+ after, possibly, a changing f on X" — X"~ 1.

[One can apply this theorem to successive extensions of f from a skeleton to a
skeleton. Say, let us have a continuous map f: X" — Y. There arises an obstruction
Cr € H""'(X;m,(Y). If it is O, we can extend f to X"*! at the price of some
modification of f on X" not touching f on X", In this case (that is, if Cr =0,
we get a new obstruction in H""2(X; m,4). If it is zero, we extend f to X"2
(maybe, after changing the previous extension), and get the next obstruction in
H"3(X; m,42(Y)), and so on. One should remember, however, that every new
obstruction depends from the previous extension, and hence these obstructions are
defined with a growing indeterminacy.]

Before proving Theorem 2, we will give a new definition which will be useful
in the proof but will also have a considerable independent value. Let f, g: X" — Y
be two continuous maps which agree on X"~!. Consider an arbitrary n-dimensional
cell e with a characteristic map h: D" — X. The maps f o h,g o h: D" — Y agree
on §"~! [since h(S"™") € X"!, and f and g agree on X"~!] and together compose
amap k,:S" — Y (which is f o i on the lower hemisphere and g o & on the upper
hemisphere). We define the difference cochain

dyy € C"(X: ma(Y)),

whose value on e is the class of k. in m,(Y). It is clear that the condition dr, = 0 is
necessary and sufficient for the existence of a homotopy between f and g which is
fixed on X"~! (in the terminology of Chap. 1, an X"~ !-homotopy; see Sect. 5.7). In
the important case when f and g are defined on the whole X and agree on X"~!, the
condition dy, = 0 is necessary and sufficient for the existence of an X"~ !-homotopy
of f making f agree with g on X" (for this statement, we need to use Borsuk’s
theorem, Sect. 5.5). Notice also that the difference cochains have a naturality
property similar to that of the obstruction cochains: dyofop.yofoy = ¢*Vudy .

Lemma 1. For any continuous map f: X" — Y and any cochain d € C"(X; m,(Y)),
there exists a continuous map g: X" — Y which agrees with f on X"~' and is such
that df,g =d.
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g

g(e)
T~

Fig. 74 Proof of Lemma 1

Proof. Consider an n-dimensional cell e of X and distinguish a small ball in e. Than
change the map f on this ball in such a way that the two maps of the ball, the old
one and the new one, compose a spheroid of the class d(e) (see Fig. 74). Having
such a change made on each n-dimensional cell, we get the map g with the required
properties.

Lemma 2. §d;, = c, — cy.

Proof. Consider, for simplicity’s sake, the case when f and g are different on only
one n-dimensional cell e C X (the general case, essentially, is not different from this
case). Let o be an (n + 1)-dimensional cell of X; we want to show that

ce(0) —cr(0) = [o : e]ds4(e).

Let i: D"T! — X be a characteristic map for o. We can assume that 2~ (e) consists
of several open balls, of which every one is mapped by & homeomorphically onto
e, with preserving or reversing the orientation, and [0 : ¢] is the difference of the
number of balls where the orientation is preserved and the number of balls where it
is reversed (compare the description of the incidence numbers in Sect. 13.6). This
makes the desired equality obvious: A spheroid representing ¢, (o) is obtained from
a spheroid representing cs(o) by adding spheroids of the class £dy4(e), and the
algebraic number of these spheroids is [o : e].

Proof of Theorem 2. If Cy = 0, then ¢, = §d and, by Lemma 1, there exists a map
g:X" — Y such that g |y»1= f |y~ and dry, = —d. But then, by Lemma 2,
¢y = ¢ +8dp, = 8d — 8d = 0; thus, g can be extended to X"+ Conversely, if
there exists a map g: X" — Y which agrees with f on X"~! and can be extended to
X"t then ¢g = 0and ¢y = ¢y — ¢, = 8dy,, and hence Cy = 0.

Remark. The two lemmas of this proof are not less important than the theorem; we
will use them later.

EXERCISE 1. Prove thatdgs = —df, and dr), = df g + dg .
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18.2 The Relative Case

Let A be a CW subcomplex of a CW complex X, and let the continuous map f be
defined on AUX". The obstruction cochain ¢/ to an extension of this map to AUX" !
is contained in C”+1(X ,A;m,(Y)), it is a cocycle, and its cohomology class Cy €
H"tY (X, A; m,(Y)) is called an obstruction. The theory of these relative obstructions
is absolutely parallel to its absolute prototype; in particular, it contains the notion of
difference cochains, and there are precise analogies (for both the statements and the
proofs) of all theorems and lemmas of the previous section. We will point out the
following important consequence of the relative theory in the absolute theory.

Let f,g:X — Y (or X"*!' — Y) be two maps with f |y»—1= g |y»—1 [oOr
with a fixed homotopy connecting f |y»—1 and g |x»—1]. We consider the problem
of constructing a homotopy between f and g fixed (or coinciding with the given
homotopy) on X"~!. This problem is equivalent to extending to X x I (or to X" 1 x I)
the map which is given on (X x 0) U (X"~! x I) U (X x 1) by the formula

1) > fx), %ft =0orxe X”__ll,
glx),ift =1(orx € X" )

(this formula is for the case when f and g agree on X"~'; if a homotopy between
f |x»—1 and g |x«—1 is given, the formula will be slightly different; we leave the details
to the reader). The obstruction to an extension of this map to (Xx0)U (X" xI)U(Xx1)
lies in "' (X x I, (X x 0) U (X x 1); m,(Y)) = C*(X; m,(Y)), and it is easy to see
that it is nothing but dy ,. By the way, 8d;, = ¢, — ¢y = 0, since f and g are both
defined on the whole X (or, at least, on X"*1). If we apply to this situation the relative
version of Theorem 2 of Sect. 18.1, we will get the following result.

Theorem. Iff,g:X — Y are two continuous maps which agree on X", then the
difference cochain dy 4 is a cocycle whose cohomology class Dy, € H"(X; 7,(Y)) is
equal to 0 if and only if f |x» and g |x» are X" ~2-homotopic.

18.3 The First Application: Cohomology and Maps
into K(r, n)s

The main result of this section was promised in Lecture 4. Let 7 be an Abelian
group.

Recall that the construction of a K(ir,n) space begins with taking a bouquet of
n-dimensional spheres set into a correspondence with some system of generators of
7 (see Sect. 11.7); then we attach to this bouquet cells of dimensions > n. If we
assign to every n-dimensional cell of K (7, n) the corresponding element of 7, we
get a cochain ¢ € C"(K(m,n); ) [we admit here a certain abuse of notation, using
the symbol K (7, n) for a CW complex obtained by some concrete construction].



18.3 The First Application: Cohomology and Maps into K (i, n)s 263

Lemma. c is a cocycle.

First Proof (Direct). The cells of dimension n + 1 correspond to the defining
relations between the chosen generators. If the cell o corresponds to the relation
> kigi = 0 between the generators g;, then for the n-dimensional cell e; corre-
sponding to the generator g;, the incidence number [0 : ¢;] is k;. Then

dc(o) = Zi [0 : ei]c(e;) = Zi kigi = 0.

Second Proof (Indirect). Actually, ¢ = deonseia; thus, s¢ = 0 by Lemma 2 of
Sect. 18.1.

The cohomology class F, € H"(K(w,n);m) of the cocycle c is called the
fundamental cohomology class of K(m,n). Another description of this class:
According to the universal coefficients formula,

H"(K(m,n); m) = Hom(H,(K (7, n)), 7),

and, by Hurewicz’s theorem, H,(K(w,n)) = m,(K(w,n)) = x. The class F,
corresponds to the identity homomorphism

id, € Hom(H,(K(r, n)), 7).

EXERCISE 2. Prove the equivalence of the two definitions of the fundamental
homology class.

Notice that the second definition of the fundamental class can be applied to an
arbitrary (n — 1)-connected space X. In this case, it yields a cohomology class Fx €
H"(X; m,(X)). We will return to this class later.

Now we turn to the main result of this section.

Theorem. Let X be a CW complex. For any Abelian group w and for any n > 0,
the map

(X, K(m,n)) - H'(X:7), [f1 > f*(Fr), (%)

is a bijection.

Proof. First, let y € H'(X; ), and let ¢ € C"(X; ) be a cocycle of the class y. We
want to construct a continuous map f: X — K (i, n) which takes the cocycle of class
F; (constructed above) into c. By Lemma 1 of Sect. 18.1, there exists a map f: X" —
K(m,n) such that f(X”_l) is the (only) vertex of K(m,n) and deonsty = c. Then,
obviously, f#:C"(K(m,n); r) — C"(X;m) takes deonstid into deonsty = ¢ (by the
naturality property of the difference cochains; see Sect. 18.1). Then we extend this
map f to X"+1, X"*2 ... anditis possible, since 1,11 (K (7, n)), 7,12 (K (7, n)), . ..
are all zeroes. We obtain a map f: X — K (7, n). By construction, f* takes F; into y.
Thus, the map (x) is onto.
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Now let f, g: X — K (7, n) be two continuous maps with f*F, = g*F,. We want
to prove that f ~ g; we can assume that f and g are cellular maps (in particular, they
are constant on X"~ !). Then f*F, and g*F, are represented by f#dconst,id = deonstf
and g#dconst,id = deonst,g- Hence, the cocycles deonsts and deonst,y are cohomological,
so the difference deonstg — deonsty = drg is cohomological to 0, or Dr, = 0.
According to the theorem in Sect. 18.2, this shows that f and g are X"~2-homotopic
(the homotopy being fixed on X"~ is not important to us) on X". They are also
homotopic on further skeletons, since the further difference cochains belong to the
cochain groups with trivial coefficients. Thus, the map (x) is one-to-one.

Corollary 1. A CW complex of the type K (7, n) is homotopically unique. Hence, a
topological space of the type K (, n) is weakly homotopically unique.

Proof. Let X,X’ be CW complexes of the type K(mw,n), and let F, €
H"(X;7),F, € H'(X'; r) be the fundamental classes. According to the theorem,
there exist continuous maps f: X — X', g:X’ — X such that f*(F,) = F, and
" (Fx) = F,. Since (g 0f)*(Fx) = [* 0 g*(Fx) = Fr = (idx)* (Fx), we have
g of ~ idyx and, similarly, f o g ~ idy’.

EXERCISE 3. Since K(mr,n) ~ QK(mw,n+1) is an H-space, the set 7 (X, K(, n)) is
a group (see Lecture 4), and the bijection H"(X; 7) <> n(X, K(=,n)) is a bijection
between two groups. Prove that it is a group isomorphism.

Actually, for every Abelian group m and every n, there exists an Abelian
topological group of the type K(w,n). The reader may try to prove it by an
appropriate enhancing of the construction of the (second) loop space.

Corollary 2. For a CW complex X, there is a group isomorphism H'(X;7Z) =
(X, S') (where S' is regarded as an Abelian topological group).

EXERCISE 4. Prove that every continuous map S' x ---x 8! — ' x ... x 8 is
~ - = ~ -

—_—

n m
homotopic to a linear map (that is, to a map obtained by a factorization from a
linear map R" — R™ determined by an integral matrix).

18.4 The Second Application: Hopf’s Theorems

Theorem 1 (Hopf). For every n-dimensional CW complex X, there is a bijection
H'(X:Z) < (X, 5", [f] = f*(),

wheres =1 € Z = H"(S"; Z).

Proof. This classical theorem (proved, actually, before the appearance of not only

the obstruction theory, but also cohomology) is, from a modern point of view,
a corollary of the theorem in Sect. 18.3. Indeed, the construction of the space
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K(m,n), as given in Sect. 11.7, begins with a bouquet of n-dimensional spheres
corresponding to generators of r; if 71 = Z, we can take one sphere. On the next
step, we attach (n 4 1)-dimensional cells corresponding to relations between the
chosen generators; but in the case 7 = Z there are no relations, and no (n + 1)-
dimensional cells are needed. Then we attach cells of dimensions > »n + 2. We
see that the (n + 1)st skeleton of (such constructed) K(Z, n) is S”. Hence, by the
cellular approximation theorem, if X is n-dimensional, every map X — K(Z, n) is
homotopic to a map X — S C K(Z, n) and every two maps X — S" C K(Z,n)
homotopic in K(Z, n) are homotopic in S”.

[There is a more direct proof which is a replica of the proof of the theorem in
Sect. 18.3. The main difference is that the higher obstruction and difference cochains
are equal to zero not because the higher homotopy groups of $” are zeroes (which is
not true), but because X has no cells of higher dimensions.]

Theorem 2 (Hopf). Let an n-dimensional CW complex X contain as a CW sub-
complex a sphere S"™"'. This sphere is a retract of X if and only if the inclusion
homomorphism H'~'(X; Z) — H"~'(S"~'; Z) is an epimorphism.

Proof. The only if part is obvious: If X — S"7! is a retraction, then the
composition

Hn_l(Sn_l;Z) r Hn_l(X; Z) J Hn_l(Sn_l;Z),

where j is the inclusion map, is the identity, and hence j* is an epimorphism. Assume
now that j* is an epimorphism and fix a class « € H""!(X;Z) such that j*(a) =
1 € Z =H"'(S""";Z). Leta € C""'(X;Z) be a cocycle of the class o. Construct
amap ¢:X — S" ! in the following way. All the cells of dimensions < n — 2
we map into a point. On every (n — 1)-dimensional cell e define the map as the
spheroid of the class a(e). This requirement means precisely that the map ¢* takes
1 € Z = C*!(§"7'; Z) into a. On the other side, it means that the cochain a is the
difference cochain between the already constructed part of the map ¢ and the map
const: X"~ — §"~! Hence,

0=46a= qu,const = Cq — Cconst = Cq>
so the map ¢ can be extended to X" = X. The composition
n—1_J 4 n—1
ST ——X—S
induces the identity map in cohomology: (g 0 j)*(1) = j*(¢* (1)) = j*(«) = 1, and
hence homotopic to id. We can extend the homotopy between this map and id to the

homotopy of the map ¢. As a result, we will get a map r: X — "~ ! which is the
identity on S§"~!, that is, a retraction.
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18.5 Obstructions to Extensions of Sections

Let £ = (E,B, F,p) be a locally trivial fibration. We assume that the fiber
F is homotopically simple (for example, simply connected), and the base B is
simply connected. (The last assumption can be weakened to the assumption of the
homotopical simplicity of the fibration. The latter means that for every continuous
map S! - B, the induced fibration over S! is trivial. In the next lecture, we will
encounter important examples of this situation.)

Assume that the base B is a CW complex and that there given a section s: B" — E
[which means that p o s = id] over the nth skeleton of the base. We are going
to describe an obstruction to extending this section to B"t!. Let e be an (n + 1)-
dimensional cell over B. The fibration 2*§ over D"t induced by means of a
characteristic map h: D't — B for the cell e, is trivial. The section s induces a
section §" — D"t! x F of the restriction of the last fibration to S* ¢ D"t!, and
hence an element of 7,(D"T! x F) = ,(F) (rather of the fiber p~'(x) over some
point x € e, but the simply connectedness of the base, or the homotopical simplicity
of the fibration &, provides a canonical homomorphism between homotopy groups
of all fibers—the reader will reconstruct a detailed explanation of this). We get a
cochain ¢, € C"*1(B; 7, (F)). This is the obstruction cochain to extending s to B"+!.
The properties of this obstruction cochain are the same as those of the obstruction
cochains considered in Sect. 18.1. Namely:

(1) The section s can be extended to a section over the (n + 1)st skeleton of B if
and only if ¢; = 0.

(2) ¢y =0.

(3) The cohomology class C; € H™ (B, (F )) of ¢g (which is called the
obstruction) is equal to O if and only if the section s can be extended to a section
over B"t!,

There are also difference cochains d; ¢y whose definition and properties are the
same as before.

Obstructions to extending maps may be regarded as particular cases of obstruc-
tions to extending sections. Namely, a continuous map f: X — Y can be represented
by the graph F: X — XxY, F(x) = (x,f(x)), which, in turn, is a section of the trivial
fibration (X x Y, X, Y, p), where p: X x Y — X is the projection of the product onto a
factor. Obstructions to extending a map are the same as obstructions to extending its
graph. On the other hand, the theory of obstructions to sections cannot be reduced to
the theory of obstructions to maps. In particular, the latter does not have any analogy
of the next construction.

Suppose that 7o(F) = m(F) = -+ = m—1(F) = 0, and 7,(F) # 0.
Then there are no obstructions to extending a section from B® (where it obviously
exists) to B', ..., B"~! and the first obstruction emerges in H™t! (B; m,(F)): It is the
obstruction to extending the section from B"~! to B". This obstruction could depend,
however, on the sections on the previous skeletons; however, the next proposition
states that it is not the case.
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Proposition 1. Let 7o(F) = 7 (F) = -+- = m,—1(F) = 0, and let s, s': B* — E be
two sections. Then Cy = Cy € H" \(B; m,,(F)).

To prove this, we need a slightly modified version of the homotopy extension
property (Borsuk’s theorem; see Sect. 5.5).

Lemma (Borsuk’s Theorem for Sections). Let £ = (E, B, F, p) be a locally trivial
fibration with a CW base, let S:B — E be a section of &, let A be a CW subspace
of B, and let s;:A — E be a homotopy consisting of sections of £ |4 such that
S0 = S |a. Then there exists a homotopy S;: B — E consisting of sections of & and
such that Sy = S, S; [a= s:.

Proof of Lemma. This lemma is not different from Borsuk’s theorem in the case
when the fibration is (standard) trivial: E = B X F, p is the projection of the product
onto a factor. Indeed, in this case, a section is the same as a continuous map B — F.
Passing to the general case, we can restrict ourselves to the situation when A and
B differ by one cell: B = A U e, where e is a cell of B. Take a characteristic map
h:D" — B (where n = dime). Then the sections S, s, of £ and & |4 give rise to
sections ', s, of the fibrations A*§, h*€ |gi—1 [such that s; = S [g—1]. Since the
fibration 4*£ is trivial (Feldbau’s theorem, Sect. 9.2), the lemma has already been
proved for this fibration, which provides a homotopy S, consisting of sections of this
fibration such that S, = §" and S} |g.—1= s,. The homotopies s; and S, together form
a homotopy S;: B — E with the required properties.

Proof of Proposition 1. It is clear that a homotopy of a section s: B* — E will not
affect either ¢, or Cy. Suppose that the given sections s, s’ are homotopic over B for
some k, 0 < k < n — 1 (since the fiber F is connected, this is obviously true for
k = 0). A homotopy of s’ to s on B* can be extended, by the lemma, to a homotopy of
s" on B", without any changes for ¢y and Cy so we can assume that s’ = s on BF. The
difference cochain d; ¢ € CH1(B; mx+1(F)) is zero, because 41 (F) = 0; thus,
s’ ~ s on B¥"! In this way, we can reduce the general case of the proposition to the
case when s’ = s on B"~!. Then we have a difference cochain dsy € C"(B, my(X)),
and 8d; ¢y = cy — c;. Thus, the cocycles ¢, and ¢y are cohomological and hence
C,=Cy.

Proposition 1 shows that the first obstruction to extending a section to the nth
skeleton of the base is determined by the fibration, so we obtain a well-defined class
C(§) € H""(B; m,(F)) (recall that n is the number of the first nontrivial homotopy
group of F); this class is called the characteristic class of &; we will also use the term
primary characteristic class to distinguish it from numerous characteristic classes of
vector bundles, which will be studied in Lecture 19.

One can say that a fibration as above has a section over the nth skeleton of the
base if and only if its characteristic class is zero.

EXERCISE 5 (The main property of characteristic classes). Let & be a fibration as
above, and let f: B — B be a continuous map of some CW complex into B. Then

C(f&) = £ (CE)).
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EXERCISE 6. Prove that a characteristic class is homotopy invariant (we leave to
the reader not only the proof, but also a precise statement of this fact). In particular,
the characteristic class does not depend on the CW structure of the base.

EXERCISE 7. Using previous exercises, make up a definition of a characteristic
class in the case when the base is not a CW complex.

Example. (Since this example concerns smooth manifolds, the definitions and
statements will not be genuinely rigorous.) Let X be a connected closed oriented
n-dimensional manifold and let 7 be the manifold of all nonzero tangent vectors
of M. The projection p: T — X (which assigns to a tangent vector the tangency
point) gives rise to a locally trivial fibration 7y = (7, X, R” —0, p). Since the fiber is
homotopy equivalent to $”~!, there arises a characteristic class C(zx) € H"(X;Z).
(It is easy to understand that the fibration ty is simple if and only if the manifold X
is orientable.)

Proposition 2. (C(tyx), [X]) = x(X).

Proof. A section of the fibration ty is the same as a nowhere vanishing vector field
on X. It is easy to understand that a generic vector field on X has only isolated
zeroes. Take a local coordinate system with the origin at the isolated zero xy of a
vector field £, take a small sphere S a~ S"~! centered at xo, and consider the map
§ = §"1 — "1 which takes x € S into & (x)/||€ (x)||. Denote by ds (xo) the degree
of this map. We can assume (although it is actually not necessary) that all the zeroes
of & are nondegenerate, that is, d(xp) = £1. Now consider a smooth triangulation
of X such that all zeroes of £ lie inside n-dimensional simplices, at most one in every
simplex. Then £ is a section of the fibration tx over the (n — 1)st skeleton of X, and
the obstruction ¢ to extending this section to an n-dimensional simplex s is zero if
s does not contain zeroes of & and is d(xp) if s contains a zero xo of £. Since the
fundamental cycle of [X] is the sum of all (oriented) n-dimensional simplices of the
triangulation, (c¢, [X]) = D, ctseroes of ¢y d(x0). The left-hand side of this equality is
(C(zx), [X]), the right-hand side, as explained in Sect. 17.6 (see Theorem 3 and the
discussion after it), is y(X). This completes the proof of Proposition 2.

Corollary. A connected closed orientable manifold possesses a nowhere vanishing

vector field if and only if y(X) = 0.

The only if part of this statement has been proved before: See Theorem 2 in
Sect. 17.6. The if part was promised there. The orientability condition is not needed;
it also was explained in Sect. 17.6.

In conclusion, a couple of additional exercises.

EXERCISE 8. Make up a theory of obstructions to extending sections in the context
of Serre fibrations (see Sect. 9.4).

