
Graduate Texts in Mathematics

Anatoly Fomenko
Dmitry Fuchs

Homotopical 
Topology
Second Edition



Graduate Texts in Mathematics 273



Graduate Texts in Mathematics

Series Editors:

Sheldon Axler
San Francisco State University, San Francisco, CA, USA

Kenneth Ribet
University of California, Berkeley, CA, USA

Advisory Board:

Alejandro Adem, University of British Columbia
David Eisenbud, University of California, Berkeley & MSRI
Irene M. Gamba, The University of Texas at Austin
J.F. Jardine, University of Western Ontario
Jeffrey C. Lagarias, University of Michigan
Ken Ono, Emory University
Jeremy Quastel, University of Toronto
Fadil Santosa, University of Minnesota
Barry Simon, California Institute of Technology

Graduate Texts in Mathematics bridge the gap between passive study and
creative understanding, offering graduate-level introductions to advanced topics
in mathematics. The volumes are carefully written as teaching aids and highlight
characteristic features of the theory. Although these books are frequently used as
textbooks in graduate courses, they are also suitable for individual study.

More information about this series at http://www.springer.com/series/136

http://www.springer.com/series/136


Anatoly Fomenko • Dmitry Fuchs

Homotopical Topology

Second Edition

123



Anatoly Fomenko
Department of Mathematics

and Mechanics
Moscow State University
Moscow, Russia

Dmitry Fuchs
Department of Mathematics
University of California
Davis, CA, USA

ISSN 0072-5285 ISSN 2197-5612 (electronic)
Graduate Texts in Mathematics
ISBN 978-3-319-23487-8 ISBN 978-3-319-23488-5 (eBook)
DOI 10.1007/978-3-319-23488-5

Library of Congress Control Number: 2015958884

© Moscow University Press 1969 (First edition in Russian)
© Akadémiai Kiadó 1989 (First edition in English)
© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland



Preface

The book we offer to the reader was conceived as a comprehensive course of
homotopical topology, starting with the most elementary notions, such as paths,
homotopies, and products of spaces, and ending with the most advanced topics,
such as the Adams spectral sequence and K-theory. The history of homotopical, or
algebraic, topology is short but full of sharp turns and breathtaking events, and this
book seeks to follow this history as it unfolded.

It is fair to say that homotopical topology began with Analysis Situs by Henri
Poincaré (1895). Poincaré showed that global analytic properties of functions,
vector fields, and differential forms are greatly influenced by homotopic properties
of the relevant domains of definition. Poincaré’s methods were developed, in the
half-century that followed Analysis Situs, by a constellation of great topologists
which included such figures as James Alexander, Heinz Hopf, Andrey Kolmogorov,
Hassler Whitney, and Lev Pontryagin. Gradually, it became clear that the homo-
topical properties of domains which were singled out by Poincaré could be best
understood in the form of groups and rings associated, in a homotopy invariant way,
with a topological space which has to be “good” from the geometric point of view,
like smooth manifolds or triangulations. Thus, Analysis Situs became algebraic
topology.

Still the algebra used by the algebraic topology of that epoch was very elemen-
tary: It did not go far beyond the classification of finitely generated Abelian groups
(with some exceptions, however, such as Van Kampen’s theorem about fundamental
groups). More advanced algebra (which, actually, was not developed by algebraists
of that time and had to be started from scratch by topologists under the name
“homological algebra,” aka “abstract nonsense”) invaded topology, which made
algebraic topology truly algebraic. This happened in the late 1940s and early 1950s.
The leading item of this new algebra appeared in the form of a “spectral sequence.”
The true role of a spectral sequence in topology was discovered mainly by Jean-
Pierre Serre (who was greatly influenced by older representatives of the French
school of mathematics, mostly by Henri Cartan, Armand Borel, and Jean Leray).

v



vi Preface

The impact of spectral sequences on algebraic topology was tremendous: Many
major problems of topology, both solved and unsolved, became exercises for
students.

The progress of the new algebraic topology was very impressive but short-lived:
As early as in the late 1950s, the results became less and less interesting, and the
proofs became more and more involved. The last big achievement of the algebraic
topology which was started by Serre was the Adams spectral sequence, which, in a
sense, absorbed all major notions and methods of contemporary algebraic topology.
Using his spectral sequence, J. Frank Adams was able to prove the famous Frobenius
conjecture (the dimension of a real division algebra must be 1, 2, 4, or 8); it was also
used by René Thom in his seminal work, becoming the starting point of the so-called
cobordism theory.

Reviving ailing algebraic topology required strong means, and such means were
found in the newly developed K-theory. Created by J. Frank Adams, Michael
Atiyah, Raoul Bott, and Friedrich Hirzebruch, K-theory (which may be regarded
as a branch of the broader “algebraic K-theory”) had applications which were
unthinkable from the viewpoint of “classical” algebraic topology. It is sufficient
to say that the Frobenius conjecture was reduced, via K-theory, to the following
question: For which positive integers n is 3n � 1 divisible by 2n? (Answer: for
n D 1; 2; and 4.)

Developing K-theory was more or less completed in the mid-1960s. Certainly,
it was not the end of algebraic topology. Very important results were obtained
later; some of them, belonging to Sergei Novikov, Victor Buchstaber, Alexander
Mishchenko, James Becker, and Daniel Gottlieb, are discussed in the last chapter of
this book. Many excellent mathematicians continue to work in algebraic topology.
Still, one can say that, from the students’ point of view, algebraic topology can now
be seen as a completed domain, and it is possible to study it from the beginning to the
end. (We can add that this is not only possible, but also highly advisable: Algebraic
topology provides a necessary background for geometry, analysis, mathematical
physics, etc.) This book is intended to help the reader achieve this goal.

The book consists of an introduction and six chapters. The introduction intro-
duces the most often used topological spaces (from spheres to the Cayley projective
plane) and major operations over topological spaces (products, bouquets, sus-
pensions, etc.). The chapter titles are as follows: “Homotopy”; “Homology”;
“Spectral Sequences of Fibrations”; “Cohomology Operations”; “The Adams Spec-
tral Sequence”; and “K-theory and Other Extraordinary Theories.” Chapters are
divided into parts called “Lectures,” which are numerated throughout the book from
Lecture 1 to Lecture 44. Lectures are divided into sections numerated with Arabic
numbers, and some sections are divided into subsections labeled with capital letters
of the Roman alphabet. For example, Lecture 13 consists of Sects. 13.1, 13.2, 13.3,
: : : ,13.11, and Sect. 13.8 consists of the subsections A;B; : : : ;E (which are referred
to, in further parts of the book, as Sects. 13.8.A, 13.8.B, and so on).

To present this huge material in one volume of moderate size, we had to be very
selective in presenting details of proofs. Many proofs in this book are algebraic,
and they often involve routine verifications of independence of the result of a
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construction of some arbitrary choices within this construction, of exactness of this
or that sequence, of group or ring axioms for this or that addition or multiplication.
These verifications are necessary, but they often repeat each other, and if included in
the book, they will only lead to excessively increasing the volume and irritating the
reader, who will probably skip them. On the other hand, we did not want to follow
some authors of books who skip details of proofs which are inconvenient, for this
or that reason, for an honest presentation. We did our best to avoid this pattern: If a
part of a proof is left to the reader as an exercise, then we are sure that this exercise
should not be difficult for somebody who has consciously absorbed the preceding
material.

As should be clear from the preceding sentences, the book contains many
exercises; actually, there are approximately 500 of them. They are numerated within
each lecture. They may be serve the usual purposes of exercises: Instructors can
use them for homework and tests, while readers can solve them to check their
understanding or to get some additional information. But at least some of them
must be regarded as a necessary part of the course; in some (not very numerous)
cases we will make references to exercises from preceding sections or lectures. We
hope that the reader will appreciate this style. The most visible consequence of this
approach to exercises is that they are not concentrated in one special section (which
is common for many textbooks) but rather scattered throughout every lecture.

Being a part of geometry, homotopic topology requires, for its understanding,
a lot of graphic material. Our book contains more than 100 drawings (“figures”),
which are supposed to clarify definitions, theorems, or proofs. But the book also
contains a chain of drawings that are pieces of art rather than rigorous mathematical
figures. These pictures were drawn by A. Fomenko; some of them were displayed
at various exhibitions. All of them are supposed to present not the rigorous
mathematical meaning, but rather the spirit and emotional contents of notions and
results of homotopical topology. They are located in the appropriate places in the
book. A short explanation for these pictures can be found at the end of the book.

We owe our gratitude to many people. The first, mimeographed, version of the
beginning of this book (which roughly corresponded to Chap. 1 and a considerable
part of Chap. 2) was written in collaboration with Victor Gutenmacher; we are
deeply grateful to him for his help. The idea of formally publishing this book was
suggested to us by Sergei Novikov. We are grateful to him for this suggestion. Some
improvements to the book were suggested by several students of the University
of California; we are grateful to all of them, especially to Colin Hagemeyer. The
whole idea of publishing this book under the auspices of Springer belonged to Boris
Khesin and Anton Zorich; we thank them heartily. And the last but, maybe, the most
important thanks go to the brilliant team of editors at Springer, especially to Eugene
Ha and Jay Popham. It is the result of their work that the book looks as attractive as
it does.

Moscow, Russia Anatoly Fomenko
Davis, CA, USA Dmitry Fuchs
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Introduction: The Most Important
Topological Spaces

There exists a longstanding tradition to begin a course of homotopic (or other)
topology with an introductory lecture dedicated to the point set topology which
studies topological spaces in a maximal generality. We violate this tradition,
assuming that the reader either already has some knowledge of it, or is ready to
experience small inconveniences stemming from an insufficient knowledge of it, or
will look through some not too boring text (the first section of the book by Fuchs
and Rokhlin [40] will do). Anyhow, we acquire the right to use without explanations
terms like “Hausdorff space,” or “compact space,” or “countable base space,” and so
on, and also use (explicitly or implicitly) facts like “a bijective continuous map of a
compact space onto a Hausdorff space is a homeomorphism,” or “a compact subset
of a Hausdorff space is closed.” As to the introductory part of the book, we dedicate
it not to the general notion of a topological space, but rather to creating a list of the
most frequently used topological spaces which will serve as a source of examples
and motivations, and also will participate in various geometric constructions. First,
we will get acquainted with the most important, “classical” spaces, and then we will
describe major constructions involving topological spaces, which will amplify our
supply of topological spaces and will have a great importance of their own.

Lecture 1 Classical Spaces

1.1 Euclidean Spaces, Spheres, and Balls

The notations Rn and C
n will have the usual meaning. The spaces Cn and R

2n are
identified by the correspondence .x1 C iy1; : : : ; xn C iyn/ $ .x1; y1; : : : ; xn; yn/.
The sphere Sn and the ball Dn are defined, respectively, as the unit sphere and the
unit ball centered at the origin in spaces RnC1 and R

n; thus, the sphere Sn�1 is the
boundary of the ball Dn. The symbol R1 always means the union (inductive limit)
of the chain R

1 � R
2 � R

3 � : : : ; thus, R1 is the set of sequences .x1; x2; x3; : : : /

1



2 Introduction: The Most Important Topological Spaces

of real numbers with only finitely many nonzero terms an. The topology in R
1 is

introduced by the rule: A set F � R
1 is closed if and only if all the intersections

F\Rn are closed in respective spaces Rn. The symbols C1; S1;D1 have a similar
sense.

EXERCISE 1. Show that a sequence

.a1; 0; 0; : : : /; .0; a2; 0; : : : /; : : : ; .0; : : : ; 0
„ ƒ‚ …

n�1
; an; 0; : : : /; : : :

has a limit if and only if it has only finitely many nonzero terms.

EXERCISE 2. Show that none of the spaces R1; S1;D1 is metrizable.

Remark. There are other definitions of R
1 in the literature. For example,

(1) the “Hilbert space” `2 is the set of all real sequences .x1; x2; x3; : : : /
for which the series

P

x2i converges; the topology is defined by the metric
d2..x1; x2; x3; : : : /; .y1; y2; y3; : : : // D P

.yi � xi/
2; (2) the Tychonoff space T

is the set of all real sequences .x1; x2; x3; : : : / with the base of topology formed by
the sets f.x1; x2; x3; : : : / 2 T j .x1; : : : ; xn/ 2 Ug for all n and all open U � R

n

[a sequence Xi D .xi1; xi2; xi3; : : : / in T converges to X D .x1; x2; x3; : : : / 2 T if and
only if limi!1 xin D xn for every n].

EXERCISE 3. Which of the inclusion maps R1 ! `2; R
1 ! T; `2 ! T (if any)

are continuous? Which of them (if any) are homeomorphisms onto their images?

EXERCISE 4. Is the space T metrizable?

EXERCISE 5. The unit cube of R1; `2;T is defined by the condition 0 � xi � 1 for
i D 1; 2; 3; : : : . Which of these cubes (if any) are compact?

1.2 Real Projective Spaces

The real n-dimensional projective space RPn is defined as the set of all straight
lines in R

nC1 passing through the origin equipped with the topology determined by
the angular metric: The distance between two lines is defined as the angle between
them.

EXERCISE 6. Prove that the real projective line is homeomorphic to the circle S1.

The coordinates .x0; x1; : : : ; xn/ of the directing vector of the line (defined,
obviously, up to a proportionality) are called the homogeneous coordinates of a
point of a projective space; the common notation is .x0 W x1 W � � � W xn/. The points
with xi ¤ 0 form the ith principal affine chart. The correspondence .x0 W x1 W � � � W
xn/$ .x0=xi; : : : ; xi�1=xi:xiC1=xi; : : : ; xn=xi/ yields a homeomorphism of the affine
chart onto R

n and equips the former with coordinates.
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If we assign to a point of Sn � R
nC1 a line passing through this point and the

origin, we get a continuous map Sn ! RPn. This map sends two different points of
Sn into the same point of RPn if and only if these two points are antipodal (opposite).
Thus, every point of RPn has, with respect to this map, precisely two preimages
(the map itself is a twofold covering; see Lecture 7). Having this map in mind,
we say that RPn is obtained from Sn by identifying all pairs of opposite points.
(This statement has the following precise sense. Suppose that, in a topological
space X, there is some chosen set of pairs of points, subject to identification. After
the identification, there arise a set Y and a map X ! Y. We introduce a topology
in Y declaring a subset of Y open if its inverse image in X is open; this is the
weakest of all topologies with respect to which the map X ! Y is continuous1.) The
upper hemisphere of Sn (composed of points with a nonnegative last coordinate) is
canonically homeomorphic to the ball Dn (the homeomorphism is established by
an orthogonal projection of the upper hemisphere onto the equatorial ball). The
restriction of the last map Sn ! RPn to the upper hemisphere is, therefore, a map
Dn ! RPn. This map sends to the same point only opposite points of the boundary
sphere Sn�1 � Dn. Thus, RPn may also be obtained from Dn by identifying all pairs
of opposite points on the boundary sphere.

The infinite-dimensional real projective space RP1 may be defined by any of
these three constructions. We can also put RP1 DSi RPi.

1.3 Complex and Quaternionic Projective Spaces

If in the definition of RPn, we replace RnC1 by C
nC1 and real lines by complex lines,

we will obtain a definition of a complex projective space CPn. (The angular metric
still makes sense.)

Like RPn, the space CPn is covered by n C 1 affine charts. If we assign to a
point of S2nC1 � C

nC1 a complex line passing through this point and the origin,
we will obtain a continuous map S2nC1 ! CPn which sends to the same point the
whole circle f.z0w; : : : ; znw/g, where .z0; : : : ; zn/ is a fixed point of S2nC1 and w runs
through the circle jwj D 1. One can say that CPn is obtained from the sphere S2nC1
by collapsing each such circle to one point. If we restrict the map S2nC1 ! CPn

to the ball D2n embedded into S2nC1 as the set of points .z0; : : : ; zn/ 2 S2nC1 whose
last coordinate is real and nonnegative, we get a description of CPn as obtained from
D2n by the same identification which is performed only on the boundary fzn D 0g
of D2n.

1In mathematics, the terms “weak topology” and “strong topology” do not have any commonly
accepted meaning. We call a topology weaker if it has more open sets, that is, fewer limit points
(for us, the weakest topology is the discrete topology). Informally speaking, we call a topology
weak if the attraction forces between the points are weak. The opposite terminology considers
points as repelling each other; from this point of view, the discrete topology is the strongest.
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A similar construction is possible if the field C is further replaced by the algebra
(skew field) H of quaternions. We get a definition of a quaternionic projective space
HPn. One should notice, however, that , because of noncommutativity of the algebra
H, one has to distinguish between left and right lines. Considering HPn, one should
choose one of these two possibilities and consider, say, left lines.

EXERCISE 7. Prove that projective lines CP1 and HP1 are homeomorphic, respec-
tively, to S2 and S4.

There are also obvious definitions of CP1 and HP1.

1.4 Cayley Projective Plane

The reader may find it unfair that quaternionic projective spaces occupy in our list
of classical spaces such an honorable place: next to spheres and balls. However, in
reality, not only quaternionic projective spaces, but even such an exotic object as the
Cayley projective plane are very important for topology.

Let us recall the definition of Cayley numbers or octonions. Suppose that in some
space R

n two operations are defined: multiplication, a; b 7! ab, and conjugation,
a 7! a. Then we define similar operations in R

2n D R
n � R

n by the formulas

.a; b/ � .c; d/ D .ac � bd; bcC ad/; .a; b/ D .a;�b/:

Starting from the usual multiplication and identical conjugation .a D a/ in
R
1 D R, we get (bilinear) multiplications and conjugations in R

2;R4;R8;R16; : : : .
The multiplication in R

2 is the usual multiplication of complex numbers. The
multiplication in R

4 is the multiplication of quaternions. It is bilinear, associative,
and admits a unique division (that is, the equation ax D b has a unique solution if
a ¤ 0) but is not commutative. The multiplication in R

8 is still worse: Not only it is
not commutative, but also it is not associative [although the associativity relations
involving only two letters, such as .ab/a D a.ba/; .ab/b D ab2; .ab/a�1 D
a.ba�1/, etc., hold]. Still this multiplication possesses a unique division. The algebra
R
8 with this multiplication is called the Cayley algebra or octonion algebra and is

denoted as Ca. Much later in this book we will consider (and prove) the famous
Frobenius conjecture: If the space R

n possesses a bilinear multiplication with a
unique division, then n D 1; 2; 4, or 8. (By the way, it is not right that even in these
dimensions any bilinear multiplication with unique division is isomorphic to one
of multiplications described above; there are, for example, nonassociative bilinear
multiplications with a unique division in R

4.)
The nonassociativity of the Cayley multiplication impedes defining any lines in

the space Can with n � 3. Indeed, if we define a line `x through x 2 C
n and the

origin as the set ftx j t 2 Cag, then the line `t0x through a point of this line and the
origin will not, in general, coincide with `x (see Fig. 1).
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{tx}

{t(t0x)}

Fig. 1 Cayley lines in Cayley plane

For this reason, there is no satisfactory definition of a Cayley projective space
(we will see later that spaces with expectable properties of Cayley projective spaces
do not exist by purely topological reasons). Still, it remains possible to define a
Cayley projective plane. For this purpose, we consider not whole lines in Ca3, but
rather traces of these lines on the union T of three planes: x D 1; y D 1; z D
1 (x; y, and z denote the “Cayley coordinates” in Ca3). More precisely: A point
.a0; b0; c0/ 2 Ca3�0 is called collinear to the point .a; b; c/ 2 Ca3�0 if there exists
a t 2 Ca�0 such that a0 D ta; b0 D tb; c0 D tc. The collinearity relation is reflective
and symmetric but, in general, not transitive. However, it becomes transitive if we
restrict ourselves to points in T. For example, if .c; 1; d/ D t.1; a; b/ and .e; f ; 1/ D
u.c; 1; d/, then t D c D a�1 D db�1; u D ec�1 D f D d�1, and .tu/.1; a; b/ D
..ec�1/c; .fa�1/a; .d�1.db�1//b/ D .e; f ; 1/. Moreover, a point of any of the three
planes is not collinear to any point of the same plane and collinear to no more than
one point of any of the other two planes. The space obtained from T by identifying
all collinear points is CaP2. Each of the three planes in T is mapped into CaP2

without folding; these three subsets of CaP2 form a covering similar to the covering
by affine charts.

EXERCISE 8. What will we get if we identify all pairs of collinear points in Ca3�0?

1.5 Grassmann Manifolds

This is a generalization of projective spaces. A real Grassmann manifold G.n; k/ is
defined as the space of all k-dimensional subspaces of the space R

n.2 The topology
in G.n; k/ may be described as induced by the embedding G.n; k/ ! End.Rn/

which assigns to a P 2 G.n; k/ the orthogonal projection R
n ! P combined with

the inclusion map P ! R
n; a more convenient description of the same topology

arises from a realization of G.n; k/ as a subspace of a projective space; see ahead.

2There exists another system of notation where the space which we denote as G.n; k/ is denoted as
G.n � k; k/.
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Obviously, G.n; k/ D G.n; n � k/ and G.n; 1/ D RPn�1. There are also obvious
embeddings G.n; k/ ! G.n C 1; k/ (arising from the inclusion R

n � R
nC1) and

G.n; k/ ! G.n C 1; k C 1/ (the space R
n and its k-dimensional subspaces are

multiplied by a line).
An analog of an affine chart in a Grassmann manifold (which is a generalization

of an affine chart in a projective space) is defined in the following way. Choose a
sequence 1 � i1 < � � � < ik � n and consider the subset Gi1;:::;ik .n; k/ of G.n; k/
composed of subspaces whose projection onto the space R

k
i1;:::;ik

� R
n of i1st, : : : ,

ikth coordinate axes is nondegenerate. If P 2 G.n; k/ belongs to this part, then P
may be considered a graph of a linear map of the space R

k
i1;:::;ik

into its orthogonal
complement. Thus, the points of Gi1;:::;ik .n; k/ are characterized by k � .n � k/
matrices, that is, by sets of k.n � k/ real numbers. This defines a homeomorphism
of Gi1;:::;ik .n; k/ onto R

k.n�k/ and yields a coordinate system in Gi1;:::;ik .n; k/.
It is also possible to introduce a coordinate system in the whole space G.n; k/.

For a P 2 G.n; k/ choose a basis in P � R
n. Let .xi1; : : : ; xin/; i D 1; : : : ; k; be

coordinates of vectors of this basis. For 1 � j1 < � � � < jk � n, put

�j1;:::;jk .P/ D det

2

4

x1j1 : : : xijk

: : : : : : : : :

xkj1 : : : xkjk

3

5 :

The numbers �j1;:::;jk .P/ are called Plücker coordinates of P; they are not all zero,
and if we change the basis in P, they all will be multiplied by the same number (the
determinant of the transition matrix to the new basis). Thus, Plücker coordinates of
P may be regarded as homogeneous coordinates of a certain point of RP.

n
k/�1. We

get an embedding G.n; k/! RP.
n
k/�1. Certainly, the image of this embedding does

not cover the whole space RP.
n
k/�1; that is, there are some relations between the

Plücker coordinates of a point in G.n; k/. For example, the six Plücker coordinates
�12; �13; �14; �23; �24; �34 of a point in G.4; 2/ satisfy the relation �12�34 � �13�24 C
�14�23 D 0, and no other relations. Thus, G.4; 2/ is homeomorphic to a hypersurface
in RP5 defined by the equation of degree 2 given above.

All this can be repeated, with obvious modifications, in the complex and
quaternionic cases; the Grassmann manifolds arising are denoted as CG.n; k/ and
HG.n; k/. One more version of Grassmann manifolds arises as the set of oriented
k-dimensional subspaces of Rn; the corresponding notation is GC.n; k/.

There are obvious complex and quaternionic versions of the equalities G.n; k/ D
G.n; n�k/;G.n; 1/ D RPn�1; also, GC.n; k/ D GC.n; n�k/ and GC.n; 1/ D Sn�1.
The embeddings G.n; k/ ! G.nC 1; k/ and G.n; k/ ! G.nC 1; kC 1/ also have
complex, quaternionic, and oriented analogs.

Notice also that there are Plücker coordinates in CG.n; k/ and GC.n; k/. In
CG.n; k/ they are defined up to a complex proportionality and yield an embedding
CG.n; k/! CP.

n
k/�1. In GC.n; k/ they are defined up to a multiplication by positive

numbers and give an embedding GC.n; k/! S.
n
k/�1.
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Finally, the infinite-dimensional version of Grassmann manifolds is provided by
the Grassmann space G.1; k/, which is the union of the chain G.k C 1; k/ �
G.k C 2; k/ � G.k C 3; k/ � : : : , and G.1;1/, which is the union of the
chain G.1; k/ � G.1; k C 1/ � G.1; k C 2/ � : : : . There are also spaces
CG.1; k/; CG.1;1/; HG.1; k/; HG.1;1/; GC.1; k/; GC.1;1/.

1.6 Flag Manifolds

This is a generalization of Grassmann manifolds. Let there be given a sequence
of integers 1 � k1 < � � � < ks < n. A flag of type .k1; : : : ; ks/ in
R

n is a chain V1 � � � � � Vs of subspaces of the space R
n such that

dim Vi D ki. The set of flags has a natural topology [for example, as a subset
of G.n; k1/ � � � � � G.n; ks/] and becomes a “flag manifold” F.nI k1; : : : ; ks/.
The versions CF.nI k1; : : : ; ks/; HF.nI k1; : : : ; ks/; and FC.nI k1; : : : ; ks/ of this
definition are obvious. The spaces F.nI 1; 2; : : : ; n � 1/; CF.nI 1; 2; : : : ; n � 1/;
HF.nI 1; 2; : : : ; n � 1/; and FC.nI 1; 2; : : : ; n � 1/ are called (understandably)
manifolds of full flags.

1.7 Compact Classical Groups

The compact classical groups include the group O.n/ of orthogonal n � n matrices,
the group U.n/ of unitary n � n matrices, the groups SO.n/ and SU.n/ of matrices
from O.n/ and U.n/ with determinant 1, and the group Sp.n/ of quaternionic
matrices of unitary transformations of Hn.

Notice that the group SO.2/ of rotations of the plane around the origin is homeo-
morphic to a circle. The group SO.3/ is homeomorphic to RP3; the homeomorphism
assigns to counterclockwise rotation by an angle ˛ � � of R3 around an oriented
axis ` a point of ` at the distance ˛=� from the origin (in the positive direction).
Since the rotation by the angle � around an oriented axis is not different from the
rotation by the angle� around the same axis with the opposite orientation, the image
of this map is the unit ball in R

3 with the opposite points on the boundary identified,
that is, RP3. Another construction of (the same) homeomorphism RP3 ! SO.3/
assigns to a line ` � R

4 D H the transformation p 7! qpq�1 of the space R
3 of

purely imaginary quaternions where 0 ¤ q 2 ` (we leave the details to the reader).

The group SU.2/ is homeomorphic to S3: It consists of matrices

�

˛ ˇ

�ˇ ˛
�

, where

j˛j2Cjˇj2 D 1, that is, .˛; ˇ/ 2 S3 � C
2. Finally, the groups U.1/ and Sp.1/, which

are isomorphic, respectively, to the groups SO.2/ and SU.2/, are homeomorphic to
S1 and S3.
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1.8 Stiefel Manifolds

The spaces of orthonormal k-frames in R
n (topologized as a subset of Rn�� � ��Rn)

is called the Stiefel manifold and is denoted as V.n; k/. This space has complex and
quaternionic analogs: CV.n; k/ and HV.n; k/. Stiefel manifolds generalize classical
groups: V.n; n/ D O.n/;CV.n; n/ D U.n/;HV.n; n/ D Sp.n/;V.n; n � 1/ D
SO.n/;CV.n; n � 1/ D SU.n/. Notice also that V.n; 1/ D Sn�1;CV.n; 1/ D
S2n�1;HV.n; 1/ D S4n�1.

1.9 Classical Actions of Classical Groups in Classical Spaces

The action of the group O.n/ in R
n gives rise to its actions in Sn�1; Dn; G.n; k/; and

V.n; k/. The subgroup SO.n/ of O.n/ acts also in GC.n; k/. There is also an action
of O.k/ in V.n; k/: The matrices from O.k/ are applied to the vectors of the frame.
All these actions have complex and quaternionic analogs.

The actions of O.n/ in Sn�1;G.n; k/; and V.n; k/ are transitive. The same is
true for the complex and quaternionic analogs of these actions, and also for the
action of SO.n/ in GC.n; k/. Thus, almost all classical spaces described above are
homogeneous spaces of compact classical groups; that is, they can be described as
quotient spaces of these groups over some subgroups. Here are these descriptions:

Sn�1 D O.n/=O.n� 1/ D SO.n/=SO.n� 1/I
S2n�1 D U.n/=U.n� 1/ D SU.n/=SU.n� 1/I
S4n�1 D Sp.n/=Sp.n� 1/I

G.n; k/ D O.n/=O.k/ �O.n � k/I
CG.n; k/ D U.n/=U.k/�U.n � k/I
HG.n; k/ D Sp.n/=Sp.k/� Sp.n� k/I
GC.n; k/ D SO.n/=SO.k/� SO.n � k/I

V.n; k/ D O.n/=O.n� k/ D .if n > k/ SO.n/=SO.n� k/I
CV.n; k/ D U.n/=U.n� k/ D .if n > k/ SU.n/=SU.n� k/I
HV.n; k/ D Sp.n/=Sp.n� k/:

(O.k/ � O.n � k/ is a subgroup of O.n/ consisting of block diagonal matrices with
k � k and .n � k/ � .n � k/ blocks; U.k/ � U.n � k/, etc., have a similar sense).
Similarly, for flag manifolds,

F.nI k1; : : : ; ks/ D O.n/=O.k1/ � O.k2 � k1/ � � � � � O.ks � ks�1/ �O.n � ks/;

etc. In particular, the manifold of full flags, CF.nI 1; 2; : : : ; n � 1/, is the quotient
space of the group U.n/ over its “maximal torus” U.1/ � � � � � U.1/.
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The action of the group O.k/ in V.n; k/, as well as its complex and quaternionic
analogs, are free. With respect to these actions,

V.n; k/=O.k/ D G.n; k/; V.n; k/=SO.k/ D GC.n; k/;
CV.n; k/=U.k/ D CG.n; k/; HV.n; k/=Sp.k/ D HG.n; k/:

1.10 Classical Surfaces

The most classical of classical surfaces are the two-dimensional sphere S2, the
projective plane RP2, and the Klein bottle, which, as is well known, can be realized
in R

3 only as a surface with self-intersection (see Fig. 2).
A similar self-intersecting surface representation, although not this broadly

known, exists for a projective plane (it is called Boy’s surface, by the name of the
discoverer). It is shown as the top left drawing in Fig. 3. To make this drawing
easier to understand, we show the sections of the surface by seven horizontal planes
numerated from the top to the bottom (right drawing in Fig. 3). Notice that there is a
saddle point between Sections 2 and 3, and a section by some horizontal plane has
a triple self-intersection point. This triple point is also visible in Fig. 3. There is a
theorem that a self-intersecting surface in space representing the projective plane
must have at least one triple self-intersection point.

There is a surface with a more complicated singularity called a cross cap also
representing the projective plane. It is shown as the bottom left drawing in Fig. 3.

We also count as classical all surfaces obtained from the sphere, the projective
plane, and the Klein bottle by drilling some (finite) number of (small, round) holes
and attaching some (finite) number of handles.

EXERCISE 9. Prove that the projective plane with one hole is homeomorphic to the
Möbius band (thus, the Möbius band is a “classical surface”).

Fig. 2 Klein bottle
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Fig. 3 Projective plane

EXERCISE 10. Prove that a surface which is obtained by joining two Klein bottles
by a tube is homeomorphic to a Klein bottle with a handle.

EXERCISE 11. Prove that a surface which is obtained by joining a Klein bottle by
a tube with a projective plane is homeomorphic to a projective plane with a handle.

EXERCISE 12. Prove that a surface which is obtained by joining two projective
planes by a tube is homeomorphic to a Klein bottle.

EXERCISE 13. Deduce from Exercises 9–12 that a surface obtained by joining two
classical surfaces by a tube is again a classical surface.

There is also a classical procedure of constructing classical surfaces from
polygons (closed planar polygonal domains) by gluing together several pairs of
sides. The procedure is as follows. We take a planar polygon, for example, a regular
n-gon, and then form k pairs of 2k .� n/ its sides. Furnish each of these 2k sides
by an orientation (shown by an arrow). After that, we attach to each other the two
sides of each pair in a way compatible with the orientations. (Sometimes, one can
make these attachments using glue, but more often it can be done only mentally, as
described in Sect. 1.2.)

EXERCISE 14. In Fig. 4, there are six polygons; some sides have numbers and
arrows, and every number is repeated twice. Prove that after attaching the sides
with equal numbers compatible with the arrows, we obtain the following classical
surfaces: (a) an annulus (that is, a sphere with two holes); (b) a Möbius band; (c) a
torus (that is, a sphere with one handle); (d) a Klein bottle; (e) a projective plane;
(f) a sphere with two handles.
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Fig. 5 For Exercises 15 and 16

EXERCISE 15. Show that if one inserts into a polygon four sides labeled and
oriented as shown in Fig. 5a, then a handle is added to the surface.

EXERCISE 16. Show that if one inserts into a polygon two sides labeled and
oriented as shown in Fig. 5b, then a projective plane joined to the surface by a
tube is added (in other words, a hole is drilled in the surface, and a Möbius band is
attached by its boundary to the boundary of the circle).

EXERCISE 17. Show that any classical surface can be obtained from a polygon by
a procedure described above.

EXERCISE 18. Is it true that the procedure described above always yields a classical
surface?
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A torus (a sphere with one handle) can be constructed in R
3 as a surface of

revolution generated by revolving a circle around an axis in the plane of this circle
but disjoint from it. The curves, which are the positions of the circle at intermediate
moments of time, are called meridians of the torus, and the trajectories of points
of the circle are called parallels of the torus. According to this, circular coordinates
arise on the torus: The latitude is the angle measured counterclockwise from some
fixed parallel (for example, from the longest one) and the longitude is the angle
measured counterclockwise along a parallel from some fixed meridian (for example,
from the initial position of the circle).

EXERCISE 19. Factorizing the torus by the relation .';  / � .' C �; C �/ (that
is, by identifying points symmetric with respect to the symmetry center of the torus)
provides a Klein bottle.

EXERCISE 20. Factorizing the torus by the relation .';  / � . ; '/ provides a
Möbius band.

In conclusion, we will calculate “the genus of complex curves” (it is useful to
know the term “genus” as it is used in algebraic geometry: The genus of a sphere
with handles is the number of handles).

EXERCISE 21. Prove that the subset of the complex projective plane CP2 consisting
of points whose homogeneous coordinates satisfy the equation xn

0 C xn
1 C xn

2 D 0 is

homeomorphic to the sphere with
.n � 1/.n� 2/

2
handles.

If you cannot do this exercise now, you can return to it later.
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Lecture 2 Basic Operations over Topological Spaces

2.1 Product Spaces

Recall that the product X � Y of two sets X and Y is the set of pairs .x; y/ where
x 2 X and y 2 Y. If X and Y are topological spaces, then X � Y acquires a canonical
topology: The base of open sets in X � Y is formed by products U � V where U is
open in X and V is open in Y [so lim.xi; yi/ D .x; y/ if and only if lim xi D x and
lim yi D y]. The product of three or more topological spaces is defined in a similar
way.

We have already encountered product spaces in Sect. 1.9: The subgroup of the
group O.n/ denoted here as O.k/�O.n� k/ as a topological space is the product of
O.k/ and O.n � k/; the same is true for other products mentioned in Sect. 1.9.

Notice also that the torus is homeomorphic to the product S1 � S1 (see its
description at the end of Sect. 1.10). For this reason, the product S1� � � �� S1 is also
called a torus (or an n-dimensional torus). Let us mention a less obvious product
presentation: The Grassmann manifold GC.4; 2/ is homeomorphic to S2 � S2.
Indeed, the Plücker coordinates .�12; �13; �14; �23; �24; �34/ in GC.4; 2/ (see Sect. 1.5)
are defined up to a multiplication by a positive (because it is GC) number, not all
equal to 0, and satisfy the relation �12�34 � �13�24 C �14�23 D 0. We can assume
that the sum of the squares of these numbers is 1 (then we do not need to admit the
multiplication by positive numbers). Make a coordinate change:

�12 D x1 C x4
2

; �13 D x2 C x5
2

; �14 D x5 C x6
2

;

�23 D x5 � x6
2

; �24 D x5 � x2
2

; �34 D x1 � x4
2

:

Then our equation becomes

x21 C x22 C x23 � x24 � x25 � x26 D 0

and the condition “the sum of the squares is 1” becomes

x21 C x22 C x23 C x24 C x25 C x26 D 2:

Together, these equations show that

x21 C x22 C x23 D 1 and x24 C x25 C x26 D 1;

which is the system of equations of S2 � S2 � R
3 � R

3 D R
6.

EXERCISE 1. Show that the complex quadric, that is, the subspace of the complex
projective space CP3 defined in the homogeneous coordinates .z0 W z1 W z2 W z3/ by
the equation z20 C z21 C z22 C z23 D 0, is homeomorphic to S2 � S2.
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EXERCISE 2. Show that the group SO.4/ is homeomorphic to S3 � SO.3/, that is,
to S3 � RP3.

Remark. One could expect that the group SU.3/ is homeomorphic to S5�S3; indeed,
SU.3/=SU.2/D S5. Thus, there is a mapping of SU.3/ onto S5 such that the inverse
image of every point of S5 is homeomorphic to SU.2/, that is, to S3, or, as people
say, SU.3/ is fibered over S5 with the fiber S3. However, SU.3/ is not homeomorphic
to S5 � S3; we will not be able to explain this before Chap. 4.

Notice in conclusion that there are continuous projections of X � Y onto X and
Y, and a continuous mapping of a third space, Z, into X � Y is the same as a pair
of maps, Z ! X and Z ! Y (the composition of the map Z ! X � Y with the
projections).

2.2 Cylinders, Cones, and Suspensions

For a topological space X and its subspace A, we denote as X=A the space obtained
from X by collapsing A to a point; we call X=A the quotient space of X by A.

We always denote the segment Œ0; 1� as I. The product ZX D X � I is called the
cylinder over X; the subsets X � 0 and X � 1 of the cylinder (which are copies of X)
are called its (upper and lower) bases. Smashing the upper base of the cylinder into
one point gives the cone CX over X; thus, CX D .X � I/=.X � 1/ [sometimes, it is
more convenient to define CX as CX D .X � I/=.X � 0/; see Exercise 11 ahead].
The base of the cylinder not affected by the factorization is called the base of the
cone, and the point of CX obtained from the other base of the cylinder is called the
vertex of the cone (Fig. 6).

X X

X

Fig. 6 Cylinder, cone, and suspension
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If we further factorize the cone over its base, we get the suspension †X over X.

The suspension has two vertices. The image of the “middle section”

�

X � 1
2

�

�
X � I is called the base of the suspension. (This term can be justified by the fact
that the suspension may be thought of as the union of two cones attached to each
other by the bases; these bases become the base of the suspension.) The points of
the cone and of the suspension will still be denoted as .x; t/; x 2 X; 0 � t � 1 with
the understanding that in the cone .x0; 1/ D .x00; 1/ for any x0; x00 2 X, and in the
suspension .x0; 1/ D .x00; 1/ and .x0; 0/ D .x00; 0/ for any x0; x00 2 X. If we need to
specify that a point .x; t/ lies in the cone or in the suspension, we may write .x; t/C
or .x; t/†.

EXERCISE 3. Show that the cone and the suspension over Sn are, accordingly, DnC1
and SnC1.

EXERCISE 4. Prove that no closed (that is, without holes) classical surface except
S2 is homeomorphic to a suspension over any other space.

2.3 Attachings: Cylinders and Cones of Maps

Let X;Y be topological spaces, let A be a subspace of Y, and let 'WA ! X be a
continuous map. Take the sum X

`

Y (that is, a space composed of X and Y as of
two unrelated parts) and make an identification: We attach every point a 2 A � Y
to '.a/ 2 X. The resulting space is denoted as X [' Y, and the procedure for its
construction described above is called attaching Y to X by means of the map '.

We distinguish two special cases of this construction. Let f WX ! Y be an
arbitrary continuous map. The space obtained by attaching the cylinder X � I to

Y by means of the map X � 0 D X
f�!Y is called the cylinder of the map f and is

denoted as Cyl.f /. The space obtained by attaching the cone CX to Y by means of
the same map is called the cone of the map f and is denoted as Con.f /. (See Fig. 7.)
The cylinder of f contains both X and Y; the cone of f contains Y.

X

Y Y

Fig. 7 Cylinder and cone of a map
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EXERCISE 5. Show that the cone of a canonical map Sn ! RPn (see Sect. 1.2) is
homeomorphic to RPnC1. In particular, the cone of a double-rotation map of a circle
onto itself [defined by the formula .cos �; sin �/ 7! .cos 2�; sin 2�/, or, in complex
coordinates, z 7! z2] is homeomorphic to RP2.

EXERCISE 6. Formulate and prove the complex and quaternionic analogs of this
statement.

2.4 Joins

The join X 	 Y of topological spaces X and Y can be conveniently described as the
union of segments joining every point of X with every point of Y.

EXERCISE 7. Show that the join of two (closed) segments containing two skew
lines in R

3 is a tetrahedron.

The formal definition of the join is as follows: We take the product X � Y � I
(we think of x � y � I as a segment joining x 2 X with y 2 Y) and then
make a factorization: We glue together the points .x; y0; 0/; .x; y00; 0/ for every
x 2 X; y0; y00 2 Y and the points .x0; y; 1/; .x00; y; 1/ for every x0; x00 2 X; y 2 Y
(meaning that the segments joining x with y0 and joining x with y00 have a common
beginning, and the segments joining x0 with y and joining x00 with y have a common
endpoint). The “horizontal sections” X � Y � t are copies of X � Y for 0 < t < 1;
the section X � Y � 0 is collapsed into X and the section X � Y � 1 is collapsed into
Y. This “stack of cards” structure of the join is shown in Fig. 8.

EXERCISE 8. Show that the join of a space X and a one-point space (D the zero-
dimensional ball D0) is the same as the cone CX over X.

EXERCISE 9. Show that the join of a space X and a two-point space (D the zero-
dimensional sphere S0) is the same as the suspension†X over X.

Y

X

X ´ Y

X ´ Y

X ´ Y

Fig. 8 The “horizontal sections” of a join
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EXERCISE 10. Show that the join Sm 	 Sn is homeomorphic to SmCnC1 (in view of
Exercise 9, this is a generalization of Exercise 3).

Remark. The stack of cards structure of the join Sm 	 Sn has an interesting relation
to the geometry of the sphere SmCnC1. Namely, for 0 � t � 1, consider the subset

Qt D f.x1; : : : ; xmCnC1/ j x21 C � � � C x2mC1 D t; x2mC2 C : : : x2mCnC2 D 1 � tg

of the sphere SmCnC1. If 0 < t < 1, then Qt is the product of the spheres Sm and Sn

(of radii
p

t and
p
1 � t). On the other hand, Q0 is Sn and Q1 is Sm. This construction

is especially useful in the case when m D n D 1; it shows that the three-dimensional
sphere S3 is made out of a one-parameter family of tori and two circles. (We will
return to it in Sect. 10.5.)

For sufficiently good spaces (say, Hausdorff and locally compact), the join
operation is associative: The joins .X 	 Y/	 Z and X 	 .Y 	 Z/ are homeomorphic to
the “triple join” X 	 Y 	 Z, which is defined as the union of triangles with vertices
in X;Y, and Z3. (Formally, this triple join is defined as a result of an appropriate
factorization in the product X � Y � Z � � where � is a triangle.) For a better
understanding of this matter, we can use another construction of the join (see the
next exercise).

EXERCISE 11. For a space X, define a “height function” hWCX ! Œ0; 1� by the
formula h.x; t/C D 1 � t (so the height of the vertex is 0, and the height of the
base is 1). Consider the alternative definition of the join: Xb	Y D f.�; �/ 2 CX �
CY j h.�/C h.�/ D 1g: This new operation is obviously associative [an n-fold join
X1b	 : : :b	Xn is defined as f.�1; : : : ; �n/ 2 CX1�� � ��CXn j h.�1/C� � �Ch.�n/ D 1g].
Prove that for good spaces (for example, for Hausdorff locally compact spaces) the
operationsb	 and 	 are the same. (This will imply the associativity of the usual join
for good spaces.)

2.5 Mapping Spaces: Spaces of Paths and Loops

The set C.X;Y/ of all continuous maps of a space X into a space Y is furnished
by compact–open topology (which can be thought of as the topology of uniform
convergency on compact sets). The base of open sets of this topology consists of
sets of the form U.K;O/, where K is a compact subset of X and O is an open subset
of Y; the set U.K;O/ consists of continuous maps f WX ! Y such that f .K/ � O.

EXERCISE 12. If X is the one-point space, then C.X;Y/ D Y; if X is a discrete
space of n points, then C.X;Y/ D Y �� � ��Y (n factors). [The last equality provides
a reason for an alternate notation for the mapping space: C.X;Y/ D YX .]

3For “bad spaces” this homeomorphism does not hold and the join operation is not associative.
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Let X;Y;Z be topological spaces. The formula

ff WC.X;Y/g 7! f.x; y/ 7! Œf .x/�.y/g

defines a map C.X;C.Y;Z//! C.X � Y;Z/.

EXERCISE 13. Show that if the spaces X and Y are Hausdorff and locally compact,
then this is a homeomorphism. [In this case we can write .ZY/X D ZX�Y ; this
formula provides an additional justification for the notation YX and is called the
exponential law.]

A path in the space X is defined as a continuous map I ! X. The points s.0/
and s.1/ are called the beginning and the end of the path sW I ! X. A path whose
end coincides with the beginning is called a loop. The following subspaces of the
space E.X/ D XI of paths are considered: the space E.XI x0; x1/ of paths with the
beginning x0 2 X and the end x1 2 X; the space E.X; x0/ of paths beginning at x0
(with the end not fixed); the space �.X; x0/ of loops of X with the beginning (and
end) x0.

EXERCISE 14. Prove that the space E.SnI x0; x1/ does not depend (up to a home-
omorphism) on x0 and x1 (in particular, on these two points being the same or
different). By what spaces can Sn be replaced in this exercise?

EXERCISE 15. Construct a natural (see the footnote on Exercise 18) homeomor-
phism between C.X;E.YI y0; y1// and the subspace of C.†X;Y/ consisting of maps
taking the upper and lower vertices of †X, respectively, into y0 and y1.

By the way, a topological space, for which every two points can be joined by
a path, is called path connected. This notion is slightly different from the notion of
connectedness used in point set topology: A space is connected if it does not contain
proper subsets which are both open and closed.

EXERCISE 16. Prove that every path connected space is connected, but the converse
is false: Prove the first and find an example confirming the second (the fans of the

function sin
1

x
will not experience any difficulty with such an example).

Still for the spaces which are mostly used in topology, like manifolds or
CW complexes, the two notions of connectedness coincide. For this reason we
sometimes will omit the prefix “path” and speak of connected spaces when we mean
path connected spaces.

2.6 Operations over Base Point Spaces

Topologists often have to consider topological spaces with base points, that is, to
assume that for every space a base point is selected and all maps considered take
base points to base points; different choices of a base point in the same topological
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space yield different base point spaces. The transition to base point spaces leads to
various modifications of operations considered above. Sometimes the modification
consists only in a choice of a base point in the result of a construction. For example,
the base point of the product X � Y of spaces X and Y with the base points x0 and
y0 is chosen as .x0; y0/. Sometimes, the modification affects the construction itself.
For example, the cone over a space X with a base point x0 is obtained from the usual
cone CX by collapsing the segment x0 � I to a point which is chosen for the base
point of the modified cone; the latter may be denoted C.X; x0/ (if it is not clear from
the context that the construction involves a base point). Suspensions and joins are
modified in a similar way (in the join the segment joining the base points is collapsed
to a point), and the images of segments collapsed are taken for the base points; if
necessary, the notations†.X; x0/ and .X; x0/	 .Y; y0/ are used. Cylinders and cones
of maps (which are supposed to take base points into base points) are modified in a
similar way.

EXERCISE 17. Show that the homeomorphisms CSn D DnC1; †Sn D SnC1; Sm 	
Sn D SmCnC1 hold after the modifications described above if we consider spheres
and balls as spaces with base points [which is always assumed to be .1; 0; : : : ; 0/].

The mapping space is reduced to the space of maps taking the base point into
the base point; the base point of the mapping space is chosen as the constant map
with the value at the base point. For a base point space X D .X; x0/ the path space
EX is defined as the space E.X; x0/ of paths beginning at x0, and the loop space�X
is defined as the space �.X; x0/ of loops beginning (and ending) at x0; the constant
path and the constant loop become the base points of EX and �X.

EXERCISE 18. For base point spaces X;Y, construct a homeomorphism
C.†X;Y/ D C.X; �Y/ that is natural with respect to X and Y.4

4The words “natural with respect to X and Y” may mean “defined for all X and Y in a unified
way,” but it is possible to attach to them a more formal sense. Namely, if X0; Y0 are other base
point spaces, then for every (base point–preserving) map 'W X0 ! X;  W Y ! Y0 there arises a
commutative diagram

C.†X; Y/ ��! C.X; �Y/
?

?

?

?

y

?

?

?

?

y

C.†X0; Y0/ ��! C.X0; �Y0/

where the horizontal arrows denote the homeomorphisms above, and vertical arrows denote maps
induced by the given maps ';  . [In detail: The left vertical arrow takes an f W†X ! Y to the
map †X0 ! Y0 acting by the formula .x0; t/† 7!  .f .'.x0/; t/†/; the right vertical arrow takes
a gW X ! �Y into the map X0 ! �Y0 acting by the formula x0 7! ft 7!  .g.'.x0//.t//g.]
Actually, it is useful to keep in mind that all our constructions are “natural” in the sense that they
can be applied not only to spaces, but also to maps which should act in an appropriate direction; in
algebra, this phenomenon is described by the word functor.
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Fig. 9 The bouquet of two circles

In conclusion, we will describe two operations which exist only for base point
spaces. The bouquet (or wedge) of two base point spaces, X and Y, is obtained from
their disjoint union by merging their base points. For example, the bouquet of two
circles is “the figure eight” (Fig. 9). The notation for the bouquet: .X; x0/ _ .Y; y0/
or X _ Y.

Alternatively, one can define the bouquet X _ Y as the subspace of the product
X�Y composed of points .x; y/ for which x D x0 or y D y0. The quotient space (see
Sect. 2.2) X#Y D .X � Y/=.X _ Y/ is called the smash product or tensor product5

of X and Y. The base points in X _ Y and X#Y are obvious.

EXERCISE 19. Show that Sm#Sn D SmCn.

EXERCISE 20. For a base point space X, construct a natural (with respect to X)
homeomorphism†X D X#S1.

5In category theory, there exists a general notion of a tensor product; the definition of a smash
product matches the definition of the tensor product for the category of base point topological
spaces.



Chapter 1
Homotopy

Lecture 3 Homotopy and Homotopy Equivalence

3.1 The Definition of a Homotopy

Let X and Y be topological spaces. Continuous maps f ; gWX ! Y are called
homotopic (f � g) if there exists a family of maps htWX ! Y; t 2 I such that
(1) h0 D f ; h1 D g; (2) the map HWX � I ! Y; H.x; t/ D ht.x/, is continuous.
[Condition (2) reflects the requirement that ht depends “continuously” on t.] The
map H (or, sometimes, the family ht) is called a homotopy joining f and g.

It is obvious that the homotopy relation for maps is reflexive, symmetric, and
transitive.

Example. All continuous maps of an arbitrary space X into the segment I are
homotopic to each other: A homotopy htWX ! I joining continuous maps
f ; gWX ! I is defined by the formula ht.x/ D .1 � t/f .x/ C tg.x/. Here I can be
replaced by any convex subset of any space R

n or R1, in particular, by the whole
spaces Rn or R1.

3.2 The Sets �.X;Y/

The equivalence classes for the homotopy relation in C.X;Y/ are called homotopy
classes. The set of homotopy classes in C.X;Y/ is denoted as �.X;Y/.

Example 1. The set �.X; I/ consists (for every X) of one element.

Example 2. The set �.	;Y/ (where 	 denotes a one-point space) is the set of path
components (maximal path connected components) of Y.
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Obviously, the set �.X;Y/ can be regarded as the set of path components
of C.X;Y/.

Let X;X0;Y;Y 0 be topological spaces, and let 'WX0 ! X and  WY ! Y 0 be
continuous maps. Obviously, for continuous maps f ; gWX ! Y, f � g ) f ı ' �
g ı' and f � g)  ı f �  ı g. Thus, the operations ı' and  ı can be applied to
homotopy classes of maps X ! Y, which gives the maps '�W�.X; y/ ! �.X0;Y/
and  �W�.X;Y/! �.X;Y 0/.

EXERCISE 1. Prove the relations .'1 ı '2/� D '�
2 ı '�

1 ; . 1 ı  2/� D  1� ı  2�,
and '� ı  � D  � ı '� (we leave to the reader the work of determining the exact
meaning of the notations in these equalities).

3.3 Homotopy Equivalence

We will give three definitions of this notion.

Definition 1. The spaces X;Y are called homotopy equivalent (X � Y) if there exist
continuous maps f WX ! Y and gWY ! X such that the compositions g ı f WX ! X
and f ı gWY ! Y are homotopic to the identity maps idXWX ! X and idY WY ! Y.

In this situation, the maps f and g are called homotopy equivalences homotopy
inverse to each other.

Remark. If the conditions g ı f � idX; f ı g � idY are replaced by conditions
g ı f D idX; f ı g D idY , then mutually homotopy inverse homotopy equivalences
f ; g become mutually inverse homeomorphisms. Having this in mind, we can say
that homotopy equivalences are homotopy versions of homeomorphisms.

Definition 2. X � Y if there exists a way to define for every space Z a bijective map
˛Z W�.Y;Z/! �.X;Z/ such that for any continuous map  WZ ! W the diagram

�.X;Z/
˛Z

 �� �.Y;Z/
?

?

?

?

y

 �

?

?

?

?

y

 �

�.X;W/
˛W

 �� �.Y;W/

is commutative (that is, ˛W ı  � D  � ı ˛Z).

Definition 3. X � Y if there exists a way to define for every space Z a bijective map
ˇZW�.Z;X/! �.Z;Y/ such that for any continuous map 'WZ ! W the diagram
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�.Z;X/
ˇZ��! �.Z;Y/

x

?

?

?

?

'�

x

?

?

?

?

'�

�.W;X/
ˇW��! �.W;Y/

is commutative (that is, ˇZ ı '� D '� ı ˇW ).

Theorem. Definitions 1, 2, and 3 are equivalent.

Proof. Let us prove the equivalence of Definitions 1 and 2. Assume that X � Y
in the sense of Definition 2. Then there is a bijection ˛Y W�.X;Y/ ! �.Y;Y/, and
we take for f WX ! Y any representative of the homotopy class .˛Y /ŒidY � (where the
square brackets mean the transition from a map to its homotopy class). Also, there is
a bijection ˛X W�.Y;X/! �.X;X/, and we take for gWY ! X any representative of
the homotopy class .˛X/�1ŒidX�. Consider the diagram in Definition 2 for  being
gWY ! X and then for  being f WX ! Y:

�.X;Y/
˛Y

 �� �.Y;Y/
?

?

?

?

y

g�

?

?

?

?

y

g�

�.X;X/
˛X

 �� �.Y;X/

;

�.X;X/
˛X

 �� �.Y;X/
?

?

?

?

y

f�

?

?

?

?

y

f�

�.X;Y/
˛Y

 �� �.Y;Y/

:

From the first diagram, g� ı ˛Y D ˛X ı g�. Apply this to ŒidY �:

g� ı ˛Y ŒidY � D g�Œf � D Œg ı f �;
˛X ı g�ŒidY � D ˛X Œg� D ŒidX�:

Thus, Œgı f � D ŒidX�; that is, gı f � idX . From the second diagram, f� ı˛X D ˛Y ı f�,
or .˛Y/�1 ı f� D f� ı .˛X/�1. Apply the last equality to ŒidX�:

.˛Y/�1 ı f�ŒidX � D .˛Y/�1Œf � D ŒidY �;

f� ı .˛X/�1ŒidX � D f�Œg� D Œf ı g�:

Thus, Œf ı g� D ŒidY �; that is, f ı g � idY . We see that X � Y in the sense of
Definition 1.

Now let us assume that X � Y in the sense of Definition 1. Then there exist
continuous maps f WX ! Y; gWY ! X such that g ı f � idX; f ı g � idY . For an
arbitrary Z, let ˛Z D f �W�.Y;Z/ ! �.X;Z/. This is a bijection: The inverse map
is g�. Indeed, g� ı f � D .f ı g/� D .idY/

� D id�.Y;Z/ and f � ı g� D .g ı f /� D
.idX/

� D id�.X;Z/. Also, for any  WZ ! W the diagram
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�.X;Z/
f �

 �� �.Y;Z/
?

?

?

?

y

 �

?

?

?

?

y

 �

�.X;W/
f �

 �� �.Y;W/

is commutative. Indeed, for an hWY ! Z,  � ı f �Œh� D  �Œh ı f � D Œ ı h ı f � and
f � ı  �Œh� D f �Œ ı h� D Œ ı h ı f � (a reader who did not skip Exercise 1 may be
familiar with this argumentation). Thus, X � Y in the sense of Definition 2.

The equivalence of Definitions 1 and 3 is checked precisely in the same way, and
we leave it to the reader.

It is obvious that the relation of homotopy equivalence is reflexive, symmetric,
and transitive. A class of homotopy equivalent spaces is called a homotopy type.

EXERCISE 2. Prove that a space that is homotopy equivalent to a path connected
space is path connected.

An example of nonhomeomorphic homotopy equivalent spaces: X is a circle and
Y is an annulus. One can take for f WX ! Y the inclusion of X into Y as the outer
boundary circle and put g D f �1 ı hWY ! X, where h is the radial projection of
the annulus onto the outer boundary circle (see Fig. 10). The homotopy relations
g ı f � idX ; f ı g � idY are obvious.

A space X is called contractible if the identity map idXWX ! X is homotopic to
a constant map taking the whole space X to one point.

EXERCISE 3. Prove that a space is contractible if and only if it is homotopy
equivalent to a one-point space.

EXERCISE 4. Prove that the cone over any (nonempty) space is contractible.

EXERCISE 5. Prove that the space E.X; x0/ is contractible for any space X and any
point x0 2 X.

X Y
h

h

h

h
h

h

f

f

f

f

Fig. 10 A homotopy equivalence
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EXERCISE 6. Prove that the cylinder of any continuous map X ! Y is homotopy
equivalent to Y.

EXERCISE 7. Prove that if X � Y, then †X � †Y.

EXERCISE 8. The previous statement is called the homotopy invariance of the
operation of suspension. Prove that the operations of product, join, mapping spaces,
path and loop spaces are homotopy invariant in a similar sense.

3.4 Retracts and Deformation Retracts

A subspace A of a space X is called a retract of X if there is a continuous map
rWX ! X (“retraction”) such that r.X/ D A and r.a/ D a for every a 2 A. For
example, any point of a topological space is a retract of this space, but the union
of the two endpoints of a segment is not a retract of this segment (the intermediate
value theorem for continuous functions provides a reason for that). The boundary
circle of a disk, and, more generally, Sn�1 � Dn are not retracts; but at the moment
we do not have tools to prove that.

EXERCISE 9. Show that a retract of a path connected space is path connected.

EXERCISE 10. Prove that the bases of a cylinder are its retracts.

EXERCISE 11. Prove that the base of a cone CX is a retract of CX if and only if X
is contractible.

If a retraction r W X ! X of X onto A is homotopic to the identity idXWX ! X,
then A is called a deformation retract of X. If a homotopy joining r with idX may be
made fixed on A [that is, Ft.a/ D a for all t 2 I; a 2 A], then A is called a strong
deformation retract of X.

Obviously, a deformation retract of X is homotopy equivalent to X. Moreover, A
is a deformation retract of X if and only if the inclusion map A! X is a homotopy
equivalence (compare the example of a homotopy equivalence given above). Thus,
the notion of a deformation retract is essentially not new for us. This cannot be
stated regarding the notion of a strong deformation retract, but, as we will see later,
the difference between deformation retracts and strong deformation retracts arises
only in really pathological cases.

EXERCISE 12. A point is a deformation retract of a space X if and only if X is
contractible.

EXERCISE 13. Show an example of a deformation retract which is not a strong
deformation retract. (It is reasonable to regard this exercise as a sequel of the
preceding exercise.)

In conclusion, we exhibit a pair of homotopy equivalent spaces of which neither
is a deformation retract of the other one.
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∼

Fig. 11 Homotopy equivalence with no deformation retraction

The two spaces shown in Fig. 11 (a pair of mutually tangent circles and an
ellipse with a diametrical segment) are homotopy equivalent since they both are
deformation retracts of an elliptical domain with two circular holes; but neither of
them is homeomorphic to a deformation retract of the other one.

3.5 An Example of a Homotopy Invariant:
The Lusternik–Schnirelmann Category

We say that a subspace A of a topological space X is contractible in X if the inclusion
map A ! X is homotopic to a constant map A ! X. It is clear that if A is
contractible (in our usual sense; see Sect. 3.3), then it is contractible in X, but
the converse is not necessarily true. The minimal n (maybe, 1) for which there
exists a covering of X by n open subsets contractible in X is called the (Lusternik–
Schnirelmann) category of X and is denoted as cat X. If we replace in this definition
the condition that the open sets from the covering are contractible in X by the
condition that they are contractible, we will get a definition of a strong category
of X, which is denoted as cats X.

Theorem. The category is homotopy invariant: If X � Y, then cat X D cat Y.

Proof. Let f WX ! Y and gWY ! X be mutually inverse homotopy equivalences,
and let htWX ! X be a homotopy such that h0 D idX and h1 D g ı f . Let
fU1; : : : ;Ucat Yg be a covering of Y by open sets contractible in Y, and let ki;tWUi ! Y
be a homotopy with k0 being the inclusion map of Ui into Y and k1 being a constant
map. Let Vi D f �1.Ui/; the sets Vi form an open covering of X. Consider two
homotopies Vi ! X: The first consists of maps x 7! ht.x/, and the second consists
of maps x 7! g.ki;t.f .x/// [this makes sense, since f .x/ 2 Ui]. The first homotopy
joins the inclusion map Vi ! X with the restriction map .g ı f /jVi , and the second
homotopy joins this restriction map with a constant map. Together they show that
Vi is contractible in X. We see that cat X � cat Y and a similar argumentation shows
that cat Y � cat X; thus, cat X D cat Y.

EXERCISE 14. Prove that for any nonempty space X, cat†X � 2. (Obviously,
cat X D 1 if and only of X is contractible.)
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Fig. 12 An example for studying relations between categories and strong categories

Later on, we will be able to compute the category for a broad class of spaces.
Now, let us discuss the relations between the category and the strong category.

It is obvious that the strong category is never less than the category.
Consider two spaces shown in Fig. 12.
The space X is obtained from the sphere S2 by gluing together three points. The

space Y is obtained from the sphere not by gluing together the three points, but
rather by joining them by arcs attached to the sphere from the outer side. It is very
easy to see that X � Y.

EXERCISE 15. Prove that cat X D cat Y D cats Y D 2, but cats X D 3.

This computation shows that the strong category does not need to be the same as
the category, and also that the strong category is not homotopy invariant.

3.6 The Case of Base Point Spaces, Pairs, Triples, etc.

The definitions of a homotopy and a homotopy equivalence are modified in an
obvious way for base point spaces. The set of (base point) homotopy classes of maps
between base point spaces X and Y is also denoted as �.X;Y/, but, if necessary, the
specific notation �b.X;Y/ is used.

EXERCISE 16. Prove the base point homotopy invariance of the operations _; #; �
and also the base point versions of suspensions and joins.

A further generalization of the base point homotopy theory is a homotopy
theory of pairs. A pair .X;A/ is simply a topological space X with a distinguished
subspace A. A map of a pair .X;A/ into a pair .Y;B/ is simply a continuous map
X ! Y taking A into B. Homotopies, homotopy equivalences, and so on are defined
for pairs in the obvious way. Similar theories exist for triples .X;A;B/ (where it is
assumed that X 
 A 
 B), triads .XIA;B/ (where it is assumed that X 
 A; X 
 B),
and so on.
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Lecture 4 Natural Group Structures in the Sets �.X;Y/

Homotopy topology studies invariants of topological spaces and continuous maps
which are discrete by their nature. Usually, these invariants have equal values
on homotopy equivalent spaces and homotopy maps. The most usual procedure
for constructing such invariants consists in a fixation of some space Y and then
assigning to a topological space X the set �.X;Y/ or �.Y;X/ and to a continuous
map f WX ! X0 or f WX0 ! X the map f � or f�. (Certainly, there are invariants
of a completely different nature, like the Lusternik–Schnirelmann category—see
Sect. 3.5.)

It is much easier to deal with such invariants if they possess some natural
algebraic structure, most commonly a natural structure of a group. Before describing
and studying these structures, we want to make a remark regarding the form of
further exposition. We consider the invariants of two different kinds: X 7! �.X;Y/
and X 7! �.Y;X/ (for a fixed Y). Each of these kinds gives rise to a theory, and,
for a long time, the two theories remain parallel or, better to say, dual. This duality
is important for homotopy topology; it is called the Eckmann–Hilton duality. We
will not explicitly describe it in this book, but, just to make it more visible, we
will arrange the majority of this section in a two-column format, so that the dual
statements will be written next to each other.

In this section, we assume that all spaces have base points and accordingly
understand all maps, homotopies, homotopy equivalences, etc. We fix, once and
forever, a space Y with a base point y0.

Suppose that for every space X a
group structure is introduced in
the set �b.X;Y/. This structure is
called natural if for every contin-
uous map 'WX ! X0, the map

'�W�b.X
0;Y/! �b.X;Y/

is a homomorphism.

Suppose that for every space X
a group structure is introduced in
the set �b.Y;X/. This structure is
called natural if for every continu-
ous map 'WX ! X0, the map

'�W�b.Y;X/! �b.Y;X
0/

is a homomorphism.

Definition. The space Y is called
an H-space if there are maps

	WY � Y ! Y

(multiplication) and


WY ! Y

(inversion) such that

Definition. The space Y is called
an H0-space if there are maps

	WY � Y ! Y

(comultiplication) and


WY ! Y

(co-inversion) such that
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(1) (homotopy unit). The compo-
sitions

(1) (homotopy co-unit). The com-
positions

Y
j1��! Y � Y

	��! Y
Y

j1��! Y � Y
	��! Y

Y
	��! Y _ Y

p1��!Y
Y

	��! Y _ Y
p2��!Y

where where p1 is the identity on the first
Y and maps the second Y into y0,
and p2 is the identity on the second
Y and maps the first Y into y0, are
homotopic to idY WY ! Y.

j1.y/ D .y; y0/; j2.y/ D .y0; y/;
are homotopic to idY WY ! Y.

(2) (homotopy associativity).
The compositions

(2) (homotopy co-associativity).
The compositions

Y � .Y � Y/
id �	��! Y � Y

	��!Y; Y
	��!Y _ Y

id _	��!Y _ .Y _ Y/;
.Y � Y/ � Y

	�id��!Y � Y
	��!Y Y

	��!Y _ Y
	_id��! .Y _ Y/ _ Y

are homotopic. are homotopic.

(3) (the property of the homotopy
inversion). The maps

(3) (the property of the homotopy
co-inversion). The maps

Y ��! Y � Y
	��! Y

Y ��! Y � Y
	��! Y

Y
	��! Y _ Y ��!Y

Y
	��! Y _ Y ��!Y

where the two left arrows mean,
respectively, the maps y 7!
.y; 
.y// and y 7! .
.y/; y/, are
homotopic to the constant map.

where the two right arrows mean,
respectively, the map which is id
on the first Y and 
 on the sec-
ond Y, and the same with id and

 swapped, are homotopic to the
constant map.

An important example of an H-
space: the loop space �Z of an
arbitrary space Z. The map

An important example of an H0-
space: the suspension †Z over an
arbitrary space Z. The map

	W�Z ��Z ! �Z 	W†Z ! †Z _†Z
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is defined by the formula is defined by the formula

Œ	.f ; g/�.t/ D
�

f .2t/; if t � 1=2;
g.2t � 1/; if t � 1=2;

that is, 	 assigns to two loops a loop
obtained by a successive passing
these two loops:

f

g

	.z; t/† D
�

.z; 2t/I†; if t � 1=2

.z; 2t � 1/II†; if t � 1=2;

where the Roman numerals show
in which of the two †Zs compos-
ing †Z _†Z the point is taken:

¹

¹

¹

and the map 
W�Z ! �Z is defined
by the formula

Œ
.f /�.t/ D f .1 � t/I

that is, 
 assigns to a loop the same
loop passed in the opposite direc-
tion.

and the map 
W†Z ! †Z is
defined by the formula


.z; t/† D .z; 1 � t/†I

that is, 
 turns the suspension
upside down.

Another important example of an H-
space is a topological group.

(no dual notion)

(The dual statement is formulated
in terms of category; the reader can
try to conceive of an appropriate
definition of this.)

EXERCISE 1. Prove that the
Lusternik–Schnirelmann category
of an arbitrary H0-space is � 2.

Actually, the class of H0-spaces is
very close to the class of spaces of
category � 2, but we will not go
into the details of this statement.

Theorem. The set �b.X;Y/ pos-
sesses a natural (with respect to X)
group structure if and only if Y is an
H-space.

Theorem. The set �b.Y;X/ pos-
sesses a natural (with respect to X)
group structure if and only if Y is
an H0-space.
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Proof of the Only If Statement.
Let the set �b.X;Y/ have a natural
with respect to X group structure.
Take X D Y � Y and consider the
classes Œp1�; Œp2� 2 �b.Y � Y;Y/ of
the projections of Y � Y onto the
factors.

Proof of the Only If Statement.
Let the set �b.Y;X/ have a natural
with respect to X group structure.
Take X D Y _ Y and consider the
classes Œ�1�; Œ�2� 2 �b.Y;Y _Y/ of
the natural embeddings of Y into
Y _ Y.

Set Œ	� D p1 �Œp2� (the multiplication
is in the group �b.Y � Y;Y/) and
choose an arbitrary map 	WY�Y !
Y of the class Œ	�. For 
WY ! Y
we will take an arbitrary map of a
homotopy class ŒidY �

�1 (the inver-
sion is in the group �b.Y;Y/).

Set Œ	� D �1 � Œ�2� (the multipli-
cation is in the group �b.Y;Y _
Y/) and choose an arbitrary map
	WY ! Y _ Y of the class Œ	�.
For 
WY ! Y we will take an
arbitrary map of a homotopy class
ŒidY �

�1 (the inversion is in the
group �b.Y;Y/).

Properties (1)–(3) of maps 	 and

 are checked automatically. Let us
prove, for example, that	ıj1 � idY .
The map j1WY ! Y � Y induces a
map j�1 W�b.Y � Y;Y/ ! �b.Y;Y/
which takes Œp1� into Œp1ıj1� and Œp2�
into Œp2 ı j1�; but p1 ı j1 D idY and
p2 ı j1 D const.

Properties (1)–(3) of maps 	 and

 are checked automatically. Let
us prove, for example, that �1 ı
	 � idY . The map �1WY ! Y �
Y induces a map �1	W�b.Y;Y _
Y/ ! �b.Y;Y/, which takes Œ�1�
into Œ�1 ı�1� and Œ�2� into Œ�1 ı�2�;
but �1 ı �1 D idY and �1 ı �2 D
const.

Since the group structure in
�b.X;Y/ is natural, the map j�1
takes products into products; hence,
Œ	 ı j1� D j�1 Œ	� D j�1 .Œp1� � Œp2�/ D
j�1 Œp1�j�1 Œp2� D Œp1 ı j1� � Œp2 ı j1� D
ŒidY � � Œconst� D ŒidY �. Thus,
	 ı j1 � idY .

Since the group structure
in �b.Y;X/ is natural, the
map �1� takes products into
products; hence, Œ�1 ı 	� D
�1�Œ	� D �1�.Œ�1� � Œ�2�/ D
�1�Œ�1��1�Œ�2� D Œ�1 ı �1� � Œ�1 ı
�2� D ŒidY � � Œconst� D ŒidY �. Thus,
�1 ı 	 � idY .

(We used the fact that the class of
the constant map constWY 7! y0
is the unit of the group �b.Y;Y/.
To prove that, we consider the one-
point space pt and the (unique)
map Y ! pt. The homomorphism
�b.pt;Y/ ! �b.Y;Y/ arising takes
the unique element of the group
�b.pt;Y/, on one hand, into the unit
of the group �b.Y;Y/, and, on the
other hand, into the class of the
constant map Y ! Y.)

(We used the fact that the class of
the constant map constWY 7! y0
is the unit of the group �b.Y;Y/.
To prove that, we consider the one-
point space pt and the (unique)
map pt ! Y. The homomor-
phism �b.Y; pt/ ! �b.Y;Y/ aris-
ing takes the unique element of the
group �b.Y; pt/, on one hand, into
the unit of the group�b.Y;Y/, and,
on the other hand, into the class of
the constant map Y ! Y.)
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Proof of the If Statement. Let Y be
an H-space and X be an arbitrary
(base point) space. The map 	WY �
Y ! Y induces a map	�W�b.X;Y�
Y/ ! �b.X;Y/ which can be
regarded, in view of the obvious
equality �b.X;Y � Y/ D �b.X;Y/�
�b.X;Y/, as a map

	�W�b.X;Y/ � �b.X;Y/
! �b.X;Y/:

Proof of the If Statement. Let Y be
an H0-space and let X be an arbitrary
(base point) space. The map 	WY !
Y _ Y induces a map 	�W�b.Y _
Y;X/ ! �b.Y;X/ which can be
regarded, in view of the obvious
equality �b.Y _ Y;X/ D �b.Y;X/�
�b.Y;X/, as a map

	�W�b.Y;X/ � �b.Y;X/
! �b.Y;X/:

Furthermore, the map 
WY ! Y
gives rise to a map 
�W�b.X;Y/ !
�b.X;Y/. Together, the multiplica-
tion 	� and inversion 
� determine
in �b.X;Y/ a natural with respect to
X group structure. The verification
of the details is left to the reader.