EXERCISE 9. Let X be a CW complex with 7p(X) = m;(X) = -+ = 7,1 (X) =
0, m,(X) # 0. Prove that the characteristic class of the Serre fibration EX — X
with the fiber Q2X which belongs to H"(X; m,4+1(2X)) = H"(X; m,(X)) is just the
fundamental class of X.
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Lecture 19 Vector Bundles and Their Characteristic Classes

19.1 Vector Bundles and Operations over Them
A: Definitions

We consider three types of vector bundles: real, oriented, and complex. A real n-
dimensional vector bundle with the base B is a locally trivial fibration with the base
B and the fiber homeomorphic to R” with an additional structure: Each fiber is
furnished by a structure of an n-dimensional vector space, in such a way that the
vector space operations (1, x) = Ax and (x, y) — x + y depend continuously on the
fiber, in the sense that the arising maps R x £ — E and {(x,y) € EX E | p(x) =
p(y)} — E (where E is the total space and p is the projection of the fibration) are
continuous. Complex vector bundles are defined precisely in the same way, only
the field R is replaced by the field C; oriented vector bundles are real vector bundles
whose fibers are furnished with orientation depending continuously on the fiber. The
last property can be formalized in the following way. For simplicity’s sake, assume
that B is connected. Let E be the set of all bases in all fibers of the fibration; there is
a natural topology in E. The fibration is orientable if and only if E has two (not one)
components; a choice of one of these components is an orientation of the fibration.

For vector bundles of all three kinds there are natural definitions of equivalences,
restrictions (over subspaces of the base) and induced bundles (by a continuous map
of some space into the base). A trivial bundle is a bundle equivalent (in its class)
to the projection bundle B x R" — B or B x C" — B furnished by the obvious
structure.

Important Example. The Hopf or tautological vector bundle over RP”" is the one-
dimensional vector bundle whose total space is the set of pairs (£, x), where £ € RP"
is a line in R"*! and x € £ is a point on this line [topology in this set is
defined by the inclusion into RP" x R"T!]. Precisely in the same way, the Hopf,
or tautological, one-dimensional complex vector bundle over CP”" is defined. An
obvious generalization of this construction provides tautological vector bundles over
the Grassmannians G(m, n), G4 (m,n), and CG(m, n), which are n-dimensional,
respectively, real, oriented, and complex vector bundles.

B: Realification and Complexification

One can make a complex vector bundle real by removing a part of its structure,
namely the multiplication by nonreal scalars. If £ is an n-dimensional complex vec-
tor bundle, then the realification provides a 2n-dimensional real vector bundle which
is denoted as RE. The bundle RE possesses a canonical orientation: If xi, ..., x, is
a complex basis in a fiber of &, then x, ixy, ..., x,, ix, is a real basis in the same
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space, and the orientation of this basis does not depend on the choice of the complex
basis x, . .., x, [this follows from the fact that the image of the natural embedding
¢:GL(n,C) — GL(2n,R) consists of matrices with positive determinant; the last
statement follows from the fact that GL(n, C) is connected, or, more convincingly,
from the formula det(cA) = | detA|?; compare with the “important remark” in the
example after Theorem 1 in Sect. 17.5]. The definition of the complexification C§&
of a real vector bundle (E, B, R", p) is a bit more complicated. In the product C x E,
make an identification (rx, A\) = (x,rA) foreveryx € E,r € R, A € C. The resulting
space CE is the space of our fibration; the projection CE — B is defined by the
formula (x, A) = p(x), and the vector operations act as (x,A) + (x,A") = (x, A + 1)
and w(x,A) = (x, uA) (it is obvious that these formulas are compatible with the
preceding factorization). It is clear also that C£ is an n-dimensional complex vector
bundle.

There is one more operation related to the two previous ones. Let £ be a complex
vector bundle. Denote by £ a complex vector bundle (of the same dimension as &)
which differs from £ only by the operation of multiplication by scalars: Ax with
respect to the structure of £ is the same as Ax in &.

EXERCISE 1. Let £ be a complex vector bundle. Prove that the following two
statements are equivalent:

(i) The vector bundles & and & are equivalent to each other.
(i) There exists a real vector bundle 7 such that £ is equivalent to Cr.

C: Direct Sums and Tensor Products

If &1, & are two vector bundles of the same type (real, complex, oriented) and with
the same base, then the (direct or Whitney) sum &; &£, and the tensor product & ® &,
are defined as vector bundles with the same base whose fibers are, respectively,
direct sums or tensor products of the fibers of the bundles & and &,. Here is
a more formal definition of the sum (here and below, K denotes R or C). Let
& = (E1,B1, K" p1), & = (Ey, By, K™, py) be two vector bundles (the bases may
not be the same). Put £ x & = (E; x E», B; x By, K" p| x p,); this is a vector
bundle over B; x B, of dimension n; + n,. If Bj = B, = B, then we define & @ &
as the restriction of & x & to the diagonal B C B x B. Another formal definition:
Let By = B, = Band let p3 &, = (E, E>, K™, D) be the bundle over E, induced by
£1. Then £ & & = (E,B, K" ™ p; o).

There exists a different approach to the definition of @ and ® (see Sect. 19.4).
At the moment, we speak of tensor products of vector bundles not specifying any
formal definition; we hope that the reader will be able to create this definition
without our help (Exercise 5).
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EXERCISE 2. Prove the equivalence of the two definitions of & & &,. (This will
show, in particular, that the second definition is actually symmetric with respect to

&1 and §.)
EXERCISE 3. Introduce an orientation into the sum of two oriented bundles.

EXERCISE 4. Make up a formal definition of a tensor product of two (real or
complex) vector bundles.

EXERCISE 5. For real or complex vector bundles £, & with the same base, make
up a definition of a vector bundle Hom(&y, &).

Two vector bundles of the same type, but, possibly, of different dimensions,
are called stably equivalent if they become equivalent after adding trivial bundles.
To make up a more formal definition, notice that a standard trivial n-dimensional
bundle B x K" — B is usually denoted simply as n. With this notation,

E~gqp ) IMnEdn~ndm.

In conclusion, let us point out a connection of the sum construction with previous
constructions.

EXERCISE 6. Make up a canonical real vector bundle equivalence RCE ~ & & £
(where £ is a real vector bundle).

EXERCISE 7. Make up a canonical complex vector bundle equivalence CRE ~ & &
& (where £ is a complex vector bundle).

D: Linear Maps Between Vector Bundles, Subbundles,
and Quotient Bundles

A linear map of a vector bundle & = (E;, B;, K", p;) into a vector bundle & =
(E3, B, K™, p,) (as before, K denotes R or C) is a pair of continuous maps F: E; —
E,, f:B; — B, such that f o p; = p, o F and for every x € B, the appropriate
restriction of F is a linear map p;'(x) — p;'(f(x)). The subbundle of a vector
bundle § = (E,B,K",p) is a vector bundle §' = (E’,B, K"’,p|5/) with E' C E
whose fibers are subspaces of the fibers of &. The inclusion map E' — E and the
identity map B — B compose a linear map (inclusion) & — £. If £’ is a subbundle
of &, then a fiberwise factorization creates a quotient bundle &/£’. More formally,
the total space of £/&’ is obtained from E by a factorization over the equivalence
relation: x; ~ x if p(x;) = p(x2) and x, — x; € E’. There is an obvious linear map
(projection) £ — £/€’.

Let us mention two important subbundles: S¥§ C £ ®---® £ and A¥¢ C

-
k
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E: Coordinate Presentation of a Vector Bundle

Let £ be an n-dimensional vector bundle (of one of our three types). Fix an open
covering {U;} of the base B such that the restrictions |y, are all trivial vector
bundles; let ¢;: p_1 (U;) — K" be a trivialization, that is, a map which is a vector
space isomorphism on every p~!(x),x € U;. Forevery y € U; N Uj;, there arises a
composition
—1
n ] —1 @i n
K'—p ' (y) — K";

the function which assigns this composition to y is a continuous map ¢;;: U; N U; —
G where G = GL(n,K) [GL4+(n, R) in the case of an oriented bundle]. Moreover, (i)
gi(y) = Ifory € Uy, (ii) @i (y) = (¢5(») " fory € U;NUj, and (iii) ¢ie() () =
@;j(y) fory = U;NU;NUy. Itis easy to understand that a set of maps ¢;: U;NU; — G
with properties (i)—(iii) gives rise to a vector bundle. This presentation of a vector
bundle is called the coordinate presentation.

An obvious generalization of the so presented vector bundles consists in specify-
ing a topological group G and a G-space F. Suppose that there are an open covering
{U;} of a space B and a set of continuous functions ¢;;: U; N U; — G with properties
(1)—(iii) just listed. In the disjoint union ]_L'(Ui x F), make, for every i,j,y € U;NUj,
an identification [(y.f) € U; x F| ~ [(y, 9;(»)f) € U; x F|; the space arising we
take for E. The projections U; x F — U; C B form a projection p: E — F, and
there arises a locally trivial fibration (E, B, F, p) with a certain additional structure
similar to a structure of a vector bundle. Such fibrations are called fiber bundles (or
Steenrod fibrations); according to this terminology, G is the structure group, and F
is the standard fiber. The reader can find details in the classical book by Steenrod
[80], or in a variety of more modern books, for example, Husemoller [49]; here we
only mention some examples.

There are many obvious examples. Take a coordinate presentation of a real,
complex, or oriented vector bundle and assume that the functions ¢;; take values
not in the group GL(n, R), GL(n, C) or GL+(n; R), but in some subgroup of one of
these groups, say, in O(n), SO(n), or U(n). It is clear that the fiber bundles arising
have an adequate description as real, complex, or oriented vector bundles with
an additional structure, for the examples above, with an Euclidean or Hermitian
structure, in every fiber. If the subgroup is the group of block diagonal matrices,
GL(p,K) x GL(q,K) C GL(n;K), n = p + g, then the fiber bundle arising is
the usual n-dimensional vector bundle presented as the sum of two vector bundles,
of dimensions p and ¢. In a similar way, we can present vector bundles with a
fixed nonvanishing section, or with a fixed subbundle, and so on. An example of
a different nature: Take an arbitrary G and put F = G with the left translation
action; the fibrations arising are called principal. Some other examples will appear
in the next sections.
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19.2 Tangent and Normal Bundles

The notion of a tangent vector to a smooth manifold is very important, and for this
reason it has many equivalent definitions. The most natural definition is based on
local coordinates. Let x be a point of an n-dimensional manifold X, and let ¢: U —
R" be a chart such that x € U; then a tangent vector to X at x is defined as a
vector v of the space R” at the point ¢(x). If there is another chart, ¥: V — R”,
also covering x, then the tangent vector corresponding to the chart ¢ and the vector
v is identified with the tangent vector corresponding to the chart v and the vector
w = dyy (v), where d,, y is the differential of the map (UNV) — ¢y (UNV), y >
¥ (¢! (). Another possibility, which does not require a fixation of a chart, is to
define a tangent vector at x as a class of parametrized smooth curves y: (—¢, &) — X
such that y(0) = x, where the curves y,y’ are equivalent if dist(y (), y'(r)) =
o(t) (the distance is calculated with respect to any local coordinate system). An
algebraically more convenient approach consists in defining a tangent vector of X at
x as a linear map v:C*®(X) — R (C*°(X) is the space of real C*°-functions) such
that v(fg) = v(f)g(x) +f(x)v(g) (in other words, tangent vectors are identified with
directional derivatives). Finally, if X is presented as a smooth surface in an Euclidean
space, then a tangent vector to X is simply a tangent vector to this surface. To make
this definition compatible with previous definitions, we can say that a tangent vector
at some point to the Euclidean space regarded as a smooth manifold is simply a
vector of this space at this point, and tangent vectors to a submanifold are tangent
vectors to the manifold tangent to the submanifold.

The set of tangent vectors to an n-dimensional manifold X at a point x is an
n-dimensional vector space which is denoted as 7,X. The union of all spaces T, X
possesses a natural topology and, moreover, a structure of a 2n-dimensional smooth
manifold; this manifold is denoted as 7X. The natural projection 7X — X makes
TX a total space of a vector bundle over X; this vector bundle is called the tangent
bundle of X and is denoted as 7(X). A section of a tangent bundle is a vector field
on the manifold. A manifold whose tangent bundle is trivial is called parallelizable;
a manifold is parallelizable if it is possible to choose bases in all tangent spaces
depending continuously of a point or, equivalently, if there exist » = dim X vector
fields on X which are linearly independent at every point. For example, the circle
is parallelizable, the torus is parallelizable, while the two-dimensional sphere is not
parallelizable. The three-dimensional sphere is parallelizable: If it is presented as the
space of unit quaternions, then the basis at the space 7,.S> is formed by quaternions
ix, jx, kx where i, j, k are quaternion units. If you replace quaternions by octonions,
you will prove that the sphere S7 is parallelizable. There is a remarkable fact that
no spheres besides St 83,87 are parallelizable: This is one of the versions of the
Frobenius conjecture proven by Adams (two different proofs, both belonging to
Adams, will be presented in Chaps. V and VI later). Notice that the problem of
parallelization of spheres is equivalent to the problem of existence of spheroids with
the invariant Hopf equal to one (see Remark 5 in Sect. 16.5).
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EXERCISE 8. Prove that the orientability of a manifold X (in the sense of Sect. 17.1)
is equivalent to the orientability of the tangent bundle 7 (X).

If Y is a submanifold of a manifold X, then there arise two vector bundles with
the base Y: 7(Y) and 7(X)|y, and 7(Y) C 7(X)|y (a tangent vector to a submanifold
is also a tangent vector to the manifold). The quotient bundle 7(X)|y/t(Y) is called
the normal bundle of Y in X and is denoted as vx(Y) or v(Y). The word “normal” is
an indication of the fact that if X is a submanifold of an Euclidean space, then the
total space of v(Y) may be regarded as consisting of vectors at points of ¥ which
are tangent to X and normal to Y.

Mark an isomorphism 7(Y) @ v(Y) = t(X)|y. In particular, if X = R”, then
(Y)dv(Y) =n.

Notice that the construction of normal bundles with all properties listed can
be applied not only to submanifolds, that is, to embeddings of a manifold Y to a
manifold X, but also to immersions t¢: Y — X; the only significant change is that the
restriction bundle 7(X)|y should be replaced by the induced bundle * 7 (X).

EXERCISE 9. Deduce from the last equality that normal bundles of a manifold
corresponding to different embeddings or immersions of this manifold to Euclidean
spaces (possibly, of different dimensions) are stably equivalent.

EXERCISE 10. Prove that the normal bundle to an n-dimensional oriented surface
embedded (or immersed) into the (n + 1)-dimensional Euclidean space is trivial.
Deduce from this that the tangent bundle to such a surface (for example, to
an arbitrary sphere with handles) is stably trivial (that is, stably equivalent to a
trivial bundle). A manifold whose tangent bundle is stably trivial is called stably
parallelizable. Obviously, a manifold is stably parallelizable if and only if its normal
bundle is stably trivial.

FYI (this is not an exercise). A closed connected manifold is stably parallelizable if
and only if it is parallelizable in the complement to a point. A noncompact connected
manifold if stably parallelizable if and only if it is parallelizable. A manifold is
stably parallelizable if and only if it is orientable and admits an immersion in the
Euclidean space of the dimension bigger by 1.

EXERCISE 11. Let ¢ be the Hopf bundle over RP". Prove that
TRPYDI~{®-- D=+ 1)

_——

n+1

Prove a similar statement for CP" [notice that the bundle 7(CP") possesses a natural
structure of a complex vector bundle].
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19.3 Associated Fibrations and Characteristic Classes

A: An Introduction

Choose one of the three types of vector bundles, and choose integers n and g and
an Abelian group G. A characteristic class ¢ of n-dimensional vector bundles on the
chosen type with values in g-dimensional cohomology with the coefficients in G is
a function which assigns to every n-dimensional vector bundle £ of the chosen type
with a CW base B a cohomology class ¢(§) € H4(B; G) such thatif f: B — Bis a
continuous map of another CW complex into B, then ¢(f*§) = f*c(§). Here f* on
the left-hand side of the formula means the inducing operation for vector bundles,
and on the right-hand side it means the induced cohomology homomorphism.

The term “characteristic class” is not new for us: In Sect. 18.5, we called the first
obstruction to extending a section of a locally trivial fibration a characteristic class
(or a primary characteristic class) of this fibration, and the equality c(f*&€) = f*c(§)
held for that characteristic classes. However, that construction cannot be applied to
vector bundles directly, because their fiber is contractible. (Recall that the coefficient
domain for the characteristic classes of Sect. 18.5 is the first nontrivial homotopy
group of the fiber.) What we still can do is to apply the construction to some fibration
which can be constructed from the given vector bundle. An ample variety of such
fibrations is delivered by the construction of an associated fibration.

B: A Construction of Associated Fibrations

This construction was actually described in Sect. 19.1.E. We take a coordinate
presentation {{U;}, {¢;: U; N U; — G}} of a vector bundle with the base B [where
G = GL(n,R), GL+(n;R) or GL(n, C)] and choose an arbitrary space F with an
action of the group G. After this, we construct the total space E of a new fibration as

[1:(Ui < F) | [(;5.f) € Up x F] ~ [(v, 9;;(»)f) € Ui x F]
forally e U;NU;,f € F.

The fibration (E,B,F,p) [where p:E — B is the projection (y,f) + y] is
the associated (by the given vector bundle) fibration with the standard fiber F.
However, usually we will not need this general construction: Almost always, we
will restrict ourselves to one particular case of it, which is described ahead. Let
& = (E,B,R",p),or (E,B,C" p), be a given vector bundle, and let 1 < k < n. Put

E,={(x1,...,x0) € ExX---XE | p(x;) =--- = px);
X1, ...,X; are linearly independent}.
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There is an obvious projection py: E; — B, and there arises a locally trivial fibration
& = (Ex, B, Ry, pr) where Ry, is the space of all linearly independent k-frames in R”
or C". (This is the fibration associated with & with the standard fiber R;.) The case
k = 1 is especially simple: E; is E — B, where B is embedded into E as the zero
section, and R; is R* — 0 or C" — 0.

Point out a small defect of this construction (rather more aesthetic than mathe-
matical). The fibers are noncompact spaces which would have better been replaced
by homotopy equivalent classical manifolds: Stiefel manifolds and spheres. This
can be done with the help of the following simple lemma.

Lemma. If a vector bundle has a CW base, then it is possible to introduce in all
fibers an Euclidean or Hermitian structure which depends continuously on the point
of the base; moreover, this can be done in a homotopically unique way.

Proof. The set of all Euclidean (Hermitian) structures in fibers of a vector bundle
is a total space of a fibration whose fiber is the space of all Euclidean (Hermitian)
structures in a given vector space (this is also a fibration associated with the vector
bundle). Obviously, the fiber of this fibration is contractible (it is a convex subset
of the space of all symmetric bilinear (Hermitian) forms in this vector space.
This fibration has a section (all the obstructions are zeroes) and this section is
homotopically unique (all difference cochains are zeroes). This is precisely the
statement of the lemma.

Using these Euclidean or Hermitian structures in the fibers, we can replace the
fibration & into the fibration &) whose total space is the space of all orthonormal
(unitary) frames in the fibers of £. The fiber of £ is the Stiefel manifold V(n, k) or
CV(n, k); in particular, & is the fibration whose fiber is the sphere $"~! (§"~! in
the complex case); this fibration is called spherical.

C: Classical Characteristic Classes of Vector Bundles

Let ¢ be an n-dimensional oriented (real) vector bundle with the CW base B.
Consider the corresponding spherical fibration £). It is easy to see that the ori-
entability of the bundle ¢ implies the orientability of the fibration &); that is, the
fibration & is homologically simple. (The reader may prove that a Steenrod bundle
whose structure group is connected is always simple.) Thus, there arises the first
obstruction to extending a section of 510, and this first obstruction is an element of
H"(B;Z). Regarded as a characteristic class of the bundle &, this element is called
the Euler class of &; the notation: e(§).
Pass to the fibrations &)

Lemma. Let 1 < k < n. Then

(1) mi(V(n,k)) =0fori<n—k.
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Z, ifk =1orn—kiseven;

i) 7, ) = i
) Z, in all other cases.

Proof. The case k = 1 is trivial: 7;(V(n, 1)) = m;(S"™") is zero fori < n— 1 and Z
fori = n—1.Let kK > 2, and consider the fibration

Vin—1k=1)
Vin,k) —— S

[the projection assigns to {vi,..., v} € V(n, k) the last vector vi]. Consider the
fragment

741 (8" = m(V(n =1,k = 1)) = m(V(n,k) — (8"

of the homotopy sequence of this fibration. If i < n — 2, then the first and last terms
are zeroes, and we get an isomorphism 7;(V(n — 1,k — 1)) = m;(V(n, k)). Thus, if
i<n—kandk > 1, then

(Vi k) =2mi(Vin—1L,k—-1) =---=m(Vin—k+1,1)) = m(S”_k) =0.
For i = n — k, this chain of isomorphisms becomes shorter:
Tk (V(n, k) = mpy (Vin—1,k— 1)) = = m (Vin —k + 2,2)),

and the general case of the lemma is reduced to the case of V(n,2). We need to
prove that 1, (V(n,2)) = Z for n even and Z; for n odd. Fork = 2 andi = n—2,
our homotopy sequence becomes

Tt (S"1) = T0ea(S"2) = Tra(V(1,2)) —2 ma(S"Y)

[ I [
Z Z 0.

Thus, ,_2(V(n,2)) = Coker[d«: m,—1(S"') — m,—2(5"2)]. The space V(n,2)
is the space T;S""! of unit tangent vectors to the sphere S$"~!, the fibration

n—2

V(n,2) N §™=1 is the natural fibration of the space of unit tangent vectors. The
construction of the homomorphism d. is the following. We take a homotopy of an
(n — 2)-dimensional spheroid of $"~! sweeping an (n — 1)-dimensional spheroid,
lift this homotopy to 7,S8"~!, and obtain a spheroid of the fiber. If we apply this
construction to the identity spheroid §"~' — S$"~, the lifting provides a vector field
on §"7!, and the resulting element of 7,—,(S"~?) is the value of the obstruction to
extending a vector field on $"~'. As proved in Sect. 18.5 (see Proposition 2), this
value is the Euler characteristic of $”~!, that is, 2 for n odd and O for n even. Thus,
the homomorphism 04: ,—1 (S"™!') — m,—2(5"2) is trivial if n is even and is a
multiplication by 2 if n is odd. This completes the proof of the lemma.
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The lemma shows that the first obstruction to extending a section of fibration E,?
(or &) takes value in H"‘k+1(B; Z or Z,). Reduced modulo 2, this obstruction is
a characteristic class of & with the values in HI(B;Z,), j = n—k + 1. This class
is called the jth Stiefel-Whitney class of £ and is denoted as w;(§). We also put
wi(§) = 0 fori > dim £ and wo(§) = 1 € H(B; Z,).