Furthermore, the map 
WY ! Y
gives rise to a map 
�W�b.Y;X/ !
�b.Y;X/. Together, the multiplica-
tion 	� and inversion 
� determine
in �b.Y;X/ a natural with respect to
X group structure. The verification
of the details is left to the reader.

EXERCISE 2. Show that the group EXERCISE 3. Show that the group

�b.X; ��Z/

is commutative.

�b.††Z;X/

is commutative.
Since for n � 1, Sn D †Sn�1,
the set �b.Sn;X/ is a group for any
X (natural with respect to X). This
group is called the nth homotopy
group of X and is denoted as �n.X/.
Exercise 2 shows that this group is
commutative for n � 2.
We will see ahead (in Lecture 15)
that

Hi.Sn/ D
�

0 for i ¤ n;
Z for i D n:

We will see ahead (in Lecture 11)
that for any n � 1 there exists
a (homotopically unique) space Kn

(usually denoted as K.Z; n/) such
that

(1) �i.Kn/ D
�

0 for i ¤ n;
Z for i D n;

(2) Kn � �KnC1.

Since Kn � �KnC1, the set
�b.X;Kn/ is a group for any X (nat-
ural with respect to X). This group is
called the nth (integral) cohomology
group of X and is denoted as Hn.X/
[or Hn.XIZ/]. Exercise 3 shows that
this group is always commutative.
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Decades ago, the computation of the
homotopy groups of spheres seemed
to the topologists a very impor-
tant problem. This problem has not
been solved yet (see some details in
Chaps. 3–6).

The computation of the cohomology
groups of the spaces Kn turned out to
be a very important problem. This
problem was solved in the 1950s,
mostly in the works of H. Cartan, A.
Borel, and J.-P. Serre (see the details
in Chap. 3).

Lecture 5 CW Complexes

Homotopy topology almost never considers absolutely arbitrary spaces. Usually, the
spaces studied are equipped with some additional structure, and, since the times of
the founder of algebraic topology, Henri Poincaré, two kinds of structures have been
considered. The structure of the first kind have their origin in analysis: differential,
Riemannian, complex, symplectic, etc. We will deal with structures of this kind (see
Lectures 17, 19, 30, 41–43), but not too often. Usually the structures of this kind are
natural: The spaces considered have such a structure from the very beginning, and
we do not need to construct it. The structures of the other, more important for our
type, are combinatorial structures. This structure consists of representing a space
as a union of more or less standard pieces, and then studying spaces is reduced to
studying the mutual arrangement of these pieces.

In this lecture we consider the most important combinatorial structure: the
so-called CW structure. Although we will prove in this lecture some properties of
CW complexes (this is how spaces with these structure are called) which will justify
the usefulness of the notion, its real role will show itself later, in the chapter entitled
“Homology,” where the CW structures will become a powerful computational mean.
Still we cannot postpone the preliminary study of CW complexes until the homology
chapter.

5.1 Basic Definitions

A CW complex is a Hausdorff space X with a fixed partition X D S1
qD0

S

i2Iq
eq

i

of X into pairwise disjoint set (cells) eq
i such that for every cell eq

i there exists a
continuous map f q

i WDq ! X (a characteristic map of the cell eq
i ) whose restriction

to Int Dq is a homeomorphism Int Dq � eq
i whose restriction to Sq�1 D Dq � Int Dq

maps Sq�1 into the union of cells of dimensions < q (the dimension of the cell eq
i ,

dim eq
i is, by definition, q). The following two axioms are assumed satisfied.

(C) The boundary Peq
i D eq

i � eq
i D f q

i .S
q�1/ is contained in a finite union of cells.
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(W) A set F � X is closed if and only if for any cell eq
i the intersection F \ eq

i is
closed (in other words, .f q

i /
�1.F/ is closed in Dq).

Remarks. (1) We assume characteristic maps existing but not fixed. If we need
to consider a CW complex with characteristic maps selected, that is, we need to
have them as a part of the structure, we will explicitly specify this. (2) The term
“CW complex” is not universally used. People also say cell spaces, or a CW
decomposition. (3) The notations (C) and (W) of the axioms are standard. They
abbreviate the expressions “closure finite” and “weak topology”.

EXERCISE 1. Prove that the topology described in axiom (W) is the weakest of all
topologies with respect to which all characteristic maps are continuous.

A CW subcomplex of a CW complex X is a closed subset composed of whole
cells. It is obvious that a CW subcomplex of a CW complex is a CW complex.
The most important CW subcomplexes of a CW complex X are skeletons: The
nth skeleton Xn or skn X of X is the union of all cells eq

i with q � n. By the way,
sometimes people say “n-dimensional skeleton,” but this is not right: The dimension
of a CW complex is the supremum of dimensions of all its cells, and the dimension
of the nth skeleton may be less than n. Another example of a CW subcomplex: the
union of the nth skeleton and any set of .nC 1/-dimensional cells.

Later on we will refer to pairs .X;A/ in which X is a CW complex and A is a CW
subcomplex of X as CW pairs.

A CW complex is called finite or countable if the set of cells is finite or
countable. By the way, for finite CW complexes the axioms (C) and (W) are not
needed: They are satisfied automatically.

EXERCISE 2. Prove that every point of a CW complex belongs to some finite CW
subcomplex.

A CW complex is called locally finite if every point has a neighborhood which
is contained in some finite CW subcomplex.

EXERCISE 3. Prove that every compact subset of a CW complex is contained in
some finite CW subcomplex.

EXERCISE 4. Prove that a CW complex is finite (locally finite) if and only if it is
compact (locally compact).

EXERCISE 5. Prove that a map of a CW complex into any topological space is
continuous if and only if its restriction to every finite CW subcomplex is continuous.

EXERCISE 6. The same with the words “finite CW subcomplex” replaced by the
word “skeleton.”

A continuous map f of a CW complex X into a CW complex Y is called cellular
if f .skn X/ � skn Y for every n. Notice that this definition, which is, as the reader
will soon see, the most appropriate, gives to cellular maps a lot of freedom: A cell
does not need to be mapped into a cell, but can be spread along several cells of the
same or smaller (but not bigger!) dimensions.
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Fig. 13 For Exercise 7

e0

e1
e2

Fig. 14 The closure of a cell is not a CW subcomplex

EXERCISE 7. Let X0 and X00 be the segment I decomposed into cells as shown in
Fig. 13. Are the identity maps f WX0 ! X00 and gWX00 ! X0 cellular? (Answer: yes
for f , no for g.)

5.2 Comments to the Definition of a CW Complex

Remark 1. The closure of a cell does not need to be a CW subcomplex. Here is the
example (Fig. 14). Let X D S1 _ S2. We decompose it into three cells: e0; e1; e2. For
e0 we take a point of S1 which is not the base point. Then we put e1 D S1�e0; e2 D
X � S1. Obviously, this is a CW decomposition, but e2 does not consist of whole
cells; thus, it is not a CW subcomplex.

Remark 2. (W) does not imply (C). The decomposition of D2 into Int D2 and all
separate points of S1 satisfies (W) (since F \ Int D2 D F for every F), but does not
satisfy (C).

Remark 3. (C) does not imply (W). Take the infinite family fIk j k D 1; 2; : : : g of
copies of the segment I and glue all the zero ends into one point. Topologize this set
by the metric: The distance between x 2 Ik; y 2 I` is xC y if k ¤ ` and is jy � xj if
k D `. Consider the decomposition of the resulting space X into cells where every

Ik is a union of three cells: 0; 1, and Int I. The set f1
k
2 Ik j k D 1; 2; : : : g � X has a

one-point, hence closed, intersection with every Ik but is not closed since it does not
contain its limit point 0.
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By the way, if a decomposition of a space into cells satisfies all the conditions
listed in the beginning of Sect. 5.1 with the exception of Axiom (W) (as in the last
example), we always can change (weaken) the topology, introducing it by Axiom
(W). We will have to use this trick, called the “cellular weakening of topology,” as
soon as in Sect. 5.3.

EXERCISE 8. Prove that a CW complex is metrizable if and only if it is locally
finite.

5.3 CW Structures and Constructions from Lecture 2

All the operations over topological spaces considered in Lecture 2, including the
specific operations over base point spaces, and excluding the operation involving
mapping spaces (like � and E), are defined in the CW setting. To begin with, the
cylinder, cone, and suspension over CW complexes are, in a natural sense, CW
complexes (for example, the cells of a suspension†X over a CW complex X are the
two vertices and suspensions over cells of X with vertices removed). The cylinder
and cone of a cellular map are also CW complexes (this appears to be our first
justification of the definition of a cellular map); the same is true for the spaces of
the form X['Y if ' is a cellular map of a CW subcomplex of Y into X, and, certainly,
for the quotient space X=A of a CW complex X over a CW subcomplex A. But we
encounter an unexpected obstacle when we try to introduce a CW structure into a
product and, the more so, smash product or join of two CW complexes. Say, cells
of the product of two CW complexes, X � Y, are defined in the most natural way,
as products of cells of X and Y, but there arises trouble with Axiom (W): It does
not hold, in general. When topologists discovered this circumstance, they rushed to
investigate it, and they proved a variety of theorems. We will refrain from discussing
this matter, restricting ourselves to three exercises (see below) and the following
remark. If the natural decomposition of X � Y into cells does not satisfy Axiom
(W), we can apply the cellular weakening of topology [that is, redefine topology by
Axiom (W)] and get a CW complex. We will define the latter as X �w Y. Luckily,
it turns out that the replacement of space X � Y by X �w Y does not spoil anything
essential: The most important properties of the product remain true for this new
operation. This allows us to forget the difference between � and �w, which we will
do. The same can be said regarding joins and smash products.

EXERCISE 9. Show an example when X �w Y ¤ X � Y.

EXERCISE 10. Prove that if one of the CW complexes X;Y is locally finite, then
X �w Y D X � Y.

EXERCISE 11. Prove that if both CW complexes X;Y are locally countable, then
X �w Y D X � Y.
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As to the mapping spaces, they are too big to have any hope of being decomposed
into cells. Still, there is the following theorem proven by Milnor.

Theorem (Milnor [56]). If X and Y are CW complexes, then the space YX is
homotopy equivalent to a CW complex.

(We will see ahead that to be homotopy equivalent to a CW complex is not
bad at all. Anyway, Milnor dedicated the work cited above to a propaganda of this
property.)

To finish our discussion of relations of CW complexes to constructions from
Lecture 2, we will notice that every CW complex can be obtained by applying
sufficiently many (sometimes, infinitely many) such constructions to the simplest
spaces: to balls. Indeed, let fen

˛g be the set of all n-dimensional cells of a CW
complex X, and let f n

˛ WDn ! X be corresponding characteristic maps. Since
f n
˛ .S

n�1/ � skn�1 X, we can restrict f n
˛ to a map gn

˛W Sn�1 ! skn�1 X (the maps gn
˛ are

called attaching maps). Take the disjoint union D D`˛ Dn
˛ of n-dimensional balls,

one for each n-dimensional cells of X, and put S D `

˛ Sn�1
˛ � D. Then consider

the map gnWS ! X; gnjSn�1
˛
D gn

˛.

Obvious Lemma.

skn X D .skn�1 X/
[

gn
DI (	)

that is, skn X is obtained from skn�1 X by attaching n-dimensional balls by means of
attaching maps corresponding to all n=dimensional cells of X.

The equality (	) may be regarded as a step of a universal inductive procedure
which allows us to construct an arbitrary CW complex from a discrete space (sk0 X
is discrete) or even an empty space (sk�1 X is empty) by successively attaching balls
of growing dimensions. By the way, if the CW complex is infinite dimensional, then
this inductive procedure includes a limit transition which is regulated by Axiom
(W). Directly or indirectly, this inductive procedure creates a base for a proof of any
statement about CW complexes: It allows us to reduce such a statement to the case
of spheres or balls.

EXERCISE 12. Prove that a CW complex is path connected if and only if its first
skeleton is path connected.

EXERCISE 13. Prove that a CW complex is path connected if and only if it is
connected.

EXERCISE 14. Prove that a finite-dimensional CW complex can always be embed-
ded into a Euclidean space of sufficiently large dimension.
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5.4 CW Decompositions of Classical Spaces

A: Spheres and Balls

For a finite n, there are two canonical CW decompositions of the sphere Sn; they are
shown for n D 2 in Fig. 15. The first consists of two cells: a point e0 (for example,
.1; 0; : : : ; 0/) and the set en D Sn � e0; a characteristic map Dn ! Sn can be chosen
like the usual making a sphere from a ball by gluing all points of the boundary
sphere into one point:

.x1; : : : ; xn/ 7!
�

� cos��; x1
sin��

�
: : : ; xn

sin��

�
;

�

where � D
q

x21 C � � � C x2n and
sin��

�
D � for � D 0.

The other classical CW decomposition of Sn consists of 2nC 2 cells e0˙; : : : ; e
n
˙,

where eq
˙ D f.x1; : : : ; xnC1/ 2 Sn j xqC2 D � � � D xnC1 D 0;˙xqC1 > 0g. Here

we do not need to care about characteristic maps: Closures of all cells are obviously
homeomorphic to balls (see Fig. 15).

Notice that both CW decompositions described above are obtained from the only
possible cellular decomposition of S0 (the two-point space) by the canonical cellular
version of the suspension (see Sect. 5.3). In the first case, we use the base point
version of suspension, and in the second case we take the usual suspension.

Certainly, there are a lot of other CW decompositions of the spheres. For
example, Sn can be decomposed into 3nC1 � 1 cells as the boundary of the .nC 1/-
dimensional cube, or into 2nC2� 2 cells as the boundary of the .nC 1/-dimensional
simplex (if you do not know what the simplex is, you will have to wait until Chap. 2).

All these CW decompositions, except the first one, work for S1.
A CW decomposition of the ball Dn may be obtained from any CW decomposi-

tion of the sphere Sn�1 by adding one n-dimensional cell, namely Int Dn. Thus, the
smallest possible number of cells for Dn with n � 1 is 3. Notice, however, that no
one of these CW decompositions will work for D1.

EXERCISE 15. Make up a CW decomposition for D1.

e2

e0

e0+

e0−

e1+
e1−

e2+

e2−

Fig. 15 Two CW decompositions of S2
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B: Projective Spaces

The identification of the antipodal points of the sphere Sn glues together the cells
eq

C; eq� of the above-described CW decomposition of Sn into 2nC2 cells. This gives
a decomposition of RPn into nC1 cells eq, one in every dimension from 0 to n. The
other way of describing this CW decomposition of RPn is provided by the formula

eq D f.x0 W x1 W � � � W xn/ 2 RPn j xq ¤ 0; xqC1 D � � � D xn D 0g:

One more description is provided by the chain of inclusions

; D RP�1 � RP0 � RP1 � � � � � RPn W

We set eq D RPq � R
q�1. A characteristic map for eq may be chosen as the

composition of the canonical projection Dq ! RPq (see Sect. 1.2) and the inclusion
RPq ! RPn. For n D 1, this construction provides a CW decomposition of RP1
with one cell in every dimension.

The construction also has complex, quaternionic, and Cayley analogs. In the
complex case, we get a CW decomposition of CPn into nC1 cells e0; e2; e4; : : : ; e2n

and also a CW decomposition of CP1 with one cell of every even dimension.
In the quaternionic case, we get a CW decomposition of HPn into n C 1 cells
e0; e4; e8; : : : ; e4n and also a CW decomposition of HP1 with one cell of every
dimension divisible by 4. For the Cayley projective plane CaP2, we get a CW
decomposition into cells of dimensions 0, 8, and 16. For example, for CPn,

e2q D f.z0 W z1 W � � � W zn/ 2 CPn j zq ¤ 0; zqC1 D � � � D zn D 0g
D CPq � CPq�1

with characteristic maps D2q ! CPq ! CPn, where the first arrow is the canonical
projection (see Sect. 1.3) and the second arrow is the inclusion.

C: Grassmann Manifolds

The CW decomposition of the Grassmann manifold G.n; k/ described below is very
important in topology (in particular, for the theory of characteristic classes; see
Lecture 19 ahead) and also in algebra, algebraic geometry, and combinatorics. The
cells of this decomposition are called Schubert cells (and the whole decomposition
is called sometimes the Schubert decomposition).

Let m1; : : : ;ms be a finite (possibly, empty) nonincreasing sequence of positive
integers less than or equal to k, where s � n � k. We denote as e.m1; : : : ;ms/ the
subset of G.n; k/ composed of all k-dimensional subspaces � of Rn such that, for
0 � j � n � k,
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dim.� \ R
m/ D m � j; if k � mj C j � m < k �mjC1 C .jC 1/;

where we put m0 D k and mj D 0 for s < j � n � k C 1. It is clear that the
sets e.m1; : : : ;ms/ are mutually disjoint and cover G.n; k/. For example, G.4; 2/ is
covered by six sets,

e.;/; e.1/; e.1; 1/; e.2/; e.2; 1/; e.2; 2/;

which are composed of two-dimensional subspaces of R4 whose intersections with
R
1;R2;R3 have dimensions

.1; 2; 2/; .1; 1; 2/; .1; 1; 1/; .0; 1; 2/; .0; 1; 1/; .0; 0; 1/:

Differently, these six sets can be described the following way. Let

A D f� D R
2g; B D fR1 � � � R

3g;C D fR1 � �g;
D D f� � R

3g;E D fdim.� \ R
2/ > 0g:

Then

A � B
� C �
� D �E � G.4; 2/;

and

e.;/ D A; e.1/ D B � A; e.1; 1/ DC � B; e.2/ D D � B;

e.2; 1/ D E � .C [ D/; e.2; 2/ DG.4; 2/� E:

Let us provide a similar explanation in the general case.
Recall that the Young diagram of the sequence (partition) m1; : : : ;ms is a drawing

on a sheet of checked paper as shown in Fig. 16, left (the columns, from the left
to the right, have the lengths m1; : : : ;ms). From the diagram in Fig. 16, left, we
create a slant diagram in Fig. 16, right. The boldfaced polygonal line is a graph of a
nondecreasing function d, and the condition in the definition of e.m1; : : : ;ms/ can be
formulated as dim.�\Rm/ D d.m/. This simple description of the set e.m1; : : : ;ms/

justifies its notation as e.�/, where � is the notation for the Young diagram of the
sequence .m1; : : : ;ms/. We will prove that the sets e.�/ form a CW decomposition
of G.n; k/ and thus the Schubert cells are labeled by Young diagrams contained in
the rectangle k�.n�k/; moreover, the dimension of the cell e.�/ equals the number
j�j D m1 C � � � C ms of cells of the Young diagram�.

We begin with this computation of dimension.

Lemma. The subspace e.m1; : : : ;ms/ is homeomorphic to R
m1C���Cms .

Proof. Redraw the picture in Fig. 16, right, as shown in Fig. 17 (that is, place the
graph in Fig. 16, right, into the rectangle k � n, then for every horizontal segment
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Fig. 16 Young diagram and slanted Young diagram

Fig. 17 Constructing a matrix from a Young diagram

of this graph construct a vertical strip with this segment as the lower base with the
upper base on the upper side of the rectangle, and then shadow all the stripes).

Next, we make a k� n matrix out of the diagram of Fig. 17 in the following way.
We place entries 1 on the slant intervals of the graph, arbitrary numbers (marked
below as 	) into the shadowed strips, and zeroes elsewhere. We obtain a matrix
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The k rows of this matrix are linearly independent and form a basis of a
k-dimensional subspace � of Rn, and it is clear that this gives a bijection between
matrices of this form and �s from e.m1; : : : ;ms/. These matrices are parametrized
by values of entries marked as 	, these values are arbitrary real numbers, and there
are m1 C � � � C ms of them. This proves the lemma.

To prove that the decomposition G.n; k/ D S

.m1;:::;ms/
e.m1; : : : ;ms/, we need to

extend the homeomorphism Int Dm1C���Cms � R
m1C���Cms ! e.m1; : : : ;ms/ of the

lemma to a continuous map Dm1C���Cms ! G.n; k/ [it is not hard to see that
the boundary e.m1; : : : ;ms/ � e.m1; : : : ;ms/ is contained in the union of cells of
dimensions< m1C � � � Cms]. There are explicit formulas for this map, but they are
complicated, and we do not give them here. An interested reader can find them in
the book [73] of J. T. Schwartz.

There is a remarkable property of Schubert cells: Embeddings of G.n; k/ to
G.nC 1; k/ and G.nC 1; nC 1/ map every cell e.m1; : : : ;ms/ onto a cell with the
same notation. For this reason, the spaces G.1; k/ and G.1;1/ are decomposed
into cells corresponding to Young diagrams: In the second case they correspond
to all Young diagrams, while in the first case they correspond to Young diagrams
contained in the infinite horizontal half-strip of height k.

Complex and quaternionic versions of Schubert cells are obvious: They have
dimensions two and four times the dimensions in the real case. The Grassmann
manifold GC.n; k/ is decomposed into cells e˙.m1; : : : ;ms/ of the same dimension
as e.m1; : : : ;ms/.

EXERCISE 16. The CW decompositions of RPn D G.n C 1; 1/; CPn D CG.n C
1; 1/; HPn D HG.nC 1; 1/ constructed above are particular cases of the Schubert
decomposition.

D: Flag Manifolds

The flag manifolds have natural CW decompositions which generalize the Schubert
decomposition of the Grassmann manifolds. This decomposition as well as its cells
are also called Schubert. We will describe this decomposition only in the real case
(the complex and quaternionic cases differ from the real case only by doubling and
quadrupling of the dimensions of cells).

Schubert cells of a flag manifold are characterized by dimensions dij of intersec-
tions Vi \ R

j. The numbers dij, however, must satisfy several, rather inconvenient,
conditions, and we prefer the following more reasonable definition.

The cells of the space F.nI k1; : : : ; ks/ correspond to sequences m1; : : : ;mn of
integers taking values 1; : : : ; sC 1 such that precisely kj� kj�1 of these numbers are
equal to j (j D 1; : : : ; s C 1; we put k0 D 0 and ksC1 D s. The cell eŒm1; : : : ;mn�

corresponding to the sequence m1; : : : ;mn consists of those flags V1 � � � � � Vs

such that
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dim
Vi \R

j

.Vi�1 \ Rj/C .Vi \Rj�1/
D ıimj D

�

0; if i D mj;

1; if i ¤ mj

(we put V0 D 0 and VsC1 D R
n), or, differently,

dim.Vi \ R
j/ D cardfp � i j kp � jg:

The dimension of the cell eŒm1; : : : ;mn� is equal to the number of pairs .i; j/ for
which i < j;mi > mj.

In particular, the manifold F.nI 1; : : : ; n � 1/ of full flags is decomposed into
the union of cells corresponding to usual permutations of numbers 1; : : : ; n, and the
dimension of a cell is equal to the number of inversions in a permutation.

If the flag manifold is the Grassmann manifold G.n; k/, then s D 1 and the
sequence m1; : : : ;mn consists of k ones and n � k twos. Using this sequence, we
construct an n-gon line starting at the point .0;�k/ and ending at the point .n�k; 0/
with all edges having the length 1, such that the ith edge is directed up if mi D 1

and is directed right if mi D 2. This line bounds (together with the coordinate axes)
a Young diagram�, and it it is easy to see that eŒm1; : : : ;mn� D e.�/.

Notice in conclusion that the cells eŒm1; : : : ;mn� (as well as their complex and
quaternionic analogs) may be described in pure algebraic terms: They are orbits of
the group of lower triangular matrices with diagonal entries 1 in the flag manifold.
Namely, the cell eŒm1; : : : ;mn� is the orbit of a flag whose ith space is spanned by
the coordinate vectors whose numbers p satisfy the condition mp � i.

E: Compact Classical Groups

They also have good CW decompositions. These decompositions are described
(implicitly) in a classical work of Pontryagin [67].

F: Classical Surfaces

We already have CW decompositions of S2 and RP2. For the other surfaces without
holes, we can use their construction by gluing sides of a polygon (see Exercise 14
in Lecture 1). The interior of a polygon becomes a two-dimensional cell (and the
projection of the polygon onto the surface becomes a characteristic map), the (open)
sides become one-dimensional cells, and the vertices become zero-dimensional
cells. The most common CW decomposition of every classical surface has one two-
dimensional cell and one zero-dimensional cell. Also, a sphere with g handles has
2g one-dimensional cells (see Fig. 18 for g D 2), a projective plane with g handles



50 1 Homotopy

e0

e11e12 e13e14

e2

Fig. 18 A CW decomposition of a sphere with two handles

has 2g C 1 one-dimensional cells, and a Klein bottle with g handles has 2g C 2
one-dimensional cells.

EXERCISE 17. Construct CW decompositions of classical surfaces with holes with
the minimal possible number of cells.

The rest of this lecture will be devoted to homotopy properties of CW complexes.

5.5 Borsuk’s Theorem on Extension of Homotopies

Definition. A pair .X;A/ is called a Borsuk pair if for every topological space Y,
every continuous map FWX ! Y, and every homotopy ftWA! Y such that f0 D FjA,
there exists a homotopy FtWX ! Y such that F0 D F and FtjA D ft.

Theorem (Borsuk). Every CW pair is a Borsuk pair.

Proof. Let .X;A/ be a CW pair. We are given maps ˆWA � I ! Y (this is the
homotopy ft) and FWX � 0! Y such that FjA�0 D ˆjA�0. To extend the homotopy
ft to a homotopy Ft we need to extend the map F to a map F0WX � I ! Y such that
F0jA�I D ˆ. We will construct this extension by induction with respect to dimension
of cells. The first step of this induction is the extension of the mapˆ to .A[X0/� I:

F0.x; t/ D
�

F.x; 0/; if x is a 0-dimensional cell of X; x … A;
ˆ.x; t/; if x 2 A:

Assume now that the map F0 has been already defined on .A[Xn/�I and is equal
to ˆ on A� I and to F on X�0. Take an .nC1/-dimensional cell enC1 � X�A. By
assumption, F0 is defined on the set .enC1 � enC1/ � I (since the boundary PenC1 D
enC1� enC1 is contained in Xn by definition of a CW complex). Let f WDnC1 ! X be
a characteristic map for the cell enC1. We want to extend the map F0 to the interior of
the cylinder f .DnC1/ from its side surface f .Sn/�I and the bottom base f .DnC1/�0.
But it is clear from the definition of a CW complex that it is the same as to extend the
map  D F0 ı f W .Sn� I/[ .DnC1� 0/! Y to a continuous map  0WDnC1� I ! Y.
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D
n+1

I

Fig. 19 The projection �W DnC1 � I ! .Sn � I/[ .DnC1 � 0/

Let �WDnC1 � I ! .Sn � I/ [ .DnC1 � 0/ be the projection of the cylinder
DnC1 � I from a point slightly above the upper base of the cylinder; it is the identity
on .Sn � I/[ .DnC1 � 0/ (Fig. 19).

We define the map  0 as the composition

DnC1 � I
���! .Sn � I/[ .DnC1 � 0/  ��!Y:

We can do this simultaneously for all .n C 1/-dimensional cells in X � A, and we
get an extension of the map F0 to .A [ XnC1/ � I.

In this way, skeleton after skeleton, we construct an extension of the map ˆ to a
map F0WX�I ! Y. Notice that if X�A is infinite dimensional, then the construction
will involve infinitely many steps. In this case, the continuity of the map F0 obtained
will follow from Axiom (W).

5.6 Corollaries from Borsuk’s Theorem

Corollary 1. Let .X;A/ be a CW pair. If A is contractible, then X=A � X. More
precisely: The projection X ! X=A is a homotopy equivalence.

Proof. Let p be the projection X ! X=A. Since A is contractible, there is a
homotopy ftWA ! A such that f0 D idA and f1 D const. By Borsuk’s theorem,
there exists a homotopy FtWX ! X such that F0 D idX and FtjA D ft; in particular,
F1.A/ is a point. The latter means that F1 “factorizes” through X=A; that is, there
exists a (unique) continuous map qWX=A! X such that F1 D qıp. Thus, qıp � idX

(Ft is a homotopy).
Let us prove that p ı q � idX=A. Since FtjA D ftWA ! A, we have Ft.A/ � A, so

Ft can be factorized to a map htWX=A ! X=A, which means that p ı Ft D ht ı p.
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Hence, ht ı p is a homotopy between p ı F0 D p ı idX D p D idX=A ıp and p ı F1 D
p ı .q ı p/ D .p ı q/ ı p, so ht is a homotopy between idX=A and p ı q.

Thus, p and q are mutually homotopy inverse, which completes the proof.

Corollary 2. If .X;A/ is a CW pair, then X=A � X[CA, where CA is a cone over A.

Proof. X=A D .X[CA/=CA � X[CA. The latter follows from Corollary 1 applied
to the CW complex X [ CA and its contractible CW subcomplex CA.

Remark. Both propositions may be regarded not as corollaries from Borsuk’s
theorem but as independent theorems, only the assumption of .X;A/ being a CW
pair should be replaced, in the first case, by the assumption that .X;A/ is a Borsuk
pair, and in the second case, by the assumption that .X [ CA;CA/ is a Borsuk pair.

5.7 The Cellular Approximation Theorem

Theorem. Every continuous map of one CW complex into another CW complex is
homotopic to a cellular map.

We will prove this theorem in the following, relative form.

Theorem. Let f be a continuous map of a CW complex X into a CW complex Y such
that the restriction f jA is cellular for some CW subcomplex A of X. Then there exists
a cellular map gWX ! Y such that gjA D f jA, and, moreover, g is A-homotopic to f .

The expression “g is A-homotopic to f ” (in formulas, g �A f ) means that there
is a homotopy ht between g and f which is fixed on A; that is, ft.x/ does not depend
on t for every x 2 A. It is clear that if g �A f , then gjA D f jA. Certainly, g �A f
implies g � f , but not vice versa. For example, the maps f ; gW I ! S1, where f is
the winding of the segment about the circle mapping both endpoints into the same
point of the circle and g is a constant map, are homotopic, but not .0[1/-homotopic
(strictly speaking, we will prove this only in Lecture 6).

Proof of Theorem. Assume that the map f has already been made cellular not only
on all cells from A, but also on all cells from X of dimensions less than p. Take a
p-dimensional cell ep � X�A. Its image f .ep/ has a nonempty intersection with only
a finite set of cells of Y [this follows from the compactness of f .ep/—see Exercise 3].
Of these cells of Y, choose a cell of a maximal dimension, say, �q; dim �q D q. If
q � p, then we do not need to do anything with the cell ep. If, however, q > p, we
will need the following lemma.

Free-Point Lemma. Let U be an open subset of Rp and 'WU ! Int Dq be such
a continuous map that the set V D '�1.dq/ � U where dq is some closed ball
in Int Dq is compact. If q > p, then there exists a continuous map  WU ! Int Dq

coinciding with ' in the complement of V and such that its image does not cover the
whole ball dq.
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We will postpone the proof of this lemma (and a discussion of its geometric
meaning) until the next section. For now, we restrict ourselves to the following
obvious remark. The map is automatically .U�V/-homotopic to ': It is sufficient
to take the “straight” homotopy joining ' and  when, for every u 2 U, the point
'.u/ is moving to  .u/ at a constant speed along a straight interval joining '.u/
and  .u/.

Now, let us finish the proof of the theorem. The free-point lemma implies that the
restriction fA[Xp�1[ep is .A[Xp�1/-homotopic to a map f 0WA[Xp�1[ ep ! Y such
that f 0.ep/ has nonempty intersections with the same cells as f .ep/, but f 0.ep/ does
not cover the whole cell �q. Indeed, let hWDp ! X and kWDq ! Y be characteristic
maps corresponding to the cells ep and �q. Let U D h�1.f �1.�q/ \ eq/ and define a
map 'WU ! Int Dq as a composition

h f k−1

u −→ x −→ y −→ v = ϕ(u)

U ep ∪ f−1(eq) eq Int Dq

Denote as dq a closed concentric subball of the ball Dq. The set V D '�1.dq/ is
compact (because it is a closed subset of a closed ball Dp). Let  WU ! Int Dq be a
map provided by the free-point lemma. We define the map f 0 as coinciding with f in
the complement of h.U/ and as the composition

h−1 ψ k
x −→ u −→ v −→ y = f (u)

h(U) U Int Dq eq ⊂ Y

in h.U/. It is clear that the map f 0 is continuous [it coincides with f on the “buffer”
set h.U � V/] and .A[ Xp�1/-homotopic [actually, even .A[ Xp�1 [ .ep � h.V///-
homotopic] to f jA[Xp�1[ep [because ' �.U�V/  ]. It is also clear that f 0.ep/ does not
cover "q.

It is very easy now to complete the proof. First, by Borsuk’s theorem, we can
extend our homotopy fixed on A [ Xp�1 between f jA[Xp�1[ep and f 0 to the whole
space X, which lets us assume that the map f 0 with all necessary properties is defined
on the whole space X. After that, we take a point y0 2 �q, not in f .ep/, and apply
to f 0jep a “radial homotopy”: If x 2 ep � f �1."q/, then f 0.x/ does not move, but if
f 0.x/ 2 �q, then f 0.x/ is moving, at a constant speed, along a straight path going
from y0 through f 0.x/ to the boundary of �q [more precisely, along the k-image
of a straight interval in Dq starting at k�1.y0/ and going through k�1.f 0.x// to the
boundary sphere Sq�1]. We extend this homotopy to a homotopy of f 0jA [ Xp�1 [ ep

(fixed in the complement of ep), and then, using Borsuk’s theorem, to a homotopy
of the whole map f 0WX ! Y. In this way, we reduce the number of q-dimensional
cells hit by f 0.ep/ by one, and, repeating this procedure a necessary amount of times,
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Fig. 20 The proof of the cellular approximation theorem

we get an .A[ Xp�1/-homotopy of f to a map cellular on A[Xp�1 [ ep. The whole
procedure is presented, schematically, in Fig. 20.

Notice now that the “correction” of the map f which we did for the cell ep can be
done simultaneously for all p-dimensional cells in X � A. We will arrive at a map
cellular on A [ Xp and .A [ Xp�1/-homotopic to f .

To get an A-homotopy connecting f with a cellular map we need to perform this
construction successively for p D 0; 1; 2; : : : . The number of steps may be infinite,
but this is not a problem: We can perform the pth homotopy at the parameter interval
1�2�p � t � 1�2�p�1. The continuity of the whole homotopy is secured by Axiom
(W): For every cell e, the homotopy will be fixed starting with some te < 1.

This completes the proof of the theorem.

5.8 Fighting Chimeras: A Proof of the Free-Point Lemma

For a reader not hopelessly spoiled by popular mathematical literature, the very
statement of the lemma looks awkward: How can a continuous image of a space
of a smaller dimension cover a space of a bigger dimension? But everybody knows
that there is the Peano curve which is propagandized not less than, say, the Klein
bottle and which is a continuous map of an interval onto a square. Therefore, we
have to prove the lemma, and it is especially difficult, because geometric intuition
cannot help: It persistently repeats that it is not possible at all. Difficulties of this
kind arise when a “rigorous” definition of this or that notion (in our current case, the
"-ı-definition of continuity) does not fully correspond to the initial intuitive image:
We need to study the structure not of a real object, but rather of a chimera. But we
have no choice: The lemma needs a proof.

There are two common ways of proving propositions like this: One needs to
approximate the map ' by either a smooth map or a piecewise linear map. The first
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way looks more natural, but it requires a familiarity with Sard’s theorem, which
is not covered by a standard university calculus course. We will need this theorem
anyhow, but for now it is better to postpone a discussion of this matter. The second
way is based on the notion of a triangulation. Recall that a q-dimensional Euclidean
simplex is a subset of the space R

n; n � q, which is a convex hull of a set of
qC 1 points not contained in one .q � 1/-dimensional plane. (Euclidean simplices
of dimensions 0, 1, 2, 3 are points, closed intervals, triangles, tetrahedra.) These
qC 1 points are called vertices of a simplex. Subsimplices, that is, convex hulls of
nonempty subsets of the set of vertices, are called faces of the simplex. They are
simplices of dimensions � q. A zero-dimensional face is a vertex. A remarkable
property of simplices is that a linear map of a Euclidean simplex into an arbitrary
space R

m is fully determined by its values at the vertices, while these values may
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Fig. 21 The barycentric subdivision of a (two-dimensional) simplex

be absolutely arbitrary. A finite triangulation of a subset of a Euclidean space is a
finite covering of this space by (different) Euclidean simplices such that any two of
these simplices either are disjoint or meet each other at a whole face of both. It is
convenient to include faces of simplices of a triangulation into the set of simplices
of this triangulation.

The barycentric subdivision of a q-dimensional simplex consists in a partition of
this simplex into .qC 1/Š smaller q-dimensional simplices. The vertices of the new
simplices are barycenters (mass centers) of faces of the old simplex (including the
old simplex itself). A set fx0; x1; : : : ; xrg of such centers is a set of vertices of an
r-dimensional simplex of the barycentric subdivision if and only if they are centers
of faces which form a chain of faces successively embedded into each other: xi is a
center of 
i and 
0 � 
1 � � � � � 
r. (See Fig. 21.)

Another description of the barycentric subdivision of a simplex is inductive: The
barycentric subdivision of a zero-dimensional simplex is just this zero-dimensional
simplex; to obtain the barycentric subdivision of a q-dimensional simplex, we take
barycentric subdivisions of all its q � 1-dimensional faces (they are compatible
on q � 2-dimensional faces) and add simplices which are cones over simplices
of the subdivisions of faces with the vertex at the barycenter of the simplex. One
more description can be made in terms of “barycentric coordinates”: If v0; v1; : : : ; vq

are vertices of the given simplex, then every point of the simplex has the form
P

tivi, where t0; t1; : : : ; tq are nonnegative numbers with the sum 1; these numbers
are uniquely defined and are called barycentric coordinates of the point. The .qC1/Š
q-dimensional simplices of the barycentric subdivision correspond to permutations
.i0; i1; : : : ; iq/ of 0; 1; : : : ; q and are described by the inequalities ti0 � ti1 � � � � � tiq .

The barycentric subdivision of a triangulation is a triangulation composed
of simplices of barycentric subdivisions of the simplices of the triangulation
(see Fig. 22).

Now turn to our map '. First of all, consider in d D dq concentric balls

d1; d2; d3; d4 of radii
�

5
;
2�

5
;
3�

5
;
4�

5
where � is the radius of d. Then we consider

a triangulated set K � R
q such that V � K � U (for example, take a big

Euclidean simplex � 
 V and apply the barycentric subdivision to � so many
times that every simplex of the final subdivision that has a nonempty intersection
with V is contained in U; the union of simplices with this property is K). Then
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Fig. 22 The barycentric subdivision of a triangulation

Fig. 23 Sewing ' and '0 into  

take a multiple barycentric subdivision of K such that for every simplex s of this

subdivision, diam'.s/ <
�

5
. Let L be the union of simplices of this triangulation

of K whose '-images hit d4. Then d4 \ '.U/ � '.L/ � d. Let ' 0WL ! d,
which coincides with ' at all vertices of L and is linear at every simplex of L. The
maps 'jL and ' 0 are homotopic: They are connected by the straight-line homotopy
'tWL! d; '0 D 'jL; '1 D ' 0.

Now, we “sew” the maps ' and ' 0 into a single map  WU ! Int Dq:

 .u/ D
8

<

:

'.u/; if '.u/ … d3;
' 0.u/; if '.u/ 2 d2;
'3�5�.u/.u/; if '.u/ 2 d3 � d2:

Here �.u/ is the distance from '.u/ to the center of d. (See Fig. 23.)
The map  is continuous, it coincides with ' on U � V , and the intersection of

its image with d1 is contained in the union of a finite set of p-dimensional planes.
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Thus, this image does not cover the whole ball d1 (and hence does not cover the
whole ball d). These completes the proof of the lemma.

5.9 First Applications of the Cellular Approximation
Theorem

Theorem. If X is a CW complex with one vertex (D zero-dimensional cell) and
without other cells of dimensions < q and Y is a CW complex of dimension < q,
then every continuous map Y ! X is homotopic to a constant map. The same
statement holds in the base point case (it is convenient to assume that a base point
of a CW complex is a zero-dimensional cell).

This follows directly from the cellular approximation theorem, since the qth
skeleton of Y is the whole Y, and the qth skeleton of X is one point.

In particular, if m < q, then �.Sm; Sq/ D �b.Sm; Sq/ D 0 (that is, consists of one
element).

Definition. A space X is called n-connected if for q � n the set �.Sq;X/ consists of
one element (that is, any two continuous maps Sq ! X with q � n are homotopic).

EXERCISE 18. Prove that each of the following two conditions is equivalent to
n-connectedness. (1) For q � n, the set �b.Sq;X/ consists of one element. (2) For
q � n, every continuous map Sq ! X can be extended to a continuous map
DqC1 ! X.1

EXERCISE 19. Prove that 0-connectedness is the same as path connectedness.

The term 1-connected(ness) is usually replaced by the term “simply con-
nected(ness).”

Theorem. Let n � 0. An n-connected CW complex is homotopy equivalent to
a CW complex with only one vertex and without cells of dimensions 1; 2; : : : ; n.
(In particular, every path connected CW complex is homotopy equivalent to a CW
complex with only one vertex.)

Proof. Choose in our CW complex X some vertex e0 and join all other vertices,
e1; e2; e3; : : : , with e0 by paths s1; s2; s3. This is possible since X is n-connected and
hence path connected. (The paths may cross.) The cellular approximation theorem
lets us assume that every path si lies in the first skeleton of X. For every i, attach a
two-dimensional disk to X by si regarded as a map of the lower semicircle to X (see
Fig. 24).

1Condition (2) makes sense for n D �1 and means that X is nonempty. Sometimes it is convenient
to assume that .�1/-connected is the same as nonempty.



5.9 First Applications of the Cellular Approximation Theorem 59

e0

e1
e2

e3s1 s2
s3

Y

X̂

X

Fig. 24 Attaching disks to a path connected CW complex

We get a new CW complexbX which contains X and also cells e2i and e1i (interiors
and upper semicircles of the disks attached). The boundaries of the cells e2i are
contained in the first skeleton because the paths si have this property.

It is clear that X is a deformation retract inbX: Every attached disk can be smashed
onto the corresponding path si.

Denote by Y the union of the closures of the cells e1i . Obviously, Y contains
all the vertices of bX and is contractible. Hence, bX=Y has only one vertex and also
bX=Y � bX � X.

The rest of the proof is quite similar. We assume that X � X0, where X0 has
only one vertex and has no cells of dimensions 1; 2; : : : ; k � 1, where k � n. In
this case the closure of every k-dimensional cell is a k-dimensional sphere. Since X
(and hence X0) is n-connected, the inclusion of this sphere into X0 can be extended
to a continuous map DkC1 ! X0, and by the cellular approximation theorem, we
can assume that the image of this map is contained in the .k C 1/st skeleton of X0.
Using this map, which we consider a map of the lower hemisphere of the sphere
SkC1, we attach a ball DkC2 to X0, and we do this for every k-dimensional cell
of X0. Thus, X0 acquires, for every k-dimensional cell, two new cells: one .k C 1/-
dimensional, and one .k C 2/-dimensional. The new CW complexbX0 is homotopy
equivalent to X0 (which is a deformation retract of bX0) and contains a contractible
CW subcomplex Y 0, the union of all new .kC 1/-dimensional cells, which contains
the whole kth skeleton ofbX0. The quotientbX0=Y 0 is homotopy equivalent to X0, and
hence to X, and it does not have cells of dimensions � k, besides its only vertex.
This induction proves our theorem.

Corollary. If a CW complex X is n-connected, and a CW complex Y is
n-dimensional, then the set �.Y;X/ consists of one element. The same is true
for �b.Y;X/ if X and Y have base points which are zero-dimensional cells.

Remark. The procedure of killing k-dimensional cells used in the last proof includes
attaching cells of dimension k C 2. If our CW complex has dimension n C 1, this
could lead to increasing the dimension. However, as we will see in Chap. 2, an
n-connected n C 1-dimensional CW complex must be homotopy equivalent to a
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bouquet of .nC 1/-dimensional spheres, so no increasing the dimension is actually
taking place. In addition to that, in the important case when n D 0, there exists
another proof of last theorem, which does not involve any attaching of cells: See
Exercise 20.

EXERCISE 20. Prove that a connected CW complex X always contains a con-
tractible one-dimensional CW subcomplex (“a tree”) Y, which contains all vertices
of X. Then X=Y is a CW complex with one vertex which is homotopy equivalent
to X. (If the number of cells of X is infinite, then a proof of that requires Zorn’s
lemma.)

The last theorem has a relative version which requires a definition of an
n-connected pair. A topological pair .X;A/ is called n-connected if any continuous
map .Dk; Sk�1/ ! .X;A/ with k � n is homotopic (as a map between pairs) to a
map which sends the whole ball Dk into A.

EXERCISE 21. Make up equivalent definitions of an n-connected pair in the spirit
of Exercise 18 and the interpretation of 0-connectedness and 1-connectedness in the
spirit of Exercise 19.

EXERCISE 22. Prove that every n-connected CW pair .X;A/ is homotopy equiva-
lent to a CW pair .X0;A0/ such that A0 contains all cells of X0 of dimensions � n
(that is, contains the nth skeleton of X0).

Lecture 6 The Fundamental Group and Coverings

6.1 Definition of the Fundamental Group

The fundamental group of a space X with a base point is its first homotopy group,
�1.X/ D �b.S1;X/. Since the definition in Lecture 4 was too general, we will repeat
it now in our particular case.

Recall that a homotopy stW I ! X of a path is always supposed to be fixed at the
ends: st.0/ and st.1/ do not depend on t. Recall also that the product ss0 of two paths,

s; s0W I ! X, is defined if s.1/ D s0.0/, and in this case .ss0/.t/ D s.2t/ if t � 1

2
and

ss0.t/ D s0.2t � 1/ if t � 1

2
. A path s with equal ends, s.0/ D s.1/, is called a loop.

We consider the set �.X; x0/ of loops of the space X with a base point x0. The
product is defined for every two loops from�.X; x0/. This multiplication gives rise
to a multiplication in the set �1.X; x0/ of homotopy classes of loops (it is easy to
check is that if s � s0 and r � r0, then rs � r0s0). This multiplication determines
a group structure in the set �1.X; x0/ (unlike the multiplication in the set of loops,
where the group axioms hold only “up to a homotopy”: u.vw/ � .uv/w, and so on).
The inverse to the class of a loop sW I ! X is the class of the same loop passed in the
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opposite direction; that is, the inverse of the class of the loop sW I ! X is the class
of the loop s0; s0.t/ D s.1 � t/. The identity element in �1.X; x0/ is the class of the
constant loop.

A continuous map f W .X; x0/ ! .Y; y0/ induces, in the obvious way, a homo-
morphism f�W�1.X; x0/ ! �1.Y; y0/. It is clear that if maps f ; g are (base point)
homotopic, then the homomorphisms f�; g� coincide.

We finish this section with the following simple observation.

Theorem. For any spaces with base points, .X; x0/ and .Y; y0/,

�1.X � Y; .x0; y0// Š �1.X; x0/ � �.Y; y0/:

Proof. Indeed, a loop in X � Y with the beginning at .x0; y0/ is the same as the pair
of loops in X and Y with the beginnings at x0 and y0; the same for products and
homotopies of loops.

6.2 Dependence of the Base Point

Theorem. If the space X is path connected, then �1.X; x0/ � �1.X; x1/ for any
points x0; x1 2 X.

Proof. Since X is path connected, there exists a path uW I ! X such that u.0/ D
x0; u.1/ D x1. We will construct a map u#W�1.X; x0/ ! �1.X; x1/: For the class
Œs� 2 �1.X; x0/ of a loop s, we put u#Œs� D Œ.u�1s/u� 2 �1.X; x1/. [It is clear that
if s � s0, then .u�1s/u � .u�1s0/u.] It is clear also that if we replace the path u by
a homotopic path (a homotopy of paths is defined, like a homotopy of loops, as a
homotopy with ends fixed), then the map u# remains the same. The map inverse to
the map u# is defined similarly: u�1

# Œr� D Œ.ur/u�1�.
It is easy to check that the map u# is a homomorphism (u#Œss0� D Œ.u�1.ss0//u� D

Œ.u�1su/.u�1s0/u� D u#Œs�u#Œs0�), and hence an isomorphism.
Certainly, the isomorphism u# depends on the path u: If we replace the path

u by a path v not homotopic to u, we will get a different isomorphism. More
precisely: If r D v�1u, then for any loop s 2 �.X; x0/, v#Œs� D Œv�1sv� D
Œv�1uu�1suu�1v� D Œr�u#Œs�Œr��1 . We see that the isomorphism v# is “conjugated”
to the isomorphism u# by means of Œr� 2 �1.X; x1/. Thus, if the fundamental group
of a connected space X is commutative (and only in this case), the isomorphism
between �1.X; x0/; �1.X; x1/ is “canonical”; that is, it does not depend on the path
joining x0 and x1. In this case we can speak of the group �1.X/ without fixing a base
point. Otherwise, we can speak of the fundamental group of X only as of an abstract
group; that is, we can say that it is finite, or unipotent, or finitely generated, and so
on, but we cannot, say, specify an element in it.

Remark. The statement �1.X/ is trivial means precisely that X is simply connected.



6.3 The First Computation: The Fundamental Group of a Circle 63

EXERCISE 1. Prove that if f WX ! Y is a homotopy equivalence, then
f�W�1.X; x0/! �1.Y; f .x0/ is an isomorphism.

6.3 The First Computation: The Fundamental Group
of a Circle

There are two major ways to compute the fundamental groups of a given space. The
first one is based on the theory of covering, and we will consider it in this lecture.
The main ingredient of second way is the so-called Van Kampen theorem; in the next
lecture we will prove this theorem and apply it to the computation of fundamental
groups of CW complexes.

We begin with the computation of the fundamental group of the circle. It can
be regarded as the first application of the covering method; however, we will not
explicitly mention coverings in this section: The definition will be given in Sect. 6.4.

Theorem. The group �1.S1/ is isomorphic to the group Z of integers.

Proof. For every point of the circle, we assign, in the usual way, a real number
defined up to a summand of the form 2k� . For the base point, we take 0. A loop
sW I ! S1 becomes a multivalued function on the segment Œ0; 1� whose value at
every point is defined up to a summand 2k� and whose value at 0 and 1 is the
set f2k�g itself. This function has a “univalent branch” s#W Œ0; 1� ! R, which is a
continuous function of the value s#.t/ of which at every point t 2 Œ0; 1� belongs to
the set of values of the multivalued function s at t. This function will be unique if
we require that s#.0/ D 0 (see Fig. 25).

Fig. 25 The function s# and its homotopy to a linear function
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[For a pedant, we give the details of the construction of the function s#. Let n be

so large that if jt00 � t0j � 1

n
, then the points s.t0/; s.t00/ 2 S1 are not diametrically

opposite. Then for 0 � t � 1

n
, we take for s#.t/ the value of s.t/ which differs from

0 by less than �; after this, for
1

n
� t � 2

n
we take for s#.t/ the value of s.t/ which

differs from s#

�

1

n

�

by less than �; and so on.]

Point out two important properties of the function s#: (1) Its value at t D 1 is a
multiple of 2�; (2) it depends on s continuously in the sense that if st is a homotopy,
then s#

t is a homotopy. Notice also that every continuous function hW Œ0; 1�! R such
that h.0/ D 0 and h.1/ is a multiple of 2� is a function s# for some loop sW I ! S1.

To complete the proof, it remains to make the following four obvious remarks.

First, the number k D s#.1/

2�
does not vary when we perform a homotopy of s, since

a continuous variation of an integer is constant; thus, k depends only on an element
of �1.S1/. Second, any k can be obtained in this way: One can take hk.t/ D 2k�t.
Third, any two functions h with the same h.1/ are homotopic: A homotopy between
s# and hk.t/ D 2k�t is shown in Fig. 25. Fourth, if s#.1/ D 2k� and .s0/#.1/ D 2`� ,
then .ss0/#.1/ D 2.kC `/� .

Remark. We are presenting this result as an example, but, actually, it is a crucially
important theorem. Just imagine, for a moment, that �1.S1/ be 0. Then the
fundamental groups of all spaces would be zeroes! Indeed, let � 2 �1.X; x0/ be
represented by a loop sW I ! X. Then there is a map f W S1 ! X such that s D f ı h1,
and Œs� D f�Œh1� D 0.

Our next goal is to generalize the last proof to a much broader context.

6.4 Coverings: Definition and Examples

Definition. We say that a path connected space T covers a path connected space X if
there is a continuous map pWT ! X such that every point x 2 X has a neighborhood
U whose inverse image p�1.U/ � T falls into a disjoint union of open sets U˛ � T
such that for every ˛, p maps homeomorphically U˛ onto U. in this situation, the
map pWT ! X is called a covering. We will call open sets U with the described
property of p�1.U/ “properly covered open sets.” Thus, properly covered open sets
form an open covering of X.

Example 1. pWR! S1; p.t/ D .cos t; sin t/, or, if we interpret S1 as a unit circle in
C, p.t/ D eit.

Example 2. pW S1! S1; p.z/ D zk, where k is a nonzero integer.

Example 3. T D Sn;X D RPn; pWT ! X maps a point x 2 Sn to a line passing
through 0 and x (compare with Sect. 1.2).
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It is clear that if p1WT1 ! X1 and p2WT2 ! X2 are two coverings, then p1 �
p2WT1 � T2 ! X1 � X2 is also a covering. For example, the square of the covering
in Example 1 is a covering of a torus by a plane, R2 ! S1 � S1. A product of two
coverings from Example 2 (with, possibly, different ks) is a covering of a torus by a
torus.

EXERCISE 2. Prove that for any g � 2 a sphere with g handles can cover a sphere
with two handles. (Think about which classical surfaces can cover other classical
surfaces; however, at the moment, we do not have sufficient technical means to
answer this questions. Such technical means will appear in Chap. 2.)

EXERCISE 3. Prove that for every n � 2 there exists a space homotopy equivalent
to the bouquet of n circles which can cover the bouquet of two circles (“the figure-
eight space”).

6.5 Lifting2 Paths and Homotopies

In many statements in this section, topological spaces considered are assumed
“sufficiently good.” Usually this means that the space is locally path connected ;
that is, for every point x and every neighborhood U of x there exists a neighborhood
V of x such that V � U and any two points in V can be connected by a path in U.
Sometimes we also require that the space is “semilocally simply connected,” which
means that for every neighborhood U of x there exists a neighborhood V of x such
that V � U and every loop in V is homotopic to a constant loop in the whole space.
These properties will be needed to check the continuity of some maps. They will
usually routinely hold for spaces we will consider. For this reason, we will never
specify the meaning of being sufficiently good in the statements, but sometimes
(not always) we will explain in proofs, what and when is needed. However, for the
first statement that follows, no assumption like this is needed.

Lifting Path Lemma. Let pWT ! X be a covering,ex0 2 T, and sW I ! X be a path
such that s.0/ D x0 D p.ex0/. Then there exists a unique pathesW I ! T such that
es.0/ Dex0 and p ıes D s.

Proof of Existence ofes. Choose an n such that for every k; 1 � k � n, the set

s

�

k � 1
n

;
k

n

�

is contained in some properly covered set, Uk. Assume that for some

k; 0 � k < n, there exists a mapeskW
�

0;
k

n

�

! T such thatesk.0/ Dex0 and p ıesk D

2Sometimes, the terminology of the theory of coverings is based on a visual presentation of a
covering, in which T lies “above” X and the projection p is vertical and directed down. This is
reflected not only in terminology, but also in many pictures in this section.
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Fig. 26 Proof of the lifting path lemma

sj
Œ0; k

n �
. For k D 0 this holds:es0W 0 7! ex0. Since s

�

k

n

�

2 UkC1 and p�1.UkC1/ D
S

˛ UkC1;˛ as in the definition of a covering, there exists precisely one ˛ such that

UkC1;˛ D eUkC1 3 esk

�

k

n

�

. Let pkC1WeUkC1 ! UkC1 be a restriction of p; it is

a homeomorphism. ExtendeskW
�

0;
k

n

�

! T toeskC1W
�

0;
kC 1

n

�

! T by setting

eskC1jŒ k
n ;

kC1
n �
D p�1

kC1 ı sj
Œ k

n ;
kC1

n �
. This completes the step of induction. The pathes

arises asesn.

Proof of Uniqueness ofes. Suppose that there are two different paths,es;es 0W I ! T,
satisfying the requirements of the lemma. Let t0 D infft j es.t/ ¤ es 0.t/g; then
es.t0/ Des 0.t0/. Let U � X be a properly covered neighborhood of s.t0/. Then there
is a neighborhoodeU � T ofes.t0/ Des 0.t0/which is mapped homeomorphically onto
U by p. SinceeU is open and the mapses;es 0 are continuous, there exists an " > 0 such
thates.t0� "; t0C "/;es 0.t0� "; t0C "/ � eU. But since p ıes D p ıes 0.D s/ and p maps
eU homeomorphically onto U, this means thates andes 0 coincide on .t0 � "; t0 C "/,
which contradicts the definition of t0.

Remark. This proof, like some other proofs below, does not use the connectedness
of T. If we exclude the condition of the connectedness of T from the definition of
the covering, we will get the definition of a “generalized covering,” a notion that in
many respects is not worse than that of a covering; in particular, the last lemma, as
well as several upcoming theorems (such as the next theorem), actually holds for a
generalized covering. Still, from the point of view of fundamental groups, we need
coverings rather than generalized coverings.
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Lifting Homotopy Theorem. Let pWT ! X be a covering, and let Z be a
sufficiently good topological space. Let ftWZ ! X be a homotopy and FWZ ! T
be a continuous map such that p ı F D f0. Then there exists a unique homotopy
FtWZ ! T such that F0 D F and p ı Ft D ft for all t.

Proof. For a z 2 Z, consider the path szW I ! X; sz.t/ D ft.z/. By the lifting path
lemma, there exists a unique patheszW I ! T such that p ıesz D sz andesz.0/ D F.z/.
Put Ft.z/ Desz.t/. We will prove that Ft is a homotopy. It is obvious that Ft satisfies
the requirements of the theorem, and the uniqueness follows from the uniqueness in
the lifting path lemma. It remains to prove the continuity of fFtg. The proof uses the
local path connectedness of Z.

We denote as hWZ� I ! X and HWZ� I ! T the maps .z; t/ 7! ft.z/ and .z; t/ 7!
Ft.z/. The continuity of h is given; we need to prove that H is also continuous. By
construction, H is continuous on each segment z0 � I.

Let E D f.z; t/ j H is continuous in a neighborhood of .z; t/g � Z � I.
Obviously, E is open. First, remark that E 
 Z � 0. Indeed, let z0 2 Z and
U be a properly covered neighborhood of h.z0; 0/. Let eU be a neighborhood of
H.z0; 0/ homeomorphically mapped onto U by p. Since h is continuous, there exist
neighborhoods A � Z of z0 and J � I of 0 such that h.A � J/ � U. By local
connectedness of Z, there exists a neighborhood B � A of z0 such that every two
points in B can be joined by a path in A. We will show that H.B�J/ � eU, and hence
HjB�J D p�1 ı hjB�J is continuous and .z0; 0/ 2 E. For a .z; t/ 2 B � J, consider a
path uW I ! Z � I from .z0; 0/ to .z; t/ consisting of a path from .z0/ to .z; 0/ within
A � 0 and a path from .z; 0/ to .z; t/ within z � Œ0; t�. The path H ı u is continuous;
hence, it coincides with p�1 ı h ı u [both begin at H.z0; 0/ and projected by p onto
h ı u], and hence H.z; t/ D .H ı u/.1/ 2 V .

Suppose now that H is discontinuous at some .z0; t/. Let t0 D infft j .z0; t/ … Eg.
By the remark above, t0 > 0. Let U � X be a properly covered neighborhood
of h.z0; t0/, and let eU � T be a neighborhood of H.z0; t0/ which is mapped
homeomorphically by p onto U. Since h is continuous, there exist neighborhoods
A � Z of z0 and J � I of t0 such that h.A � J/ � U. We choose successively: a
t1 < t0 in J; neighborhoods B � A of z0 and K � I of t1 such that H is continuous in
B�K; a neighborhood C � B of z0 such that every two points in C can be connected
by a path in B. We will show that H.C � J/ � V , which will mean, as before, that
H is continuous in C � J, in contradiction to the definition of t0. For a .z; t/ 2 C � J
take a path u from .z0; t0/ to .z; t/ consisting of three paths: from .z0; t0/ to .z0; t1/
in z0 � Œt1; t0�; then from .z0; t1/ to .z; t1/ in B � t1; and then from .z; t1/ to .z; t/ in
z � Œt1; t�. The composition H ı u is continuous, covers h ı uW I ! U, and hence
H ı u.I/ � V; thus, H.z; t/ D h ı u.1/ 2 V . It is a pleasure to state that this boring
proof is over.

Corollary. If paths s; s0W I ! X are homotopic Œand in particular s0.0/ D s.0/
and s0.1/ D s.1/�, then the lifted pathses;es 0W I ! T .meaning that p ıes D s and
p ıes 0 D s0/ withes.0/ Des 0.0/ are also homotopic .in particular,es.1/ Des 0.1//.
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Proof. The lifting homotopy theorem yields a homotopyestW I ! T covering a
homotopy stW I ! X between the paths s; s0 such thates0 Des. Since the sets p�1.s.0/
and p�1.s.1// are discrete and st.0/; st.1/ do not depend on t, soest.0/;est.1/ also do
not depend on t. Thus,est is a path homotopy. Finally,es1 Des 0, since both paths cover
s0 and have the same beginning.

6.6 Coverings and Fundamental Groups

Theorem. If pWT ! X is a covering, then p�W�1.T;ex0/ ! �1.X; x0/ is a
monomorphism (a one-to-one homomorphism).

Proof. Let s be a loop in �.T;ex0/ and let p�Œs� D 0. The latter means that the loop
p ı s 2 �.X; x0/ is homotopic to the constant loop I ! x0. Hence, the loops s and
I ! ex0 cover homotopic loops p ı s and const, and hence, they are homotopic by
the corollary in Sect. 6.5.

The subgroup p��1.T;ex0/ � �1.T;ex0/ of �1.X; x0/ is called the group of
the covering. If we change the point ex0 without changing x0, then the group of
covering will be replaced by a conjugated group (the conjugation is performed by
the homotopy class of the loop in X which is obtained by applying p to a path in T
joining the two pointsex0; see Fig. 27).

For different points x0, the groups of coverings are taken into each other by
isomorphisms of the form u# (see Sect. 6.2).

Our next goal is to show that the difference between the groups �1.T/ and
�1.X/ is measured by the number of inverse images of a point of X in T.
Namely, we will construct a canonical bijection between the set p�1.x0/ and the
set �1.X; x0/=p��1.T;ex0/.

Consider a loop s in �.X; x0/. Lift it to a pathes in T with the beginningex0.
Let us assign to s the endpointes.1/ 2 p�1.x0/ of the pathes. It is obvious that
this point depends only on the homotopy class Œs� of s: A homotopy of the loop s
is lifted to a homotopy of the pathes, and this homotopy leaves the endpointes.1/

Fig. 27 Dependence of the group of the covering onex0
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p
s1

s2

s̃1s̃2

x0

x̃0

X

T

Fig. 28 The construction of a map �1.X; x0/=p��1.T;ex0/ ! p�1.x0/, detail

unchanged, since it can vary only within the discrete set p�1.x0/. It is clear also
that the loops s1; s2 2 �.X; x0/ determine the same point in p�1.x0/ if and only if
the loop s1s�1

2 is lifted to a loop in T (see Fig. 28), that is, if and only Œs1s�1
2 � D

Œs1� Œs2��1 2 p��1.T;ex0/. Thus, our correspondence s 7! es.1/ provides a one-to-
one map �1.X; x0/=p��1.T;ex0/ ! p�1.x0/, and this map is onto: Since T is path
connected, every point y 2 p�1.x0/ can be joined by a path u with this point, and
u�1 is the lifting of the loop s D p ı u�1 to T with the beginningex0; thus, Œs� 7! y.

This construction shows that the inverse images of different points x; y of the base
X of a covering pWT ! X have the same cardinality. This fact also can be easily
deduced directly from the lifting path lemma. Indeed, let sW I ! X be a path joining
two points of X. We can lift this path to paths beginning at every point of p�1.x/.
The ends of these paths belong to p�1.y/, and this results in a map p�1.x/! p�1.y/.
In a similar way, the path s�1 yields a map p�1.y/ ! p�1.x/, and these maps are
inverse to each other, because the products of the paths from the two collections
cover the path ss�1 homotopic to zero.

If the cardinality of p�1.x/ is n, we refer to the covering as an n-fold covering
(These terms are often abbreviated to “finite covering,” “infinite covering,” “count-
able covering,” and so on.).

6.7 Application: Noncommutativity of Fundamental Group

The results of Sect. 6.6 show that if a loop in X lifts to a path in T which is not a
loop (the endpoints are different), then this loop in X is not homotopic to a constant
(represents a nonidentity element of the fundamental group). Similarly, if two loops
in X are lifted to two paths in T with the same beginning but different ends, then
these two loops are not homotopic to each other. We can immediately apply this
result to discovering nontrivial element of fundamental groups. In particular, we
can show that fundamental groups are not necessarily commutative.

Theorem. Let X be the “figure-eight space,” S1 _ S1, and let i; jW S1 ! X be the
two natural embeddings of S1 into S1 _ S1. Let ˛; ˇ 2 �1.X/ be the images of the
generator of �1.S1/ D Z with respect to i� and j�. Then ˛ˇ ¤ ˇ˛.

Proof. Consider a fivefold covering of the figure-eight space shown in Fig. 29. The
loop ˛ˇ˛�1ˇ�1 (we denote loops by the same letter as their homotopy classes) is
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Fig. 29 A fivefold covering of the figure-eight space

lifted to a path shown in the figure by a thick line. Its end does not coincide with its
beginning; thus, ˛ˇ˛�1ˇ�1 ¤ 1.

Remark. This result has an importance comparable with that of the computation of
�1.S1/ (see the remark in Sect. 6.2). The commutativity of the group �1.S1 _ S1/
would have implied the commutativity of the fundamental groups of all spaces.
Indeed, any two loops s; t with the same beginning of any topological space X form
a map f W S1 _ S1 ! X, and s D f ı ˛; t D f ı ˇ; thus, Œ˛� Œˇ� D Œˇ� Œ˛� would have
implied Œs� Œt� D Œt� Œs�.

Notice in conclusion that the fact that the fundamental group is not always
commutative makes it different from the majority of groups assigned in a homotopy
invariant way to topological spaces. For this reason, the study of fundamental
groups requires in many cases using specific, and not always standard, algebraic
means. To avoid this, topologists often prefer to impose (with or without sufficient
reasons) on the spaces considered the condition of simply connectedness, or, at
least conditions which imply the commutativity of the fundamental group. One such
condition is contained in the following exercise.

EXERCISE 4. Prove that if X is a topological group (not necessarily commutative!)
or, at least, an H-space, then the fundamental group of X is commutative.
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6.8 Deck Transformations

Definition. Let pWT ! X be a covering. A deck transformation of this covering is a
homeomorphism f WT ! T such that p ı f D p. [This condition means, in particular,
that f .p�1.x// D p�1.x/ for every x 2 X.]

Proposition 1. Let y 2 T. A deck transformation f WT ! T is fully determined by
the image f .y/ of y. In particular, if a deck transformation f has a fixed point, then
f D id.

Proof. Let z 2 T. Choose a path sW I ! T joining y with z. Let s0W I ! T be a path
obtained by lifting p ı sW I ! X with the beginning f .y/. The paths f ı s and s0 have
a common beginning and a common projection p ı s in X. Hence, f ı s D s0 and
f .z/ D f ı s.1/ D s0.1/, which is determined by f .y/.

Proposition 2. Let y; y0 2 T and p.y/ D p.y0/. A deck transformation f WT ! T
such that f .y/ D y0 exists if and only if p��1.T; y/ D p��1.T; y0/. (The if part
requires that X is sufficiently good.)

Proof. Let there be a deck transformation f WT ! T with f .y/ D y0. Let sW I ! T be
a loop with the beginning y representing an arbitrarily chosen element ˛ of �1.T; y/.
Consider the lifting s0W I ! T of the loop p ı sW I ! X with the beginning y0. Then
s0 D f ıs (because the two paths have a common beginning and a common projection
in X). Hence, s0 is a loop, and if ˇ 2 �1.T; y0/ is the class of s0, then p�.ˇ/ D p�.˛/.
This shows that p��1.T; y/ � p��1.T; y0/ and in the same way, using f �1 instead of
f , we can prove that p��1.T; y0/ � p��1.T; y/. Thus, p��1.T; y/ D p��1.T; y0/.

Assume now that p��1.T; y/ D p��1.T; y0/. For a z 2 T, choose a path s joining
y with z. Lift the path p ı sW I ! X to a path s0W I ! T with the beginning y0 and put
f .z/ D s0.1/. This point does not depend on the choice of s. Indeed, let s1 be another
path joining y with z. Since p��1.T; y/ D p��1.T; y0/, the loop p ı .ss�1

1 / is covered
by a loop with the beginning y0. But the latter is the product of paths covering p ı s
and p ı s�1

1 , which means that the lifting of the path p ı s1 with the beginning y0 has
the same end as the lifting of the path pı s1. Thus, the map sWT ! T is well defined.
To check its continuity, we need the assumption that X is locally path connected (the
proof is similar to that in Sect. 6.5; we leave the details to the reader). It is obvious
that p ı f D p and that f .y/ D y0 (for the latter we apply the construction to the
constant path sW I ! y). The inverse map f �1 is constructed in the same way as f
with y and y0 swapped.

Theorem. Let pWT ! X be a covering, and letex0 2 T; x0 D p.ex0/. The group
D of deck transformations of the covering p is isomorphic to the quotient of the
normalizer N D f� 2 �1.X; x0/ j �p��1.T;ex0/��1 D p��1.T;ex0/g of the group of
covering p��1.T;ex0/ over this group.

Proof. We already have a bijection between the sets p�1.x0/ and �1.X; x0/=p��1
.T;ex0/ (Sect. 6.6). The orbit of ex0 with respect to the action of D is a subset
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of p�1.x0/ which consists of cosets whose elements ˛ satisfy the condition
˛p��1.T;ex0/˛�1 D p��1.T;ex0/. These are cosets of p��1.T;ex0/ in the normalizer
of p��1.T;ex0/.

6.9 Regular Coverings and Universal Coverings

Definition. A covering pWT ! X is called regular if the group of covering
p��1.T;ex0/ is a normal subgroup of �1.X; x0/ (we already know that this property
does not depend on the choice ofex0 2 T; see Sect. 6.6).

Equivalent Definition. A covering pWT ! X is regular if the group of deck
transformations acts transitively on p�1.x0/ (again, this property does not depend
on the choice of x0 2 X; the equivalence of the two definitions is contained in the
theorem of Sect. 6.8).

Thus, for a regular covering pWT ! X, the orbits of the group D of deck
transformations coincide with inverse images p�1.x0/ of points of X in T. This
means that X D T=D, the orbit space of the group action (it is obvious that the orbit
space topology is the same as topology of X. This also provides a new approach
to a definition of regular coverings. Let T be a connected topological space with a
discrete action of a group D (meaning that every point y 2 T has a neighborhood
U such that sets d � U for all d 2 D are mutually disjoint). Then the projection
T ! T=D is a regular covering, and all regular coverings can be constructed in this
way.

EXERCISE 5. Prove that any twofold covering is regular (this is equivalent to the
well-known algebraic fact: For any group, any subgroup of index 2 is normal).

EXERCISE 6. Construct an example of an irregular threefold covering over the
figure-eight space and over the sphere with two handles.

Definition. A covering pWT ! X is called universal if the space T is simply
connected.

Obviously, all universal coverings are regular.
Our observation above shows that for every point x0 2 X there is a one-to-

one correspondence between �1.X; x0/ and p�1.x0/. Moreover, it is possible to give
this correspondence an appearance of a group isomorphism. Namely, let there be a
discrete action of a group D in a simply connected space T; then �1.T=D/ Š D.
Actually, the computation of �1.S1/ in Sect. 6.3 can be regarded as an application
of this theorem (see the following examples).

Example 1. The covering pWR ! S1 (see Sect. 6.4) is a universal covering
corresponding to the action of Z in R, .n 2 Z/W x 7! xC 2n� .
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Example 2. The covering pW Sn ! RPn (again see Sect. 6.4) is a universal covering
with the group Z2 acting in Sn by the antipodal map. Thus, the fundamental group
of RPn is isomorphic to Z2.

Example 3. If 
 is a discrete subgroup of a topological group G, then there arises a
regular covering G! G=
 . For example, there are many known discrete subgroups
in the group SO.3/: the dihedral groups, the groups of symmetries of Platonic solids,
and so forth. For each of these groups 
 there arises a regular covering SO.3/ !
SO.3/=
; since SO.3/ is (canonically homeomorphic to RP3; see Sect. 1.7), we can
combine this covering with the covering S3 ! RP3 from the previous example and
obtain a universal covering over SO.3/=
 .

Example 4. Let X be the union of all lines x D n; n 2 Z and y D n; n 2 Z (an
infinite sheet of graph paper). The group Z � Z acts in X in the obvious way (and
this action is discrete). The quotient X=.Z� Z/ is, obviously, the figure-eight space
(the map pWX ! S1 _ S1 maps every vertical segment Œ.m; n/; .m; nC 1/� onto the
left S1 and every horizontal segment Œ.m; n/; .m C 1; n/� onto the right S1). Thus,
we have a regular covering X ! S1 _ S1.

Example 5. Figure 30 presents a space of a universal covering over S1 _ S1 (we
leave details to the reader).

(There is a similar construction of a universal covering over a bouquet of a set of
circles.)

EXERCISE 7. Prove that every classical surface (Sect. 1.10) without holes, except
S2 and RP2 has a universal covering with the space homeomorphic to R

2.

6.10 Lifting Maps

Theorem. Let pWT ! X be a covering, and let Z be a path connected space. Let
ex0 2 T; x0 D p.ex0/ 2 X; and z0 2 Z be base points and let f WZ ! X be a continuous
map such that f .z0/ D x0. Then

(1) There exists no more than one continuous map FWZ ! T such that F.z0/ Dex0
and p ı F D f .

(2) If the space Z is good enough, then the map F with the properties listed in .1/
exists if and only if f��1.Z; z0/ � p��1.T;ex0/.

Proof. Let F0;F00 be two such maps. Let z 2 Z be an arbitrary point, and let sW I ! Z
be a path joining z0 with z. The paths F0 ı s; F00 ı sW I ! T both begin atex0 and both
are projected by p into the path f ı sW I ! X. Hence, they coincide, and F0.z/ D
F0 ı s.1/ D F00 ı s.1/ D F00.z/, so F0 D F00.

The same argumentation gives a clue to constructing the map F. For a point
z 2 Z, we take a path sW I ! Z joining z0 with z, then lift the path f ı sW I ! X to a
pathesW I ! T beginning atex0 and put F.z/ Des.1/. However, we need to verify that
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Fig. 30 For Example 5: the space of a universal covering over the figure-eight space

thises.1/ does not depend on the choice of s. For this, the inclusion f��1.Z; z0/ �
p��1.T;ex0/ provides a necessary and sufficient condition. Indeed, if s0 is another
path joining z0 with z, then s.s0/�1 is a loop in Z, and the equalityes 0.1/ D es.1/
means precisely that the loop f ı .s.s0/�1/ is lifted to a loop with its beginning at
ex0 in T. In other words, we need that f�Œs.s0/�1� 2 p��1.T;ex0/. It remains to check
that the map F constructed is continuous. This holds if Z is locally path connected;
the proof is a replica of the proof of a similar statement in Sect. 6.5, and the reader,
who prefers to do that, can recover it.

Corollary. If the sufficiently good space Z is simply connected, then for every
covering pWT ! X, the map p establishes a homeomorphism between base point
mapping spaces Cb.Z;T/ and Cb.Z;X/ (the base points z0 2 Z;ex0 2 T; x0 2 X are
as in the theorem). Subsequently, there arises a bijection p�W�b.Z;T/! �b.Z;X/.

6.11 A Criterion of Equivalence of Coverings

Definition. Coverings p1WT1 ! X and p2WT2 ! X (with the same base) are called
equivalent if there exists a homeomorphism f WT1 ! T2 such that the diagram
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T1 T2

X

f

p1 p2

is commutative. Such a map f is called an equivalence.

Theorem. Let p1WT1 ! X; p2WT2 ! X be coverings and x 2 X;ex1 2
T1;ex2 2 T2 be points such p1.ex1/ D p2.ex2/ D x. If the space X is good
enough, then the coverings p1; p2 are equivalent if and only if the subgroups
.p1/��1.T1;ex1/; .p2/��1.T1;ex2/ of the group �1.X; x/ are conjugated.

In particular, two universal coverings over a sufficiently good space are always
equivalent.

Proof of Theorem. In one direction (if the coverings are equivalent, then the groups
are conjugated), this is, essentially, known to us (see Sect. 6.6). Let us prove the
statement in the other direction. Let the subgroups .p1/��1.T1;ex1/; .p2/��1.T1;ex2/
of the group �1.X; x/ be conjugated. We can change, if necessary, the pointex2 in
such a way that the subgroups .p1/��1.T1;ex1/; .p2/��1.T1;ex2/ will be equal, not
just conjugated (see again Sect. 6.6). Then we apply the theorem from Sect. 6.10
to the map p1WT1 ! X and the covering p2WT2 ! X, and get a continuous map
f WT1 ! T2 such that p2 ı f D p1. In the same way (swapping p1 and p2), we get
a continuous map gWT2 ! T1 such that p1 ı g D p2. Both maps are unique. This
uniqueness implies the equalities g ı f D idT1 ; f ı g D idT2 ; indeed, both maps g ı f
and idT1 satisfy the conditions imposed on f in the case when T2 D T1; p2 D p1 and
similarly for f ı g and idT2 .

6.12 Existence, Classification, and Hierarchy of Coverings

Theorem. Let X be a sufficiently good path connected space with a base point x0.
Then

(1) For every subgroup H � �1.X; x0/ there exists a unique, up to a base point
equivalence, covering pW .T;ex0/! .X; x0/ such that p��1.T;ex0/ D H.

(2) Let H1;H2 be subgroups of �1.X; x0/ and let H1 � H2. Let p1W .T1;ex10/ !
.X; x0/; p2W .T2;ex20/ ! .X; x0/ be the coverings with .pi/��1.Ti;exi0/ D Hi

existing and unique by the part .1/. Then there exists a unique covering
qW .T1;ex10/! .T2;ex20/ such that p2 ı q D p1.

Proof. The only thing which we still need to prove is the existence statement of part
(1). Notice that this is the first (and last) case, when we need to use not only local
connectedness, but also semilocal simply connectedness of the space X.

Define an equivalence relation in the set E.X; x0/ of paths on X beginning at x0:
Two paths s; s0 2 E.X; x0/ are equivalent if s.1/ D s0.1/ and the homotopy class of
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the loop s.s0/�1 2 �.X; x0/ belongs to H. Let T be the set of equivalence classes.
Define a topology in T in the following way. Let V � U be open sets in X, and let
s 2 E.X; x0/ be a path with s.1/ 2 V . Denote by N.U;V; s/ the set of equivalence
classes of paths sw where wW I ! X is a path with w.0/ D s.1/;w.1/ 2 V , and
w.I/ � U. The sets N.U;V; s/ form a base of topology in T (recall that a family
F of subsets of some set Z is a base of a topology in Z if and only if for every
U;V 2 F and z 2 U \ V there exists a W 2 F such that z 2 W � U \ V; this
condition obviously holds for F D fN.U;V; s/g). Thus, T becomes a topological
space.

Let pWT ! X take the class of a path s 2 E.X; x0/ into s.1/ 2 X; obviously, it
is well defined. It is clear also that p is continuous: For an open V � X; p�1.V/ D
S

s.1/2V N.X;V; s/.
For a path s 2 E.X; x0/ and � 2 I, let s� W I ! X be a path defined by the formula

s� .t/ D s.� t/, Obviously, the function � 7! s� defines a continuous map I ! T, and
it is a path joining the class of s with the classex0 2 T of the constant path I ! x0.
In particular, T is path connected.

Let us prove now that p is a covering. Let x 2 X, let U be a neighborhood of x
such that every loop in U is homotopic to a constant loop in X, and let V � U be a
neighborhood of x such that every point in V can be joined with x by a path in U. We
will prove that V is properly covered with respect to p. Let y 2 p�1.x/ be represented
by a path s 2 E.X; x0/ [thus s.1/ D x]. Then the neighborhood N.U;V; s/ of y is
one-to-one projected by p onto V . Indeed, for an x0 2 V , there exists a path w joining
x with x0 in U. Moreover, this path is unique up to a homotopy. Hence, there exists
a unique y0 2 N.U;V; s/ (the class of the path sw) such that p.y0/ D x0.

Finally, let us prove that the group of the covering pWT ! X is H. We need to
prove that a loop s 2 �.X; x0/ is covered by a loop in �.T;ex0/ if and only if the
homotopy class of this loop belongs to H. But the loop s is covered by the loop
es D f� 7! s�g, andes.1/ Dex0 if and only if the path s and the constant path I ! x0
belong to the same equivalence class, which means precisely that Œs� 2 H.

Corollary. Any sufficiently good path connected space possesses a (unique) univer-
sal covering.



6.12 Existence, Classification, and Hierarchy of Coverings 77



78 1 Homotopy



7.1 Van Kampen’s Theorem 79

Lecture 7 Van Kampen’s Theorem and Fundamental
Groups of CW Complexes

7.1 Van Kampen’s Theorem

Let X be a topological space, and let U1;U2 � X be open subsets such that U1 [
U2 D X and U1 \ U2 ¤ ;. We assume also that X;U1;U2; and U1 \ U2 are (path)
connected. Let x0 2 U1 \ U2. Then the inclusion maps of U1 and U2 into X and of
U1\U2 into U1 and U2 induce homomorphisms of fundamental groups which form
a commutative diagram

Our goal is to reconstruct the group �1.X; x0/ (and homomorphisms i1; i2) from
the groups �1.U1; x0/; �1.U2; x0/; �1.U1 \ U2; x0/; and homomorphisms j1; j2. We
formulate the result in terms of generators and relations.

Theorem (Van Kampen3). Let Ai;Ri be systems of generators and relations for
the groups �1.Ui; x0/ .i D 1; 2/. Let B be a system of generators for the group
�1.U1 \ U2; x0/. Then the group �1.X; x0/ is generated by the set A1

`

A2 with the
set of relations R1

`

R2
`

B where the relation corresponding to b 2 B is j1.b/ D
j2.b/, where, in turn, j1.b/ is regarded as a word in A1 and j2.b/ is regarded as a
word in A2. The homomorphisms i1; i2 map generators from A1;A2 into the same
elements of A1;A2 regarded as generators of �1.X; x0/.

This theorem is covered by the following two propositions.

Proposition 1. Every element of �1.X; x0/ may be presented as a product

ik1 .˛1/ : : : ikN .˛N/; (	)

where ks D 1 or 2 and ˛s 2 �1.Uks ; x0/.

Proof. Let � W I ! X be a loop representing the chosen element of �1.X; x0/.
A simple fact from analysis states that there exists an n such that for each r D
1; : : : ; n, �

��

r � 1
n

;
r

n

��

is contained in U1 or U2 (or both). Define �rW I ! X by

�r.t/ D �
�

r � 1C t

n

�

. Then � D �1�2 : : : �n.

3This theorem is often called Seifert–Van Kampen Theorem.
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For each r D 1; : : : n � 1, fix a path �rW I ! X such that (i) �r.0/ D x0; (ii)

�r.1/ D �
� r

n

�

; (iii) if �
� r

n

�

2 Ui, then �r.I/ � Ui .i D 1; 2/. [Condition (iii)

implies that if �
� r

n

�

2 U1 \U2, then �r.I/ � U1 \U2; the existence of such paths

�r follows from the connectedness of U1;U2, and U1 \ U2.]
We have

� D �1�2 : : : �n � �1��1
1 �1�2�

�1
2 �2 : : : �

�1
n�1�n�1�n:

The latter is the product of loops

�1�
�1
1 ; �1�2�

�1
2 ; �2�3�

�1
3 ; : : : ; �n�2�n�1��1

n�1; �n�1�n;

each of which lies either in U1, or in U2. The proposition follows.
To state Proposition 2, we describe what we will call admissible transformations

of expression (1). There are two sorts of admissible transformations.
(Splitting/Merging). If ks D ksC1, we can replace iks.˛s/iksC1

.˛sC1/ by
iks.˛s˛sC1/; and vice versa: If ˛s D ˛0

s˛
00
s , then we can replace iks.˛s/ by

iks.˛
0
s/iks.˛

00
s /.

(Renaming). If ˛s D jks.ˇ/, then we can replace iks.˛s/ by ik0

s
.˛0

s/, where k0
s ¤ ks

(that is, k0
s D 3 � ks) and ˛0

s D jk0

s
.ˇ/.

Proposition 2. The word .1/ is equal to 1 2 �1.X; x0/ if and only if it can be
reduced by admissible transformations to the trivial word .i1.1/ or i2.1//.

Proof. The if part of this proposition is obvious [admissible transformations do not
change the product (1)]. Prove the only if part.

Suppose that a product (	) is equal to 1 2 �1.X; x0/. Let �rW I ! Ukr � X
be a loop (of X) representing ikr.˛r/, and let � W I ! X be the loop

�

�

rC t

n

�

D �r.t/ .t 2 I/. Then � � const; let SW I � I ! X be a homotopy,

that is, S.t; 0/ D S.t; 1/ D S.1; t/ D x0; S.0; t/ D �.t/. Choose a big m such that

for all r; s; S

��

r

m
;

rC 1
m

�

�
�

s

m
;

sC 1
m

��

� U1 or U2; it will be convenient to

assume that n j m, that is, m D `n.
For each r; s between 0 and m, fix a path �rsW I ! X such that �rs.0/ D

x0; �rs.1/ D S
� r

m
;

s

m

�

and if S
� r

m
;

s

m

�

is contained in U1;U2;U1 \ U2; or x0,

then so is �rs.I/. Consider short “horizontal” and “vertical” paths

˛rsW I ! X; ˛rs.t/ D S

�

r � 1C t

m
;

s

m

�

; 1 � r � m; 0 � s � m:

ˇrsW I ! X; ˇrs.t/ D S

�

r

m
;

s � 1C t

m

�

; 0 � r � m; 1 � s � m:
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Then set

˛0
rs D �rs˛rs�

�1
rC1;s; ˇ0

rs D �rsˇrs�
�1
r;sC1:

These are loops; each is contained in U1 or U2 (or both). We will transform the
product loop �1 : : : �m; in �1.X; x0/, each of the factors represents an element of
the form ik.˛/, and we will see that, at the level of �1.X; x0/, our transformations
will be admissible. For this purpose, we fix for the homotopy type of each loop
˛0

rs; ˇ
0
rs a representation as i1.˛/, or i2.˛/, or, if the loop is contained in U1 \U2, as

i1.ji.ˇ// D i2.j2.ˇ// with the understanding that switching this last representations
is an admissible transformation of renaming.

First, we replace each �r by the product ˛0
.r�1/`C1;0˛0

.r�1/`C2;0 : : : ˛0
r`;0. As a

result, our product is replaced by ˛0
1;0˛

0
2;0 : : : ˛

0
m;0, and, in �1.X; x0/, this transition is

a sequence of the splitting transformations (and, possibly renaming). Then multiply
this product from the left by m trivial loops (which also may be regarded as a
sequence of splittings and renamings):

˛0
1;0˛

0
2;0 : : : ˛

0
m;0ˇ

0
m1ˇ

0
m2 : : : ˇ

0
m;m:

Using a sequence of admissible transformations, we join this product with

ˇ0
0;1ˇ

0
0;2 : : : ˇ

0
0;m˛

0
1;m˛

0
2;m : : : ˛

0
m;m;

which is a product of trivial loops. An intermediate step is

ˇ0
01 : : : ˇ

0
0s˛

0
1s : : : ˛

0
rsˇ

0
r;sC1˛0

rC1;sC1 : : : ˛0
m;sC1ˇ0

m;sC2 : : : ˇ0
mm

(if r or s is equal to 0 or m, some groups of factors may be missing). The steps
are labeled with pairs .r; s/ and are performed in the following order: .m; 0/ !
.m � 1; 0/ ! � � � ! .0; 0/ ! .m � 1; 1/ ! .m � 2; 1/ ! � � � ! .0; 1/ ! .m �
1; 2/ ! � � � ! .1;m/ ! .0;m/. One step consists in replacing ˛0

rC1;sˇ0
rC1;sC1 !

ˇ0
r;sC1˛0

rC1;sC1. Assume that S

��

r

m
;

rC 1
m

�

�
�

s

m
;

sC 1
m

��

� U1 (the case of U2

is absolutely similar). Then ˛0
rC1;s.I/; ˇ0

rC1;sC1.I/; ˇ0
r;sC1.I/; and ˛0

rC1;sC1.I/ are all
contained in U1 and the products are, obviously, homotopic in U1. So our transition
is made by (if needed) renaming the homotopy classes of ˛0

rC1;s; ˇ0
rC1;sC1; then

merging these two classes; then splitting them into the product of homotopy classes
of ˇ0

r;sC1; ˛0
rC1;sC1; then (if needed) renaming these classes. These procedure proves

Proposition.

In these exercises, U1 and U2 are open subsets of a space X with U1 [ U2 D X,
and x0 2 U1 \ U2.

EXERCISE 1. Prove that if U1 and U2 are simply connected and U1 \ U2 is path
connected, then X is simply connected.
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EXERCISE 2. Prove that if U1 and U2 are simply connected and U1 \ U2 consists
of two path components connected, then �1.X/ Š Z.

EXERCISE 3. Prove that if U1 and U2 are path connected and U1 \ U2 is not path
connected, then X is simply connected.

Terminological remarks. The operations over groups used in the statement and the
proof of Van Kampen’s theorem have standard names and notations in algebra. For
groups G1;G2 with the sets of generators A1;A2 and the set of defining relations
R1;R2 their free product G1 	 G2 is defined as the group with the set of generators
A1
`

A2 and the set of defining relations R1
`

R2. A more invariant (not depending
on the sets of generators and relations) definition: G1 	 G2 is the group of words

g1g2g3 : : : gn; gk 2 G1 or G2

with obvious identifications (if gk; gkC1 belong to the same group, then we have the
right to replace them by their product; the inverse operation is also allowed) and
group structure. Examples: Z 	 Z is a free group with two generators; Z 	 Z 	 Z is
a free group with three generators; and so on.

One more equivalent, axiomatic, definition: A group P given with monomor-
phisms i1WG1 ! P; i2WG2 ! P is called a free product of G1 and G2 if for any
homomorphisms f1WG1 ! H; f2WG2 ! H there exists a unique homomorphism
f WP ! H such that f1 D f ı i1; f2 D f ı i2. The existence and uniqueness, up to a
canonical isomorphism of a thusly defined free product are easily checked.)

There is a generalization of this notion. Let 
 be one more group, and let
�1W
1 ! G1; �2W
2 ! G2 be homomorphisms. The amalgamated product G1	
G2

is defined as the set of words as before with one more admissible operation: If
gk 2 G1 and gk D �1.h/, then we can replace gk by �2.h/; and the same for
gk 2 G2. The axiomatic definition also can be modified to give the amalgamated
product: A group H with given homomorphisms i1WG1 ! P; i2WG2 ! P such that
i1 ı �1 D i2 ı �2 is G1 	
 G2 if for any homomorphisms f1WG1 ! H; f2WG2 ! H
such that f1 ı �1 D f2 ı �2 there exists a unique homomorphism f WP! H such that
f1 D f ı i1; f2 D f ı i2. (The notation G1 	
 G2 may be misleading since it does not
specify �1 and �2; in some cases additional explanations may be necessary.)

Thus, Van Kampen’s theorem states that

�1.X; x0/ D �1.U1; x0/ 	�1.U1\U2;x0/ �1.U2; x0/:

EXERCISE 4. Prove that the group Z2 	 Z2 has a (normal) subgroup of index 2
isomorphic to Z.

EXERCISE 5. Prove that SL.2;Z/ Š Z4 	Z2 Z6.
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7.2 First Applications of Van Kampen’s Theorem

Theorem. For sufficiently good spaces X;Y with base points, �1.X_Y/ D �1.X/	
�1.Y/.

Proof. All we need from X and Y is that base points have base point contractible
neighborhoods U and V in X and Y. Then, by Van Kampen’s theorem, �1.X_ Y/ D
�1.X _ V/ 	�1.U_V/ �1.U _ Y/, but X is a deformation retract of X _ V , Y is a
deformation retract of U _ Y, and U _ V is contractible. Hence, �1.X _ Y/ D
�1.X/ 	 �1.Y/.
Corollary. The fundamental group of a bouquet of n circles is a free group with n
generators.

Remark. Actually, the fundamental group of a bouquet of any set of circles is a
free group with generators corresponding to the circles, provided that the bouquet is
endowed by the weak topology. Indeed, any loop of such a bouquet is contained in
a finite subbouquet, and the same for a homotopy of loops.

EXERCISE 6. Prove that the suspension over any nonempty path connected space
is simply connected. (See Exercise 1.)

EXERCISE 7. Prove that the join of two nonempty path connected spaces is simply
connected,

EXERCISE 8. (A generalization of Exercise 7.) Prove that the join of two nonempty
spaces, of which one is path connected, is simply connected.

7.3 A More Serious Application of Van Kampen’s Theorem:
Groups of Knots and Links

A knot is a closed nonself-intersecting smooth curve in R
3. Knots K;K0 are

called isotopic if there exists a homotopy htWR3 ! R
3 consisting of smooth

homeomorphisms such that h0 D id and h1.K/ D K0. An important invariant related
to a knot is the fundamental group of its complement; sometimes it is briefly called
the group of a knot. The following is obvious.

Theorem 1. If the knots K and K0 are isotopic, then �1.R3 � K/ Š �1.R3 � K0/.

The circle x2 C y2 D 1 in R
2 � R

3 is, by definition, unknotted. We say that K is
an unknot if it is isotopic to this circle.

EXERCISE 9. If K is an unknot, then �1.R3 � K/ Š Z.

The following result is highly nontrivial.

Theorem 2. If �1.R3 � K/ Š Z, then K is an unknot.
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Fig. 31 Knot diagrams: trefoil knot and figure-eight knot

It could be expected that if �1.R3 � K/ Š �1.R
3 � K0/, then the knots K and

K0 are isotopic. However, it is wrong. The simplest example: The trefoil knot (see
ahead) is known to be not isotopic to its mirror image, but the two knots (the trefoil
and the mirror trefoil), certainly, share the fundamental group of the complement.
There are more interesting examples, when �1.R3 � K/ Š �1.R

3 � K0/, but K is
not isotopic to either K0, or to the mirror image of K0. Still, the fundamental group
of the complement is a very effective tool for distinguishing nonisotopic knots.

Knots are usually presented by knot diagrams, like the two shown in Fig. 31.
These are projections of knots onto a plane; the knots are nonself-intersecting, the
projections have self-intersections; the breaks in the curves in the diagram should
indicate which of the two strands is above the other one in space. Every knot has
a diagram, and a diagram determines the isotopy type of a knot. But isotopic knots
may have diagrams that look very differently (see Exercise 10 ahead).

Transformations of a knot diagram which do not change the knot are called
Reidemeister moves. They are described in the next exercise.

EXERCISE 10. (This exercise has nothing to do with a fundamental group; it is
purely geometric. Still, it may be useful for some exercises ahead.) Prove that two
knot diagrams represent the same knot (the same isotopy class of knots) if and
only if they can be obtained from each other by a series of transformations called
Reidemeister moves.

Move 1.

Move 2.
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Move 3.

The knots in the preceding diagrams are called a trefoil knot (or simply a trefoil)
and a figure-eight knot. For many reasons, they are usually considered the simplest
knot and the second simplest knot.

Here we will develop a machinery for computing fundamental groups for
complements of knots with given diagrams. We will begin with the case of a trefoil,
but, as will be explained later, the construction is actually quite general.

Our knot K will consist of the diagram (several disjoint curves, that is, smooth
curvilinear intervals in the plane) and the arcs (gates) joining the ends of the curves
below the plane (our sheet of paper).

We apply Van Kampen’s theorem. Let U be the intersection of R
3 � K with

the half-space above the plane, and let V be the intersection of R3 � K with the
half-space below the plane. (To make U and V open, we should take slightly
overlapping open half-spaces and make the knot solid, thicker than the width of
the intersection of the half-spaces; we will not be this scrupulous.) Then U \ V is
the complement to the diagram in the plane. Obviously, U is contractible, and thus
�1.U/ D f1g. Furthermore, V is, essentially, a half-space minus the arcs, that is, the
gates (our diagram, the engraving on the boundary, does not affect the homotopy
type of V); thus, �1.V/ is a free group “generated” by the gates. Finally, U \ V is
a perforated plane; its fundamental group is a free group “generated” by the curves.
Thus, �1.R3 � K/ has a system of generators and relations where the generators
correspond to the gates and the relations correspond to the curves. Obviously, there
are equal numbers of gates and curves. We mark the gates as a; b; : : : and the curves
as A;B; : : : . To specify the generators in �1.V/, we need to orient the gates; for this
purpose, we simply fix an orientation of the knot and then take for the generators of
�1.V/ loops which go through the gates in the direction of the knot. For the trefoil
diagram all this is done in Fig. 32.

Now, let K be the trefoil, as shown in the diagram. The group �1.R3 � K/ is
generated by a; b; and c. To find the relations, we need an explicit description of
generators of the group �1.U \ V/, that is, of the complement to the diagram in the
plane. Choose a point x0 in this complement; for each of the components of the
diagram (curves), take a disjoint from the diagram path from x0 to a point near
the curve (B on the diagram), and compose a loop from this path, a loop closely
encircling the curve and following at the beginning the orientation of the knot, and
the same path back to x0 (see Fig. 32).

Obviously, loops like this for all the curves represent a system of generators for
�1.U \V/. Moreover, it is easy to express the classes of this loop in �1.V/ in terms
of generators a; b; : : : . The loop in Fig. 32 obviously belongs to the class cac�1b�1;
the similar loops around the other two curves correspond, similarly, to the classes
aba�1c�1 and bcb�1a�1. Thus, the fundamental group of the complement to the
trefoil is a group with three generators, a; b; c, and three relations,
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A

CB

a

bc

x0

Fig. 32 Calculating the group of a trefoil

cac�1b�1 D 1; aba�1c�1 D 1; bcb�1a�1 D 1;
that is,

a D bcb�1; b D cac�1; c D aba�1:

The number of generators may be reduced: If we use the last relation to express c
in terms of a and b, and plug these expressions into the first two relations, we get
a D baba�1b�1 and b D aba�1aab�1a�1, which are actually the same:

aba D bab:

We arrive at the following result.

Theorem 3. The fundamental group of the complement to the trefoil is a group with
two generators, a and b, and one relation: aba D bab.

One can take for the generators u D ab and v D bab; then the relation takes the
form u3 D v2.
Theorem 4. The fundamental group of the complement to the trefoil is not commu-
tative.

Indeed, the formulas f .a/ D .213/; f .b/ D .132/ define a homomorphism of the
group �1.R3�K/ onto S.3/ [because .213/ and .132/ satisfy the above relation and
generate the group S.3/].

Corollary. The trefoil knot is not isotopic to an unknot.

The general case is presented in Fig. 33. As before, we orient the gates according
to the chosen orientation of the knot.
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x0

b ac4 c3 c2 c1

d1

d2

Fig. 33 Calculating the group of a knot: general case

The relation arising from this picture is

d�1
1 d2c3c4bc�1

4 c�1
3 c�1

2 c�1
1 a�1c1c2d�1

2 d1 D 1:

First of all, a relation ABA�1 D 1 is always equivalent to the relation B D 1, so we
can drop the ds, and we can always ignore the gates that we pass on our way from
x0 to the curve. The relation takes the form

c3c4bc�1
4 c�1

3 c�1
2 c�1

1 a�1c1c2 D 1:

Next, we change this relation into

a�1c1c2c3c4bc�1
4 c�1

3 c�1
2 c�1

1 D 1;

that is, a�1CbC�1, where C D c1c2c3c4, the product of generators, corresponding
to the gates on our way from a to b. And this is what this relation always looks like.

We summarize our results in the following theorem.

Theorem 5. Let K be an oriented knot in space presented by a knot diagram. This
diagram has some number of components (oriented segments) and an equal number
of gates. The group �1.R3 � K/ has a system of generators corresponding to the
gates with generating relations corresponding to the segments. Namely, if there
is a segment beginning at the gate a, ending at the gate b, and passing through
the gates c1; : : : cn (ordered according to the orientation of the segment), then the
corresponding relation is

a"1c1 : : : cnb"2c�1
n : : : c�1

1 D 1;
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Borromeo link Hopf link

Fig. 34 Links for Exercises 12 and 13

where "1 and "2 are determined by the following picture:

EXERCISE 11. Find the fundamental group of the complement to the figure-eight
knot (it should be presented as a group with two generators and one relation).

EXERCISE 12. Prove that the fundamental group of the complement of Borromeo
link4 (see Fig. 34, left) has three generators, a; b, and c, with three relations,

Œa; Œb; c�1�� D 1; Œb; Œc; a�1�� D 1; Œc; Œa; b�1�� D 1:

EXERCISE 13. The Hopf link Hn is presented in Fig. 34, right (for n D 6; n is
the number of components). Prove that the group �n.R

3 � Hn/ has n generators
a1; a2; : : : ; an with n � 1 relations:

a1a2 : : : an D ana1a2 : : : an�1 D an�1ana1 : : : an�2 D � � � D a2a3 : : : ana1:

Prove (algebraically) that the same group is isomorphic to a product of Z and a free
group with n � 1 generators. (Actually, S3 � Hn is homeomorphic to the product of
S1 and S2 minus n points; you can try to prove this.)

EXERCISE 14. Let � 2 R
2 be a diagram of a knot K 2 R

3. An admissible
3-coloring of � is a coloring � into the colors #1, #2, and #3 such that at every
crossing, either only one color is used or all three colors are used. Prove that the
number of admissible colorings is an isotopy knot invariant; that is, Reidemeister

4“Borromeo” is not the name of a mathematician. It belongs to a family of Italian noblemen who
had the picture of the link on their coat of arms.
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moves (see Exercise 10) do not change this number. (Use this invariant to prove that
the trefoil is not isotopic to an unknot.)

EXERCISE 15. (Sequel of Exercise 14) Prove that the number of admissible
colorings from Exercise 14 is precisely 3 less than the number of homomorphisms
�1.X; x0/! S3.
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7.4 Another Presentation of the Fundamental Groups
of Knots and Links

In Sect. 9.3, we derived a presentation of the fundamental group of a knot or a link,
in which the generators correspond to gates and relations correspond to arcs. There
exists a presentation, also coming from Van Kampen’s theorem, in which generators
correspond to arcs and relations correspond to gates. Many people find it more
convenient than the presentation of Sect. 9.3. It is known by the name Wirtinger
presentation.

To obtain his presentation, we cut, as in Sect. 7.3, the space with the knot deleted
by a plane, but this time it is not the plane containing the knot or link diagram, but the
parallel plane slightly below the plane of the diagram, so that the underpasses of the
gates cut short curves in the intersection of the two pieces. The part U1 below this
dividing plane is contractible (the underpasses carve short pitches on its surface),
while the part U2 above the dividing plane has tunnels corresponding to the curves
of the diagram. (As before, we assume that U1 \ U2 has some small thickness, and
the knot has small thickness exceeding, however, the thickness of U1\U2.) The base
point x0 is chosen in U1\U2. Thus, �1.U1; x0/ is trivial, and each of �1.U1\U2; x0/
and �1.U2; x0/ is a free group with generators corresponding, respectively, to gates
and curves of the diagram. To specify the relations, we need to orient the diagram.
For every gate, there arises a relation between the three generators corresponding to
the three curves involved; it is shown in Fig. 35.

(The orientations of the curves y and z are irrelevant.) We leave the details to the
reader (see Exercise 16).

EXERCISE 16. Prove that the Wirtinger presentation is a valid presentation for a
group of a knot or a link.

EXERCISE 17. Redo Exercises 11–15 using the Wirtinger presentation.

7.5 Fundamental Groups and Attaching Cells

Theorem. Let X be a path connected topological space with a base point x0, let
f W Sn ! X be a continuous map, and let s be a path in X joining, for the base point

x

y z
Relation: xy = zx

Fig. 35 Wirtinger’s relations
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z0 of Sn, the point f .z0/ with the point x0. Let Y D X
S

f DnC1, and let jWX ! Y be
the inclusion map.

(1) If n > 1, then j�W�1.X; x0/! �1.Y; x0/ is an isomorphism.
(2) If n D 1, then j�W�1.X; x0/ ! �1.Y; x0/ is onto and Ker j� is the normal

subgroup of �1.X; x0/ generated (as a normal subgroup) by s#Œf �; in particular,
this normal subgroup does not depend on the choice of s.

Proof. Take two concentric balls in DnC1 and cover Y with two open sets: U1 is
the union of X and the complement to the smaller ball, and U2 is the interior of the
bigger ball (see Fig. 36).

Take a point y0 2 U1 \U2 on the same radius as z0. By Van Kampen’s theorem,

�1.Y; y0/ D �1.U1; y0/ 	�1.U1\U2;y0/ �1.U2; y0/:

Obviously, U2 is contractible and U1 \ U2 � Sn; also, .U1; y0/ � .X; f .z0// (the
latter is a deformation retract of the former). Hence, �1.U2; y0/ D 1 and if n > 1,
then �1.U1 \ U2; y0/ D 1. Thus, if n > 1, then the inclusion map U1 ! Y induces
an isomorphism between fundamental groups, and hence so does the inclusion map
X ! Y; this proves (1).

If n D 1, then �1.Y; y0/ D �1.U1; y0/ 	�1.U1\U2;y0/ 1. But this means that
�1.Y; f .z0// D �1.X; f .z0// 	Z 1, where Z is generated by Œf �. In other words,
�1.Y; f .z0// is obtained from �1.X; f .z0// by imposing an additional relation
Œf � D 1, or by factorizing by the normal subgroup generated by Œf �. The same is
true for �1.Y; x0/ and �1.X; x0/, only Œf � should be replaced by s#Œf �. Since the
conjugacy class of s#Œf � does not depend on s, the same is true for the normal
subgroup generated by s#Œf �.

X

U1

U2

x0
f(z )
y0

s

0

Fig. 36 Proof of the attaching cell theorem
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7.6 Fundamental Groups of CW Complexes

Let X be a CW complex with precisely one zero-dimensional cell, x0 (according to
the theorem in Sect. 5.9, every connected CW complex is homotopy equivalent to
such a CW complex). Obviously, the skeleton sk1 X is a bouquet of circles. Thus,
�1.sk1 X; x0/ is a free group with generators corresponding to the one-dimensional
cells (see the corollary in Sect. 7.2; to specify the generators, we need to orient all
one-dimensional cells).

The transition from sk1 X to sk2 X consists in attaching a certain number of
two-dimensional cells. According to part (2) of the theorem in Sect. 7.5, attaching
every cell imposes a relation on �1.sk1 X; x0/; this relation equates to 1 the class
of the attaching map. Thus, �1.sk2 X; x0/ is a group with generators corresponding
to one-dimensional cells and relations corresponding to two-dimensional cells; in
particular, any group can be the fundamental group of a two-dimensional CW
complex.

Finally, according to part (1) of the theorem in Sect. 7.5, attaching cells of
dimensions 3 and more does not affect the fundamental group; thus, �1.X; x0/ is
the same as �1.sk2 X; x0/.

Remarks. (1) If the number of cells is infinite, we need to make a reference to
Axiom (W): Every spheroid, as well as every homotopy between spheroids, is
contained in a finite CW subcomplex of X. (2) Some of our earlier statements follow
directly from the cellular approximation theorem (Sect. 5.7). Moreover, in this way
we can drop the assumption that X has only one zero-dimensional cell. Namely,
let X be a connected CW complex, and let x0 be a zero-dimensional cell. Then the
inclusion maps sk1 X ! X and sk2 X ! X induce, respectively, an epimorphism
(a homomorphism onto) and an isomorphism of the �1 groups with the base point
x0. Indeed, any loop is a continuous map of the CW complex I to the CW complex
X which is cellular on the CW subcomplex @I of I; hence, it is @I-homotopic to a
cellular map, that is, to a loop in sk1 X. Similarly, a homotopy between two loops
in sk1 X is a continuous map I � I ! X which is cellular on @.I � I/; hence, it is
@.I�I/-homotopic to a cellular map, that is, to a homotopy between the two loops in
sk2 X.

We summarize everything just said in one proposition.

Theorem. Let X be a connected CW complex, and let x0 be a zero-dimensional
cell. Then the inclusions of sk1 X and sk2 X into X induce an epimorphism
�1.sk1 X; x0/ ! �1.X; x0/ and an isomorphism �1.sk2 X; x0/ ! �1.X:x0/.
Moreover, if X has no zero-dimensional cells different from x0, then �1.X; x0/
has a system of generators corresponding to one-dimensional cells (classes of
characteristic maps D1 D I ! X) with a system of relations corresponding to
two-dimensional cells (classes of attaching maps S1 ! X).

Examples. We begin with classical surfaces (without holes). A CW structure of
these surfaces is described in Sect. 2.4(F) (which is based, in turn, on the polygonal
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construction described in Exercise 14 of Lecture 1). We already know that �1.S2/ D
1 and �1.RP2/ Š Z2. The standard CW decomposition of the Klein bottle K
has two one-dimensional cells and one two-dimensional cell. Thus, �1.K/ has two
generators, denoted by c and d, and one relation, which can be read in Fig. 4d in
Lecture 1: cdc�1d D 1. Every handle results in two additional generators to the
system of generators and in modifying the only relation by the multiplication of its
left-hand side by the commutators of these additional generators. With this in mind,
we get the following description of the fundamental groups:

�1.S2 with g handles/ D ha1; b1; : : : ; ag; bg j Œa1; b1� : : : Œag; bg� D 1i;
�1.RP2 with g handles/ D hc; a1; b1; : : : ; ag; bg j c2Œa1; b1� : : : Œag; bg� D 1i;
�1.K with g handles/ D hc; d; a1; b1; : : : ; ag; bg j cdc�1dŒa1; b1� : : : Œag; bg� D 1i.
As to the other classical spaces, we can easily deduce from the CW structure of

projective spaces that �1.RPn/ Š Z2 for all n � 2 (including n D 1), which we
already know (see Example 2 in Sect. 6.9). In addition to that, we can use the CW
decompositions of the Grassmannian manifolds to compute the fundamental groups.

EXERCISE 18. Prove that �1.G.n; k// Š Z2 for 1 � k � n � 1 and n > 2.

It is easy to see that complex and quaternion Grassmann and flag manifolds are
all simply connected (as well as the Cayley projective plane).

Lecture 8 Homotopy Groups

8.1 Definition: Commutativity

Homotopy groups �n.X; x0/ .n � 1/ of a space X with a base point x0 were defined
in Lecture 4 as a particular case of a general group-valued homotopy functor. Recall
that the set �n.X; x0/ was defined as the set of base point homotopy classes of
continuous maps of the sphere Sn into X. These maps are called spheroids. In a
different way, a spheroid can be defined as a continuous map of the cube In into X
taking the boundary @In of the cube into x0.

The sum of two spheroids, f ; gW Sn ! X, is defined as the spheroid f C gW
Sn ! X which is constructed in the following way: First, the equator of the sphere
Sn (containing the base point) is collapsed into a point, so the sphere becomes the
bouquet of two spheres, and then these two spheres are mapped into X according to
f and g (see Fig. 37).

Another description uses cubic language. If f ; gW In ! X are two “cubic”
spheroids (each takes @In into x0), then the spheroid f C g can be defined as the
continuous map of In into X, where on the left half of the cube, fx1 < 1=2g if
the composition of f with the double compression of the cube in the direction of
the x1-axis, and on the right half is defined in a similar way, with g instead of f .
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x0

X
f

g

Fig. 37 The sum of spheroids

f g fg
g

f
g

f
g

f

g

ff

g

Fig. 38 A homotopy between f C g and g C f

The operation of adding spheroids is not a group operation, but it becomes a
group operation after the transition to homotopy classes. Thus, �n.X; x0/ becomes a
group (the inverse to Œf � is Œf ı r�, where r is the reflection of the cube in the plane

x D 1

2
; the identity element is the class of the constant spheroid). (We leave the

details to the reader.)

EXERCISE 1. Prove that �n.X � Y; .x0; y0// D �n.X; x0/ � �n.Y; y0/.

For n D 1 the homotopy group is the fundamental group. For n > 1 the homotopy
group acquires a new feature: It is commutative.

Theorem. If n > 1, then the group �n.X; x0/ is commutative for any .X; x0/.

Proof. We need to prove that f C g � g C f . In the language of cubic spheroids,
the homotopy is shown in Fig. 38. (The picture shows the homotopy for n D 2; if
n > 2, then we need to take the direct product of this picture and the cube In�2 in
the plane perpendicular to the plane of the picture.)

There is a slightly different way to visualize the sum of spheroids, which makes
the commutativity of �n with n � 2 still more obvious. If n-dimensional spheroids
f ; g of some space with a base point are given, we choose two small balls on the
sphere Sn and define a new spheroid which maps the complements of the balls into
the base point and maps the balls according to f and g (see Fig. 39). It is clear that
if n � 2, then the order of the balls is insignificant.

Notice in conclusion that a continuous map 'W .X; x0/ ! .Y; y0/ can be applied
to spheroids, f 7! ' ı f , and, consequently, to a homomorphism '�W�n.X; x0/ !
�n.Y; y0/. The latter depends only on the homotopy class of '. It is clear also that
id� D id and .' ı  /� D '� ı  �. Hence, homotopy equivalent spaces with base
points have isomorphic homotopy groups.



8.2 Dependence on the Base Point 95

gf

Sn

Fig. 39 Another proof of .f C g/ � .g C f /
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Fig. 40 Base point change

8.2 Dependence on the Base Point

A path uW I ! X joining points x0; x1 2 X gives rise to an isomorphism
u#W�n.X; x0/ ! �n.X; x1/. The construction of u# is shown in Fig. 40: First, we
construct a map ! of the sphere Sn onto a bouquet Sn _ I (taking the base point of
Sn into the endpoint of I distant from Sn) and then assign to a spheroid f W Sn ! X
taking the base point of Sn into x0 the spheroid

u#W Sn !��! Sn _ I
f _u��!X;

taking the base point of Sn into x1.
It is easy to check that u#.f C g/ � u#.f / C u#.g/ and that .u�1/# D .u#/

�1.
It is clear also that for n D 1 the isomorphism u# coincides with the isomorphism
u# constructed in Sect. 6.2.

As seen in the example of the fundamental group, the isomorphism u# may
be different for different paths u although it remains the same when the path
u is replaced by a homotopic path. In particular, loops representing an element
˛ 2 �1.X; x0/ determine the same automorphism of �n.X; x0/, which we can denote
as ˛#. In this way, we get a group action, or a representation, of �1.X; x0/ in
�n.X; x0/.
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If for some n the isomorphism u# does not depend on the path u at all, the space X
is called n-simple. It follows from results of Lecture 6 that X is 1-simple if and only
if the group �1.X/ is commutative. We should remark that for n > 1, the property of
being n-simple has nothing to do with the commutativity of the fundamental group.

Spaces which are n-simple for all n are called simple. For example, simply
connected spaces are simple.

EXERCISE 2. Prove that topological groups and H-spaces are simple (compare with
Exercise 4 in Sect. 6.7).

8.3 Coverings and Homotopy Groups

Theorem 1. Let pWT ! X be a covering, letex0 2 T, and let x0 D p.ex0/ 2 X. If
n � 2, then p�W�n.T;ex0/! �n.X; x0/ is an isomorphism.

This follows from results of Sect. 6.10 (see the corollary in this section) and from
the simply connectedness of the sphere Sn for n � 2.

Theorem 1 may be immediately used for the computation of homotopy groups
of some spaces. Here is an example.

Theorem 2.

�n.S
1/ D

�

Z; if n D 1;
0; if n � 2:

The first is already known (Sect. 6.3), the second follows from the fact that there
is a covering R! S1, and the line R is contractible.

EXERCISE 3. Prove that if X is a bouquet of circles, then �n.X/ D 0 for all n � 2.
(Prove that the universal covering of X is contractible; see Example 5 in Sect. 6.9.)

EXERCISE 4. Prove that if X is a classical surface (Sect. 1.10) different from S2

and RP2, then �n.X/ D 0 for all n � 2. (Classical surfaces with holes are homotopy
equivalent to bouquets of circles; thus, the statement follows from Exercise 3. The
universal covering of classical surfaces without holes different from S2 and RP2

is homeomorphic to the plane, which is contractible. Another way of proving the
statement in this case is to consider a nonuniversal covering, as described ahead.)

Let X be a surface S with a handle. We consider the infinite covering pWeX ! X,
where X is a cylinder with infinitely many copies of S attached (see Fig. 41).

By Theorem 1, �n.eX/ D �n.X/ (for n � 2). But every spheroid ofeX is contained
in a “finite part of eX,” like the one shown in Fig. 41. This finite part is a surface
with (at least two) holes, and for this surface with holes, �n D 0 by the first case
considered. Thus, this spheroid is homotopic to a constant, and the group �n.eX/ is
zero. (This proof does not cover the case of the Klein bottle, but the Klein bottle is
doubly covered by a torus; thus, its �n groups are zero for n � 2.)
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Fig. 41 A covering over a surface S with a handle

8.4 Relative Homotopy Groups

Let .X;A/ be a pair with the base point x0 2 A. Let n � 2. The relative homotopy
group �n.X;A; x0/ is defined as the set of homotopy classes of n-dimensional
relative spheroids. Relative spheroids (like the absolute5 ones) can be defined in
two ways: the ball one and the cubic one. A ball relative spheroid is a continuous
map f WDn ! X such that f .Sn�1/ � A and f .Sn�1C / D x0. (Sn�1C is the “upper
hemisphere”; that is, the set f.x1; : : : ; xn/ 2 R

n j x21 C � � � C x2n D 1; xn � 0g.)
A cubic relative spheroid is a continuous map f W In ! X such that f .@In/ � A and
f .@In � In�1/ D x0. The sum of two cubic relative spheroids f ; gW In ! X is a cubic
relative spheroid f C gW In ! X defined by the formula (the same as in the absolute
case)

.f C g/.x1; x2; : : : ; xn/ D

8

ˆ
ˆ
<

ˆ
ˆ
:

f .2x1; x2; : : : ; xn/; if x1 � 1

2
;

g.2x1 � 1; x2; : : : ; xn/; if x1 � 1

2
:

It is clear that f C g is a relative spheroid and that if f � f 0 and g � g0, then
f C g � f 0C g0. The last property makes it possible to define theC operation in the
set �n.X;A; x0/.

EXERCISE 5. Check the group axioms for �n.X;AI x0/; in particular, the identity
element is the class of the constant spheroid.

EXERCISE 6. Show that if n � 3, then the group�n.X;AI x0/ is commutative. (Like
we did in the absolute case, it is convenient to use the construction of f Cg as shown
in Fig. 42; the shadowed domain is mapped into x0; if n � 3, then the order of
domains marked as f and g is insignificant.)

5To distinguish relative homotopy groups and spheroids from homotopy groups and spheroids
considered before, we will sometimes call the latter absolute.
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f g

Fig. 42 Another description of f C g

EXERCISE 7. Find the relative analog of Exercise 1.

If .X;A/; .Y;B/ are pairs with base points x0 2 A; y0 2 B, then a continuous
map f WX ! Y such that f .A/ � B and f .x0/ D y0 [in writing, f W .X;A; x0/ !
.Y;B; y0/] induces a homomorphism f�W�n.X;A; x0/ ! �n.Y;B; y0/. Homotopic
maps .X;A; x0/ ! .Y;B; y0/ induce the same homomorphism; in particular,
homotopy equivalent pairs have isomorphic homotopy groups.

The dependence of relative homotopy groups on the base point is similar to that
for absolute homotopy groups: A path uW I ! A joining x0 2 A with x1 2 A gives
rise to an isomorphism u#W�n.X;A; x0/! �n.X;A; x1/.

8.5 “Homotopy Groups” �0.X; x0/ and �1.X;A; x0/

The definition of the sets �n.X; x0/ and �n.X;AI x0/ makes sense if we take n D 0
in the first case and n D 1 in the second case. In particular, �0.X; x0/ is the set
of path components of X [the set �1.X;A; x0/ does not have such a transparent
meaning]. However, there is no natural group structure in these sets [for �0.X; x0/,
this follows from the results of Lecture 4; for �1.X;A; x0/, we leave the explanation
to the reader]. Still these sets possess a distinguished element, “the unity”: This is
the class of the constant spheroid S0 ! x0 or I1 ! x0.

Although �0.X; x0/ and �1.X;A; x0/ are not groups, one should not totally ignore
them. For example, the statement “the space X is n-connected if and only if �i.X/ D
0 for i � n” is valid for n D 0 as well as for n > 0 [the equality �0.X/ D 0 means
that X is path connected]. Moreover, we will have the courage to say that although
the notation ��1.X/ makes no sense at all, the notion of .�1/-connectedness exists
and means being nonempty (every map ; ! X can be extended to a map pt! X).
One can say that ��1.X/ is not a group and even is not a set, but that there are
two possibilities: ��1.X/ D 0 (X is nonempty) and ��1.X/ ¤ 0 (X is empty). All
this gives the impression of idle talk, but it may clarify the similarity which exists
sometimes between a proof of existence of, say, a map of some kind, or a solution
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of some equation (a computation of the ��1 group) and a description of the set of
homotopy classes of such maps or of solutions of the equation (a computation of the
�0 group).

8.6 Relations Between Relative and Absolute Homotopy
Groups

First, absolute homotopy groups may be regarded as a particular case of relative
homotopy groups. Namely, �n.X; x0/ D �.X; x0; x0/ for n � 1.

Second, relative homotopy groups may be regarded as a particular case of
absolute homotopy groups. Namely, there exists a construction which assigns to a
pair X;A with a base point x0 a space Y with a base point y0 such that �n.X;A; x0/ D
�n�1.Y; y0/ for n � 1. This explains why �n.X;A; x0/ is a group only for n � 2 and
a commutative group only for n � 3. We postpone the construction of Y to Lecture 9
(see Sect. 9.10).

Third, there are natural homomorphisms �n.X; x0/ ! �n.X;A; x0/. These
homomorphisms arise from the observation that an absolute spheroid .In; @In/ !
.X; x0/ can be regarded as a relative spheroid

.In; @In; @In � In�1/! .X;A; x0/I

differently, one can say that these homomorphisms coincide with j�, where j is the
identity map X ! X regarded as a map .X; x0/! .X;A/.

EXERCISE 8. Prove that the image of the homomorphism

j�W�2.X; x0/! �2.X;A; x0/

is contained in the center of the group �2.X;A; x0/.

Fourth (and the most important!), there are connecting homomorphisms

@W�n.X;A; x0/! �n�1.A; x0/:

The homomorphism @ takes the class of a relative spheroid

f W .In; @In; @In � In�1/! .X;A; x0/

into the class of the absolute spheroid

f jIn�1 W .In�1; @In�1/! .A; x0/

[or the class of a relative spheroid f W .Dn; Sn�1; Sn�1C / ! .X;A; x0/ into the class of
the absolute spheroid f jSn�1 W Sn�1 ! A].
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8.7 The Homotopy Sequence of a Pair

The “homotopy sequence of a pair” is the name given to the sequence

: : :
@��!�n.A; x0/

i���!�n.X; x0/
j���!�n.X;A; x0/

@��!�n�1.A; x0/
: : :

i���!�1.X; x0/
j���!�1.X;A; x0/

@��!�0.A; x0/
i���!�0.X; x0/;

where j� and @ are homomorphisms described earlier in this chapter and i� is
induced by the inclusion map iWA! X.

The main property of this sequence is that it is exact; that is, the image of every
map coincides with the kernel of the next map (for the last three arrows, the kernel
is the inverse image of the “unity element”). We recommend that the reader proves
this as an exercise; but for those who do not want to do this work, we present a proof
now.

Proof of Exactness. (1) Im i� � Ker j�. We need to prove that for every spheroid
f W .In; @In/ ! .A; x0/; j� ı i�Œf � D 0. The class j� ı i�Œf � is represented by the
same map f regarded as a map .In; @In; @In � In�1/! .X;A; x0/, and the spheroids
ftW .In; @In; @In � In�1/ ! .X;A; x0/; ft.x1; : : : ; xn�1; xn/ D f .x1; : : : ; xn�1; t C .1 �
t/xn/ form a homotopy connecting f with a constant spheroid.

(2) Ker j� � Im i�. We need to show that if a spheroid f W .In; @In/ ! .X; x0/ is
homotopic to the constant within the class of relative spheroids, then it is homotopic
(as an absolute spheroid) to a spheroid whose image is contained in A. Let FW In �
I ! X be a homotopy between f and the constant spheroid in the class of constant
spheroids within the class of relative spheroids of the pair .X;A/. Then F is the map
InC1 ! X, which is f on the face In D fxnC1 D 0g that maps the face fxn D 0g into
A and maps the remaining part of @InC1 into x0. Let In

t � InC1 be the intersection
of the cube InC1 with the plane txn C .1 � t/xn�1 D 0 (see Fig. 43). It is clear that
In
t � In and that FjIn

t
W In

t D In ! X is a homotopy joining (within the class of
absolute spheroids of X) the spheroid f with a spheroid g whose image is contained
in A.

(3) Im j� � Ker @. Indeed, if f W In ! X is an absolute spheroid, then f jIn�1 is a
constant map.

(4) Ker @ � Im f�. Let f W In ! X be a relative spheroid, and let gtW In�1 ! A be a
homotopy connecting the absolute spheroid FjIn�1 of A with the constant spheroid.
Consider the homotopy ftW @In ! X coinciding with gt on In�1 and taking @In� In�1
into x0 and extend it (using Borsuk’s theorem) to a homotopy htW In ! X of the
spheroid f . It is clear that ht is a homotopy connecting f with the constant spheroid
within the class of relative spheroids.

(5) Im @ � Ker i�. If an absolute spheroid f W In�1 ! A is a restriction of an
absolute spheroid gW In ! X, then gt D gjIn�1�tW In�1� t D In�1 ! X is a homotopy
connecting f with the constant spheroid.

(6) Ker i� � Im @. If gtW In�1 is a homotopy connecting (in X) a spheroid
f D g0W In�1 ! A with a constant spheroid, then gW In ! X; g.x1; : : : ; xn/ D
gxn.x1; : : : ; xn�1/ is a relative spheroid of the pair .X;A/ whose restriction to A is f .
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f

const

f

g

Fig. 43 Proof of Ker j� � Im i�

EXERCISE 9. Define a natural (right) action of the group �1.X; x0/ in the set
�1.X;A; x0/ and prove that the orbits of this action coincide with the inverse images
with respect to @ of elements of the set �0.A; x0/ [thus, the exactness in the term
�1.X;A; x0/, which means the boundary between group and nongroup terms of the
homotopy sequence of a pair has a group nature].

EXERCISE 10. Let .X;A;B/ be a triple with a base point x0 2 B. Prove the
exactness of the “homotopy sequence of a triple”

� � � ! �n.A;B; x0/! �n.X;B; x0/! �n.X;A; x0/! �n�1.A;B; x0/ : : :

[in this sequence the dimension-preserving homomorphisms are induced by inclu-
sion maps of the pairs .A;B/ ! .X;B/ ! .X;A/ and the “connecting
homomorphism” @W�n.X;A; x0/ ! �n�1.A;B; x0/ is the composition
�n.X;A; x0/

@��!�n�1.A; x0/
j���!�n.A;B; x0/].

8.8 Properties of Exact Sequences and Corollaries
of Exactness of the Homotopy Sequence of a Pair

In this section, we consider sequences of groups and homomorphisms. The trivial
group (consisting of one element) is denoted by the symbol 1, but in the situation
when all the groups considered are Abelian, we can use the symbol 0.

EXERCISE 11. The sequence 1 ! A
'��!B is exact if and only if ' is a

monomorphism (that is, Ker' D 1); a sequence A
 ��!B! 1 is exact if and only

if  is an epimorphism Im D B. In particular, the sequence 1! A
'��!B! 1 is

exact if and only if ' is an isomorphism.

EXERCISE 12. A sequence 1! A
'��!B

 ��!C! 1 (such sequences are called
short) is exact if and only if ' is a monomorphism, C Š B='.A/ and is the natural
projection.
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COROLLARIES. If A is contractible, then �n.X/ Š �n.X;A/ (more precisely, j� is
an isomorphism); if X is contractible, then �n.X;A/ Š �n�1.A/ (more precisely, @
is an isomorphism); if A is a deformation retract of X, then �n.X;A/ D 0 for n � 1.

EXERCISE 13. If A is a retract (not necessarily a deformation retract) of X, then,
for all n,

– i�W�n.A/! �n.X/ is a monomorphism,
– j�W�n.X/! �n.X;A/ is an epimorphism,
– @W�n.X;A/! �n�1.A/ is a zero homomorphism;

moreover, �n.X/ Š �n.X;A/˚ �n.A/.

EXERCISE 14. If A is contractible to a point within X, then

– j�W�n.X/! �n.X;A/ is a monomorphism,
– @W�n.X;A/! �n�1.A/ is an epimorphism,
– i�W�n.A/! �n.X/ is a zero homomorphism;

moreover, �n.X;A/ Š �n.X/˚ �n�1.A/.

EXERCISE 15. If there exists a homotopy ftWX ! X driving X into A, that is, such
that f0 D id and f1.X/ � A, then

– @W�n.X;A/! �n�1.A/ is a monomorphism,
– i�W�n.A/! �n.X/ is an epimorphism,
– j�W�n.X/! �n.X;A/ is a zero homomorphism;

moreover, �n.A/ D �n.X/˚ �nC1.X;A/.

Theorem (“Five-lemma”). If

A1
f1��! A2

f2��! A3
f3��! A4

f4��! A5
?

?

?

?

y

'1

?

?

?

?

y

'2

?

?

?

?

y

'3

?

?

?

?

y

'4

?

?

?

?

y

'5

B1
g1��! B2

g2��! B3
g3��! B4

g4��! B5

is a commutative diagram with exact rows, and '1; '2; '4; '5 are isomorphisms, then
'3 is also an isomorphism.

This theorem is covered by the following two propositions.

Proposition 1. If

A1
f1��! A2

f2��! A3
f3��! A4

?

?

?

?

y

'1

?

?

?

?

y

'2

?

?

?

?

y

'3

?

?

?

?

y

'4

B1
g1��! B2

g2��! B3
g3��! B4
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is a commutative diagram with exact rows, '1 is an epimorphism, and '2; '4 are
monomorphisms, then '3 is also a monomorphism.

Proposition 2. If

A2
f2��! A3

f3��! A4
f4��! A5

?

?

?

?

y

'2

?

?

?

?

y

'3

?

?

?

?

y

'4

?

?

?

?

y

'5

B2
g2��! B3

g3��! B4
g4��! B5

is a commutative diagram with exact rows, '5 is a monomorphism, and '2; '4 are
epimorphisms, then '3 is also an epimorphism.

Remark. Thus, of eight assumptions of the theorem ('1; '2; '3; '3 are monomor-
phisms, '1; '2; '3; '3 are epimorphisms), three are needed to establish that '3 is a
monomorphisms, three more are needed to establish that '3 is an epimorphism, and
two are not needed at all. In the following, we will sometimes use these additional
features of the five-lemma.

Proof of Proposition 1. Let a3 2 A3 and '3.a3/ D 0. Then g3 ı '3.a3/ D
0 ) '4 ı f3.a3/ D 0 (commutativity of the third square) ) f3.a3/ D 0 ('4
is a monomorphism). Hence, there exists an a2 2 A2 such that f2.a2/ D a3
(Ker f3 � Im f2). Furthermore, g2ı'2.a2/ D '3ıf2.a2/ (commutativity of the second
square) D '3.a3/ D 0; hence, there exists a b1 2 B1 such that g1.b1/ D '2.a2/
(Ker g2 � Im g1). Choose an a1 2 A1 such that '1.a1/ D b1 ('1 is an epimorphism).
Then '2 ı f1.a1/ D g1 ı '1.a1/ (commutativity of the first square D g1.b1/ D
'2.a2/: Thus, '2.f1.a1// D '2.a2/ ) f1.a1/ D a2 ('2 is a monomorphism) and
a3 D f2.a2/ D f2 ı f1.a1/ D 0 (Im f1 � Ker f2).

Proof of Proposition 2. Let b3 2 B3. Choose an a4 2 A4 such that '4.a4/ D g3.b3/
('4 is an epimorphism). Then '5 ı f4.a4/ D g4 ı '4.a4/ (commutativity of the
third square) D g4 ı g3.b3/ D 0 (Im g3 � Ker g4). Hence, f4.a4/ D 0 ('5 is a
monomorphism), and hence there exists an a3 2 A3 such that f3.a3/ D a4. Then
g3 ı '3.a3/ D '4 ı f3.a3/ (commutativity of the second square)D '4.a4/ D g3.b3/;
that is, g3.b3 � '3.a3/ D 0. Hence, there exists a b2 2 B2 such that g2.b2/ D
b3 � '3.a3/ (Ker g3 � Im g2). Choose an a2 2 A2 such that '2.a2/ D b2 ('2 is an
epimorphism). Then '3 ı f2.a2/ D g2 ı '2.a2/ (commutativity of the first square)
D g2.b2/ D b3 � '3.a3/. Thus, b3 D '3.a3 C f2.a2// 2 Im'3.

Remark. One can see from these proofs that the exactness of the rows is also used
only partially. This may be less important than the previous remark, but we prefer
to point this out.

EXERCISE 16. If one removes the arrow '3 from the diagram in the five-lemma,
leaving all the other assumptions intact, will it be true that A3 Š B3?
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Corollary. Let .X;A/; .Y;B/ be pairs with base points x0 2 A; y0 2 B, and let
f WX ! Y be a continuous map such that f .A/ � B; f .x0/ D y0. Consider the
following statements:

.1/n f�W�m.X; x0/ ! �m.Y; y0/ is an isomorphism for all m < n and an
epimorphism for m D n.

.2/n f�W�m.X;A; x0/ ! �m.Y;B; y0/ is an isomorphism for all m < n and an
epimorphism for m D n.

.3/n .f jA/�W�m.A; x0/ ! �m.B; y0/ is an isomorphism for all m < n and an
epimorphism for m D n.

Then .2/n&.3/n ) .1/nI .1/n&.2/nC1 ) .3/nI .3/nC1&.1/nC1 ) .2/n. In part-
icular, any two of the statements

(1) f�W�n.X; x0/! �n.Y; y0/ is an isomorphism for all n,
(2) f�W�n.X;A; x0/! �n.Y;B; y0/ is an isomorphism for all n,
(3) .f jA/�W�n.A; x0/! �n.B; y0/ is an isomorphism for all n

imply the third.

EXERCISE 17. Let 1! A0 ! � � � ! An ! 1 be an exact sequence. (1) Prove that

if all the groups Ai are finite and qi D jAij, then
Qn

iD0 q.�1/
i

i D 1. (2) Prove that if all
Ai are finitely generated Abelian groups and ri D rank Ai, then

Pn
iD0.�1/iri D 0.

Lecture 9 Fibrations

In Lecture 6, we considered coverings which locally look like products of more or
less arbitrary topological spaces (“bases”) and discrete spaces. Coverings turned out
to be intimately related to fundamental groups. In this lecture (and many subsequent
lectures) we will consider a more general notion of fibrations whose main difference
from coverings is that the second factor is not assumed to be discrete any more.
One can say that fibrations for homotopy groups are the same as coverings for
fundamental groups; but it would be fair to say that the notion of a fibration by
itself is at least not less important than the notion of a homotopy group.

Before proceeding to definitions, we will make a terminological remark. In
topology, many different kinds of fibrations are considered, and the word “fibration”
not accompanied by any explanatory adjectives may be ambiguous. What we call a
fibration in this lecture (and in some subsequent lectures) is more usually called a
locally trivial fibration. Some other kinds of fibrations (such as Serre fibrations or
Hurewicz fibrations) will be introduced in this lecture.
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9.1 Definitions and Examples

A fibration, or a locally trivial fibration, is a quadruple .E;B;F; p/, where E;B, and
F are topological spaces and p is a continuous map E! B such that for every point
x 2 B there exist a neighborhood U and a homeomorphism f W p�1.U/! U�F such
that the diagram

f
p−1(U) U × F

U

p projection

is commutative. The map p is called the projection, and the spaces E;B, and F
are called, respectively, the total space, the base, and the fiber of the fibration.
Sometimes, the term fibration is attributed to the map pWE ! B; the term fibered
space is also used: This is what the space E may be called. The inverse image p�1.x/
of a point x 2 B is called the fiber over x; it is homeomorphic to F, but in general,
there is no canonical homeomorphism.

The fibrations .E;B;F; p/; .E0;B;F; p0/with the same base and the same fiber are
called equivalent if there is a homeomorphism hWE ! E0 (called an equivalence)
making the diagram

h
E E

B

p p

commutative (compare to the definition of equivalent coverings in Sect. 6.11).
The most obvious example of a fibration is the standard trivial fibration .B �

F;B;F; p/, where pWB � F ! B is the product projection. A fibration equivalent
to the standard trivial fibration is called trivial ; an equivalence hWE ! B � F of a
fibration .E;B;F; p/with the standard trivial fibration is called a trivialization of the
former.

Example -1. Trivial fibrations.

Example 0. Coverings (including “generalized coverings” as defined in the remark
in Sect. 9.5).

Example 1. The projection of a Möbius band onto its middle circle; the fiber is I
(this is probably the most popular example of a nontrivial fibration).

Example 2. Let E D S3 D f.z1; z2/ 2 C
2 j jz1j2Cjz2j2 D 1g; B D S2 D CP1; F D

S1 D fz 2 C j jzj D 1g; p.z1; z2/ D .z1 W z2/.
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EXERCISE 1. Prove that .E;B;F; p/ is a fibration. (This fibration is called the Hopf
fibration.)

EXERCISE 2. In Lecture 1 (see Sect. 1.3) a map S2nC1 ! CPn was introduced.
Denote this map by p and prove that .S2nC1;CPn; S1; p/ is a fibration. (This fibration
generalizes the fibration from Exercise 1 and is also called the Hopf fibration.)

Example 3. Let G be a Lie group and H be its compact subgroup. Let pWG! G=H
be the natural projection.

EXERCISE 3. Prove that .G;G=H;H; p/ is a fibration. (The Hopf fibration from
Exercise 1 is a particular case of this fibration.)

Example 4. Let a compact Lie group G act in a smooth manifold X.

EXERCISE 4. If the action is free, then .X;X=G;G; p/, where p is the projection
X ! X=G, is a fibration. (All fibrations from Exercises 1–3 are particular cases of
this fibration.)

Example 5. Let X;Y be compact smooth manifolds and f WX ! Y be a submersion,
that is, a smooth map whose differential at every point is an epimorphism. Let y0 be
a point of Y.

EXERCISE 5. Prove that if the space Y is (path) connected, then .X;Y; f �1.y0/; f /
is a fibration.

9.2 Covering Homotopies

Fibrations, like coverings, possess a covering homotopy property (CHP). What is
lost when we pass from coverings to fibrations is the uniqueness. Here is the precise
statement.

Theorem. Let .E;B;F; p/ be a fibration, let X be a CW complex, lete'WX ! E be
a continuous map, and let ˆWX � I ! B be a homotopy such that eˆ jX�0D p ıe'.
Then there exists a homotopy eˆWX � I ! E such that eˆ jX�0D e' and p ı eˆ D ˆ.

We will prove this theorem in a stronger, relative version. Namely, if for some
CW subcomplex Y of X there is already given a homotopy e‰WY � I ! E such that
e‰ jY�0D e' jY and p ı e‰ D ˆ jY�I , then eˆ can be constructed with an additional
property that eˆ jY�ID eG.

To prove the theorem, we need two definitions and a lemma.

Definition 1. Let � D .E;B;F; p/ be a fibration, and let B0 � B;E0 D p�1.B0/. The
locally trivial fibration .E0;B0;F; p0 D p jE0/ is called the restriction of the fibration
� to B0 and is denoted as � jB0 .

Definition 2. Let � D .E;B;F; p/ be a fibration, and let f WB0 ! B be a continuous
map. Denote by E0 the subset of E � B0 consisting of all points .e; b0/ such that
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f .b0/ D p.e/. Then define a map p0WE0 ! B0 by the formula p0.e; b0/ D b0. The
locally trivial fibration .E0;B0;F; p0/ (EXERCISE 6; check the local triviality of this
fibration) is called the fibration induced by � by means of f and is denoted as f ��.

Clarification of Definition 2. Obviously,

.p0/�1.b0/ D p�1.f .b0//

[we mean the canonical homeomorphism established by the map E0 ! E;
.e; b0/ 7! e]. Thus, we can say that the fibered space E0 is made out of fibers of
the fibration � in such a way that the fiber over b is used as a fiber over b0 whenever
f .b0/ D b; if f is not one-to-one, the same fiber of � can be used many times as a
fiber of f ��.

Remark. The notions introduced by Definitions 1 and 2 are interrelated. First, � jB0

is i��, where iWB0 ! B is the inclusion map. Second, f �� D .B0 � �/ jgraph.f /, where
B0 � � D .B0 � E;B0 � B;F; idB0 �p/ and graph.f / D f.b0; b/ 2 B0 � B j b D f .b0/g;
obviously, graph.f / is canonically homeomorphic to B0.

EXERCISE 7. Let � D .E;B;F; p/ be a fibration, and let f WB0 ! B be a continuous
map. Prove that if � 0 D .E0;B0;F; p0/ is a fibration for which there exists a
continuous map hWE0 ! E which maps every fiber p�1.b0/ of � 0 homeomorphically
onto the fiber .p0/�1.f .b0// of �, then the fibration � 0 is equivalent to f ��.

Lemma (Feldbau’s Theorem). Every locally trivial fibration whose base is a cube
(of any dimension) is trivial.

Proof. Let � D .E; In;F; p/ be our fibration.

Step 1. Let

In
1 D

�

.x1; : : : ; xn/ 2 In j xn � 1

2

	

;

In
2 D

�

.x1; : : : ; xn/ 2 In j xn � 1

2

	

;

and let �1 D � jIn
1
; �2 D � jIn

2
. We will prove that if �1; �2 are trivial, then � is trivial.

Let h1W p�1.In
1/! In

1�F; h2W p�1.In
2/! In

2�F be trivializations of �1; �2. The maps
h1; h2 do not form any map of E D p�1.In

1/ [ p�1.In
2/ into In � F, because they

are not compatible on p�1.In
1/ \ p�1.In

2/ D In�1 � 1
2

. Actually, for x 2 In�1, there

arises a homeomorphism 'xWF D x � F
h�1
2��! p�1.x/

h1��! x � F D F. We define
hWE! In � F by the formula

h.e/ D
8

<

:

h1.e/; if p.e/ 2 In
1 ;

.idIn
2
�'x/ ı h2.e/; if p.e/ 2 x �

�

1

2
; 1

�

� In
2

(see Fig. 44). This is a trivialization of �.
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Fig. 44 Proof of Feldbau’s theorem, step 1
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Fig. 45 Proof of Feldbau’s theorem, step 2

Step 2. Cut the cube In into Nn small cubes with the side
1

N
, where N is so big

that the fibration is trivial over every small cube, and numerate these small cubes as
I1; I2; : : : ; INn in lexicographical order. For 1 � m � Nn, let Jm D I1[� � �[ Im. Then
every Jm is homeomorphic to In, and for m � 2, the homeomorphism qmW Jm ! In

can be chosen in such a way that qm.Jm�1/ D In
1 and qm.Im/ D In

2 . Then, according
to step 1, if the fibration is trivial over Jm�1, it is also trivial over Jm.

Since the fibration is trivial over J1 D I1, the induction shows that it is trivial
over JNn D In (Fig. 45).

9.3 Proof of CHP

In this section we will prove (the relative version of) the theorem of Sect. 6.2. We
will successively consider four cases.

Case 1 : The given fibration is trivial. In this case we can assume that E D B � F
and identify maps X ! E with pairs of maps X ! B; X ! F. We are given a pair
of maps '1WX ! B; '2WX ! F, a homotopyˆ1WX � I ! B of '1, and, in addition
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to ‰1 D ˆ1 jY�I , a homotopy‰2 j Y � I of '2 jY . We need to extend the homotopy
‰2 to a homotopyˆ2WX� I ! F of '2. But this is precisely what Borsuk’s theorem
(Sect. 2.5) provides.

Case 2 : The fibration is arbitrary, .X;Y/ D .Dn; Sn�1/. The induced fibration
ˆ�.E;B;F; p/ D .E0;Dn � I;F; p0/ is trivial by Feldbau’s theorem (Dn � I is
homeomorphic to InC1). Recall that E0 � .Dn�I/�E. The mape!WDn ! E0; e!.x/ D
..x; 0/;e'.x// and homotopies � D idWDn � I ! Dn � I and eƒW Sn�1 � I !
E0; eƒ.x; t/ D ..x; t/;e‰.x; t// satisfy the requirements of the theorem, and, by case
1, there exists a homotopy e�WDn � I ! E0 of e! which covers � and extends eƒ. If
e�.x; t/ D ..x; t/;eˆ.x; t//, then eˆWDn � I ! E is a homotopy ofe' which covers ˆ
and extends e‰.

Case 3 : The fibration is arbitrary, and the CW complex X is finite. The obvious
induction makes it possible to assume that X � Y is one cell, e. Let f WDn ! X
be a characteristic map of e [so f .Sn�1/ � Y and X D Y

S

f jSn�1
Dn]. The map

e� D e' ı f WDn ! X and homotopies † D ˆ ı .f � I/WDn � I ! B and eT D
e‰ ı .f jSn�1 �I/W Sn�1 � I ! E satisfy the requirement of the theorem, and, by case
2, there exists a homotopy e†WDn � I ! E ofe� which covers† and extendseT . The
homotopies e‰WY � I ! E and e†WDn � I ! E compose a homotopy eˆWX � I ! E
that is required by the CHP. (We leave to the reader to check that e‰ and e† are
compatible with the attaching of Dn � I to Y � I by the map f jSn�1 �I.)

Case 4 : General. If X has infinitely many cells of one dimension not contained in
Y, then we need to apply the construction of case 3 to these cells simultaneously. If
X�Y contains cells of unlimited dimensions, then we have to apply this construction
infinitely many times. In both cases, the continuity of the resulting homotopy
follows from Axiom (W).

9.4 Serre Fibrations

A Serre fibration is a triple .E;B; p/ where E;B are topological spaces and p is
a continuous map E ! B which satisfies the relative form of CHP (as stated in
Sect. 9.2). A Serre fibration is not necessarily a locally trivial fibration (see Fig. 46)
although the theorem in Sect. 9.2 states that a locally trivial fibration is a Serre
fibration.