Notice that the orientability of the vector bundle & which was needed for the
simplicity of the fibration & becomes unnecessary after reducing modulo 2; thus,
the Stiefel-Whitney classes are defined for arbitrary real vector bundles.

For an n-dimensional oriented vector bundle &, w,(§) = pe(§), where p; is the
reduction modulo 2.

The complex version of the previous construction is a simplified version of it.

Lemma. Let 1 <k < n. Then

0 fori <2(n—k)+1
(CV(n, k) = ’

mCVOK) = i = 2= k) + 1.

Proof This repeats the first, easier, part of the proof of the previous lemma and is

based on the equality CV(n, 1) = $?"~! and the homotopy sequence

i1 (82 - 1,(CV(n, k) = 7i(CV(n—1,k—1) = m;($*" 1)
) CV(n—1k—1)
of the fibration CV(n, k) ————— §2*~1.

Let £ be an n-dimensional complex vector bundle with a CW base B. The lemma
shows that the first obstruction to extending a section in the fibration S,? (org)isa
class ¢;(§) € H¥(B; Z) where j = n—k+ 1. We get a characteristic class of complex
vector bundles which is called the jth Chern class. Precisely as in the real case, we
put ¢;(§) = 0 for i > dimc & and ¢ (§) = 1.

Finally, if § is again an n-dimensional vector bundle, then we put p;(§) =
(=1Yc2j(CE) € HY(B;Z) and call the classes p;(§) Pontryagin classes of the
bundle £. [The sign (—1Y has a historic origin. The reason why we restrict ourselves
to even-numbered Chern classes is that the odd-numbered Chern classes of a
complexification of a real vector bundle have order at most 2; see Exercise 15 in
Sect. 19.5 later.] It is possible to define Pontryagin classes directly: We can associate
with an n-dimensional vector bundle a fibration whose standard bundle is the space
of all systems of n—2j+ 2 vectors of rank > n—2j; the first obstruction to extending
sections in this fibration is p;(§) (the reader can try to prove this although it is not
awfully interesting).

EXERCISE 12. Prove that w;(§) = 0 if and only if the bundle £ is orientable.

EXERCISE 13. Prove that if £ is an n-dimensional complex vector bundle, then

e(RE) = cu(§), wy(RE) = pacj(§), wy+1(RE) = 0.
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D: Geometric Construction of Euler, Stiefel-Whitney,
and Chern Classes

Let £ be an n-dimensional oriented vector bundle with a CW base B. Then there
exists a nowhere vanishing section of & over the (n — 1)st skeleton B"~!' of B. We
can extend this section to B", but it may have zeroes over n-dimensional cells. If
we assume these zeroes to be transverse intersections with the zero section, then
we can count the “algebraic number” of these zeroes (that is, we assign a + or —
sign to every zero), and a function which assigns this number to every cell is an
n-dimensional integral cellular cocycle. Its cohomology class is the Euler class e(§)
(this is the construction of the first obstruction).

If € is not assumed oriented, then the previous construction gives a cohomology
class modulo 2, and this is w,(§). We can construct in this way the other Stiefel—
Whitney classes. Namely, let us assume that £ has an Euclidean structure (in the
fibers), and consider again a nowhere vanishing section of £ over B"~!. Let us try
to construct a second nowhere vanishing section of £ orthogonal to the first section.
This can be done over B" 2, but if we want to extend the second section to B"~!, we
have to admit that it will have zeroes over (n— 1)-dimensional cells. Assuming these
zeroes transverse, we can count their number modulo 2 in every (n— 1)-dimensional
cell, and in this way we get an (n— 1)-dimensional cellular cocycle with coefficients
in Z,, and the cohomology class of this cocycle is w,—; (§). Then we construct a third
section orthogonal to the first two, it can be made nowhere vanishing over B3, but
to extend this third section to B"~2, we have to admit transverse zeroes over (n —2)-
dimensional cells, and in this way we obtain a cocycle representing w,—»(§). And
SO on.

The Chern classes of complex vector bundles may be constructed in a similar
way; we leave the details to the reader.

19.4 Characteristic Classes and Classifying Spaces

A: The Classification Theorem

In Sect. 19.1.A, we mentioned tautological bundles over Grassmannians. They will
be of primary importance now.

The theory here has three absolutely parallel versions for the three types of vector
bundles. We will consider in detail the real case; the transition to the two other cases
does not require any efforts: One should just replace the Grassmannians G(oo, ) by
G4 (0o, n) and CG(oo, n).

Recall that the total space of the tautological bundle (which we denote as n or n,,)
over the Grassmannian G(oo, n) is the space of pairs (77, x) where 7 € G(oco, n) is an
n-dimensional subspace of RY and x € w C R; the projection acts as (7, x) > 7.



19.4 Characteristic Classes and Classifying Spaces 281

Theorem. Let X be a finite CW complex. Then

(i) For every n-dimensional vector bundle & over X, there exists a continuous map
f:X — G(oo,n) such that f*n = &.
(ii) This map f is unique up to a homotopy; that is, if f{'n ~ f5'n, then fi ~ f (the
second ~ means a homotopy).
(iii) Conversely, if fi ~ fo, then fi'n ~ f3'n.

Corollary. The correspondence f +> f*n establishes a bijection between the
set w(X, G(oc0, n)) of homotopy classes of continuous maps X — G(oco,n) and
equivalence classes of n-dimensional vector bundles with the base X.

Proof of Theorem. First, notice that since X is compact and G(oo,n) =
—

lim G(N,n), a continuous map X — G(oo,n) is the same as a continuous map
X — G(N,n) (with sufficiently large N) composed with the inclusion map
G(N,n) — G(oo,n). Same for homotopies: Maps X — G(Ny,n) — G(oo, n) and
X — G(Ny,n) — G(oo,n) are homotopic if and only if maps X — G(N;,n) —
G(M,n) and X — G(N,,n) — G(M, n) are homotopic for sufficiently large M.

Second, notice that statements (i) and (ii) are covered by the following relative
version of statement (i):

(") Let X be a finite CW complex, and & be an n-dimensional vector bundle over
X. Then let A be a CW subcomplex of X, and let g: A — G(oo, n) be a continuous
map such that g*n ~ &|4. Then there exists a continuous map f: X — G(oo, n) such
that f*n ~ § and f|s = g.

We begin with proving statement (i), that is, (i’) with A = @, and then we will
explain what we need to add to handle the case A # @. A linear functional on
the total space E of & is a continuous function E — R which is linear on every
fiber of the bundle £. To construct a linear functional on E, it is sufficient to take
some linear function ¢:p~'(x) — R (where x € X), then extend it to a linear
functional p~!(U) — R where U is a neighborhood of x such that the restriction
E|y is trivial [there is a retraction p:p~'(U) ~ U x p~'(x) — 7~ !(x) which is
linear on every fiber, and the composition ¢ o p is a required functional], and then
we multiply the last functional by a continuous function X — R, whichis 1 in a
neighborhood V of x such that V' C U and is O in the complement of U. We apply
this construction to some linearly independent functionals ¢;:p~'(x) — R, i =
1,...,n, and we get linear functionals ¢, ;: E — R whose restrictions to p~(x) are
linearly independent; hence, for some neighborhood U, of x the restrictions of these
functionals to p~!(y) are linearly independent for all y € U,. Since X is compact,
there exist some xi, ..., X, such that the sets Uy, j = 1,...,m cover X. Then the
functionals ¢,;; have the following property: For every z € X there are n of these
functionals which are linearly independent on p~'(z).

Together, the N = mn functionals ¢,;;: E — R form a map ®: £ — R, and for
every z € X, the restriction ®|,-1(,) is a linear monomorphism. The image ®(pr~(2)
is an n-dimensional subspace of R", and we define the map f: X — G(N, n) by the
formula f(z) = ®(p~!(z). Since ® maps isomorphically the fiber of & over z € X
onto the fiber of 7 over f(z), we have f*n = &, as required.
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Now, let us adjust this proof to the relative version. We assume that there are some
ACX, g:A— GM,n) C G(o0,n), and an equivalence between &[4 and g*1. The
last equivalence is the same as a continuous map ¥:p~'(A) — RM which maps
isomorphically p~'(z) (z € A) onto the subspace g(z) of RM. First, we extend this
map to a continuous map W: E — RM which is linear on each fiber of £ [to do this,
we need to extend each of the M coordinate functions of ¥ to a function £ — R
linear on fibers; this is the same as extending from A to X a section of a certain vector
bundle (composed of dual spaces (p~!(x))*) which does not meet any obstruction,
since the fibers of a vector bundle are contractible]. The linear maps W|,-1,, are
isomorphisms for y € A, and hence they are isomorphisms for y € W, where W is
some open neighborhood of A. To finish the construction, we take a ®: X — R" as
constructed above and multiply this ® by a continuous function 4: X — R which is
0 on A and 1 in the complement of W, ® = h®. The functions ¥ and ' together
form a map Q:E — RY*N_ which is a linear monomorphism on every fiber of &

such that 2,14 is the composition p~'(A) Y URM S RMEN | This Q gives
rise to a continuous map f: X — G(M + N, n) such that f*n = £ and f|, is the

composition A LN GM,n) - G(M + N, n) . This completes a proof of (i').

It remains to prove (iii). Our proof is based on the following simple observation.
We say that n-dimensional subspaces mj, m, of R" are close to each other if no
nonzero vector of | is orthogonal to m, (this condition is symmetric in my, 7,);
equivalently: m; is close to m, if the orthogonal projection 7y — m, is an
isomorphism. Obviously, every & € G(N, n) has a neighborhood U in G(N, n) such
that every = € U is close to .

Lemma. Let f,f,: X — G(N,n) (no restrictions on X) be two continuous maps
such that, for every x € X, the subspaces fi(x),f>(x) of R" are close to each other.

Then fi'n ~ f5'n.

Proof of Lemma. Let pi: Ey — X,p>: E; — X be the bundles f*n, £, n. For every
x € X, the definition of the inducing operation provides isomorphisms 7;: pl_l (x) —>
fi(x), m2:py ' (x) = fo(x); also, there is the orthogonal projection 7:fi (x) — f>(x).
The composition r;z_l omon:pi(x) — pz_l(x) is an isomorphism depending
continuously on x; and these isomorphisms form an equivalence f;"n ~ £, .

Proof of (iii). If X is compact (otherwise, arbitrary), and {f;: X — G(N,n)} is
a homotopy, then there exists an m such that, for every i,0 < i < m, the maps
Jiyms fii+1)/m satisfy the condition of the lemma. Hence, for every i,fimn ’”f(7+1)/m'7-
Hence, fJ'n ~ f'n, which is the statement of (iii).

B: More General Constructions

The space G(oo,n) is called a classifying space for real n-dimensional vector
bundles, and 7 is called a universal bundle; a similar terminology is applied
to G4 (oco,n) and CG(oo,n). There exists a far-reaching generalization of the
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preceding construction. For a topological group G, there exists a principal fibration
(see Sect. 19.1.E) (EG, BG, G,ps) with a cellular base and contractible space
EG; for a given G, a principal fibration with these properties is unique up to
a homotopy equivalence. The space BG is called the classifying space for G;
in particular, BGL(n,R) = BO(n) = G(oo,n), BGLy(n,R) = BSO(n) =
G4 (oo,n), BGL(n,C) = BU(n) = CG(oco,n). If F is a space with a faithful
action of G, then, for a finite CW complex X, there is a bijection between the set
of equivalence classes of Steenrod bundles over X with the structure group G and
the standard fiber F and the set (X, BG) of homotopy classes of continuous maps
X — BG. This construction belongs to J. Milnor [55]. It has further generalizations
to the cases when G is not a topological group, but an H-space or a topological
groupoid.

C: Immediate Applications of the Classification Theorem

Some definitions and theorems of the previous sections can be clarified with the
help of the classification theorem of Sect. 19.4.A. For example, the lemma of
Sect. 19.3.B, which states that every vector bundle whose base is a finite CW
complex can be furnished by an Euclidean or Hermitian structure in the fibers,
follows immediately from the theorem of Sect. 19.4.A. Namely, if we fix an
Euclidean structure in RY [or a Hermitian structure in CV], then all n-dimensional
subspaces inherit this structure. This provides an Euclidean or Hermitian structure
in the fibers of 1, and hence in the fibers of all vector bundles induced by 5, that is,
of all vector bundles whose bases are finite CW complexes.

The definition of the sum of vector bundles can be done in the following way:
Iff:X - G(N,n) and g: X — G(M, m) are two continuous maps, then there arises
amapf ® g:X - GM + N,m+n), (f ®g)x) = f(x) ®gk) C R @ RY,
and f*n @ g*n = (f ® g)*n, which gives an alternative construction of the sum
of vector bundles. The same for tensor products: We consider a map f ® g: X —
R™ f®g(x) =f(x) @ glx) CRY @RY = R™ and f*n ® ¢*n = (f ® )*1,
which can be regarded as a definition of a tensor product of vector bundles (same
with complex vector bundles). In a similar way, for a vector bundle &, we can define
STE,NTE £, etc.

D: Characteristic Classes and Cohomology of Classifying Spaces

Theorem. The group of q-dimensional characteristic classes of n-dimensional
real [resp. n-dimensional oriented, resp. n-dimensional complex] vector bun-
dles with coefficients in G is isomorphic to the group H?(G(oco,n);G) [resp.
H(G4 (00, n); G), resp. HI(CG(c0, n); G)J.
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Proof. We restrict ourselves to the real case; the proof in the other two cases is
the same. If ¢ is a characteristic class of the type considered, we can compute it
for the bundle 1 over G(oco, n) [or over G(N,n) with N > n,q]. We get a c(n) €
H4(G(o0, n); G). We need to check two things: (i) If ¢() = 0, then ¢ = 0; (ii) for
every y € H1(G(oo, n); G), there exists a characteristic class ¢ such that c(n) = y.

(i) Let ¢(n) = 0. If £ is an n-dimensional vector bundle whose base X is
a finite CW complex, then § = f*n for some f:X — G(oo,n), and therefore
c(&) = c(f*n) = f*c(n) = f*(0) = 0. If the base X of £ is an arbitrary CW
complex, and 0 # c(§) = o € HY(X; G), then there exists a finite CW subcomplex
Y of X such that a|y # 0; then 0 = c(€|y) = c(§)|y = «a|y # 0, which is a
contradiction.

(ii) Let y € H(G(o0,n); G); we want to define a characteristic class ¢ with
c(n) = y. Let £ be an n-dimensional real vector bundle with a CW base X. Then,
for every finite CW subcomplex Y of X, we can define c(§]y) € HY(Y;G) as f*y,
where f: Y — G(o0, n) is a continuous map with f*n = £|y. Then, obviously, there
exists a unique ¢ € H4(X; G) such that «|y = c(§|y) for every finite ¥ C X. We set

c(§) =a.

(Both parts of this proof implicitly use the following property of cohomology.
Let X be a CW complex, and let F be the category of finite CW subcomplexes

H
of X and inclusions. Then HY(X; G) = lim xH4(Y; G). This follows, for example,
from a similar property for homology and the universal coefficients formula for
cohomology. We leave the details to the reader.)

GENERALIZATION. Characteristic classes of Steenrod fibrations with the structure
group G taking values in the q-dimensional cohomology of the base with coefficients
in A correspond bijectively to elements of H1(BG; A).

E: Completeness of Systems of Euler, Stiefel-Whitney, Chern,
and Pontryagin Characteristic Classes

Theorem. (i) Every characteristic class of n-dimensional real vector bundles
with coefficients in Z, is a polynomial of the Stiefel-Whitney classes
Wi, ..., Wy, and different polynomials are different characteristic classes.

(i) Every characteristic class of n-dimensional complex vector bundles with
coefficients in Z is a polynomial of the Chern classes cy, . . ., c,, and different
polynomials are different characteristic classes.

(iii) Every characteristic class of n-dimensional real vector bundles with coef-
ficients in Q, or R, or C is a polynomial of the (images with respect to
the inclusion of 7Z into the coefficient domain) of the Pontryagin classes
D1, - -+, P2, and different polynomials are different characteristic classes.

(iv) Every characteristic class of n-dimensional orientable vector bundles with
coefficients in Q, or R, or C is a polynomial of the (images with respect
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to the inclusion of 7 into the coefficient domain) of the Pontryagin classes
P1s -+, Pny2 and, if n is even, the Euler class e, and different polynomials are
different characteristic classes.

We postpone the details of the proof to the next section. Here we only notice
that the proof of every part consists of two parts. First, we need to show that the
corresponding group

HY(G(o0,n), G4 (00, n), or C(oco,n); Z,,7Z,Q,R, or C)

has precisely the same size as the group of polynomials of the form indicated. This
can be easily deduced from the computation of the cohomology of Grassmannians
in Sect. 13.8.C. Next, we need to check that no one of these polynomials is zero
as a characteristic class [in the nonfield case (ii) we will need slightly more]. For
this purpose, we need a sufficient supply of explicit computations of characteristic
classes. At the moment, we do not have such a supply, but it will appear in the next
section.

19.5 The Most Important Properties of the Euler,
Stiefel-Whitney, Chern, and Pontryagin Classes

A: The Properties of the Stiefel-Whitney Classes

Theorem. The Stiefel-Whitney classes possess the following properties.

(1) For the Hopf (tautological) bundle ¢ over RP" (n > 2), 0 # wi({) €
H'(RP";Z) = Zs and wi(£) = 0 fori > 1.
(2) For arbitrary real vector bundles &, n with (the same) CW base,

wiE D) = Y wpE)w(n).

ptq=i

Remark. Statements (1) and (2) are often considered as axioms for Stiefel-Whitney
classes: Together with the property that Stiefel-Whitney classes are characteristic
classes, these axioms uniquely determine them. We will not return to this axiomatic
definition of Stiefel-Whitney classes, but the reader will be able to deduce all
necessary statements from the results of the current section. In details, this
axiomatic approach to all classical characteristic classes is developed in the book
Characteristic Classes by Milnor, Stasheff [60].

Proof of Part (1) is immediate. The restriction of ¢ to RP! = S' is the Mdbius
bundle, and obviously it has no nowhere vanishing section. Thus, £ has no section
over the first skeleton, which means that the first obstruction w;(¢) € H' (RP"; Z5)
is not zero.



286 2 Homology

Part (2) is equivalent to the statement (2): for arbitrary real vector bundles &, 7
with, possibly different, CW bases,

wiE xm) =Y wp§) x wy(n).

ptq=i

The proof of (2") consists of three steps.

Step 1. Stiefel-Whitney classes invariant with respect to stable equivalence,
which is the same as the statement w;(§ @ 1) = w;(£). This follows from the
inductive construction of Stiefel-Whitney classes outlined in Sect. 19.3.D. For the
first section of £ @ 1 we can take the natural nonzero section of the summand 1.
Then the second section of £ @ 1 is the first section of £, the third section of £ & 1
is the second section of &, and so on. We see that if dim& = n, then, for every &,
Wit )=+ +1(E ® 1) = wu—1(€), which is our statement.

Step 2. Let dimX = dimé = p, dimY = dimn = ¢ (where X and Y are
the bases of & and n); statement (2') in this case means w,44(§ X 1) = w,(§) x
wq(n). Fix a section of £ which has no zeroes on XP~! and has transverse zeroes
on p-dimensional cells; for a p-dimensional cell e of X, let n, € Z, be the number
of zeroes of the section on e reduced modulo 2. Similarly, fix a section of 7, without
zeroes on Y9! and with transverse zeroes on g-dimensional cells, and let m; € Z,
be the number of zeroes of 17 on a cell f reduced modulo 2. Then w), (§) is represented
by the cocycle e — n,, and w,(n) is represented by the cocycle f + my. The
two sections together form a section of £ x 7 with no zeroes on (X x Y)?T4~! and
with transverse zeroes on cells e x f, the number of which modulo 2 is n.m;. Thus,
(exf + nemy) is acocycle of the class w,,(§ xn) which shows that w,,(§ xn) =
wp(§) X wy(n).

Step 3. The general case. Fix p,q with p + g = i,p < dim&,g < dimp,
and consider the restrictions &|x», n|ys. We know that & has dimé — p linearly
independent sections over X” and 1 has dim#n — ¢ linearly independent sections
over Y4. From this, we conclude that

Elxr = & ® (dim& —p), nlys = ny, & (dimn —q)

where &, and 7, are bundles over X” and Y of dimensions p and ¢g. Certainly, it is
also true that

(& X Mxrxys = (§, x 1) + (dim§ + dimn —p — g).

Let

u=wiExn— Y wyE) xwy(n) € H(X x Y:; ).
p+q'=i
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Then

ulxoxys = wil(§ X Mlxrxya) =34 y=i Wpr (§lxe) X wyr (n]ya)
= Wi(ép X nq) - Zp/+q/:,' Wy (Sp) X Wq’(nq)
= Wi(gp X nq) - Wp(ép) X Wq(’]q) =0

(here the first equality is obvious, the second equality follows from the result of step
1, the third equality follows from triviality of Stiefel-Whitney classes in dimensions
exceeding the dimension of the bundle, and the last equality is the result of step 2).
We see that u|xrxys = O for any p, g with p + g = i. Consider the homomorphism

H'(X X Y;Z2) = @,qyei H" (X5 Z2) ® HI(Y; L)
= @,y H'(XP: L) @ HU(YY; Zs)
=@, =i H(X? x Y9, 1);

here the two equalities follow from Kiinneth’s formula, and the arrow denotes the
sum of homomorphisms induced by the inclusion maps X — X, Y¢ — Y. On the
one hand, every homomorphism H?(X;Z,) — HP(X?;Z,) is a monomorphism
(since HP (X, XP; Z,) = 0), and similarly for Y; thus, the preceding homomorphism
is a monomorphism. On the other hand, this homomorphism acts as

Y = (Vlxixyo, VIxi—txyts - Vxixyi—t, ¥xoxyi) -

Hence, it takes u to 0, and hence u = 0. This completes the proof.
It is convenient to write the formulas from (2) and (2') as

w(§ @ n) = w(E)wn), wE xn) =w(&) xw(n)

where w is the formal sum 1 +w; +wp + .. ..