There are equivalent definitions of a Serre fibration.

Proposition 1. The definition of a Serre fibration is equivalent to the definition
which states CHP only for the case when .X;Y/ D .Dn; Sn�1/ for all n.

Proof. Repeat cases 3 and 4 of the proof in Sect. 9.3.)

Proposition 2. The definition of a Serre fibration is equivalent to the definition
which states CHP only in the absolute form.
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Fig. 46 A Serre fibration is not necessarily locally trivial

same
as

Fig. 47 The absolute CHP for Dn is the same as the relative CHP for .Dn; Sn�1/

Proof. By Proposition 1, it is sufficient to deduce the relative CHP for .X;Y/ D
.Dn; Sn�1/ from the absolute CHP for X D Dn. But the two statements are essentially
the same, as Fig. 47 shows.

One more version of the definition of a Serre fibration (not equivalent to the
initial one) may be obtained if we require the absolute CHP for X being an arbitrary
topological space, not necessarily a CW complex. In this way, we arrive at a
definition of a strong Serre fibration, or a Hurewicz fibration. Obviously, every
Hurewicz fibration is a Serre fibration, but the converse is known to be not always
true.

Notice also that definitions of a restriction of fibrations and induced fibrations as
given in the local trivial case in Sect. 9.2 can be repeated for Serre fibrations and
strong Serre fibrations with all accompanying remarks and clarifications.

Example 1. Locally trivial fibrations.

Example 2 (Path fibration). Let W be an arbitrary topological space with a base
point w0. Put E D E.W;w0/ (the space of paths of W beginning at w0), B D W,
and define pWE ! B by the formula p.s/ D s.1/. Then .E;B; p/ is a strong Serre
fibration. Indeed, let e'WX ! E be a continuous map, and let ˆWX � I ! B D W
be a homotopy such that ˆ.x; 0/ D .e'.x//.1/ for every x 2 X (see Fig. 48). The
covering homotopy eˆWX � I ! E may be defined by the formula




eˆ.x; t/
�

.�/ D
�

Œe'.x/� .�.1C t//; if �.1C t/ � 1;
ˆ.x; �.1C t/ � 1/; if �.1C t/ � 1:
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w0

W

X

Φ(X × I)

ϕ(X)
...

..

Fig. 48 The path fibration

Example 3 (A generalization of Example 2). Let .X;Y/ be a Borsuk pair (for
example, a CW pair), and let W be an arbitrary space. Put E D WX; B D WY

(mapping spaces, see Sect. 2.5), and let PWE! B be a restriction map (p.f / D f jY).

EXERCISE 8. Prove that .E;B; p/ is a strong Serre fibration.

9.5 A Digression: Weak Homotopy Equivalences

The example of a Serre fibration in Fig. 46 shows that the fibers of a Serre fibration,
that is, inverse images of points of the base, do not need to be homeomorphic to
each other. Still these fibers turn out to have some resemblance to each other.

Definition. We will say that a topological space S is weakly homotopy equivalent
to a topological space T if, for CW complexes X, there exist bijections �.X; S/ $
�.X;T/, natural with respect to X. More precisely, for every CW complex X there is
fixed a bijection 'XW�.X; S/! �.Y;T/ such that for every continuous (or cellular;
it makes no difference in view of the cellular approximation theorem) map f WX !
Y, the diagram

�.X; S/
'X��! �.X;T/

x

?

?

?

?

f �

x

?

?

?

?

f �

�.Y; S/
'Y��! �.Y;T/

is commutative (compare with Definition 3 of a homotopy equivalence in Sect. 3.3).

Remark. It is obvious that the relation of a weak homotopy equivalence is homotopy
invariant: If X � X0; y � Y 0, and X and Y are weakly homotopy equivalent, then
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so are X0 and Y 0. In particular, homotopy equivalent spaces are weakly homotopy
equivalent.

According to Definition 1 in Sect. 3.3, usual homotopy equivalences are estab-
lished by continuous maps. Weak homotopy equivalences are established by
continuous maps sometimes, but not always. Namely, a continuous map 'W S ! T
is called a weak homotopy equivalence if '�W�.X; S/ ! �.X;T/ is a bijection for
every CW complex X. It is obvious that if there is a weak homotopy equivalence
'W S ! T, then S and T are weakly homotopy equivalent (just put 'X D '�); but it
is not true that weakly homotopy equivalent spaces can always be connected by a
weak homotopy equivalence.

There are some important properties of weak homotopy equivalences which we
can state but not prove now (they will be proved in Lecture 11; see Sects. 11.4
and 11.6). The main two statements are as follows. .1/ A continuous map between
path connected spaces with base points 'W .S; s0/ ! .T; t0/ is a weak homotopy
equivalence if and only if '�W�n.S; s0/ ! �n.T; t0/ is an isomorphism for all
n � 1. .2/ Every topological space is weakly homotopy equivalent to a CW complex,
and this CW complex is unique up to a homotopy equivalence. There is one more
statement which we can prove now.

Proposition. If CW complexes X and Y are weakly homotopy equivalent, then they
are homotopy equivalent.

The proof is the same as the proof of the equivalence of Definitions 1 and 2 in
Sect. 3.3. The bijections

'XW�.X;X/! �.X;Y/ and 'Y W�.Y;X/! �.Y;Y/

associate to the classes of the identity maps idX and idY homotopy classes of
continuous maps f WX ! Y and gWY ! X, and the commutativity of diagrams

�.X;X/
'X��! �.X;Y/

x

?

?

?

?

f �

x

?

?

?

?

f �

�.Y;X/
'Y��! �.Y;Y/

;

�.Y;X/
'Y��! �.Y;Y/

x

?

?

?

?

g�

x

?

?

?

?

g�

�.X;X/
'X��! �.X;Y/

show that

Œf ı g� D f �Œg� D f � ı .'Y/
�1ŒidY �

D .'X/
�1 ı f �ŒidY � D .'X/

�1Œf � D ŒidX�

Œg ı f � D g�Œf � D g� ı 'XŒidX� D 'Y ı g�ŒidX� D 'Y Œg� D ŒidY �:
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9.6 Fibers of Serre Fibrations

Theorem. If .E;B; p/ is a Serre fibration, then for any points x0; x1 from the same
path component of B, the fibers p�1.x0/; p�1.x1/ are weakly homotopy equivalent. If
.E;B; p/ is a strong Serre fibration, then p�1.x0/; p�1.x1/ are homotopy equivalent.

Proof. We begin with the first statement. The proof is based on the following
construction. Let X be a CW complex, let f WX ! p�1.x0/ be a continuous map,
and let sW I ! B be a path joining x0 with x1. Definee'WX ! E as the composition
of f with the inclusion of p�1.x0/ into E and define ˆWX � I ! B by the formula
ˆ.x; t/ D s.t/. CHP yields a homotopy eˆWX � I ! E which can be regarded as
a family of maps htWX ! p�1.s.t//; in particular, there arises a continuous map
g D h1WX ! p�1.x1/, and we want to use the correspondence Œf � 7! Œg� to establish
a weak homotopy equivalence between p�1.x0/ and p�1.x1/.

For this purpose, we will prove that the homotopy class of g does not depend on
the choice of the covering homotopy eˆ and also on the path s within a homotopy
class of paths. Let s0W I ! B be a path homotopic to s (and also joining x0
with x1), and let ˆ0;eˆ0; h0

t, and g0 be constructed with the use of s0 in the same
way as ˆ;eˆ; ht, and g are constructed with the use of s. Using the homotopy
between s and s0, we define a map SW Œ�1; 1� � I ! B that is a homotopy of
the path s�1s0 to the constant path I ! x1 (see Fig. 49). Next, we define a map
‰W .X � Œ�1; 1�/ � I ! B by the formula ‰..x; u/; t/ D S.u; t/, and a map

e WX� Œ�1; 1�! E by the formula e .x; u/ D
�

eˆ.x;�u/; if u � 0;
eˆ0.x; u/; if u � 0: An application

of CHP provides a homotopy e‰W .X � Œ�1; 1�/ � I ! E, and the restriction of it to
X � ...�1/ � I/[ .Œ�1; 1� � 0/[ .1 � I// is a homotopy between g and g0.

Thus, the correspondence Œf �7!Œg� provides a well-defined map sW ŒX; p�1.s.0//�
! ŒX; p�1.s.1//� that depends only on the homotopy class of s, and it is obvious that
 s1s2 D  s2 ı  s2 . In particular,  s ı  s�1 D id, so  s is a bijection. The bijections
 s for all CW complexes X compose the required weak homotopy equivalence.

x0

x0

x1x1 x1

1

ss

s

s

S

Fig. 49 To the proof of a weak homotopy equivalence of the fibers
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The second statement can be proved in the same way with X being an arbitrary
space, not a CW complex. An easier way to obtain a homotopy equivalence
p�1.x0/! p�1.x1/ is to apply the previous construction to X D p�1.x0/ and f D id;
then gW p�1.x0/! p�1.x1/ will be the desired homotopy equivalence.

Example. A fiber of the path fibration E.W;w0/;W; p (see Example 2 in Sect. 9.2)
over a point w1 2 W is E.WIw0;w1/ (see Sect. 2.5). Thus, all path spaces
E.WIw0;w1/ of a path connected space W, in particular, all loop spaces, are
homotopy equivalent.

9.7 Every Continuous Map Is Homotopy Equivalent
to a Serre Fibration

We say that continuous maps f WX ! Y and f 0WX0 ! Y 0 are homotopy equivalent
if there are homotopy equivalences 'WX ! X0 and  WY ! Y 0 which make the
diagram

X
f��! Y

?

?

?

?

y

'

?

?

?

?

y

 

X0 f 0

��! Y 0

homotopy commutative ( ı f � f 0 ı ').

Theorem. For every continuous map, there exists a strong Serre fibration homotopy
equivalent to this map.

ADDITIONAL PROPERTIES. First, a strong Serre fibration homotopy equivalent
to a given continuous map f WX ! Y is provided by a canonical construction.
Second, this construction preserves Y; that is, a Serre fibration homotopy equivalent
to f has the form .eX;Y; p.f //, and the homotopy equivalence Y ! Y required by
the definition of a homotopy equivalence between maps is just idY [and there is
also a homotopy equivalence '.f /WeX ! X such that p.f / � f ı '.f /]. Third, the
construction is natural in the sense that for a homotopy commutative diagram

X
f��! Y

?

?

?

?

y

˛

?

?

?

?

y

ˇ

X0 f 0

��! Y 0
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there arises in a canonical way a continuous map ęWeX ! eX0 such that the diagrams

eX
ę��! eX0

?

?

?

?

y

p.f /

?

?

?

?

y

p.f 0/

Y
ˇ��! Y 0

and

eX
ę��! eX0

?

?

?

?

y

'.f /

?

?

?

?

y

'.f 0/

X
˛��! X0

are homotopy commutative.

Proof of Theorem. For eX, we take the space of pairs .x; s/, where x 2 X and s
is a path if Y beginning at the point f .x/. The projection p.f /WeX ! Y and the
homotopy equivalence '.f /WeX ! X are defined by the formulas Œp.f /�.x; s/ D s.1/
and Œ'.f /�.x; s/ D s. The verification of all necessary properties is immediate.

Remark. This theorem is dual (in the sense of duality considered in Lecture 4) to
the following simple statement: For every continuous map f WX ! Y there exists an
embedding i.f /WX ! eY homotopy equivalent to f ; moreover, we can request that
.eY; Œi.f /�.X// be a Borsuk pair. Proof: We can take for eY the cylinder Cyl.f / of the
map f (see Sect. 2.3) and for i.f / the natural embedding. Because of this duality, the
spaceeX constructed in the proof is sometimes called the cocylinder of the map f .

9.8 The Homotopy Sequence of a Fibration

Lemma. Let .E;B; p/ be a Serre fibration, let e0 2 E be an arbitrary point, let
b0 D p.e0/, and let F D p�1.b0/. Then the map

p�W�n.E;F; e0/! �n.B; b0/

is an isomorphism for all n.

Proof. In this proof we use a slightly modified definition of relative spheroids:
A relative spheroid of a pair .E;F/ with the base point e0 is defined as a map
.Dn; Sn�1; y0/ ! .E;F; e0/ (where y0 is the base point in Dn and Sn�1) rather
than a map .Dn; Sn�1; Sn�1C /! .E;F; e0/; this does not make any difference, since
.Dn; Sn�1; y0/ � .Dn; Sn�1; Sn�1C /.

First, prove that p� is a monomorphism. Letef WDn ! E be a relative spheroid of
.E;F/, and let f W Sn ! B be its projection into B. Let HW Sn � I ! B be a homotopy
joining the spheroid f with the constant spheroid. It may be regarded as a homotopy
of the map p ıef WDn ! B. As such it is covered by a homotopyeHWDn � I ! E ofef
which may be regarded as a homotopy of the relative spheroidef (eH.Sn�1 � I/ � F,
since H, regarded as a homotopy of p ıef WDn ! B, maps Sn�1 � I to b0; also we
can assume, using the relative version of CHP, that eH.y0 � I/ D e0/. The homotopy
eH joinsef with a relative spheroid whose image is contained in F, that is, with the
relative spheroid of the zero class. Thus, Œef � D 0.
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Fig. 50 Proof of the lemma: p� is an epimorphism

Now prove that p� is an epimorphism. Let 'tW Sn�1 ! Sn be a homotopy
sweeping the sphere Sn as shown in Fig. 50, left. Let f W Sn ! B be a spheroid.
Consider the homotopy f ı 'tW Sn ! B and lift it, using the (relative) CHP to
a homotopy egtW Sn ! E such that eg0.Sn/ D e0 and egt.y0/ D e0 for all t. This
homotopy may be considered as a map eGWDn ! E (the ball Dn is covered by
spheres Sn�1

t ; 0 < t � 1, and eG jSn�1
t

isegt). This map eG is a relative spheroid of the

pair .E;F/, and obviously p�ŒG� D Œef �.
Now replace in the homotopy sequence of the pair .E;F/ the groups �i.E;F/ by

the isomorphic groups �i.B/. We get an exact sequence

� � � ! �n.F; e0/! �n.E; e0/! �n.B; b0/! �n�1.F; e0/! : : :

! �1.B; b0/! �0.F; e0/! �0.E; e0/! �0.B; b0/

consisting only of absolute homotopy groups (not all of them are groups, as we
know). This sequence is called the homotopy sequence of the fibration.

Remark 1. The homomorphisms �n.F; e0/! �n.E; e0/ and �n.E; e0/! �n.B; b0/
of this sequence are induced by the inclusion map F ! E and the projection
pWE ! B. The construction in the second part of the proof of the lemma yields
a direct construction, not involving relative homotopy groups, of the “connecting”
homomorphism�n.B; b0/! �n�1.F; e0/: Using a spheroid f W Sn ! B, we construct
a spheroid homotopy f ı 'tW Sn�1 ! B, lift it to a spheroid homotopy gtW Sn�1 ! E,
and observe that g1 is, actually, a spheroid of F.

Remark 2. The term �0.B/ of the homotopy sequence of the fibration does not
actually come from the homotopy sequence of the pair .E;F/, so the exactness in
the term �0.E; e0/ must be checked independently.
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9.9 First Applications of the Exactness of the Homotopy
Sequence of a Fibration

Let us begin with the Hopf fibration pW S3 ! S2 with fiber S1 (see Example 2 in
Sect. 9.1). The homotopy sequence of this fibration contains fragments

�2.S3/! �2.S2/! �1.S1/! �1.S3/;
�n.S1/! �n.S3/! �n.S2/! �n�1.S1/;

and, since �i.S3/ D 0 for i D 1; 2 and �i.S1/ D 0 for i � 2 (see Sects. 5.9 and 8.3),
we obtain isomorphisms �2.S2/ Š �1.S1/ and �n.S3/ Š �n.S2/ for all n � 3. The
first isomorphism shows that �2.S2/ Š Z; in particular, we have a proof (at last!)
of the fact that the sphere S2 is not contractible. It is interesting that this result will
not be covered by a more general theorem of Lecture 10, so it has its independent
value. The second isomorphism looks unexpected, especially for n D 3. We expect
that the group �3.S3/ is nontrivial (actually, we will prove soon that it is isomorphic
to Z); thus, �3.S2/ must also be nontrivial, a fact that is not readily offered by naive
geometric intuition.

Some other applications of the exactness of the homotopy sequence of a fibration
are contained in the following exercises.

EXERCISE 9. Analyze the homotopy sequence of a covering. Deduce from it the
major results of Sects. 6.6 and 6.8.

EXERCISE 10. Deduce from the homotopy sequence of the Hopf fibration
pW S2nC1 ! CPn (Example 3 of Sect. 9.1) that �r.CPn/ is Z for r D 2 and
zero for 3 � r � 2n � 1; in particular, CP1 has only one nontrivial homotopy
group: �2.CP1/ Š Z.

EXERCISE 11. Using the path fibration from Sect. 9.4, prove that �n.�X/ Š
�nC1.X/ for all X and n � 0. (This fact can be easily proved directly, by comparing
spheroids of X and �X. By the way, it shows that the group �1.�X/ is always
commutative, in accordance with Exercise 4 of Sect. 6.7).

EXERCISE 12. Prove that if the base of a Serre fibration is contractible, then the
inclusion of (any) fiber in the total space induces an isomorphism of homotopy
groups. Prove that if the base of a Serre fibration is connected and one of the fibers
is contractible, then the projection induces an isomorphism of homotopy groups of
the total space and the base. Note. According to a theorem promised in Sect. 9.5
(but not proven so far), these statements mean, respectively, that the inclusion map
F! E and the projection E! B are weak homotopy equivalences.

EXERCISE 13. Prove that if all the homotopy groups of the base and the fiber
are finite, then so are homotopy groups of the total space, and the orders of
the homotopy groups of the total space do not exceed the product of orders of
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corresponding homotopy groups of the base and the fiber. Formulate and prove a
similar statement concerning finitely generated groups and their ranks.

EXERCISE 14. Prove that if a Serre fibration .E;B; p/ has a section (that is, a
continuous map sWB ! E such that p ı s D idB) or if F is a retract of E, then
�n.E/ Š �n.B/˚ �n.F/ for n � 2 (and for n D 1 if �1.E/ is commutative).

EXERCISE 15. Prove that if the fiber of the Serre fibration E;B; p is contractible in
E, then �n.B/ Š �n.E/˚ �n�1.F/ for all n � 2.

9.10 A Construction Promised in Lecture 8

In Sect. 8.6, we promised to construct for a topological pair .X;A/ a space Y with
an isomorphism �n.X;A/ Š �n�1.Y/. We present this construction here with an
additional remark that both Y and the isomorphism will be natural in all possible
senses.

Following Sect. 9.7, construct a (strong) Serre fibration p0WA0 ! X homotopy
equivalent to the inclusion map A ! X and denote by Y a fiber of this fibration
(over some point x0 2 A � X). Let f WA0 ! A be a canonical homotopy equivalence.
We assume that p0 and f are constructed by the canonical construction, so Y is the
space of paths in X beginning at x0 and ending in A. This observation provides a
canonical map �n�1.Y/ ! �n.X;A/: For a spheroid gW .Sn�1; y0/ ! .Y; const/ we
define a spheroid GWDn D CSn�1 ! X of the pair .X;A/ by the formula G.s; t/ D
Œg.s/�.t/; s 2 Sn�1; t 2 I. It is obvious that these canonical maps are included in the
commutative diagram

� � � ! �n.A0/! �n.X/! �n�1.Y/ ! �n�1.A0/! �n�1.X/ ! : : :
?

?

?

?

y

k
?

?

?

?

y

?

?

?

?

y

k

� � � ! �n.A/ ! �n.X/! �n.X;A/! �n�1.A/ ! �n�1.X/ ! : : :

whose rows are homotopy sequences of the fibration .A0;X; p0/ and the pair .X;A/. It
follows from the five-lemma that the maps �n�1.Y/ ! �n.X;A/ are isomorphisms
(it can be also proved directly: Our map is already bijective at the level of spheroids).

Thus, not only have we established the promised interpretation of relative
homotopy groups as absolute homotopy groups, but we have also discovered one
more relation between homotopy sequences of pairs and of fibrations.



120 1 Homotopy



10.1 Main Theorem 121

Lecture 10 The Suspension Theorem and Homotopy
Groups of Spheres

10.1 Main Theorem

Let f W Sq ! X be a q-dimensional spheroid of a topological space X (with a base
point). The map †f W†Sq D SqC1 ! †X; Œ†f �.y; t/† D .f .y/; t/† is a .q C 1/-
dimensional spheroid of the space †X. It is clear also that if spheroids f ; gW Sq ! X
are homotopic, then the spheroids†f ; †gW SqC1! †X are also homotopic, and the
spheroid†.f Cg/ is homotopic to the spheroid†f C†g. Thus, the correspondence
f 7! †f gives rise to a homomorphism �q.X/ ! �qC1.†X/. This homomorphism
is called the suspension homomorphism and is also denoted by †. In particular, for
every q and n, there arises a homomorphism

†W�q.S
n/! �qC1.SnC1/:

Theorem (Freudenthal). This homomorphism is an isomorphism if q < 2n�1 and
is an epimorphism if q D 2n� 1.

This statement is sometimes called the “easy part” of Freudenthal’s theorem.
We will discuss the “difficult part” later in this lecture. Let us mention one more a
generalization of Freudenthal’s theorem which we will be able to prove in Chap. 3:
If X is an n-connected CW complex, then†W�q.X/! �qC1.†X/ is an isomorphism
for q < 2nC 1 and an epimorphism for q D 2nC 1. (This is a generalization of the
easy part of Freudenthal’s theorem; the difficult part has a similar generalization.)

Proof of the Epimorphism Part. Let f W SqC1 ! SnC1 be a spheroid. We want to
prove that (if q � 2n � 1) there exists a spheroid hW Sq ! Sn such that f � †h.
We may assume that n > 0, in which case the sphere SnC1 is simply connected and
we may forget the base points.

Let N and S be the poles of the sphere SnC1. We will present the sphere SqC1 as
R

qC1 [1 assuming that f .1/ is neither of the poles.
First, we apply a construction similar to that of Sect. 5.8 (where we used

it to prove a free-point lemma): We assume that there are triangulations of
neighborhoods U and V of N and S (“polar caps”) and of a big ball B � R

qC1
containing both f �1.U/ and f �1.V/ such that f is simplicial on the union of all
simplices of B whose images are not disjoint from U[V . Also, we may assume that
both N and S are interior points of .nC1/-dimensional simplices. Then P D f �1.N/
and Q D f �1.S/ are disjoint polyhedra of dimension � q � n [that is, each of P and
Q is compact and is contained in a finite union of .q � n/-dimensional planes].

Second, we want to construct a homotopy of f to such a map that the inverse
images of N and S will be separated by a hyperplane in R

qC1. Choose such a
hyperplane… such that P lies on one side of … and on the other side of … choose
a point X such that the cone with the base Q and the vertex X is disjoint from P.
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Fig. 51 Separating inverse images of poles

The existence of such an X follows from the inequality q � 2n � 1 (and this is
the only place in the proof where we use this inequality): The point X should not
belong to any line joining a point of P with a point of Q. If we replace P and Q
by two planes of dimension q � n, then the union of such lines is (contained in) a
plane of dimension 2.q� n/C 1, so for our P and Q the set of forbidden points X is
contained in a finite union of such planes, and the inequality q � 2n� 1 is the same
as 2.q� n/C 1 < qC 1, so we can choose a point not belonging to this union. Now
we choose a positive continuous function F on the set of all lines through X such that
F.`/ is some very big number K for lines hitting P and F.`/ is 1 for every line hitting
Q. Consider a homeomorphism ' of RqC1 onto itself which compresses every line
` through X to X with the coefficient F.`/ (see Fig. 51). This homeomorphism does
not move P and, if K is big enough, pulls Q into a polyhedron on the other (with
respect to P) side of…. (We can assume that our homeomorphismR

qC1[1 � SqC1
takes the plane … into the equator of SqC1.) Moreover, this compression may be
done gradually, so we get an isotopy (a homotopy consisting of homeomorphisms)
of id to '. So f ı '�1 is a spheroid homotopic to F which possesses the desirable
property: The inverse images of the poles are polyhedra separated by a hyperplane.
For brevity’s sake, we will denote a spheroid with this property again by f . (This
argument, and actually the whole proof of Freudenthal’s theorem, is based on the
fact that polyhedra of dimensions p and q cannot be linked in a space of dimension
> pC qC 1. For example, two disjoint closed polygonal lines can be linked in R

3,
but not in R

4; see Fig. 52.)
Thus, we now have a rather good spheroid: The inverse images of “polar caps” U

and V of SnC1 are contained in, respectively, the northern and southern hemispheres
of SqC1 and the image of the equator Sq of SqC1 does not touch the polar caps of
SnC1 (see Fig. 53).

Next we make the spheroid f still better by combining it with a homotopy of SnC1
which stretches the polar caps U and V to the whole hemispheres and compresses
the equatorial belt to the equator. The new spheroid, which we still denote by f , maps
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Fig. 52 Linked curves in space

.......................

U

V

f−1(U)

f−1(V )

Sq Sn f(Sq)
f

Fig. 53 The spheroid f with inverse images of polar caps separated

the equator Sq of SqC1 into the equator Sn of SnC1 (thus we get the map Sq ! Sn!)
and maps the northern hemisphere into the northern hemisphere and the southern
hemisphere into the southern hemisphere. If we look at the spheres from above, we
will see the maps f and g as shown in Fig. 54.

The spheroid f is still different from †g: It takes meridians into some arbitrary
looking curves while†g takes meridians into meridians (see Fig. 54). However, for
no point of y 2 SqC1 are the points f .y/ and †g.y/ opposite, so there is a convenient
big circle homotopy joining f and †g. This completes the proof of † being onto.

Proof of the Monomorphism Part. Now we assume that q < 2n�1. Let g0; g1W Sq !
Sn be two spheroids, and let ftW SqC1! SnC1 be a homotopy between †g0 and †g1.
We want to prove that there exists a homotopy gtW Sq ! Sn between g0 and g1.
For this, we will deform the homotopy ft to the homotopy of the form †gt. Let
us apply the previous construction to every ft. The only arbitrary choice in that
construction was the choice of the point X. Now we have to require that this X
depends continuously on t, which we will achieve by requesting that X not depend
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f

g

Σg

Fig. 54 The maps f ; g, and †g
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Fig. 55 Proof of the monomorphism part of Freudenthal’s theorem

on t at all. In the previous construction there was a prohibited set for X, which was
(the union of planes of) dimension 2.q � n/C 1. Now we have to deal with a one-
parameter family of such sets, which creates one additional dimension. Thus, to
apply the construction we now need the inequality 2.q � n/C 2 < qC 1, which is
the same as q < 2n� 1.

In other words, the inverse images P;Q of the poles of SnC1 with respect to a
(piecewise linear approximation of a) homotopy fftg D FW SqC1 � I ! SnC1 are
polyhedra of dimensions � q � nC 1 (see Fig. 55). These polyhedra live in R

qC2,
and they are not linked, if 2.q � n C 1/ C 1 < q C 2, which again means that
q < 2n � 1.

This completes the proof of the easy part of Freudenthal’s theorem.

10.2 First Applications

Theorem (Hopf). �n.Sn/ Š Z.

Proof. For n D 1; 2, we already know this (see Sect. 6.3 for n D 1 and Sect. 9.9 for
n D 2). For n � 3, we have an isomorphism†W�n�1.Sn�1/! �n.Sn/.
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Additional remarks. 1. By Freudenthal’s theorem, †W�1.S1/ ! �2.S2/ is an
epimorphism. But since �1.S1/ Š �2.S2/ Š Z, it is actually an isomorphism.

2. The group �n.Sn/ is generated by the class of the identity spheroid. For n D 1,
it was proved in Sect. 6.3; for n > 1, this follows from the obvious fact that the
suspension over the identity map is the identity map. From now on, we choose
the class of the identity spheroid for a generator of �n.Sn/ and thus establish a
canonical isomorphism �n.Sn/ D Z.

Corollary. The sphere Sn is not contractible for any n.

This statement, whose proof turned out to be unexpectedly long, is very
important: If Sn were contractible, the group �n.X/ would have been zero for any X.

One More Corollary. �3.S2/ Š Z.

This follows from the isomorphism �3.S2/ Š �3.S3/ established in Sect. 9.9.
Actually, it also follows from the results of Sect. 9.9 that the group �3.S2/ is
generated by the class of the Hopf map S3! S2.

10.3 The Degree of a Map Sn ! Sn

A continuous map f W Sn ! Sn regarded as an n-dimensional spheroid of Sn

determines an element of �n.Sn/ D Z, that is, an integer. This integer is called the
degree of f and is denoted as deg f . Let us observe the properties of the degree which
are already known to us. There are maps Sn ! Sn of an arbitrary degree. Two maps
Sn ! Sn are homotopic if and only if they have equal degrees. A continuous map
Sn ! Sn of degree d induces a homomorphism �n.Sn/ ! �n.Sn/, that is, Z ! Z,
which is a multiplication by d. Homeomorphisms have degrees ˙1. A suspension
over a map Sn ! Sn of degree d is a map SnC1! SnC1 of the same degree d.

Now we will describe a way of computing the degree of a map f W Sn ! Sn.
A point y 2 Sn is called a regular value of f if there is a neighborhood U in y
homeomorphic to a ball Dn such that f �1.U/ is a disjoint union of open sets U˛

such that f maps every U˛ homeomorphically onto U. [A ridiculous but important
example: If y … F.Sn/, that is, if y is not a value of f at all, it is a regular value
of f .] For example, smooth maps and piecewise linear maps have ample sets of
regular values (in the piecewise linear case it is obvious; in the smooth case it is
a standard theorem of analysis). If y 2 Sn is a regular value of f , then the inverse
image f �1.y/ is finite [otherwise, f �1.y/ contains limit points, and no neighborhood
of a limit point of f �1.y/ can be homeomorphically mapped onto a neighborhood of
y]. For every point z 2 f �1.y/, the map f either preserves or reverses the orientation
[in the smooth case this is determined by the sign of the Jacobian of f at z; in the
continuous case, we can say that z belongs to some U˛, and the map f determines
a homeomorphism Sn=.Sn � U˛/ onto Sn=.Sn � U/, which is a homeomorphism
between two copies of Sn; its degree is˙1 and we define the preserving or reversing
orientation accordingly].



126 1 Homotopy

Theorem. If y is a regular value of f , then

deg f D #fz 2 f �1.y/ j f preserves the orientation at zg
�#fz 2 f �1.y/ j f reverses the orientation at zg

D
X

z2f �1.y/

".z/;

where ".z/ is 1 if f preserves the orientation in the neighborhood of z and is �1
otherwise.

Remark. As a rule, a map f has many regular values y, and the numbers of points
in f �1.y/ may be different for different ys. However, our theorem shows that the
difference in our equality depends only on f .

Proof of Theorem. Let U be a neighborhood of y as in the definition of a regular
value. We combine the spheroid f with a (homotopic to the identity) map Sn ! Sn

which collapses the complement of U into the base point and stretches U to the
whole sphere. The new spheroid will be the sum of spheroids corresponding to
points in f �1. Each of these spheroids will be a homeomorphism, and the degree of
a spheroid corresponding to z 2 f �1.y/ is ".z/. Thus, deg f DPz2f �1.y/ ".z/.

10.4 Stable Homotopy Groups of Spheres and Other Spaces

Thus, the homotopy groups of spheres are arranged into stabilizing series of groups
�nCk.Sn/ with a fixed k:

: : :
†��!�nCk.S

n/
†��!�nCkC1.SnC1/ †��!�nCkC2.SnC2/ †��! : : :

with the stabilization occurring in the term �2kC2.SkC2/:

: : :
†��!�2kC1.SkC1/

epi��!�2kC2.SkC2/ iso��!�2kC3.SkC3/ iso��! : : : :

The groups �nCk.Sn/ with n � kC2 do not depend on n. They are called stable, and
for them the notation �S

k is used; the group �2kC1.SkC1/ is called metastable. So far,
we have almost no information on the homotopy groups of spheres; what we know
is contained in the following table.
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In this table, slanted arrows denote †, the letter H means Hopf isomorphism,
and the letters i and e mean, respectively, isomorphism and epimorphism. We can
add that since †W�3.S2/ ! �4.S3/ is an epimorphism and �3.S2/ D Z, the group
�4.S3/ must be cyclic, and so must be the groups �4.S2/ and �S

1 .
The homotopy groups of spheres has not been calculated yet, but ample

information about them exists, of both a general and a tabular nature. In this book,
we will address these groups many times, and we will learn a lot about them.

In conclusion, we remark that stable homotopy groups do not exist only for
spheres. For any topological space X, we can consider a sequence

�k.X/
†��!�kC1.†X/

†��!�kC2.†2X/
†��!�kC3.†3X/

†��! : : : :

This sequence has a “limit” (algebraists call it the direct limit), but we actually do
not need it, since this sequence always stabilizes at the term �2kC2.†kC2X/. We will
prove this later, but we have already mentioned the necessary result (see a remark
after the statement of Freudenthal’s theorem in Sect. 10.1).

For stable homotopy groups of X we use the notation �S
k .X/; thus, �S

k D �S
k .S

0/.

10.5 Whitehead Product and the Difficult Part
of Freudenthal’s Theorem

The product Sm � Sn of two spheres has a CW decomposition into four cells, of
dimensions 0;m; n; and m C n. The union of the first three cells is the bouquet
Sm _ Sn. The attaching map of the fourth cell, SmCn�1 ! Sm _ Sn, is called the
Whitehead map.

This construction describes the Whitehead map up to a homotopy; there exists a
canonical, completely concrete, description of the map wW SmCn�1 ! Sm _ Sn. The
sphere SmCn�1 is cut into the union of two closed domains,

U D ˚.x1; : : : ; xmCn/ 2 SmCn�1 j x21 C � � � C x2m � 1
2

�

;

V D ˚.x1; : : : ; xmCn/ 2 SmCn�1 j x21 C � � � C x2m � 1
2

�

:
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S0 × D2 ≈ U V ≈ D1 × S1

Fig. 56 SmCn�1 D .Dm � Sn�1/[ .Sm�1 � Dn/

Obviously, U � Dm � Sn�1; V � Sm�1 � Dn; U \ V D Sm�1 � Sn�1 (the case
when m D 2; n D 1 is shown in Fig. 56; another important example is the cut of the
sphere S3 by a torus S1 � S1 into the union of two solid tori; we mentioned this in a
remark in Sect. 2.4).

The decomposition SmCn�1 D U [ V may also be constructed in the following
way: SmCn�1 D @DmCn � @.Dm � Dn/ D .Dm � @Dn/ [ .@Dm � Dn/ D .Dm �
Sn�1/[ .Sm�1 �Dn/.

Our map wW SmCn�1 ! Sm _ Sn consists of two projections,

U D Dm � Sn�1 ! Dm ! Dm=Sm�1 D Sm � Sm _ Sn;

V D Sm�1 � Dn ! Dn ! Dn=Sn�1 D Sn � Sm _ Sn;

and takes the “cutting surface” Sm�1 � Sn�1 into a point.
Now let tW Sm ! X; gW Sn ! X be two spheroids of some space X with a base

point x0. Together, they form a map Sm _ Sn ! X, and the composition of this map
with w is a spheroid hW SmCn�1 ! X. It is clear that the homotopy class of h is
determined by the homotopy classes of f and g. Thus, we get an operation which
assigns to ˛ 2 �m.X; x0/ and ˇ 2 �n.X; x0/ some element of �mCn�1.X; x0/; this
element is called the Whitehead product of ˛ and ˇ and is denoted as Œ˛; ˇ�.

In these exercises, ˛; ˛1; ˛2 2 �m.X; x0/; ˇ; ˇ1; ˇ2 2 �n.X; x0/; � 2 �p.X; x0/.

EXERCISE 1. Prove that if m D n D 1, then Œ˛; ˇ� D ˛ˇ˛�1ˇ�1.

EXERCISE 2. Prove that if m D 1; n > 1, then Œ˛; ˇ� D ˛#.ˇ/ � ˇ.

EXERCISE 3. Prove that if n > 1, then Œ˛; ˇ1 C ˇ2� D Œ˛; ˇ1�C Œ˛; ˇ2�.
EXERCISE 4. Prove that if m; n > 1, then Œˇ; ˛� D .�1/mnCmCnŒ˛; ˇ�.

EXERCISE 5. Prove that if m; n; k > 1, then

.�1/mkCnŒ˛; Œˇ; ���C .�1/nmCkŒˇ; Œ�; ˛��C .�1/knCmŒ�; Œ˛; ˇ�� D 0
(“super-Jacobi identity”).
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COMMENT. Although the higher homotopy groups are commutative, the Whitehead
product may be regarded as a substitute for a commutator in these groups. The
properties above create for homotopy groups (more rigorously, for the direct sum
L1

nD2 �n) a structure similar to that of a Lie superalgebra.

EXERCISE 6. Prove that the suspension over the Whitehead product †Œ˛; ˇ� 2
�mCn.†X/ is 0. This implies (and, actually, is implied by) the fact that †.Sm � Sn/

is homotopy equivalent to SmC1 _ SnC1 _ SmCnC1; why?

EXERCISE 7. Let �n 2 �n.Sn/ be the class of the identity spheroid and �2 2 �3.S2/
be the class of the Hopf map. Prove that Œ�2; �2� D 2�2.
EXERCISE 8. Prove that if X is a topological group, or an H-space, then Œ˛; ˇ� D 0
for any ˛ 2 �m.X/; ˇ 2 �n.X/. (In view of Exercises 1 and 2, this is a generalization
of Exercise 4 of Sect. 6.7 and of Exercise 2 of Sect. 8.2.)

Theorem (Difficult Part of Freudenthal’s Theorem). The kernel of the homo-
morphism †W�2n�1.Sn/! �2n.SnC1/ is a cyclic group generated by the Whitehead
square Œ�n; �n� of the class �n.

We will not prove this theorem here although it has a purely geometric proof
based on the following argument. The inverse images of the poles with respect to a
homotopy S2n � I ! SnC1 cannot be deformed to polyhedra separated by S2n�1 � I,
but we can do it if we let these inverse images transversely cross each other finitely
many times at isolated points. In this way, a homotopy ftW S2n ! SnC1 between
the suspensions of spheroids g0; g1W S2n�1 ! Sn can be deformed to a piecewise
continuous homotopy of the form†gt with finitely many discontinuity points ti, and
each such discontinuity can be compensated by adding or subtracting a spheroid of
class Œ�n; �n�.

The reader who does not feel inclined to get involved in detailing this idea can
return to this theorem after reading Chap. II (or, even better, Lecture 24) and use
algebraic means developed there.

Notice that in combination with Exercise 6, this theorem shows that �4.S3/ Š Z2,
and hence �S

1 Š Z2. By the way, the alternative �4.S3/ D Z2 or 0 follows directly
from (rather easy) Exercises 6 and 7.

Notice also that if n is even, then the cyclic group generated by Œ�n; �n� is infinite
(we will prove this in Lecture 16). For n odd, this group is Z2 or 0 (this follows from
Exercise 2).

Lecture 11 Homotopy Groups and CW Complexes

This lecture is devoted to different relations between homotopy groups and CW
structures. It is rather heterogeneous. We will calculate the first nontrivial homotopy
group of a CW complex, will clarify the role of homotopy groups in homotopy
classification of CW complexes, and will construct CW complexes with homotopy
groups prescribed.
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11.1 Homotopy Groups and Attaching Cells

Theorem. Let X be a path connected topological space, and let f W Sn ! X be a
continuous map. Let Y D X [f DnC1. The homomorphism

�i.X; x0/! �i.Y; x0/; (	)

where x0 2 X � Y is an arbitrarily chosen base point, induced by the inclusion map
X ! Y is an isomorphism if i < n; if i D n, then it is an epimorphism whose kernel
is generated by all classes of the form u#Œf �, where u is a path joining f .y0/ with x0
(here y0 is a base point of Sn) and Œf � 2 �n.X; f .y0/ is the homotopy class of the
spheroid f .

Remark 1. A similar theorem for fundamental groups was proved in Sect. 7.3.
The proof, however, cannot be the same, because in Sect. 7.3 we could use Van
Kampen’s theorem, which has no satisfactory generalizations to higher-dimensional
homotopy groups.

Remark 2. It is convenient to assume that f .y0/ D x0. Then the kernel of the
homomorphism (	) is generated by the elements of the �1.X; x0/-orbit of Œf � 2
�n.X; x0/. The case when X is simply connected is especially important. In this
case the theorem shows that attaching an .n C 1/-dimensional cell does not affect
homotopy groups of dimension less than n, and the n-dimensional homotopy group
is factored by the cyclic group generated by the class of the attaching map.

Lemma. Let Em be the sphere Sm or the ball Dm where m � nC 1, and let T � Em

be the base point y0 if Em D Sm and Sm�1 if Em D Dm. In both cases, we identify
Em � T with R

m. Then let hWEm ! Y be a continuous map such that h.T/ � X.
Then there exists a map h1WEm ! Y which is T-homotopic to h and possesses the
following properties:

(1) h1 coincides with h on h�1.X/.
(2) If m � n, then h.Em/ � X.
(3) If m D n C 1, then there is a finite family of pairwise disjoint small balls

d1; : : : ; dN in Em such that h1.Em � Si di/ � X and h1jInt di
is, for every i,

a linear (orientation preserving or reversing) homeomorphism of Int di onto
Int DnC1 � Y.

This lemma is not much different from the free-point lemma proved in Sect. 5.8
and repeated several times after it (last time in Sect. 9.3). We leave further details to
the reader.

Proof of Theorem. The facts that the map (	) is an epimorphism if i � n and a
monomorphism if i < n follow directly from the lemma. Suppose that the class of
spheroid gW Sn ! X belongs to the kernel of the map (	); that is, g can be extended to
a map hWDnC1 ! X. Using the lemma, we replace the map h with another extension
h1 of g which has the properties listed in part (3) of the lemma. On the boundary @di

of each small ball d1, the map h1 coincides with a composition @di
`i��! Sn f��!X,
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d1

d2

d3y1

y2

y3

y0

u1

u2

u3

Fig. 57 The main construction in the proof of the theorem

where `i is a linear map. Set yi D `�1
i .y0/ and for every i join the point yi with y0 by

a path ui such that the interiors of these paths are disjoint from the balls di and from
each other. In DnC1�Si Int di, there is a natural homotopy connecting the inclusion
spheroid Sn ! DnC1 with the sum of the spheroids .ui/#.`

�1
i / (see Fig. 57).

Then we transfer to this homotopy to X by the map h1. We obtain a homotopy
connecting the spheroid g with the sum of spheroids .hıui/#.fi/where fi is a spheroid
obtained from f by a linear transformation of the sphere Sn. Since Œfi� D ˙Œf � (where
the sign depends on this linear transformation preserving or reversing orientation),
we see that Œg� is indeed a linear combination of generators listed in the theorem.
This completes the proof of the theorem (the fact that s#Œf � always belongs to the
kernel of the map (	) is obvious).

Corollary. If Y is a CW subcomplex of a CW complex X and the difference X � Y
does not contain cells of dimension � n, then the homomorphism �i.Y/ ! �i.X/
induced by the inclusion map is an isomorphism for i < n and an epimorphism for
i D n. In particular, �n.X/ D �n.sknC1 X/.

11.2 Application of the Attaching Cell Theorem:
The Homotopy Groups of Bouquets

Theorem. Let X;Y be CW complexes.

(1) If X is p-connected and Y is q-connected where p; q � 1, then �n.X _ Y/ D
�n.X/˚ �n.Y/ for n � pC q.

(2) For any n, �n.X_ Y/ contains a direct summand isomorphic to �n.X/˚�n.Y/.

Proof. According to a theorem in Sect. 5.9, the spaces X and Y are homotopy
equivalent to CW complexes with one vertex and without cells of dimensions
1; : : : ; p and 1; : : : ; q, respectively. The bouquet X_Y is a CW subcomplex of X�Y,
and all the cells in .X � Y/ � .X _ Y/ have dimensions� pC qC 2. Thus, part (1)
follows from the corollary in Sect. 11.1 and the fact that �n.X�Y/ D �n.X/˚�n.Y/.
To prove part (2), we note that the composition
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�n.X/˚ �n.Y/! �n.X _ Y/! �n.X � Y/ D �n.X/˚ �n.Y/;

where the first arrow denotes the sum of homomorphisms induced by the inclusion
maps X ! X _ Y; Y ! X _ Y and the second arrow is induced by the inclusion
map X _ Y ! X � Y, is the identity.

Corollary. If n � 2, then �n.S
n _ � � � _ Sn
„ ƒ‚ …

q

/ D Z˚ � � � ˚ Z
„ ƒ‚ …

q

; the system of free

generators is composed by the classes of q natural embeddings Sn ! Sn _ � � � _ Sn.
(Here q may be1.)

EXERCISE 1. For X;Y; p; and q as in the theorem, prove that �pCqC1.X _ Y/ is
isomorphic to �pCqC1.X/ ˚ �pCqC1.Y/ ˚ Œ�pC1.X/ ˝ �qC1.Y/�, where the last
summand is embedded into �pCqC1.X_Y/ be means of the map ˛˝ˇ 7! Œi�˛; j�ˇ�.
In particular, �3.S2 _ S2/ Š Z˚ Z˚ Z.

Remark. There is a result called the Hilton–Milnor theorem stating that the
homotopy groups of an arbitrary bouquet of spheres, Sn1 _ � � � _ Snr , are generated
by elements of homotopy groups of spheres Smi and their Whitehead products.

11.3 The First Nontrivial Homotopy Group of a CW
Complex

This is an extension of the result of Sect. 7.6 to higher-dimensional homotopy
groups. Since the case of the fundamental group is settled by that result, we assume
now that the CW complex considered is .n � 1/-connected where n > 1. Then we
can assume that X has only one vertex and has no cells of dimension 1; : : : ; n�1. We
assume that n-dimensional and .nC 1/-dimensional cells en

i ; e
nC1
j of X are indexed

by elements i 2 I; j 2 J of some sets I and J. In this case, skn X is homeomorphic to
the bouquet

W

i Sn
i of n-dimensional spheres corresponding to n-dimensional cells of

X (the homeomorphism is established by characteristic maps of the n-dimensional
cells). Thus, �n.skn.X// Š �n.

W

i Sn
i / D

L

i Z (the isomorphism depends on the
choice of characteristic maps of the n-dimensional cells, but this dependence is
limited to the multiplication of some generators of

L

i Z by �1). Let fjW Sn ! skn X
be an attaching map of a cell enC1

j .

Theorem. Let X be a CW complex with one vertex and with no other cells of
dimension < n. The group �n.X/ has a system of generators corresponding to n-
dimensional cells (the classes of characteristic maps of n-dimensional cells) and
defining system of relations corresponding to .nC 1/-dimensional cells [the classes
of attaching maps of .nC 1/-dimensional cells are equated to zero].

This follows directly from the results of Sects. 11.1 and 11.2.
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EXERCISE 2. Prove the following relative version of the theorem. Let .X;A/ be a
CW pair with connected A such that X � A contains no cells of dimension < n,
where n � 3. Then the first nontrivial group of the pair .X;A/, that is, the group
�n.X;A/, is generated as a �1.A/-module by n-dimensional cells in X � A with
relations corresponding to .nC 1/-dimensional cells in X � A.

EXERCISE 3. State and prove a similar statement in the case n D 2.

EXERCISE 4. Let .X;A/ be a CW pair with simply connected A, and let all cells in
X � A have dimensions � n � 2. Prove that the natural map �n.X;A/ ! �n.X=A/
is an isomorphism.

Remark. This proposition has a generalization: If A is k-connected and all cells in
X � A have dimensions � n � 2, then the natural map �q.X;A/ ! �q.X=A/ is
an isomorphism for g � n C k � 1 and an epimorphism for g D n C k. At the
moment, we do not have the necessary technique to prove this theorem. The reader
may return to it after reading Chap. II or, better, Lecture 24.

11.4 Weak Homotopy Equivalence Revisited

We are going to prove (a slightly enhanced version of) one of the propositions
promised in Sect. 9.5 (another one will be proven in Sect. 11.6 ahead).

Theorem. For a continuous map f WX ! Y (X and Y are arbitrary topological
spaces) the following properties are equivalent:

(1) f is a weak homotopy equivalence (see Sect. 9.5).
(2) f�W�n.X; x0/! �n.Y; f .x0// is an isomorphism for every n and x0 2 X.
(3) If .W;A/ is a CW pair and hWA! X; gWW ! Y are such continuous maps that

f ı h � g jA, then there exists a continuous mapehWW ! X such thateh jAD h
and f ıeh � g.

Proof. The implication .1/) .2/ is obvious. The implication .3/) .1/ is almost
obvious: If we put .W;A/ D .Z;;/, we arrive at the conclusion that the map
f�W�.Z;X/! �.Z;Y/ is onto, and, taking .W;A/ D .Z � I; .Z � 0/[ .Z � 1//, we
see that f� is also one-to-one.

It remains to prove the implication .2/ ) .3/. Let the map f WX ! Y satisfy
condition (2), and let .W;A/ be a CW pair. We assume first that W is different
from A by just one cell: W D A

S

˛ DnC1, where ˛W Sn ! A is a continuous map.
Since the composition Sn ˛��!A

���!W is homotopic to a constant (the natural
map DnC1 ! W is its extension to the ball), the composition .g jA/ ı ˛W Sn ! Y is
also homotopic to a constant. Hence, the spheroid f ı h ı ˛W Sn ! Y is homotopic
to zero, and hence so is the spheroid h ı ˛W Sn ! X [since f�W�n.X/ ! �n.Y/
is a monomorphism]. Hence, the map h ı ˛W Sn ! X can be extended to a map
ˇWDnC1 ! X, and we can combine the maps h and ˇ into a continuous mapeh0WW !
X (see Fig. 58).
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A

α(Sn)

W• •

h (W )
X

h(A)

β

Y

γ
(W )

Φ

Φ
f ◦ h (W )

g

f

β

Fig. 58 The construction in the proof of the weak homotopy equivalence theorem

Here we use the prime notation because this is not the map we need. We want
f ıeh � g, but we have only f ıeh jA� g ja. Choose a homotopy ˆWA � I ! Y
joining f ıeh jAD f ı h with g jA and consider the .n C 1/-dimensional spheroid
� W SnC1 D @.DnC1 � I/! Y composed of the maps

DnC1 � 0 D DnC1 ���!W
g��! Y;

Sn � I
˛�I��!A � I

ˆ��! Y ;

DnC1 � 1 D DnC1 ˇ��!X
f��! Y:

If we want the homotopyˆ to be extendable to a homotopy between f ıeh and g, we
need the spheroid � to be homotopic to zero, but we cannot count on that, because
we did nothing to achieve it. To amend the construction, we have only one thing at
our disposition: the choice of the map ˇ extending h ı ˛W Sn ! X. If we choose a
different map, ˇ0, then � will be replaced by � � .f ı ı/, where ıW SnC1 ! X is the
spheroid composed of the maps ˇ; ˇ0WDnC1 ! X (which are compatible on @DnC1).
It is clear that the spheroid ı can be made (homotopically) arbitrary, but then the
class of the spheroid f ı ı also can be made arbitrary [since f�W�nC1.X/! �nC1.X/
is an epimorphism]. This completes the proof in the case when W � A is one cell.
In the general case, we perform this construction simultaneously for all cells of the
same dimension; if the total number of cells in W �A is infinite, then the continuity
of the final map h is secured by Axiom (W).

11.5 Whitehead’s Theorem

Theorem. Let X and Y be CW complexes, and let f WX ! Y be s continuous map If

f�W�n.X; x0/! �n.Y; f .x0//

is an isomorphism for all n and x0, then f is a homotopy equivalence.
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(If X and Y are connected, then it is sufficient to check the condition for one
point x0.)

This theorem is a direct corollary of the previous theorem and the fact that for
CW complexes a weak homotopy equivalence is the same as the usual homotopy
equivalence (see Sect. 9.5).

It follows from Whitehead’s theorem that if all the homotopy groups of some
(nonempty, connected) CW complex are trivial, then this CW complex is con-
tractible (homotopy equivalent to a point). However, in a general case coincidence
of homotopy groups is not sufficient for a homotopy equivalence; it is required
additionally that the isomorphism between homotopy groups is established by some
continuous map. (See, however, Sect. 11.8.)

EXERCISE 5. Show that the spaces S2 and S3�CP1 have equal homotopy groups,
but are not homotopy equivalent.

EXERCISE 6. Show that the spaces Sm � RPn and Sn � RPm .m ¤ n/ have equal
homotopy groups, but are not homotopy equivalent.

11.6 Cellular Approximations of Topological Spaces

Theorem. For every topological space X there exists a CW complex Y with a
weak homotopy equivalence f WY ! X. [Such a pair .Y; f / is called a cellular
approximation of X.]

Proof. We can restrict ourselves to the case when X is path connected. We are going
to construct a chain of CW complexes (and cellular inclusions) Y0 � Y1 � Y2 �
: : : and a chain of continuous maps fiWYi ! X that successively chain each other
such that .fi/�W�q.Yi/ ! �q.X/ will be an isomorphism for i � q. For Y0, we
will take a point, while for f0 we will take an arbitrary map. Assume that for some
n � 1, the chain Y0 � Y1 � � � � � Yn�1 and the maps fiWYi ! X with the required
properties have already been constructed. Put y0 D Y0; x0 D f0.y0/. Choose a family
of generators f'˛g in the group �n.X; x0/, fix for every generator '˛ a representing
spheroid g˛, put Y 0

n D Yn�1_

W

˛.S
n
˛ D Sn/

�

, and define the map f 0
nWY 0

n ! X as fn�1
on Yn�1 and as g˛ on Sn

˛. By the theorem in Sect. 11.2, the inclusion map Yn�1 ! Y 0
n

induces an isomorphism for every group �q with q < n, so .f 0
n/�W�q.Y 0

n; y0/ !
�q.X; x0/ is an isomorphism for q < n. For q D n it is an epimorphism, since its
image contains all generators of �n.X; x0/. It is not necessarily a monomorphism.
Choose a system of generators f ˇg in Ker..f 0

n/�W�n.Y 0
n; y0/ ! �n.X; x0//, fix for

every  ˇ a representing spheroid hˇW Sn ! Y 0
n (we can require that hˇ be a cellular

map, but our construction guarantees that dim Y 0
n � n, so it may be not necessary),

and then attach to Y 0
n an .n C 1/-dimensional ball by every hˇ. The CW complex

arising is our Yn. Since .f 0
n/�. ˇ/ D 0, the map f 0

n can be continuously extended
to every attached ball, and we get a continuous map of Yn into X, and this is our
fn. Since attaching .n C 1/-dimensional balls does not affect groups �q with q <
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n, the map .fn/� is still an isomorphism for homotopy groups of dimensions less
than n. In dimension n, it is still an epimorphism (since Yn 
 Y 0

n), and it is also a
monomorphism, since �n.Yn; y0/ D �n.Y 0

n; y0/=Ker..f 0
n/�/ [here we used the fact

that Ker..f 0
n/�/ is a �1-submodule of �n.Yn; y0/].

As soon as we have the chain Y0 � Y1 � Y2 � : : : constructed, we put Y D
S

n Yn (with the weak topology) and get a CW complex Y with a continuous map
f WY ! X which induces isomorphisms for all homotopy groups and hence is a weak
homotopy equivalence.

EXERCISE 7. Prove that a cellular approximation of any topological space X is
homotopy invariant. This means that if .Y; f / and .Z; g/ are two cellular approxi-
mations of the same topological space X, then there exists a homotopically unique
homotopy equivalence hWY ! Z such that g � f ı h.

The main raison d’être of this theorem consists in a possibility to generalize
some homotopy results from CW complexes to (more or less) arbitrary topological
spaces. As an exercise, the reader can do this with the theorem in Sect. 11.2. Another
application of this theorem is a new clarification of the notion of the weak homotopy
equivalence, as stated in the following exercise.

EXERCISE 8. Prove that topological spaces X and Y are weakly homotopy equiva-
lent if and only if there exist maps

X
f �� Z

g��!Y;

where Z is a CW complex and f ; g are weak homotopy equivalences.

11.7 Eilenberg–MacLane Spaces (K.�;n/s)

Theorem. Let n be a positive integer, and let � be a group which is supposed to be
commutative if n > 1. Then there exists a CW complex X such that

�q.X/ D
�

�; if q D n;
0; if q ¤ n:

(compare with the end of Lecture 4.)

Such spaces are called Eilenberg–MacLane spaces or spaces of type K.�; n/.
People sometimes say that X is a K.�; n/.

Proof of Theorem. Nothing new for us. First, we choose a presentation of the group
� by systems of generators and relations � D h'˛; ˛ 2 A j  ˇ; ˇ 2 Bi. Then
we take the bouquet of n-dimensional spheres labeled with elements of A;Xn D
W

˛ 2 A.Sn˛ D Sn/. Then �q.Xn/ D 0 for q < n, and �n.Xn/ is a free group with



11.7 Eilenberg–MacLane Spaces (K.�; n/s) 139

generators labeled with elements of A. For every ˇ 2 B, we can regard  ˇ as an
element of �n.Xn/. Choose spheroids hˇW Sn ! Xn representing  ˇ , and for every ˇ
attach to Xn an n-dimensional cell by the map hˇ. We get a CW complex XnC1, of
dimension at most n C 1, such that �q.XnC1/ D 0 if q < n and � if q D n. Then
we take an arbitrary system of generators in �nC1.XnC1/, represent these generators
by spheroids, and attach .nC 2/-dimensional cells by these spheroids. We get some
XnC2 
 XnC1 with the same homotopy groups as XnC1 in dimensions � n and with
�nC1.XnC2/ D 0. Then we do the same with �nC2.XnC2/, get an XnC3, and so on. In
the end, we get a CW complex X with all the required properties.

Remark. The construction in the proof is very far from being explicit: We do
not know the groups �nC1.XnC1/; �nC2.XnC2/; : : : and have no technical means to
compute them. Certainly, we can extinguish all arbitrary choices in this construction
attaching .nC 2/-dimensional cells by all possible .nC 1/-dimensional spheroids
of XnC1, then attach .nC 3/-dimensional cells by all possible .nC 2/-dimensional
spheroids of XnC2, and so on. This will make the construction natural (functorial),
but it will become tremendously inconvenient. This makes especially interesting the
relatively few known explicit constructions of K.�; n/s.

Explicit constructions. (1) The space CP1 is a space of type K.Z; 2/. This is the
only case when a K.�; n/with n > 2 has a geometrically explicit construction. (2) S1

is a K.Z; 1/. (3) RP1 has the type K.Z2; 1/. (4) The infinite-dimensional lens space
L1

m D S1=Zm, where the generator T of the group Zm acts in S1 � C
1 by the

formula T.z1; z2; : : : / D .z1e2� i=m; z2e2� i=m; : : : /, and is a space of type K.Zm; 1/.
(5) Since K.�1; n/�K.�2; n/ D K.�1��2; n/, constructions (2)–(4) give us spaces
of type K.�; 1/ for every finitely generated Abelian group � .

There are lots of known spaces of type K.�; 1/ with non-Abelian � , for example,
all classical surfaces, except S2 and RP2 (see Exercise 4 in Sect. 8.3), and also
bouquets of circles (see Exercise 3 in Sect. 8.3).

EXERCISE 9. Prove that the space of all unordered sets of n points in R
1 (or S1)

is a K.Sn; 1/.

EXERCISE 10. Prove that the space of all unordered sets of n points in the plane is
a K.�; 1/ for a certain group � . This group is called the Artin n-thread braid group.

EXERCISE 11. Do the same for the space of ordered n-point subsets of the plane.
(The group arising is called the group of pure braids. It is better to do this exercise
before the previous one.)

EXERCISE 12. Prove that a complete nonpositively curved Riemannian manifold is
a space of type K.�; 1/ for some � . (The proof is based on the fact that in a simply
connected complete negatively curved Riemannian manifold every two points are
connected by a unique geodesic.)

Remark. A complement to a knot in S3 is also a space of type K.�; 1/, but it is not
likely that the reader is able to prove it with the technical means currently at hand.
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EXERCISE 13. Prove that�K.�; n/ D K.�; n� 1/. [This shows that every K.�; n/
with an Abelian � is an H-space, and even a homotopy commutative H-space.
Actually, every K.�; n/ with an Abelian � can be constructed as an Abelian
topological group.]

11.8 The Uniqueness of K.�;n/s

Theorem. Any two spaces of type K.�; n/ are weakly homotopy equivalent. Hence,
any two CW complexes of type K.�; n/ are homotopy equivalent.

Proof. Let X be a K.�; n/, and let be a CW complex which is a K.�; n/ with one
vertex and without other cells of dimension < n. Our theorem will be proved if
we construct a weak homotopy equivalence f WY ! X. The latter means only that
f�W�n.Y/! �n.X/ is an isomorphism.

The nth skeleton of Y is a bouquet of n-dimensional spheres which represent
generators of �n.Y/ D � . Since �n.X/ is also � , we can choose the same generators
for �n.X/ and then map every sphere of the bouquet skn Y into X according to some
spheroid representing the corresponding element of �n.X/. We get a continuous
map fnW skn Y ! X. Let e be an .nC 1/-dimensional cell of Y, and let gW Sn ! skn Y
be the attaching map. The spheroid g represents a zero class in �n.X/; hence, the
composition f ıg is a homotopic to a zero spheroid of X, and we can extend the map
f continuously to the cell e and, in this way, to the whole skeleton sknC1 Y. The map
fnC1W sknC1 Y ! X induces an isomorphism .fnC1/�W�n.sknC1 Y/ D � ! �n.X/.
The extension of fnC1 to cells of dimensions> nC1 does not meet any obstructions:
Attaching maps are maps Sq ! skq Y with q > n, and their composition with fq
forms spheroids homotopic to zero. This completes the construction.

EXERCISE 14. Prove that if X;Y are K.�; n/s and Y is a CW complex, then a weak
homotopy equivalence Y ! X is homotopically unique. Moreover, if X is a K.�; n/
and Y is a K.�; n/ and also a CW complex, then for every homomorphism 'W �! �

there exists a homotopically unique continuous map f WY ! X such that f�W�n.Y/!
�n.X/ is '.

Remark. This property of K.�; n/s that their (weak) homotopy type is determined
by their homotopy groups is not generalizable to spaces with multiple homotopy
groups. There exist CW complexes X;Y such that each has two nontrivial homotopy
groups, and these groups for X and Y are the same, but, however, X and Y are not
homotopy equivalent. In Chap. III we will be able not only to find such examples,
but even to provide a sort of a classification for them.
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11.9 Capping and Killing Homotopy Groups

In conclusion, we will discuss two constructions for CW complexes which affect
their homotopy groups in a prescribed way. The first of them is known to us, and
we have used it several times without naming it: It is capping homotopy groups.
Namely, if X is a CW complex, then for any number n we can construct a CW
complex X0 which contains X and has homotopy groups

�q.X
0/ D

�

�q.X/; if q � n;
0; if q > nI

moreover, the inclusion map X ! X0 induces isomorphisms for all homotopy
groups of dimensions � n. This is achieved by multiple attaching cells of
dimensions > n C 1. This capping operation is homotopically unique, as the
following exercise shows.

EXERCISE 15. Let a CW complex X and a number n be given. Let X0
1 
 X; X0

2 

X be two CW complexes with the properties listed above. Then there exists a
(homotopically unique) homotopy equivalence X0

1 ! X0
2 whose restriction to

X � X0
1 is homotopic to the inclusion map X ! X0

2.

Let �n.X/ be the first nontrivial homotopy group of a CW complex X. Then
the capping operation gives rise to a homotopically unique map (embedding) X !
K.�n.X/; n/. We turn this map into a homotopy equivalent (strong) Serre fibration
(see Sect. 9.7) and denote the fiber of this fibration as XjnC1. This space which is
defined canonically up to a homotopy equivalence is sometimes called the first and
sometimes the .nC 1/st killing space of X.

Theorem.

�q.XjnC1/ D
�

�q.X/; if q ¤ n;
0; if q D n

moreover, the inclusion map XjnC1 induces isomorphisms for all homotopy groups
�q with q ¤ n.

Proof. The fragment

�qC1.K.�; n//��!�q.XjnC1/
.�/��!�q.X/��!�q.K.�; n//

[where � D �n.X/] of the homotopy sequence of the fibration shows that the map
.	/ is an isomorphism for q ¤ n; n � 1. The fragment

�n.XjnC1/
0��!�n.X/

Š��!�n.K.�; n//
0��!�n�1.XjnC1/��!�n�1.K.�; n//
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(the homomorphisms of an exact sequence surrounding an isomorphism are both
zeroes) shows all the rest.

One can iterate the construction of the killing space and get, for every m, the
killing space Xjm and a map f WXjm ! X such that

�q.Xjm/ D
�

�q.X/; if q � m;
0; if q < m;

and the isomorphisms �q.Xjm/! �q.X/ are established by f�.

EXERCISE 16. Prove that for every connected CW complex X, the canonical map
Xj2! X is homotopy equivalent to the universal covering.

EXERCISE 17. Prove that S2j3 � S3; generalization: CPnj3 D CPnj2nC1 � S2nC1.

EXERCISE 18. Prove that in the situation of the theorem above, the fiber of the
fibration homotopy equivalent to a canonical map XjnC1! X is K.�; n � 1/.

Additionally, the cellular approximation of topological spaces (Sect. 11.6) makes
possible the generalization of both capping and killing to arbitrary spaces, and only
homotopy equivalences become weak homotopy equivalences.

Thus, we have two constructions of extinguishing homotopy groups, which are,
actually, dual in the sense of Lecture 4. We can kill homotopy groups of a space
X above a certain dimension, and X is canonically mapped into the new space. Or,
we can kill homotopy groups of X below a certain dimension, and the new space is
canonically mapped into X.



Chapter 2
Homology

Lecture 12 Main Definitions and Constructions

Besides the homotopy groups �n.X/, there are other series of groups corresponding
in a homotopy invariant way to a topological space X; the most notable are
homology and cohomology groups, Hn.X/ and Hn.X/. Compared with homotopy
groups, they have an important flaw—their accurate definition requires substantial
algebraic work—and important advantages: Their computation is much easier,
we will calculate them more or less immediately for the majority of topological
spaces known to us, and also they are geometrically better visualizable [there are
no counterintuitive phenomena like �3.S2/ Š Z]. The information of a simply
connected topological space contained in homology groups is comparable with that
contained in homotopy groups.

The main geometric idea of homology is as follows. Spheroids are replaced
by cycles; an n-dimensional cycle is, roughly, an n-dimensional surface, maybe
a sphere, but it may be something different, say, a torus. The relation of being
homotopic is replaced by a relation of being homological : Two n-dimensional
cycles are homological if they cobound a piece of surface of dimension nC 1. How
do we define cycles and those pieces of surfaces which they bound, the so-called
chains? One can try to present them as continuous maps of some standard objects,
spheres and something else (k-dimensional manifolds?). But this leads to severe
difficulties, especially in dimensions > 2. It is easier to define cycles and chains
as the union of standard “bricks.” The role of these bricks is assumed by “singular
simplices.”

Notice that the construction of homology (and cohomology) groups does not
require a fixation of a base point.
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12.1 Singular Simplices, Chains, and Homology

Let A0;A1; : : : ;Aq be points of the space R
n; n � q, not contained in one

.q � 1/-dimensional plane. The convex hull of these points is called the Euclidean
simplex with vertices A0;A1; : : : ;Aq (this notion is known to us from Lecture 5;
see Sect. 5.8). The convex hulls of (nonempty) subsets of the set of vertices are
called faces of the simplex; they are also Euclidean simplices. Euclidean simplices
of the same dimension are essentially the same, and this motivates us to choose one
standard Euclidean simplex. The usual choice of the standard simplex is the simplex
�n in R

nC1 with the ends of coordinate vectors taken for vertices. Thus,

�n D
n

.t0; t1; : : : ; tn/ 2 R
qC1 j t0 � 0; t1 � 0; : : : ; tn � 0;

Xn

iD0 ti D 1
o

:

Let X be an arbitrary topological space. We define an n-dimensional singular sim-
plex of X simply as a continuous map of �n into X. An n-dimensional singular
chain of X is a formal finite linear combination of n-dimensional singular simplices
with integral coefficients:

P

i kifi; fiW�n ! X. The set of all n-dimensional singular
chains of X is denoted as Cn.X/. The usual addition of linear combinations makes
Cn.X/ an Abelian group; thus, Cn.X/ is the free Abelian group generated by the set
of all n-dimensional singular simplices of X.

Next we describe the boundary homomorphism @ D @nWCn.X/ ! Cn�1.X/.
Since the group Cn.X/ is free, it is sufficient to define @ for the generators, that is,
for singular simplices. For a singular simplex f we put

@f D
n
X

iD0
.�1/i
if ;

where 
if is the ith face of f , which is defined as the restriction of f to the ith
face 
i�

n,


i�
n D f.t0; t1; : : : ; tn/ 2 �n j ti D 0g

[we identify 
i�
n with �n�1 using the correspondence

.t0; : : : ; ti�1; 0; tiC1; : : : :tn/$ .t0; : : : ; ti�1; tiC1; : : : :tn/�:

Theorem. The composition

CnC1.X/
@nC1��!Cn.X/

@n��!Cn�1.X/

is trivial; in other words, Im.@nC1/ � Ker.@n/.

Proof. A direct verification is based on the equality


i
jf D
�


j�1
if ; if j > i;

j
iC1f ; if j � i:
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To make our upcoming life slightly easier, we assume that Cn.X/ D 0 for n < 0

and extend the definition of @ accordingly. The theorem is not affected.

Main Definition. The quotient group

Hn.X/ D Ker @n= Im @nC1

is called the nth homology group of X. In particular, H0.X/ D C0.X/= Im@1 and
Hn.X/ D 0 for n < 0.

There are also common notations Ker @n D Zn.X/ and Im @nC1 D Bn.X/.
Thus, Hn.X/ D Zn.X/=Bn.X/. Elements of the groups Zn.X/ and Bn.X/ are called,
respectively, cycles and boundaries. (Thus, every boundary is a cycle, but the
converse is, generally, false.) If the difference of two cycles is a boundary, then these
cycles are called homologous. Thus, the homology group is the group of classes of
homologous cycles (which may be called homology classes).

If the group Hn.X/ is finitely generated, then its rank is called the nth Betti
number of X.

12.2 Chain Complexes, Map, and Homotopies

A chain complex, or simply a complex, is an (infinite in both directions) sequence
of groups and homomorphisms

: : :
@nC2��!CnC1

@nC1��!Cn
@n��!Cn�1

@n�1��! : : :

such that @n ı @nC1 D 0 for all n.
The group Hn D Ker @n= Im@nC1 is called the nth homology group of the

complex.

EXERCISE 1. Let

: : :
@nC2��!CnC1

@nC1��!Cn
@n��!Cn�1

@n�1��! : : :

be a complex. Put eCn D Cn ˚ CnC1 and define e@nW eCn ! eCn�1 by the formula
e@n.c; c0/ D .@nc; @nC1c0 C .�1/nc/; c 2 Cn; c0 2 CnC1. Prove that

: : :
e@nC2��! eCnC1

e@nC1��! eCn
e@n��! eCn�1

e@n�1��! : : :

is a complex and that the homology of this complex is trivial (eHn D 0 for all n).

Our main example of a chain complex, so far, is the singular complex of a space
X: Cn D Cn.X/. This complex is positive, which means that Cn D 0 for n < 0.
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Mostly, we will consider positive complexes, but there will be exceptions, and the
first exception appears immediately: The augmented or reduced singular complex
of a space X,

: : :
@nC2��! eCnC1.X/

@nC1��! eCn.X/
@n��! eCn�1.X/

@n�1��! : : : ;

is defined by the formula

eCn.X/ D
�

Cn.X/; if n ¤ �1;
Z; if n D �1;

and @n are all as before, except @0WC0.X/ ! Z, more commonly denoted as � and
called an augmentation, which takes every zero-dimensional singular simplex of X
into 1 2 Z. Thus, the reduced complex of X looks like

: : :
@2��!C1.X/

@1��!C0.X/
���!Z��!: : : :

[Thus, for a zero-dimensional chain c D P

kifi; �.c/ D P

ki; the number �.c/
is sometimes called the index of the zero-dimensional chain c; it may be denoted
as ind.c/.] A natural question arises: Why is this complex called reduced? It looks
bigger than the unreduced complex. The answer is in the following proposition.

Proposition 1. The homology eHn.X/ of the reduced singular complex (called the
reduced homology of X) is related to the usual homology as follows. If X is not
empty, then

Hn.X/ D
�

eHn.X/; if n ¤ 0;
eH0.X/˚ Z; if n D 0I

if X is empty, then the only nonzero reduced homology group of X is eH�1.X/ D Z.

Proof. Obvious.
Back to algebra. If C D fCn; @ng and C 0 D fC0

n; @
0
ng are two chain complexes,

then a chain map, or a homomorphism 'W C ! C 0, is defined as a sequence of group
homomorphisms 'nWCn ! C0

n which make the diagram

: : :
@nC2��! CnC1

@nC1��! Cn
@n��! Cn�1

@n�1��! : : :
?

?

?

?

y

'nC1

?

?

?

?

y

'n

?

?

?

?

y

'n�1

: : :
@0

nC2��! C0
nC1

@0

nC1��! C0
n

@0

n��! C0
n�1

@0

n�1��! : : :

commutative.
From this commutativity, 'n.Ker @n/ � Ker.@0

n/ and 'n.Im @nC1/ � Im.@0
nC1/,

so there arise homomorphisms'� D '�nWHn.C/! Hn.C 0/ with obvious properties,
like . ı'/� D  �ı'�. For our main example, a continuous map hWX ! Y naturally
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induces homomorphisms h# D h#nWCn.X/ ! Cn.Y/; h#

P

i kifi
� D P

i ki.h ı fi/
and also h#nW eCn.X/ ! eCn.Y/ (with h#;�1 D id) which comprise homomorphisms
between both unreduced and reduced singular complexes. Thus, there arise maps
f�WHn.X/! Hn.Y/ and eHn.X/! eHn.Y/ (with the same obvious properties).

Again back to algebra. Let C D fCn; @ng and C 0 D fC0
n; @

0
ng be two chain

complexes and ' D f'ng;  D f ngW C ! C 0 be two chain maps. A chain homotopy
between ' and  is a sequence D D fDnWCn ! C0

nC1g satisfying the identities

Dn�1 ı @n C @0
nC1 ı Dn D  n � 'n:

For the reader’s convenience (or inconvenience?) we show all the maps involved in
this definition in one diagram (which, certainly, is not commutative):

If chain maps '; can be connected by a chain homotopy, they are called (chain)
homotopic.

Proposition 2. If chain maps '; W C ! C 0 are homotopic, then the induced
homology maps '�;  �WHn.C/! Hn.C 0/ are equal.

Proof. Let D D fDng be a homotopy between ' and  . If c 2 Ker @n � Cn, then

 n.c/� 'n.c/ D Dn�1 ı @n.c/C @0
nC1 ı Dn.c/ D @0

nC1.Dn.c// 2 Im @0
nC1I

that is, 'n.c/ and  n.c/ are homologous for every cycle c 2 Cn. Thus, '�n D  �n.

EXERCISE 2. A complex .C/ is called contractible if the identity map idW C ! C is
homotopic to the zero map 0W C ! C. A complex .C/ is called acyclic if Hn.C/ D 0
for all n.

(Warmup) Prove that a contractible complex is acyclic.
(a) Prove that the complex feCn;e@ng from Exercise 1 is not only acyclic but also

contractible.
(b) Prove that the complex

� � �  0 0 Z2
onto ��Z

�2 ��Z 0 0 : : :

is acyclic but not contractible.
(c) Let .C/ D fCn; @ng be a positive (Cn D 0 for n < 0) free (all Cn are free Abelian

groups) complex. Prove that if .C/ is acyclic, then it is contractible.
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Finally, we will establish a connection between chain homotopies considered
here with homotopies between continuous maps. (This connection is actually a
justification for the term “chain homotopy.”) Namely, we will show how a homotopy
between continuous maps f ; gWX ! Y determines a chain homotopy between the
maps f#; g# of singular complexes.

We begin with a geometric construction which presents a covering of a cylinder
�n�I by nC1 Euclidean simplices (in the language of Sect. 5.8, it is a triangulation
of �n � I). Recall that �n D f.t0; : : : ; tn/ 2 R

nC1 j ti � 0;P ti D 1g. The vertices
of �n are vi D .0; : : : ; 0; 1; 0; : : : ; 0/ with 1 D ti. For 0 � i � n, put

Ai D f..t0; : : : ; tn/; t/ 2 �n � I j t0 C � � � C ti�1 � t � t0 C : : : tig

(where the empty sum is regarded as 0). It is easy to see that Ai is the convex
hull of .v0; 1/; : : : ; .vi; 1/; .vi; 0/; : : : ; .vn; 0/, that is, the Euclidean simplex with
the vertices .v0; 1/; : : : ; .vi; 1/; .vi; 0/; : : : ; .vn; 0/. Indeed, all these points belong to
Ai, and if y D ..t0; : : : ; tn/; t/, then y D t0.v0; 1/C � � � C ti�1.vi�1; 1/C t0i.vi; 1/C
t00i .vi; 0/ C tiC1.viC1; 0/ C � � � C tn.vn; 0/, where t0i D t � .t0 C � � � C ti�1/ and
t00i D ti � t0i D .t0 C � � � C ti/ � t, so if y 2 Ai, then the sum of the coefficients is 1
and all of them are between 0 and 1.

For n D 1 and 2, this triangulation is shown in Fig. 59 (familiar to the reader
from elementary geometry textbooks).

Let ˛i D ˛i.�
n/W�nC1 ! �n � I be the affine homeomorphism of�nC1 onto Ai

preserving the order of vertices. These ˛is are singular simplices of�n�I. Consider
the faces 
j˛i .0 � i � n; 0 � j � n C 1/. First, 
i˛i D 
i˛i�1 .1 � i � n/; in
addition to that, 
0˛0 D id�n �0; 
nC1˛n D id�n �1. Second,


j˛i.�
n/ D

�

˛i�1.
j�
n/; if j < i;

˛i.
j�1�n/; if j > iC 1:
Next, let us calculate the boundary of ˛.�n/ DPi.�1/i˛i.�

n/.

Fig. 59 Triangulations of cylinders over simplices
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@˛.�n/ DPnC1
jD0

Pn
iD0.�1/iCj
j˛i.�

n/ D id�n �0C
h
PnC1

jD2
Pj�2

iD0C
Pn�1

jD0
Pn

iDjC1
i

.�1/iCj
j˛i.�
n/� id�n �1

D id�n �0CPn�1
iD0

Pn
jD0.�1/iCjC1˛i.
j�

n/ � id�n �1
D id�n �0 � id�n �1 � ˛.@�n/:

Now let f ; gWX ! Y be two continuous maps and let HWX�I ! Y be a homotopy
connecting f with g. For an n-dimensional singular simplex bW�n ! X, define an
.nC1/-dimensional singular chain B of Y as .Hı.b�I//#˛.�n/; the correspondence
b 7! B is extended to a homomorphism Cn.X/ ! CnC1.Y/, which we take for Dn.
The previous computations show that for any chain c 2 Cn.X/,

@Dn.c/ D f#.c/� g#.c/�Dn�1.@c/;

which means that fDng is a chain homotopy between f# and g# (see Fig. 60).
We arrive at the following result.

Theorem. If continuous maps f ; gWX ! Y are homotopic, then the chain maps
f#; g# are chain homotopic.

Corollary 1. If continuous maps f ; gWX ! Y are homotopic, then for all n the
induced homology homomorphisms f�; g�WHn.X/! Hn.Y/ coincide.

Corollary 2. A homotopy equivalence f WX ! Y induces for all n isomorphisms
f�WHn.x/

Š��!Hn.Y/. In particular, homotopy equivalent spaces have isomorphic
homology groups.

(Question: And what about weak homotopy equivalence? The answer is in
Lecture 14.)

EXERCISE 3. Prove the last three statements for reduced homology.

Fig. 60 From a homotopy to a chain homotopy
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12.3 First Calculations

The groups of singular chains are usually huge and difficult to deal with; they are not
fit for systematic calculations of homology groups. There are some efficient indirect
methods of homology calculations which will be presented in the nearest future.
Still, some direct calculations are possible and, actually, necessary for developing
those indirect methods.

A: Homology of the One-Point Space

Let pt denote the one-point space. Then in every dimension n � 0 there is only
one singular simplex fnW�n ! pt. In particular, 
ifn D fn�1 for all i, and @fn D
fn�1 � fn�1 C fn�1 � � � � C .�1/nfn�1, which is 0 if n is odd and fn�1 if n is even and
positive. Thus, the (unreduced) singular complex of pt has the form

: : :
id��!Z

0��!Z
id��!Z

0��!Z! 0! 0! : : : ;

and

Hn.pt/ D
�

Z; if n D 0;
0; if n ¤ 0:

Add to this that eH0.pt/ D 0; this shows that eHn.pt/ D 0 for all n.
A space whose homology is the same as that of pt is called acyclic.

Corollary (of homotopy invariance of homology). Contractible spaces are acyclic.

The converse is not true; fans of the function sin
1

x
will appreciate an example

in Fig. 61. There are more interesting examples, say, the Poincaré sphere with one
point deleted.
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Fig. 61 A noncontractible acyclic space
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B: Zero-Dimensional Homology

Theorem. If X is path connected, then H0.X/ D Z.

Proof. Zero-dimensional singular simplices of X are just points of X; one-
dimensional simplices are paths, and the boundary of a path joining x0 with x1
is x1 � x0. If X is connected, then every zero-dimensional chain

P

i kifi (which
is always a cycle) is homological to


P

i ki
�

f0, where f0 is an arbitrarily fixed
zero-dimensional singular simplex; indeed, if si is a path joining f0 with fi, then
@
P

i kisi D P

i ki.fi � f0/ D P

i kifi �

P

i ki
�

f0. We see that if
P

i ki D 0,
then the chain is homological to zero. The converse is also true: The sum of the
coefficients of the boundary of a one-dimensional singular simplex, and hence of
the boundary of every zero-dimensional singular chain, is zero. We see that the map
� W C0.X/ D Z0.x/! Z establishes an isomorphism H0.X/! Z.

Equivalent statement (for a path connected X): eH0.X/ D 0.

EXERCISE 4. Prove that if f WX ! Y is a continuous map between two path
connected spaces, then f�WH0.X/! H0.Y/ is an isomorphism.

C: Homology and Components

Standard simplices are connected. Hence, every singular simplex of a space belongs
to one of the path components of this space. This shows that Cn.X/ DL

˛ Cn.X˛/,
where the X˛s are path components of X, and also Zn.X/ D L

˛ Zn.X˛/; Bn.X/ D
L

˛ Bn.X˛/; Hn.X/ D L

˛ Hn.X˛/. In particular, the two previous computations
imply the following. (1) For an arbitrary X, H0.X/ is a free Abelian group generated
by the path components of X; (2) If the space X is discrete, then Hn.X/ D 0 for
any n ¤ 0.

12.4 Relative Homology

Let .X;A/ be a topological pair; that is, A is a subset of a space X. Then Cn.A/ �
Cn.X/. The group Cn.X;A/ D Cn.X/=Cn.A/ is called the groups of (relative)
singular chains of the pair .X;A/ or of X modulo A. Obviously, Cn.X;A/ is a free
Abelian group generated by singular simplices f W�n ! X such that f .�n/ 6� A.
Since @.Cn.A// � Cn�1.A/, there arise a quotient homomorphism @WCn.X;A/ !
Cn�1.X;A/ and a complex

: : :
@��!CnC1.X;A/

@��!Cn.X;A/
@��!Cn�1.X;A/

@��! : : : :
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The homology groups of this complex are denoted Hn.X;A/ and are called relative
homology groups. One can say that Hn.X;A/ is the quotient Zn.X;A/=Bn.X;A/ of
the group of relative cycles over the group of relative boundaries. Here a relative
cycle is a singular chain of X whose boundary lies in A, and a relative boundary is
a chain of X which becomes a boundary after adding a chain from A. (Obviously,
relative boundaries are relative cycles.)

EXERCISE 5. Compute H0.X;A/ in the case when X and A are both connected and
in the general case.

EXERCISE 6. Construct for an arbitrary space X and an arbitrary point x0 2 X a
natural isomorphism eHn.X/ D Hn.X; x0/.

The boundary of a relative cycle is an absolute (that is, usual) cycle in A; the
correspondence c 7! @c determines (for every n) a boundary homomorphism

@�WHn.X;A/! Hn�1.A/

(indeed, if c� c0 is a relative boundary, then @c� @c0 is an absolute boundary in A).
The homomorphism @� is included in a homology sequence of a pair (similar to a
homotopy sequence of a pair; see Sect. 8.7; but it looks simpler than the homotopy
sequence, since it involves only Abelian groups):

: : :
@���!Hn.A/

i���!Hn.X/
j���!Hn.X;A/

@���!Hn�1.A/
i���! : : : ;

where i� is induced by the inclusion map iWA ! X and j� is induced by the
projection Cn.X/! Cn.X/=Cn.A/ D Cn.X;A/.

Theorem. The homology sequence of a pair is exact.

We prefer to have this theorem in a “more general” algebraic form. Let C D
fCn; @ng be a complex and let C 0 D fC0

n; @
0
ng be a subcomplex which means C0

n �
Cn; @n.C0

n/ � C0
n�1 for all n and @0

n.c/ D @n.c/ for all c 2 C0
n. There arise a quotient

complex C 00 D C=C 0 D fC00
n D Cn=C0

n; @
00
ng with a naturally defined @00

n , and also
inclusion and projection homomorphisms �W C 0 ! C and �W C ! C 00. There also
arise “connecting homomorphisms”

@�WHn.C 00/! Hn�1.C 0/:

Namely, let � 00 2 Hn.C 00/ be an arbitrary homology class and let c00 2 Ker @00
n �

C00
n D Cn=C0

n be a representative of � 00. Let c 2 Cn be a representative of (the
coset) c00. The equality @00

n c00 D 0 means precisely that c0 D @nc 2 C0
n�1. Moreover,

@0
n�1c0 D @n�1c0 D @n�1 ı @nc D 0. Thus, c0 2 Ker @0

n�1 and hence belongs to the
homology class in � 0 2 Hn�1.C 0/; we take this class for @�.� 00/.

EXERCISE 7. Prove that the correspondence � 00 7! � 0 provides a well-defined
homomorphism @�WHn.C 00/ ! Hn�1.C 0/: In particular, � 0 does not depend on
the choice of c00 in � 00 and of c in c00. Moreover, one needs to check that @� is a
homomorphism.
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Algebraic Theorem. The sequence

: : :
@���!Hn.C 0/

����!Hn.C/
����!Hn.C 00/

@���!Hn�1.C 0/
����! : : :

is exact.

EXERCISE 8. Prove the algebraic theorem. (The proof has some resemblance to the
proof of exactness of the homotopy sequence of a pair in Sect. 8.7.)

The algebraic theorem implies the theorem above; it will be used many more
times in this book, including exercises later in this section.

Notice that a map f W .X;A/ ! .Y;B/ between topological pairs (that is, a
map f WX ! Y such that f .A/ � B) induces homomorphisms f�WHn.X;A/ !
Hn.Y;B/ and a homomorphism of the homology sequence of the pair .X;A/ into
the homology sequence of the pair .Y;B/, that is, a “commutative ladder”

� � � ! Hn.A/! Hn.X/! Hn.X;A/! Hn�1.A/! : : :
?

?

?

?

y

.f jA/�

?

?

?

?

y

f�

?

?

?

?

y

f�

?

?

?

?

y

.f jA/�

� � � ! Hn.B/! Hn.Y/ ! Hn.Y;B/ ! Hn�1.B/! : : :

with exact rows. Add to that Hn.X/ D Hn.X;;/ (in this sense relative homology
is a generalization of absolute homology) and that the mysterious homomorphism
j�WHn.X/! Hn.X;A/ is actually induced by the map j D idW .X;;/! .X;A/.

EXERCISE 9. Construct the homology sequence of a triple,

� � � ! Hn.A;B/! Hn.X;B/! Hn.X;A/! Hn�1.A;B/! : : :

(B � A � X) and prove its properties, including the exactness. (Compare to
Exercise 10 in Sect. 8.7.) (In the case when A is not empty, a combination of this
exercise with Exercise 5 gives rise to a reduced homology sequence of a pair, with
the absolute groups H replaced by eH).

The exactness of homology sequences of pairs and triples (combined with the
five-lemma; see Sect. 8.8) has a standard set of corollaries. Among them, there is a
homotopy invariance of relative homology: If f WX ! Y is a homotopy equivalence,
f .A/ � B, and the map A ! B arising is also a homotopy equivalence, then
f�WHn.X;A/! Hn.Y;B/ is an isomorphism for all n.

(We have to disappoint a reader who expects an exact “homology sequence of a
fibration” relating homology groups of the total space, the base, and the fiber of a
fibration. The relations between homology and fibrations are more complicated, and
we will thoroughly study them in the subsequent chapters of this book.)
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12.5 Relative Homology as Absolute

The results here provide the main technical tool to effectively compute homology.

Theorem. Let .X;A/ be a topological pair.

(1) The inclusion X ! X [ CA, where X [ CA is obtained from X by attaching the
cone over A, induces for every n an isomorphism

Hn.X;A/ Š Hn.X [ CA;CA/ D Hn.X [ CA; v/ D eHn.X [ CA/;

where v is the vertex of the cone CA.
(2) If .X;A/ is a Borsuk pair (see Sect. 5.6), for example, a CW pair (see again

Sect. 5.6), then

p�WHn.X;A/! Hn.X=A; a/ D eHn.X=A/

[where pWX ! X=A is the projection and a D p.A/] is an isomorphism for
all n.

COMMENTS. 1. Part (2) follows from part (1) because of the homotopy equivalence
X [ CA � X=A for Borsuk pairs (see Sect. 5.6 again). Thus, we need to prove
only part (1).

2. In Sect. 9.10, we showed how relative homotopy groups can be presented as
absolute homotopy groups of a certain space. Here we do the same for homology
groups, and it is obvious that for homology the construction is much simpler
than for homotopy. This may be regarded as a first illustration of a reason why
homology groups are way easier to compute than homotopy groups.

The proof of the theorem is based on the so-called refinement lemma, whose proof
is based on the so-called transformator lemma. Both lemmas (especially, the first)
have considerable independent value. We arrange the proof in the following order.
First, we state the refinement lemma. Then we state and prove the transformator
lemma. Then we prove the refinement lemma. And after that we prove our theorem.

Let X be a topological space and let U D fU˛g be an open covering of X. We say
that a singular simplex f W�n ! X is subordinated to the covering U if f .�n/ is
contained in U˛ for some ˛. Let CU

n .X/ be a subgroup of Cn.X/ generated by
singular simplices subordinated to U . It is obvious that @.CU

n .X// � CU
n�1.X/: If

a singular simplex is subordinated to U , then all its faces are subordinated to U .
Thus, the groups CU

n .X/ form a subcomplex of the singular complex of X.

Refinement Lemma. The inclusion of the complex fCU
n .X/g into the complex

fCn.X/g induces a homology isomorphism. In other words, (1) every singular cycle
of X is homologous to a cycle composed of singular simplices subordinated to U and
(2) if two such cycles are homologous in X, then their difference equals a boundary
of a chain composed of singular simplices subordinated to U .
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To prove this lemma, we need “transformators.”

Definition. A transformator � is a rule which assigns to every topological space X
and every integer n a homomorphism �X

n WCn.X/! Cn.X/ such that

(1) �X
0 D id for every X.

(2) @n ı �X
n D �X

n�1 ı @n for every X and every n.
(3) If hWX ! Y is a continuous map, then h# ı �X

n D �Y
n ı h# for every n.

Example 1 (Barycentric Transformator). The barycentric subdivision of the stan-
dard simplex �n (see Fig. 21 in Sect. 5.8) consists of .n C 1/Š n-dimensional
Euclidean simplices corresponding to chains ı0 � ı1 � � � � � ın of faces of
dimensions 0; 1; : : : ; n; the vertices of the simplex corresponding to this chain are
centers of ı0; ı1; : : : ; ın. In other words, simplices of the subdivision correspond to
permutations � 2 SnC1: The simplex ˇ��n corresponding to a permutation � of
0; 1; : : : ; n has vertices

u�k D
v�.0/ C v�.1/ C � � � C v�.k/

kC 1 ; k D 0; 1; : : : ; n;

where v0; v1; : : : ; vn are the vertices of�n in their natural order. The correspondence
vi 7! u�i is extended to an affine map ˇ� W�n ! �n, which may be regarded as an
n-dimensional singular simplex of �n. Put ˇ.�n/ D P

�2SnC1
sgn.�/ˇ� . A direct

computation shows that @.ˇ.�n// D Pn
iD0.�1/iˇ.
i�

n/ (the faces inside �n are
cancelled; there remain only simplices of barycentric subdivisions of faces of �n,
and they appear in @.ˇ.�n// with proper signs).

EXERCISE 10. Reconstruct the details of this direct computation.

Now to the transformator. For a chain c D P

i kifi 2 Cn.X/, we put ˇX
n .c/ D

P

i ki.fi/#.ˇ.�n//. This is a transformator: Properties (1) and (3) are immediately
clear, and property (2) follows from the formula for @.ˇ.�n//.

Example 2 (Backward Transformator). Let !W�n ! �n be the affine homeo-
morphism reversing the order of vertices (!.vi/ D vn�1). For c D P

i kifi 2
Cn.X/, put !X

n .c/ D
P

i ki.�1/ n.nC1/
2 .fi ı !/. It is immediately clear that f!X

n g
satisfies conditions (1) and (3) from the definition of a transformator, and a direct
computation shows that condition (2) is also satisfied.

EXERCISE 11. Reconstruct the details of this direct computation.

We will use the backward transformator later, in Lecture 16.

Transformator Lemma. Let � D f�X
n g be a transformator. Then for every X

the chain map �X D f�X
n WCn.X/ ! Cn.X/g is homotopic to the identity. Thus,

.�X/�nWHn.X/! Hn.X/ is idHn.X/.
Moreover, a homotopy DX

n WCn.X/! CnC1.X/ between �X and id can be defined
in such a way that f#;nC1 ı DX

n D DY
n ı f#n for every continuous map f WX ! Y.

Proof of Transformator Lemma. We put DX
0 D 0 for all X. Let n > 0. Assume

that for all X and m < n we have already defined homomorphisms DX
mWCm.X/ !
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}{
Fig. 62 The two-set covering of X [ CA

CmC1.X/ which satisfy all the conditions required (including the condition @mC1 ı
DX

mCDX
m�1 ı @m D �X

m � id). The construction of DX
n we begin with is D�n

n .id/. The
desired property is

@D�n

n .id/ D ��n

n .id/� id�D�n

n�1.@ id/:

But @ıD�n

n�1.@ id/ D ��n

n�1.@ id/�@ id�D�n

n�2.@@ id/ D @.��n

n .id/� id/, which shows
that @.��

n

n .id/ � id�D�n

n�1.@ id// D 0. Since Hn.�
n/ D 0 (�n is connected), the

cycle ��
n

n .id/� id�D�n

n�1.@ id/ 2 Cn.�
n/ is a boundary of some chain in CnC1.�n/;

we choose such a chain and take it for D�n

n .id/. After that, for an arbitrary X and
arbitrary c D P

i kifi 2 Cn.X/, we put DX
n .c/ D

P

i ki.fi/#.D�n

n .id/. This DX
n

obviously satisfies the conditions in the “moreover” part of the lemma.

Proof of the Refinement Lemma. We use the barycentric transformator ˇ. We need
to prove that (1) every cycle from Cn.X/ is homologous to a cycle in CU

n .X/ and
(2) if a cycle from CU

n .X/ is a boundary of some chain from CnC1.X/, then it is
a boundary of some chain from CU

nC1.X/. This follows from the following three
facts. (A) For every chain c 2 Cn.X/ the chain .ˇX

n /
N.c/ with a sufficiently big N is

contained in CU
n .X/ (it is obvious). (B) A cycle c is homologous to ˇ.c/, and hence

to ˇN.c/ (the transformator lemma). (C) If a cycle c belongs to CU
n .X/, then the

difference c � ˇ.c/, and hence the difference c � ˇN.c/, is a boundary of a chain
from CU

nC1.X/ (the “moreover” part of the transformator lemma).

Proof of Theorem. We need to prove only part (1). Consider the covering U of C [
CA by two open sets: CA (without the base) and X [ C0A, where C0A is the lower
half of the cone (without the upper base): See Fig. 62.

It follows from the relative version of the transformator lemma (which, on one
side, can be proved precisely as the absolute version, and, on the other side, follows
from the absolute version and the five-lemma) that the homology of the pair .X [
CA;CA/ can be computed with the chain groups
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CU
n .X [ CA;CA/ D CU

n .X [ CA/=CU
n .CA/I

the covering of the cone CA, induced by the covering U , we denote again by U . But
obviously

CU
n .X [ CA/=CU

n .CA/ D Cn.X [ C0A/=Cn.C
0A/ D Cn.X [ C0A;C0A/:

Thus,

eHn.X [ CA/ D Hn.X [ CA; pt/ D Hn.X [ CA;CA/
D Hn.X [ C0A;C0A/ D Hn.X;A/

(the last equality follows from the homotopy invariance of homology).

12.6 Generalizations of the Refinement Lemma: Sufficient
Sets of Singular Simplices

The refinement lemma says that for computing homology groups of spaces and
pairs it is possible to consider only singular simplices satisfying some additional
condition. This additional condition (for the refinement lemma this is the condition
of being subordinated to an open covering) may be different.

Definition. A set S of singular simplices is called sufficient if all faces of a singular
simplex from S also belong to S, so the groups CS

n .X/ � Cn.X/ form a subcomplex
of the singular complex of X, and if the inclusion map of this subcomplex induces
a homology isomorphism. In other words, for every n, every cycle from Cn.X/ is
homologous to some cycle belonging to CS

n .X/, and if a cycle belonging to CS
n .X/

equals the boundary of some chain from CnC1.X/, then it is also a boundary of
a chain in CS

nC1.X/. The usual procedure of proving sufficiency of some set S of
singular simplices is to find some way of “approximating” singular simplices with
all faces in S by chains in CS

n .X/ with the same boundary. We will not prove any
general result of this kind but will list several sufficient sets in the form of exercises
(the statement in the last of these exercises will actually be proved quite soon).

EXERCISE 12. If X is a smooth manifold (say, a smooth surface of some dimension
in some Euclidean space), then smooth singular simplices form a sufficient set.

EXERCISE 13. If X is a domain in an Euclidean space, then affine singular simplices
form a sufficient set.

EXERCISE 14. If X is a triangulated space, then affine isomorphisms of standard
simplices onto the simplices of the triangulation form a sufficient set.
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12.7 More Applications of the Refinement Lemma

We will give here in the form of exercises two additional properties of homology
groups. In the next lecture we will prove similar statements in the CW context.

EXERCISE 15. Let .X;A/ be a topological pair, and let B � A. The inclusion map
.X � B;A � B/! .X;A/ induces a homomorphism

Hn.X � B;A � B/! Hn.X;A/

called an excision homomorphism. Prove that if B � Int A, then the excision
homomorphism is an isomorphism. (This statement is called the excision theorem,
or, within a certain axiomatic approach to homology theory, the excision axiom. The
conditions on X;A;B which imply the excision isomorphism may be different.)

EXERCISE 16. Let X D A[B; A\B D C. We suppose that the excision homomor-
phisms Hn.B;C/ ! Hn.X;A/ and Hn.A;C/ ! Hn.X;B/ are isomorphisms. Then
the homomorphisms

Hn.X/
j���!Hn.X;A/

exc:�1��!Hn.B;C/
@���!Hn�1.C/

Hn.X/
j���!Hn.X;B/

exc:�1��!Hn.A;C/
@���!Hn�1.C/

are the same, and we denote them as �n. The sequence

� � � ! Hn.C/
˛n��!Hn.A/˚ Hn.B/

ˇn��!Hn.X/
�n��!Hn�1.C/! : : : ;

where ˛n is the difference of the homomorphisms induced by the inclusions C! A
and C! B andˇn is the sum of the homomorphisms induced by the inclusions A!
X and B ! X, is called the Mayer–Vietoris homology sequence or the homology
sequence of the triad .XIA;B/. Prove that this sequence is exact.

Lecture 13 Homology of CW Complexes

In this lecture, we will see that it is possible to compute the homology groups of
CW complexes via a complex way narrower than the singular complex. We have to
begin with the homology of spheres and bouquets of spheres.
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13.1 Homology of Spheres: Suspension Isomorphism

Theorem 1. If n > 0, then

Hm.S
n/ D

�

Z; if m D 0; n;
0; if m ¤ 0; n:

The homology of the (two-point) sphere S0 looks different: H0.S0/ D Z ˚
Z; Hm.S0/ D 0, if m ¤ 0. To make the statement better looking, we may consider
the reduced homology.

Theoreme1. For all n,

eHm.S
n/ D

�

Z; if m D n;
0; if m ¤ n:

Proof of Theorem 1 Consider a portion of the reduced homology sequence of the
pair .Dn; Sn�1/:

eHm.Dn/! Hm.Dn; Sn�1/! eHm�1.Sn�1/! eHm�1.Sn�1/
k k k
0 eHm.Sn/ 0

[the equalities come from Sect. 12.3.A and Sect. 12.5 (part (2) of the theorem)].
From the exactness of the sequence, we have eHm.Sn/ D eHm�1.Sn�1/, which
completes the proof, since for n D 0 the statement is known to us.

The isomorphism eHm.Sn/ D eHm�1.Sn�1/ constructed in the proof is generalized
as the following suspension isomorphism.

Theorem 2. For any topological space X and any n,

eHn.†X/ D eHn�1.X/:

Proof. It follows from the reduced homology sequence of the pair .CX;X/, the
contractibility of CX, the equality †X D CX=X, and the (obvious) fact that .CX;X/
is a Borsuk pair.

Remark. From the point of view of the Eckmann–Hilton duality (Lecture 4), this
isomorphism is dual to �n.X/ D �n�1.�X/. Freudenthal’s theorem (Lecture 10) is
dual to a relation between the homology groups of X and �X which will be studied
in Chap. 3.

EXERCISE 1 (A more precise version of Theorem 2). Let f W�n�1 ! X be a
singular simplex of X. The composition

�n D C�n�1 Cf��!CX
proj:��!†X
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is a singular simplex of †X, which we denote as †f . Prove that the maps

†WCn�1.X/! Cn.†X/;
X

i

kifi 7!
X

i

ki.†fi/

commute with @ and induce the isomorphism eHn�1.X/
†��! eHn.†X/.

EXERCISE 2. Using Exercise 1, construct singular cycles representing the homol-
ogy of spheres.

EXERCISE 3. Prove that a generator of a group Hn.Dn; Sn�1/ Š Z is represented
by a one-simplex relative cycle f W�n ! Dn, where f is a homeomorphism.

EXERCISE 4. Construct a relative version of the isomorphism † of Exercise 1 and
prove that it commutes with maps f� and @�.

13.2 Homology of Bouquets of Spheres and Other Bouquets

Theorem 1. Let A be an arbitrary set and let Sn
˛; ˛ 2 A, be copies of the standard

n-dimensional sphere. Then

eHn

�_

˛2A
Sn
˛

�

D
� L

˛2A Z˛; if m D n;
0; if m ¤ n:

Here
L

˛2A Z˛ is the free Abelian group generated by the set A, that is, the sum of
groups Z corresponding to the spheres of the bouquet.

Proof. This follows from Theorem 2 of Sect. 13.1, since
W

˛2A Sn
˛ is homotopy

equivalent to the suspension of
W

˛2A Sn�1
˛ (and even is homeomorphic to this

suspension if the latter is understood in the base point version), and for the bouquet
of the zero-dimensional spheres the statement is true. Also, this follows from the
next theorem.

Theorem 2. If .X˛; x˛/ are base point spaces which are Borsuk pairs, then for
any m,

eHm

�_

˛2A
X˛
�

D
M

˛2A

eHm.X˛/:

Proof. A bouquet is the quotient space of a disjoint union under the union of the
base points.

EXERCISE 5. Construct the previous isomorphism at the level of cycles, establish
its relative version, and prove the compatibility with f� and @�.
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13.3 Maps of Spheres into Spheres and of Bouquets
of Spheres into Bouquets of Spheres

Recall that a continuous map of Sn into Sn has a degree, an integer which
characterizes its homotopy class (Sect. 10.3). A continuous map

gW
_

˛2A
Sn
˛ !

_

ˇ2B
Sn
ˇ

(where Sn
˛; S

n
ˇ are copies of the sphere Sn) has a whole matrix of degrees fd˛ˇ j ˛ 2

A; ˇ 2 Bg, where d˛ˇ is the degree of the map

Sn i˛��!
_

Sn
˛

g��!
_

Sn
ˇ

pˇ��! Sn;

where i˛ is the identity map of Sn onto Sn
˛ and pˇ is the identity map of Sn

ˇ of Sn and
the constant map on the other spheres of the bouquet.

EXERCISE 6. Do the degrees d˛ˇ determine the homotopy class of the map g?

Theorem. The matrix of the map

Hn

W

˛2A Sn
˛

� g���! Hn

�
W

ˇ2B Sn
ˇ

�

k k
L

˛2A Z˛
L

ˇ2B Zˇ

coincides with fd˛ˇg. In particular, the map

Hn.Sn/
f���! Hn.Sn/

k k
Z Z

induced by the map f W Sn ! Sn of degree d is the multiplication by d.

Proof. Since † preserves the degrees, both for maps Sn ! Sn and homomorphisms
Hn.Sn/ ! Hn.Sn/, our statement for some dimension n and some matrix fd˛ˇg
implies our statement for dimension nC 1 and the same matrix. On the other side,
in dimension 0 everything is known (obvious). However, this does not resolve our
problem: The trouble is that a base point–preserving map S0 ! S0 can have only
degree 0 or 1. Thus, this suspension argumentation proves our theorem only for
maps gWW˛ Sn

˛ !
W

ˇ Sn
ˇ which are n-fold suspensions of maps

W

˛ S0˛ !
W

ˇ S0ˇ.
Still, there are such maps, in particular, i˛ and pˇ. Thus, .i˛/�WZ!L

˛ Z˛ takes a
c 2 Z into c˛ and .pˇ/�WLˇ Zˇ ! Z takes

P

cˇˇ into cˇ. We want to prove that
g� takes

P

˛ c˛˛ into
P

˛;ˇ d˛ˇc˛ˇ, which (because of the computation of .i˛/� and
.pˇ/� above) is the same as proving that .pˇ ı g ı i˛/�WZ! Z is the multiplication
by d˛ˇ. In other words, all we need is to prove that a map Sn ! Sn of degree d
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induces a homomorphism Hn.Sn/ ! Hn.Sn/ which is the multiplication by d. Let
us prove this (for d D 1, it is obvious).

Let B D Sn
1 _ � � � _ Sn

d, and let rW Sn ! B be a map whose composition with
each pkWB ! Sn.k D 1; : : : ; d/ has degree 1 (obviously, such a map exists). Let
sWB! Sn map every sphere of the bouquet onto Sn by the identity map. Then sı r is
a map of degree d. Since deg.pkır/ D 1, the homomorphism r�WZ! Z˚� � �˚Z (d
summands) takes a c 2 Z into .c; : : : ; c/. Since deg.s ı ik/ D 1, the homomorphism
s�WZ ˚ � � � ˚ Z ! Z takes .c1; : : : ; cd/ into c1 C � � � C cd. Hence, .s ı r/�.c/ D
cC � � � C c D dc, which is what we needed to prove.

13.4 Cellular Complex

Let X be a CW complex and let Xn D skn X .n D 0; 1; 2; : : : / be its skeletons. Let
fen
˛ j ˛ 2 Ang be the set of all n-dimensional cells of X.

Pre-lemma. The space Xn=Xn�1 is homeomorphic to the bouquet
W

˛2An
Sn
˛; if

characteristic maps f˛ W .Dn; Sn�1/ ! .Xn;Xn�1/ are fixed, then there arises a
canonical homeomorphism between Xn=Xn�1 and

W

˛2An
Sn
˛.

Indeed, the maps f˛ compose a continuous map
`

˛.D
n
˛; S

n�1
˛ /! .Xn;Xn�1/, and

it is obvious [follows from the properties of characteristic maps and Axiom (W)] that
the map .

`

˛ Dn
˛/=.

`

˛ Sn�1
˛ / DW˛ Sn

˛ ! Xn=Xn�1 is a homeomorphism.

Lemma.

Hm.X
n;Xn�1/ Š

8

<

:

free Abelian group generated by
n�dimensional cells of X; if m D n;

0; if m ¤ n:

Proof. Hm.Xn;Xn�1/ D eHm.Xn=Xn�1/ D eHm.
W

˛2An
Sn
˛/:

The group Cn.X/ D Hn.Xn;Xn�1/ is called the groups of cellular chains of X.
The cellular differential or cellular boundary operator @ D @nW Cn.X/! Cn�1.X/ is
defined as the connecting homomorphism

Hn.Xn;Xn�1/
@���! Hn�1.Xn�1;Xn�2/

k k
Cn.X/ Cn�1.X/

from the homology sequence of the triple .Xn;Xn�1;Xn�2/ (see Exercise 7 from
Sect. 12.4).

AN OBVIOUS FACT: @n�1 ı @nW Cn.X/ ! Cn�1.X/ is zero (follows from the
equality @ ı @ D 0 in the singular complex).
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We obtain a complex

: : :
@��! Cn.X/

@��! : : :
@��! C2.X/

@��! C1.X/
@��! C0.X/

@��! 0 : : : ;

which is called the cellular complex of X. If we add the term C�1.X/ D Z and
augmentation @0 D �W C0.X/ D H0.X0/! Z, and then replace the notation C byeC,
we will get a definition of a reduced or augmented cellular complex.

There are two important things concerning cellular complexes. First, it is far
from being as big as the singular complex; for example, for finite CW complexes
the cellular chain groups are finitely generated. Moreover, not only the cellular chain
groups, but also the cellular boundary operators have an explicit description that is
easy to deal with. Second, we will prove that the homology of the cellular complex
is the same as the homology of the singular complex. We will show how these results
can be applied to calculating the homology of many classical CW complexes.

We will begin with the second part of this program.

13.5 Cellular Homology

Theorem. For an arbitrary CW complex X, the homology of the cellular complex
fCn.X/; @g coincides with the singular homology Hn.X/.

Proof The proof consists of three steps.

Step 1. Hn.X/ D Hn.XnC1/. Let m > n. From the exactness of homology
sequence of the pair .XmC1;Xm/,

HnC1.XmC1;Xm/!Hn.Xm/!Hn.XmC1/!Hn.XmC1;Xm/
k
0

k
0

we see that all homomorphisms

Hn.X
nC1/! Hn.X

nC2/! Hn.X
nC3/! : : :

induced by the inclusion maps are isomorphisms. If X is finite dimensional, this
settles our statement. In the general case, consider the map Hn.XnC1/ ! Hn.X/.
Every ˛ 2 Hn.X/ is represented by a finite sum of singular simplices, and every
singular simplex is covered by a finite number of cells. This implies that ˛ is
represented by a cycle contained in some XN , that is, belongs to the image of the map
Hn.XN/ ! Hn.X/ (and we can assume that N > n). Since Hn.XnC1/ ! Hn.XN/ is
an isomorphism, ˛ also belongs to the image of the map Hn.XnC1/! Hn.X/, so the
latter is onto. Now let ˇ 2 Hn.XnC1/ be annihilated by the map Hn.XnC1/! Hn.X/.
Then a cycle representing ˇ is the boundary of some singular chain of X. But, as
before, this chain must be contained in some XN . Hence, ˇ is also annihilated by
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some map Hn.XnC1/ ! Hn.XN/, which is an isomorphism. Thus, ˇ D 0 and our
map Hn.XnC1/! Hn.X/ is one-to-one.

Step 2. Hn.XnC1/ D Hn.XnC1;Xn�2/. Let m < n � 1. From the exactness of the
homology sequence of the triple .XnC1;Xm;Xm�1/,

Hn.Xm;Xm�1/! Hn.Xn;Xm�1/! Hn.Xn;Xm/! Hn�1.Xm;Xm�1/
k
0

k
0

we see that all homomorphisms

Hn.XnC1;Xn�2/ Hn.XnC1;Xn�3/ � � �  Hn.XnC1;X�1/
k

Hn.Xn�1/

are isomorphisms. This proves our statement.

Step 3. Hn.XnC1;Xn�2/ D Ker.@nW Cn.X/! Cn�1.X//
Im.@nC1W CnC1.X/! Cn.X//

: Consider the diagram

where the row is a fragment of the homology sequence of the triple .XnC1;Xn;Xn�2/
and the column is a fragment of the homology sequence of the triple
.Xn;Xn�1;Xn�2/; in particular, both are exact. There are two zeroes in the diagram,
and they show that ˛ is an epimorphism, and ˇ is a monomorphism. From this (and
again the exactness of the sequences) we obtain

Hn.XnC1;Xn�2/ D Hn.Xn;Xn�2/=Ker˛ D Hn.Xn;Xn�2/= Im@�

D ˇ.Hn.Xn;Xn�2//=ˇ.Im @�/ D Imˇ= Im.ˇ ı @�/

D Ker @n= Im@nC1:

This completes step 3, and the combination of the three steps gives the isomorphism
we need.
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13.6 A Closer Look at the Cellular Complex

We already know that for a CW complex X, the group Cn.X/ is isomorphic to a free
Abelian group generated by n-dimensional cells of X. But the isomorphism is not
genuinely canonical: It depends on a choice of characteristic maps of cells, which
is not convenient because usually characteristic maps are not fixed—we know only
that they exist. Actually, what we need to fix for every cell is not a characteristic
map, but an orientation. A characteristic map of an n-dimensional cell establishes
an isomorphism between two groups isomorphic to Z: Hn.Dn; Sn � 1/ D eHn.Sn/

and Hn.Xn�1 [ e;Xn�1/ D eHn..Xn�1 [ e/=Xn�1/ or eHn.Xn=.Xn � e// (which is
the same group). One can say that the orientation of e is a choice of a generator
in eHn..Xn�1 [ e/=Xn�1/ Š Z. Geometrically this indeed is an orientation: Say, if
n D 1, then a choice of orientation is a choice of a direction of an arrow on e. In
other words, characteristic maps f and f ı r always determine opposite orientations.
(Zero-dimensional cells have canonical orientations.)

Thus, chains in Cn.X/ can be presented as finite integral linear combinations of
oriented n-dimensional cells,

P

kiei. An orientation change for ei results in a sign
change for ki.

There also exists a good description of the boundary homomorphism
@nC1W CnC1.X/! Cn.X/. Let e and f be cells of X of dimensions nC 1 and n. In the
homology sequence of the triple .Xn [ e;Xn;Xn � f /, there is a homomorphism
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Z Š HnC1.Xn [ e;Xn/
@���!Hn.X

n;Xn � f / Š Z:

The choice of the isomorphisms with Z corresponds to the orientations of the cells
e; f . Every homomorphism Z! Z is a multiplication by some integer. This integer
is called the incidence number of the oriented cells e and f and is denoted as Œe W f �
(certainly, if e and f are disjoint, then Œe W f � D 0). The orientation change for any of
the cells e and f results in the sign change for Œe W f �.
Theorem. Let e be an oriented .nC1/-dimensional cell of X regarded as an element
of CnC1.X/. Then

@nC1.e/ D
X

f

Œe W f �f ;

where the sum is taken over all n-dimensional cells of X with fixed orientations.
[This sum is always finite: The intersection e\ f may be nonempty for only finitely
many n-dimensional cells f —this is Axiom (C).]

EXERCISE 7. Prove this. Recommendation: It may be useful to consider the
commutative diagram

HnC1.Xn [ e;Xn/
@���! Hn.Xn;Xn � f /

?

?

?

?

y

x

?

?

?

?

HnC1.XnC1;Xn/
@nC1��! Hn.Xn;Xn�1/;

where the vertical maps are induced by the inclusion maps between pairs.

(A clarification is needed and possible in the case when n D 0. An oriented
one-dimensional cell e is a path joining two zero-dimensional cells, f0 and f1. Then
@e D f1 � f0; in particular, if f0 D f1, then @e D 0.)

The description of the boundary map in the preceding theorem motivates a better
understanding of the incidence numbers. They can be described as degrees of maps
Sn ! Sn. Namely, if 'W Sn ! Xn is an attaching map for e (determined by a certain
characteristic map for e) and  WXn=.Xn � f / D f=f ! Sn is a homeomorphism
determined by a certain characteristic map for F, then Œe W f � is nothing but the
degree of the map

Sn '��!Xn proj:��!Xn=.Xn � f /
 ��! Sn:

The description of the degree of a map Sn ! Sn given in Sect. 10.3 may be used as
a geometric description of incidence numbers. Namely, take a regular value x 2 f
of the attaching map 'W Sn ! Xn [rather of the map 'W'�1.f / ! f ] and compute
the “algebraic number” of inverse images of x (that is, the number of inverse images
where ' preserves the orientation minus the number of inverse images where '
reverses the orientation); this is Œe W f �.
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Having this in mind, we can give our theorem an aggressively tautological form:
The boundary of a cell is the sum of cells which appear in the boundary of this cell
with coefficients equal to the multiplicity of their appearance in this boundary.

13.7 First Applications

Theorem 1. If the number of n-dimensional cells of a CW complex X is N, then
the group Hn.X/ is generated by at most N generators; in particular, the nth Betti
number Bn.X/ does not exceed N. For example, if X does not have n-dimensional
cells at all, then Hn.X/ D 0; in particular, if X is finite dimensional, then Hn.X/ D 0
for all n > dim X. (Compare with homotopy groups!)

It follows directly from previous results.

Algebraic Lemma (Euler–Poincaré). Let

: : :
@nC2��!CnC1

@nC1��!Cn
@n��!Cn�1

@n�1��! : : :

be a complex with the “total group”
L

n Cn finitely generated. Let cn be the rank of
the group Cn and hn be the rank of the homology group Hn. Then

X

n

.�1/ncn D
X

n

.�1/nhn:

EXERCISE 8. Prove this.

Corollary. Let X be a finite CW complex, and let cn be the number of n-dimensional
cells of X. Then

X

n

.�1/ncn D
X

n

.�1/nBn.X/:

Thus, the number
P

n.�1/ncn does not depend on the CW structure; it is determined
by the topology (actually, be the homotopy type) of X. This number is called the
Euler characteristic of X and is traditionally denoted by �.X/.

Historical Remark. This number is attributed to Euler because of the Euler polyhe-
dron theorem, which states that for every convex polyhedron in space, the numbers
V;E; and F of vertices, edges, and faces are connected by the relation V�ECF D 2.
Certainly, this is a computation of the Euler characteristic of the surface of the
polyhedron, that is, of the sphere. It is worth mentioning that Euler was not the
first to prove this theorem: It was proved, a century before Euler, by Descartes.

Now let us revisit the excision theorem and the Mayer–Vietoris sequence
(Exercises 13 and 14 of Lecture 12).
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Theorem 2 (Excision Theorem). Let X be a CW complex and let A;B be CW
subcomplexes of X such that A [ B D X. Then (for every n)

Hn.X;A/ D Hn.B;A \ B/:

Indeed, X=A and B=.A\ B/ are the same as CW complexes.

Theorem 3 (Mayer–Vietoris Sequence). Let X be a CW complex and let A;B be
CW subcomplexes of X such that A [ B D X. Then there exists an exact sequence

� � � ! Hn.A \ B/! Hn.A/˚ Hn.B/! Hn.X/! Hn�1.A \ B/! : : :

(see the description of maps in Exercise 14 of Lecture 12).

Proof. Let Y D .A � 0/ [ ..A \ B/ � I/ [ .B � 1/ � X � I and let C � Y be
.A\B/� I. Then Y=C and†.A\B/ (actually with the vertices merged; this slightly
affects the case of dimension 0) are the same CW complexes (see schematic picture
in Fig. 63).

Notice, in addition, that C D A
`

B and Y � X. The last homotopy equivalence
is established by the obvious map f WY ! X (the restriction of the projection
X � I ! X) and a map gWX ! Y which is defined in the following way. The
homotopy htWA \ B ! Y; ht.x/ D .x; 1 � t/ is extended, by Borsuk’s theorem, to
a homotopy HtWA ! Y of the map A ! Y; x ! .x; 1/. Then maps H1WA ! Y
and B ! Y; x 7! .x; 0/ agree on A \ B and hence compose a map X ! Y;
this is g; the relations f ı g � id; g ı f � id are obvious. Thus, Hn.Y/ D
Hn.X/;Hn.C/ D Hn.A/ ˚ Hn.B/; and Hn.Y;C/ D Hn�1.A \ B/ (with small
corrections in dimension 0), and the homology sequence of the pair .Y;C/ is the
Mayer–Vietoris sequence of the triad .XIA;B/.

Fig. 63 To the proof of the Mayer–Vietoris theorem
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13.8 Some Calculations

A: Spheres

We already know the homology of spheres, but let us calculate them again for
practice in the technique based on cellular complexes. The sphere Sn has a CW
structure with two cells, of dimensions 0 and n. Thus (if n > 0), C0.Sn/ D Cn.Sn/ D
Z, and all other cellular chain groups are trivial. The differential @ has to be 0 (if
n > 1, then this follows from the “dimension argumentations”; for n D 1, we use
the remark after Exercise 7); hence,

Hi.S
n/ D Ci.S

n/ D
�

Z; if i D 0; n;
0; if i ¤ 0; n:

EXERCISE 9. Prove this using another CW decomposition of Sn described
in Sect. 5.4.

B: Projective Spaces

The cases of complex, quaternionic, and Cayley projective spaces are not more
difficult than the cases of spheres: For the CW structures described in Sect. 5.4, there
are no cells of adjacent dimensions, the differential @ is trivial, and the homology
groups coincide with the cellular chain groups. Thus,

Hi.CPn/ D
�

Z; if i D 0; 2; 4; : : : ; Œ2n; if n is finite�;
0 for all other iI

Hi.HPn/ D
�

Z; if i D 0; 4; 8; : : : Œ; 4n; if n is finite�;
0 for all other iI

Hi.CaP2/ D
�

Z; if i D 0; 8; 16;
0 for all other i:

The real case is more complicated, since RPn has cells e0; e1; e2; : : : Œ; en if n is
finite].

Lemma. ŒeiC1 W ei� D
� ˙2; if n is odd;
0; if n is even:

Proof. The attaching map f W Si ! RPi is the standard twofold covering. The inverse
image of (actually, any) point of RPi consists of two points, and the restrictions
of f to neighborhoods of these points are related by the antipodal map Si ! Si.
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This antipodal map preserves the orientation if i is odd and reverses the orientation
if i is even. Thus, the contributions of these two points in ŒeiC1; ei� have the same
sign if i is odd and have different signs if i is even. This implies the formula of the
lemma.

Thus, the cellular complex of RPn is as shown below.

Since Im.
0��! / D 0; Ker.

0��! / D Z; Im.
2��! / D 2Z; and Ker.

2��! /

D 0, the factorization yields

Hi.RPn/ D
8

<

:

Z; if i D 0 or i D n and n is odd;
Z2; if i is odd and i < n;
0 in all other cases:

EXERCISE 10. Find the Euler characteristics of all finite-dimensional projective
spaces.

C: Grassmann Manifolds

Again, in the complex and quaternion cases, there are no cells of adjacent dimen-
sions, so the ith homology group is a free Abelian group of rank (= Betti number)
equal to the number of i-dimensional cells. The Betti numbers are as follows.
For i odd, Bi.G.n; k// D 0; for i even, this is the number of Young diagrams

of
i

2
cells contained in the k � .n � k/ rectangle. For quaternionic Grassmann

manifolds everything is doubled: Bi.HG.n; k// D Bi=2.CG.n; k//; in particular,
Bi.HG.n; k// D 0 if i is not divisible by 4.

In the real case the situation is more complicated.

EXERCISE 11. Let� and�0 be two Young diagrams with i and i�1 cells contained
in the k�.n�k/ rectangle. Prove that if�0 6� �, then Œe.�/ W e.�0/� D 0. If�0 � �
and the difference� ��0 consists of one cell with the coordinates .s; t/, then

Œe.�/ W e.�0/� D
� ˙2; if sC t is even;
0; if sC t iodd:

Use this for computation of the homology of G.n; k/ with reasonably small n; k.
Also, compute Hk.n�k/.G.n; k//.

EXERCISE 12. Find incidence numbers for the case of the manifold GC.n; k/. In
particular, find Hk.n�k/.GC.n; k//.
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D: Flag Manifolds

Again, the complex and quaternionic cases are relatively easy. The reader can try to
investigate the real case.

E: Classical Surfaces

Classical surfaces with holes are homotopy equivalent to bouquets of circles, so
we will consider classical surfaces without holes. The cellular complex for such a
surface has the form

Z
@2��! Z˚ � � � ˚ Z

@1��! Z

C2 C1 C0;

where the number of the summands Z in C1 is 2g; 2gC 1; or 2gC 2 if our surface
is a sphere with g handles, a projective plane with g handles, or a Klein bottle
with g handles, respectively. The differential @1 is zero (every one-dimensional
cell has equal endpoints). To find @2, we consider the construction of the classical
surface from a polygon (Sect. 1.10). Each of the 2g one-dimensional cells arising
from the handles is obtained by attaching differently oriented sides of the polygon,
so the incidence numbers of the two-dimensional cell with each of these 1-cells is 0.
On the other hand, the other one-dimensional cells (if there are any) are obtained by
attaching coherently oriented sides, and the incidence number with these cells is 2.
Thus,

@2.1/ D
8

<

:

.0; : : : ; 0/ for a sphere with g handles;

.0; : : : ; 0; 2/ for a projective plane with g handles;

.0; : : : ; 0; 2; 2/ for the Klein bottle with g handles:

This leads to the results for homology:

H0.X/ D Z always;

H1.X/ D

8

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
:

Z˚ � � � ˚ Z
„ ƒ‚ …

2g

; if X is a sphere with g handles;

Z˚ � � � ˚ Z
„ ƒ‚ …

2g

˚Z2; if X is a projective plane
with g handles;

Z˚ � � � ˚ Z
„ ƒ‚ …

2gC1
˚Z2; if X is a Klein bottle

with g handles;

H2.X/ D
�

Z; if X is a sphere with handles;
0 in all other cases

EXERCISE 13. Find the Euler characteristics of classical surfaces.
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13.9 Chain Maps of Cellular Complexes

Let hWX ! Y be a cellular map of a CW complex into a CW complex. Then
h.Xn/ � Yn for all n, and hence h induces a map Hn.Xn;Xn�1/ ! Hn.Yn;Yn�1/,
that is, Cn.X/ ! Cn.Y/, which we denote as h# or h#n. Such maps induce a
homomorphism between cellular complexes of X and Y, and the induced homology
map is just h�WHn.X/! Hn.Y/. To prove this, we need to consider every step of the
proof of the theorem in Sect. 13.5, and to consider maps between the diagrams
in these steps for X into similar diagram for Y. The commutativity of (three-
dimensional) diagrams arising will imply our statement.

We can add that if c D P

i kiei 2 Cn.X/, where ei are n-dimensional cells of X,
then h#.c/ D P

i ki

P

j dh.ei; fj/fj
�

, where the fj are n-dimensional cells of Y and
the number dh.e; f / is defined with the help of characteristic maps ' and  of e and
f as the degree of the map

Sn D Dn=Sn�1 '��!Xn=Xn�1 h��!Yn=Yn�1
proj:��!Yn=.Yn � f /

 �1

��!Dn=Sn�1 D Sn:

Using the description of the degree of a map Sn ! Sn in Sect. 10.3, we can say that
dh.e; f / is the algebraic number of inverse images of a regular value x 2 f of the
map hW e \ h�1.f /! f .

Certainly, this construction works only for cellular maps, but it is not a big deal,
since every continuous map is homotopic to a cellular map. (Not a big deal? We
will cast a doubt on this statement in Lecture 16.) Thus, one can say that the cellular
theory can be used as a substitute for the singular theory. But without the singular
theory (which is topologically invariant from the very beginning) we would have had
to prove that homeomorphic CW complexes have isomorphic homology groups.

13.10 Classical Complex

A cellular complex appears especially attractive when a CW structure is actually a
triangulation (see Sect. 5.8). We consider a triangulated space X with an additional
structure (a substitute for fixing characteristic maps): We suppose that the set of
vertices of X is ordered, or, at least, vertices of every simplex are ordered in such a
way that the ordering of vertices of a face of a simplex is always compatible with
the ordering of vertices of this simplex. We refer to such triangulations as ordered
triangulations. (For example, the barycentric subdivision of any triangulation is
naturally ordered: Vertices of simplices of a barycentric subdivisions are centers of
faces of simplices of the given triangulation and these are ordered by the dimensions
of the faces.)
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For a simplex with the vertices ordered, there is a canonical affine homeo-
morphism of the standard simplex onto this simplex; this homeomorphism can
be regarded as a singular simplex of an ordered triangulated space X. We obtain
a set of special singular simplices of X, and it is clear that faces of “special
singular simplices” are also special. By this reason, linear combinations of special
singular simplices form a subcomplex of the singular complex, and it is also clear
that this subcomplex is precisely the cellular complex of the triangulation.

Historically, the complex described above is the first chain complex of a
(orderly triangulated) topological space ever considered. It can be described very
directly: Chains are integral linear combinations of simplices (remember the
ordering!), and the boundary is given by the very familiar formula @


P

i kisi
� D

P

i ki

P

j.�1/j
jsi
�

, where the si are simplices of our triangulation and the 
jsi

are their faces. Obviously, the inclusion of the classical complex into the singular
complex induces the isomorphism of the homology groups [to show this, the only
thing we need to add to what we already know is that n-dimensional simplices
regarded as singular simplices are relative cycles of .Xn;Xn�1/, and their homology
classes form the usual basis in Cn.X/ D Hn.Xn;Xn�1/].

For the classical chain groups, the notation Cclass
n .X/ is often used.

Historical Remark. The classical definition of homology created the necessity of
proving a topological invariance theorem: Homeomorphic triangulated spaces have
isomorphic homology groups. The initial proof, due to J. Alexander, was long and
complicated (hundreds of pages in old topology textbooks). There was an attempt
to deduce the topological invariance of classical homology from the so-called
Hauptvermutung (German for main conjecture) of combinatorial topology: Any
two triangulations of a topological space have simplicially equivalent subdivisions.
But the Hauptvermutung turns out to be false: The first counterexample was
found by J. Milnor in 1961, and many other counterexamples were constructed
later, in particular for simply connected smooth manifolds. The whole problem
of topological invariance disappeared mysteriously when singular homology was
defined. The first definition of singular homology was given by O. Veblen in the late
1920s but became broadly known some 10 years later.

EXERCISE 14. Using the classical complex, find the Betti numbers of the skeletons
of the standard simplex. (Make your computations as explicit as possible.)

EXERCISE 15. (An algebraic lemma) Let fCn; @ng; fC0
n; @

0
ng be two positive Cn D

C0
n D 0 (for n < 0) complexes of free Abelian groups, and let f be a homomorphism

of the first complex into the second one. Prove that if f�n is an isomorphism for all,
then f is a homotopy equivalence. Deduce that the classical complex is homotopy
equivalent to the singular complex.
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EXERCISE 16. Prove that the cellular complex of a CW complex is homotopy
equivalent to its singular complex. (There are several different ways of proving that,
so we refrain from giving any hint.)

13.11 The Singular Complex as a CW Complex

We finish this lecture with a construction which may seem amusing to some readers
but actually is quite useful (we will use it in the beginning of the next lecture).
Let X be a topological space, and let Singn.X/ be the set of all n-dimensional
singular simplices of X. Consider a (monstrous, we agree) topological space

Y D
1̀

nD0
`

˛2Singn.X/
�n
˛ (where�n

˛ is a copy of the standard simplex�n) and make,

for every n and every ˛, the identification 
i�
n
˛ D �n�1


i˛
(both are copies of

�n�1 contained in Y). We denote the resulting space as Sing.X/. This space has
a natural CW structure (images of Int�n

˛ � Y are cells of Sing.X/ and the maps
�n D��!�n

˛

���! Y
proj;��!Sing.X/ can be taken for characteristic maps. [Notice

that although the cells of Sing.X/ look like simplices, its CW structure is not a
triangulation: The intersection of closed simplices is not a face.] There is also a
natural map Sing.X/! X, which induces the identity homomorphism in homology
[just take ˛W�n ! X on �n

˛ � Sing.X/].
It is immediately obvious that the cellular complex of Sing.X/ is the same as the

singular complex of X; in particular, Hn.Sing.X// D Hn.X/ for all X. Actually, the
spaces Sing.X/ and X are weakly homotopy equivalent (and homotopy equivalent
if X is a CW complex). We will see that later.

Let us add that the Sing construction is natural in the sense that a continuous map
X ! Y gives rise to a cellular map Sing.X/! Sing.Y/ with the same induced map
in homology. Also, if A � X, then Sing.A/ � Sing.X/ and there arises a continuous
map

.Sing.X/;Sing.A//! .X;A/

which induces isomorphisms

Hn.Sing.X/;Sing.A//! Hn.X;A/:
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Lecture 14 Homology and Homotopy Groups

The connection between homology and homotopy groups is seen always from the
preliminary description of homology in the beginning of Lecture 12: Spheroids
are cycles and homotopical spheroids are homological cycles. This suggests that
there must be a natural map from homotopy groups into homology groups. This
map, called the Hurewicz homomorphism, is the main subject of this lecture. We
will see that the connection between homotopy and homology groups is deeper than
it may seem at the beginning, but we also will show examples which should serve
as a warning to a reader who expects too much of this connection.

14.1 Homology and Weak Homotopy Equivalences

Theorem. If f WX ! Y is a weak homotopy equivalence, then f�WHn.X/ ! Hn.Y/
is an isomorphism for all n.

Proof. Since both weak homotopy equivalences and homology homomorphisms are
homotopy equivalent, we can replace the map f by the inclusion map X ! Cyl.f /
of X into the mapping cylinder of f (see Sects. 2.3 and 3.3). Because of this, we can
assume that the given map f is an inclusion, so we have a pair .Y;X/. Also, we have
a pair .Sing.Y/; .Sing.X// and a continuous map hW .Sing.Y/;Sing.X// ! .Y;X/
which induces isomorphisms

h�WHn.Sing.Y/;Sing.X//! Hn.Y;X/

(see Sect. 13.11).
On the other hand, since f is a weak homotopy equivalence, the map

f�W�.Sing.Y/;X/ ! �.Sing.Y/;Y/ is a bijection, which means that the map
hWSing.Y/ ! Y is homotopic to a map whose image is contained in X. Hence, the
map h�WHn.Sing.Y/;Sing.X//! Hn.Y;X/ is zero, which shows that Hn.Y;X/ D 0
for all n. By exactness of the homology sequence of the pair .Y;X/, this shows that
all the homomorphisms f�WHn.X/! Hn.Y/ are isomorphisms.

Recall that according to another result from Sect. 11.4, a map is a weak homotopy
equivalence if and only if it induces an isomorphism in homotopy groups. Because
of this, our theorem assumes the following memorable form.

Corollary. If a continuous map induces an isomorphism between homotopy groups,
then it also induces an isomorphism between homology groups.

This will be further developed in the last section of this lecture.
To finish this section, we will formulate some exercises which will show that

some statements looking similar to the preceding theorem and corollary are actually
false.
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EXERCISE 1. Prove that the spaces S2 and S3 � CP1 have isomorphic homotopy
groups but nonisomorphic homology groups. Same for the spaces Sm�RPn and Sn�
RPm with m ¤ n;m ¤ 1; n ¤ 1. (Compare with Exercises 5 and 6 in Lecture 11.)

EXERCISE 2. Prove that the spaces S1 � S1 and S1 _ S1 _ S2 have isomorphic
homology groups but nonisomorphic homotopy groups.

EXERCISE 3. Prove that the Hopf map S3 ! S2 induces a trivial homomorphism
in reduced homology groups but a nontrivial homomorphism in homotopy groups.

EXERCISE 4. Prove that the projection map S1 � S1 ! .S1 � S1/=.S1 _ S1/ D S2

induces a trivial homomorphism in homotopy groups but a nontrivial homomor-
phism in reduced homology groups.

14.2 The Hurewicz Homomorphism

Let X be a topological space with a base point X0. Let sn be the canonical generator
of the group Hn.Sn/ D Z; n D 1; 2; : : : . For a ' 2 �n.X; x0/ put

h.'/ D f�.sn/ 2 Hn.X/;

where f W Sn ! X is a spheroid of the class ' [obviously, h.'/ does not depend on
the choice of the spheroid f ]. The function ' 7! h.'/ is a homomorphism

hW�n.X; x0/! Hn.X/:

Indeed, let the spheroid f be the sum of spheroids f 0; f 00W Sn ! X, that is, f is the
composition

Sn 	�! Sn _ Sn f 0_f 00

���! X

(see Fig. 37). Then 	�.s/ D s0 C s00 where s0; s00 2 Hn.Sn _ Sn/ are generators
corresponding to the two spheres of the bouquet, and f�.s/ D .f 0 _ f 00/�.s0 C s00/ D
f 0�.s/C f 00� .s/.

This homomorphism is called the Hurewicz homomorphism; it is natural with
respect to continuous maps (taking a base point into a base point).

EXERCISE 5. Prove that the diagram

is commutative for any path u joining x0 with x1.
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Theorem (Hurewicz). Let �0.X; x0/ D � � � D �n�1.X; x0/ D 0, where n � 2. Then
H1.X/ D � � � D Hn�1.X; x0/ D 0 and hW�n.X; x0/! Hn.X; x0/ is an isomorphism.

Proof. By the theorem of Sect. 11.6, there exists a CW complex weakly homotopy
equivalent to X. Since a weak homotopy equivalence induces isomorphisms both in
homotopy groups and in homology groups (the first by Sect. 13.11, the second by
Sect. 14.1), we can assume that X itself is a CW complex. Then Sect. 5.9 allows us
to make an additional assumption that X has one vertex and no cells of dimensions
1; : : : ; n � 1. This already shows that H1.X/ D � � � D Hn�1.X/ D 0 (Theorem 1 in
Sect. 13.7), and Hn.X/ D Cn.X/= Im@n�1 is not different from �n.X/ according to
the theorem in Sect. 11.3.

Corollary (The Inverse Hurewicz Theorem). If X is simply connected and
H2.X/ D � � � D Hn�1.X/ D 0 .n � 2/, then �2.X/ D � � � D �n�1.X/ D 0 and
hW�n.X/! Hn.X/ is an isomorphism.

Together these theorems mean that the first nontrivial homotopy and homology
groups of a simply connected space occur in the same dimension and are isomor-
phic.

EXERCISE 6. Prove that a simply connected CW complex with the same homology
groups as Sn is homotopy equivalent to Sn. [Hint: Apply Whitehead’s theorem to a
spheroid Sn ! X representing a generator of the group �n.X/ Š Z.] Do the same
for the bouquet of spheres of the same dimensions.

Remark. Thus, we see that the triviality of the homotopy groups, as well as the
triviality of the homology groups, implies the homotopy triviality (contractibility)
of a simply connected CW complex. At the same time, we have the examples which
show that neither the triviality of induced homotopy groups homomorphisms nor
the triviality of induced homology homomorphisms secures homotopy triviality of
a continuous map. It turns out that even these two trivialities together do not imply
the homotopy triviality of a continuous map.

EXERCISE 7. Prove that the composition

S1 � S1 � S1
proj:��! .S1 � S1 � S1/= sk2.S1 � S1 � S1/ D S3

Hopf��! S2

induces a trivial map of both homotopy and homology groups but is not homotopic
to a constant map.

EXERCISE 8. Do the same for the map

S2n�2 � S3
proj:��! .S2n�2 � S3/=.S2n�2 _ S3/ D S2nC1 Hopf��!CPn:
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14.3 The Case n D 1

Theorem (Poincaré). For an arbitrary path connected space X, the Hurewicz
homomorphism hW�1.X/ ! H1.X/ is an epimorphism whose kernel is the com-
mutator subgroup Œ�1.X/; �1.X/� of the group �1.X/. Thus,

H1.X/ Š �1.X/=Œ�1.X/; �1.X/�:

(Recall that the commutator subgroup ŒG;G� of a group G is its subgroup
generated by commutators Œg1; g2� D g1g2g�1

1 g�1
2 for all g1; g2 2 G. The com-

mutator subgroup is always normal. The group G=ŒG;G� is obtained from g
by Abelianization, that is, by imposing additional relations: Any two generators
commute with each other.)

Proof of Theorem is a copy of the proof of the theorem in Sect. 14.2: We can assume
that X is a CW complex with only one vertex, and for such spaces, it is sufficient to
compare the procedures of computing the groups �1 and H1; see Sects. 7.6 and 13.5.

EXERCISE 9. Show that a loop f W S1 ! X determines an element of the kernel of
the map hW�1.X/! H1.X/ (“homologous to zero”) if and only if it can be extended
to the map into X of the disk (with the boundary S1) with handles. Moreover, the
minimal number of these handles is equal to the minimal number of commutators
in �1.X/ whose product is Œf �.

EXERCISE 10. The space XAb is called an Abelianization, or Quillenization, of a
path connected space X if the fundamental group of XAb is Abelian and there exists a
continuous map X ! XAb inducing an isomorphism Hn.X/! Hn.XAb/ for every n.
Prove that X possesses an Abelianization if and only if

Œ�1.X/; �1.X/� D Œ�1.X/; Œ�1.X/; �1.X/� �;

that is, if every element of Œ�1.X/; �1.X/� can be presented as a product of
commutators of elements of �1.X/ with elements of Œ�1.X/; �1.X/�.

Remark. Our definition of an Abelianization is a simplified version of a more
common definition in which the space XAb is assumed simple (see Sect. 8.2), or
even an H-space (see Exercise 2 in Sect. 8.2) or even a loop space (see Lecture 4).
This enhanced definition of an Abelianization plays an important technical role in
one of the versions of constructing an algebraic K-functor. The problem of the
existence of an Abelianization in this sense is much more complicated, and there
are no general theorems about it. But there are several remarkable examples of
the Abelianization, two of which we will mention. The first was discovered in
1971 by M. Barratt, D. Kahn, and S. Priddy: The Abelianization of the space
X D K.S1; 1/, where S1 D [nSn is the group of finite permutations of the set
Z>0, is XAb D .�1S1/0 D [n.�

nSn/0 (the subscript 0 indicates that we consider
only one component of the set). Another example belongs to G. Segal (1973) and
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states that if X D K.B.1/; 1/ where B.1/ is the infinite braid group and hence
X is the set of (unordered) countable subsets of the plane consisting, for some N
(depending on the subset), of points .n C 1; 0/; .n C 2; 0/; : : : and n more points
different from each other and from the points listed above, then XAb is�2S3. In both
cases, the space X has a complicated fundamental group and trivial higher homotopy
groups, and the space XAb has a simple fundamental group (Z2 in the first case and Z

in the second case) and complicated, so far unknown, homotopy groups. For further
details, see Barratt and Priddy [20], Segal [74], and Fuchs [37].

EXERCISE 11. Prove that any two-dimensional homology class of an arbitrary
space X can be represented by a sphere with handles; that is, for every ˛ 2 H2.X/,
there exist a sphere with handles S and a continuous map f W S ! X such that the
map f�WH2.S/! H2.X/ takes the canonical generator of H2.S/ D Z into ˛.

14.4 The Relative Hurewicz Theorem

The relative Hurewicz homomorphism hW�n.X;A/! Hn.X;A/ is defined similarly
to the absolute one. If f W .Dn; Sn�1/! .X;A/ is a relative spheroid representing the
class ' 2 �n.X;A/, then h.'/ is the image of the canonical generator if the group
Hn.Dn; Sn�1/ D Z with respect to the homomorphism f�WHn.Dn; Sn�1/! Hn.X;A/.

Theorem. Let .X;A/ be a topological pair such that the space X is path connected
and A is simply connected. Let n � 3.

(1) Suppose that �2.X;A/ D � � � D �n�1.X;A/ D 0. Then H1.X;A/ D H2.X;A/ D
� � � D Hn�1.X;A/ D 0 and hW�n.X;A/! Hn.X;A/ is an isomorphism.

(2) Suppose that H2.X;A/ D � � � D Hn�1.X;A/ D 0. Then �2.X;A/ D � � � D
�n�1.X;A/ D 0 and hW�n.X;A/! Hn.X;A/ is an isomorphism.

Proof The proof can be obtained from the proof of the theorem in Sect. 14.2 by
modifications characteristic for a transition from the absolute case to a relative case.

We begin by constructing a cellular approximation of the pair .X;A/. For this
purpose, we first find a cellular approximation .B; g/ of A (see Sect. 11.6). Then we
attach additional cells to B and successively expand the map iıgWB! X (where i is
the inclusion map of A into X) to the new cells in such a way that B is expanded to
a CW complex Y and i ı g is expanded to a weak homotopy equivalence f WY ! X
(this is a replica of the construction in the proof of the theorem in Sect. 11.6). Since
f jB D g, the maps f and g compose a map .Y;B/ ! .X;A/. We already know that
f and g induce isomorphisms in both homotopy and homology groups, and the five-
lemma implies that the map between the pairs induces isomorphisms for relative
homotopy and homology groups. After this, we can assume that the pair .X;A/ in
the theorem is actually a CW pair.

According to Exercise 22 in Sect. 5.9, there exists a CW pair .X0;A0/ homotopy
equivalent to .X;A/ and such that A0 contains all cells of X0 of dimension less than
n. We can assume that the pair .X;A/ itself has these properties. Then the relative
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version of the theorem in Sect. 11.3 (see Exercise 2, or, even better, Exercise 4 in
Sect. 11.3) describes the group �n.X;A/, and this description is not different from
the description of Hn.X;A/.

EXERCISE 12. If A is not simply connected, then part (1) of the theorem remains
true with the following modification: Hn.X;A/ is isomorphic to �n.X;A/ factorized
over the natural action of �1.A/.

14.5 Whitehead’s Theorem

(Not to be confused with a different theorem of the same Whitehead, in Sect. 11.5.)

Theorem. Let X and Y be simply connected spaces, and let f WX ! Y be a
continuous map such that f�W�2.X/! �2.Y/ is an epimorphism.

(1) If the homomorphism f�W�m.X/! �m.Y/ is an isomorphism for m < n and an
epimorphism for m D n, then the same is true for f�WHm.X/! Hm.Y/.

(2) The same with � and H swapped.

Proof. We may assume that f is an embedding, so .Y;X/ is a topological pair. The
exactness of homotopy and homology sequences of this pair yields a translation of
conditions and claims of the theorem into the language of relative homotopy and
homology groups. Namely, the condition “f�W�2.X/ ! �2.Y/ is an epimorphism”
means precisely that �2.Y;X/ D 0; the condition “f�W�m.X/ ! �m.Y/ is an
isomorphism for m < n and an epimorphism for m D n” means that �m.Y;X/ D 0

for m � n; the same for homology groups. Thus, the theorem is equivalent to the
relative Hurewicz theorem in Sect. 14.4.