B: The Splitting Principle for the Stiefel-Whitney Classes

We begin with a computation of the Stiefel-Whitney classes for a very important
example.

Proposition. Consider the vector bundle (x---x{ over the space
- -

_—

n
@P‘X’ X oen XRPOj.Letxl,...,xn € H'(RP® x -+ x RP®;Z,) be the generators

_——

of H*(RP® x --- x RP®; Z,). Then

Wi(é- X oee X é‘) = ei(xl,...,xn),
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where e; is ith elementary symmetric polynomial.

Proof. Since w({) = 1 + x, the preceding formula (2’) shows that

wix--x)=1+x)x--x(I+x)=04+x1)...(1 +x,)
=1 +Z:’:1 ei(xlv"'v-xn)v

as required.
Now we can prove a result announced in the previous section.

Proof of the Theorem in Sect. 19.4.E, Part (i). It is well known in algebra that
every symmetric polynomial in n variables with coefficients in an arbitrary
integral domain R has a unique presentation as a polynomial in the elementary
symmetric polynomial; the uniqueness statement means that no nonzero
polynomial in ej,...,e, is equal to zero. If W = P(w,...,w,) is a
nonzero polynomial of the Stiefel-Whitney classes, then W({ x --- x {) =
Plei(x1,...,x), ... en(x1,...,x,)) # 0, which shows that W is not zero
as a characteristic class. Hence, the dimension (over Z;) of the full space of
g-dimensional characteristic classes with coefficients in Z, of n-dimensional real
vector bundles is at least the number of partitionsg = 1-r;+2-r,+---+n-r, with
nonnegative r;s. But this number is precisely the number of g-dimensional cells in
the standard (Schubert) CW decomposition of G(oo, n), which, in turn, does not
exceed dimgz, H4(G(o0, n); Z,), that is, the dimension of the space of characteristic
classes. Thus, all these numbers and dimensions are the same. This proves that all
the characteristic classes of n-dimensional vector bundles with coefficients in Z,
are polynomials in wy, ..., wy, as stated in part (i) of the theorem in Sect. 19.4.E.

Remark 1. This proof shows that dimgz, H4(G(oo, n); Z,) is actually equal to the
number of g-dimensional Schubert cells, which means, in turn, that all the incidence
numbers in the cellular complex corresponding to the Schubert cell decomposition
of the Grassmannian are even. This fact is not new for us; it was offered as
Exercise 11 in Sect. 13.8.C. Now we have a proof of this fact, thus a (rather indirect)
solution of that exercise.

Remark 2. We see also that a nonzero characteristic class with coefficients in Z, of
n-dimensional vector bundles takes a nonzero value on the bundle ¢ & --- @ £. This
provides a method of finding relations between characteristic classes: A relation
holds if it holds for ¢ @ - - - @ ¢. Usually, this statement is formulated in a seemingly
weaker, but actually equivalent form: To establish a relation between characteristic
classes it is sufficient to check it for splitting bundles, that is, for bundles isomorphic
to sums of one-dimensional bundles. This proposition is known under the name of
the splitting principle (later, we will deal with different versions of this principle).
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EXERCISE 14. Prove the following version of the splitting principle (and explain
why it is equivalent to the splitting principle). The Z,-cohomology homomorphism
induced by the map

H&Poo X oo X RPoi — G(oo,n),

({ZlCR‘X’},...,{Z"CRO"})H&x---x@nCRO"x'uwa:R‘X’

is a monomorphism; moreover, its image in H*(RP® X --- x RP®;Z;) =
Zyx1, - .., x,] is precisely the space of symmetric polynomials.

C: Stiefel-Whitney Classes and Operations over Vector Bundles

Formulas expressing the Stiefel-Whitney classes of the bundles £ ® n, A€, S*&, and
so on via the Stiefel-Whitney classes of £ and 1 (and the dimensions of £ and 7)
exist, but more complicated and less convenient, than the formulas for the Stiefel—
Whitney classes of the sum (or direct product). We will give a brief overview of this
subject.

Lemma. Let &, n be one-dimensional real vector bundle over the same CW base.
Then

wi(§ ®@n) = wi(§) +wi(n).

Proof. Fix sections s, t of £ and n over the 1-skeleton X! of the base X of £ 1. We
may assume that these sections have no zeroes over X and have transverse zeroes
over one-dimensional cells, and the zeroes of s are different from the zeroes of t.
Then s ® ¢ is a section of £ ® 1, and the set of zeroes of s ® 7 is the union of the
set of zeroes of s and the set of zeroes of ¢. Let m,, n. be residues modulo 2 of
the numbers of zeroes of the sections s and ¢ within a one-dimensional cell of X.
Then the functions e +— m,, e — n,, e — m, + n, are cocycles representing
wi(§), wi(n), wi(§ ® 1), whence our result.

For our next statement, we will need some notations from algebra of symmetric
polynomials. Consider the ith symmetric polynomial of mn variables y;+z;, 1 <j <
m, 1 < k < n, and express it as a polynomial in elementary symmetric polynomials
separately in y;, ...y, and 21, ..., 2, (we assume that i < m and i < n):

ei(,Yj + Zk) = Em,n;i(el(y)762(y)v cees E](Z), EZ(Z)v .. )a
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for example,
Enwt = D) 0 +a) =ny_yj+my_ z=ne(y) +me(2);
j=1 k=1 j=1 k=1
Em,n;Z = Z (yj' + Zk)(yj’ + Zk’)
(' K k)
=nn-1) ny + ”ZZW/ +2(mn—1) ZZyjzk
J#i =1 k=1
+m(m—1) Z 2 +m’ Z 4%
k=1 K £k

= n(n— 1)(e1(y)* — 2e2(y)) + 2n*e2(y) + 2(mn — 1)e; (y)e; (2)
+m(m — 1)(e1(z)> — 2ex(2)) + 2m?ex(z),

that is,

Enna = n(nz_ Y e1(y)” + ne2(y) + (mn — Dei (v)ei (2)

m(m—1)

+ ) e1(2)? + mex(2).

These examples show that it is possible to find explicit expressions for the
polynomials E,, ,.;, but the formula may be complicated.

n
In addition, consider the elementary symmetric polynomials of variables
r

Xj, +---+x, 1 <ji <--- <j, < n.Obviously, they are symmetric polynomials in
X1, ...,X,, and we can write

ei(xj, + -4+ x, 1 <ji1 <--<j, <n) = Fypilei(x),e2(x),...),

where F},..; is a polynomial. For example,

n—1 n—1)(n-2)
Fun = (r _ 1)31()5), Fupp = 2 el(x)z + (n—2)ex(x).
The polynomials F are related to the polynomials E. Namely, if we put x;
ViseoosXm = YmsXmt1l = Z1,-.. Xmin = Zn, then, obviously, {x; + x|l < j
k<m+np ={y+nl <j<k<mUly+all <j<ml =<k
n} (U{z + 2|1 <j < k < n}, which shows that

IN A

Fuini(e1(x),e2(0,..) = D Fuppler(y),e20),..)
ptqtr=i (%)

Enngle1(y), e2(y), ..., e1(z),e2(2),...) - Fpp;r(e1(2), e2(2), ...).
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And one more family of polynomials:
Gurile1(x), e2(x),...) = ei(xj, +---+x;,[1 <ji <+ <j, <n);
a computation shows that

n+r—1
Gn;r;l = r—1 el(x),

—1 2
G = (n )2(n+ )e% + (n+ 2)ey, ifn > 1.

The formula (x) with the polynomials F replaced by polynomials G is also true.
Now, let us formulate the main results of this section.

Theorem 1. Let & and n be real vector bundles of dimensions m and n over the
same CW base. Then

Wl(%‘ & 77) = Em,n;i(wl (%‘)s WZ(E)v ‘e ;Wl(n)s Wz(?’]), ce );

thus, in particular, wi(§ ® n) and wr(§€ ® n) are, respectively,

nwi(§) + mwi(n)

and

nn—1)

) wi(§)® + nw2(§) +(mn — wi (€)wi (n)

£ 7 4 s

Theorem 2. Let £ be an n-dimensional real vector bundle with a CW base. Then

wi(A'§) = Furi(wi(§), w2(8). ... )

in particular,

mve) = ("7 o,

(n—1Dr-2)
2

wa(A%E) = wi(§) + (n = 2)wa(§).

Theorem 3. Let & be an n-dimensional real vector bundle with a CW base. Then

wi(§'8) = Gursi(w1(§), w2(8)....);
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in particular,
mee =" e,
wa(8%E) = (n = 1)2(n +2) wi (&) + (n 4+ 2wy (§), ifn > 1.

Proofs. We begin with Theorem 1 in the case when § = 5. The class w;(§ ® £)
is a characteristic class of a real vector bundle. Hence, by part (i) of the theorem
in Sect. 19.4.E, it must be a polynomial in Stiefel-Whitney classes. To identify
this polynomial, we need to compute the class for the bundle § = ¢ x --- x ¢ over

[ —

@Poo X oee X RPOS; this bundle is the same as {; @ - -- @ {,, where {; is the bundle

_——

induced by ¢ with respect to the projection of RP*> X - - - x RP*® onto the jth factor.
Then ¢ ® £ = P, (§; ® &) and

wE ®E) =[[w(® &) = (by Lemma) [ (1 +x + x)

Jik Jik

=1+ e+xll<j<nl<k<n)
i>1

=1+ ZEn,n;i(el(-x)s 62(.X), e el(x)v eZ(X)v .. )
i>1

=1+ ) Eniwi(©), w28, ... owi(®), wa(8), ...,
i>1

which is the statement of the theorem (for £ = 7).

Next, we prove Theorem 2. The proof is the same as the previous proof, and it is
based on the relation, for§ =& @ --- D &,

Ne= P Go--eb),

lgji<=<jr=n

which gives, by the lemma,

wa'e) = [ G+Gi+-+i)

lfjl<"'<jr§n
=1+ Y by x|l <ji << <n),

I<ji<<jr=n

The rest of the proof repeats the previous proof.
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The proof of Theorem 3 is so close to the proof of Theorem 2 that we do not
feel any necessity in detailing it [just mention that it is based on the relation S"§ =

D Ge-eil
1<ji<<jr<n

Finally, let us prove Theorem 1 in the general case. Notice that for any vector
bundles £ and 7,

ANEdn=ANEdERN S A,

and hence

w(A(E @ ) = wA2E)w(E ® nw(A®n).

Since w = 1 4+ wy; + wy + ... is an invertible element of the ring H*(B;Z,),
this formula determines w(§ ® 1) if w(A2£), w(A?n) and A%(§ @ n) are known.
The formula from Theorem 1 follows from the formula of Theorem 2 and the
relation ().

D: Properties of the Euler, Chern, and Pontryagin Classes

For the Euler classes, a multiplication formula e(¢ ® 1) = e¢(&)e(n) holds.

All the major properties of the Stiefel-Whitney classes can be repeated with
appropriate changes for the Chern classes. In particular, the class ¢; of the Hopf
bundle ¢c is the standard generator of the group H?>(CP™;Z). There are the
multiplication formula

cEdm =Y cE)c()

p+q=i

and the splitting principle. Like Stiefel-Whitney classes, the Chern classes are
invariant with respect to stable equivalence. The computation of the Chern classes of
tensor product, exterior powers, and symmetric powers of complex vector bundles
repeats the computations in Sect. 19.5.C.

EXERCISE 15. Prove that ¢;(§) = (—1)ic;(§). Deduce from this that for every real
vector bundle £ and every odd i the equality 2¢;(C§) = 0 (compare the comment to
the definition of the Pontryagin classes in Sect. 19.3.C).

EXERCISE 16. Define a polynomial Q, of r variables by the formula

Nr = Qr(els"-ser)v
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where the e; are elementary symmetric polynomials and N; are sums of ith powers of
variables (so Q1 = ey, Q> = €] —2e5, Q3 = €] —3ejez + 3es, ....). For a complex
vector bundle £ with the base X, put

hE) = | Qer(E). . (6) € HYOX Q).

The (nonhomogeneous) characteristic class ch with coefficients in Q defined by the
formula

ch = chg +ch; +chy +--- € H"(X; Q)

is called the Chern character. Notice that chy(£) € H°(X; Q) is just dim £.
Prove that

ch(§ @ n) = ch(§) + ch(n) and ch(§ ® n) = ch(§) ch(n).

For the Pontryagin classes, the multiplication formulas and all the other formulas
are deduced from the corresponding formulas for the Chern classes and hold
“modulo 2-torsion”; for example,

2pEom=Y , _p&pm) =0,

EXERCISE 17. Prove that stably equivalent bundles have equal Pontryagin classes.

E: More Relations Between Stiefel-Whitney, Chern,
and Euler Classes

In conclusion, we give two more formulas expressing the Stiefel-Whitney and
Chern classes via the Euler class. Let £ be an n-dimensional real vector bundle
with a CW base X and ¢ be the Hopf bundle over RP*°. Consider the bundle § ® ¢
over X x RP* (more precisely, it is the tensor product of bundles induced by £ and
¢ with respect to the projections of the product X x RP* onto the factors). Then

preE® ) =waE ®) =Y (wil€) xx") € H'(X x RP®; Zy),
i=0

where x € H'(RP®;Z,) is the generator. Similarly, if £ is an n-dimensional
complex vector bundle with a CW base X and {c is the (complex) Hopf bundle
over CP°, then

e ®Lc) = aE® =) (ci(§) xx") € H"(X x CP™; Z),

i=0

where x € H?>(CP™;Z) is the generator.
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These formulas may be regarded as definitions of the Stiefel-Whitney and Chern
classes.

EXERCISE 18. Prove these formulas.

19.6 Characteristic Classes in Differential Topology

We can only touch on this vast subject.

A: Geometric Interpretation of the First Obstruction

Let (E, B, F, p) be a homotopically simple locally trivial fibration where E and B are
smooth manifolds and the manifold B is closed, n-dimensional and oriented, and p
is a submersion, that is, a smooth map whose differential at every point has rank
equal to n. Assume also that 7y(F) = --- = m;—(F) = 0 and 73— (F) = x. Then
the first obstruction to extending a section of our fibration lies in H*(B; 7). Suppose
also that we were able to construct a section over B — X where X is a submanifold
of B (possibly, with singularities of codimension > 2) of dimension n — k or a
union of a finite number of such submanifolds which are connected and transversally
intersect each other, X = | JX; (simple general position argumentations show that
it is always possible to do this). For every i, choose a nonsingular point x; of X; and
construct a small (k — 1)-dimensional sphere s; centered at x; in a k-dimensional
surface transversally intersecting X; at x;. Since there is a section over s;, and the
fibration is trivial in a proximity of x;, we obtain a continuous map S*~! — p~!(x;)
which determines, since the fibration and the fiber are homotopically simple, an
element o; € i (F) = 7.

Claim: The homology class ), o;[X;] € H,—(B; ) is the Poincaré dual of the
first obstruction to extending a section in our fibration. The proofis left to the reader.
(Hint: Triangulate the manifold B in such a way that X is disjoint from the simplices
of dimension less than k and intersects each k-dimensional simplex transversally in
at most one point.)

B: Differential Topology Interpretations of the Euler Class

For a closed oriented manifold X, the value of the Euler class of the tangent bundle
e(X) = e(zx) on the fundamental class [X] is equal to the Euler characteristic
x(X) of X (this is Proposition 2 of Sect. 18.5). This implies that a closed manifold
possesses a nonvanishing vector field if and only if its Euler characteristic is zero
(corollary in Sect. 18.5).
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Some other properties of the Euler class are given here as exercises.

EXERCISE 19. Prove that a closed manifold X (orientable or not) possesses a
continuous family of tangent lines (equivalently: The tangent bundle 7 (X) possesses
a one-dimensional subbundle) if and only if y(X) = 0.

EXERCISE 20. Let (E,B,R",p) be a smooth vector bundle (that is, a vector
bundle such that £ and B are smooth manifolds, p is a submersion, and the vector
space operations in E are smooth). Suppose that B is closed and oriented. Let
s:B — E be a section of £ in a general position with the zero section. Show that
the intersection B N s(B) (we assume that B is embedded into E as the zero section)
represents the homology class of B which is the Poincaré dual of the Euler class

e(§) of §.

EXERCISE 21. Let Y be a closed oriented submanifold of a closed oriented
manifold X, and let vx(Y) = (t(X))|y/7(Y) be the corresponding normal bundle.
Prove the formula

D(e(vx(Y))] = i'[Y],

where D is Poincaré isomorphism (in Y), i: Y — X is the inclusion map, and [Y] is
a homology class of X represented by Y. Corollary: If [Y] = 0, then e(vx(Y)) = 0;
in particular, the Euler class of the normal bundle of a manifold embedded into an
Euclidean space or a sphere is zero.

EXERCISE 22. The last statement does not hold for immersions. Show, in partic-
ular, that if f is an immersion of a closed oriented manifold of even dimension
n into R with transverse self-intersections, then the algebraic number of the
self-intersection points (the reader will have to make up the definition of a sign
corresponding to a transverse self-intersection) is equal to one half of the “normal
Euler number,” that is, of the value of the Euler class of the normal bundle on the
fundamental class of the manifold. Example: Construct an immersion of S? into R*
with one transverse self-intersection (such a two-dimensional figure-eight) and find
the Euler class of the corresponding normal vector bundle.

C: Differential Topology Interpretations
of the Stiefel-Whitney Classes

In this section, we deal only with cohomology and homology with coefficients in
Z and understand accordingly Poincaré isomorphism D.

The Stiefel-Whitney classes of the tangent bundle of a smooth manifold X are
called the Stiefel-Whitney classes of X and are denoted as w;(X). [In a similar
way, people consider the Pontryagin classes p;(X) of a smooth manifold X and
the Chern classes ¢;(X) of a complex manifold X.] Since the normal bundle of
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a smooth manifold embedded into a Euclidean space does not depend, up to a
stable equivalence, on the embedding, we can speak of the “normal Stiefel-Whitney
classes,” w;(X), of a smooth manifold X. It follows from the multiplication formula
and the fact that the sum of the tangent and normal bundles is trivial that

> wp(X)wy(¥) =0 fori > 0.
prq=i

or w = w! (we already remarked in the end of Sect. 19.5.C that w is invertible in
the cohomology ring). Thus, the normal Stiefel-Whitney classes are expressed via
the usual (tangent) Stiefel-Whitney classes.

EXERCISE 23. Consider a generic smooth map (the reader is supposed to clarify the
meaning of the word generic) of a closed n-dimensional manifold X into R?, g < n;
let Y C X be the set of points where this map is not a submersion (the rank of the
differential is less than g). Prove that Y is a (¢ — 1)-dimensional submanifold of X
[maybe, with singularities, but the class [Y] € H,—(X; Z,) is defined] and that

D! [Y] = Wn—q+1 X).

EXERCISE 24. Consider a generic smooth map of a closed n-dimensional manifold
X into R?, g > n;let Y C X be the set of points where this map is not an immersion
(the rank of the differential is less than n). Prove that Y is a (2n —g— 1)-dimensional
submanifold of X (maybe, with singularities) and that

D7[Y] = wyt1-n(X).

EXERCISE 25. If an n-dimensional manifold X possesses an immersion into R"*9,
then w;(X) = 0 for i > g. (For closed manifolds, this follows from Exercise 24, but
actually this fact is much easier than Exercise 24, and it is more natural to prove it
directly.)

EXERCISE 26. If an n-dimensional manifold X possesses an embedding into R"*9,
then w;(X) = 0 fori > g. (To prove this, one needs to use, in addition to Exercise 25,
the corollary part of Exercise 21.)

) ) okl
EXERCISE 27. Prove that if 2 < n < 2%*1, then RP" has no immersion in R2"' =2

and no embedding in R2k+l_l. (To prove this, one needs to use, besides Exercises 25
and 26, Exercise 12 (Sect. 19.2) and the theorem in Sect. 19.5.A.

Remark 1. Thus, if n = 2%, the n-dimensional manifold RP" cannot be embedded
into R?"~!. This is a very rare phenomenon. The classical Whitney theorem asserts
that an n-dimensional manifold (with a positive n) can always be embedded into
R?" (this result should not be confused with an earlier theorem of Whitney stating
that any smooth map of an n-dimensional manifold into any manifold of dimension
> 2n + 1 can be smoothly approximated by smooth embeddings); embeddings into
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R?>~! are almost always possible: For a nonexistence of such an embedding, it is
necessary and sufficient that n is a power of 2, and there exists a one-dimensional
cohomology class with coefficients in Z, whose nth power is not zero (these
conditions imply the nonorientability).

Remark 2. Further information concerning embeddability of (real and complex)
projective spaces into Euclidean spaces can be obtained with the help of K-theory
(see Sect. 42.6 in Chap. 6).

EXERCISE 28. Let X be a triangulated smooth manifold. Denote by C; the
i-dimensional classical chain of the barycentric subdivision of the triangulation
of X equal to the sum of all i-dimensional simplices of this subdivision. Prove that
C; is a cycle and that

D¢ = wiX)

([C;] is the homology class of C;).

The values of the cohomology classes of the form w; (X)...w; (X) with
ij...i, = n on the fundamental class of closed n-dimensional manifold (they
are residues modulo 2) are called Stiefel-Whitney numbers of the manifold X;
notation: w;, ; [X]. For example, two-dimensional manifolds have two Stiefel-
Whitney numbers: wy; [X] and w,[X].

EXERCISE 29. Find Stiefel-Whitney numbers of classical surfaces.

Remark. The reader will see that for any classical surface X, wi[X] = wy[X].
A classical theorem in the topology of a manifold asserts any connected closed
two-dimensional manifold is a classical surface. Hence, the two Stiefel-Whitney
numbers, wi;[X] and w;[X], are always the same. Later in this section, we will see
that there are more relations between Stiefel-Whitney numbers.