Corollary. If a continuous map f WX ! Y between simply connected topological
spaces induces an epimorphism f�W�2.X/! �2.Y/ and isomorphisms f�WHm.X/!
Hm.Y/ for all m, then f is a weak homotopy equivalence (a homotopy equivalence,
if X and Y are CW complexes).

Lecture 15 Homology with Coefficients and Cohomology

One can apply to the singular or cellular complex of a topological space the
standard algebraic operations � ˝ G and Hom.�;G/. In this way, we obtain new
complexes which also have homologies; these homologies are called homology and
cohomology of the space with coefficients (values) in G. Certainly, the transition to
these homology and cohomology may be regarded as a purely algebraic operation,
but the experience shows that a too frankly algebraic presentation of this subject
may scare a geometrically oriented reader off. To avoid hurting the feelings of such
a reader, we will refer to tensor products, Homs, and other such things only when it
is absolutely necessary. Still, we will have numerous such necessities.
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15.1 Definitions

Let G be an Abelian group. A singular n-dimensional chain of a space X with
coefficients in G is a formal linear combination of the form

P

i gifi where gi 2 G and
fiW�n ! X are singular simplices. The group of n-dimensional singular chains of X
with coefficients in G is denoted as Cn.XIG/; obviously, Cn.XIG/ D Cn.X/ ˝ G.
Our previous group of chains, Cn.X/, is, in this notation, Cn.XIZ/. A singular n-
dimensional cochain of X with coefficients (values) in G is defined as a function on
the set of all n-dimensional singular simplices of X with values in G (no conditions
like continuity are imposed). The group of n-dimensional cochains of X with
coefficients in G is denoted as Cn.XIG/; obviously, Cn.XIG/ D Hom.Cn.X/;G/.
The value of a cochain c on a chain a is denoted as hc; ai; thus,

˝

c;
P

i gifi
˛ D

P

i c.fi/gi. A generalization: if a bilinear multiplication (pairing) G1 � G2 ! G3

is given, then for c 2 Cn.XIG1/ and a 2 Cn.XIG2/ there arises the “value”
hc; ai 2 G3.

Boundary and coboundary operators

@ D @nW Cn.XIG/! Cn�1.XIG/;
ı D ınW Cn.XIG/! CnC1.XIG/

are defined by the formulas

@
X

i

gifi D
X

i

gi

n
X

jD0
.�1/j
jfi; .ıc/.f / D

n
X

jD0
.�1/jc.
jf /:

Obviously, for every c 2 Cn.XIG/ and a 2 CnC1.XIG/,

hc; @ai D hıc; ai:

A simple computation shows that @@ D 0 and ıı D 0 (the second follows from the
first and the formula for h�;�i above), and we set

Hn.XIG/ D KerŒ@nWCn.XIG/! Cn�1.XIG/�
ImŒ@nC1WCnC1.XIG/! Cn.XIG/� ;

Hn.XIG/ D KerŒınWCn.XIG/! CnC1.XIG/�
ImŒın�1WCn�1.XIG/! Cn.XIG/� :

The related terminology is homology, cohomology, cycles, cocycles, boundaries.
coboundaries, homological cycles, cohomological cocycles.

Chain and cochain complexes may be augmented by maps

�WC0.XIG/! G; ��WG! C0.XIG/
�
P

i gifi DPi gi and Œ��.g/�.f / D g:
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The reduced homology and cohomology, eHn.XIG/; eHn.XIG/, are the same as
unreduced ones with obvious exceptions: H0.XIG/ D eH0.XIG/ ˚G; H0.XIG/ D
eH0.XIG/˚ G, if X is nonempty, and eH�1.XIG/ D G D eH�1.XIG/ if X is empty.

15.2 Transfer of the Known Results

All major results of Lectures 12 and 13 and some results of Lecture 14 can be
transferred to the new context without serious changes, either in statements or in
proofs (for the proofs, we have an option to deduce new results from the old results
using simple algebraic means; we will not do this, at least now).

A continuous map hWX ! Y induces homology and cohomology homomor-
phisms, the latter of which acts in the “opposite direction”:

h�WHn.XIG/! Hn.YIG/; h�WHn.YIG/! Hn.XIG/

[the cochain map h#WCn.Y;G/ ! Cn.XIG/ is defined by the formula Œh#.c/�.f / D
c.h ı f /, where f is a singular simplex of X].

Homology with coefficients and cohomology are homotopy invariant: If g � h,
then g� D h� and g� D h�; in particular, homology with coefficients and
cohomology of homotopy equivalent spaces are the same.

For a disjoint union X D X1 t � � � t XN ,

Hn.XIG/ D
M

i
Hn.XiIG/; Hn.XIG/ D

M

i
Hn.XIG/:

For infinite disjoint unions, a difference appears between homology and cohomol-
ogy: Hn.XIG/ is the direct sum of the groups Hn.XiIG/, while Hn.XIG/ is the direct
product of the groups Hn.XiIG/.

For the one-point space pt,

H0.ptIG/ D G D H0.ptIG/;
Hn.ptIG/ D 0 D Hn.ptIG/ for n ¤ 0;
eHn.ptIG/ D 0 D eHn.ptIG/ for all n:

Relative homology with coefficients is defined precisely as usual (integral)
relative homology, while in the definition of relative cohomology there arises a
small (and expectable) new feature: The group Cn.X;AIG/ is a subgroup, not a
quotient group, of Cn.XIG/; it consists of cochains from Cn.XIG/ which have zero
restriction to Cn.A/ � Cn.X/ (or, equivalently, assume zero value at every singular
simplex in A).

The homology sequence of a pair .X;A/ with coefficients in G looks the same as
in the integral case (just insert “IG” where necessary). The cohomology sequence
has all the arrows reversed:
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� � � ! Hn�1.AIG/ ı
�

!Hn.X;AIG/! Hn.XIG/! Hn.AIG/! : : : :

The homomorphism ı�WHn�1.AIG/ ! Hn.XIA/ is defined in the following
(expectable) way. For a class � 2 H.AIG/, choose a representing cocycle c 2
Cn�1.AIG/. Then expand the function c [on .n� 1/-dimensional singular simplices
of A] to all .n � 1/-dimensional singular simplices of X (for example, set it
equal to 0 on simplices not contained in A) and take the coboundary of the chain
c0 2 Cn�1.XIG/ arising. Then ıc0 is zero on Cn.AIG/ (since c is a cocycle). Thus,
ıc0 2 Cn.X;A/. It is a (relative) cocycle (since ıı D 0), and its cohomology class
ˇ 2 Hn.X;AIG/ does not depend on the arbitrary choices of the construction (c in
� and the extension c0 of c; it is similar to Exercise 7 in Lecture 12). The function
� 7! ˇ is ı�.

Both homology with coefficients and cohomology sequences of a pair are exact.
There are also exact reduced homology with coefficients and cohomology sequences
of pairs (no reducing for relative homology and cohomology groups) and exact
homology with coefficients and cohomology sequences of triples.

For a Borsuk pair .X;A/, there are isomorphisms

Hn.X;AIG/ D eHn.X=AIG/; Hn.X;AIG/ D eHn.X=AIG/

established by the projection X ! X=A. For an arbitrary pair there are similar
isomorphisms with X=A replaced by X [ CA. Under the same assumptions as in
Sect. 12.7, there are excision isomorphisms Hn.X � B;A � BIG/ D Hn.X;AIG/
and Hn.X � B;A � BIG/ D Hn.X;AIG/ and exact Mayer–Vietoris sequences; the
cohomology Mayer–Vietoris sequences assume the form

� � � ! Hn�1.A \ BIG/! Hn.XIG/
! Hn.AIG/˚ Hn.BIG/! Hn.A \ BIG/! : : : :

For a CW complex, homology with coefficients and cohomology can be calcu-
lated through the cellular complex. Namely, for a CW complex X, Cn.XIG/ is the
group of linear combinations

P

i giei, where ei are oriented n-dimensional cells (an
orientation change for a cell ei results in a replacement of gi by �gi). Furthermore,
Cn.XIG/ is the group of G-valued functions on the set of oriented n-dimensional
cells of X, where the orientation change for ei leads to a sign change for the value at
ei. The boundary and coboundary operations act by the formulas

@

 

X

i

giei

!

D
X

i

gi

X

f

Œei W f �f ; Œıc�.e/ D
X

f

Œe W f �c.f /;

where the inner summation on the right-hand side of the first formula is spread to all
.n� 1/-dimensional cells f of X and the summation in the second formula is spread
to all n-dimensional cells of X.
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Let us now show the results of calculating homology with coefficients and
cohomology for the most important CW complexes. For spheres,

eHm.S
nIG/ D eHm.SnIG/ D

�

G; if m D n;
0; if m ¤ n

(this fact certainly can be obtained with the cellular complexes, but the reader
who wants to reconstruct all the proofs will have to do it at an earlier stage, as
in Sect. 13.1). For complex, quaternion, and Cayley projective spaces, as well as for
complex and quaternion Grassmann manifolds and flag manifolds, the homology
with coefficients and cohomology are not different from the corresponding cellular
chains and cochains. For example,

Hm.CPnIG/ D Hm.CPnIG/ D
8

<

:

G; if m D 0; 2; 4; : : : Œ; 2n;
if n is finite�;

0 for all other m:

In the real case, the computation may be more complicated (compare Sect. 13.8),
but it becomes much simpler if G D Z2, since in this case all the boundary
and coboundary operators (in cellular complexes) are zero and homology with
coefficients and cohomology again do not differ from the corresponding cellular
chain and cochain groups. For example,

Hm.RPnIZ2/ D Hm.RPnIZ2/ D
�

Z2; for 0 � m � n;
0 for all other m:

Notice in addition that for a classical surface X (without holes),

H0.XIZ2/ D H0.XIZ2/ D H2.XIZ2/ D H2.XIZ2/ D Z2;

H1.XIZ2/ D H1.XIZ2/ D Z2 ˚ � � � ˚ Z2
„ ƒ‚ …

r

;

where

r D
8

<

:

2g; if Xis a sphere with g handles;
2gC 1; if X is a projective plane with g handles;
2gC 2; if X is a Klein bottle with g handles:

EXERCISE 1. Find the homology and cohomology of real projective spaces and real
Grassmann manifolds with coefficients in Zm where m is odd.

To finish the section, let us notice that if f WX ! Y is a weak homotopy
equivalence, then

f�WHn.XIG/! Hn.YIG/ and f �WHn.YIG/! Hn.XIG/
are isomorphisms for all G and n.
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15.3 Coefficient Sequences

We begin studying relations between homologies and cohomologies with different
coefficients. There is an obvious fact that any homomorphism 'WG1 ! G2 between
Abelian groups induces, for every X and n, homomorphisms

'�WHn.XIG1/! Hn.XIG2/ and '�WHn.XIG1/! Hn.XIG2/

(in the same direction). However, as many examples (including some known to us)
show, the homomorphism ' being a monomorphism, or an epimorphism, or just
nontrivial, does not imply similar properties for any of the '�s. For a deeper
understanding of the subject, let us consider the following situation. Let G be an
Abelian group, H be a subgroup of G, and F be the quotient group G=H. Usually,
all of this is presented as a short exact sequence,

0! H ! G! F ! 0:

Besides the homomorphisms Hn.XIH/ ! Hn.XIG/ ! Hn.XIF/ and Hn.XIH/
! Hn.XIG/! Hn.XIF/, there arise “connecting homomorphisms”

ı�WHn.XIF/! Hn�1.XIH/ and ı�WHn.XIF/! HnC1.XIH/:

Here is the construction of the first of them. For an ˛ 2 Hn.XIF/, choose a
representative a 2 Cn.XIF/. Since G ! F is an epimorphism, a possesses an
inverse imageea 2 Cn.XIG/. The projection Cn�1.XIG/! Cn�1.XIF/ takes @ea into
@a D 0; hence, @ea actually belongs to Cn�1.XIH/. This is a cycle, and its homology
class in Hn�1.XIH/ is taken for @�.˛/. The construction of the homomorphism ı�
is similar Œ.� 2 Hn.XIF// 7! .c 2 Cn.XIF// 7! .ec 2 Cn.XIG// 7! .ıec 2
CnC1.XIH// 7! .ı�.�/ 2 HnC1.XIH//�:
EXERCISE 2. Check that the preceding constructions provide well-defined homo-
morphisms @� and ı�.

EXERCISE 3. Prove that the coefficient sequences

� � � ! Hn.XIH/! Hn.XIG/! Hn.XIF/! Hn�1.XIH/! : : : ;

� � � ! Hn.XIH/! Hn.XIG/! Hn.XIF/! HnC1.XIH/! : : :

are exact.

HISTORICAL AND TERMINOLOGICAL REFERENCE. The homomorphisms @�
and ı� were discovered, in a particular case, by M. Bockstein long before exact
sequences became commonplace in algebraic topology. Here is how the Bockstein
homomorphism was first described. Let ˛ 2 Hn.XIZm/. Take a representative a
of ˛. All the coefficients involved in a are residues modulo m; we can regard them
as integers 0; 1; : : : ;m � 1. Then the cycle a becomes an integral chain ea. The
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boundary @ea is divisible by m; let us divide. The result,
1

m
@ea, is an integral cycle.

It represents some class Bm.˛/ 2 Hn�1.XIZ/ [by the way, mBm.˛/ D 0]; after
reducing modulo m, it becomes a class bm.˛/ 2 Hn�1.XIZm/. We have constructed
“Bockstein homomorphisms”

BmWHn.XIZm/! Hn�1.XIZ/ and bmWHn.XIZm/! Hn�1.XIZm/:

In a very similar way, cohomological Bockstein homomorphisms

BmWHn.XIZm/! HnC1.XIZ/ and bmWHn.XIZm/! HnC1.XIZm/

are defined.
Actually, all of these Bockstein homomorphisms are connecting homomor-

phisms @� and ı� of coefficient sequences induced by the short exact sequences

0! Z
�m��!Z! Zm ! 0 and 0! Zm ! Zm2 ! Zm ! 0:

From the exactness of the coefficient sequences, it follows then that (1) an element
of Hn.XIZm/ belongs to the kernel of Bm if and only if it is “integral,” that is,
belongs to the image of the reducing homomorphism Hn.XIZ/ ! Hn.XIZm/; an
element of Hn.XIZ/ belongs to the image of Bm if and only if it is annihilated by the
multiplication by m; similarly for the cohomological Bockstein homomorphisms.

15.4 Algebraic Preparation to Universal
Coefficients Formulas

Let A and B be Abelian groups. Then let B D F1=F2, where F1 is a free Abelian
group and F2 is a subgroup of F1 which must also be free (such a presentation exists
for any Abelian group). What are the interrelations between A ˝ F1; A ˝ F2; and
A ˝ B? To answer this question, we need a lemma which can be regarded as the
most fundamental property of tensor products.

Lemma 1. The tensor product operation is right exact. This means that if the
sequence

A
˛��!B

ˇ��!C��! 0

is exact, then the sequence

G˝ A
G˝˛��!G˝ B

G˝ˇ��!G˝ C��! 0

is exact.
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Proof. Recall that, by definition, the tensor product K ˝ L is F.K � L/=R.K;L/,
where F.K � L/ is the free Abelian group generated by the set K � L and R.K;L/ is
the subgroup of F.K�L/ generated by elements of the form .k; `/C.k0; `/�.kCk0; `/
and .k; `/C .k; `0/ � .k; `C `0/. The image of .k; `/ in K ˝ L is denoted as k˝ `.

It is obvious that G˝ˇ is onto:
P

i.gi˝ ci/ D ŒG˝ˇ�

P

i.gi ˝ bi/
�

, where the
bi are chosen to satisfy the condition ˇ.bi/ D ci. It is also obvious that .G ˝ ˇ/ ı
.G˝ ˛/ D 0. It remains to prove that Ker.G˝ ˇ/ � Im.G˝ ˛/.

Let ŒG˝ˇ� 
Pi.gi ˝ bi/
� D 0. This means that

P

i.gi; ˇ.bi// 2 R.G;C/; that is,
P

i.gi; ˇ.bi// is a linear combination of elements of F.G � C/ of the form .g; c/C
.g0; c/ � .g C g0; c/ and .g; c/ C .g; c0/ � .g; c C c0/. For all c; c0 involved, find
b; b0 2 B whose ˇ-images are c; c0, and the subtract from

P

i.gi; ˇ.bi// the same
linear combination with c; c0 replaced by the corresponding b; b0. We get an element
of F.G � B/ which also represents

P

i.gi ˝ bi/ but also belongs to the kernel of
the map F.G � ˇ/WF.G � B/! F.G � C/. This kernel is generated by differences
.g; b0/ � .g; b00/ with ˇ.b0 � b00/ D 0, that is, b0 � b00 22 ˛. Thus,

P

i.gi ˝ bi/ D
P

j.g
0/j ˝ .b0

j � b00
j // and hence

P

i.gi ˝ bi/ D ŒG ˝ ˛�
�
P

j.g
0
j ˝ aj/

�

, where

˛.aj/ D b0
j � b00

j .

Lemma 1 shows that the sequence

A˝ F2 ! A˝ F1 ! A˝ B! 0

is exact; that is, A ˝ B is a quotient of A ˝ F1 over the image of the natural map
A˝ F2 ! A˝ F1, but this map is not necessarily a monomorphism.

Lemma 2. The kernel Ker.A ˝ F2 ! A ˝ F1/ does not depend on the choice of
presentation B D F2=F1.

Proof The proof consists in constructing a canonical isomorphism

Ker.A˝ F0
2 ! A˝ F0

1/ Š Ker.A˝ F2 ! A˝ F1/

for an arbitrary other presentation B D F0
1=F0

2. First, we construct homomorphisms
˛1WF0

1 ! F1; ˛2WF0
2 ! F2, making the diagram

(where the i; i0 are inclusion maps and the p; p0 are projections) commutative.
Here ˛1 takes a generator x of F0

1 into y 2 F1 such that p.y/ D p0.x/ (which exists,
since p is an epimorphism). This ˛1 takes Ker p0 D F0

2 into Ker p D F2, thus giving
rise to an ˛2WF0

2 ! F2. Since y in the previous construction is determined (by x) up
to an element of Ker p D F2, any other choice of ˛1 has the form ˛1 C i0 ı ˇ, where
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ˇ is a homomorphism F0
1 ! F2, and then the new ˛2 is ˛2 C ˇ ı i. Take the tensor

product of (the square part of) this diagram with A:

The map A˝ ˛2 takes Ker.A˝ i0 into Ker.A˝ i/. This map does not depend on the
choice of ˛1 and ˛2, since A˝.ˇı i0/ D .A˝ˇ/ı.A˝i0/ is zero on Ker.A˝i0/. The
map Ker.A˝ i0/! Ker.A˝ i/ is constructed in the same way, and the composition
of these maps in any order is the identity, because of the same uniqueness (this time,
applied to F0

1 D F1; F0
2 D F2).

Definition. The kernel Ker.A˝ F2 ! A˝ F1/ is called the periodic product of A
and B and is denoted as Tor.A;B/.

EXERCISE 4. Show that the operation Tor is natural with respect to both arguments;
that is, homomorphisms A ! A0;B ! B0 induce a homomorphism Tor.A;B/ !
Tor.A0;B0/ with all expectable properties (for A it is obvious, while for B this
requires a construction like the one in the beginning of the proof of the lemma).

EXERCISE 5. Prove a natural isomorphism Tor.A;B/ ! Tor.B;A/. (This might
be harder than one can expect. The most common idea of proving that is the
following. Consider two presentations A D F1=F2; B D G1=G2 with free Abelian
F1;F2;G1;G2, form the complex

0! F2 ˝ G2 ! Œ.F1 ˝ G2/˚ .F2 ˝G1/�! F1 ˝ G1 ! 0;

and prove that the homology groups H2;H1; and H0 of this complex are 0;Tor.A;B/;
and Hom.A;B/. This provides a definition of Tor symmetric in A;B.)

EXERCISE 6. Prove that if A (or B) is a free Abelian group, then Tor.A;B/ D 0.

EXERCISE 7. Prove that Tor.Zm;Zn/ Š Zm ˝ Zn ŒD Zgcd.m;n/� [this isomorphism
is not canonical; it depends on the choice of generators in Zm and Zn]. Thus, for
finitely generated Abelian groups A;B,

Tor.A;B/ Š Tors A˝ Tors B

(Tors A D torsion of A, the group of elements of finite order).

EXERCISE 8. For infinitely generated A;B, the last isomorphism, in general, does
not hold: Construct an example.

EXERCISE 9. Prove that is A D Q;R, or C, then Tor.A;B/ D 0 for any B.
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The “dual” operation Ext is defined in a similar way. First, we dualize Lemma 1:

Lemma 3. If the sequence

A
˛��!B

ˇ��!C��! 0

is exact, then the sequence

Hom.A;G/
Hom.˛;G/ �� Hom.B;G/

Hom.ˇ;G/ �� Hom.C;G/ �� 0

is exact.

Proof The proof is left to the reader; it is easier than the proof of the Lemma 1.

EXERCISE 10. Prove that the operation Hom.G;�/ is left exact. This means that if
the sequence

0��!A
˛��!B

ˇ��!C

is exact, then the sequence

0��! Hom.G;A/
Hom.G;˛/��! Hom.G;B/

Hom.G;ˇ/��! Hom.G;C/

is exact.

Let A;B be Abelian groups, and let A D F1=F2, where F1 and F2 are free Abelian
groups. Lemma 3 says that the kernel of the map Hom.F1;B/! Hom.F2;B/; f 7!
f jF2 is Hom.A;B/, but this map is not onto. The cokernel of this map, which is the
quotient of Hom.F2;B/ over the image of this map, is taken for Ext.A;B/.

EXERCISE 11. Prove that Ext is well defined (this is a dualization of Lemma 2).

EXERCISE 12. Show that the operation Ext is natural with respect to both argu-
ments; that is, homomorphisms A ! A0;B ! B0 induce a homomorphism
Ext.A0;B/ ! Ext.A;B0/ with all expectable properties. (Notice the reversion of
the arrow A! A0.)

EXERCISE 13. Prove that Ext.Z;B/ D 0 for any B; prove also that Ext.Zm;Zn/

Š Hom.Zm;Zn/ Š Zm ˝ Zn Š Z.m;n/ (not canonically!), and Ext.Zm;Z/ Š Zm

(unlike Tor.Zm;Z/ D 0).

EXERCISE 14. The set Ext.A;B/ has another definition (due to Yoneda) as the set
of equivalence classes of “extensions” of A by B, that is, short exact sequences

0! B! C! A! 0

where C is an Abelian group. Prove the equivalence of the two definitions of Ext
and make up a direct definition of a group structure in the set Ext.A;B/ described as
the set of extensions.
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EXERCISE 15. Prove that if one of the groups A;B is Q;R; or C, then
Ext.A;B/ D 0.

15.5 The Universal Coefficients Formula

Now we will show that the usual (integral) homology of X (actually, of any complex
consisting of free Abelian groups) determine homology and cohomology of X with
arbitrary coefficients.

Theorem. For any X; n; and G,

Hn.XIG/ Š .Hn.X/˝ G/˚ Tor.Hn�1.X/;G/

Hn.XIG/ Š .Hn.X/˝ G/˚ Tor.HnC1.XIZ/;G/
Hn.XIG/ Š Hom.Hn.X/;G/˚ Ext.Hn�1.X/;G/:

IMPORTANT ADDITION. The isomorphisms of the theorem are not canonical.
What is canonical are the following three exact sequences:

0! Hn.X/˝ G! Hn.XIG/! Tor.Hn�1.X/;G/! 0;

0! Hn.XIZ/˝ G! Hn.XIG/! Tor.HnC1.XIZ/;G/! 0;

0 Hom.Hn.X/;G/ Hn.XIG/ Ext.Hn�1.X/;G/ 0:

Proof. The first two exact sequences are easily obtained from coefficient sequences.
The first sequence is obtained in the following way. Let G D F1=F2, where F1 and
F2 are free Abelian groups. Then F1 D Z˚ Z˚ : : : ;, and hence

Hn.XIF1/ D Hn.XIZ˚ Z˚ : : : / D Hn.X/˚ Hn.X/˚ � � � D Hn.X/˝ F1;

and, similarly, Hn.XIF2/ D Hn.X/˝ F2. Hence, the fragment

Hn.XIF2/! Hn.XIF1/! Hn.XIG/! Hn�1.XIF2/! Hn�1.XIF2/
of the coefficient sequence takes the form

Hn.X/˝ F2 ! Hn.X/˝ F1 ! Hn.XIG/
! Hn�1.X/˝ F2 ! Hn�1.X/˝ F2:

A five-term exact sequence A
'��!B ! C ! D

 ��!E can be transformed into
a short exact sequence 0 ! Coker' ! C ! Ker ! 0 (where Coker is the
quotient over the image, Coker' D B= Im'). This transformation converts the
last sequence into the first of the three exact sequences in the theorem. The second
sequence is obtained in the way from the cohomological coefficient sequence (and
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the isomorphisms Hn.XIFi/ D Hn.XIZ/ ˝ Fi). The last sequence can hardly be
obtained in a similar way, because it contains both homology and cohomology. But
there exists a different approach which yields isomorphisms from the theorem rather
than the exact sequences.

Since for every n; Bn.X/ D ImŒ@nC1WCnC1.X/! Cn.X/� is a free Abelian group,
there exists a (nonunique) homomorphism snWBn.X/ ! CnC1.X/ such that @nC1 ı
sn D id. Thus,

CnC1.X/ D Ker @nC1 ˚ Im sn D ZnC1.X/˚ Bn.X/:

The boundary operator looks like this:

CnC1.X/ D ZnC1.X/ ˚ Bn.X/
?

?

?

?

y

@nC1

?

?

?

?

y

inclusion

Cn.X/ D Zn.X/ ˚ Bn�1.X/ :

This shows that the whole singular complex C D fCn.X/; @ng is isomorphic (not
canonically) to the direct sum of very short complexes C.n/,

: : : 0! 0! Bn.X/
.nC 1/

incl:��! Zn.X/
.n/
! 0! 0 : : :

[for this complex, the n-dimensional homology is Hn.X/; all the other homology
groups are zero]. Since the tensor product has the distributivity property, the
complex C ˝ G D fCn.XIG/ D Cn.X/ ˝ G; @n ˝ Gg is the sum of complexes
C.n/˝ G,

: : : 0! 0! Bn�1 ˝ G! Zn�1 ˝ G! 0! 0 : : : :

Since Bn.X/ and Zn.X/ are free Abelian groups and Zn.X/=Bn.X/ D Hn.X/, the
homology groups of the complex C ˝G are

dimension nC 1W Tor.Hn.X/;G/I
dimension nW Hn.X/˝ G:

The summation over n gives the first formula of the theorem: Hn.XIG/ Š .Hn.X/˝
G/˚ Tor.Hn�1.X/;G/. The second formula is obtained in the same way; we leave
this job to the reader.

To prove the last part of the theorem, consider again the decomposition of the
singular complex C of X into the sum of “very short complexes” C.n/:
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We see that although the decomposition C D L

C.n/ is not canonical, and hence
there is neither a canonical projection C ! C.n/ or a canonical embedding
C.n/ ! C, there are still the canonical projection CnC1.X/ ! Bn.X/ and the
canonical embedding Zn.X/ ! Cn.X/, as shown in the diagram. Now apply to
this diagram the operation Hom.�;G/. We obtain the diagram

For the (co)homology Hm.CIG/ of the complex Hom.C;G/, we have

Hn.C.n/IG/ D KerŒHom.Zn.X/;G/! Hom.Bn.X/;G/�
D Hom.Hn.X/;G/;

HnC1.C.n/IG/ D CokerŒHom.Zn.X/;G/! Hom.Bn.X/;G/�
D Ext.Hn.X/;G/

and Hm.C.n// D 0 for m ¤ n; nC 1. From this,

Hn.XIG/ Š
M

k

Hn.CIG/ D Hom.Hn.X/;G/˚ Ext.Hn�1.X/;G/;

as stated. Moreover, as we have seen, there are canonical homomorphisms

Hn.XIG/! Hom.Hn.X/;G/; Ext.Hn�1.X/;G/! Hn.XIG/;
which form the exact sequence

0 Hom.Hn.X/;G/ Hn.XIG/ Ext.Hn�1.X/;G/ 0:

This completes the proof of the theorem.
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We can add that the map

Cn.XIG/ D Hom.Cn.X/;G/! Hom.Zn.X/;G/

considered above is simply the restriction to Zn.X/; moreover, if c 2 Cn.XIG/ is
a cocycle, then the restriction of c to Bn.X/ is zero, which provides an element
of Hom.Hn.X/;G/ depending only on the cohomology class of c; this is how
our homomorphism Hn.XIG/ ! Hom.Hn.X/;G/ acts. In other words, this
homomorphism sends a cohomology class � 2 Hn.XIG/ to a homomorphism
˛ 7! h�; ˛i of Hn.X/ into G. The fact that this homomorphism is onto yields the
following important proposition.

Corollary 1. For every homomorphism f WHn.X/ ! G, there exists a cohomology
class � 2 Hn.XIG/ such that f .˛/ D h�; ˛i for every ˛ 2 Hn.G/.

Remark also that this � is defined up to an element of Ext.Hn.X/;G/; in
particular, if Hn.X/ and G are finitely generated, then this Ext group is finite, so
� is defined by f up to adding an element of finite order.

Before the final exercises of this section, we will mention one more interesting
corollary.

Corollary 2. If the groups Hn.X/ are finitely generated, then

Hn.XIZ/ Š Free part of Hn.X/˚ Torsion part of Hn�1.X/:

In particular, H1.XIZ/ is a free Abelian group.

EXERCISE 16. If K D Q;R, or C, then

Hn.XIK/ D Hn.X/˝K and Hn.XIK/ D Hom.Hn.X/;K/:

Thus, the transition from the integral coefficients to the rational, real, or complex
coefficients kills the torsion. On the other hand, the Betti numbers of X become the
dimension of homology or cohomology with coefficients in Q;R or C. (Actually,
the same is true for any field of characteristic zero.)

EXERCISE 17. If K is a field, then homology and cohomology with coefficients in
K possess a natural structure of vector spaces over K. Prove that

Hn.XIK/ D HomK.Hn.XIK/;K/:
[It is better not to deduce this formula from the universal coefficients formula, but
rather to prove it directly using the equality Cn.XIK/ D HomK.Cn.XIK/;K/.]
EXERCISE 18. Prove that if X is a finite CW complex and K is a field, then

X

.�1/m dimK Hm.XIK/
does not depend on K and is equal to the Euler characteristic of X (see Sect. 13.7).
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15.6 Künneth’s Formula

By its contents, Künneth’s formula is closer to the next lecture than to the
current one. But by sight, this formula has so strong resemblance to the universal
coefficients formulas (actually, these formulas can be deduced from the same
general algebraic result; thus, they have a common ancestor) that it would be unfair
to try to separate them.

Theorem 1. Let X1;X2 be topological spaces. Then for any n,

(1) There is a (noncanonical) isomorphism

Hn.X1 � X2/ Š
L

iCjDn
.Hi.X1/˝ Hj.X2//

L L

iCjDn�1
Tor.Hi.X1/;Hj.X2//:

(2) There is a canonically defined exact sequence

0!L

iCjDn.Hi.X1/˝ Hj.X2//! Hn.X1 � X2/
!L

iCjDn�1 Tor.Hi.X1/;Hj.X2//! 0:

We will deduce Theorem 1 from an algebraic result related to the tensor product
of complexes.

Definition. Let

.C/ : : :
@nC1��!Cn

@n��!Cn�1
@n�1��! : : : ;

.C 0/ : : :
@0

nC1��!C0
n

@0

n��!C0
n�1

@0

n�1��! : : :

be two positive complexes. Let

Tn D
M

iCjDn
.Ci ˝ C0

j/

and let �nWTn ! Tn�1 take c˝ c0 2 Ci ˝ Cj � Tn into

�n.c˝ c0/ D .@ic˝ c0/C .�1/i.c˝ @0
jc

0/ 2 .Ci�1 ˝ Cj/˚ .Ci ˝ Cj�1/ � Tn�1:

A direct verification (see below) shows that �n�1 ı �n D 0. The complex arising,

: : :
�nC1��! Tn

�n��! Tn�1
�n�1��! : : : ;

is called the tensor product of the complexes C and C 0 and is denoted as C ˝ C 0.

VERIFICATION OF �n�1 ı �n D 0. Let c 2 Ci; c0 2 C0
j . Then
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�n�1 ı �n.c˝ c0/ D �n�1.@ic˝ c0/C .�1/i�n�1.c˝ @0
jc

0/
D .@i�1 ı @i.c/˝ c0/C .�1/i�1.@ic˝ @0

jc
0/

C.�1/i..@ic˝ @0
jc

0/C .�1/j�1.c˝ @0
j�1 ı @0

j.c
0///

D .�1/i�1.@ic˝ @0
jc

0/C .�1/i.@ic˝ @0
jc

0/ D 0:

Our next goal is to express the homology of the tensor product of two complexes
in terms of homologies of these complexes.

Theorem 2. If the complexes C; and C 0 are free (that is, all Cn;C0
n are free Abelian

groups), then, for every n,

(1) There is a (noncanonical) isomorphism

Hn.C ˝ C 0/ Š
L

iCjDn
.Hi.C/˝Hj.C 0/

L L

iCjDn�1
Tor.Hi.C/;Hj.C 0//:

(2) There is a canonically defined exact sequence

0!L

iCjDn.Hi.C/˝ Hj.C 0//! Hn.C ˝ C 0/
!L

iCjDn�1 Tor.Hi.C/;Hj.C 0//! 0:

Proof. Begin with part (2). Let Zn D Ker @n;Bn�1 D Im @n. Consider the diagram

0

#
0

#
0

#
: : :

0��! ZnC1
0��! Zn

0��! Zn�1
0��! : : :

?

?

?

?

y

�
?

?

?

?

y

�
?

?

?

?

y

�

: : :
@��! CnC1

@��! Cn
@��! Cn�1

@��! : : :
?

?

?

?

y

@

?

?

?

?

y

@

?

?

?

?

y

@

: : :
0��! Bn

0��! Bn�1
0��! Bn�2

0��! : : :

#
0

#
0

#
0
:

The rows of this diagram are complexes, the columns are exact sequences, and
the diagram is commutative. Thus, this diagram can be regarded as a short exact
sequence of complexes:

0! Z ! C ! B! 0;
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where Z and B are complexes with trivial differential composed of groups Zn and
Bn [but the nth group of the complex B is Bn�1]. Since the complex C 0 is free, the
sequence remains exact after tensoring with C 0:

0! Z ˝ C 0 ! C ˝ C 0 ! B ˝ C 0 ! 0:

Since Z and B have trivial differentials and consist of free Abelian groups,

Hn.Z ˝ C 0/ D
M

iCjDn

.Zi ˝ Hj.C 0//; Hn.B ˝ C 0/ D
M

iCjDn�1
.Bi ˝ Hj.C 0//:

Thus, the homology sequence corresponding to the last short exact sequence of
complexes takes the form

L

iCjDn
.Bi ˝ Hj.C 0//

'��! L

iCjDn
.Zi ˝ Hj.C 0//! Hn.C ˝ C 0/

! L

iCjDn�1
.Bi ˝ Hj.C 0//

 ��! L

iCjDn�1
.Zi ˝Hj.C 0//:

It is easy to see also that the connecting homomorphisms' and are induced by the
inclusion maps Bi ! Zi [before tensoring with C 0, they consist first in applying @�1
and then @; tensoring with C 0 does not change anything]. Since the Abelian groups
Bi and Zi are free and Hi.C/ D Zi=Bi, the exact sequence 0! Coker' ! Hn.C ˝
C 0/! Ker ! 0 is precisely the exact sequence from part (2) of Theorem 2.

To prove part (1), first notice that if Hn.C/ D 0 for n ¤ i and Hn.C 0/ D 0 for
n ¤ j, then part (2) shows that the homology of C ˝ C 0 is zero, except

HiCj.C ˝ C 0/ D Hi.C/˝ Hj.C 0/;
HiCj�1.C ˝ C 0/ D Tor.Hi.C/;Hj.C 0//;

so the isomorphism of part (1) holds. In general,

C ŠL C.i/; where C.i/ is : : : 0! 0! Bi
.iC1/

incl:��! Zi
.i/
! 0! 0 : : : ;

C 0 ŠL C 0.j/; where C 0.j/ is : : : 0! 0! B0
j

.jC1/

incl:��! Z0
j
.j/

! 0! 0 : : :

(noncanonical isomorphisms; compare with Sect. 15.5), and all the homology
groups of C.i/ and C 0.j/ are zero besides Hi.C.i// D Hi.C/ and Hj.C 0.j// D Hj.C 0/.
This implies part (1) in full generality.

Proof of Theorem 1. In the case when X1 and X2 are CW complexes, it is sufficient
to remark that the cellular chain complex of X1 � X2 is the tensor product of the
cellular complexes of X1 and X2 (e � e0 $ e˝ e0). To extend the result to arbitrary
topological spaces, we use two previous results: (1) Every topological space is
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weakly homotopy equivalent to a CW complex (Sect. 11.6); and (2) homology is
weakly homotopy invariant (Sect. 14.1).

Remarks. (1) It is not true, in general, that the singular complex of the product
X1 � X2 of two topological spaces is isomorphic the tensor product of the singular
complexes of X1 and X2. But these complexes are homotopy equivalent (there exists
a homotopy equivalence canonically defined up to a homotopy between them).
This fact, known as the Eilenberg–Zilber theorem, is proved in many textbooks in
topology.

(2) A comparison of the universal coefficients formula with Künneth’s formula
gives the following result (which may be useful in Chap. 3):

Hn.X1 � X2/ D
M

iCjDn
Hi.X1IHj.X2//:

EXERCISE 19. The last equality can be modified to the case of homology and
cohomology with coefficients:

Hn.X1 � X2IG/ DLiCjDn Hi.X1IHj.X2IG//
Hn.X1 � X2IG/ DLiCjDn Hi.X1IHj.X2IG//:

(These equalities, as well as the equality in the preceding remark, can be proven
without any references to the universal coefficients and Künneth’s formulas: They
hold, actually, at the level of cellular chains. This provides a direct way to deduce
the noncanonical part of Künneth’s formula from the similar part of the universal
coefficients formulas.)

Here is a small but significant application of Künneth’s formula.

EXERCISE 20. Find the homology of RP2 � RP2. (If the result seems unexpected
to you, check it using a direct cellular computation.)

Like the universal coefficients formula, Künneth’s formula simplifies a lot in the
case of coefficients in a field.

EXERCISE 21. Prove that if K is a field, then

Hn.X1 � X2IK/ DLiCjDn Hi.X1IK/˝K Hj.X2IK/;
Hn.X1 � X2IK/ DLiCjDn Hi.X1IK/˝K Hj.X2IK/:

In conclusion, here are two more formulas.

EXERCISE 22. Bn.X1 � B2/ DPiCjDn Bi.X1/Bj.X2/.

EXERCISE 23. �.X1 � X2/ D �.X1/�.X2/: (In both exercises, we assume that the
right-hand sides of the formulas are defined.)
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Lecture 16 Multiplications

16.1 Introduction

Although homology is geometrically much more transparent than cohomology,
cohomology is immensely more useful because it possesses many naturally defined
additional structures. The first of these structures is a multiplication: If G is a
ring, then for ˛ 2 Hn1 .XIG/ and ˇ 2 Hn2 .XIG/ there exists a naturally defined
“product” ˛ˇ 2 Hn1Cn2 .XIG/ which has good algebraic properties. Nothing like
this is possible for homology (see Exercise 14 ahead). We will discuss these products
(and some other products) in this lecture and will describe many other structures in
later chapters (starting with Chap. 4).

The simplest way to introduce the cohomological multiplication is as follows.
Let G be a commutative ring, and let X1;X2 be two CW complexes. For cellular
cochains c1 2 Cn1 .X1IG/; c2 2 Cn2 .X2IG/, we define a cellular cochain c1 � c2 2
Cn1Cn2 .X1 � X2IG/ in the most natural way: For the oriented cells e1 � X1; e2 � X2
of dimensions n1; n2, the value of c1�c2 on e1�e2 is c1.e1/c2.e2/ (product in G). It is
easy to check that ı.c1�c2/ D .ıc1/�c2C.�1/n1c1�ıc2; thus, if c1; c2 are cocycles,
then c1 � c2 is also a cocycle. The same formula shows that the cohomology class
of the cocycle c1 � c2 depends only on the cohomology classes of cocycles c1; c2,
so we get a valid (bilinear, associative) multiplication

Œ�1 2 Hn1 .X1IG/; �2 2 Hn2 .X2IG/� 7! �1 � �2 2 Hn1Cn2 .X1 � X2IG/:
A similar construction exists for homology. Namely, if a1 D P

i gie1i 2
Cn1 .X1IG/; a2 D

P

j gje2j 2 Cn2 .X2IG/, then we put

a1 � a2 D
X

i;j

.gigj/.e1i � e2j/ 2 Cn1Cn2 .X1 � X2IG/:

A check shows that @.a1 � a2/ D .@a1/ � a2 C .�1/n1a1 � @a2, which gives rise to
a homological multiplication

Œ˛1 2 Hn1 .X1IG/; ˛2 2 Hn2 .X2IG/� 7! ˛1 � ˛2 2 Hn1Cn2 .X1 � X2IG/:

The two�-products (usually called cross-products) are connected by the formula

h�1 � �2; ˛1 � ˛2i D .�1/n1n2h�1; ˛1ih�2; ˛2i:

EXERCISE 1. Another definition of the homological �-product can be obtained
from Künneth’s formula: This formula yields a canonical map Hn1 .X1/˝Hn2 .X2/!
Hn1Cn2 .X1 � X2/, and the image of ˛1 ˝ ˛2 with respect to this map is taken for
˛1 � ˛2. Prove the equivalence of the two definitions.
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At this moment, however, the difference between homology and cohomology
becomes important. For any topological space X, there exists the diagonal map
�WX ! X � X; �.x/ D .x; x/. This maps induces homomorphisms

��W Hn.XIG/! Hn.X � XIG/;
��W Hn.X � XIG/! Hn.XIG/I

of these homomorphisms; the first one is useless for us now, but the second one
provides cohomological multiplication: For �1 2 Hn1 .XIG/; �2 2 Hn2 .XIG/, we
put

�1 ^ �2 D ��.�1 ˝ �2/ 2 Hn1Cn2 .XIG/:

(The classical notation^, “cup,” is not very convenient, so often instead of �1 ^ �2
we will simply write �1�2.)

However, this way of defining the cohomological product has two important
disadvantages. First, we must still prove the independence of the CW structure.
Second, the diagonal map is not cellular, and to apply it to a cellular cochain we
need to choose a cellular approximation, which cannot be done in a canonical way,
at least, in the context of arbitrary CW complexes. To avoid these difficulties we will
use the opposite order of the definition. First, we will define a ^-product (usually
called the cup-product) by a singular, topologically invariant, construction, and then
we will use it to define the cross-product.

Terminological Remark. The cup-product was initially called the Kolmogorov–
Alexander product, after the two remarkable mathematicians who (independently
of each other) conceived of this operation in the mid-1930s. Unfortunately, the next
generation of topologists found this term too long.

16.2 The Cup-Product: A Direct Construction

In the standard simplex �n; n D n1 C n2 with the vertices v0; : : : ; vn, consider two
faces of dimensions n1 and n2: 
n1� �n with the vertices v0; : : : ; vn1 and 
n2C�n with
vertices vn1 ; : : : ; vn. These faces have dimensions n1 and n2 and have one common
vertex, vn1 . Accordingly, for an n-dimensional singular simplex f W�n ! X, we will
consider faces 
n1� f D f j
n1

� �n and 
n2C f D f j
n2
C
�n , which are singular simplices

of dimensions n1 and n2.
Let X be an arbitrary topological space and let G be a commutative ring. Then let

c1 2 Cn1 .XIG/ and c2 2 Cn2 .XIG/. We define a cochain c1 ^ c2 2 Cn1Cn2 .XIG/
by the formula

Œc1 ^ c2�.f / D c1.

n1� f /c2.


n2C f /;

where f is .n1 C n2/-dimensional singular simplex of X.
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Proposition (Properties of the Cochain Cup-Product). Let c1 2 Cn1 .XIG/; c2 2
Cn2 .XIG/. Then

(0) ı.c1 ^ c2/ D .ıc1/ ^ c2 C .�1/n1c1 ^ ıc2:
(1) c1 ^ .c2 ^ c3/ D .c1 ^ c2/ ^ c3 Œc3 2 Cn3 .XIG/�.
(2) Let ! be the backward transformator (Example 2 in Sect. 12.5). Then for any

.n1 C n2/-dimensional singular chain a,

Œc1 ^ c2�.a/ D .�1/n1n2 Œc2 ^ c1�.!
X
n1Cn2a/:

(3) For a continuous map gWX ! Y,

g#.c1 ^ c2/ D .g#c1/ ^ .g#c2/:

(4) For a ring homomorphism hWG! H,

h�.c1 ^ c2/ D .h�c1/ ^ .h�c2/:

Proof The proof is obvious [only property (0) requires a simple calculation] and is
left to the reader.

Remark. The noncommutativity (even the non-plus-minus-commutativity) of the
chain cup-product is an unavoidable property which has important consequences
(which will show themselves in Chap. 4).

Property (0) shows that the cup-product of two cocycles is a cocycle whose
cohomology class depends only on the cohomology classes of the factors. This gives
rise to the cohomological cup-product

Œ�1 2 Hn1 .X1IG/; �2 2 Hn2 .X2IG/� 7! �1 � �2 2 Hn1Cn2 .X1 � X2IG/:

Theorem (Properties of the Cohomology Cup-Product). Let �1 2 Hn1.XIG/; �2 2
Hn2 .XIG/. Then

(1) �1 ^ .�2 ^ �3/ D .�1 ^ �2/ ^ �3 Œ�3 2 Hn3 .XIG/�.
(2) �1 ^ �2 D .�1/n1n2�2 ^ �1.
(3) For a continuous map gWX ! Y,

g�.�1 ^ �2/ D .g��1/ ^ .g��2/:

(4) For a ring homomorphism hWG! H,

h�.�1 ^ �2/ D .h��1/ ^ .h��2/:

This follows from the proposition [the proof of property (2) uses the transforma-
tor lemma; see Sect. 12.5].
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Notice that there is an obvious generalization of the previous construction: If
�1 2 Hn1 .XIG1/; �2 2 Hn2 .XIG2/ and there is a pairing 	WG1 � G2 2 G, then
there arises a cup-product �1 ^	 �2 D �1 ^ �2 2 Hn1Cn2 .XIG/. For example, if
�1 2 Hn1 .XIG/ (where G is just an Abelian group) and �2 2 Hn2 .XIZ/, then there
is a cup-product �1 ^ �2 2 Hn1Cn2 .XIG/.
EXERCISE 2. Prove that if X is connected and � 2 H0.XIG/ D G, then � ^ �1 D
��1 for any �1 2 Hn.XIG/. In particular, if 1 2 G is the unity of the ring G, then
1 2 G D H0.XIG/ is the unity of the cohomological multiplication.

EXERCISE 3. Construct a relative version of cup-product: If �1 2 Hn1.X;AIG/
and � 2 Hn2 .X;BIG/, then �1 ^ �2 2 Hn1Cn2 .X;A [ BIG/. [To prove this,
it is convenient to regard Hn.X;A [ B/ not as the homology of the complex
consisting of the groups Cn.X/=Cn.A [ B/, but rather as the complex of groups
Cn.X/=.Cn.A/ ˚ Cn.B//; the homology remains the same (for sufficiently good A
and B) by the refinement lemma.]

16.3 The Cross-Product: A Construction via
the Cup-Product

As before, let X1;X2 be topological spaces, let G be a commutative ring, and let
�1 2 Hn1 .X1IG/; �2 2 Hn2 .X2IG/ be cohomology classes. Put

�1 � �2 D .p�
1 �1/ ^ .p�

2 �2/ 2 Hn1Cn2 .X1 � X2IG/;

where p1 and p2 are projections of X1 � X2 onto X1 and X2.

EXERCISE 4. Make up a definition of the relative cross-product,

Œ�1 2 Hn1 .X1;A1IG/; �2 2 Hn2 .X2;A2IG/�
7! �1 � �2 2 Hn1Cn2 .X1 � X2; .A1 � X2/ [ .X1 � A2/IG/:

EXERCISE 5. Check all kinds of naturalness for the cross-product.

Theorem. This definition of the cross-product is equivalent to that in Sect. 16.1.

Proof. It turns out to be sufficient to compute explicitly the cross-product in one
particular case. Since standard simplices and their products are homeomorphic
to balls,

Hn1 .�n1 ; @�n1 IZ/ D Z; Hn2 .�n2 ; @�n2 IZ/ D ZI
Hn1Cn2 .�n1 ��n2 ; @.�n1 ��n2 /IZ/ D Z:

Similar formulas hold for homology.



16.3 The Cross-Product: A Construction via the Cup-Product 207

v0 v1 v2 v3 v4
w0

w1

w2

w3

(v0, w0), (v1, w0), (v1, w1), (v2, w1),

(v3, w1), (v3, w2), (v3, w3), (v4, w3).

vertices:

Fig. 64 Triangulation of a product of simplices

What we want to check is that the cross-product of the generators of the groups
Hn1 .�n1 ; @�n1 IZ/ D Z; Hn2 .�n2 ; @�n2 IZ/ D Z is, up to a sign, the generator of
Hn1Cn2.�n1 ��n2 ; @.�n1 ��n2 /IZ/ D Z:

Obviously, the singular simplex idW�n1 ! �n1 is a relative cycle representing the
generator of Z D Hn1 .�

n1 ; @�n1 /, and similarly for �n2 . As to Z D Hn1Cn2 .�n1 �
�n2 ; @.�n1 � �n2 /IZ/, to describe the generator, we will construct a triangulation
(actually, quite standard) of the product�n1 ��n2 , generalizing the triangulation of
the product�n � I constructed in Sect. 12.2; see Fig. 59.

Let v0; v1; : : : ; vn1 be the vertices of �n1 , and let w0;w1; : : : ;wn2 be the vertices
of �n2 . In �n1 � �n2 , take .n1 C n2/-dimensional affine simplices whose vertices
make a sequence of the form

.vi0 ;wj0 /; .vi1 ;wj1 /; .vi2 ;wj2 /; : : : ; .vin1Cn2
;wjn1Cn2

/;

where

0 D i0 � i1 � i2 � � � � � in1Cn2 D n1I
0 D j0 � j1 � j2 � � � � � jn1Cn2 D n2I

is C js D s:

In other words, in an .n1 C 1/ � .n2 C 1/ grid with horizontal bars labeled by
w0; : : : ;wn2 and vertical bars labeled by v0; : : : ; vn1 , we choose a path from .v0;w0/
to .vn1 ;wn2 / and take the sequence of crossings of the bars on this path (see an
example in Fig. 64).

There are

 

n1 C n2 C 2
n1 C 1

!

such paths, and accordingly �n1 � �n2 falls into

the union of this amount of .n1 C n2/-dimensional simplices. These simplices
can be described in terms of barycentric coordinates: to which of them the point
..t0; : : : ; tn1 /; .u0; : : : ; un2 / 2 �n1��n2 belongs depends on the ordering of numbers

t0; t0 C t1; : : : ; t0 C t1 C � � � C tn1�1I u0; u0 C u1; : : : ; u0 C u1 C � � � C un2�1:

For example, the seven-dimensional simplex corresponding to the path in Fig. 64 is
described in �3 ��4 by the inequalities
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0 � t0 � u0 � t0 C t1 � t0 C t1 C t2 � u0 C u1
� u0 C u1 C u2 � t0 C t1 C t2 C t3 � 1

(the rule is as follows: We move along the path and after a horizontal edge we place
the sum of ts, and after a vertical edge we place the sum of us). Since the vertices
of each simplex of the subdivision are ordered, there arise canonical maps of the
standard simplex onto the simplices of the subdivision, that is, singular simplices of
�n1��n2 . Let c.n1; n2/ 2 Cn1Cn2 .�

n1��n2 / be the sum of these singular simplices
with the coefficients ˙1 where the sign is determined by the parity of the number
of squares of grid below the chosen path (left unshadowed in Fig. 64; for the path
shown there this number is 5 and the sign is minus). It is obvious that c.n1; n2/
is a relative cycle modulo @.�n1 � �n2 /: Two of our simplices have a common
.n1 C n2 � 1/-dimensional face in the interior of �n1 � �n2 if and only if the two
paths have precisely one square between them; then they appear in c.n1; n2/ with
opposite signs, and the faces have the same number in them; so the faces cancel. To
prove that ˛1�˛2 is plus–minus the standard generator of Hn1Cn2 .�n1��n2 ; @.�n1�
�n2 /IZ/ D Z, it is sufficient to check that h˛1 � ˛2; c.n1; n2/i D ˙1. For an .n1 C
n2� 1/-dimensional singular simplex f of�n1 ��n2 , the value of ˛1 �˛2 of f (here
by ˛1; ˛2 we mean rather cochains than cohomology classes) is ˛1.p1 ı
n1� f /˛2.p2 ı



n2C f /. But for a simplex f with vertices

.vi0 ;wj0 /; .vi1 ;wj1 /; .vi2 ;wj2 /; : : : ; .vin1Cn2
;wjn1Cn2

/;

the simplex p1.
n1� f / has the vertices vi0 ; : : : ; vin1
and the simplex p2.


n2C f / has the
vertices wjn1

; : : : ;wjn1Cn2
. The only case when these two simplices are not contained

in @�n1 and @�n1 is when

i0 D 0; : : : ; in1�1 D n1 � 1; in1 D in1C1 D � � � D in1Cn2 D n1I
j0 D j1 D � � � D jn1 D 0; jn1C1 D 1; : : : ; jn1Cn2 D n2:

Thus, only one summand in c.n1; n2/ makes a contribution into h˛1 � ˛2; c.n1; n2/i,
and this contribution is˙1.

The rest of the proof uses only the naturalness of the cross-product. It consists of
six steps.

Step 1. The cross-product

Hn1.Sn1 ; ptIZ/ � Hn2 .Sn2 ; ptIZ/! Hn1Cn2 .Sn1 � Sn2 ; Sn1 _ Sn2 IZ/

is, up to a sign, the standard multiplication Z � Z ! Z. Indeed, the projections
.�n1 ; @�n1 / ! .Sn1 ; pt/; .�n2 ; @�n2 / ! .Sn2 ; pt/; .�n1 � �n2 ; @.�n1 � �n2 // !
.Sn1 � Sn2 ; Sn1 _ Sn2/ induce isomorphisms in the cohomology of dimensions
n1; n2; n1 C n2.

Step 2. The cross-product

Hn1 .Sn1 IZ/ �Hn2 .Sn2 IZ/! Hn1Cn2 .Sn1 � Sn2 IZ/
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is, up to a sign, the standard multiplicationZ�Z! Z. Indeed, the maps .Sn1 ; pt/!
.Sn1 ;;/; : : : induce isomorphisms in the cohomology of appropriate dimensions.

Step 3. Similar statements for the bouquets of spheres (we leave precise
statements to the reader).

Step 4. The ring Z can be replaced by an arbitrary ring G. This follows from the
naturalness of the cross-product with respect to ring homomorphisms Z! G.

Step 5. X1;X2 are CW complexes of the respective dimensions n1; n2, and
cohomology classes �1 2 Hn1 .X1IG/; �2 2 Hn2 .X2IG/ are represented by cellular
cocycles c1; c2; then �1 � �2 2 Hn1Cn2 .X1 � X2IG/ is represented by the cellular
cocycle

Œc1 � c2�.e1 � e2/ D ˙c1.e1/c2.e2/:

For the proof we can consider the projections X1 ! X1= skn1�1 X1;X2 !
X2= skn2�1 X2; the induced cohomology homomorphisms are epimorphisms.

Step 6. The general case. For the transition to this case we consider the inclusion
maps skn1 X1 ! X1; skn2 X2 ! X2; skn1 X1 � skn2 X2 ! X1 � X2; the induced
cohomology homomorphisms in the appropriate dimensions are monomorphisms.

This completes the proof.

16.4 Cup-Product and Diagonal Map

Now let us briefly investigate the connection between the definition of the
cup-product in Sect. 16.2 and the preliminary definition from the introduction
(Sect. 16.1). The first statement is almost obvious.

Theorem. For any X;G; and �1 2 Hn1.XIG/; �2 2 Hn2 .XIG/,

�1 ^ �2 D ��.�1 � �2/;

where �WX ! X � X is the diagonal map.

Proof. Obviously, p1 ı� D p2 ı� D id. Hence,

��.�1 � �2/ D ��.p�
1 �1 ^ p�

2 �2/ D .p1 ı�/��1 ^ .p2 ı�/��2 D �1 ^ �2:

In addition to that, we remark that actually the definition of cup-product in
Sect. 16.2 can be regarded as a combination of the definition in Sect. 16.1 and a
particular choice of a cellular approximation of the diagonal map. Let us describe
the latter, first in the case when X is a triangulated space. First, in the product
�n � �n, let us consider the CW subcomplex

S

pCqDn.

p��n � 
q

C�n/; for n1 D
n2 D 2, it is shown in Fig. 65 (surely, a picture of a four-dimensional figure on
a two-dimensional paper sheet cannot be awfully clear). The dashed triangle is
the diagonal image of �2; it is not a cellular subspace of �2 � �2. The cellular
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Δ2

Δ2

Γ1
−Δ2 × Γ1

+Δ2

Γ0
−Δ2 × Γ2

+Δ2

Γ2
−Δ2 × Γ0

+Δ2

w0

w1

w2

v0

v1

v2

(v0, w2)

(v2, w2)

(v1, w1)

(v0, w0)

(v0, w1)

(v1, w2)

Fig. 65 A cellular approximation of the diagonal in�2 ��2

approximations of the diagonal edges Œ.v0;w0/; .v1;w1/�; Œ.v1;w1/; .v2;w2/�; and
Œ.v2;w2/; .v0;w0/� are broken lines Œ.v0;w0/; .v0;w1/; .v1;w1/�; Œ.v1;w1/; .v1;w2/;
.v2;w2/�; and Œ.v2;w2/; .v2;w0/; .v0;w0/�; the diagonal triangle is approximated by
the union of three pieces: two triangles and one parallelogram, as shown in Fig. 65.

In general, the approximation�0W�n Š��! S

pCqDn.

p��n�
q

C�n/� �n��n

is defined by the formula

.t0; : : : ; tn/ 7! ..2t0; : : : ; 2tp�1; 2.tp C � � � C tn/� 1; 0 : : : ; 0/;
.0; : : : ; 0; 2.t0 C � � � C tp/ � 1; 2tpC1; : : : ; 2tn///;

if t0 C � � � C tp � 1
2
; tp C � � � C tn � 1

2
:

It is clear that the restriction of�0 to any face of �n (of any dimension) is a similar
map for this face.

If X is an ordered triangulated space (see Sect. 13.10), then this construction can
be applied to each simplex of the triangulation, and we obtain a canonical cellular
approximation�0WX ! X�X of the diagonal map (here we mean the CW structure
of X � X which is obtained as the product of two copies of the triangulation of X
regarded as a CW structure; thus, the cells of X �X are products of simplices). Now
it is clear that for the two cochains c1 2 Cn1 .XIG/; c2 2 Cn2 .XIG/, the cochain
c1 ^ c2 2 Cn1Cn2 .X � XIG/ is nothing but .�0/#.c1 � c2/; this sheds light on the
connection between the definitions of cup-product given in Sects. 16.1 and 16.2. We
can add that the construction above can be applied not only to triangulated spaces;
for example, it works perfectly well for the cellular realization Sing.X/ of the
singular complex of an arbitrary topological space, and hence gives an explanation
for the construction of the ^-product of singular cochains.
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16.5 First Application: The Hopf Invariant

To demonstrate at once the power of the cohomological multiplication, we will
immediately, before any serious computations of this multiplication, prove a highly
nontrivial statement concerning the homotopy groups of spheres.

Theorem. The group �4n�1.S2n/ is infinite for any n � 1. Moreover, the Whitehead
square Œ�2n; �2n� of the generator of �2n.S2n/ has an infinite order in �4n�1.S2n/.
(Compare this theorem with the results of Sects. 9.9 and 10.5.)

The proof of this theorem is based on the Hopf invariant, which is an integer
assigned to every element of ' 2 �4n�1.S2n/. Its definition is as follows. Consider
a spheroid f W S4n�1 ! S2n and form the space X' D S2n [f D4n (aka the cone of f ).
The space X' depends, up to a homotopy equivalence, only on ' (which justifies the
notation). It has a natural CW structure with three cells of dimensions 0; 2n; and 4n.
Thus,

Hq.X' IZ/ D
�

Z for q D 0; 2n; 4n;
0 for q ¤ 0; 2n; 4n:

The groups H2n.X' IZ/;H4n.X' IZ/ (isomorphic to Z) have natural generators
(determined by the canonical orientations of S2n and D4n), and we denote these
generators by a and b. Since the cup-square a2 D a ^ a has dimension 4n, we have
a2 D hb, where h 2 Z. The number h D h.'/ is, by definition, the Hopf invariant
of '. 1 Our theorem is covered by the following two lemmas.

Lemma 1. The Hopf invariant is additive: h.' C  / D h.'/C h. /.

Lemma 2. The Hopf invariant is nontrivial; in particular,

h.Œ�2n; �2n� D 2:

Proof of Lemma 1. In addition to the spaces X';X ;X'C (constructed using the
spheroids f ; g; f C gW S4n�1 ! S2n), we will consider the space

Y'; D .S2n [f D4n/ [g D4n D S2n [f _g .D
4n _D4n/:

This space has a CW structure with four cells of dimensions 0; 2n; 4n; 4n and has
the following cohomology:

Hq.Y'; IZ/ D
8

<

:

Z˚ Z for q D 4n;
Z for q D 0; 2n;
0 for q ¤ 0; 2n; 4n:

1In the homotopy theory, there are interesting generalizations of the Hopf invariant; see Whitehead
[88] and Hilton [44].
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Denote the canonical generators of the cohomology groups H2n.Y'; IZ/ and
H4n.Y'; IZ/ by a0 and b0

1; b
0
2. There are natural CW embeddings X' ! Y'; and

X ! Y'; . There is also a natural map X'C ! Y'; ; it consists of the identity
map S2n ! S2n and the map D4n ! D4n _ D4n which collapses the equatorial
plane to a point (these maps compose a continuous map X'C ! Y'; because the
diagram

is commutative by the definition of the sum of spheroids). The induced cellular chain
maps for all three maps described above are obvious; the cohomology maps act like
this:

X' ! Y'; W a0 7! a; b0
1 7! b; b0

2 7! 0

X ! Y'; W a0 7! a; b0
1 7! 0; b0

2 7! b
X'C ! Y'; W a0 7! a; b0

1 7! b; b0
2 7! b:

We must have .a1/2 D h1b0
1 C h2b0

2, where h1; h2 2 Z. By the naturalness of the
cup-product,

a2 D h1b in X'; a2 D h2b in X ; a2 D .h1 C h2/b in X'C :

On the other hand,

a2 D h.'/b in X'; a2 D h. /b in X ; a2 D h.' C  /b in X'C :

Hence, h1 D h.'/; h2 D h. /; h1 C h2 D h.' C  /, from which h.' C  / D
h.'/C h. /.

Proof of Lemma 2. Consider the product S2n � S2n. Its cohomology is H2n.S2n �
S2nIZ/ D Z˚Z (the generators c1; c2) and H4n.S2n�S2nIZ/ D Z (the generator d).
The multiplication: c21 D c22 D 0 (proof: Consider the projections S2n � S2n ! S2n/

and c1c2 D d (follows from step 2 of the proof in Sect. 16.3 plus the definition of
the cup-product in Sect. 16.2).

Make a factorization of S2n � S2n using the relation .x0; x/ � .x; x0/ for all
x 2 S2n, where x0 is the zero-dimensional cell of S2n. That is, we glue to each
other the two two-dimensional cells of S2n � S2n. The resulting space X has three
cells, of dimensions 0; 2n, and 4n; that is, it has the form S2n [f D4n, where f is
a certain map S4n�1 ! S2n. Moreover, if we compare this construction with the
definition of the Whitehead product in Sect. 10.5, we notice that this f is nothing
but the canonical spheroid representing the Whitehead product Œ�2n; �2n�. Thus,
X D XŒ�2n;�2n �. The cohomology of X is H2n.XIZ/ D H4n.XIZ/ D Z, and if a; b are
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canonical generators of these cohomology groups, then a2 D h.Œ�2n; �2n�/b. But the
cohomology homomorphism induced by the projection S2n�S2n ! X takes a and b
into c1C c2 and d. Thus, in the cohomology of S2n� S2n, .c1C c2/2 D h.Œ�2n; �2n�/d,
and, since .c1 C c2/2 D c21 C 2c1c2 C c22 D 2d, we have h.Œ�2n; �2n�/ D 2.

Remark 4. As we will see in Chap. 3,�4n�1.S2n/ D Z˚ a finite group. In particular,
�3.S2/ D Z (we already know this), �7.S4/ D Z ˚ Z12; �11.S6/ D Z; �15.S8/ D
Z ˚ Z120. It is also true that all the homotopy groups of spheres are finite besides
�n.Sn/ D Z and �4n�1.S2n/.

Remark 5. Lemma 2 shows that the image of the Hopf homomorphism
hW�4n�1.S2n/ ! Z is either the whole group Z or the group of even integers.
The choice between these two options is reduced to the question: Does �4n�1.S2n/

contain an element with the Hopf invariant one? This question has several
remarkable equivalent statements. For example, it is possible to show that Sm

possesses an H-space structure if and only if m is odd, that is, m D 2n � 1, and
�4n�1.S2n/ contains an element with the Hopf invariant one. The same condition is
necessary and sufficient for the existence in R

mC1 of a bilinear multiplication with a
unique division. The combination of Lemma 2 and Exercise 7 in Lecture 10 shows
that the Hopf invariant of the Hopf class �2 2 �3.S2/ equals 1 (this corresponds to
the complex number multiplication in R

2 or to the natural group structure in S1).
In 1960, J. Adams showed that elements with the Hopf invariant one are contained
only in �3.S2/; �7.S4/, and �15.S8/ (we mentioned his results in Sect. 1.4; we will
discuss two proofs of it: in Chaps. 5 and 6).

16.6 An Addendum: Other Multiplications

A: Homological �-Product

We already mentioned this in the introduction. Its definition corresponds to the
general spirit of this lecture: Singular simplices f1W�n1 ! X1; f2W�n2 ! X2 give
rise to a map f1 � f2W�n1 � �n2 ! X1 � X2; then we triangulate the product
�n1 ��n2 as in the proof of the theorem in Sect. 16.3. Then we define the product
of the singular simplices f1 and f2 the singular chain of X1 � X2, which is the sum
with the coefficients˙1 (the same as in Sect. 16.3) of the singular simplices which
are restrictions of the map f1 � f2 to the .n1 C n2/-dimensional simplices of the
triangulation. This chain is also denoted as f1 � f2. By bilinearity, this �-product

is extended to singular chains:

P

i g1if1i
� �

�
P

j g2jf2j

�

D P

i;j g1ig2j



f1i � f2j
�

(where g1i; g2j are elements of the coefficient ring G). A verification shows that
@.c1 � c2/ D .@c1/ � c2 C .�1/n1c1 � @c2 (where n1 D dim c1). Thus, there arises
a homology multiplication: For ˛1 2 Hn1 .X1IG/; ˛2 2 Hn2 .X2IG/, there is the
product ˛1 � ˛2 2 Hn1Cn2 .X1 � X2IG/. The proof of coincidence of this product
with the homological cross-product described in Sect. 16.1 is a replica of the proof
of the similar cohomological result in Sect. 16.3.



214 2 Homology

EXERCISE 6. Prove that for ˛1 2 Hn1 .X1IG/; ˛2 2 Hn2 .X2IG/; �1 2 Hn1.X1IG/;
�2 2 Hn2 .X2IG/;

h�1 � �2; ˛1 � ˛2i D .�1/n1n2h�1; ˛1ih�2; ˛2i:

B: Cap-Product

This is a mixed operation involving both homology and cohomology. Let a D
P

i gifi 2 Cn1 .XIG/; c 2 Cn2 .XIG/, where n1 � n2. Put

a _ c D
X

i

gic




n2�
�



n1�n2C 2 Cn1�n2 .XIG/

(we use the notation introduced in Sect. 16.2).

EXERCISE 7. Prove the formula

.@a/ _ c D a _ ıcC .�1/n2@.a _ c/:

EXERCISE 8. Deduce from this that if a is a cycle representing a homology class
˛ 2 Hn1 .XIG/ and c is a cocycle representing a cohomology class � 2 Hn2 .XIG/,
then a _ c is a cycle whose homology class is fully determined by ˛ and � .

In the notation of Exercise 9, the homology class of a _ c is denoted as ˛ _ � .
Thus, we get the cap-product

Œ˛ 2 Hn1 .XIG/; � 2 Hn2 .XIG/� 7! ˛ _ � 2 Hn1�n2 .XIG/:

EXERCISE 9. Prove that if n1 D n2 and X is connected, then ˛ _ � D h�; ˛i 2
G D H0.XIG/.
EXERCISE 10. Prove the “mixed associativity”: ˛ _ .�1 ^ �2/ D .˛ _ �1/

_ �2.

EXERCISE 11. Prove the naturalness of the cap-product: If ˛ 2 Hn1 .XIG/; � 2
Hn2 .YIG/, and f WX ! Y is a continuous map, then .f�˛/ _ � D f�.˛ _ f ��/.

C: Pontryagin–Samelson Multiplication

EXERCISE 12. Prove that if n1; n2 are positive integers, then there is no way to
introduce for all X a nonzero bilinear multiplication

Hn1 .XIG/ �Hn2 .XIG/! Hn1Cn2 .XIG/
natural with respect to continuous maps.
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However, it is possible to define a multiplication in homology groups of X if X
itself possesses a multiplication making it a topological group or, at least, an H-
space. The definition is obvious: If 	WX � X ! X is the multiplication in X and
˛1 2 Hn1 .XIG/; ˛2 2 Hn2 .XIG/ where G is a ring, then ˛1˛2 D 	�.˛1 � ˛2/.
This product is called the Pontryagin–Samelson product. We have no opportunity
to discuss this product in detail, but we recommend to the reader, after reading
Chap. 3, to return to this product and to calculate it for the homology groups of
major topological groups and H-spaces.

Final Remark. All multiplications considered in this lecture can be generalized, in
an obvious way, from the case of ring coefficients to the case when there is a pairing
G1 � G2 ! G, the factors lie in the homology/cohomology with coefficients in
G1 and G2, and the product belongs to the homology/cohomology with coefficients
in G.

Lecture 17 Homology and Manifolds

Among the natural computational tools used by homology theory, the most efficient
ones are delivered by the topology of smooth manifolds, and we cannot help
considering this subject. However, the foundations of the theory of manifolds, rooted
in geometry and analysis, require a thick volume by themselves. The most common
way to overcome this difficulty is to replace the notion of a smooth manifold by
various combinatorial substitutes like homology manifolds or pseudomanifolds (see
Sects. 17.2 and 17.3 ahead). By doing this, we can achieve a rigor of the proofs at
the expense of geometric visuality. To compensate for the latter, we will sometimes
provide geometric explanations based on statements which are easy to believe, but
not always easy to prove.

We begin with a short sightseeing tour in the theory of smooth manifolds.

17.1 Smooth Manifolds

A Hausdorff topological space with a countable base of open sets (these topological
assumptions are not in the spirit of this book, but we have to impose them, since
without them many statements that follow would be plainly wrong) is called an n-
dimensional (topological) manifold if every point of it possesses a neighborhood
homeomorphic to the space R

n or the half-space R
n� D f.x1; : : : ; xn/ 2 R

n j
xn � 0g. A point of an n-dimensional manifold X which has no neighborhood
homeomorphic to R

n is called a boundary point. Boundary points of X form an
.n � 1/-dimensional manifold @X called the boundary of X. Obviously, @X is a
manifold without boundary: @@X D ;.
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Examples of manifolds: Euclidean spaces, spheres, balls, classical surfaces, pro-
jective spaces, Grassmann manifolds, flag manifolds, Lie groups, Stiefel manifolds,
products of the spaces listed above, open sets in these spaces, closed domains with
smooth boundaries in these spaces, and so on.

A homeomorphism between R
n or Rn� (or an open set in one of these spaces) and

an open set U in a manifold X determines coordinates in U which are called local
coordinates. If the domains U;V of local coordinate systems f WU ! R

n
.�/; gWV !

R
n
.�/ (also called charts) overlap, then there arises a transition map

f .U \ V/
f �1

��! U \ V
g��! g.U \ V/

\ \
R

n
R

n;

which is described by usual functions of n variables. These functions can be smooth
(as usual in topology, we understand the word smooth as belonging to the class
C1), analytic, algebraic, etc. A set of charts which cover the manifold is called
an atlas. An atlas is called smooth (analytic) if such functions are all transition
functions between charts of this atlas. Two smooth (analytic) atlases are called
smoothly (analytically) equivalent if their union is smooth (analytic) atlas. A class
of equivalent smooth (analytic) atlases is called a smooth (analytic) structure on
a manifold. A manifold with a smooth (analytic) structure is called a smooth
(analytic) manifold. The boundary of a smooth (analytic) manifold is, in a natural
way, a smooth (analytic) manifold. In the following, we will not consider analytic
manifolds any seriously.

All manifolds listed above possess a natural smooth structure. Add one more
example: Smooth surfaces in a Euclidean space, that is, closed subsets of Rm locally
determined by systems of equations

fi.x1; : : : ; xm/ D 0; i D 1; : : : ; k

and, possibly, one inequality

fkC1.x1; : : : ; xm/ � 0;

where f1; : : : ; fk .; fkC1/ are smooth functions whose gradients in their common
domain are linearly independent.

There are two fundamental theorems in the theory of smooth manifolds (also
called differential topology).

Theorem 1. Every smooth manifold is diffeomorphic (that is, homeomorphic with
preserving the smooth structure) to a smooth surface in an Euclidean space.

Theorem 2. Every compact smooth manifold is homeomorphic to a triangulated
subset of an Euclidean space, and the homeomorphism can be made smooth on
every simplex of the triangulation.
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Remarks. (1) In both theorems, the dimension of the Euclidean space can be as
small as twice the dimension of the manifold.

(2) Theorem 2 also holds for noncompact manifolds, but the triangulation in this
case has to be infinite.

We do not prove these theorems. Theorem 1 is proved in many textbooks in
differential topology. Its proof is not hard. The situation with Theorem 2 is worse.
Since the 1920s, the topologist regarded this fact as obvious. There are many
geometric approaches to this result which look promising. For example, take a
compact smooth surface in an Euclidean space and decompose this space into a
union of small cubes. If the decomposition satisfies some general position condition
with respect to the surface, we can expect that the intersections of the surface
with the cubes will be close to convex polyhedra and we can easily triangulate
these polyhedra. Or, choose a random finite subset of the smooth surface which is
sufficiently dense, and take the Dirichlet domain; again we should get a subdivision
of the surface into smooth polyhedra. However, numerous attempts to make this
proof rigorous turned out to be unsuccessful. The first flawless proof of this theorem
(actually, of a stronger relative result) was given in the 1930s by H. Whitney. This
proof was based on entirely different ideas and did not look easy. We know two
textbook presentations of this proof, in the books Whitney [89] and Munkres [64].

EXERCISE 1. Construct a realization as smooth surfaces in Euclidean spaces of
projective spaces, Grassmann manifolds, flag manifolds, and Stiefel manifolds.

EXERCISE 2. Prove that all classical surfaces can be presented as smooth surfaces
in R

n with n � 4.

EXERCISE 3. Construct smooth triangulations of classical surfaces; try to minimize
the number of simplices needed.

EXERCISE 4. Prove that the number of n-dimensional simplices adjacent to an
.n� 1/-dimensional simplex of a smooth triangulation of an n-dimensional smooth
manifold is 2 if this .n � 1/-dimensional simplex is not contained in the boundary,
and is 1 otherwise.

EXERCISE 5 (a generalization of Exercise 4). Let s be a k-dimensional simplex of a
smooth triangulation of an n-dimensional smooth manifold. Consider the simplices
of the triangulation which contain s, and in each of these simplices take the face
opposite s (that is, spanned by the vertices not belonging to s). Prove that the union
of these faces (which is called the link of the simplex s) is homeomorphic to Sn�k�1
if s is not contained in the boundary and is homeomorphic to Dn�k�1 otherwise. (For
a warmup, begin with the case when n D 3 and k D 1.)

Remark. The notion of a link will be used later, so the reader who is not interested
in this exercise still has to understand the definition of a link.

An atlas of a smooth manifold is called oriented if for every two overlapping
charts the transition map has a positive determinant at every point. Two oriented
atlases determine (belong to) the same orientation if their union is an oriented atlas.
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A manifold is called orientable (oriented) if it possesses (is furnished by) an
oriented atlas, that is, an orientation.

EXERCISE 6. Which projective spaces and Grassmann manifolds are orientable?
(Answer: Only real projective spaces and Grassmann manifolds can be nonori-
entable. Namely, RPn is orientable if and only if n is odd, and G.n; k/ is orientable
if and only if n is even.)

EXERCISE 7. Prove that spheres with handles are orientable and projective planes
and Klein bottles are nonorientable; drilling holes does not affect the orientability.

EXERCISE 8. Prove that a connected orientable manifold of positive dimension has
precisely two orientations.

EXERCISE 9. Prove that every connected chart of an orientable manifold can be
included in an oriented atlas; thus, if an orientable manifold is connected, then every
connected chart determines an orientation.

EXERCISE 10. Prove that a manifold is orientable if and only if a neighborhood of
every closed curve on this manifold is orientable.

EXERCISE 11. Prove that every simply connected manifold is orientable.

EXERCISE 12. Prove that every connected nonorientable manifold possesses an
orientable twofold covering.

EXERCISE 13. Prove that the boundary of an orientable manifold is orientable.

It is also possible to define orientations using the language of triangulations. An
orientation of an n-dimensional simplex is the order of its vertices given up to an
even permutation. An orientation of an n-dimensional simplex induces orientations
of its .n� 1/-dimensional faces (using an even permutation of the order of vertices,
we make the number of the vertex complementary to the face to be n, after which
we orient the face by the order of remaining vertices). (Some modification is needed
in the cases of n D 0; 1: An orientation of a zero-dimensional simplex is just
C or �, the orientation of faces v0 and v1 of a one-dimensional simplex Œv0; v1�
are � and C.) If two n-dimensional simplices share an .n � 1/-dimensional face,
then their orientations are coherent if they induce opposite orientations on this
face. A triangulated n-dimensional manifold is orientable if all its n-dimensional
simplices can be coherently oriented.

EXERCISE 14. An orientation of a connected orientable n-dimensional manifold
is determined by an orientation of any of its n-dimensional simplices. [It may be
reasonable to do this exercise after reading (the beginning of) the next section.]
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17.2 Pseudomanifolds and Fundamental Classes

Definition. A triangulated space X is called an n-dimensional pseudomanifold if it
satisfies the following three axioms.

1 (Dimensional homogeneity). X is the union of its n-dimensional simplices.
2 (Strong connectedness). For any two n-dimensional simplices s; s0 of X, there

exists a finite chain of n-dimensional simplices, s0; s1; : : : ; sk, such that s0 D
s; sk D s0, and for every i D 1; : : : ; k, the simplices si�1; si share an .n � 1/-
dimensional face.

3 (Nonbranching property). Every .n � 1/-dimensional simplex of X is a face of
precisely two n-dimensional simplices of X.

If X is a connected smooth n-dimensional manifold without boundary furnished
with a smooth triangulation, then the triangulation obviously satisfies Axiom 1,
satisfies Axiom 3 as stated in Exercise 4, and satisfies Axiom 2 as stated in Exercise
below.

EXERCISE 15. Prove that a smoothly triangulated smooth connected manifold
without boundary is strongly connected (see Axiom 2). [All we need to establish is
that two interior points of n-dimensional simplices can be joined by a path avoiding
an .n � 2/-dimensional skeleton.]

Thus, a smoothly triangulated connected smooth manifold without boundary
is a pseudomanifold. The converse is wrong: A pseudomanifold is not always a
manifold. See the simplest example in Fig. 66.

There are fewer artificial examples of pseudomanifolds topologically different
from manifolds: complex algebraic varieties, and Thom spaces of vector bundles
(these will be extensively studied later, in Lecture 31 and further lectures).

Fig. 66 A pseudomanifold which is not a manifold (a pinched torus)
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An orientation of a pseudomanifold is defined as in the end of the previous
section (Exercise 14 is also applied to this case). If a pseudomanifold is a manifold,
then an orientation of this pseudomanifold is the same as an orientation of the
manifold (in the sense of Sect. 17.1).

Theorem. Let X be an n-dimensional pseudomanifold. Then

Hn.X/ D
�

Z; if X is compact and orientable;
0 otherwiseI

Hn.XIZ2/ D
�

Z2; if X is compact;
0 otherwise:

Proof. We consider the classical complex fCn.X/; @ng, corresponding to an arbitrary
ordering of vertices (see Sect. 13.10). Since CnC1.X/ D 0, Hn.X/ D Zn.X/, the
group of n-dimensional cycles of the classical complex. Let c D P

i kisi be such a
cycle (ki are integers, si are n-dimensional simplices). If the simplices si and sj share
an .n�1/-dimensional face, then this face does not belong to any other simplex, and
@c D 0 implies ki D ˙kj (the sign depends on the orientations). Since X is strongly
connected, this shows that c involves all n-dimensional simplices of X, with all the
coefficients of the form ˙k, where k is a nonnegative integer, the same for all the
simplices. From this we immediately see that if the number of simplices is infinite,
then there are no nonzero cycles, and Hn.X/ D 0. If the number of simplices is
finite, then let us reverse the orientations of simplices with a negative value of the
coefficient. Since c is a cycle, these new orientations induce opposite orientations
on every .n � 1/-dimensional face; that is, they are coherent. We see that a nonzero
cycle exists if and only if X is orientable. This proves our result for Hn.X/. The
case of Z2-coefficients is similar, but it does not involve signs, and hence does not
involve orientations.

This proof provides a canonical generator for the group Hn.X/ for a compact
oriented pseudomanifold X: This is the homology class of the cycle, which is the
sum of all n-dimensional simplices of X with orientations compatible with the
orientation of X and with the coefficients all equal to 1. This homology class is
called the fundamental class of X (and the cycle is called the fundamental cycle).
In the orientation-free case, we have fundamental classes and fundamental cycles
with coefficients in Z2 (certainly, only for compact pseudomanifolds). Notation:
ŒX� 2 Hn.X/ or Hn.XIZ2/.

Since connected smooth manifolds without boundary are pseudomanifolds, the
preceding theorem holds for them. In particular, for compact connected smooth
manifolds without boundary there are fundamental classes. (It is time to mention
a broadly used term: A compact manifold without boundary is called closed.) This
has an obvious generalization to the disconnected case: For a closed oriented n-
dimensional manifold X; Hn.X/ D L

˛ Hn.X˛/, where X˛ are components of X,
and ŒX� is simply fŒX˛�g.
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EXERCISE 16. Prove that if X is a connected n-dimensional manifold with
nonempty boundary, then Hn.X/ D Hn.XIZ2/ D 0.

EXERCISE 17. Prove that if X has a boundary, then the same construction as above
gives a class ŒX; @X� 2 Hn.X; @X/ or Hn.X; @XIZ2/ and @�ŒX; @X� D Œ@X�.

EXERCISE 18. Prove the relation ŒX1 � X2� D ŒX1� � ŒX2� in all possible versions
(including the boundary one).

EXERCISE 19. Prove that for any homology class ˛ 2 Hn.Y/ of an arbitrary
topological space Y there exists a compact oriented (not necessarily connected)
pseudomanifold X and a continuous map f WX ! Y such that f�ŒX� D ˛. Prove
a similar statement for an ˛ 2 Hn.YIZ2/ and nonoriented pseudomanifolds.
(Actually, the Z2-case is easier, and so it may be advisable to begin with it;
a construction in Sect. 13.11 may serve as a pattern for both the oriented and
nonoriented cases.)

There arises a natural question regarding the possibility to present a homology
class of a topological space as an image of the fundamental class of a manifold. The
answer is negative, for homology classes with coefficients in Z as well as for those
with coefficients in Z2. We will return to the discussion of this in the last lecture of
this book.

A more popular question arises in the topology of manifolds: If Y is a manifold
and ˛ 2 Hn.Y/, then when is it possible to find a closed oriented n-dimensional
submanifold X of Y (we assume that the reader understands what it is) such that
the homomorphism induced by the inclusion map sends ŒX� into ˛ (as people say,
X realizes ˛)? Again, a similar question exists for the Z2 homology classes and
nonoriented submanifolds. There are many remarkable results regarding submani-
fold realizations; for example, for any homology class ˛ of a manifold, there exists a
number N such that N˛ can be realized by a submanifold. (For this result and other
results, see the classical paper by Thom [84].)

EXERCISE 20. Prove that the generators of groups

Hm.RPnIZ2/; Hm.RPn/; H2m.CPn/; H4m.HPn/

are realized by projective subspaces of RPn; CPn; HPn. (Compare also to Exer-
cise 11 in Lecture 14.)

Mention in conclusion that if X;Y are oriented pseudomanifolds of the same
dimension, and f WX ! Y is a continuous map, then f�ŒX� D k � ŒY�, where k is an
integer. This k is called the degree of f and is denoted as deg f ; it is a homotopy
invariant. In the nonoriented case, the degree deg f may be defined as an element
of Z2. We have already had this notion in the particular case X D Y D Sn (see
Sects. 10.3 and 13.3). In the manifold case, there exists a description of the degree
similar to the description given in Sect. 10.3 for spheres; we formulate the result in
the form of an exercise.
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EXERCISE 21. Let f WX ! Y be a (piecewise) smooth map between two closed
oriented n-dimensional manifolds, and let yWY be a regular value of this map. Then
there is a neighborhood U of y such that f �1.U/ is a disjoint union of a finite
collection of sets Ui with all restrictions f jUi

being homeomorphisms Ui ! U.
Prove that deg f is the number of i for which this homeomorphism preserves the
orientation minus the number of i for which it reverses the orientation.

17.3 Homology Manifolds

The most general definition of a homology manifold is formulated in terms of local
homology: For a topological space X, its mth local homology at the point x0 2 X is
defined as Hloc

m;x0 .X/ D Hm.X;X � x0/.

Definition. A space X is called an n-dimensional homology manifold if, for any m,
Hloc

m;x0
.X/ D eHm.Sn/, that is,

Hloc
m;x0 .X/ D

�

Z; if m D n;
0; if m ¤ n:

:

For us, the most important will be the case when X is triangulated. Recall that the
star St.s/ of a simplex s of triangulation is the union of simplices that contain s. The
link Lk.s/ is the union of faces of simplices that contain s opposite to s. Figure 67
shows examples of stars and links of a vertex and a one-dimensional simplex of the
standard triangulation of the plane.

Proposition 1. (1) A triangulated space X is an n-dimensional homology manifold
if and only if for every vertex v of X, the link Lk.v/ is a homological .n � 1/-
dimensional sphere (that is, has the same homology groups as Sn�1).

(2) A triangulated space X is an n-dimensional homology manifold if and only if
for every simplex s of X, the link Lk.s/ is a homological .n�k�1/-dimensional
sphere where k D dim s.

Star

Star

Link

Link

Fig. 67 Stars and links
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Proof. Open stars of vertices, st.v/ D St.v/� Lk.v/, for an open cover of X. Also,
St.v/ is a cone over Lk.v/ with the vertex v. Thus, if x0 2 st.v/, then

Hloc
m;x0
.X/ D Hm.X;X � x0/ D Hm.X;X � st.v//

D Hm.St.v/;Lk.v// D eHm�1.Lk.v//

[the four equalities follow from the definition of local homology, homotopy
invariance of homology, excision theorem, and reduced homology sequence of the
pair .St.v/;Lk.v//]. This proves (1).

To prove (2), notice that for a simplex s, St.s/ D s 	 Lk.s/. Hence, for every
interior point x0 of s,

Hloc
m;x0 .X/ D Hm.X;X � x0/ D Hm.s 	 Lk.s/; .@s/ 	 Lk.s//

D eHm�1..@s/ 	 Lk.s// D eHm�1.†k Lk.s// D eHm�k�1.Lk.s//;

where k D dim s. This proves (2).

Proposition 2. Every connected n-dimensional homology manifold is an
n-dimensional pseudomanifold.

Proof. Let X be an n-dimensional homology manifold. Since the link of every
vertex of X is an .n � 1/-dimensional homological sphere, this link contains
simplices of dimension� n� 1; hence, every vertex is a vertex of an n-dimensional
simplex. There cannot be simplices of dimension > n, because the link of every n-
dimensional simplex must be empty (homological S�1). Every simplex of dimension
< n must have a nonempty link, so it must be a face of a simplex of a bigger
dimension. Hence, X must be the union of n-dimensional simplices (dimensional
homogeneity axiom holds). The link of an .n�1/-dimensional simplex s consists of
isolated points, one for every n-dimensional simplex containing s; since the link is a
homological S0, this number is 2 (unbranching axiom holds). A path connecting two
points of X can be made straight within every simplex; since the links of simplices
of dimension � n � 2 are connected, the path can be pushed from every point of a
simplex of dimension � n � 2 to simplices of bigger dimensions. Hence, there is a
path disjoint from the .n � 2/nd skeleton of X (the strong connectedness holds).

Remark 1. Proposition 2 shows that everything said in Sect. 17.2 about pseudomani-
folds can be applied to homological manifolds. In particular, homological manifolds
can be orientable or nonorientable, there are fundamental cycles and classes, and the
theorem of Sect. 17.2 holds for a connected homology manifold.

Remark 2. This argumentation shows a difference between pseudomanifolds and
homology manifolds. While in homology manifolds all links are homological
spheres of appropriate dimensions, in n-dimensional pseudomanifolds this holds
for links of simplices of dimensions n and n� 1. Add to that that a pseudomanifold
in Fig. 66 is not a homology manifold.
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Remark 3. A smooth manifold without boundary is a homology manifold (and in the
smooth case, links are homeomorphic to spheres, not just are homological spheres).

Remark 4. A homology manifold is not always a topological manifold. For example,
there are manifolds with the same homology as a sphere, but not simply connected
(the best known example is the Poincaré sphere defined in S5 D f.z1; z2; z3/ 2 C

3 j
jz1j2 C jz2j2 C jz3j2 D 1g by the equation z51 C z32 C z23 D 0). The suspension
over such a manifold is a homology manifold, but no neighborhoods of vertices are
homeomorphic to a Euclidean space.

17.4 Poincaré Isomorphism

The main result of the homological theory of manifolds is the following:

Theorem. Let X be a compact n-dimensional homology manifold, and let
0 � m � n. If X is orientable, then for any G,

Hm.XIG/ Š Hn�m.XIG/:

In the general case,

Hm.XIZ2/ Š Hn�m.XIZ2/:

In both cases, there are canonical isomorphisms

DWHn�m.XIG/! Hm.XIG/

which act by the formula D.˛/ D ŒX� _ ˛, where ŒX� is the fundamental class (see
Sect. 17.2) and _ denotes the cap-product (see Sect. 16.6).

Remarks. (1) The isomorphism D is usually referred to as the Poincaré isomor-
phism.

(2) By Remark (3) in Sect. 17.3, the theorem holds for closed (compact and
boundary-less) smooth manifold.

The proof of the theorem will consist of two parts: First we will give (the
most classical) construction of Poincaré isomorphism, and then we will prove
the formula involving the cap-product. This formula will show, in particular, that
the isomorphism provided by the classical construction does not depend on the
triangulation.

For a simplex s of the triangulation of X, denote as Bast.s/ the union of all
simplices of the barycentric triangulation whose intersection with s is the center
of s. Using the fact that the simplices of the barycentric triangulation correspond to
the increasing chains s0 � � � � � sj of the initial triangulation, we can describe
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Fig. 68 Barycentric stars

Bast.s/ as the union of simplices of barycentric triangulation corresponding to
chains as above with s0 D s. Obviously, Bast.s/ is the union of its simplices of
the maximal dimension, n � k (where k D dim s), that is, simplices corresponding
to chains s D s0 � s1 � � � � sn�k with dim si D k C i. This important that
dim Bast.s/ D n � dim.s/.

The reader may see in Fig. 68 (where n D 2) what barycentric stars look like.
Barycentric stars of vertices are polyhedra of dimension 2 (“centered” at these
vertices), barycentric stars of one-dimensional simplices have dimension 1, and
barycentric stars of two-dimensional simplices are centers of these simplices (this
is true for any dimension n: The barycentric star of an n-dimensional simplex is
its center).

Besides barycentric stars, there are barycentric links: For a simplex s, Balk.s/
is the union of faces of barycentric simplices in Bast.s/ opposite the center of s.
Obviously, Bast.s/ is the cone over Balk.s/ and Balk.s/ is homeomorphic to Lk.s/
(the reader who has any doubt can observe all this in Fig. 68). Also, there are open
barycentric stars, bast.s/ D Bast.s/ � Balk.s/: Obviously, X is a disjoint union of
open barycentric stars of all its simplices.

If X is a homology manifold, then

Hm.Bast.s/;Balk.s// D Hm.C.Balk.s//;Balk.s//
D eHm�1.Balk.s// D eHm�1.Lk.s//

D
�

Z; if m D n � dim.s/;
0 otherwise

In other words, although the decomposition of X into open barycentric cells is not
necessarily a CW structure, still it can be used for computing homology in the
same way. We can define “skeletons” skm

bast.X/ as unions of barycentric stars of
dimensions� m (that is, barycentric stars of simplices of dimensions� n�m), and
the complex fCbast

m .X/; @mg, where



17.4 Poincaré Isomorphism 227

Cbast
m .X/ D Hm.skm

bast.X/; skm�1
bast .X//;

@m D @�WHm.skm
bast.X/; skm�1

bast .X//! Hm�1.skm�1
bast .X/; skm�2

bast .X//;

has homology equal to that of X.
Our next remark is that if the homology manifold X is oriented, then there exists

a natural way to establish a correspondence between orientations of a simplex s and
of the barycentric star Bast.s/. Namely, let the orientation of s be determined by an
order of its vertices, v0; v1; : : : ; vk. Consider an .n � k/-dimensional (barycentric)
simplex u belonging to Bast.s/; it corresponds to a sequence s D s0 � � � � � sn�k

with dim si D k C i. For i D 1; : : : ; n � k, let vkCi be the vertex of si not belonging
to si�1. Then v0; : : : ; vk; vkC1; : : : ; vn is the full set of vertices of the n-dimensional
simplex sn�k, and we assign to u the orientation determined by the order vk; : : : ; vn

of its vertices if the order v0; : : : ; vn of vertices of the simplex vn�k determines the
orientation of vn�k compatible with the orientation of X, and we assign the opposite
orientation otherwise. If the simplex u shares an .n � k � 1/-dimensional face with
another simplex u0 � Bast.s/, then u0 corresponds to a sequence s D s0 � : : : sj�1 �
s0

j � sjC1 � � � � sn�k with s0
j ¤ sj. If j < n � k, then the simplex sn�k stays the

same, but the vertices vj; vjC1 are swapped; thus, the orientation of u0 is determined
by the order of vertices v0; : : : ; vjC1; vj; : : : ; vn�k only if the orientation of u is not
determined by the order of vertices v0; : : : ; vj; vjC1; : : : ; vn�k; their common .n �
k � 1/-dimensional face has the vertices v0; : : : ; vj�1; vjC1; : : : ; vn�k, and it obtains
opposite orientations from u and u0. The case j D n � k is similar: In this case
s0

n�k ¤ sn�k, the simplices s0
n�k and sn�k have a common .n � 1/-dimensional face,

let it be t, and t obtains opposite orientations from sn�k and s0
n�k. The orientations of

the common face of u and u0 are determined by the orientations of s and t (precisely
as the orientation of u is determined by the orientations of s and sn�k) and thus they
are also opposite each other.

Cbast
n�k.XIG/ is the group of linear combinations

P

i gi Bast.si/ where the summa-
tion is taken over oriented k-dimensional simplices si and gi 2 G. If X is a compact
oriented n-dimensional homology manifold, consider an isomorphism

DWCk
class.XIG/! Cbast

n�k.XIG/; D.s�/ D Bast.s/;

where s� is a k-dimensional cochain of the classical complex of X which takes value
1 on s and value 0 on every other k-dimensional simplex, and the orientations of s
and Bast.s/ are compatible as above. Fact: For a cochain c 2 Ck

class.XIG/,

D.ıc/ D .�1/k@D.c/ (	)

(see ahead). This shows that D established a dimension-reversing isomorphism
between cohomology and homology of X; this is Poincaré isomorphism (also
denoted by D).
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It remains to establish two facts: the relation (	) and the relation D.˛/ D
ŒX� _ ˛. Begin with the first. The boundary of Bast.s/ 2 Cbast

n�k.X/ consists of
barycentric simplices lying in Balk.s/ [faces inside Bast.s/ are cancelled as follows
from the preceding argumentations regarding the orientations]. The face of the
barycentric simplex corresponding to the sequence s D s0; s1; : : : ; sn�k lying in
Balk.s/ corresponds to the sequence s1; : : : ; sn�k and thus is contained in Bast.s1/.
In this way, we see that Bast.s1/ is contained in the boundary of Bast.s/ if and
only if s is a face of s1. The coefficient is .�1/k (this requires comparing the
orientations, which we leave to the reader). Now, go to the second relation. Let
bX be the barycentric subdivision of X with the ordering of vertices described in
Sect. 13.10, and let c 2 Ck

class.bXIG/ and ŒX� be the fundamental cycle of bX. The
cellular map idWX ! bX induces a map

id#WCk
class.bXIG/! Ck

class.XIG/;

and the cochain id# c takes on a k-dimensional simplex s of X on s, the value equal
to the sum of the values, with appropriate signs, of c of k-dimensional simplices of
bX contained in s. On the other hand, the chain ŒbX� _ c is the sum of faces of
n-dimensional simplices of bX spanned by the last vertices (see the definition of _
in Sect. 16.6). These are simplices in barycentric stars of k-dimensional simplices of
X; each barycentric star of s appears in ŒX� _ c with the coefficient equal to the sum
of values of c on the barycentric parts of s, that is, to id# c.s/. Thus, id#.D.id# c// D
ŒbX� _ c, where the last id# is

id#WCbast
n�k.bXIG/! Cclass

n�k .XIG/:

This finishes the proof in the oriented case. In the nonoriented case everything is the
same with the usual simplification—we do not need to care about orientations and
signs (since the coefficient group is Z2).

Corollary. The Euler characteristic of a closed homology manifold of odd dimen-
sion equals 0.

For the proof, it is more convenient to use Poincaré isomorphism with coeffi-
cients in Z2, since it also holds in the nonorientable case. If n D dim X, then

�.X/ DPm.�1/m dimZ2 Hm.XIZ2/ DPm.�1/m dimZ2 Hn�m.XIZ2/
DPm.�1/m dimZ2 Hn�m.XIZ2/ DPm.�1/n�m dimZ2 Hm.XIZ2/
D .�1/nPm.�1/m dimZ2 Hm.XIZ2/ D ��.X/:
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17.5 Intersection Numbers and Poincaré Duality

The results of Sect. 15.5 give the possibility to restate Poincaré isomorphisms
between homology and cohomology as (noncanonical) isomorphisms between
homology and homology. Namely,

Hm.XIZ2/ Š Hn�m.XIZ2/
for an arbitrary n-dimensional homology manifold X and

Free Part of Hm.X/ Š Free Part of Hn�m.X/

Torsion Part of Hm.X/ Š Torsion Part of Hn�m�1.X/

in the oriented case. It turns out that these noncanonical isomorphisms reflect a
very canonical duality called Poincaré duality which is much more classical than
Poincaré isomorphisms. We will postpone (until Sect. 17.7) a discussion of torsion
parts and concentrate our attention on the free parts of homology groups.

Poincaré duality is based on the notion of the intersection number. Let c1 D
P

i ki Bast.si/ be some m-dimensional chain of the barycentric star complex of some
compact triangulated oriented n-dimensional homology manifold X, and let c2 D
P

j `jsj be some .n � m/-dimensional chain of the classical complex of X. Thus,
both summations are taken over the set of .n�m/-dimensional simplices of X. The
integer

�.c1; c2/ D
X

i

ki`i D hD�1c1; c2i

is called the intersection number of c1 and c2. It follows from the last formula
and the properties of Poincaré isomorphism that the intersection number of two
cycles depends only on the homology classes of these cycles, and we can speak of
intersection numbers of homology classes: If ˛1 2 Hm.X/ and ˛2 2 Hn�m.X/,
then �.˛1; ˛2/ D hD�1˛1; ˛2i; or �.˛1; ˛2/ D ˛2 _ D�1˛1 2 H0.X/ D Z

(see Exercise 10 in Sect. 16.6). Differently, the homology invariance of intersection
numbers can be deduced from the formula �.@c1; c2/ D �.c1; @c2/, which follows,
in turn, from relation (	) in Sect. 17.4:

�.@c1; c2/ D hD�1@c1; c2i D hıD�1c1; c2i D hD�1c1; @c2i D �.c1; @c2/:

Another interesting relation arises from the “mixed associativity” of cup- and cap-
products (see Exercise 11 in Sect. 16.6):

�.˛1; ˛2/ D ˛2 _ D�1˛1 D .ŒX� _ D�1˛2/ _ D�1˛1
D ŒX� _ .D�1˛2 ^ D�1˛1/ D D.D�1˛2 ^ D�1˛1/:
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This provides a more symmetric definition of the intersection number, which
implies, in particular [in view of commutativity relation for the cup-product; see
the theorem in Sect. 16.2, part (2)], the commutativity relation

�.˛1; ˛2/ D .�1/m.n�m/�.˛2; ˛1/ .˛1 2 Hm.X/; ˛2 2 Hm�k.X//:

In the nonoriented case, the intersection number can be defined for cycles and
homology classes modulo 2; they take values in Z2. It is also possible to define
“intersection numbers” corresponding to an arbitrary pairing G1 �G2 ! G.

A remarkable property of the intersection numbers is their geometric visualiz-
ability. A simplex and its barycentric star transversely intersect each other at one
point, so the intersection number of two cycles may be regarded as the number of
their intersection points taken with the signs determined by their orientations. This
statement has a convenient differential statement.

Theorem 1. Let X be a smooth closed oriented n-dimensional manifold, and let
˛1 2 Hm.X/; ˛2 2 Hn�m.X/. Let Y1 and Y2 be closed oriented submanifolds of
X of dimensions m and n � m which realize ˛1 and ˛2 in the sense that ˛1 D
.i1/�ŒY1� and ˛2 D .i2/�ŒY2� where i1; i2 are inclusion maps. We assume also that
Y1;Y2 are in general position (which means that they intersect in finitely many points
and transverse to each other at each of these points). We assign a sign to every
intersection point: plus if the orientations of Y1 and Y2 (in this order) compose the
orientation of X at this point, and minus otherwise. Then the intersection number
�.˛1; ˛2/ equals to the number of the intersection points of Y1 and Y2 counted with
the signs described above.

Similar statements hold for homology classes modulo 2 (in which case no
orientation is needed) and for manifolds with pseudomanifold-like singularities
(away from the intersection points).

As usual (see the warning in the beginning of this lecture), we do not give a
rigorous proof of these statements; but from the point of view of common sense
they are obvious. We can make the simplices of a triangulation of X much smaller
than the distances between the intersection points of Y1 and Y2 and then approximate
Y1 and Y2 by cycles of, respectively, classical and barycentric star complexes. Then
the statements become obvious.

Notice that the general position condition is not really harmful: We can make the
position of Y1 and Y2 general by a small perturbation of one of those.

Example. Natural generators yr; yn�r of the groups H2r.CPn/; H2.n�r/.CPn/ have
the intersection number 1. Indeed, they are realized by projective subspaces
CPr;CPn�r of CPn which (in the general position) intersect in one point. Regarding
the sign, we will make an important remark. If X is a complex manifold, that
is, its charts are maps into C

n and the transition maps are holomorphic, then
X possesses a natural, “complex,” orientation. The matter is that the Jacobian
of a holomorphic map C

n ! C
n regarded as a smooth map R

2n ! R
2n is

equal to the square of the absolute value of the complex Jacobian and, hence,
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Δ

Δ∗

Fig. 69 Dual Young diagrams

is always positive. Moreover, if Y1;Y2 are complex (that is, locally determined
by holomorphic equations) submanifolds of X of complementary dimensions in
a general position, then every point in Y1;Y2 contributes C1 into the intersection
number of the homology classes. Thus, �.yr; yn�r/ D 1, not �1.

EXERCISE 22. Let � be a Young diagram inscribed into a rectangle k � .n � k/,
and let �� be the “dual” Young diagram obtained from the complement of � in
the rectangle by the reflection in the center of the rectangle (see Fig. 69). Then
the intersection number of the homology classes of CG.n; k/ corresponding to the
Young diagrams �;�0 (see Sects. 5.4.C and 13.8.C) is 1 if �0 D �� and is 0
otherwise. (The same is true for modulo 2 intersection numbers for real Grassmann
manifolds; the proof is the same).

The fact that the intersection number of two cycles depends only on the
homology classes of these cycles is often used in solving geometric problems. Of a
huge set of problems of this kind we give two.

EXERCISE 23. Prove that on any smooth closed orientable surface in R
4 D C

2,
there exist at least two different points for which the tangent planes are complex
lines. (Hint: The orientation takes care of the existence of more than one such point.)

EXERCISE 24. Prove that if X1;X2 are two closed orientable surfaces in R
4, then

there are at least four pairs of points .x1 2 X1; x2 2 X2/ such that the tangent planes
to X1m; x2 at x1; x2 are parallel.

Return to our definition of the intersection number. Together with Corollary 1 in
Sect. 15.5, it implies the following statement.

Theorem 2. Let X be compact oriented homology manifold. .1/ For every homo-
morphism f WHm.X/ ! Z, there exists a homology class ˛ 2 Hn�m.X/ such that
f .˛/ D �.˛; ˇ/ for every ˇ 2 Hm.X/. .2/ The class ˇ is determined by f uniquely,
up to adding an element of finite order.

A similar result holds in the nonoriented case for homology and intersection
numbers modulo 2; moreover, in this case ˇ, for a given f , is genuinely unique.



232 2 Homology

Thus, the intersection numbers determine a nondegenerate duality between the
free parts of the groups Hm.X/ and Hn�m.X/ in the oriented case and between the
vector spaces Hm.XIZ2/ and Hn�m.XIZ2/ in general. This duality is called Poincaré
duality. (One can notice that in the topological literature confusion exists between
the terms “Poincaré isomorphism” and “Poincaré duality.” It is especially surprising,
since in other cases mathematicians have a tendency to be supersensitive to the
difference between a vector space and a dual vector space.)

Notice that in the middle-dimensional homology of an even-dimensional mani-
fold, Theorem 2 has the following, more algebraic restatement.

Theorem 3. Let X be a connected closed orientable manifold of even dimension
2k, and let H0

k .X/ be the free part of Hk.X/. Then the integral bilinear form � (the
intersection index) on H0

k .X/ is unimodular [that is, the matrix k�.˛i; ˛j/k where
˛1; ˛2; : : : is a system of generators in H0

k .X/ has determinant˙1].

This matrix is symmetric if k is even and is skew-symmetric if k is odd. Since
any skew-symmetric matrix of odd order is degenerate, we have the following:

Corollary. The middle Betti number of any closed orientable manifold of dimension
� 2 mod 4 is even; hence, the Euler characteristic of such a manifold is even.

For nonorientable manifolds neither is true; examples: the first Betti number of
the Klein bottle is 1, and the Euler characteristic of the real projective plane is 1.

Proof of Theorem 3. Consider the homomorphism !iWH0
k .X/ ! Z; !i.˛j/ D ıij:

By part (2) of Theorem 2, there exists a ˇi 2 Hk.XIZ/ such that hˇi; ˛i D !i.˛/, in
particular, hˇi; ˛ji D �.Dˇi; ˛j/ D ıij. Let Dˇi DPk bik˛kC a finite order element
(where bki are integers). Then

�.Dˇi; ˛j/ D
X

k

bik�.˛k; ˛j/ D ıij:

That is, the product of integer matrices kbijk and k�.˛i; ˛j/k is the identity matrix;
hence, each of them has the determinant˙1.

Theorem 3 demonstrates the importance of the theory of integral unimodular
(det D ˙1) forms in topology of manifolds, especially of dimensions divisible by
4: For an oriented closed manifold of such dimension, there arises a unimodular
integral quadratic form as the intersection form in the middle dimension. For
example, the famous Pontryagin theorem states that a homotopy type of a simply
connected closed four-dimensional manifold is fully determined by this form. A lot
is known about the classification of such forms (the best source is Milnor and
Husemoller [58]), but the question of which forms can be intersection forms for
smooth closed four-dimensional simply connected manifolds is very far from being
resolved.

In conclusion, let us prove a useful statement on Poincaré duality in products of
manifolds.
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Theorem 4. Let X1;X2 be a compact oriented homology manifold of dimensions
n1; n2, and let �1 2 Hq1 .X1IG/; �2 2 Hq2 .X2IG/. Then

DX1�X2 .�1 � �2/ D .�1/.n1�q1/q2DX1�1 � DX2�2:

(Here DX denotes Poincaré isomorphism in X.)

Proof. We use the obvious relation .˛1 � ˛2/ _ p�
1 � D .a _ �/ � ˇ/, where

˛1 2 Hq1 .X1/; ˛2 2 Hq2 .X2/; � 2 Hr.X1IG/; piWX1 � X2 ! Xi is the projection
(this relation holds at the chain–cochain level), and the relation .˛1 � ˛2/ _ p�

2 � D
.�1/q1r˛1� .˛2 _ �/, which is obtained from the previous relation by applying the
swapping homeomorphism X1 � X2 $ X2 � X1.

Back to the theorem:

ŒX1 � X2� _ .�1 � �2/ D ŒX1 � X2� _ .p�
1 �1 ^ p�

2 �2/

D .ŒX1 � X2� _ p�
1 �1/ _ p�

2 �2

D ..ŒX1� � ŒX2�/ _ p�
1 �1/ _ p�

2 �2
D ..ŒX1� _ �1// � ŒX2�/ _ p�

2 �2
D .�1/.n1�q1/q2 .ŒX1� _ �1/ � .ŒX2� _ �2/:

17.6 Application: The Lefschetz Formula

Let X be a compact topological space with finitely generated homology
L

n Hn.X/,
and let f WX ! X be a continuous map. The number

L.f / D
X

n

.�1/n Tr f� n

is called the Lefschetz number of f [here Tr f� n denotes the trace of the lattice
homomorphism

f� nWHn.X/=Tors Hn.X/! Hn.X/=Tors Hn.X/�:

Obviously, L.f / is a homotopy invariant of f . The goal of this section is to establish
a relation between the Lefschetz number of f and the behavior of fixed points of f .

Algebraic Lemma. Let

.C/ : : : ��!CnC1
@nC1��!Cn

@n��!Cn�1 ��! : : :
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be a complex with finitely generated
L

n Cn, and let f D ffnWCn ! Cng
be an endomorphism of C. Let f� nWHn.C/ ! Hn.C/ be the induced homology
endomorphism. Then

X

n

.�1/n Tr fn D
X

n

.�1/n Tr f� n:

EXERCISE 25. Prove the algebraic lemma.
For example, if X is a finite CW complex, then the Lefschetz number of a

continuous map f WX ! X can be calculated as the alternated sum of traces of
homomorphisms g#W Cn.X/ ! Cn.X/ induced by a cellular approximation g of f .
This observation alone yields the first, and maybe the most important, application
of Lefschetz numbers (not related to manifolds, the more so to Poincaré duality).

Theorem 1. Let X be a finitely triangulated space, and let f WX ! X be a
continuous map. If f has no fixed points, then L.f / D 0.

Proof. We assume that X is furnished with a metric in which every simplex is iso-
metric to the standard simplex. Then there is a positive ı such that dist.x; f .x// > ı
for every x 2 X. By applying to X the barycentric subdivision sufficiently many
times, we can make the diameters of the simplices much less than ı. After this, a
simplicial approximation g of f will be such that g.s/ \ s D ; for every simplex s
of X. In this case, the simplicial chain g#.s/ will not involve s, so all the diagonal
entries of the matrix of g# n will be zero. Hence, all the traces are zero, and the
Lefschetz number is 0.

Let us return to manifolds (but, for now, not to Poincaré duality).

Theorem 2. Let X be a compact smooth manifold (not necessarily orientable, and
maybe with a nonempty boundary), and let � be a vector field on X. Suppose that �
has no zeroes and that on the boundary @X it is directed inside X. Then �.X/ D 0.

This result implied the immensely popular “hairy ball theorem”: There is no
nowhere vanishing vector field on S2 (one cannot comb a hairy ball).

Proof of Theorem 2. A vector field � on X (with or without zeroes) determines a
“flow” ftWX ! X, and for a sufficiently small positive " the fixed points of f" are
zeroes of �. Since f" is homotopic to the identity, L.f"/ D L.id/ D �.X/, and if �
has no zeroes, then �.X/ D 0.

(We will see in Lecture 18 that the converse is also true: If a closed manifold,
orientable or not, has zero Euler characteristic, then it possesses a nowhere vanishing
vector field.)

So far, regarding Lefschetz numbers, we were interested only in their being zero
or not zero. But in reality, in the case of manifolds, the Lefschetz number gives some
count of fixed points. This can be expressed by the following proposition.

Theorem 3. Let X be a triangulated compact orientable n-dimensional homology
manifold (we will discuss later how much the orientability is really needed) and let
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f WX ! X be a continuous map. Let FWX ! X � X; F.x/ D .x; f .x// be the graph
of f , and let �WX ! X � X be the diagonal map, �.x/ D .x; x/. Then

�.F�ŒX�; ��ŒX�/ D L.f /:

Before proving this theorem, let us briefly discuss its meaning. The intersection
points of F.X/ and �.X/ correspond precisely to fixed points of f . In the smooth
case, the intersection number is described in Theorem 1 of Sect. 17.5. First, we need
to assume that all the intersections of the graph and the diagonal are transverse. This
condition may be formulated in the language of calculus. If x0 is a fixed point of a
smooth map f WX ! X, then there arises the differential, dx0 f WTx0X ! Tx0X. The
graph and the diagonal are transverse at x0 if the matrix of dx0 f�id is nondegenerate,
that is, if fx0 f has no eigenvalues equal to 1. If this condition holds, then every
intersection point acquires some sign, and the intersection number, equal to the
Lefschetz number by Theorem 3, is the “algebraic number of fixed points.” The
sign can be described as the parity of the number of real eigenvalues of dx0 f less
than 1.

A very similar thing can be said about the vector fields. A nondegenerate zero
of a vector field can be assign a sign, and then the algebraic number of zeroes of a
vector field must be equal to the Euler characteristic of the manifold.

Now, let us turn to proving Theorem 3. We will need a couple of lemmas.

Lemma 1. �.f�˛1; ˛2/ D .�1/dim˛1�.F�ŒX�; ˛1 � ˛2/.
(On the left-hand side the intersection number is taken in X, while on the right-

hand side it is taken in X � X.)

Proof of Lemma 1. Let ˛1 D D�1; ˛2 D D�2. Then

�.F�ŒX�; ˛1 � ˛2/ D �..id�f /� ı��ŒX�; ˛1 � ˛2/
D hD�1.˛1 � ˛2/; .id�f /� ı��ŒX�i
D ˙h�1 � �2; .id�f /� ı��ŒX�i D ˙h��.�1 � f ��2/; ŒX�i
D ˙h�1 ^ f ��2; ŒX�i D ˙ŒX� _ .�1 ^ f ��2/
D ˙.ŒX� _ �1/ _ f ��2 D ˙˛1 _ f ��2 D ˙hf ��2; ˛1i

D ˙h�2; f�˛1i D ˙�.f�˛1; ˛2/

(the signs are determined in Theorem 3 of Sect. 17.5).

Lemma 2. Let ˛1; : : : ; ˛N be a basis in the free part of the full homology group of
a compact oriented homology manifold X [first, the basis in H0.X/, then H1.X/, and
so on], and let ˛�

1 ; : : : ; ˛
�
N be the dual basis [that is, �.˛�

i ; ˛j/ D ıij]. Then, up to a
summand of finite order, ��ŒX� DPi.˛

�
i � ˛i/.

Proof. By part (2) of Theorem 2 in Sect. 17.5, it is sufficient to prove that

�.��ŒX�; ˛p � ˛q/ D �
�
X

i
.˛�

i � ˛i/; ˛p � ˛q

�
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for every p; q. But

�.��ŒX�; ˛p � ˛q/ D .�1/dim˛p�.˛p; ˛q/

by the lemma, and

�

P

i.˛
�
i � ˛i/; ˛p � ˛q

� DPi �..˛
�
i � ˛i/; .˛p � ˛q//

DPi.�1/dim˛i dim˛p�..˛�
i ; ˛p/�.˛i; ˛q//

D .�1/.dim˛p/
2
�.˛p; ˛q/

by Exercise 7 in Sect. 16.6. This proves Lemma 2.

Proof of Theorem 3. Since the intersection numbers are not sensitive to terms of
finite order, we can replace in Theorem 3��ŒX� by

P

i ˛
�
i �˛i and F�ŒX� D .id�f /	

ı��ŒX� by
P

j ˛
�
j � f�˛j. Also, since the diagonal� is invariant with respect to the

coordinate swapping map X�X ! X�X, we have
P

i ˛
�
i �˛i DPi.�1/di.n�di/˛i�

˛�
i where di D dim˛i. Put f�˛j DPk ajk˛k and perform the calculations:

�.F�ŒX�; ��ŒX�/ D �
�

P

j;k ˛
�
j � ajk˛k;

P

i
.�1/di.n�di/˛i � ˛�

i

�

DP

i;j;k
.�1/di.n�di/.�1/didk ajk�.a�

j ; ai/.�1/.n�di/dk�.˛�
i ; ˛k/

DP

i;j;k
.�1/di.n�di/CdidkC.n�di/dk ajkıjiıik DP

i
.�1/d2i aii D L.f /:

Let us now briefly discuss the applicability of the Lefschetz theory to the
nonorientable and boundary cases. We begin with vector fields. For a nonoriented
(even nonorientable) closed manifold the equality between the algebraic number
of zeroes of a vector field and the Euler characteristic obviously holds modulo
2. But in reality, mod 2 reduction is not needed. First, the definition of signs
attributed to zeroes of vector fields does not require orientation. Second, a connected
nonorientable manifold X has an orientable twofold covering,bX, and a vector field
� on X can be lifted to a vector field b� on bX. It is clear also that �.bX/ D 2�.X/
(follows from Corollary in Sect. 13.7) and the (algebraic) number of zeroes ofb� is
twice the same number for �. This implies the statement.

EXERCISE 26. Let X be a connected closed nonorientable manifold, and let f WX !
X be a smooth map which takes orientation preserving loops into orientation
preserving loops and orientation reversing loops into orientation reversing loops.
Prove that if all fixed points of f are nondegenerate, then the algebraic number of
these points is L.f /.

Another extension of the Lefschetz theory may be obtained by admitting, for a
manifold considered, a nonempty boundary. Namely, if X is a compact manifold
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Fig. 70 Doubling a manifold with boundary

with the boundary @X, then we can double X by attaching to it a second copy of X
to the common boundary of the two copies (see Fig. 70).

Let f WX ! X be a continuous map without fixed points on @X, and let XX be the
double of X. We can extend f to a map ff WXX ! X � XX defining this map on the
second half to be the same as on the first half [thus ff .XX/ is contained in the first
half of XX]. It is obvious that ff has the same fixed points as f and L.f / D L.ff /;
hence, the statement of the relation of Lefschetz numbers with fixed points holds
for compact manifolds with boundary (orientable or not). Also, we can state that the
algebraic number of zeroes of a vector field � on a manifold X with boundary such
that � has no zeroes and directed inside X on @X is equal to �.X/.

EXERCISE 27. There exists a different approach to the Lefschetz theory. First we
prove Theorem 1: The Lefschetz number of a fixed-point–free map is zero. Then we
consider a map f WX ! X with a nondegenerate fixed point, and, at a neighborhood
of this point, we modify both X and f in such a way that the fixed point disappears
and the Lefschetz number is changed in a controllable way. Try to recover the
details.

In conclusion, let us give one of countless applications of the Lefschetz theory.

EXERCISE 28. The n-dimensional torus Tn can be regarded as R
n=Zn. Hence, a

linear map R
n ! R

n determined by an integral matrix A can be factorized to
some continuous map Tn ! Tn; denote it as fA. (Certainly, every continuous map
Tn ! Tn is homotopic to a unique map of the form fA; you may try to prove
this.) Calculate the Lefschetz number for fA (the best possible answer expresses
this Lefschetz number in terms of the eigenvalues of A).

EXERCISE 29. Denote the Lefschetz number from Exercise 28 as LA. Prove that a
map homotopic to fA has at least jLAj different fixed points.

EXERCISE 30. Prove that a map f WTn ! Tn homotopic to fA with A D
�

2 1

1 1

�

has

infinitely many periodic points. [A point y 2 Y is called a periodic point of a map
gWY ! Y if gn.y/ D y for some n.]

[The last two statements are taken from the note by Ginzburg [43] (Russian).]
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17.7 Secondary Intersection Numbers and Secondary
Poincaré Duality

Let us return to Poincaré duality. The duality between

Tors Hm.X/ and Tors Hn�m�1.X/

is based on secondary intersection numbers, which are defined ahead. (We need to
warn the reader that the main results of this section will be given in the form of
exercises.)

Let X be a compact oriented n-dimensional homology manifold, and let ˛ 2
Hm.X/ and ˇ 2 Hn�m�1.X/ be homology classes of finite order. Let a and b be
cycles representing ˛ and ˇ in the barycentric star and classical complexes of X,

and assume that Na D @c. We define !.˛; ˇ/ to be the rational number
1

N
�.c; b/

reduced modulo 1 [thus !.˛; ˇ/ 2 Q=Z].

EXERCISE 31. Check that !.˛; ˇ/ is well defined. (It is this statement that requires
the assumption that ˇ has a finite order.)

EXERCISE 32. Prove that if N˛ D 0 and Mˇ D 0, then K!.˛; ˇ/ D 0, where
K D gcd.M;N/.

EXERCISE 33. Prove that !.ˇ; ˛/ D ˙!.˛; ˇ/ (what is the sign?).

The main property of secondary intersection numbers is the following secondary
Poincaré duality.

Theorem. The correspondence ˛ 7! fˇ 7! !.˛; ˇ/g yields an isomorphism

Tors Hm.X/
Š��! Hom.Tors Hn�m�1.X/;Q=Z/:

EXERCISE 34. Prove this theorem.

17.8 Inverse Homomorphisms

Let X and Y be compact oriented homology manifolds of, possibly, different dimen-
sions m and n, and let f WX ! Y be a continuous map. Poincaré isomorphism allows
us to construct “wrong direction” homology and cohomology homomorphisms

f ŠWHq.YIG/ D�1

��!Hn�q.YIG/ f �

��!Hn�q.XIG/ D��!Hm�nCq.XIG/;
f
Š
WHq.XIG/ D��!Hm�q.XIG/ f���!Hm�q.YIG/ D�1

��!Hn�mCq.YIG/:
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Both homomorphisms change dimensions by m � n: The homomorphism f Š

“increases” the dimension by m� n (we use quotation marks because m� n may be
negative or zero), and the homomorphism f

Š
“decreases” the dimension by m�n. We

will not say much about the cohomology homomorphism f
Š
. It can be regarded as

the simplest case of a general construction called “direct image.” Its analytic sense
(and it belongs rather to analysis than to topology), at least in the case when f is
the projection of a smooth fibration, can be best described by the words “fiberwise
integration” (people familiar with the de Rham theory can easily understand them).
As to the homology homomorphism f Š (called the inverse Hopf homomorphism),
it has a transparent geometric sense which is described, in the smooth case, by the
following proposition.

Theorem. Let a homology class ˛ 2 Hq.Y/ be represented by a q-dimensional
submanifold Z of Y (that is, ˛ D i�ŒZ�, where iWZ ! Y is the inclusion map), and
let f be transversely regular with respect to Z (that is, the composition

TyY
dyf��! Tf .y/X

proj��! Tf .y/X=Tf .y/Z

is onto for every point y 2 f �1.Z/). Then f �1.Z/ is a .q C m � n/-dimensional
submanifold of X which represents the homology class f Š.˛/ 2 HqCm�n.X/.

We will not prove this theorem but will restate it in a form in which it can be
easily translated into an easy-to-prove statement concerning homology manifolds.
Let W be an oriented .qCm�n/-dimensional submanifold of X transverse to f �1.Z/
which may have pseudomanifold-like singularities not in a neighborhood of f �1.Z/.
Then, at least in a neighborhood of Z, f .W/ is an .n � q/-dimensional manifold of
Y, and f establishes a (sign-preserving) bijection between W \ f �1Z and f .W/\ Z.
Now let us turn to the homology manifold case.

Proposition 1. Let X;Y, and f be as above, and let ˛ 2 Hq.Y/; ˇ 2 Hm�q.X/. Then

�X.f
Š˛; ˇ/ D �Y.˛; f�ˇ/

(�X and �Y denote the intersection number in X and Y).

Proof.

�X.f Š˛; ˇ/ D �X.Df �D�1˛; ˇ/ D hf �D�1˛; ˇi
D hD�1˛; f�ˇi D �Y.˛; f�ˇ/:

By part (2) of Theorem 2 in Sect. 17.5, this relation determines f Š˛ up to a
summand of finite order.

Here is one more illustration of the fact that geometrically f Š may be regarded as
a preimage.
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Proposition 2. Let X;Y be compact oriented homological manifolds, and let pWX�
Y ! Y be the projection. Then, for any ˛ 2 Hm.Y/,

pŠ˛ D ŒX� � ˛:

Proof. Let ˛ D D�; � 2 Hn�m.YIZ/. Then

pŠ˛ D DX�Yp�� D DX�Y.1 � �/ D DX1 � DY� D ŒX� � ˛:

EXERCISE 34. Prove the formula h˛; f Šˇi D hf
Š
˛; ˇi:

Let us now turn to the case when dim X D dim Y.

Proposition 3. Let X;Y be connected compact oriented manifolds of the same
dimension n, and let f WX ! Y be a continuous map of degree d. Then the
compositions

Hm.Y/
f Š��!Hm.X/

f���!Hm.Y/;

Hm.YIZ/ f �

��!Hm.XIZ/
f
Š��!Hm.YIZ/

are both multiplication by d.

Here is a proof of the first statement. Let ˛ 2 Hm.Y/; ˛ D DY�; � 2 Hn�m.YIZ/.
Then f�f Š˛ D f�DXf �� D f�.ŒX� _ f ��/ D f�ŒX� _ � D dŒY� _ � D dDY� D
d˛ (we used Exercise 12 of Sect. 16.6).

EXERCISE 35. Prove the second statement of Proposition 3.

Corollary. If d D ˙1, then f� is an epimorphism, and f � is a monomorphism.

GENERALIZATION. If d ¤ 0, then every homology class of Y multiplied by d
belongs to the image of f�, and every cohomology class of Y belonging to Ker f �
is annihilated by the multiplication by d.

For example, there is no map S2 ! S1 � S1 of a nonzero degree, but there is a
map S1 � S1 ! S2 of degree 1: factorization over S1 _ S1.

Everything said in this section has an obvious nonorientable Z2-analog.

17.9 Poincaré Duality and the Cup-Product

Again, we begin with a statement for the smooth case.

Theorem 1. Let Y1;Y2 be closed oriented submanifolds of a smooth closed oriented
manifold X transverse to each other; the latter means that the inclusion map i1 of
Y1 in X is transversely regular to Y2. Then the intersection Z D Y1 \ Y2 D i�11 .Y2/
is a submanifold of X whose dimension k is related to the dimensions n;m1;m2 of
X;Y1;Y2 by the formula k D m1Cm2�n. Let ˛1 2 Hn�m1 .XIZ/; ˛2 2 Hn�m2 .XIZ/;
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and ˇ 2 H2n�m1�m2 .XIZ/ be cohomology classes such that homology classes
D˛1;D˛2, and Dˇ are represented by Y1;Y2, and Z. Then

˛1 ^ ˛2 D ˇ:

There is a similar Z2-statement for the nonorientable case.

Proof of Theorem 1.

D.˛1 ^ ˛2/ D ŒX� _ .˛1 ^ ˛2/ D .ŒX� _ ˛1/ _ ˛2 D .D˛1/ _ ˛2
D i1�ŒY1� _ ˛2 D i1�.ŒY1� _ i�1 ˛2/ D i1�.Di�1 ˛2/
D i1�.Di�1D�1.i2�ŒY2�/ D i1�.iŠ1.i2�ŒY2�//
D i1�Œi�11 .Y2/� D i�ŒZ� D Dˇ:

(Here i2 and i are inclusion maps of Y2 and Z in X; we used in this the proof
of Theorem 1 from Sect. 17.9, which was not proven there; if we use instead
Theorem 2, then the equality ˛1 ^ ˛2 D ˇ will be proven in a broader context
of homology manifolds, but only modulo summand of a finite order.)

This theorem provides a very powerful tool for determining multiplicative
structure in cohomology, mainly for manifolds, but actually for all spaces, because
of the naturality of the multiplicative structure.

Example. If q C r � n, then the product of canonical generators of the groups
H2q.CPnIZ/ and H2r.CPnIZ/ is the canonical generator of H2.qCr/.CPnIZ/;
indeed, Poincaré isomorphism takes the three generators into the homology classes
of projective subspaces of dimensions n � q; n � r, and n � q � r, and, in general
position, the intersection of the first two is the third. Thus, the ring H�.CPnIZ/ D
L

i Hi.CPnIZ/ has the following structure: There is 1 2 H0.CPnIZ/ and the
generator x 2 H2.CPnIZ/; the group H2q.CPnIZ/ with 1 � q � n is generated
by xq. If n is finite, then xnC1 D 0. In more algebraic terms, H�.CPnIZ/ is the ring
of polynomials of one variable x factorized by the ideal generated by xnC1,

H�.CPnIZ/ D ZŒx�=.xnC1/; dim x D 2I

similarly,

H�.HPnIZ/ D ZŒx�=.xnC1/; dim x D 4I
H�.RPnIZ2/ D Z2Œx�=.xnC1/; dim x D 1I
H�.CaP2IZ/ D ZŒx�=.x3/; dim x D 8:

In all cases, excluding RPn, the ring Z may be replaced by any commutative ring.

EXERCISE 36. Prove that the integral cohomology ring of the sphere S2g with g
handles is as follows: there are generators a1; : : : ; ag; b1; : : : ; bg of H1.S2gIZ/ such
that a1b1 D a2b2 D � � � D agbg is the generator of H2.S2gIZ/ and all other products
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of generators of H1.S2gIZ/ are zeroes. Describe the multiplicative structure in Z2-
cohomology of the projective plane with handles and the Klein bottle with handles.

EXERCISE 37. Prove that any continuous map CPn ! CPm with n > m induces a
trivial map in cohomology of any positive dimension (with any coefficients). Prove
a similar statement for real projective spaces.

EXERCISE 38. Prove that if g < h, then there are no continuous maps S2g ! S2h of
a nonzero degree.

Theorem 1 shows that the multiplicative structure in cohomology of a closed
orientable manifold is rich (many nonzero products). Actually, we already have a
strong statement of this kind: Theorems 2 and 3 of Sect. 17.5 show that if X is a
compact oriented n-dimensional homology manifold, then for every infinite order
class ˛ 2 Hm.XIZ/ there exists a ˇ 2 Hn�m.XIZ/ such that h˛ ^ ˇ; ŒX�i D 1. If
dim X D 2k and ˛1; ˛2; : : : is a basis in the free part of Hk.XIZ/, then the matrix
kh˛i ^ ˛j; ŒX�ik is unimodular (that is, its determinant is˙1).

The remaining part of this lecture is devoted to several modifications (general-
izations) of Poincaré duality.

17.10 The Noncompact, Relative, and Boundary
Cases of Poincaré Isomorphism

Suppose that a connected triangulated space X is an oriented n-dimensional
homology manifold which, however, is not assumed to be compact; that is, the
triangulation may be not finite. In this case we still have a correspondence
between (oriented) simplices and barycentric stars of complementary dimensions,
but no isomorphism between chains and cochains, since chains are supposed to
be finite linear combinations of simplices (or barycentric stars), and cochains are
allowed to take nonzero values on infinitely many simplices. To construct Poincaré
isomorphism, we need to modify the definition either of chains or of cochains. Both
modifications are well known in topology; moreover, they exist on the singular level.
Here, we restrict ourselves to a brief description of these modifications.

Let X be a locally compact topological space. An n-dimensional open singular
chain of X is a possibly infinite, linear combination of n-dimensional singular
simplices of X with integer coefficients,

P

i kifi; fiW�n ! X; such that for any
compact subset K � X the coefficients ki may be nonzero only for finitely
many singular simplices fi such that fi.�n/ \ K ¤ ;. Open chains form a group
Copen

n .X/, and the usual definition of the boundary operator gives homomorphisms
@WCopen

n .X/! Copen
n�1 .X/ with @@ D 0 and, finally, open homology groups Hopen

n .X/.
Proper (preimages of compact sets are compact) continuous maps f WX ! Y induce
chain and homology homomorphisms f#WCopen

n .X/! Copen
n .Y/ and f�WHopen

n .X/!
Hopen

n .Y/ with all usual properties (including proper homotopy invariance for open
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homology). In particular, if X is a locally finite CW complex, then Hopen
n .X/ can be

calculated by means of cellular chains which are not assumed to be finite.
There is also a similar (dual) definition of compact or compactly supported coho-

mology of a locally compact topological space X. Namely, a cochain c 2 Cn.XIG/
is called compactly supported if there exists a compact set K � X such that
c.f / D 0 for any singular simplex f W�n ! X such that f .�n/ \ K D ;.
There arise groups of compactly supported cochains, Cn

comp.XIG/, coboundary
operators, ıWCn

comp.XIG/ ! CnC1
comp.XIG/, and compact(ly supported) cohomology

Hn
comp.XIG/. For compactly supported cochains and cohomologies, homomor-

phisms f # and f � are induced by proper continuous maps. For locally finite CW
complexes, compact cohomology can be calculated by means of complexes of finite
cochains. Remark also that the usual definition of multiplications gives (in the
presence of a pairing G1 � G2 ! G) the following binary operations:




�1 2 Hq1
comp.XIG1/; �2 2 Hq2 .XIG2/

� 7! �1 ^ �2 2 Hq1Cq2
comp .XIG/I




˛ 2 Hopen
q1 .XIG1/; � 2 Hq2 .XIG2/

� 7! ˛ _ � 2 Hopen
q1�q2 .XIG/I




˛ 2 Hopen
q1 .XIG1/; � 2 Hq2

comp.XIG2/
� 7! ˛ _ � 2 Hq1�q2 .XIG/:

All these operations are defined in the usual way on the chain/cochain level.
Consider again a connected triangulated oriented n-dimensional homology

manifold X. The barycentric star construction of Sect. 17.4 provides Poincaré
isomorphisms

DWHm.XIG/! Hopen
n�m.XIG/ and DWHm

comp.XIG/! Hn�m.XIG/I
both can be expressed by the formula D� D ŒX� _ � , where the fundamental
class ŒX� is an element of Hopen

n .X/. These isomorphisms may not look appealing
because they involve exotic homology and cohomology groups. However, in many
important cases this may be avoided. This possibility is provided by the following
general proposition.

Proposition 1. Let X be a compact topological space and let A � X be a closed
subset. Then there are natural (make the statement precise: in what sense natural?)
isomorphisms

Hopen
n .X � AIG/ Š Hn.X;AIG/ and Hn

comp.X � AIG/ Š Hn.X;AIG/:

In particular, if X is locally compact and X� is the one-point compactification of
X, then

Hopen
n .XIG/ Š eHn.X

�IG/ and Hn
comp.XIG/ Š eHn.X�IG/:

Proposition 1 shows that the preceding Poincaré isomorphisms, in the case when
the given homology manifold is a complement to a CW subcomplex A of a compact
CW complex X, take the form
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Fig. 71 A barycentric star complex approximation of X � A

DWHm.X � AIG/! Hn�m.X;AIG/
and Hm.X;AIG/! Hn�m.X � AIG/:

(Moreover, both isomorphisms can be described as cap-products with the “funda-
mental class” ŒX;A� 2 Hn.X;A/.) We do not prove this proposition, and we do not
even offer it as an exercise. Instead, we will give a direct construction of the last
isomorphisms, at least in the triangulated case.

Let X be a compact triangulated space, and let A be a triangulated subspace
of X such that X � A is a homology manifold. We assume that A satisfies the
“regularity condition”: If all vertices of some simplex s of X belong to A, then s
is contained in A. Let Y be the union of barycentric stars of simplices of X not
contained in A (see Fig. 71). Then Y is a closed subset of X, even a triangulated
subspace of the barycentric subdivision of X; moreover, Y is homotopy equivalent
to X � A (we do not give a formal proof of this homotopy equivalence, but we hope
that Fig. 71 may serve as a convincing confirmation of that). The correspondence
between simplices and their barycentric stars provides isomorphisms between free
Abelian groups generated by simplices in X not contained in A and barycentric stars
in Y. These isomorphisms may be considered as either Cm

bast.YIZ/ Š Cclass
n�m.X;A/ or

Cm
class.X;AIZ/ Š Cbast

n�m.Y/; in both cases, the commutativity with @ and ı [similar to
(	) in Sect. 17.4] holds, so there arise homology/cohomology isomorphisms

DWHm.X � AIZ/! Hn�m.X;A/ and DWHm.X;AIZ/! Hn�m.X � A/

as stated above (it is easy to extend them to an arbitrary coefficient group G).

EXERCISE 39. Prove that both isomorphisms can be expressed as ŒX;A� _. (For
one of them, we will have to reverse the ordering of vertices in the barycentric
subdivision.)

EXERCISE 40. For homology classes ˛ 2 Hm.X � A/; ˇ 2 Hn�m.X;A/, define the
intersection number �.˛; ˇ/ which has the usual geometric sense. (This must be a
replica of Sect. 17.5.) Prove the relative Poincaré duality: The homomorphism
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Free Hm.X � A/! Hom.Free Hn�m.X;A/;Z/; ˛ 7! fˇ 7! �.˛; ˇ/g

is an isomorphism. Do similar work with the torsion subgroup and the secondary
intersection numbers.

There are two especially important cases of the relative Poincaré duality: the case
when X is a sphere and the case when X is a manifold with boundary and A D @X.
We postpone the first case to the next section and will consider the second case now.

Although there exists a theory of homology manifolds with boundary (see,
for example, Mitchel [62]), we will not discuss it here; instead of this, we will
restrict ourselves to the smooth case. Let X be a connected oriented compact
.n C 1/-dimensional smooth manifold with a boundary @X; we suppose that X
possesses a smooth triangulation such that simplices contained in @X form a smooth
triangulation of @X. Since, obviously, X � @X is a homology manifold, the previous
construction yields (for an arbitrary coefficient group G) Poincaré isomorphisms

DWHm.XIG/! HnC1�m.X; @XIG/;
DWHm.X; @XIG/! HnC1�m.XIG/

(we use the obvious fact that X � @X is homotopy equivalent to X). Both
isomorphisms have the form � 7! ŒX; @X� _ � , where ŒX; @X� 2 HnC1.X; @X/
is the fundamental class of X [represented in the classical complex by the sum of all
.nC 1/-dimensional simplices of X oriented in accordance to the orientation of X].

Proposition 2. Poincaré isomorphisms described above, together with Poincaré’s
isomorphisms for the manifold @X, form an isomorphism between homology and
cohomology sequences of the pair .X; @X/; more precisely, there arises a plus–minus
commutative diagram

Proof. We will prove the plus–minus commutativity of the first square; for the third
square the proof is more or less the same, while the commutativity of the second
square is obvious.

Take a c 2 Cn�m.@XIG/ and extend it to ec 2 Cn�m.XIG/. Here we use the
notations ŒX; @X� and Œ@X� for chains; thus, ŒX; @X� 2 CnC1.X/ and @ŒX; @X� D
Œ@X� 2 Cn.@X/ � Cn.X/. As we know from Sect. 16.6 (Exercise 8),

@.ŒX; @X� _ec/ D ˙.@ŒX; @X� _ec/˙ .ŒX; @X� _ ıec/: (	)

Since @ŒX; @X� D Œ@X� 2 Cn.@X/ � Cn.X/, the cap-product @ŒX; @X� _ ec 2
Cm.XIG/ belongs to Cm.@XIG/ and, in this capacity, is Œ@X� _




ecj
@X

� D Œ@X� _ c.
If c is a cocycle representing a class � 2 Hn�m.@XIG/, then @ŒX; @X� _ ec and
ŒX; @X� _ ıec are cycles (in Cm.XIG/) representing i�.Œ@X� _ �/ D i� ı D� and



17.10 The Noncompact, Relative, and Boundary Cases of Poincaré Isomorphism 247

ŒX; @X� _ ı�� D Dıı�� . Since the sum or difference of these cycles is a boundary
[formula (	)], this proves the plus–minus commutativity of the first square.

We will reformulate the last proposition by passing from Poincaré isomorphisms
to Poincaré duality. To avoid separately considering free parts and torsion, we will
assume that the coefficient domain is Q, and, for brevity’s sake, we will omit the
indication of the coefficient domain. We will replace the bottom line of the diagram
in Proposition 2 by the dual (with respect to h ; i) homology sequence. We get the
following “duality diagram.”

The spaces of each vertical are dual to each other with respect to the intersection
number, while the arrows of each vertical are plus–minus dual to each other. The
last fact (equivalent to Proposition 2) means the following:

�.i�˛; ˇ/ D ˙�.˛; @�ˇ/ for every ˛ 2 Hm.@X/; ˇ 2 Hn�mC1.X; @X/;
�.j�˛; ˇ/ D ˙�.˛; j�ˇ/ for every ˛ 2 Hm.X/; ˇ 2 Hn�mC1.X/;
�.@�˛; ˇ/ D ˙�.˛; i�ˇ/ for every ˛ 2 Hm.X; @X/; ˇ 2 Hn�mC1.@X/:

These results appear the most interesting when n is even: n D 2k. Consider the
fragment

HkC1.X; @X/
@���!Hk.@X/

i���!Hk.X/

of the homology sequence of the pair .X; @X/ (with the coefficient in Q). The middle
space is self-dual, the left and right groups are dual to each other, as well as the
homomorphisms i� and @� (all the dualities are with respect to the intersection
number �). The exactness of the sequence implies the equality dim Hk.@X/ D
rank@� C rank i�, and the duality shows that rank @� D rank i�. Together, these
equalities show that Bk.@X/ D dim Hk.@X/ D 2 rank@�. In other words, the space
Hk.@X/ is even-dimensional (we already know this in the case when k is odd;
see Theorem 3 of Sect. 17.5), and the dimension of Ker i� D Im @� � Hk.@X/
is half of dim Hk.@X/. For example, the torus T can be presented as a boundary
of an orientable compact three-dimensional manifold in many different ways (for
example, the torus is the boundary of the solid torus). But if T D @X (where X is a
compact orientable three-dimensional manifold), then the inclusion homomorphism
i�WH1.T/ ! H1.X/ must have a one-dimensional kernel, not less and not more (if
X is a solid torus, then i� annihilates the homology class of the meridian, but not the
homology class of the parallel).

Furthermore, if ˛; ˇ 2 HkC1.X; @X/, then, since @� and i� are �-dual to each
other,
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�.@�˛; @�ˇ/ D �.˛; i�@�ˇ/ D �.˛; 0/ D 0;

which shows that the restriction of the form � to this subspace is zero. In the
case when k is odd, the form � determines a symplectic structure in Hk.@X/,
and the last statement means that Ker i� D Im @� is a Lagrangian subspace of
Hk.@X/. This, however, does not impose any condition on the manifold @X. The
case when k is even, however, is very much different. A real vector space V with
a nondegenerate symmetric bilinear form ! can have a subspace W of dimension
one half of dim V with a zero restriction !j

W
if and only if the signature of ! (the

difference between the positive and negative inertia indices) is zero. For a compact
oriented 4`-dimensional manifold Y, the signature of the form � in H2`.Y/ is called
the signature of Y and is denoted as �.Y/.

EXERCISE 41. Prove that � is multiplicative: If Y1 and Y2 are two closed oriented
manifolds of dimensions divisible by 4, then �.Y1 � Y2/ D �.Y1/�.Y2/.
EXERCISE 42. Prove that if Y1 and Y2 are two closed orientable manifolds whose
dimensions are not divisible by 4, but sum up to a number divisible by 4, then
�.Y1 � Y2/ D 0.

EXERCISE 43. Prove that the reversion of the orientation leads to the negation of
the signature.

EXERCISE 44. Let Y1 and Y2 be two connected orientable closed manifolds of the
dimension 4`, and let Y D Y1#Y2 be the connected sum of Y1;Y2 (that is, Y is
obtained from Y1;Y2 by drilling holes in both of them and then attaching to the
boundaries of the holes the tube S4`�1 � I). Prove that �.Y/ D �.Y1/C �.Y2/.
Theorem. If a closed oriented 4`-dimensional manifold Y is a boundary of a
compact oriented manifold X, then �.Y/ D 0 [in particular, B2`.Y/ is even].

Proof. We showed that B2`.@X/must be even and that H2`.@X/ contains a subspace

of dimension
1

2
B2`.@X/ with zero restriction of �. Hence, �.@X/ D 0.

Example. The manifold CP2` cannot be a boundary of a compact orientable .4`C
1/-dimensional manifold, because B2`.CP2`/ D 1 is odd. But the connected sum
CP2`#CP2` (see Exercise 44), which has even middle Betti number, is also not a
boundary since its signature is not zero (it is 2). The same is true for a connected
sum of a number of copies of CP2`. But the connected sum CP2`#.�CP2`/ (where
the minus sign stands for the orientation reversion) has zero signature and may be a
boundary. Actually, it is a boundary (see Exercise 45 ahead).

EXERCISE 45. Let Y be a connected closed oriented manifold. Prove that the
manifold Y#.�Y/ is a boundary of some compact manifold. (Hint: Drill a hole in Y
and then multiply by I.)
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17.11 Alexander Duality

Let A � Sn be a simplicial subset of Sn, that is, a union of some simplices of some
triangulation of Sn. The goal of this section is to construct Alexander isomorphisms,

LW eHm.AIG/ Š��! eHn�1�m.Sn � AIG/
and LW eHm.Sn � AIG/ Š��! eHn�1�m.AIG/;

and then to reformulate them as a duality between homology groups of A and Sn�A.
We begin with an obvious remark: If A is empty of is equal to Sn, then the existence
of the isomorphisms follows from the definition of groups eH�1 and eH�1 (which
demonstrates one more time that these definitions are right). From now on, we
assume that neither A, nor Sn � A, is empty. For brevity’s sake, we will always
omit the indication to the coefficient group (which may be arbitrary).