Theorem. If a closed manifold is a boundary of a compact manifold, then all its
Stiefel-Whitney numbers are zeroes.

Proof. If X = dY and i:X — Y is the inclusion map, then t(X) = t(Y)|x ® 1
(the normal bundle of the boundary is always trivial!). Hence, w;(X) = i*w;(Y) for
every j, and

Wi (X) . ow;, (X), [X]) = (@ (wj, (V) ... w;, (1)), [X])
= (w;, (Y) ... w;, (Y).ix[X]) = 0

since ix[X] = 0 (the fundamental cycle of the boundary of a compact manifold is
the boundary of the fundamental cycle of this manifold).

This theorem provides a powerful necessary condition for a closed manifold to
be a boundary of a compact manifold.
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EXERCISE 30. Prove thatif n + 1 is not a power of 2, then neither RP" nor CP" is
a boundary of a compact manifold.

The most striking fact, however, is that this necessary condition is also sufficient
for a closed manifold to be a boundary of a compact manifold (R. Thom, Fields
Medal of 1952). We will discuss the proof of this result briefly in Chaps. 5 and 6.
As we mentioned before, the Stiefel-Whitney numbers are not linearly independent
(w1[X] = 0 for any one-dimensional X, w; [X] = w,[X] for any two-dimensional X).
The fact is that a maximal linear independent system of Stiefel-Whitney numbers
of a closed n-dimensional manifold is formed by the numbers wj, ;, [X] such that
1+ +j =n,j; <.+ < j and no one of the numbers j; + 1 is a power
of 2. (Corollary: Every closed three-dimensional manifold is the boundary of some
compact four-dimensional manifold; this is a classical theorem of Rokhlin.)

D: Differential Topology Interpretations
of the Pontryagin Classes

The following statement is similar to Exercise 23. Let X be a closed oriented
n-dimensional manifold and f: X — R"~24*2 be a generic smooth map. Let ¥ C X
be the set of points where the rank of the differential of f does not exceed n—2¢ (that
is, is at least 2 less than its maximal possible value). Then Y is an oriented (n — 4g)-
dimensional manifold (maybe, with singularities), and the class [Y] € H,_4,(X) is
the Poincaré dual to the Pontryagin class p,(X) € H*(X;Z) of (the tangent bundle
of) the manifold X. A similar statement holds for the normal Pontryagin classes
(compare to Exercise 24.)

(The orientedness, and even orientability, of manifold X is actually not needed,
but, in general, we will need the version of Poincaré isomorphism developed in
Sect. 17.12.)

If X is a closed oriented manifold of dimension 4m, then the value of the class
piX)...p;(X),j1 +--- +j- = m on the fundamental homology class of X is
called a Pontryagin number and is denoted as p;, ; [X]. (It is convenient to assume
that X is not necessarily connected; the fundamental class of a disconnected X is
defined as the sum of the fundamental classes of the components.) If X is a boundary
of a compact oriented manifold, then all the Pontryagin numbers of X are zeroes
(this fact is proved precisely as the similar fact for the Stiefel-Whitney numbers).
There also is a Thom theorem which asserts that if all the Pontryagin numbers of a
closed orientable manifold are zeroes (for example, if its dimension is not divisible
by 4), then a union of several copies of X (taken all with the same orientation) is
a boundary of some compact manifold. Moreover, every set of integers {p;, j |
Jj1 + -+ 4+ j, = m} becomes, after a multiplication of all the numbers in the set by
the same positive integer, the set of Pontryagin numbers of some closed oriented
manifold of dimension 4m. (Actually, this theorem is way easier than the similar
theorem for the Stiefel-Whitney numbers; we will see this in Chap. 6.)
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A useful corollary of the Thom theorem (and the fact that if ¥ = X, |_| X; is the
disjoint union of two closed oriented 4m-dimensional manifolds, then

Pirge Y] = pj.j. [X1] + )i, 1X0]

for every ji,...,j, withj| + .-+ j, = m) is the following statement.

EXERCISE 31. Suppose that for every closed oriented n-dimensional manifold
there is assigned an integer o (X) with the following properties: (1) If X is a boundary
of a compact oriented manifold, then o (X) = 0; 2) o(X; | | X2) = 0(X}) + 0(X2).
Prove that

o(X) = Z .. Pjr.j, X1,

Jiti=n/4

where a;, _j, are some rational numbers not depending on X. In particular, 0 (X) = 0
if n is not divisible by 4.

This statement has only one broadly known application, but what an application
it is! Denote by o(X) the signature of the intersection index form in the 2m-
dimensional homology of a 4m-dimensional closed oriented manifold X. The
theorem in Sect. 17.10 shows that o satisfies condition (1); condition (2) for
the signature is obvious. Hence, the signature is a rational linear combination of
Pontryagin numbers. In particular, o(X) = ap[X] if dimX = 4, 0 (X) = bp,[X] +
cp11[X] if dimX = 8, and so on. To find a, b, c, ..., we need to have a sufficient
supply of computations in concrete examples. For example, Hy,,(CP?") = 7Z. The
matrix of the intersection form is just (1); hence, 0 (CP?*") = 1. Furthermore,

t(CP"Y @ 1= (2m+ 1)ic
(this is the complex version of Exercise 12), and hence
Cr(CP™) @ 1c = 2m + 1)({c @ &e)
(see Exercise 8), and
(Po—p1 +p2 =+ (=1)"p) (CP™) = [(1 + 1)(1 — )P+

— (1 _x2)2m+l

where x € H?(CP?") = Z is the canonical generator (see Sect. 19.5.D, including
Exercise 16). Hence,
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2m + 1 .
P o
pi((Csz)z ( ; )xz,lfz_m,

0, ifi > m.

In particular, p; (CP?) = 3x%, p1[CP?] = 3, and, since 6 (CP?) = 1, then for every
(closed, orientable) four-dimensional manifold X,

000 = pilX] )

(In particular, the Pontryagin number p;[X] of every closed orientable four-
dimensional manifold X is divisible by 3.) Furthermore, p;|[CP*] = 25, p,[CP*] =
10, 0 (CP*) = 1. In addition,

(o + p1 + p2)(CP? x CP?) = (po + p1)(CP?) x (po + p1)(CP?)

(the multiplication formula for the Pontryagin classes holds only modulo 2-torsion,
but there is no torsion in the cohomology of complex projective spaces), and hence

p1(CP? x CP?) = (1 x 3x?) + (3x? x 1),
p}(CP* x CP?) = 18(x* x x?),
P2(CP? x CP?) = p1(CP?) x pi(CP?) = 3x% x 3%,
p11[CP? x CP?] = 18, p»[CP? x CP?] =9,
and also o (CP? x CP?) = 1.

EXERCISE 32. Prove that the signature is multiplicative: (X x Y) = o(X)o(Y).)

1
Hence, 1 = 10b + 25¢,1 = 9b + 18c, whence b = 45,c = ~45° Thus, for
dimX = 8,

Tp2[X] —Pn[X]'

o(X) = 45

(+%)
(Hence, 7p,[X] — p11[X] is divisible by 45, and if the first Pontryagin class of a
closed orientable eight-dimensional manifold is zero, then its signature is divisible
by 7.) The formulas (), (x*) form the beginning of an infinite chain of formulas
relating the signature to the Pontryagin numbers. The work of explicitly writing
these formulas was done in the 1950s by F. Hirzebruch. He calculated the Pontryagin
numbers of manifolds of the form CP?™ x - - - x CP?" (which, essentially, we have
done) and, using the fact that the signatures of all these manifolds are equal to 1,
he found the coefficients of the Pontryagin numbers in the formulas for signatures.
The resulting formulas are presented in his book [46].
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E: Invariance Problems for Characteristic Classes of Manifolds

As we know, the Euler class of a manifold can be expressed through the Betti
numbers of this manifold. It turns out that although the Stiefel-Whitney classes
are not determined by either homology groups or even a cohomology ring of this
manifold, still they are homotopy invariant; that is, a map of one closed manifold
into another one which is a homotopy equivalence takes the Stiefel-Whitney classes
into the Stiefel-Whitney classes. This fact will be established (or, at least, discussed)
in Chap. 4 (Sect. 31.2). For Pontryagin classes, however, the homotopy invariance
fails (the only homotopy invariant nonzero polynomial in Pontryagin classes is the
signature). In the 1960s, S. Novikov proved the difficult theorem of topological
invariance of rational Pontryagin classes (a homeomorphism between two smooth
closed orientable manifolds takes Pontryagin classes into Pontryagin classes modulo
elements of finite order; these elements of finite order may be nonzero—there are
examples). A decade before that, V. Rokhlin, A. Schwarz, and R. Thom proved
this statement for homeomorphisms, establishing a correspondence between some
smooth triangulations of two smooth manifolds (see Rokhlin and Schwarz [72],
Thom [85]). This result leads naturally to the problem of “combinatorial calculation
of Pontryagin classes,” that is, their calculation via triangulation (compare to
Exercise 29). At present, this problem has been solved only for the first Pontryagin
class (see the article by Gabrielov, Gelfand, and Losik [42]).



Chapter 3
Spectral Sequences of Fibrations

Lecture 20 An Algebraic Introduction

20.1 Preliminary Definitions

Let C be an Abelian group. We will consider three kinds of structures in C.

Definition 1. A differential in C is a homomorphism d: C — C such that d*> = 0.
An Abelian group with a differential is called a differential group. We will use
notations Z = Kerd, B = Imd, H = Z/B (the condition d> = 0is equivalent
to the inclusion B C Z). The group H [also denoted as H(C,d)] is called the
homology group of the differential group (C, d). Sometimes we will call elements of
the groups Z, B, and H cycles, boundaries, and homology classes. A homomorphism
f:(C,d) — (C',d') between differential groups is a homomorphism f: C — C’
commuting with the differentials: d’ o f = f o d. Such a homomorphism induces
homomorphisms Z — Z', B — B’, and H — H’ [where Z’, B’, and H' mean for
(C',d’) the same as Z, B, and H mean for (C, d)]. The homomorphism H — H’ may
be denoted by fi.

Definition 2. A filtration of C is a family of subgroups F},C C C, p € Z such that
if p < g, then F,C C F,C. We will also assume that | J F,C = C and [ F,C = 0.
A filtration {F,C} of C is called finite if for some m and n > m, F,C = 0 when
p <mand F,C = C when p > n. A filtration {F,C} is called positive if F,C = 0
for all p < 0. Usually, we will assume that the filtration is positive and finite, in
which case it is essentially a chain

O0=F_CCF,CCcFCC...CF,,1CCF,C=C

(but even in this case we have the right to use the notation F,C for p < —1 when it
is 0, and for p > n when it is C).
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Definition 3. A grading of C is a family of subgroups C, C C, r € Z such that
C = @, C,. Usually (not always), we will assume that the grading is positive and
finite, meaning that actually C = @’_,C, and C, = 0 for r < 0 and r > n. For
a filtered group C (as in Definition 2) we define the adjoint graded group Gr C =
P, (F,C/F,—,C). The groups C and Gr C are not always isomorphic as Abelian
groups (for example, the adjoint group to the group C = Z with a filtration 0 C
27 C Zis Zy @ Z # Z), but they may be regarded as closely related. For example,
if a filtered group C is finite, then the group Gr C is also finite and has the same
order; if C has a finite rank, then Gr C also has a finite rank, the same as C, if the
filtration is finite; if C is a vector space (over some field), filtered by subspaces, then
Gr C is also a vector space over the same field, of the same dimension as C, if C is
finite dimensional.

Structures of these kinds may co-exist in the same Abelian group; then we usually
assume that they satisfy some compatibility conditions; actually, we will not even
explicitly state that these conditions are met; rather, we will state the opposite in the
rare cases when the structures considered are not supposed to be compatible.

If an Abelian group C possesses a differential d and a filtration {F,C}, then we
assume that for all p, d(F,C) C F,C. In this case, we have differential groups
(F »C.d | FpC)’ and the inclusion map F,C — C induces a homology homomorphism
H(F,C,d |r,c) - H = H(C,d), and its image is denoted as F),H. [Thus, F,H =
(F,CNKerd)/(F,C Nd(C)).] In this way, we obtain a filtration {F,H} of H.

If C has a differential d and a grading C = €, ., C,, then we usually assume that
d is homogeneous of some degree u € Z, which means that for all r, d(C,) C C,4,.
We are best familiar with the case © = —1. Then C is the same as a (chain) complex

dr—1 d, dry1 dr42
Cr— G, Crt1

in the sense of Sect. 12.2. The case u = 1 is represented by cochain complexes
(Sect. 15.1). Ahead, we will deal with differential graded groups with differentials
of all possible degrees. Notice that the homology group of a differential graded
group with homogeneous differential (of some degree u) has a natural grading:

_ Ker(d:C, — Crq)
" Im(d:Cr_y —> C))

EXERCISE 1. Prove that if the differential in C is homogeneous with respect to the
grading, then (whatever the degree of d is) H = P, H,

If C has a filtration, {F},C}, and a grading, C = @r C,, then the two structures
are called compatible if for every p, F,C = @, (F,C N C,). This condition is quite
restrictive. It is stronger than it may seem at the first glance: A randomly chosen
filtration and grading do not satisfy it. Here is the simplest (?) example. Let C be a
free Abelian group with two generators: a and b (so C = Za @ Zb). Consider the
filtration 0 = F_;C C FyC C F,C = C with FyC = Z(a + b) and the grading
C =Cy® C, with Cy = Za, C; = Zb. Then

7 = FyC # (FoCN Co) & (F)CNCy) =00 = 0.
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For a better understanding, we can notice that the filtration and the grading are
compatible if every F,C is generated by “homogeneous elements,” that is, by
elements belonging to the groups C,.

EXERCISE 2. Prove that if the differential, the filtration, and the grading are
mutually compatible, then (whatever the degree of the differential is) the filtration
and the grading in the homology are compatible.

And the last common situation is when C has two (or more, but we will never
encounter this case) gradings, C = €, C, and C = @, C.. These two gradings
are compatible (or form a bigrading) if C = €, ; C,, where C,;, = C, N C; (or,
equivalently, if C, = @, C,; or, equivalently, if C, = €, C,.,). A typical example
is contained in Exercise 3.

EXERCISE 3. Prove that if C possesses a compatible filtration {F},} and grading
C = ,C,, then GrC acquires a natural bigrading: GrC = P, (F,C N
C)/(Fp—1CNCy).

20.2 The Spectral Sequence of a Filtered Differential Group

Let C be a differential group with a differential d and a filtration {¥,C} compatible
with d. We will assume that the filtration is finite and positive, and we will briefly
consider the case of the infinite filtration at the end of the section. In the next section,
we will adjust our construction to the case when C also possesses a grading.

Begin with a simple observation. Since d(F,C) C F,C, the differential d induces
a differential d): F,C/F,—1C — F,C/F,—1C [obviously, (d))* = 0] and the direct
sum of all dg becomes a homogeneous differential of degree 0, d°: Gr C — Gr C.
Question: Are H(GrC,d") and GrH(C,d) the same? Answer: not, in general.
Indeed, when we compute H(C), we first restrict ourselves to Kerd = {c € C |
dc = 0}. But when we compute H(GrC), we take those ¢ € F,C for which
dc € F,_|C; that is, the group of “cycles” is bigger in the second computation.
On the other hand, when we compute H(C), we factorize over d(C), while in the
computation of H(Gr C) we factorize over d(F,C), which is not as big. This shows
that the group H(Gr C) should be bigger than Gr H(C).

This is what the spectral sequence exists for: a gradual, “monotonic” transition
from H(Gr C) to Gr H(C).

Now we pass to main definitions. For p, r > 0, put

F,CNd~\(F,—,C)
-5

E’ .
p P

? T F, C N~V (F, O)] + [F,C N d(Fyy,10)]
In words: We take elements of F,C whose differentials lie in a smaller group, F,,C;
then we factorize over those chosen elements which happen to be in F,_; C and also
for those which are differentials, not of arbitrary elements of C, but only of elements
of F,4,—1C. Consider three particular cases.
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50— F,CNd ' (F,C)

P [Fpr CNd H(F,O)] + [F,C N d(Fp—iC)]
3 F,C _ F,C
"~ FpiC+d(FpiC)  FpyC’

thus, E° = Gr C;

Bl F,CNd Y(F,—,C)

P [Fpm1CNd™ (Fpm O)] + [F,C Nd(F,C)]
_ F,CNd7'(Fp,miC) _ Kerd)
~ FpC+d(F,0)  Imd)’

thus, E' = H(Gr C,d°). Itis also clear that if r is big enough, then F,—_,C = 0 and
Fy4,—1C = C. In this case, EI’, does not depend on r, and we will use the notations
E[?o, E*°. We have

F,CNKerd F,H(C
E® = p& B = BHO g Gipo),
p [Fp—1C NKerd] + [F,C NImd] F,_1H(C)
To understand the relations between the (graded) groups E",r = 0,1, ..., 00, we

introduce “differentials” d,: E; — E}_.

Leta € E,, and leta € F,C N d~'(F,—.C) be a representative of o. Then
da € F,_.C and dda = 0, and hence da € d='(0) C d_l(F,,_z,C). Thus, da €
F,—.CNd ' (F,—,C). But E;_, is the quotient of F),—,C N d~'(F,—»,C) over some
subgroup; the class of da in E}_, is taken for d,o. We need to check the following
properties of this construction.

Proposition (J. Leray).

(1) dj, is well defined; that is, d,a does not depend on the choice of a in a.

(2) d,_,0d, =0.

(3) Ker d; /Im dlﬁ - E[,H. (The proof will contain a construction of a canonical
isomorphism.)

Proof. (1) Let ' be a different representative of « in F,C N d-Y(F »—r), that is,
d =a+b+c whereb € F,.iCNd ' (F,—,C) and ¢ € F,C N d(Fpt,-10).
Then da’ = da + db + dc. But dc = 0 and db € F,_,C N d(F,—,C) =
F,—.C N d(F—r+r—1C), which is a part of the denominator in the definition
of E},_,. This shows that da’ belongs to the same class in E,,_, as da.

(2) Arepresentative of d,_, o dyo in E,_, is dda, where a is a representative of «.
But dda = 0.

Our proof of part (3) consists of three steps.

Step 1. We prove thatif foran o € E,, dj,o = 0, then there exists a representative
a€F,CN d_l(F,,_,C) of a such that da € F,_,_|C; that is, a belongs actually
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to F,C N d'(F,—,—1C). We begin with an arbitrary representative @’ € F,C N
d'(F, »—+C) of a. The condition d,o = 0 means precisely that da’ belongs to the
“denominator” of E},_, that is, to [Fp—rm1CN d_l(F,,_z,C)] + [FprCNd(Fp—1O)];
in other words, da’ = b + dc, where ¢ € F,_1C,dc € F, .C,b € F, ,1C, and
db € F, 5 C (we will not need the last inclusion). Put a = a — c. Since ¢ €
F,1CN d_l(Fp_,C), a is just another representative of «. And da = da’ — dc =
b€ F, ,1C, asrequired.

Step 2. For an « € Ker dI’,, choose a representative a € F,C withda € F,_,_;C,
asinstep 1. Thena € F,CN d! (Fp—r—10C); that is, a represents a certain element
B e E[,H. Let us prove that this § is determined by «, just providing a well-defined
homomorphism Kerd, — E[,H. Let'a € F,C be another representative of @ with
da € F, »—r—1C. We want to prove that '@ represents the same element of E;,H as
a, thatis,@—a € [F,-1CNd ' (Fy—,—1O)] + [F,C N d(F,+,C)]. But we already
know thatd —a € [F,—1C Nd (F,—,C)] + [F,C N d(Fy4+,—1C)], and alsod —a €
d_l(F,,_,_1C) and F,1,1C C F,4,C. This gives us the required inclusion.

Step 3. It remains to check that Ker[Kerd;, — E;*'] = Imd), . Ifa = d}, B,
then « is represented by a = db, where b € F,,1.C represents 8. But db € d(F,+.C)
and d(F,4,C) is a part of the denominator of EI’)+1. Thus, a represents zero in E[r,+1;
thatis, o € Ker[Kerd, — E[’,H]—that is,Imdy, C Ker[Kerd,, — EI’,'H]. To prove
the opposite inclusion, take an o € Ker[Kerd, — E;“]. Then « is represented
by some a € [Fp—1C N d~ ' (Fy—y—1C)] + [F,C N d(Fp4,C)], that is, a = b + dc,
where b € F,_i1CNd~ " (Fp—,—1C), ¢ € Fp4,CNd~"(F,C). This c represents some
element y of E |, and d,y is represented by dc = a —b. Since b € F,.,C N
d_l(F,,_,_1C) C F,iCnN d_l(F,,_,C), b represents 0 in E;, and dc represents the
same element of £ as a. Thus, d |,y = « and Ker[Ker d, — E;H] CImd

; > “p+tr o ptre
This completes the proof of Leray’s proposition.

EXERCISE 4. Prove that the notations d°, d° match the notations introduced in the

9 1)
“simple observation” in the beginning of the section.
EXERCISE 5 (concerning Step 1 of the previous proof). Prove that if o € Eli and
dll,oc = 0, then the inclusion da € F,_,C holds for an arbitrary, not specially chosen,
representative a of o in F,C N d='(F,—10).

We have completed the main construction of this chapter: that of a spectral
sequence. This construction will be enriched in subsequent sections and lectures,
but now let us observe what we have already achieved.

Input: a differential group (C, d) with a positive finite filtration {¥,C} compatible
with the differential.

Output: a sequence of differential graded groups

{E’ =@ 5. =) £~ E;_,])} :
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which is called the spectral sequence associated with the filtered differential groups
of the Input and which possesses the following properties:

(1) E° = Gr(C,d), E' = H(Gr(C, d)).

(2) For every r, the graded group E'™! is the homology group of the differential
graded group E”, d" (with a homogeneous differential of degree —r).

(3) For big r, the groups E” do not depend on r (that is, d” = 0), which justifies the
notation E°°; the claim is that E°° = Gr H(C, d).

Informally speaking, the spectral sequence begins “almost at C,” that is, at Gr C,
and “converges” “almost to H(C),” that is, to Gr H(C), in this way breaking the
computation of the homology of C into a sequence of elementary steps.

The construction of a spectral sequence is natural in the obvious sense: If there
is another differential group, C’, d’, with a filtration compatible with a differential,
then there arises a spectral sequence {E",d"} associated with this group, and any
homomorphism C — C’ compatible with differentials and filtrations induces
homomorphisms E” — E",0 < r < oo compatible with differentials and gradings
and coinciding with the induced homomorphisms Gr H(C,d) — GrH(C',d’) for
r = oo.

‘We conclude the section with two remarks, one methodical and one historical.

Remark 1. The construction of the spectral sequence can be easily adapted to the
case when the filtration is infinite although still positive. The definitions and stated
properties of E, and d), (with finite ) remain the same. The difference is that the
sequence fails to stabilize. However, for every p, d, = 0 for r > p. Thus, in the
sequence of groups Ej, with p fixed and r > p, every group is a pure quotient of
the previous group, which gives us the right to speak of the “limit group” E;o. The
graded group E is still Gr H(C).

Remark 2. Spectral sequences were first introduced in 1945 by J. Leray in the
context of the sheaf theory (see Leray [53]). The significance of spectral sequences
for algebraic topology was demonstrated in 1951 by J.-P. Serre in his doctoral
dissertation [75]. With the appearance of homological algebra (the term was used
as the title of the famous book by Cartan and Eilenberg [29]), spectral sequences
became the main technical tool in this area. Modern mathematics contains dozens of
spectral sequences named after remarkable mathematicians. We will have to restrict
ourselves in this book to topological applications of spectral sequences.

20.3 The Case of a Graded Filtered Differential Group

Suppose that besides filtration and differential, the group C has a grading, C =
., Ci, compatible with filtration F,,C = P, F,C» where F,C,, = F,C N Cy, and
the differential; we suppose that the differential has the degree —1: d(C,,) C Cy—1;
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we suppose also that the grading is finite (there are only finitely many nonzero C,,).
In this case, all terms of the spectral sequence acquire an additional structure: the
second grading. There will be no additional proposition to prove; all we need is a
modification of all notations.

Forp,r >0, g € Z, put

E = FpCptg N d_l(Fp—GC+q—1)
- [Fp—lcp+q n d_l(Fp—GC+q—1)] + [FpCp+q n d(Fp+r—1Cp+q+l)] ’
E = @M E,,. In particular,

_ F pcp+q
v F P—ICP'HI’
Ker ( chp+q d chp+q—1 )

E! — Fp—1Cp+q Fp1Cptg-1
pd Im ( FpCp+q+1 d chp+q )
Fp—1Cptq+1 Fp—1Cp+q
0o _ FpHy+4(C)

E°° = .
P FpiHpg(C)

(The reader may wonder why instead of Cp, 44, Cp4.4—1, etc. we do not take C,, Cy—1,
etc. However, it is impossible to explain the reason for this before we consider
examples. We will see that for the most important examples, E will be zero for
p < 0and for g < 0. At the moment, we can only say that for £ , p is called the
filtration degree, q is called the complementary degree, and p + ¢ is called the full
degree.)

The differential d" is defined in the same way as before (without an additional
grading): An o € E, C E" has a representative in a € F,Cyi4 with da €
F,_+Cpi4-1, and the class of this da is taken for d"c. This differential reduces the
filtration degree by r and reduces the full degree by 1; hence, the component d;,, of
this differential on £} is

d;q: E;q - Eir)—r,q+r—1‘
Part (3) of Leray’s proposition of Sect. 20.2 holds with an obvious enriching of
notations:
E Kerld, :E,, > E,_, ., 1]
e Im[d;+r.q—r+l: E[Z+r,q—r+l - E;q]

There is a common graphic presentation of terms of the spectral sequence. For
every r, the groups E,  are placed into the cell of a graph paper and the differentials
d,, are shown by arrows. Fragments of such diagrams (around a randomly chosen
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| | | N ~ S
Y0 Y0 v0 1 1 1 o T2 T2 [T
<Ll <—Fl <€—pl <—
B | Eie | Eso B i Eso B3 | Eis | Eso
| | | ~ ~ S
Yo v0 v0 1 1 1 o> T2 [Tp2 [
<[l <l <[l <—
Ess | Eis | Ess B3 L5 Ess B3 | Eis | Ess
| | | ~ ~ ~
Yo vo Y0 1 1 1 o T2 T2 [
— — —— —
E3y | B4y | Esy REZREZRESS B3, | By | Es
| | | ~ ~ ~N
Y Y Y ~ ~ ~
0 . 0 0 1.l 1 2 .2 2
dpq' qu - Ep,q—l dpq' qu - Ep—l-,q dpq' qu - Ep—2,q+1
1 _ 0 0 2 _ 1 1 3 _ 2 2
E,, =Kerd,, /Imd, .., E,, =Kerd, /Imd, ,, 6 E, =Ked, /[Imd 5,

Fig. 75 Diagrams for the terms E°, E', E? of a spectral sequence

cell with p = 4,g = 5) are shown in Fig. 75. Differentials d° act downward,
differentials d' act from the right to the left, and differentials d act by what has been
cherished by generations of topologists—the “knight’s move.” Further differentials
act by a “mad knight’s move”: The arrow corresponding to the differential " points
r cells left and r — 1 cells up.

The relations between the term £°° and H(C) are shown in Fig. 76. On the graph
paper diagram for E®°, consider the line p + g = n and mark on this line all nonzero
groups as Ji,Ja, ..., J,, numbered in the order of increasing p and decreasing q.
Then

Ji C Hn(C), Jx C Hn(c)/Jls J3 C (Hn(c)/Jl)/JZv s
I = (. (HA(OVID) /2. ) [T

In particular, if EZ2 = 0 for all pairs p, ¢ with p + g = n, then H,(C) = 0; if,
for some n, there is only one pair p, ¢, p + g = n with E2 # 0, then H,(C) equals
this E72.

20.4 A Cohomological Version

No wonder that, both in topology and in algebra, spectral sequences are more often
applied to cohomology than to homology: Cohomological spectral sequences pos-
sess natural multiplicative structures (Lecture 24) as well as many other structures,
which we will study later (Chap. 4). From a purely algebraic point of view, the
main difference between chain and cochain complexes lies in the degree of the
differential: It is 41 rather than —1, and this does not affect the general theory
in any significant way. However, precisely how in general homology theory, the
transition from homology to cohomology results in replacing the notations C,, H,,
etc. by C", H", etc., the cohomological version of the previous theory requires some
changes in notation. Let us observe these changes.
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ptqg=n

Jy B

Ja

J3

Fig. 76 Diagrams for the E°°-term

For a filtration in an Abelian group C we use the notation {F”C}; we assume that
FrC D FPYIC. A filtration is called positive if FPC = C for p < 0 and is called
finite if there are only finitely many terms F”C different from both 0 and C. Thus, a
finite positive filtration has the form

C=F'CO>F'CO>FC>...DF'CD>F*'C=0,
with the understanding that F,C = Cif p < 0 and FPC = 0 if p > n. We assume
also that C possesses a grading C = €D C” (usually, with finitely many nonzero C")

and a differential d: C — C such that

FrC = @, FPC" where FPC" = FPCN C", d(FPC) C FPC,
and d(C") C C"*1,

Then we put

- chp+q a d—l(Fp+rC[7+q+l)
EV = [Fp+le+q N d—l(Fp+GC+q+l)] + [FpCp+q N d(Fp—r+le+q—l)] ’

E, =D, E}, and define a differential
: +rg—rtl
7 EPT s rrasr

in the usual way: For @« € EPY, we choose a representative a € FPCPte N
d~(Fprrcptatly and take for dPa the class of da € FP cprat!in pptra—r=1,
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N B B

E36 E46 E56 —:-E36ﬁ—E4GA_—E56a,- ESG E46 E56

0 0 0 1 1 1 2 2 2

I | . I - I S N N
EP | EP | EP L B L p LR L EP | Ef | EP

I | I r _ N N
E3 | B§* | E3* S Bl L pt L B3| B3| B3

I | I g g N
Pq. P4 p,q+1 Pq. Pq p+1,q Pq. P4 p+2,q—1
dbi: EP — EY d: EPY — BV dbi: BRI — EP

EP = Kerdy/Tmdy ™" EY = Kerd??/Tmd? ™9 EP! = Kerds?/Tmdy >t

Fig. 77 Diagrams for the terms E°, E', E? in the cohomological case

Leray’s proposition (and its proof), including the graded version of Sect. 20.3,
can be repeated with an appropriate notation change. In particular, Efj’_l =
KerdP?/Imd?~14r=! The diagrams of Fig. 75 assume the form shown in Fig. 77.

The relations between Eo, and H(C) are still described by Fig. 76. The difference
is that now we need to order the groups in the line p + ¢ = n from the bottom to the
top:

I CHYWC), ..., J» C (.. (H(C)/Jn) .. )] I3,
Ji=((...(H OV Iw) .. )/ T3)] 2.

20.5 Some Famous Spectral Sequences in Algebra (Exercises)

In this section we will consider some very mighty applications of spectral sequences
in algebraic topology. However, many famous spectral sequences arise in other
parts of mathematics. In this section, we will describe several of them (the reader
who wants to become familiar with more should use any comprehensive text in
homological algebra). But since this is not our subject, we will not prove much, so
this section will look like a sequence of exercises.

A: Double Complexes and Their Spectral Sequences

This is a general construction which provides a very rich source of more specific
spectral sequences. We will use here what can be called “homological notation.”
The reader can reverse all the arrows, switch the upper and lower indices, and obtain
a cohomological version of the construction.

Let C = @pzo, 4>0 Cpq be a doubly graded group endowed with two differ-

entials: d,: Cpy — Cp—14 and dy,: Cpy — Cpg—1. In addition to the expectable



20.5 Some Famous Spectral Sequences in Algebra (Exercises) 317

assumptions that d;_l’q o d;q = 0 and d;{q_l o dII}q = 0, we assume that
dy_,, ody+d,,  od, =0. A doubly graded group C with differentials d', d"

satisfying the conditions above is called a double complex.
For a double complex as above, we put C,, = @p +q=n Cpg- The differentials d;q

and dII,Iq with p 4+ ¢ = n sum up to a homomorphismd,: C, — C,—. The conditions
formulated above mean precisely that d,—; o d, = 0. That is, C = € C, becomes
a graded differential group with the differential of degree —1; it is called the total
complex of the double complex C = {Cpy; d[I,q, dII,Iq}.

There are several homology theories related to a double complex. First, there are

homologies

H;q(C) = Kerdll,q/ Imd;H’q and HII,Iq(C) = Kerdgq/ Imd},’qﬂ.
Next, since the differentials ' and d"' commute (up to a sign), they give rise to
“(.lifferf:ntials” dp H, (C) —>.H11w_l(C) and d,,(C):H,, (C) — H)", (C), which
gives rise to “double homologies”

H"H, (C) and H'H,, (C)

(the reader should not think that they are the same). Also, there is the homology of
the total complex: H,, = Kerd,,/ Imd, ;.

For the total complex C, introduce two filtrations (sometimes they are called
stupid, in contrast to the fact that they form a foundation for numerous important
applications):

F)C = EB@ Cyr FIC = @ssq Cps.

There arise two spectral sequences, {IE;q, Id;q} and {HE;q, Hd;q}, whose properties
are described in Exercise 6. We should warn the reader that in the second of these
spectral sequences the roles p and g are swapped: ¢ is the filtering degree and p is the
complementary degree; this leads the differentials to act unusually: IId;,q: HE;q —

I pr
Ep+r—l,q—r'

EXERCISE 6. Prove that

170 _ N[0 _
0 IEll)q _ lflpq - Cllpq.l 1
)yt~ a0 g = e (O
() 'E,,=HH,(C), "E,, = H H, (C).

q
FIH FTH

1 oo pUPTe Moo q ptyq

(4) E[’q = FI H ’ Pq = FII H :

p—1t4p+q g—11p+q
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B: Application of Spectral Sequences of Double Complexes:
Coefficient Spectral Sequences

The majority of applications of double complex spectral sequences use the following
scheme. To solve some homology problem, we make up a double complex. There
arise two spectral sequences. Usually, one of these sequences turns out to be severely
degenerate; for example, its E!-term has only one nontrivial row or column. Then
all the higher differentials are zeroes, E° = E!, and the homology of the total
complex is equal to the E'-term, which gives us an expression for it. After it, we
know the limit term of the other spectral sequence, and we also have information on
its initial term, E' or E2. Thus, this spectral sequence relates something we know
with something we want to find.

The spectral sequence we are going to discuss may be regarded, as we will
explain later, as a generalization of the (exact) coefficient sequence. Let X be a
topological space, and let

& [£3] [£%} a3

0 G G() Gl GZ

be an exact sequence of Abelian groups (we assume it infinite to the right, but it
is possible —and desirable—that G, = 0 for n big enough). Consider the double
complex C = @pzo, >0 Cq (X;G,) (where C, denotes a chain group, maybe
singular, maybe cellular—it does not matter) with the differentials d,: C,(X; G,) —
Cy—1(X; Gp) and (=1)P(ap)«: C4(X; G,) = Cy(X; Gp—1) [here we assume G_; to be
zero, not G, and, accordingly ()« to be zero, not ¢; (—1)” at (o)« is necessary to
ensure that the condition relating 'd to 'd is met].

EXERCISE 7. (1) Prove that

gl _ H,X:G),ifp =0,
pa 0, ifp # 0.
Deduce that H, = H,(X; G).
(2) Prove that

"E,, = Hy(X: Gy) and "'d), = [(—1) (&)« Hy(X: G,) = Hym1 (X; Gp—1)].

Exercise 7 shows that the spectral sequence "E connects homology groups with
coefficients in G with homology with coefficients in G,,. In this sense, it is similar to
the coefficient homology sequence. Actually, if G, = 0 for all p > 2, this spectral
sequence is algebraically equivalent to the coefficient homology sequence (see
Sect. 15.3). We prefer to state this fact in a more precise way later (see Exercise 2
in Sect. 5.3).

Cohomological versions of all these constructions exist.
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C: The Hochschild-Serre Spectral Sequence

There are several spectral sequences named after G. Hochschild and J.-P. Serre
(see Hochschild and Serre [47, 48]); each exists in homological and cohomological
versions. We will consider here the spectral sequence in the theory of Lie algebra
cohomology.

Let g be a Lie algebra over the field C, and let M be a g-module (that is
a complex vector space endowed by a linear map p:g — EndM such that
plg, k] = p(g) o p(h) — p(h) o p(g); we will abbreviate the formula [p(g)](x) to
gx). Define the “cochain space” C"(g; M) as Homc(A"g, M) and the differential
d: C"(g; M) — C"t!(g; M) by the formula

de(@i Ao A gnt1) =
Z (—l)H't_lc([gS,g,] ANGIA ... 8.8 Ngutl)

1<s<t<n+1

— Z (—1)“guc(g1/\...§u.../\g,1+1).

1<u<n+1

EXERCISE 8. Prove that d? = 0.

The (co)homology of the complex {C"(g: M), d} is called the cohomology of
the Lie algebra g with the coefficients in M and is denoted as H"(g; M). The space
C"(g; M) possesses a natural structure of a g-module:

n

(gc)(gl/\.../\gn)=Zc(g1/\.../\[g,g,]/\.../\gn)—g(c(gl/\.../\gn)),

r=1

and the differentials are g-homomorphisms. This implies a structure of a g-module
in H"(g; M), but

EXERCISE 9. Prove that the structure of a g-module in H"(g; M) is trivial: ga = 0
forany g € g, @ € H' (g; M).

Let h C g be a Lie subalgebra. Put

FPerta(giM) = {c € CPHI(giM) [ c(g1 Ao A gpig) = 0,
ifg1,...,84+1 €h}.

EXERCISE 10. (1) Prove that the spaces F”C,4,(g; M) form a filtration compatible
with the differential; thus, there arises a spectral sequence with the limit term
Gr H"(g; M); this is the Hochschild—Serre spectral sequence.

(2) Prove that in this spectral sequence E/Y = HY(h;Hom(A%(g/h), M)) [we
expect that the reader will reconstruct the structure of an h-module in
Hom(A%(g/h), M)].
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(3) Prove thatif § is an ideal in g, then E‘z’q = HP(g/h; H1(h; M)). [If b is an ideal,
then the spaces C"(h; M), H"(h; M) have a natural g-module structure; but,
according to Exercise 9, the h-module structure in H"(h; M) is trivial; hence,
the g-module structure in H"(g; M) is factorized to a g/h-module structure.]

Lecture 21 Spectral Sequences of a Filtered Topological
Space

21.1 General Constructions

A (positive, finite) filtration in a topological space X is a chain of subspaces,
=X ,CXsCXjC...CcX, =X

(when necessary, we will use the notation X, = @ forp < —1 and X, = X for
p > n). (The case of infinite filtration will be briefly discussed later.) The full chain
group, C = C«(X;G) = @r C.(X; G), has a grading (as shown), the differential
0:C,(X;G) — C—1(X; G) (of degree —1), and the filtration F,C = C«(X,;G) C
C«(X; G), and these three structures are compatible with each other as described in
Sect. 20.1. Then the constructions of Sects. 20.2 and 20.3 can be applied, and they
lead to a spectral sequence {E[Zq, d[’,q:E’ — E" 1J- In our current notation,

r Pq p—r.qtr—
Epy =
Cp+q(Xp; G) n a_1(Cp+q—l (Xp—r; G))
[Cotg(Xp-1:G) N8~ (Cpig1(Xp—r: G))]
H[Cpt4(Xp; G) N ICptgt1(Xptr—15 G))]
and

00 _ Im[H, 1 ,(X,; G) — H,14(X; G)]
P Im[Hpy g (Xp—1:G) — Hpi(X: G)]

In addition, we can state that
E1(7)‘1 = p+q(Xps Xp—l ) G)v
dy, = [9: Corg(Xp. Xp—1: G) = Cpig1 (X, Xp-1:G)] .
E), = Hy1y(X). Xp-1: G),
d[l,q = [a* Hp+q(Xpa Xp—l; G) - Hp+q—l(Xp—l7Xp—2; G)] s

where the homomorphism d. in the second line belongs to the homology sequence
of the triple (X,, X, 1, X,-2).
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EXERCISE 1. Check the previous statements concerning E[‘,’;, qu, and E[l, 7

There is also a cohomology version of this spectral sequence. We consider
C = C*(X; G) = @, C"(X; G) with the differential §: C"(X; G) — C""(X; G) and
the (decreasing) filtration FPC = C*(X,X,—1; G) C C*(X;G). The compatibility
conditions hold, and the construction of Sect. 20.4 yields a spectral sequence
{EP4, dP4: EP4 — EPYra—r1y with

CH(X, X1 G) N8N (CPHH (X, X413 G))
[CH(X. X, G) N 67 (M (X, X, 41 G))]
+H[CHI(X, Xp—13G) N S(CPH (X, X3 G))],

Pq —
B =

Ey = C"M(X,, X,-15 G),

d[(;q — [8 C‘D+q(Xp,Xp—l; G) N C[’+61+1(X1,,X[,_1; G)],
Ell)q = H‘D+q(Xp, Xp—l; G),

di! = [8*: H" (X, Xp-1:G) — H' P (X, 41, X,: O)]

[the last §* belongs to the cohomology sequence of the triple (X,+1, X,, Xp—1)],

Ker[H'(X; G) — HPT9(X,—1; G)]
7 Ker[HP(X; G) — HPHI(X,: G)]

Pq —

Notice that the explicit formulas for £ Uand d! (for E, and d,) allow us, as a rule,
to completely ignore the zeroth terms of spectral sequences; certainly, the higher
differentials d” and d, are described at the chain/cochain level, but we will see that
these direct descriptions are not really useful.

Notice also that if there is a different space, Y, with a (positive) filtration {Y),}
and a continuous map f: X — Y such that f(X,) C Y, for all p, then there arise
homomorphisms between homological and cohomological spectral sequences of
the filtered spaces X and Y, and these homomorphisms are compatible with the
descriptions of the zeroth, first, and co-th terms given above.

Recall in conclusion that all the constructions of this section can be applied to a
positive infinite filtration, @ = X_; C Xo C X; C X, C ... C X, on the condition
that X = Up X, and that X is furnished with a “weak topology”: A set F C X is
closed in X if and only if every intersection F' N X, is closed in X),.

21.2 A New Understanding of the Cellular Computation
of Homology and Cohomology

Here we restrict ourselves to the case of usual (integral) homology; the cases of
homology and cohomology with coefficients are not significantly different.
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4q B, d! (zeroes)

0] Co(X)=Ci(X)=-Co(X)=-C3(X) = p

0 1 2 3
(zeroes)
q E?=E>.d (zeroes)
~ ~— ~—
0| Ho(X) ITH:(X) ITH2(X) ["H3(X) p
0 1 T2 T3 T
(zeroes)

Fig. 78 The spectral sequence of a CW complex filtered by the skeletons

Let X be a CW complex; let us filter it by skeletons: X, = sk, X = X?. In the
corresponding homological spectral sequence,

C(X), iftg =0,
0, if g # 0,
so the diagrams for the terms of this spectral sequence are as shown in Fig. 78.

Thus, the term E' (as well as all the subsequent terms) contains only one nonzero
oW, E;O; with the differential d;o, this row is nothing but the cellular chain complex

E;q = Hpi (X", XP71) =

of X. Hence, in the term EZ, the same row contains the cellular homology of X. All
the subsequent differentials are zero, since no one of them may connect two nonzero
groups. Thus, E> = E®, and since for every n there is at most one nonzero group
E} with p + g = n, that is, the group E, then (according to a remark in the end
of Sect. 20.3), H,(X) = ES = E2%, = the nth cellular homology group.

We also see that the property of the skeleton filtration that H,(X?, X*~!') = 0
for r # p is crucial for this calculation of homology: The spectral sequence exists
independently of this property, but if the property does not hold, higher differentials
may appear, and the calculation becomes much less automatic.

21.3 A New Understanding of the Homology Sequence
of a Pair

Let (X.A) be a topological pair. It can be regarded as a “two-term filtration,”
(@ =X_1) C(A=X) C(X=Xy).

The corresponding (homological) spectral sequence has the term E' as shown in
Fig. 79, left, with the differential d I = 9,. Hence, the E2-term looks like Fig. 79,
right. The differentials d", r > 2, are all zero, and hence E* = E2.
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q q
El,dl | E2:Eoo
1
n H,L(A) 3*,nl+1 H"+1(X-, A) n [Coker 0*7,#1 Ker 6*,n+1
al
n—1 H,_1(A) Geon H, (X, A) n —1| Cokerd, , | Ker0.,
2 Hy(A) <OTd H3(X, A) 2| Cokerd. 3 | Ker0,3
1
1 Hi(A) <OTZ Hy(X, A) 1| Cokerd, o | Ker0,
T
0 Ho(A) s Hy(X, A) » 0| Cokerd, 1 | Kerdq »
—1 Ho(X, A) -1 Hy(X,A)
0 1 0 1

Fig. 79 The spectral sequence of a two-term filtration

According to Sect. 20.3, H,(X)/EF;, = ET5,

Tn—1- This yields an exact sequence

Coker 0y 41 — H,(X) — Ker 04,

that is, an exact sequence

O n O
Hyp 1 (X, A) =25 Hy(A) — H, (X) — Ho(X, A) —2> H,_1 (A),

which is the same as the homological sequence of the pair (X,A). In a similar
way, homological and cohomological sequences with arbitrary coefficients can be
presented as spectral sequences of two-term filtrations.

EXERCISE 2. Find an interpretation in terms of spectral sequences for the homo-
logical and cohomological sequences related to short exact sequences of coefficient
groups (Example C in Sect. 20.5 may be useful).

The reader may expect that spectral sequences of three-term filtrations, § C B C
A C X, must be related to homological and cohomological sequences of triples. In
reality, a relation exists, but it is not as direct as in the case of pairs.

Lecture 22 Spectral Sequences of Fibrations: Definitions
and Basic Properties

22.1 The Main Construction

Let & = (E,B, F,p) be a locally trivial fibration with a CW base B with skeletons
BP. Consider a filtration {F,E} of the space E with F,E = p~!(B?) (we apologize for
these two ps, but these notations are so common!). The spectral sequence (homology
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or cohomology, with arbitrary coefficients) corresponding to this filtration is called
the spectral sequence of the fibration €. Let us begin with a calculation of the initial
terms, E' and E? (we begin with the homological case). For this computation,
we need an assumption which may provide some inconvenience later. In the next
section, we will show how to get rid of this assumption by modifying some
fundamental definitions.

Let s:1 — B be a path joining points by, b; € B. As explained in Sect. 9.6
(for Serre fibrations, but locally trivial fibrations are Serre fibrations), this path
determines a (homotopically uniquely defined) homotopy equivalence p~'(by) —
p~!(by), and hence isomorphisms H,(p~'(by): G) <— H,(p~'(b1): G). This iso-
morphism may depend on the path s (although it stays the same if the path s is
replaced by a homotopic path). Actually, the fibration £ is called homologically
simple if this isomorphism does not depend on the path for any n and G. (We
can weaken this condition to a “homological simplicity with the coefficients in G,”
keeping the group G fixed in the definition.) For example, if the base B is simply
connected, then the fibration is homologically simple.

From now on, in this section, we assume the fibration & homologically simple.

Theorem. In the spectral sequence of a homologically simple (with coefficients in
G) fibration,

(1) E,, = Cy(B; Hy(F; G)).
() d), = [8,:C,(B: Hy(F: G)) — Cp—1(B; Hy(F: G))].
3) Eﬁq = Hp(B;Hq(F; G))

Proof. As we know from Sect. 21.1,

E[lq = p+q(p_l(Bp)7p_l(Bp_l); G).

Let {e; | i € I,} be the set of all p-dimensional cells of B, and let ¢; € e;,d; C e;
be the center and a small ball around the center of the cell e; (with respect to
some characteristic map). Obviously, the pair (p~!(B”),p~'(B""!)) is homotopy
equivalent to the pair (p~1(B”), p~'(B")— U, p "' (c:)), and, by the excision theorem,

Hyry(p™'(B?).p~'(B") — U, p7"(c:): G)
= p+q(Uil7_l(di)a Uip_l(di —¢i); G)
=@, Hptq(p~"(d).p~ (di — ¢;): G)
= @, Hpr(p~"(d).p~' (d; — Int dy); G).

On the other hand, the fibration over the disk d; is trivial with the fiber F; =
p~'(c;) ~ F, and the disk d; may be regarded as a copy of the standard disk D”
(provided that a characteristic map for the cell ¢; is fixed). Because of this,

Hp+q(p_l(d,'),p_l(d,' — Intd,-); G) = Hp+q(Dp X F,', Sp_l X F,'; G)
= Hq(Fi; G)
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[the last equality follows from Kiinneth’s formula because H;(D”, S"~') = Z if
i = pandis 0 if i # p]. The final result is

E,, = D H/(Fi:G).

which means that elements of E[iq can be written as Zi aje;, where a; € H,(F;; G).
However, if the fibration £ is homologically simple, we can consider all a; as
belonging to one group, H,(F; G). Namely, if B is connected, then there are paths
joining every pair of points of B, each path establishes an isomorphism between
homology groups of fibers over its endpoints, and for a homologically simple
fibration, these isomorphisms do not depend on paths. In an unconnected case,
we obtain in this way only isomorphisms between homologies of fibers within
every component of the base, but we can also arbitrarily choose these isomorphisms
between fibers over points of different components. This completes the construction
of the isomorphism of part (1). To prove part (2), it is sufficient to compare the
description of dll)q in Sect. 21.1 and the definition of the cellular boundary operator
in Sect. 13.4. Part (3) directly follows from part (2).

EXERCISE 1. Generalize the theorem to Serre fibrations.

Thus, for a homologically simple fibration, qu = H,(B; H,(F; G)). In particular,

Eﬁq = 0if p < 0org < 0. If the base B and the fiber F are connected, then

EZ, = H,(B: Ho(F; G)) = Hy(B: G),
E3, = Ho(B: Hy(F: G)) = H,(F:G).

Also,

E2, = [Hy(B) ® H,(F; G)| ® Tor(H,—(B). H,(G: F)).

If G = Z, then the last equality takes the form
E, = [E) ® Eg,| & Tor(E;_, . Eg ).

and the second summand disappears if the homology of the base or of the fiber has
no torsion. Also, if the coefficient domain is a field K, then Ezq = EZO Rk Eéq. All

this can be presented on the diagram of the E*-term, which we display in Fig. 80 in
the case when G = Z and the homology of B or F is torsion-free.

Corollary. y(E) = y(B) x(F).

Proof. Consider the homological spectral sequence with coefficients in Z and put

X(Er) - Zm(_l)m rank (®P+q=m E;;q) '
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Homolog}_// Hy(B) @ Hy(F)

of F

Homology of B
p

Fig. 80 The E?-term of the spectral sequence of a fibration

From the theorem we have

X(E) =3, (=", ., rank H,(B) rank H,(F)
= 2y q(— 1) rank H,(B)(=1) rank H,(F) = x(B) x(F).

It follows from the Euler—Poincaré lemma (see Sect. 13.7) that y(E?) = y(E3) =
... = (E*). Finally, y(E*°) = x(E), since rank H,,(E) = Zp+q=m rank E77.
EXERCISE 2. Prove that if the fibration £ is trivial, that all the differentials in the
spectral sequence of this fibration beginning from @ are zero (a spectral sequence
with this property is called degenerate).

Remarks Concerning Exercise 2. (1) A usual way to prove that a spectral sequence
of a fibration (and, actually, any spectral sequence) is degenerate is to show
that every element of Elz,q is represented by a genuine cycle of E, not just by
a chain whose boundary has a filtration not exceeding p — 2. But the result
is actually quite expectable. Indeed, according to Exercise 17 in Sect. 15.6,
@p+q:m H,(B;H,(F)) = H,,(B x F), and a similar result holds for homology with
arbitrary coefficients. This shows that if E = B x F, then E? and E® have “the same
size,” which makes any nontrivial differential impossible. This informal argument
becomes absolutely rigorous if we consider the case when the coefficient domain is
a field and the homologies of B and F are finite dimensional. The same can be said
in the case when the coefficient domain is Z and the homologies of B and F have no
torsion.

(2) Exercise 2 shows that of fibered spaces with a given base and fiber, the direct
product has “the biggest homology” (because nontrivial differentials make a spectral
sequence “decreasing”).

To finish this section, we remark that all definitions and statements can be
repeated with the obvious modification for cohomology. In particular, in the
cohomological spectral sequence of a (co)homologically simple fibration with a
cellular base,

E5" = H?(B; HY(F: G)).
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22.2 The Case When the Fibration Is Not Simple

To make this section shorter, we will give many results in the form of exercises.
This does not mean that the proofs are difficult; we are sure that a reader who finds
the subject interesting (and it is interesting indeed) will be able to reconstruct all
missing proofs without much effort.

A: Local Systems

Let X be a topological space. A local system of groups (= an ensemble of groups =
alocally trivial sheaf) over X is a function which assigns to every pointx € X a group
G, and to every path s:/ — X joining xo with x; an isomorphism t;: Gy, — Gy,
which depends only on the homotopy class of the path s and possesses the property
Ty = Ty o Ty. Examples: (1) G, = m,(X,x) (n > 1), 1, = s (see Sects. 6.2, 8.2);
(2) X is the base of a (locally trivial or Serre) fibration p: Y — X, G, = H,(p™ ' (x)),
and 7, is an isomorphism constructed in Sect. 22.1 (similar for homology and
cohomology with coefficients).

From now on, we assume the space X path connected; if it is not, a local
system over X is just a collection of independently chosen local systems over path
components of X.

Choose a base point xy in the base X of a local system {G,, 7,}. Then every loop
with the beginning at xo determines an automorphism of the group G,,, and in this
way there arises a group action of the group 71 (X, xo) in G,.

EXERCISE 3. Let {G,, 7,}, {G, 1/} be two local systems over X. Prove that if there
exists an isomorphism G,, = G compatible with the actions of the group 71 (X, xo)
described above, then the systems {Gy, 7,} and {G/, ]} are isomorphic (in the

obvious sense).

EXERCISE 4. Show that an arbitrary group G with an arbitrary group action of the
group 771 (X, xp) is a group Gy, for some local system {Gy, 7.} with the base X.

These statements create a way to construct a large number of new local systems.
For example, let X be a (connected) homology manifold, G = Z, and an element
a of w1 (X, xp) determines the multiplication by 1 or —1 if « preserves or reverses
orientation. The resulting system is denoted as Zr; it was considered, implicitly, in
Sect. 17.12.

B: Homology and Cohomology with Coefficients
in a Local System

Let G = {G,, 1.} be alocal system of Abelian groups over X. Denote by ¢, the center
of the standard n-dimensional simplex A" and by s, ; the straight path in A" from
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¢y, to the center of the ith (n — 1)-dimensional face of A". A singular n-dimensional
chain of X with coefficients in G is defined as a (finite) linear combination ), gf;,
where fi: A" — X is a singular simplex and g; € Gyc,). The group of all such chains
is denoted as C,(X; G), and the boundary operator d = d,: C,(X; G) — C,—1(X;G)
is defined by the formula

n

3(2f) = Y _(=1)'Gos, ()T

i=0

The homology arising is denoted as H,(X; G); the cohomology H"(X; G) is defined
in a similar way.

A different approach to homology and cohomology with coefficients in local
systems exists, similar to that in Sect. 17.12. It works when the space X is “good
enough” in the sense that it has a universal covering 7:X — X with the deck
transformation group equal to 7 (X, xp) (see Sect. 6.8). Let G = G,. Consider the
subgroup of the group Cn()/(\ ; G) consisting of those ¢ = ), g;fi (where g; € G and
fii A" — )?) such that for every a € (X, x), agc = ), (g)f; (on the left-hand
side « is regarded as a transformation X — X; on the right-hand side it is regarded
as an automorphism of G). We denote this subgroup as C,(X;G) and notice that
9(Cy(X:G)) C Co1(X: ) (here 0 is the boundary operator in the singular chains
of X).

EXERCISE 5. Prove that this description of the singular chain complex of X with
coefficients in G is equivalent to the previous definition.

EXERCISE 6. Prove that (for a path connected space X) H(X;G) = {g € G, |
ag = gforall @ € m(X,x0) and Ho(X;G) = Gy,/Gy,, where Gy is the subgroup
of Gy, generated by all differences g — g, @ € m1(X, x0), § € Gy,.

Homology and cohomology of a CW complex X with the coefficients in a
local system {G,} can be calculated by means of a cellular complex. Namely, an
n-dimensional cellular chain is a finite linear combination Zi giei, where ¢; is an
oriented n-dimensional cell of X, and g; € G,,, where x; € ¢; (the groups G,, for
all points x; € e; are canonically isomorphic; we will denote G,, simply by G,,);
the group of such cellular chains is denoted by C,(X; G). The boundary operator
d = 0,:C,(X;G) = C,—1(X; G) acts via the formula

dge)= D nes(e)f.
dimf=n—1
fNe0
where the operator n.7:G. — Gy is defined in the following way. Choose a
characteristic map h: D" — X for the cell e (representing the chosen orientation of
e) with the following property. In f, there exists a small ball d (with the center y € f)
whose inverse image 47! (d) is a finite union of balls d; € S"~! such that each d; is
mapped onto d homeomorphically; we put ¢; = £1 depending on whether d; —— d
preserves or reverses orientation. Let ¢ be the center of the ball D", ¢; = h! y)Nd,,
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and let s; be the straight path in D" joining ¢ with ¢;. We define the homomorphism
Nes: Gne) = Gy by the formula 1. £(g) = Y _; €iThos; (8)-

EXERCISE 7. Prove that the homologies of the complexes
{Cu(X:G), 0,} and {Ca(X: G), 0n}
are the same. Make up and prove a similar statement for cohomology.

EXERCISE 8. Let X = RP", G be an Abelian group and let 7:G — G be an
automorphism with 72 = id. Let the generator of the group 7r; (RP") act in G as 7.
Denote by G the local system arising. Prove that the homomorphism

3:C,(RP";G) — Cr_1(RP™:G), 0 < r <n

I I
G G

acts like id 47 for r even and like id —7 for r odd. Compute the homology
H,(RP"; G) in the general case and in the case G = Z, T = —id.

Remark. If n is even, then the last G is nothing but Z; from Sect. 17.12. Observe
Poincaré isomorphism for the nonorientable manifold RP" described in Sect. 17.12.

C: Main Theorem for Nonsimple Fibrations

Theorem.

E; = Hy(B: {Hy(p~' (x))}).

where {H,(p~"))} is the local system described in Example (2) following the
definition of a local system (see the beginning of Sect. 22.2.A). A similar thing holds
for the homology and cohomology spectral sequences with arbitrary coefficients.

EXERCISE 9. Prove the theorem (a proof is basically the same as that of the theorem
in Sect. 22.1).

EXERCISE 10. Prove that the equality y(E) = yx(B)x(F) (see the corollary in
Sect. 22.1) also holds for nonsimple fibrations.

D: Obstruction Theory for Nonsimple Spaces and Fibrations

EXERCISE 11. Using cohomology with coefficients in local systems, extend the
obstruction theory (for both continuous maps and sections) to the cases of nonsimple
target space and nonsimple fibrations. Make up a definition of the (integral) Euler
class of nonorientable vector bundles.
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22.3 First Applications

A reader who has the impression (which we do not share) that the material of the
previous section is auxiliary and unnecessary is encouraged to switch on his or
her full attention. We will demonstrate now how even the preliminary information
we have can be used for quite nontrivial computations (although more serious
applications of spectral sequences are still ahead).

A: Homology of the Special Unitary Group SU (n)

As we know, the coset space SU(n)/SU(n— 1) is nothing but the sphere $?*~!. Thus,
there arises a fibration

SU(n—1
SUm) —270, gnm1 > 9y

(we follow the tradition of writing the notation for a fiber of a fibration over the
arrow which denotes the projection of this fibration). If n = 2, then the fiber of this
fibration is one point. Hence, SU(2) = S3 (we know this from Sect. 1.7). Thus, for
n = 3 we obtain a fibration

SS
SU3)— S°.

Since we know the (integral) homology of the base and the fiber, we can display a
full diagram of the E2-term of this spectral sequence (Fig. 81).

It is clear from this diagram that no one of the differentials A2, d3,d*, ... (some
of them are shown in the diagram) connects two nonzero groups. Thus, E*® = E2.
Moreover, for every n, there is at most one nonzero group E;7 with p + g = n. This
implies a full result for the homology of SU(3):

AN
Z

o = N W
4

Z Z
01 2 3 45 6

o3
Fig. 81 The E>-term for the fibration SU(3) SN §3
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9
8|Z Z
7
6
S| Z Z
4
3|Z Z
2
1
0 Z

0123 45 6 78

. SUG)
Fig. 82 The E?-term for the fibration SU(4) ——> S’

Z forn =0,3,5,8
H,(SUQ3)) = T
(SUG) {O for all other n.

sU@3
Consider now the spectral sequence of the fibration SU(4) 4 S7. The diagram

of the E>-term is shown in Fig. 82.
The same arguments as before (they are usually called “dimension arguments”)
work, the differentials d2, d°, d*, . .. are all trivial, E*° = E2, and we find that

Z forn=0,3,5,7,8,10,12, 15,
H,(SU@) = { 0 for all other n.
At this point the hope that we can proceed with the dimension arguments and show
that E* = E? for spectral sequences of all our fibrations arises. However, it turns
out that the case n = 4 is the last case when the dimension arguments (and at the
moment we have no other arguments) are sufficient for computing the homology of
SU(n). Indeed, let us consider the initial term of the spectral sequence of the next

. SU@) -
fibration, SU(5) —— S~ , shown in Fig. 83.

The dimension arguments show that in this spectral sequence E?> = ... = E’ and
E'" = ... = E*. However, the transition from E° to E'* involves two potentially
nonzero differentials, dg,O:Z — 7 and dgj:Z — 7 (shown by arrows in our
diagram). Actually, these differentials are trivial, and so are all the differentials of
all the spectral sequences of the fibrations considered. But at the moment we have
no means to prove this; we will do so in Lecture 24, where we will show that

H,(SU®n)) = H (8> x 8 x ... x §"71).
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16

152 z
TN

13

12[Z z
11 N

10[z z
9

8 |z Z
7|z Z
6

5|z Z
A N

3|z Z
2

1

0z Z

01 23 456728910

. SU4)
Fig. 83 The E?-term for the fibration SU(5) ——> §°

[Notice that if n > 3, then the spaces SU(n) and S* x §° x ... x §2"~! are not
homeomorphic: They have different groups 4. The reader can try to prove this, but
it is better to postpone this until the next chapter.]

B: Homology of Loop Spaces

Theorem. Let X be a topological space (with a base point), and let the space X be
(n — 1)-connected, that is,

mX)=mX)=...=7,-1(X) =0.
Then
H,(X) = H_(QX) forr <2n-2,

and a similar isomorphism holds for homology and cohomology with arbitrary
coefficients.
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2n — 2

zeroes

n
n,n—1

NN NN

1%

-
7,0
n zeroes
2n,0

hOHlOlOgy zeroes

of QX
0]z Y %%
n r 2n

0 hom({logy
of X

Qx
Fig. 84 The spectral sequence of the fibration EX ——> X

Proof. We can restrict ourselves to the case when X is a CW complex; the transition
to the general case (which actually is not very important) may be based on the results
of Sects. 11.6 and 14.1. ax

Consider the spectral sequence of the fibration EX —— X from Example 2 in
Sect. 9.4: EX is the space of paths beginning at the base point of X (we will
constantly use this fibration in the future). Since the space EX is contractible, in
E® everything is trivial with the exception of Ef; = Z. By Hurewicz’s theorem,
H(X) = ... = H,—1(X) = 0, and hence there is nothing but zeroes in the
vertical strip in E?> formed by the Ist to (n — 1)st columns. Furthermore, since
(X)) = mi+1(X) (see Exercise 11 in Sect. 9.9), we also have H;(2X) = ... =
H,—>(22X) = 0, and the horizontal strip in E? formed by the Ist to (n—2)nd rows are
also filled with zeroes. A diagram for the E2-term (with some future differentials) is
shown in Fig. 84.

The corner cell contains the group Eﬁ .—1- The only potentially nonzero differen-
tial from this cell is directed to the (2n - 2)nd cell of the zeroth column; the only
differential directed to this cell comes from the 2nth cell in the zeroth row. Thus, the
groups below the (2n — 2)nd cell in the zeroth column and the groups to the left of
the 2nth cell of the zeroth row can be annihilated only by differentials acting from
the zeroth row to the zeroth column (and they must be annihilated since the E*°-
term is zero). This shows that (actually, for all r) the differential d:yoz E;,o — E6,r—1
must be an isomorphism, and if r < 2n — 2, then this isomorphism connects the
groups E;,o = Eio = H,(X) and E(’)’r_l = Eé’r_l = H,_;(2X), which are, thus,
isomorphic. This completes the proof.
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Remark. This proof actually provides for » < 2n — 2, a canonical isomorphism
(d:’o)_l:H,_l(QX) — H,(X). For r = 2n — 1, our arguments fail only because
of the differential ; ,_,:E), ,_, — E&zn_z, so we have an isomorphism d%:},o of
E¥=! ) = E3,_ o = Ha—1(X) onto the quotient of E2,,_, = Hz,—>(2X) over the
image of d),,_,. This gives us the right to consider (d%:},o)_l as an epimorphism

H2n—2(QX) ’_) H2n—1 (X)

We will prove in the next lecture that this isomorphism and this epimorphism are
actually induced by a certain continuous map, namely, by the map 7 (X): ¥ QX — X
acting by the formula tx(s, ) = s(f) (where s € QX and ¢ € I): The isomorphism
and the epimorphism can be described as

(rx) %

Hy (QX) = H(29X) 225 1 ().

We take the liberty of using this statement right now, before proving it.

C: A Generalization of Freudenthal’s Theorem

In Sect. 10.1, we proved Freudenthal’s theorem, which states that the suspension
homomorphism 7,(S") — 1 (8" s an isomorphism for r > 2n — 2 and an
epimorphism for » = 2n — 1. In that section we promised to prove later a similar
statement where S” is replaced by an arbitrary (n — 1)-connected CW complex. We
are going to do that now.

Theorem. Let X be an (n— 1)-connected CW complex. Then the suspension
homomorphism X: 7,(X) — mw,41(ZX) is an isomorphism if r < 2n — 2 and is
an epimorphism if r = 2n — 1.

Proof. In this proof, it will be convenient to use the base point version of the
definition of the suspension (with the segment x( x I contracted to a point). Besides
the map mx defined above (that definition works for the base point suspension), we
will consider the map ix: X — QXX, [tx(x)](r) = (x,1) [recall that the vertices of
the suspension, (x, 0) and (x, 1), are identified]. Obviously,

X 25 narx S vy

is the identity, idsx. According to the result of the preceding subsection, Sect. B (the
statement whose proof was postponed to Lecture 23), wxx induces an isomorphism
in homology of dimensions < 2n [if X is (n—1)-connected, then XX is n-connected];
hence, ¥ty induces an isomorphism in homology of dimensions < 2n, and tx
induces an isomorphism in homology of dimensions < 2n — 1 [the homomorphisms
(Xtx)s and (tx)« are the same up to a dimension shift by 1]. By Whitehead’s
theorem (Sect. 14.5), tx induces isomorphisms in homotopy groups of dimensions
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< 2n — 2 and an epimorphism in homotopy groups of dimension 2n — 1. Finally,
consider the homomorphism

(x) %

7 (X) — m,(QEX) = 7,41 (2X)

(where the last isomorphism arises from the homotopy sequence of the fibration
EY — Y, Y = XX, see Example 2 in Sect. 9.4).

Lemma. This homomorphism is just X: 7,.(X) — 7,41 (ZX).

This is proved by a direct comparison of the definitions. We leave the details to
the reader.

Remark 1. The proof given above does not use Freudenthal’s theorem as given in
Sect. 10.1. Thus, in particular, we get a new proof of that theorem.

Remark 2. The last results may serve as one more illustration of the Eckmann—Hilton
duality described in Lecture 4. The operations €2 and X are dual to each other. The
spaces X and XX have equal (co)homology groups (with a dimension shift by 1);
their homotopy groups are the same in “stable dimensions,” that is, in dimensions
less than twice the connectivity of X. On the other hand, X and QX have the same
homotopy groups (again, with a dimension shift), while their (co)homology groups
are the same in stable dimensions.

Lecture 23 Additional Properties of Spectral Sequences
of Fibrations

23.1 Continuous Maps and Homomorphisms
of Spectral Sequences

For simplicity, we begin with the case of homology with coefficients in Z. The
cases of homology and cohomology with arbitrary coefficients are absolutely similar
and do not even deserve separate consideration. Without saying this explicitly, we
assume below throughout this lecture that the fibrations considered are homologi-
cally simple and their bases and fibers are path connected. (The reader will decide
at every occasion whether this is really necessary.)

Let

p=X,CXoCX;C...CX,0=X_,CcX,CcX;C...cX

be two spaces with filtrations. For the corresponding spectral sequences, we will use

1 r r pr ! qr . / 3
the notations E}, . d;,, and 'E, ,'d}, . Let f:X — X’ be a continuous map such that

f(X,) C XI’, for every p. Such map induces, for all r, homomorphisms fy: C,(X) —
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C,(X") compatible with boundary operations and filtrations; it also induces, for all
r,p, q (including r = 00), homomorphisms

— ro.gr Ir
fe = pa* Epg = Epg
commuting with the differentials:
! qr roo__ r r
dﬁq o (f pq (f*)p—r-,q+r—1 ° dm‘

These homomorphisms are compatible with the statements of the Leray proposi-
tion in the best possible way:

M (fs [l,q:E},q N /E[iq is the same as
SxiHptg(Xp, Xp—1) = Hp+q(X[/,,X1/,_1)-

(2) The homomorphism (f*)[’,;[Ll is the homology homomorphism induced by the
homomorphism (fx);,, (compatible with the differentials  and ‘d).
(3) The map (f)*:D,+,=nEpy — ‘Epe is induced by the map

ptg=m
f*: Hm(X) - Hm(X/)

The proof of this is obvious.

All these properties of homomorphisms (f;s7),,, are briefly expressed in these
words: {(fx),,} is a homomorphism of the spectral sequence {E} .d, } into the
spectral sequence {'E,,,'d} } (see Fig. 85).

Mark one obvious but important property of homomorphisms of spectral
sequences: If for some r, the homomorphism E" — 'E" belonging to a
homomorphism between spectral sequences is an isomorphism, then so are all
homomorphisms E* — 'E* with s > r (including s = o00). Moreover, if two
homomorphisms between two spectral sequences coincide on E” for some r, then
they coincide on E* for all s > r.

q’

MAIN EXAMPLE. Let (E,B,F,p) and (E’,B’, F’, p’) be two homologically simple
fibrations with connected CW bases B,B’, and let f:E — E’ be a fiberwise

AN B I N
\d;,q\. \\\ N

N

Fig. 85 Homomorphism between spectral sequences
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continuous map. The latter means that there exists a continuous map g:B — B’
such that the diagram

is commutative. For every point x € B, the map f induces a map & of the fiber
p~!(x) into the fiber (p’)~'(g(x)), which, because of the homological simplicity,
induces homomorphisms /.: H,(F) — H,(F’) not depending on the choice of x.

By the cellular approximation theorem, the map g is homotopic to a cellular
map, and by the covering homotopy property, this homotopy (rather the homotopy
of p o g) may be lifted to a homotopy of the map f. The new map f is compatible
with the filtrations in E and E’, and we can assume that the maps f and g had these
properties from the very beginning. Then a homomorphism f. arises between the
spectral sequences of the two fibrations.

Proposition. (1) The homomorphism (f*)ﬁq: H,(B:H,(F)) — H,(B';H,(F))
coincides with the homomorphism induced by the maps g and h.

(2) Forr = 2 (including r = 00), the homomorphisms (f*);q do not depend on the
choices of the cellular approximation of g and the mapping f compatible with
filtrations.

Proof of Part (1) The proof of part (1) is left to the reader (who will need to use
the details of the construction of the isomorphism Elz,q >~ H,(B;H,(F))); part (2)
follows from part (1) in view of the preceding remark.

Corollary. Starting from the E*-term, the spectral sequence of a fibration does not

depend on the CW structure of the base.

Proof. 1f two fibrations differ only by a CW structure of the base B, we can apply
the proposition to a (possibly noncellular, but continuous) map idp.

Everything said in this section has obvious analogs for homology and coho-
mology with coefficients in an arbitrary Abelian group. The consideration of
homologically nonsimple fibrations here and further in this lecture is left to the
reader.

23.2 Zeroth Row and Zeroth Column

One can obtain important corollaries from the result of the previous section by
applying them to simplest maps between fibrations, namely, to the maps
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p C
E — | B F |—| F
l i ) and l l
p id p
id €
B — | B pt —_— B

At the E?-level, the induced homomorphisms of spectral sequences are schemat-
ically shown in Fig. 86.

The E2%-term of the fibration BL>B, as well as all the subsequent terms,
consists of one (zeroth) row which contains homology of B. The homomorphism
f2 is the identity on this row and isF trivial on the remaining (shadowed) part
of E2. Similarly, for the fibration F —— pt, every term starting from E? consists
of one (zeroth) column which contains homology of F, and homomorphism 2 is an
isomorphism on this column and zero elsewhere. Since all the differentials (of the
homological spectral sequence) directed at the groups in the zeroth row, as well as
all the differentials from the groups in the zeroth column, are trivial (see Fig. 87), the
groups E; ; and Ej, are, correspondingly, chains of subgroups and quotient groups:

2 3 4 .
EyDEyDEy,D...DEy

0>
Imd Imd

Im
4 00
E}, - Eg.

d
2 3
Eg, Eg,

There arise a monomorphism and an epimorphism
00 2 2 00
E — Ej and Ej, — Ej).

On the other hand, E(‘)’; is a subgroup of the group H,(E), and Es(‘)’ is a quotient group
of the group H, (E). Consider composed homomorphisms

H,(F) = Ho(B: Hy(F)) = E3, — E C Hy(E),
H,(E) — E3 C E2, = H,(B: Ho(F)) = H,(B).

Proposition. These homomorphisms coincide with the homology homomorphisms
induced by the inclusion F — E and the projection E — B.

homology of F'

2 and
s 72
zeroes —
zeroes
homology of B| homology of B

Fig. 86 The homomorphisms between the E2-terms
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0
~ qu = H,(F)

E;2)0 = Hp(B)

0

Fig. 87 Differentials at the zeroth row and the zeroth column

Indeed, these homomorphisms coincide with the homology maps induced by the
maps between the fibered spaces described in the beginning of this section.

Precisely the same statements hold for homology groups with coefficients in an
arbitrary Abelian group. In the cohomology case they take the following form. The
spectral sequence provides a monomorphism and an epimorphism

0q 0Oq 0 p0
El — E," and E,” — EL_.

On the other hand, Egg is a subgroup of H”(E; G) and Egg is a quotient group of
H4Y(E; G). There arise compositions

HP(B; G) = HP(B; H'(F; G)) = EY’ — E%) C HP(E; G),
HY(E; G) — E¢ C Ey! = H(B; H!(F; G)) = HY(F;G).

Proposition. These homomorphisms coincide with the cohomology homomor-
phisms induced by the projection E — B and the inclusion F — E.

23.3 Transgression

Consider differentials
m . pm m 0,m—1. 0,m—1 m0
dyo: Eno = Eg iy and &) ED — E;

of the homological and cohomological spectral sequences of a homologically simple
fibration (E, B, F, p) with connected B and F. As we noticed before, E;, and EB{”’_I
are subgroups of H,,(E; G) and H" ' (E; G), while Ey,,_, and E™ are quotients of
groups H,,— (F; G) and H"(E; G). Hence, our differentials have the form
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Of Hmfl(F) dm'o Of H7'L71(F) do’m_l
m! m
\ B, B0

% %,

Quotient % Eyr Subgroup % E0,m—1

Subgroup Quotient
of H,,(B) of H™(B)
Fig. 88 Transgression
subgroup of quotient of subgroup of quotient of
— and 1l — m
H,,(B;G) H,,_1(F;G) H™YF;G) H™(B;G)

If A,B are Abelian groups, then a homomorphism of a subgroup of A into
the quotient of B is called a partial multivalued homomorphism of A into B.
For partial multivalued homomorphisms A — B we will sometimes use the

notation A —I—l> B. Notice that partial multivalued homomorpjhisms always have
“inverses”: For a partial multivalued homomorphism A O C —— B/D, its inverse
is B/p~'Imf —— C/Kerf C A/Kerf (where p is the projection B — B/D). In
particular, the inverse to a usual homomorphism f: A — B is the partial multivalued
homomorphism f~': Imf — A/ Kerf.

Thus, our differentials are partial multivalued homomorphisms

H,(B;G) --> H,—(F; G) and H"'(F:; G) -->» H"(B; G).

These homomorphisms are called, respectively, homological and cohomological
transgression (see Fig. 88).

Elements of the domain of transgression are called transgressive. As far as we
know, this term is used only in the cohomology case.

Theorem. Homological and cohomological transgressions coincide, respectively,
with the following compositions:

) ! 0%
Hy(B:G) = Hy (B, pt: G) "2 Hy(E, F; G)—> H,_\(F; G),
5* oy —1

H"\(F; G) —— H™(E, F; G) 2> H"(B, pt; G) = H"(B; G).

Proof. We will consider only the case of homology and of G = Z; all other cases
are similar. We can assume that B has only one zero-dimensional cell. Elements
of the group E”, are represented by chains ¢ € C,(p~'B™) C C,(E) whose
boundaries belong to C,,—; (p™'(B%)) = C,,—(F), that is, by relative cycles of the
pair (p~'(B™), F). The identification of E™, with a subgroup of the group H,,(B) is
done by the map which assigns to the class of ¢ the homology class of the cycle
p#(c) of B. The differential d)), takes this element of £} into the element of Ef, |
represented by the cycle dc € C,,—; (F). This is our statement.
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23.4 Application: Three Exact Sequences

In Sect. 21.3, we encountered a situation when the information contained in a
spectral sequence may be presented by an exact sequence. We will demonstrate
in this section three more exact sequences which are equivalent to (or, at least, can
be derived from) a certain spectral sequence of a fibration. Notice that at least two of
these exact sequences had been discovered before the method of spectral sequences
appeared in algebraic topology.

A: Gysin’s Sequence

Let (E,B,S",p) be a homologically simple fibration with a spherical fiber (the
condition of homological simplicity is equivalent to the condition of orientability:
The fibers p~! (x) have orientations continuously depending on x € B). The E>-term
of the homological spectral sequence of this filtration consists of two identical
rows containing the homology of B (Fig. 89). Potentially nontrivial differentials
are "t EMTY — EMTL | thatis, H,,(B) — Hy—p—1(B).

m—n—1,n°
For every m, there are (at most) two nonzero groups E)7 with p + ¢ = m: EJ5 =
Kerd"#! and E° wn = Coker d;’:_lw; the second one is a subgroup of H,,(E), while

the first one is the corresponding quotient group. This can be written as a short exact
sequence,

0 — Cokerd!t! y — Hu(E) - Kerdd! — 0,

which is the same as a five-term exact sequence

n+1 1
dyt10 i

Hypi1(B) 5 Hyy(B) — H,\(E) H,(B) =25 Hyei1 (B).

Fig. 89 Spectral sequence of a fibration with a spherical fiber
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These five-term fragments may be merged into one infinite exact sequence,

D=

l *
s Hy (B) —2 Hyp(B) ——> Hop(E) 2> Ho(B) —— ...

which is called the (homological) Gysin sequence. A similar sequence exists for
homology with arbitrary coefficients.

EXERCISE 1. Prove that in the Gysin sequence, the homomorphism py is induced
by the projection p (essentially, this is contained in the proposition of Sect. 23.2),
the map £ (“lifting”) assigns to a homology class of a cycle in B the homology cycle
of its inverse image in E (in the smooth situation, when E and B are manifolds and p
is smooth, this is p'), and the map d is the ~-product with the primary characteristic
class C € H"(B; m,(S")) = H"(B;Z) (see Sect. 18.5; it may be reasonable to
postpone proving the last statement until Sect. 23.5 or the next lecture).

The cohomological Gysin sequence is defined in a similar way. It looks like this:

o L HH(BG) < H' (B G) | )
— s H"(E;G) <— H"(B; G) <— ...

EXERCISE 2. Prove that in the cohomological Gysin sequence, the homomorphism
p* is induced by the projection p, the map £ is p,) in the smooth situation, and the

map d is the —-product with C € H""(B; Z).

B: Wang’s Sequence

Let ¢ = (E,S", F,p) be a fibration with a spherical base. (If n > 2, this fibration
is automatically homologically simple; if n = 1, then we need to assume that
the fibration is homologically simple, but in this case, the construction presented
here requires some clarification.) The E2-term of the homological spectral sequence
consists of two identical columns, zeroth and nth; each contains homology of F. The
groups in these columns are connected with differentials d" (see Fig. 90).

Precisely as in Gysin’s case, we get a short exact sequence

0 — Cokerd,,,_,+, — H,(E) — Kerd,,,_, — 0

nm—n

and then develop it into a long exact sequence

ix

L Hyn 1 (F) =5 Hyy(F) =5 H,(E) —— Hyy o(F) ——> ..

This is the homological Wang sequence. There is also the cohomological Wang
sequence, which is constructed similarly and has the following form:
< H"(F G) e H(F; G) )
< H"(E; G) «— H""(F;G) «+— ...
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\\ |
™ +qg=m-+1
Hm(F) pT4q
Hm—n+1(F)

n N
n,m—n+1 A

lpta=m

0 n

Fig. 90 Spectral sequence of a fibration with a spherical base

(it goes without saying that in the homological case we can also insert into all
homology groups of Wang’s sequence an arbitrary coefficient group G).

EXERCISE 3. Prove the following interpretation of the homomorphisms of the
homological Wang sequence. The map i« is just i, where i is the inclusion map
F — E. The operation r can be described as the “intersection” of a cycle of E with
F; in the smooth situation, r can be described as i,. To obtain a geometric description
for d, consider the map h: D" — D"/S"~' = §" (this map can be described as a
characteristic map for the n-dimensional cell of §”). The fibration 2*§ with base D"
must be trivial. Thus, the canonical map A*§ — & provides a map D" X F — E
which covers h. In particular, it restricts to the map h:S"''x F — F, and d is
o — Z*([S"_l] x &) (you need to prove this).

EXERCISE 4. State and prove all the similar facts for the cohomological Wang
sequence.

C: Serre’s Sequence

Let us suppose now that the fibration (E, B, F, p) with a cellular base B has an
additional property: For some n,

no(B) =m(B) = ... = m,—1(B) =0,
7T0(F) = 7[1(F) =...= Hn_z(F) =0.

Then the E%-term of the homological spectral sequence has the form familiar to us
from Sect. 22.3.B (see Fig. 91).
Since E;, = 0 for p < nand for ¢ < n— 1 (with the exception of Eg, = Z), the

same is true of El?fl’, and, for m < 2n — 1, there is an exact sequence

0 — Eg° — Hy(E) - ESg — 0.
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Hon—(F) % zeroes
H,,_1(F)
H, 1(F)
dgn,()
zeroes
homology
of F ~ .
e S 7
0 H,(B) Hy(B)  [Han(B)
homology I B
OfB 271,—1( )

Fig. 91 The spectral sequence which implies the Serre exact sequence

But for m > 2n — 2, Exy = Ker[d), ,: H,(B) — H,—1(F)] and for m > 2n — 3,
E = Coker[dt| ;: Hyt1(B) — H,(F)], which shows that for m > 2n — 3 the
short exact sequence above is equivalent to a five-term exact sequence

H,+(B) - H,(F) - H,(E) - H,(B) — H,_(F).

In addition, EG5,_, is a quotient of Hy,—»(F) (which is factorized successively over
the images of two differentials). All this leads to the following long exact sequence
(the homomorphisms involved are known to us: They are p., i, where i is the
inclusion map F — E, and the transgression t, which is, within this sequence, a
genuine, not partial and multivalued, homomorphism):

i* Px T i*
Hop—o(F) —> Hyp—2(E) — Hay—2(B) —> Hop—3(F) —>
2 Hy(B) —— Hyy (F) —= H,_(E) — 0.
This exact sequence is called the Serre exact sequence. It has a strong resemblance

to the homotopy sequence of the same fibration, but unlike the homotopy sequence,
it is finite (exists only in the “stable” dimensions).
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EXERCISE 5. Prove that forn — 1 < m < 2n — 2, the diagram

T (F) — 100(E) 2 70,0(B) ——> 701 (F)

H(F) == H,(E) 2> H,\(B) —— H,,_(F).

formed by homotopy and Serre sequences and Hurewicz homomorphisms, is
commutative.

If the homology of E is trivial (at least up to the dimension 2n — 2), the Serre
exact sequence implies isomorphisms between homologies of B and F with a shift
of dimensions by 1; we already observed this phenomenon in Sect. 22.3.B. It should
also be noted that the Serre sequence admits the transition to the homology with
coefficients in an arbitrary Abelian group G and also has the following cohomology
version:

H*2(F; G) «— H>"2(E; G) </— H*(B; G) < —
HY3(F,G)«— ... < H'B:G) < —

H'™\(F;G) <— H"\(E) < 0.

We conclude this section by proving a statement whose proof was promised in
Sec. 22.3.B (and which was used in Sect. 22.3.C in the proof of a generalization of
Freudenthal’s theorem). Here we will prove an even stronger statement.

Proposition. Transgression H,(X; G) --» H,—1(QX; G) is, for every m, a partial
multivalued homomorphism inverse to the homomorphism

(rx) %

Hy 1 (QX; G) —— Ho(£QX: G) 225 H,.(X: G).

Proof. Consider an auxiliary map ¢: C2X — EX (where C denotes the cone) which
assigns to a loop s: I — X and a number ¢ € [ the “shortened loop” u > s(fu). (This
map illustrates the fact that the fiber X is contractible in EX.) In addition to that,
we consider the map 73: CQX — X defined (like x) by the formula (s, ) — s(1)
and form a diagram

(mx )«

Hyp 1 (QX) ——— Hp(SQX) — > H,,(X)

()
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(we skip the notations for the coefficient group). Since the diagram is commutative,
we see that the homomorphism (7x)« o X: H,—1(2X) — H,(X) is inverse to the
transgression dx o (p«)~': H,,(X) — H,,—1(2X); this is precisely what we need.

D: An Application of the Serre Sequence: A Factorization
Theorem for Relative Homotopy Groups

We know from Chap. 2 that relative homology groups, at least, for “good pairs,” can
be interpreted as absolute homology groups of the “quotient space™: H,(X,A) =
ﬁq(X /A); the isomorphism is induced by the projection map (X,A) — (X/A, pt).
However, there is no similar result for homotopy groups. Now, we can state that the
factorization theorem for homotopy groups holds in “stable dimensions”; that is, the
following holds.

Proposition. Suppose that for a CW pair (X, A), the homotopy groups ,(X), 7,(A)
are trivial for r < n. Then the homomorphism

7y(X,A) > 7 (X/A)
is an isomorphism for ¢ < 2n — 2 and is an epimorphism for ¢ = 2n — 2.

Proof. Recall that the inclusion map i:A — X is homotopy equivalent to a (Serre)
fibration p:A — X (this was _done in a more general form in Sect. 9.7). The
construction runs as follows. A is the space of paths s:/ — X with s(0) € A.
The homotopy equivalence A — A is established by the map s > 5(0). The map
p:A — X is defined by the formula p(s) = s(1); this map p:A — X is a Serre
fibration. The fiber F of this fibration is the space of paths s with s(0) being a fixed
point a € X; we assume below that a € A C X. It follows from the homotopy
sequence of this fibration that 7z, (F) = 0 forr <n — 1.

Now notice that the projection X — X /A takes every path from F into a loop of
X/A, which yields a map F — Q(X/A), or, equivalently, XF — X/A. This map
induces homomorphisms H, | (F) — H,(X/A). Consider a diagram composed of
the homological sequence of the pair (X,A