Remember that, according to Sect. 17.10, the cap-product ŒSn;A�_ yields
isomorphisms

DWHm.Sn � A/! Hn�m.Sn;A/
and DW HmC1.Sn;A/! Hn�1�m.Sn � A/:

Consider the reduced homology sequence of the pair .Sn;A/:

: : : eHn�m.S
n/! Hn�m.S

n;A/! eHn�1�m.A/! eHn�1�m.S
n/ : : : : (	)

If m ¤ 0; 1, then the first and last groups in this exact sequence are zeroes, and we
obtain an isomorphism @�WHn�m.Sn;A/! eHn�1�m.A/ and the composition

L D @� ı DWHm.Sn � A/
Š��! eHn�1�m.A/

as was promised [for these m, Hm.Sn � A/ D eHm.Sn � A/]. It remains to settle the
cases m D 0; 1.

Lemma. If A ¤ Sn, then the inclusion homomorphism Hn.A/! Hn.Sn/ is zero.

Proof. If x0 … A, then this homomorphism factorizes as Hn.A/ ! Hn.Sn � x0/ !
Hn.Sn/, and Hn.Sn � x0/ D 0, since Sn � x0 is homeomorphic to R

n.

[Actually, Hn.A/ D 0, since HnC1.Sn;A/ D 0; but we do not need this.]
If m D 1, then the last homomorphism of the sequence (	) is zero, and @� remains

an isomorphism. If m D 0, we get the exact sequence

0��! eHn.S
n/ .D Z/! Hn.S

n;A/! eHn�1.A/! 0;

which provides an isomorphism Hn.Sn;A/=Z! eHn�1.A/ which gives, in combina-
tion with D, the promised isomorphism
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LW eH0.Sn � A/ D H0.Sn � A/=Z
D��!Hn.S

n;A/=Z! eHn�1.A/

(the reader is granted the right to replace Z everywhere with G).
The isomorphism LW eHm.A/ ! eHn�1�m.Sn � AIG/ is obtained from the

isomorphism DWHmC1.Sn;A/ ! Hn�1�m.Sn � A/ precisely in the same way, with
use of the reduced cohomology sequence of the pair .Sn;A/.

Like Poincaré isomorphism, Alexander isomorphism may be turned into a
homology–homology duality, with the role of intersection numbers played by so-
called linking numbers. From the point of view of Alexander isomorphism, the
definition of linking numbers is immediately clear. Let A � Sn be as above, and
let ˛ 2 Hp.Sn � A/; ˇ 2 Hq.A/ be two homology classes with pC q D n� 1. Then

�.˛; ˇ/ D hL�1˛; ˇi

is called the linking number of ˛ and ˇ, and the isomorphism L (rather L�1) becomes
a duality

Free Hq.A/
Š��! Hom.Free Hp.S

n � A/;Z/; ˇ 7! f˛ 7! �.˛; ˇ/g:

But, like intersection numbers, linking numbers have a clear geometric sense, which
we will describe now.

Let a; b be two cycles of a compact oriented n-dimensional homology manifold X
whose dimensions p; q sum up to n�1. [It is convenient to assume that a 2 Cclass

p .X/
and b 2 Cbast

q .X/.] Suppose also that both a; b are homological to zero. Choose a c
with @c D b and put

�.a; b/ D �.a; c/

(see Fig. 72).

EXERCISE 46. Prove that �.a; b/ does not depend on the choice of c.

Fig. 72 Definition of the linking number �.a; b/
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EXERCISE 47. Prove that �.a; b/ D .�1/pqC1�.b; a/. (For example, the linking
number of two disjoint oriented closed curves in R

3 is symmetric with respect to
these curves.)

Let us now transfer the definition of a linking number into a context closer to
the Alexander duality. Let A;B be disjoint closed subsets of a compact oriented
n-dimensional homology manifold X (we can conveniently assume that both are
union of simplices of X), and let ˛ 2 Hp.A/; ˇ 2 Hq.B/ be homology classes
which are annihilated by homology homomorphisms induced by the inclusions
A! X; B! X. Then ˇ D @�� for some � 2 HqC1.X;B/, and we put �.˛; ˇ/ D
�.˛; �/ (in the last formula, we can think of ˛ on the right-hand side as of the image
of ˛ in the homology of X � B).

EXERCISE 460. Prove that �.˛; ˇ/ does not depend on the choice of � .

EXERCISE 470. Prove that �.˛; ˇ/ D .�1/pqC1�.ˇ; ˛/.

In particular, we can take Sn for X, and the complement to a thin neighborhood
of A (which is as above) for B (that is, B may look like Y in Fig. 71). Then linking
numbers are defined for any ˛ 2 eHp.A/; ˇ 2 eHq.B/ with pC q D n � 1.

Theorem. The equality

�.˛; ˇ/ D hL�1˛; ˇi

holds.

This follows from the definition of L: L D @� ı D.
Thus, linking numbers provide Alexander duality similar to the Poincaré duality.

EXERCISE 48. Make up the definition of “secondary linking numbers” 	.˛; ˇ/ 2
Q=Z for ˛ 2 Tors Hp.A/; ˇ 2 Tors Hq.Sn � A/ with pC q D n � 2 and prove that

Tors Hp.A/! Hom.Tors Hq.S
n � A/;Q=Z/; ˛ 7! fˇ 7! 	.˛; ˇ/g

(where pC q D n � 2) is an isomorphism.

In conclusion, several exercises.

EXERCISE 49. (The Alexander isomorphism in R
n) Let A be a compact polyhedron

in R
n. Prove that Hp.A/ Š eHq.R

n � A/ for pC q D n � 1.

EXERCISE 50. Let A be a k-component link (D the union of k disjoint non-self
intersecting closed curves in S3). Find the homology of S3 � A.

EXERCISE 51. (A continuation of Exercise 50) Assume that the linking numbers
of the components of A are known. Find the multiplicative structure in the integral
cohomology of S3 � A.
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Fig. 73 Borromeo rings

EXERCISE 52. The following is a description of a “secondary multiplicative struc-
ture in cohomology” provided by “Massey products.” Let ˛ 2 Hp.XIG/; ˇ 2
Hq.XIG/; � 2 Hr.XIG/ be cohomology classes of some topological space with
coefficients in a ring. Assume that ˛ ^ ˇ D 0 and ˇ ^ � D 0. Let a 2
Cp.XIG/; b 2 Cq 2 Cq.XIG/; c 2 Cr.XIG/ be (singular) cocycles representing
˛; ˇ; � , and let a ^ b D ıu; b ^ c D ıv. Then h D u ^ c � .�1/pa ^ v 2
CpCqCr�1.XIG/ is a cocycle, and its cohomology class is determined by ˛; ˇ, and
� up to a summand of the form ˛ ^ � C � ^ � with � 2 HqCr�1.XIG/; � 2
HpCq�1.XIG/. This (not always and not uniquely) defined cohomology class is
called the (triple) Massey product of ˛; ˇ; � and is denoted as h˛; ˇ; �i. Check all
this and compute the cohomology, with cup-products and Massey products, of the
complement of the “Borromeo rings” (see Fig. 73).

There exists an extensive theory of “triple linking numbers” and their relations
to Massey products (with further generalizations); see Milnor [54] and Turaev [87].

17.12 Integral Poincaré Isomorphism for Nonorientable
Manifolds

These isomorphisms have the form

Hm.XIZ/ Š Hn�m.XIZT/; Hm.XIZT/ Š Hn�m.XIZ/:

Here X is a connected compact n-dimensional nonorientable homology manifold,
and homology and cohomology with coefficients in ZT (“twisted” integers) are
defined in the following way. Let eX be the oriented twofold covering of X. Then
there is a canonical orientation reversing involution t W eX ! eX. There arise a
transformation t#WCq.eX/! Cq.eX/ with the square 1, and a decomposition

Cq.eX/ D CC
q .
eX/˚ C�

q .
eX/;
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where Cq̇ .
eX/ D fc 2 Cq.eX/ j t#.c/ D ˙cg. Obviously, CC

q .
eX/ is the same as

Cq.X/; we take the other summand, C�
q .
eX/, for Cq.XIZT/. The groups Cq.XIZT/

form, in the obvious way, a complex. The homology of this complex is denoted as
Hq.XIZT/, and the corresponding cohomology is taken for Hq.X;ZT/. We will not
discuss in any detail these homology and cohomology with “twisted coefficients”;
moreover, we will have to do it in a much bigger generality in Chap. 3. Now
we restrict ourselves to a recommendation to the reader to reconstruct Poincaré
isomorphism given above [they are cap-products with a “fundamental class” ŒX� 2
Hn.XIZT )], and Poincaré duality with appropriately defined intersection numbers
and secondary intersection numbers.

Lecture 18 The Obstruction Theory

18.1 Obstructions to Extending a Continuous Map

Most problems in homotopy topology consist in a homotopy classification of
continuous maps between two topological spaces. A natural intermediate problem
is the question of whether a given continuous map A ! Y can be extended to a
continuous map X ! Y for some X 
 A (with a subsequent classification of such
extensions). This is what the obstruction theory was designed for. We will begin
with a technically important particular case.

Let X be a CW complex, and let Y be a connected topological space which is
assumed homotopically simple (that is, the action of the fundamental group in all
homotopy groups is trivial; later, we will discuss several possibilities of removing or,
at least, weakening this condition). Consider the problem of extending a continuous
map f WXn ! Y to a continuous map XnC1 ! Y (where Xn;XnC1 are skeletons).
Let e � X be a cell of dimension n C 1, and let hWDnC1 ! X be a corresponding
characteristic map. There arises a continuous map fe D f ı hjSn W Sn ! Y. It is
obvious that f can be continuously extended to Xn [ e if and only if fe is homotopic
to a constant, that is, if fe represents the class 0 2 �n.Y/ (since Y is homotopically
simple, we do not need to fix a base point in Y).

Furthermore, the possibility of extension of f to XnC1 is the same as the
possibility of its extension to every .nC 1/-dimensional cell of X. If we construct,
as above, a map feW Sn ! Y for every e and denote by 'e the class of fe in �n.Y/,
we arrive at the following, essentially tautological, statement: A continuous map
f WXn ! Y can be extended to a continuous map XnC1 ! Y if and only if every 'e

is equal to 0.
The function e 7! 'e can be regarded as an .nC 1/-dimensional cellular cochain

cf of X with coefficients in �n.Y/. (This cochain does not depend on the choice of
characteristic maps. Indeed, from the homotopy point of view there are only two
characteristic maps corresponding to the two orientations of e; the replacement of h



254 2 Homology



18.1 Obstructions to Extending a Continuous Map 255



256 2 Homology



18.1 Obstructions to Extending a Continuous Map 257



258 2 Homology



18.1 Obstructions to Extending a Continuous Map 259

by a characteristic map of the opposite orientation changes the sign at 'e, but also
reverses the orientation of e, so the cochain cf stays unchanged.) Thus,

cf 2 CnC1.XI�n.Y//;

and f can be extended to XnC1 if and only if cf D 0. The cochain cf is called the
obstruction cochain to the extension of f to XnC1.

Notice that the obstruction cochains have a naturality property: If 'WX0 ! X is a
cellular map and  WY ! Y 0 is a continuous map, then c ıf ı' D '# #cf .

Up to now, everything said was a sheer triviality. Here is the first nontrivial
statement.

Theorem 1. The obstruction cochain is a cocycle: ıcf D 0.

Proof. The statement may be regarded as a variation on the theme of @@ D 0

[we need to prove that cf .@a/ D 0, but the cochain cf itself is defined by means
of boundaries], but the accurate proof requires some work. For example, it can
be deduced from the relative Hurewicz theorem (Sect. 14.4). According to this
theorem, if X satisfies some conditions (we will discuss them later), then the
Hurewicz homomorphism hW�q.Xq;Xq�1/ ! Hq.Xq;Xq�1/ is an isomorphism.
Consider the diagram

This diagram is commutative by the definition of the cochain cf and the
homomorphism @W CnC2.X/ ! CnC1.X/. Also, the part of the vertical column
marked by a brace is a fragment of the homotopy sequence of the pair .XnC1;Xn/,
and hence the composition os homomorphism within this part is 0. Thus, cf ı @ D
ıcf D 0.

However, the reference to the relative Hurewicz theorem forces us to respect its
assumptions, that is, to assume that X is simply connected and that n C 1 > 1.
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We will ignore the second assumption (it is easy to see that our arguments are
valid when n D 0), and we can get rid of the simply connectedness assumption
in the following way. Let pW eX ! X be the universal covering of X. The CW
decomposition of X induces a CW decomposition of eX, and the map p#W Cq.X/ !
Cq.eX/ is a monomorphism. For a map f WXn ! Y, the obstruction cochain cf ıp 2
CnC1.eXI�n.Y// is p#cf , p#ıcf D ıp#cf D ıcf ıp D 0, and hence ıcf D 0.

The cohomology class Cf 2 HnC1.XI�n.Y// of the cocycle cf is called the
cohomology obstruction, or simply the obstruction to extension of f to XnC1.

Theorem 2. The condition Cf D 0 is necessary and sufficient to the existence of
extending f jXn�1 to XnC1. In other words, Cf =0 if and only if it is possible to extend
f to XnC1 after, possibly, a changing f on Xn � Xn�1.

[One can apply this theorem to successive extensions of f from a skeleton to a
skeleton. Say, let us have a continuous map f WXn ! Y. There arises an obstruction
Cf 2 HnC1.XI�n.Y/. If it is 0, we can extend f to XnC1 at the price of some
modification of f on Xn not touching f on Xn�1. In this case (that is, if Cf D 0),
we get a new obstruction in HnC2.XI�nC1/. If it is zero, we extend f to XnC2
(maybe, after changing the previous extension), and get the next obstruction in
HnC3.XI�nC2.Y//, and so on. One should remember, however, that every new
obstruction depends from the previous extension, and hence these obstructions are
defined with a growing indeterminacy.]

Before proving Theorem 2, we will give a new definition which will be useful
in the proof but will also have a considerable independent value. Let f ; gWXn ! Y
be two continuous maps which agree on Xn�1. Consider an arbitrary n-dimensional
cell e with a characteristic map hWDn ! X. The maps f ı h; g ı hWDn ! Y agree
on Sn�1 [since h.Sn�1/ � Xn�1, and f and g agree on Xn�1] and together compose
a map keW Sn ! Y (which is f ı h on the lower hemisphere and g ı h on the upper
hemisphere). We define the difference cochain

df ;g 2 Cn.XI�n.Y//;

whose value on e is the class of ke in �n.Y/. It is clear that the condition df ;g D 0 is
necessary and sufficient for the existence of a homotopy between f and g which is
fixed on Xn�1 (in the terminology of Chap. 1, an Xn�1-homotopy; see Sect. 5.7). In
the important case when f and g are defined on the whole X and agree on Xn�1, the
condition df ;g D 0 is necessary and sufficient for the existence of an Xn�1-homotopy
of f making f agree with g on Xn (for this statement, we need to use Borsuk’s
theorem, Sect. 5.5). Notice also that the difference cochains have a naturality
property similar to that of the obstruction cochains: d ıf ı'; ıf ı' D '# #df ;g:

Lemma 1. For any continuous map f WXn ! Y and any cochain d 2 Cn.XI�n.Y//,
there exists a continuous map gWXn ! Y which agrees with f on Xn�1 and is such
that df ;g D d.
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.

e

f(e)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

d(e)

g(e)

f

g

Fig. 74 Proof of Lemma 1

Proof. Consider an n-dimensional cell e of X and distinguish a small ball in e. Than
change the map f on this ball in such a way that the two maps of the ball, the old
one and the new one, compose a spheroid of the class d.e/ (see Fig. 74). Having
such a change made on each n-dimensional cell, we get the map g with the required
properties.

Lemma 2. ıdf ;g D cg � cf .

Proof. Consider, for simplicity’s sake, the case when f and g are different on only
one n-dimensional cell e � X (the general case, essentially, is not different from this
case). Let � be an .nC 1/-dimensional cell of X; we want to show that

cg.�/ � cf .�/ D Œ� W e�df ;g.e/:

Let hWDnC1 ! X be a characteristic map for � . We can assume that h�1.e/ consists
of several open balls, of which every one is mapped by h homeomorphically onto
e, with preserving or reversing the orientation, and Œ� W e� is the difference of the
number of balls where the orientation is preserved and the number of balls where it
is reversed (compare the description of the incidence numbers in Sect. 13.6). This
makes the desired equality obvious: A spheroid representing cg.�/ is obtained from
a spheroid representing cf .�/ by adding spheroids of the class ˙df ;g.e/, and the
algebraic number of these spheroids is Œ� W e�.
Proof of Theorem 2. If Cf D 0, then cf D ıd and, by Lemma 1, there exists a map
gWXn ! Y such that g jXn�1D f jXn�1 and df ;g D �d. But then, by Lemma 2,
cg D cf C ıdf ;g D ıd � ıd D 0; thus, g can be extended to XnC1. Conversely, if
there exists a map gWXn ! Y which agrees with f on Xn�1 and can be extended to
XnC1, then cg D 0 and cf D cf � cg D ıdf ;g, and hence Cf D 0.

Remark. The two lemmas of this proof are not less important than the theorem; we
will use them later.

EXERCISE 1. Prove that dg;f D �df ;g and df ;h D df ;g C dg;h.
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18.2 The Relative Case

Let A be a CW subcomplex of a CW complex X, and let the continuous map f be
defined on A[Xn. The obstruction cochain cf to an extension of this map to A[XnC1
is contained in CnC1.X;AI�n.Y//, it is a cocycle, and its cohomology class Cf 2
HnC1.X;AI�n.Y// is called an obstruction. The theory of these relative obstructions
is absolutely parallel to its absolute prototype; in particular, it contains the notion of
difference cochains, and there are precise analogies (for both the statements and the
proofs) of all theorems and lemmas of the previous section. We will point out the
following important consequence of the relative theory in the absolute theory.

Let f ; gWX ! Y (or XnC1 ! Y) be two maps with f jXn�1D g jXn�1 [or
with a fixed homotopy connecting f jXn�1 and g jXn�1]. We consider the problem
of constructing a homotopy between f and g fixed (or coinciding with the given
homotopy) on Xn�1. This problem is equivalent to extending to X�I (or to XnC1�I)
the map which is given on .X � 0/[ .Xn�1 � I/ [ .X � 1/ by the formula

.x; t/ 7!
�

f .x/; if t D 0 or x 2 Xn�1;
g.x/; if t D 1.or x 2 Xn�1/

(this formula is for the case when f and g agree on Xn�1; if a homotopy between
f jXn�1 and g jXn�1 is given, the formula will be slightly different; we leave the details
to the reader). The obstruction to an extension of this map to .X�0/[.Xn�I/[.X�1/
lies in CnC1.X � I; .X � 0/ [ .X � 1/I�n.Y// D Cn.XI�n.Y//, and it is easy to see
that it is nothing but df ;g. By the way, ıdf ;g D cg � cf D 0, since f and g are both
defined on the whole X (or, at least, on XnC1). If we apply to this situation the relative
version of Theorem 2 of Sect. 18.1, we will get the following result.

Theorem. If f ; gWX ! Y are two continuous maps which agree on Xn�1, then the
difference cochain df ;g is a cocycle whose cohomology class Df ;g 2 Hn.XI�n.Y// is
equal to 0 if and only if f jXn and g jXn are Xn�2-homotopic.

18.3 The First Application: Cohomology and Maps
into K.�;n/s

The main result of this section was promised in Lecture 4. Let � be an Abelian
group.

Recall that the construction of a K.�; n/ space begins with taking a bouquet of
n-dimensional spheres set into a correspondence with some system of generators of
� (see Sect. 11.7); then we attach to this bouquet cells of dimensions > n. If we
assign to every n-dimensional cell of K.�; n/ the corresponding element of � , we
get a cochain c 2 Cn.K.�; n/I�/ [we admit here a certain abuse of notation, using
the symbol K.�; n/ for a CW complex obtained by some concrete construction].
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Lemma. c is a cocycle.

First Proof (Direct). The cells of dimension n C 1 correspond to the defining
relations between the chosen generators. If the cell � corresponds to the relation
P

kigi D 0 between the generators gi, then for the n-dimensional cell ei corre-
sponding to the generator gi, the incidence number Œ� W ei� is ki. Then

ıc.�/ D
X

i
Œ� W ei�c.ei/ D

X

i
kigi D 0:

Second Proof (Indirect). Actually, c D dconst;id; thus, ıc D 0 by Lemma 2 of
Sect. 18.1.

The cohomology class F� 2 Hn.K.�; n/I�/ of the cocycle c is called the
fundamental cohomology class of K.�; n/. Another description of this class:
According to the universal coefficients formula,

Hn.K.�; n/I�/ D Hom.Hn.K.�; n//; �/;

and, by Hurewicz’s theorem, Hn.K.�; n// D �n.K.�; n// D � . The class F�
corresponds to the identity homomorphism

id� 2 Hom.Hn.K.�; n//; �/:

EXERCISE 2. Prove the equivalence of the two definitions of the fundamental
homology class.

Notice that the second definition of the fundamental class can be applied to an
arbitrary .n� 1/-connected space X. In this case, it yields a cohomology class FX 2
Hn.XI�n.X//. We will return to this class later.

Now we turn to the main result of this section.

Theorem. Let X be a CW complex. For any Abelian group � and for any n > 0,
the map

�.X;K.�; n//! Hn.XI�/; Œf �! f �.F�/; (	)

is a bijection.

Proof. First, let � 2 Hn.XI�/, and let c 2 Cn.XI�/ be a cocycle of the class � . We
want to construct a continuous map f WX ! K.�; n/ which takes the cocycle of class
F� (constructed above) into c. By Lemma 1 of Sect. 18.1, there exists a map f WXn !
K.�; n/ such that f .Xn�1/ is the (only) vertex of K.�; n/ and dconst;f D c. Then,
obviously, f #W Cn.K.�; n/I�/ ! Cn.XI�/ takes dconst;id into dconst;f D c (by the
naturality property of the difference cochains; see Sect. 18.1). Then we extend this
map f to XnC1;XnC2; : : : , and it is possible, since�nC1.K.�; n//; �nC2.K.�; n//; : : :
are all zeroes. We obtain a map f WX ! K.�; n/. By construction, f � takes F� into � .
Thus, the map (	) is onto.
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Now let f ; gWX ! K.�; n/ be two continuous maps with f �F� D g�F� . We want
to prove that f � g; we can assume that f and g are cellular maps (in particular, they
are constant on Xn�1). Then f �F� and g�F� are represented by f #dconst;id D dconst;f

and g#dconst;id D dconst;g. Hence, the cocycles dconst;f and dconst;g are cohomological,
so the difference dconst;g � dconst;f D df ;g is cohomological to 0, or Df ;g D 0.
According to the theorem in Sect. 18.2, this shows that f and g are Xn�2-homotopic
(the homotopy being fixed on Xn�2 is not important to us) on Xn. They are also
homotopic on further skeletons, since the further difference cochains belong to the
cochain groups with trivial coefficients. Thus, the map (	) is one-to-one.

Corollary 1. A CW complex of the type K.�; n/ is homotopically unique. Hence, a
topological space of the type K.�; n/ is weakly homotopically unique.

Proof. Let X;X0 be CW complexes of the type K.�; n/, and let F� 2
Hn.XI�/;F0

� 2 Hn.X0I�/ be the fundamental classes. According to the theorem,
there exist continuous maps f WX ! X0; gWX0 ! X such that f �.F0

�/ D F� and
g�.F�/ D F0

� . Since .g ı f /�.F�/ D f � ı g�.F�/ D F� D .idX/
� .F�/, we have

g ı f � idX and, similarly, f ı g � idX0 .

EXERCISE 3. Since K.�; n/ � �K.�; nC1/ is an H-space, the set �.X;K.�; n// is
a group (see Lecture 4), and the bijection Hn.XI�/ $ �.X;K.�; n// is a bijection
between two groups. Prove that it is a group isomorphism.

Actually, for every Abelian group � and every n, there exists an Abelian
topological group of the type K.�; n/. The reader may try to prove it by an
appropriate enhancing of the construction of the (second) loop space.

Corollary 2. For a CW complex X, there is a group isomorphism H1.XIZ/ Š
�.X; S1/ (where S1 is regarded as an Abelian topological group).

EXERCISE 4. Prove that every continuous map S1 � � � � � S1
„ ƒ‚ …

n

! S1 � � � � � S1
„ ƒ‚ …

m

is

homotopic to a linear map (that is, to a map obtained by a factorization from a
linear map R

n ! R
m determined by an integral matrix).

18.4 The Second Application: Hopf’s Theorems

Theorem 1 (Hopf). For every n-dimensional CW complex X, there is a bijection

Hn.XIZ/$ �.X; Sn/; Œf � 7! f �.s/;

where s D 1 2 Z D Hn.SnIZ/.

Proof. This classical theorem (proved, actually, before the appearance of not only
the obstruction theory, but also cohomology) is, from a modern point of view,
a corollary of the theorem in Sect. 18.3. Indeed, the construction of the space
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K.�; n/, as given in Sect. 11.7, begins with a bouquet of n-dimensional spheres
corresponding to generators of �; if � D Z, we can take one sphere. On the next
step, we attach .n C 1/-dimensional cells corresponding to relations between the
chosen generators; but in the case � D Z there are no relations, and no .n C 1/-
dimensional cells are needed. Then we attach cells of dimensions � n C 2. We
see that the .n C 1/st skeleton of (such constructed) K.Z; n/ is Sn. Hence, by the
cellular approximation theorem, if X is n-dimensional, every map X ! K.Z; n/ is
homotopic to a map X ! Sn � K.Z; n/ and every two maps X ! Sn � K.Z; n/
homotopic in K.Z; n/ are homotopic in Sn.

[There is a more direct proof which is a replica of the proof of the theorem in
Sect. 18.3. The main difference is that the higher obstruction and difference cochains
are equal to zero not because the higher homotopy groups of Sn are zeroes (which is
not true), but because X has no cells of higher dimensions.]

Theorem 2 (Hopf). Let an n-dimensional CW complex X contain as a CW sub-
complex a sphere Sn�1. This sphere is a retract of X if and only if the inclusion
homomorphism Hn�1.XIZ/! Hn�1.Sn�1IZ/ is an epimorphism.

Proof. The only if part is obvious: If rWX ! Sn�1 is a retraction, then the
composition

Hn�1.Sn�1IZ/ r�

��!Hn�1.XIZ/ j���!Hn�1.Sn�1IZ/;

where j is the inclusion map, is the identity, and hence j� is an epimorphism. Assume
now that j� is an epimorphism and fix a class ˛ 2 Hn�1.XIZ/ such that j�.˛/ D
1 2 Z D Hn�1.Sn�1IZ/. Let a 2 Cn�1.XIZ/ be a cocycle of the class ˛. Construct
a map qWX ! Sn�1 in the following way. All the cells of dimensions � n � 2
we map into a point. On every .n � 1/-dimensional cell e define the map as the
spheroid of the class a.e/. This requirement means precisely that the map q# takes
1 2 Z D Cn�1.Sn�1IZ/ into a. On the other side, it means that the cochain a is the
difference cochain between the already constructed part of the map q and the map
constWXn�1 ! Sn�1. Hence,

0 D ıa D ıdq;const D cq � cconst D cq;

so the map q can be extended to Xn D X. The composition

Sn�1 j��!X
q��! Sn�1

induces the identity map in cohomology: .q ı j/�.1/ D j�.q�.1// D j�.˛/ D 1, and
hence homotopic to id. We can extend the homotopy between this map and id to the
homotopy of the map q. As a result, we will get a map rWX ! Sn�1 which is the
identity on Sn�1, that is, a retraction.
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18.5 Obstructions to Extensions of Sections

Let � D .E;B; F; p/ be a locally trivial fibration. We assume that the fiber
F is homotopically simple (for example, simply connected), and the base B is
simply connected. (The last assumption can be weakened to the assumption of the
homotopical simplicity of the fibration. The latter means that for every continuous
map S1 ! B, the induced fibration over S1 is trivial. In the next lecture, we will
encounter important examples of this situation.)

Assume that the base B is a CW complex and that there given a section sWBn ! E
[which means that p ı s D id] over the nth skeleton of the base. We are going
to describe an obstruction to extending this section to BnC1. Let e be an .n C 1/-
dimensional cell over B. The fibration h�� over DnC1, induced by means of a
characteristic map hWDnC1 ! B for the cell e, is trivial. The section s induces a
section Sn ! DnC1 � F of the restriction of the last fibration to Sn � DnC1, and
hence an element of �n.DnC1 � F/ D �n.F/ (rather of the fiber p�1.x/ over some
point x 2 e, but the simply connectedness of the base, or the homotopical simplicity
of the fibration �, provides a canonical homomorphism between homotopy groups
of all fibers—the reader will reconstruct a detailed explanation of this). We get a
cochain cs 2 CnC1.BI�n.F//. This is the obstruction cochain to extending s to BnC1.
The properties of this obstruction cochain are the same as those of the obstruction
cochains considered in Sect. 18.1. Namely:

(1) The section s can be extended to a section over the .n C 1/st skeleton of B if
and only if cs D 0.

(2) ıcs D 0.
(3) The cohomology class Cs 2 HnC1.BI�n.F// of cs (which is called the

obstruction) is equal to 0 if and only if the section s can be extended to a section
over BnC1.

There are also difference cochains ds;s0 whose definition and properties are the
same as before.

Obstructions to extending maps may be regarded as particular cases of obstruc-
tions to extending sections. Namely, a continuous map f WX ! Y can be represented
by the graph FWX ! X�Y; F.x/ D .x; f .x//, which, in turn, is a section of the trivial
fibration .X�Y;X;Y; p/, where pWX�Y ! X is the projection of the product onto a
factor. Obstructions to extending a map are the same as obstructions to extending its
graph. On the other hand, the theory of obstructions to sections cannot be reduced to
the theory of obstructions to maps. In particular, the latter does not have any analogy
of the next construction.

Suppose that �0.F/ D �1.F/ D � � � D �n�1.F/ D 0, and �n.F/ ¤ 0.
Then there are no obstructions to extending a section from B0 (where it obviously
exists) to B1; : : : ;Bn�1 and the first obstruction emerges in HnC1.BI�n.F//: It is the
obstruction to extending the section from Bn�1 to Bn. This obstruction could depend,
however, on the sections on the previous skeletons; however, the next proposition
states that it is not the case.
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Proposition 1. Let �0.F/ D �1.F/ D � � � D �n�1.F/ D 0, and let s; s0WBn ! E be
two sections. Then Cs D Cs0 2 HnC1.BI�n.F//.

To prove this, we need a slightly modified version of the homotopy extension
property (Borsuk’s theorem; see Sect. 5.5).

Lemma (Borsuk’s Theorem for Sections). Let � D .E;B;F; p/ be a locally trivial
fibration with a CW base, let SWB ! E be a section of �, let A be a CW subspace
of B, and let stWA ! E be a homotopy consisting of sections of � jA such that
s0 D S jA. Then there exists a homotopy StWB ! E consisting of sections of � and
such that S0 D S; St jAD st.

Proof of Lemma. This lemma is not different from Borsuk’s theorem in the case
when the fibration is (standard) trivial: E D B�F; p is the projection of the product
onto a factor. Indeed, in this case, a section is the same as a continuous map B! F.
Passing to the general case, we can restrict ourselves to the situation when A and
B differ by one cell: B D A [ e, where e is a cell of B. Take a characteristic map
hWDn ! B (where n D dim e). Then the sections S; st of � and � jA give rise to
sections S0; s0

t of the fibrations h��; h�� jSn�1 [such that s0
0 D S0 jSn�1]. Since the

fibration h�� is trivial (Feldbau’s theorem, Sect. 9.2), the lemma has already been
proved for this fibration, which provides a homotopy S0

t consisting of sections of this
fibration such that S0

0 D S0 and S0
t jSn�1D s0

t. The homotopies st and S0
t together form

a homotopy StWB! E with the required properties.

Proof of Proposition 1. It is clear that a homotopy of a section sWBk ! E will not
affect either cs or Cs. Suppose that the given sections s; s0 are homotopic over Bk for
some k; 0 � k < n � 1 (since the fiber F is connected, this is obviously true for
k D 0). A homotopy of s0 to s on Bk can be extended, by the lemma, to a homotopy of
s0 on Bn, without any changes for cs0 and Cs0 so we can assume that s0 D s on Bk. The
difference cochain ds;s0 2 CkC1.BI�kC1.F// is zero, because �kC1.F/ D 0; thus,
s0 � s on BkC1. In this way, we can reduce the general case of the proposition to the
case when s0 D s on Bn�1. Then we have a difference cochain ds;s0 2 Cn.B; �n.X//,
and ıds;s0 D cs0 � cs. Thus, the cocycles cs and cs0 are cohomological and hence
Cs D Cs0 .

Proposition 1 shows that the first obstruction to extending a section to the nth
skeleton of the base is determined by the fibration, so we obtain a well-defined class
C.�/ 2 HnC1.BI�n.F// (recall that n is the number of the first nontrivial homotopy
group of F); this class is called the characteristic class of �; we will also use the term
primary characteristic class to distinguish it from numerous characteristic classes of
vector bundles, which will be studied in Lecture 19.

One can say that a fibration as above has a section over the nth skeleton of the
base if and only if its characteristic class is zero.

EXERCISE 5 (The main property of characteristic classes). Let � be a fibration as
above, and let f WB0 ! B be a continuous map of some CW complex into B. Then

C.f ��/ D f �.C.�//:
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EXERCISE 6. Prove that a characteristic class is homotopy invariant (we leave to
the reader not only the proof, but also a precise statement of this fact). In particular,
the characteristic class does not depend on the CW structure of the base.

EXERCISE 7. Using previous exercises, make up a definition of a characteristic
class in the case when the base is not a CW complex.

Example. (Since this example concerns smooth manifolds, the definitions and
statements will not be genuinely rigorous.) Let X be a connected closed oriented
n-dimensional manifold and let T be the manifold of all nonzero tangent vectors
of M. The projection pWT ! X (which assigns to a tangent vector the tangency
point) gives rise to a locally trivial fibration �X D .T;X;Rn�0; p/. Since the fiber is
homotopy equivalent to Sn�1, there arises a characteristic class C.�X/ 2 Hn.XIZ/.
(It is easy to understand that the fibration �X is simple if and only if the manifold X
is orientable.)

Proposition 2. hC.�X/; ŒX�i D �.X/.
Proof. A section of the fibration �X is the same as a nowhere vanishing vector field
on X. It is easy to understand that a generic vector field on X has only isolated
zeroes. Take a local coordinate system with the origin at the isolated zero x0 of a
vector field �, take a small sphere S � Sn�1 centered at x0, and consider the map
S D Sn�1 ! Sn�1 which takes x 2 S into �.x/=k�.x/k. Denote by d�.x0/ the degree
of this map. We can assume (although it is actually not necessary) that all the zeroes
of � are nondegenerate, that is, d.x0/ D ˙1. Now consider a smooth triangulation
of X such that all zeroes of � lie inside n-dimensional simplices, at most one in every
simplex. Then � is a section of the fibration �X over the .n � 1/st skeleton of X, and
the obstruction c� to extending this section to an n-dimensional simplex s is zero if
s does not contain zeroes of � and is d.x0/ if s contains a zero x0 of �. Since the
fundamental cycle of ŒX� is the sum of all (oriented) n-dimensional simplices of the
triangulation, hc� ; ŒX�i DPx02fzeroes of �g d.x0/. The left-hand side of this equality is
hC.�X/; ŒX�i, the right-hand side, as explained in Sect. 17.6 (see Theorem 3 and the
discussion after it), is �.X/. This completes the proof of Proposition 2.

Corollary. A connected closed orientable manifold possesses a nowhere vanishing
vector field if and only if �.X/ D 0.

The only if part of this statement has been proved before: See Theorem 2 in
Sect. 17.6. The if part was promised there. The orientability condition is not needed;
it also was explained in Sect. 17.6.

In conclusion, a couple of additional exercises.

EXERCISE 8. Make up a theory of obstructions to extending sections in the context
of Serre fibrations (see Sect. 9.4).

EXERCISE 9. Let X be a CW complex with �0.X/ D �1.X/ D � � � D �n�1.X/ D
0; �n.X/ ¤ 0. Prove that the characteristic class of the Serre fibration EX ! X
with the fiber �X which belongs to Hn.XI�nC1.�X// D Hn.XI�n.X// is just the
fundamental class of X.
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Lecture 19 Vector Bundles and Their Characteristic Classes

19.1 Vector Bundles and Operations over Them

A: Definitions

We consider three types of vector bundles: real, oriented, and complex. A real n-
dimensional vector bundle with the base B is a locally trivial fibration with the base
B and the fiber homeomorphic to R

n with an additional structure: Each fiber is
furnished by a structure of an n-dimensional vector space, in such a way that the
vector space operations .�; x/ 7! �x and .x; y/ 7! xC y depend continuously on the
fiber, in the sense that the arising maps R � E ! E and f.x; y/ 2 E � E j p.x/ D
p.y/g ! E (where E is the total space and p is the projection of the fibration) are
continuous. Complex vector bundles are defined precisely in the same way, only
the field R is replaced by the field C; oriented vector bundles are real vector bundles
whose fibers are furnished with orientation depending continuously on the fiber. The
last property can be formalized in the following way. For simplicity’s sake, assume
that B is connected. Let eE be the set of all bases in all fibers of the fibration; there is
a natural topology in eE. The fibration is orientable if and only if eE has two (not one)
components; a choice of one of these components is an orientation of the fibration.

For vector bundles of all three kinds there are natural definitions of equivalences,
restrictions (over subspaces of the base) and induced bundles (by a continuous map
of some space into the base). A trivial bundle is a bundle equivalent (in its class)
to the projection bundle B � R

n ! B or B � C
n ! B furnished by the obvious

structure.

Important Example. The Hopf or tautological vector bundle over RPn is the one-
dimensional vector bundle whose total space is the set of pairs .`; x/, where ` 2 RPn

is a line in R
nC1 and x 2 ` is a point on this line [topology in this set is

defined by the inclusion into RPn � R
nC1]. Precisely in the same way, the Hopf,

or tautological, one-dimensional complex vector bundle over CPn is defined. An
obvious generalization of this construction provides tautological vector bundles over
the Grassmannians G.m; n/;GC.m; n/, and CG.m; n/, which are n-dimensional,
respectively, real, oriented, and complex vector bundles.

B: Realification and Complexification

One can make a complex vector bundle real by removing a part of its structure,
namely the multiplication by nonreal scalars. If � is an n-dimensional complex vec-
tor bundle, then the realification provides a 2n-dimensional real vector bundle which
is denoted as R�. The bundle R� possesses a canonical orientation: If x1; : : : ; xn is
a complex basis in a fiber of �, then x1; ix1; : : : ; xn; ixn is a real basis in the same
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space, and the orientation of this basis does not depend on the choice of the complex
basis x1; : : : ; xn [this follows from the fact that the image of the natural embedding
cWGL.n;C/ ! GL.2n;R/ consists of matrices with positive determinant; the last
statement follows from the fact that GL.n;C/ is connected, or, more convincingly,
from the formula det.cA/ D j det Aj2; compare with the “important remark” in the
example after Theorem 1 in Sect. 17.5]. The definition of the complexification C�

of a real vector bundle .E;B;Rn; p/ is a bit more complicated. In the product C�E,
make an identification .rx; �/ D .x; r�/ for every x 2 E; r 2 R; � 2 C. The resulting
space CE is the space of our fibration; the projection CE ! B is defined by the
formula .x; �/ D p.x/, and the vector operations act as .x; �/C .x; �0/ D .x; �C�0/
and 	.x; �/ D .x; 	�/ (it is obvious that these formulas are compatible with the
preceding factorization). It is clear also that C� is an n-dimensional complex vector
bundle.

There is one more operation related to the two previous ones. Let � be a complex
vector bundle. Denote by � a complex vector bundle (of the same dimension as �)
which differs from � only by the operation of multiplication by scalars: �x with
respect to the structure of � is the same as �x in �.

EXERCISE 1. Let � be a complex vector bundle. Prove that the following two
statements are equivalent:

(i) The vector bundles � and � are equivalent to each other.
(ii) There exists a real vector bundle � such that � is equivalent to C�.

C: Direct Sums and Tensor Products

If �1; �2 are two vector bundles of the same type (real, complex, oriented) and with
the same base, then the (direct or Whitney) sum �1˚�2 and the tensor product �1˝�2
are defined as vector bundles with the same base whose fibers are, respectively,
direct sums or tensor products of the fibers of the bundles �1 and �2. Here is
a more formal definition of the sum (here and below, K denotes R or C). Let
�1 D .E1;B1;Kn1 ; p1/; �2 D .E2;B2;Kn2 ; p2/ be two vector bundles (the bases may
not be the same). Put �1 � �2 D .E1 � E2;B1 � B2;Kn1Cn2 ; p1 � p2/; this is a vector
bundle over B1 � B2 of dimension n1 C n2. If B1 D B2 D B, then we define �1 ˚ �2
as the restriction of �1 � �2 to the diagonal B � B � B. Another formal definition:
Let B1 D B2 D B and let p�

2 �1 D .eE;E2;Kn1 ;ep/ be the bundle over E2 induced by
�1. Then �1 ˚ �2 D .eE;B;Kn1Cn2 ; p2 ıep/.

There exists a different approach to the definition of ˚ and ˝ (see Sect. 19.4).
At the moment, we speak of tensor products of vector bundles not specifying any
formal definition; we hope that the reader will be able to create this definition
without our help (Exercise 5).
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EXERCISE 2. Prove the equivalence of the two definitions of �1 ˚ �2. (This will
show, in particular, that the second definition is actually symmetric with respect to
�1 and �2.)

EXERCISE 3. Introduce an orientation into the sum of two oriented bundles.

EXERCISE 4. Make up a formal definition of a tensor product of two (real or
complex) vector bundles.

EXERCISE 5. For real or complex vector bundles �1; �2 with the same base, make
up a definition of a vector bundle Hom.�1; �2/.

Two vector bundles of the same type, but, possibly, of different dimensions,
are called stably equivalent if they become equivalent after adding trivial bundles.
To make up a more formal definition, notice that a standard trivial n-dimensional
bundle B �K

n ! B is usually denoted simply as n. With this notation,

� �stab �, 9m; nW � ˚ n � �˚ m:

In conclusion, let us point out a connection of the sum construction with previous
constructions.

EXERCISE 6. Make up a canonical real vector bundle equivalence RC� � � ˚ �
(where � is a real vector bundle).

EXERCISE 7. Make up a canonical complex vector bundle equivalenceCR� � �˚
� (where � is a complex vector bundle).

D: Linear Maps Between Vector Bundles, Subbundles,
and Quotient Bundles

A linear map of a vector bundle �1 D .E1;B1;Kn1 ; p1/ into a vector bundle �2 D
.E2;B2;Kn2 ; p2/ (as before,K denotes R or C) is a pair of continuous maps FWE1 !
E2; f WB1 ! B2 such that f ı p1 D p2 ı F and for every x 2 B, the appropriate
restriction of F is a linear map p�1

1 .x/ ! p�1
2 .f .x//. The subbundle of a vector

bundle � D .E;B;Kn; p/ is a vector bundle � 0 D
�

E0;B;Kn0

; pjE0

�

with E0 � E

whose fibers are subspaces of the fibers of �. The inclusion map E0 ! E and the
identity map B ! B compose a linear map (inclusion) � 0 ! �. If � 0 is a subbundle
of �, then a fiberwise factorization creates a quotient bundle �=� 0. More formally,
the total space of �=� 0 is obtained from E by a factorization over the equivalence
relation: x1 � x2 if p.x1/ D p.x2/ and x2 � x1 2 E0. There is an obvious linear map
(projection) � ! �=� 0.

Let us mention two important subbundles: Sk� � � ˝ � � � ˝ �
„ ƒ‚ …

k

and ƒk� �

� ˝ � � � ˝ �
„ ƒ‚ …

k

.
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E: Coordinate Presentation of a Vector Bundle

Let � be an n-dimensional vector bundle (of one of our three types). Fix an open
covering fUig of the base B such that the restrictions �jUi are all trivial vector
bundles; let 'iW p�1.Ui/ ! K

n be a trivialization, that is, a map which is a vector
space isomorphism on every p�1.x/; x 2 Ui. For every y 2 Ui \ Uj, there arises a
composition

K
n

'�1
j��! p�1.y/

'i��!K
nI

the function which assigns this composition to y is a continuous map 'ijWUi \Uj !
G where G D GL.n;K/ [GLC.n;R/ in the case of an oriented bundle]. Moreover, (i)
'ii.y/ D I for y 2 Ui, (ii) 'ji.y/ D




'ij.y/
��1

for y 2 Ui\Uj, and (iii) 'ik.y/'kj.y/ D
'ij.y/ for y D Ui\Uj\Uk. It is easy to understand that a set of maps 'ijWUi\Uj ! G
with properties (i)–(iii) gives rise to a vector bundle. This presentation of a vector
bundle is called the coordinate presentation.

An obvious generalization of the so presented vector bundles consists in specify-
ing a topological group G and a G-space F. Suppose that there are an open covering
fUig of a space B and a set of continuous functions 'ijWUi\Uj ! G with properties
(i)–(iii) just listed. In the disjoint union

`

i.Ui�F/, make, for every i; j; y 2 Ui\Uj,
an identification




.y; f / 2 Uj � F
� � 


.y; 'ij.y/f / 2 Ui � F
�

; the space arising we
take for E. The projections Ui � F ! Ui � B form a projection pWE ! F, and
there arises a locally trivial fibration .E;B;F; p/ with a certain additional structure
similar to a structure of a vector bundle. Such fibrations are called fiber bundles (or
Steenrod fibrations); according to this terminology, G is the structure group, and F
is the standard fiber. The reader can find details in the classical book by Steenrod
[80], or in a variety of more modern books, for example, Husemoller [49]; here we
only mention some examples.

There are many obvious examples. Take a coordinate presentation of a real,
complex, or oriented vector bundle and assume that the functions 'ij take values
not in the group GL.n;R/;GL.n;C/ or GLC.nIR/, but in some subgroup of one of
these groups, say, in O.n/; SO.n/, or U.n/. It is clear that the fiber bundles arising
have an adequate description as real, complex, or oriented vector bundles with
an additional structure, for the examples above, with an Euclidean or Hermitian
structure, in every fiber. If the subgroup is the group of block diagonal matrices,
GL.p;K/ � GL.q;K/ � GL.nIK/; n D p C q, then the fiber bundle arising is
the usual n-dimensional vector bundle presented as the sum of two vector bundles,
of dimensions p and q. In a similar way, we can present vector bundles with a
fixed nonvanishing section, or with a fixed subbundle, and so on. An example of
a different nature: Take an arbitrary G and put F D G with the left translation
action; the fibrations arising are called principal. Some other examples will appear
in the next sections.
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19.2 Tangent and Normal Bundles

The notion of a tangent vector to a smooth manifold is very important, and for this
reason it has many equivalent definitions. The most natural definition is based on
local coordinates. Let x be a point of an n-dimensional manifold X, and let 'WU !
R

n be a chart such that x 2 U; then a tangent vector to X at x is defined as a
vector v of the space R

n at the point '.x/. If there is another chart,  WV ! R
n,

also covering x, then the tangent vector corresponding to the chart ' and the vector
v is identified with the tangent vector corresponding to the chart  and the vector
w D d'; .v/, where d'; is the differential of the map '.U\V/!  .U\V/; y 7!
 .'�1.y//. Another possibility, which does not require a fixation of a chart, is to
define a tangent vector at x as a class of parametrized smooth curves � W .�"; "/! X
such that �.0/ D x, where the curves �; � 0 are equivalent if dist.�.t/; � 0.t// D
o.t/ (the distance is calculated with respect to any local coordinate system). An
algebraically more convenient approach consists in defining a tangent vector of X at
x as a linear map vW C1.X/ ! R (C1.X/ is the space of real C1-functions) such
that v.fg/ D v.f /g.x/C f .x/v.g/ (in other words, tangent vectors are identified with
directional derivatives). Finally, if X is presented as a smooth surface in an Euclidean
space, then a tangent vector to X is simply a tangent vector to this surface. To make
this definition compatible with previous definitions, we can say that a tangent vector
at some point to the Euclidean space regarded as a smooth manifold is simply a
vector of this space at this point, and tangent vectors to a submanifold are tangent
vectors to the manifold tangent to the submanifold.

The set of tangent vectors to an n-dimensional manifold X at a point x is an
n-dimensional vector space which is denoted as TxX. The union of all spaces TxX
possesses a natural topology and, moreover, a structure of a 2n-dimensional smooth
manifold; this manifold is denoted as TX. The natural projection TX ! X makes
TX a total space of a vector bundle over X; this vector bundle is called the tangent
bundle of X and is denoted as �.X/. A section of a tangent bundle is a vector field
on the manifold. A manifold whose tangent bundle is trivial is called parallelizable;
a manifold is parallelizable if it is possible to choose bases in all tangent spaces
depending continuously of a point or, equivalently, if there exist n D dim X vector
fields on X which are linearly independent at every point. For example, the circle
is parallelizable, the torus is parallelizable, while the two-dimensional sphere is not
parallelizable. The three-dimensional sphere is parallelizable: If it is presented as the
space of unit quaternions, then the basis at the space TxS3 is formed by quaternions
ix; jx; kx where i; j; k are quaternion units. If you replace quaternions by octonions,
you will prove that the sphere S7 is parallelizable. There is a remarkable fact that
no spheres besides S1; S3; S7 are parallelizable: This is one of the versions of the
Frobenius conjecture proven by Adams (two different proofs, both belonging to
Adams, will be presented in Chaps. V and VI later). Notice that the problem of
parallelization of spheres is equivalent to the problem of existence of spheroids with
the invariant Hopf equal to one (see Remark 5 in Sect. 16.5).
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EXERCISE 8. Prove that the orientability of a manifold X (in the sense of Sect. 17.1)
is equivalent to the orientability of the tangent bundle �.X/.

If Y is a submanifold of a manifold X, then there arise two vector bundles with
the base Y: �.Y/ and �.X/jY , and �.Y/ � �.X/jY (a tangent vector to a submanifold
is also a tangent vector to the manifold). The quotient bundle �.X/jY=�.Y/ is called
the normal bundle of Y in X and is denoted as 
X.Y/ or 
.Y/. The word “normal” is
an indication of the fact that if X is a submanifold of an Euclidean space, then the
total space of 
.Y/ may be regarded as consisting of vectors at points of Y which
are tangent to X and normal to Y.

Mark an isomorphism �.Y/ ˚ 
.Y/ D �.X/jY . In particular, if X D R
n, then

�.Y/˚ 
.Y/ D n.
Notice that the construction of normal bundles with all properties listed can

be applied not only to submanifolds, that is, to embeddings of a manifold Y to a
manifold X, but also to immersions �WY ! X; the only significant change is that the
restriction bundle �.X/jY should be replaced by the induced bundle ���.X/.

EXERCISE 9. Deduce from the last equality that normal bundles of a manifold
corresponding to different embeddings or immersions of this manifold to Euclidean
spaces (possibly, of different dimensions) are stably equivalent.

EXERCISE 10. Prove that the normal bundle to an n-dimensional oriented surface
embedded (or immersed) into the .n C 1/-dimensional Euclidean space is trivial.
Deduce from this that the tangent bundle to such a surface (for example, to
an arbitrary sphere with handles) is stably trivial (that is, stably equivalent to a
trivial bundle). A manifold whose tangent bundle is stably trivial is called stably
parallelizable. Obviously, a manifold is stably parallelizable if and only if its normal
bundle is stably trivial.

FYI (this is not an exercise). A closed connected manifold is stably parallelizable if
and only if it is parallelizable in the complement to a point. A noncompact connected
manifold if stably parallelizable if and only if it is parallelizable. A manifold is
stably parallelizable if and only if it is orientable and admits an immersion in the
Euclidean space of the dimension bigger by 1.

EXERCISE 11. Let � be the Hopf bundle over RPn. Prove that

�.RPn/˚ 1 � � ˚ � � � ˚ �
„ ƒ‚ …

nC1
D .nC 1/�:

Prove a similar statement for CPn [notice that the bundle �.CPn/ possesses a natural
structure of a complex vector bundle].
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19.3 Associated Fibrations and Characteristic Classes

A: An Introduction

Choose one of the three types of vector bundles, and choose integers n and q and
an Abelian group G. A characteristic class c of n-dimensional vector bundles on the
chosen type with values in q-dimensional cohomology with the coefficients in G is
a function which assigns to every n-dimensional vector bundle � of the chosen type
with a CW base B a cohomology class c.�/ 2 Hq.BIG/ such that if f WB0 ! B is a
continuous map of another CW complex into B, then c.f ��/ D f �c.�/. Here f � on
the left-hand side of the formula means the inducing operation for vector bundles,
and on the right-hand side it means the induced cohomology homomorphism.

The term “characteristic class” is not new for us: In Sect. 18.5, we called the first
obstruction to extending a section of a locally trivial fibration a characteristic class
(or a primary characteristic class) of this fibration, and the equality c.f ��/ D f �c.�/
held for that characteristic classes. However, that construction cannot be applied to
vector bundles directly, because their fiber is contractible. (Recall that the coefficient
domain for the characteristic classes of Sect. 18.5 is the first nontrivial homotopy
group of the fiber.) What we still can do is to apply the construction to some fibration
which can be constructed from the given vector bundle. An ample variety of such
fibrations is delivered by the construction of an associated fibration.

B: A Construction of Associated Fibrations

This construction was actually described in Sect. 19.1.E. We take a coordinate
presentation ffUig; f'ijWUi \ Uj ! Ggg of a vector bundle with the base B [where
G D GL.n;R/;GLC.nIR/ or GL.n;C/] and choose an arbitrary space F with an
action of the group G. After this, we construct the total space E of a new fibration as

`

i.Ui � F/ j Œ.y; f / 2 Uj � F� � Œ.y; 'ij.y/f / 2 Ui � F�
for all y 2 Ui \ Uj; f 2 F:

The fibration .E;B;F; p/ [where pWE ! B is the projection .y; f / 7! y] is
the associated (by the given vector bundle) fibration with the standard fiber F.
However, usually we will not need this general construction: Almost always, we
will restrict ourselves to one particular case of it, which is described ahead. Let
� D .E;B;Rn; p/, or .E;B;Cn; p/, be a given vector bundle, and let 1 � k � n. Put

Ek D f.x1; : : : ; xk/ 2 E � � � � � E j p.x1/ D � � � D p.xk/I
x1; : : : ; xk are linearly independentg:
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There is an obvious projection pkWEk ! B, and there arises a locally trivial fibration
�k D .Ek;B;Rk; pk/ where Rk is the space of all linearly independent k-frames in R

n

or Cn. (This is the fibration associated with � with the standard fiber Rk.) The case
k D 1 is especially simple: E1 is E � B, where B is embedded into E as the zero
section, and R1 is Rn � 0 or Cn � 0.

Point out a small defect of this construction (rather more aesthetic than mathe-
matical). The fibers are noncompact spaces which would have better been replaced
by homotopy equivalent classical manifolds: Stiefel manifolds and spheres. This
can be done with the help of the following simple lemma.

Lemma. If a vector bundle has a CW base, then it is possible to introduce in all
fibers an Euclidean or Hermitian structure which depends continuously on the point
of the base; moreover, this can be done in a homotopically unique way.

Proof. The set of all Euclidean (Hermitian) structures in fibers of a vector bundle
is a total space of a fibration whose fiber is the space of all Euclidean (Hermitian)
structures in a given vector space (this is also a fibration associated with the vector
bundle). Obviously, the fiber of this fibration is contractible (it is a convex subset
of the space of all symmetric bilinear (Hermitian) forms in this vector space.
This fibration has a section (all the obstructions are zeroes) and this section is
homotopically unique (all difference cochains are zeroes). This is precisely the
statement of the lemma.

Using these Euclidean or Hermitian structures in the fibers, we can replace the
fibration �k into the fibration �0k whose total space is the space of all orthonormal
(unitary) frames in the fibers of �. The fiber of �0k is the Stiefel manifold V.n; k/ or
CV.n; k/; in particular, �01 is the fibration whose fiber is the sphere Sn�1 (S2n�1 in
the complex case); this fibration is called spherical.

C: Classical Characteristic Classes of Vector Bundles

Let � be an n-dimensional oriented (real) vector bundle with the CW base B.
Consider the corresponding spherical fibration �01 . It is easy to see that the ori-
entability of the bundle � implies the orientability of the fibration �01 ; that is, the
fibration �01 is homologically simple. (The reader may prove that a Steenrod bundle
whose structure group is connected is always simple.) Thus, there arises the first
obstruction to extending a section of �01 , and this first obstruction is an element of
Hn.BIZ/. Regarded as a characteristic class of the bundle �, this element is called
the Euler class of �; the notation: e.�/.

Pass to the fibrations �0k .

Lemma. Let 1 � k < n. Then

(i) �i.V.n; k// D 0 for i < n � k:
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(ii) �n�k.V.n; k// Š
�

Z; if k D 1 or n � k is evenI
Z2 in all other cases:

Proof. The case k D 1 is trivial: �i.V.n; 1// D �i.Sn�1/ is zero for i < n� 1 and Z

for i D n � 1. Let k � 2, and consider the fibration

V.n; k/
V.n�1;k�1/�����! Sn�1

[the projection assigns to fv1; : : : ; vkg 2 V.n; k/ the last vector vk]. Consider the
fragment

�iC1.Sn�1/! �i.V.n � 1; k � 1//! �i.V.n; k//! �i.S
n�1/

of the homotopy sequence of this fibration. If i < n� 2, then the first and last terms
are zeroes, and we get an isomorphism �i.V.n � 1; k � 1// Š �i.V.n; k//. Thus, if
i < n � k and k > 1, then

�i.V.n; k// Š �i.V.n � 1; k � 1// Š � � � Š �i.V.n � kC 1; 1// D �i.S
n�k/ D 0:

For i D n � k, this chain of isomorphisms becomes shorter:

�n�k.V.n; k// Š �n�k.V.n � 1; k � 1// Š � � � Š �n�k.V.n � kC 2; 2//;

and the general case of the lemma is reduced to the case of V.n; 2/. We need to
prove that �n�2.V.n; 2// D Z for n even and Z2 for n odd. For k D 2 and i D n� 2,
our homotopy sequence becomes

�n�1.Sn�1/! �n�2.Sn�2/! �n�2.V.n; 2//
@���! �n�2.Sn�1/

k k k
Z Z 0:

Thus, �n�2.V.n; 2// D CokerŒ@�W�n�1.Sn�1/ ! �n�2.Sn�2/�. The space V.n; 2/
is the space T1Sn�1 of unit tangent vectors to the sphere Sn�1, the fibration

V.n; 2/
Sn�2

��! Sn�1 is the natural fibration of the space of unit tangent vectors. The
construction of the homomorphism @� is the following. We take a homotopy of an
.n � 2/-dimensional spheroid of Sn�1 sweeping an .n � 1/-dimensional spheroid,
lift this homotopy to T1Sn�1, and obtain a spheroid of the fiber. If we apply this
construction to the identity spheroid Sn�1 ! Sn�1, the lifting provides a vector field
on Sn�1, and the resulting element of �n�2.Sn�2/ is the value of the obstruction to
extending a vector field on Sn�1. As proved in Sect. 18.5 (see Proposition 2), this
value is the Euler characteristic of Sn�1, that is, 2 for n odd and 0 for n even. Thus,
the homomorphism @�W�n�1.Sn�1/ ! �n�2.Sn�2/ is trivial if n is even and is a
multiplication by 2 if n is odd. This completes the proof of the lemma.



19.3 Associated Fibrations and Characteristic Classes 279

The lemma shows that the first obstruction to extending a section of fibration �0k
(or �k) takes value in Hn�kC1.BIZ or Z2/. Reduced modulo 2, this obstruction is
a characteristic class of � with the values in Hj.BIZ2/; j D n � k C 1. This class
is called the jth Stiefel–Whitney class of � and is denoted as wj.�/. We also put
wi.�/ D 0 for i > dim � and w0.�/ D 1 2 H0.BIZ2/.

Notice that the orientability of the vector bundle � which was needed for the
simplicity of the fibration �k becomes unnecessary after reducing modulo 2; thus,
the Stiefel–Whitney classes are defined for arbitrary real vector bundles.

For an n-dimensional oriented vector bundle �, wn.�/ D �2e.�/, where �2 is the
reduction modulo 2.

The complex version of the previous construction is a simplified version of it.

Lemma. Let 1 � k < n. Then

�i.CV.n; k// Š
�

0 for i < 2.n� k/C 1;
Z for i D 2.n� k/C 1:

Proof This repeats the first, easier, part of the proof of the previous lemma and is
based on the equality CV.n; 1/ D S2n�1 and the homotopy sequence

�iC1.S2n�1/! �i.CV.n; k//! �i.CV.n � 1; k � 1/! �i.S
2n�1/

of the fibration CV.n; k/
CV.n�1;k�1/�����! S2n�1.

Let � be an n-dimensional complex vector bundle with a CW base B. The lemma
shows that the first obstruction to extending a section in the fibration �0k (or �k) is a
class cj.�/ 2 H2j.BIZ/ where j D n�kC1. We get a characteristic class of complex
vector bundles which is called the jth Chern class. Precisely as in the real case, we
put ci.�/ D 0 for i > dimC � and c0.�/ D 1.

Finally, if � is again an n-dimensional vector bundle, then we put pj.�/ D
.�1/jc2j.C�/ 2 H4j.BIZ/ and call the classes pj.�/ Pontryagin classes of the
bundle �. [The sign .�1/j has a historic origin. The reason why we restrict ourselves
to even-numbered Chern classes is that the odd-numbered Chern classes of a
complexification of a real vector bundle have order at most 2; see Exercise 15 in
Sect. 19.5 later.] It is possible to define Pontryagin classes directly: We can associate
with an n-dimensional vector bundle a fibration whose standard bundle is the space
of all systems of n�2jC2 vectors of rank> n�2j; the first obstruction to extending
sections in this fibration is pj.�/ (the reader can try to prove this although it is not
awfully interesting).

EXERCISE 12. Prove that w1.�/ D 0 if and only if the bundle � is orientable.

EXERCISE 13. Prove that if � is an n-dimensional complex vector bundle, then

e.R�/ D cn.�/; w2j.R�/ D �2cj.�/; w2jC1.R�/ D 0:
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D: Geometric Construction of Euler, Stiefel–Whitney,
and Chern Classes

Let � be an n-dimensional oriented vector bundle with a CW base B. Then there
exists a nowhere vanishing section of � over the .n � 1/st skeleton Bn�1 of B. We
can extend this section to Bn, but it may have zeroes over n-dimensional cells. If
we assume these zeroes to be transverse intersections with the zero section, then
we can count the “algebraic number” of these zeroes (that is, we assign a C or �
sign to every zero), and a function which assigns this number to every cell is an
n-dimensional integral cellular cocycle. Its cohomology class is the Euler class e.�/
(this is the construction of the first obstruction).

If � is not assumed oriented, then the previous construction gives a cohomology
class modulo 2, and this is wn.�/. We can construct in this way the other Stiefel–
Whitney classes. Namely, let us assume that � has an Euclidean structure (in the
fibers), and consider again a nowhere vanishing section of � over Bn�1. Let us try
to construct a second nowhere vanishing section of � orthogonal to the first section.
This can be done over Bn�2, but if we want to extend the second section to Bn�1, we
have to admit that it will have zeroes over .n�1/-dimensional cells. Assuming these
zeroes transverse, we can count their number modulo 2 in every .n�1/-dimensional
cell, and in this way we get an .n�1/-dimensional cellular cocycle with coefficients
in Z2, and the cohomology class of this cocycle is wn�1.�/. Then we construct a third
section orthogonal to the first two, it can be made nowhere vanishing over Bn�3, but
to extend this third section to Bn�2, we have to admit transverse zeroes over .n�2/-
dimensional cells, and in this way we obtain a cocycle representing wn�2.�/. And
so on.

The Chern classes of complex vector bundles may be constructed in a similar
way; we leave the details to the reader.

19.4 Characteristic Classes and Classifying Spaces

A: The Classification Theorem

In Sect. 19.1.A, we mentioned tautological bundles over Grassmannians. They will
be of primary importance now.

The theory here has three absolutely parallel versions for the three types of vector
bundles. We will consider in detail the real case; the transition to the two other cases
does not require any efforts: One should just replace the Grassmannians G.1; n/ by
GC.1; n/ and CG.1; n/.

Recall that the total space of the tautological bundle (which we denote as � or �n)
over the Grassmannian G.1; n/ is the space of pairs .�; x/where� 2 G.1; n/ is an
n-dimensional subspace of RN and x 2 � � R

1; the projection acts as .�; x/ 7! � .
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Theorem. Let X be a finite CW complex. Then

(i) For every n-dimensional vector bundle � over X, there exists a continuous map
f WX ! G.1; n/ such that f �� D �.

(ii) This map f is unique up to a homotopy; that is, if f �
1 � � f �

2 �, then f1 � f2 (the
second� means a homotopy).

(iii) Conversely, if f1 � f2, then f �
1 � � f �

2 �.

Corollary. The correspondence f 7! f �� establishes a bijection between the
set �.X;G.1; n// of homotopy classes of continuous maps X ! G.1; n/ and
equivalence classes of n-dimensional vector bundles with the base X.

Proof of Theorem. First, notice that since X is compact and G.1; n/ D��!
lim G.N; n/, a continuous map X ! G.1; n/ is the same as a continuous map
X ! G.N; n/ (with sufficiently large N) composed with the inclusion map
G.N; n/ ! G.1; n/. Same for homotopies: Maps X ! G.N1; n/ ! G.1; n/ and
X ! G.N2; n/ ! G.1; n/ are homotopic if and only if maps X ! G.N1; n/ !
G.M; n/ and X ! G.N2; n/! G.M; n/ are homotopic for sufficiently large M.

Second, notice that statements (i) and (ii) are covered by the following relative
version of statement (i):

(i0) Let X be a finite CW complex, and � be an n-dimensional vector bundle over
X. Then let A be a CW subcomplex of X, and let gWA ! G.1; n/ be a continuous
map such that g�� � �jA. Then there exists a continuous map f WX ! G.1; n/ such
that f �� � � and f jA D g.

We begin with proving statement (i), that is, (i0) with A D ;, and then we will
explain what we need to add to handle the case A ¤ ;. A linear functional on
the total space E of � is a continuous function E ! R which is linear on every
fiber of the bundle �. To construct a linear functional on E, it is sufficient to take
some linear function 'W p�1.x/ ! R (where x 2 X), then extend it to a linear
functional p�1.U/ ! R where U is a neighborhood of x such that the restriction
�jU is trivial [there is a retraction �W p�1.U/ � U � p�1.x/ ! ��1.x/ which is
linear on every fiber, and the composition ' ı � is a required functional], and then
we multiply the last functional by a continuous function X ! R, which is 1 in a
neighborhood V of x such that V � U and is 0 in the complement of U. We apply
this construction to some linearly independent functionals 'iW p�1.x/ ! R; i D
1; : : : ; n, and we get linear functionals 'x;iWE ! R whose restrictions to p�1.x/ are
linearly independent; hence, for some neighborhood Ux of x the restrictions of these
functionals to p�1.y/ are linearly independent for all y 2 Ux. Since X is compact,
there exist some x1; : : : ; xm such that the sets Uxj ; j D 1; : : : ;m cover X. Then the
functionals 'xj;i have the following property: For every z 2 X there are n of these
functionals which are linearly independent on p�1.z/.

Together, the N D mn functionals 'xj;iWE ! R form a map ˆWE ! R
N , and for

every z 2 X, the restrictionˆjp�1.z/ is a linear monomorphism. The imageˆ.p�1.z//
is an n-dimensional subspace of RN , and we define the map f WX ! G.N; n/ by the
formula f .z/ D ˆ.p�1.z/. Since ˆ maps isomorphically the fiber of � over z 2 X
onto the fiber of � over f .z/, we have f �� D �, as required.
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Now, let us adjust this proof to the relative version. We assume that there are some
A � X; gWA! G.M; n/ � G.1; n/, and an equivalence between �jA and g��. The
last equivalence is the same as a continuous map  W p�1.A/ ! R

M which maps
isomorphically p�1.z/ .z 2 A/ onto the subspace g.z/ of RM . First, we extend this
map to a continuous map ‰WE ! R

M which is linear on each fiber of � [to do this,
we need to extend each of the M coordinate functions of  to a function E ! R

linear on fibers; this is the same as extending from A to X a section of a certain vector
bundle (composed of dual spaces .p�1.x//�) which does not meet any obstruction,
since the fibers of a vector bundle are contractible]. The linear maps ‰jp�1.y/ are
isomorphisms for y 2 A, and hence they are isomorphisms for y 2 W, where W is
some open neighborhood of A. To finish the construction, we take a ˆWX ! R

N as
constructed above and multiply this ˆ by a continuous function hWX ! R which is
0 on A and 1 in the complement of W, ˆ0 D hˆ. The functions ‰ and ˆ0 together
form a map �WE ! R

MCN , which is a linear monomorphism on every fiber of �

such that �jp�1.A/ is the composition p�1.A/
 ��!R

M ���!R
MCN . This � gives

rise to a continuous map f WX ! G.M C N; n/ such that f �� D � and f jA is the

composition A
g��!G.M; n/

���!G.M C N; n/ . This completes a proof of (i0).
It remains to prove (iii). Our proof is based on the following simple observation.

We say that n-dimensional subspaces �1; �2 of R
n are close to each other if no

nonzero vector of �1 is orthogonal to �2 (this condition is symmetric in �1; �2);
equivalently: �1 is close to �2 if the orthogonal projection �1 ! �2 is an
isomorphism. Obviously, every � 2 G.N; n/ has a neighborhood U in G.N; n/ such
that every � 2 U is close to � .

Lemma. Let f1; f2WX ! G.N; n/ (no restrictions on X) be two continuous maps
such that, for every x 2 X, the subspaces f1.x/; f2.x/ of Rn are close to each other.
Then f �

1 � � f �
2 �.

Proof of Lemma. Let p1WE1 ! X; p2WE2 ! X be the bundles f �
1 �; f

�
2 �. For every

x 2 X, the definition of the inducing operation provides isomorphisms �1W p�1
1 .x/!

f1.x/; �2W p�1
2 .x/ ! f2.x/; also, there is the orthogonal projection �W f1.x/ ! f2.x/.

The composition ��1
2 ı � ı �1W p�1

1 .x/ ! p�1
2 .x/ is an isomorphism depending

continuously on x; and these isomorphisms form an equivalence f �
1 � � f �

2 �.

Proof of (iii). If X is compact (otherwise, arbitrary), and fftWX ! G.N; n/g is
a homotopy, then there exists an m such that, for every i; 0 � i < m, the maps
fi=m; f.iC1/=m satisfy the condition of the lemma. Hence, for every i, f �

i=m� � f �
.iC1/=m�.

Hence, f �
0 � � f �

1 �, which is the statement of (iii).

B: More General Constructions

The space G.1; n/ is called a classifying space for real n-dimensional vector
bundles, and � is called a universal bundle; a similar terminology is applied
to GC.1; n/ and CG.1; n/. There exists a far-reaching generalization of the



19.4 Characteristic Classes and Classifying Spaces 283

preceding construction. For a topological group G, there exists a principal fibration
(see Sect. 19.1.E) .EG;BG;G; pG/ with a cellular base and contractible space
EG; for a given G, a principal fibration with these properties is unique up to
a homotopy equivalence. The space BG is called the classifying space for G;
in particular, BGL.n;R/ D BO.n/ D G.1; n/; BGLC.n;R/ D BSO.n/ D
GC.1; n/; BGL.n;C/ D BU.n/ D CG.1; n/. If F is a space with a faithful
action of G, then, for a finite CW complex X, there is a bijection between the set
of equivalence classes of Steenrod bundles over X with the structure group G and
the standard fiber F and the set �.X;BG/ of homotopy classes of continuous maps
X ! BG. This construction belongs to J. Milnor [55]. It has further generalizations
to the cases when G is not a topological group, but an H-space or a topological
groupoid.

C: Immediate Applications of the Classification Theorem

Some definitions and theorems of the previous sections can be clarified with the
help of the classification theorem of Sect. 19.4.A. For example, the lemma of
Sect. 19.3.B, which states that every vector bundle whose base is a finite CW
complex can be furnished by an Euclidean or Hermitian structure in the fibers,
follows immediately from the theorem of Sect. 19.4.A. Namely, if we fix an
Euclidean structure in R

N [or a Hermitian structure in C
N], then all n-dimensional

subspaces inherit this structure. This provides an Euclidean or Hermitian structure
in the fibers of �, and hence in the fibers of all vector bundles induced by �, that is,
of all vector bundles whose bases are finite CW complexes.

The definition of the sum of vector bundles can be done in the following way:
If f WX ! G.N; n/ and gWX ! G.M;m/ are two continuous maps, then there arises
a map f ˚ gWX ! G.M C N;m C n/; .f ˚ g/.x/ D f .x/ ˚ g.x/ � R

N ˚ R
M ,

and f �� ˚ g�� D .f ˚ g/��, which gives an alternative construction of the sum
of vector bundles. The same for tensor products: We consider a map f ˝ gWX !
R

NM; f ˝ g.x/ D f .x/ ˝ g.x/ � R
N ˝ R

M D R
NM , and f �� ˝ g�� D .f ˝ g/��,

which can be regarded as a definition of a tensor product of vector bundles (same
with complex vector bundles). In a similar way, for a vector bundle �, we can define
Sr�;ƒr�; ��, etc.

D: Characteristic Classes and Cohomology of Classifying Spaces

Theorem. The group of q-dimensional characteristic classes of n-dimensional
real [resp. n-dimensional oriented, resp. n-dimensional complex] vector bun-
dles with coefficients in G is isomorphic to the group Hq.G.1; n/IG/ [resp.
Hq.GC.1; n/IG/, resp. Hq.CG.1; n/IG/].
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Proof. We restrict ourselves to the real case; the proof in the other two cases is
the same. If c is a characteristic class of the type considered, we can compute it
for the bundle � over G.1; n/ [or over G.N; n/ with N 
 n; q]. We get a c.�/ 2
Hq.G.1; n/IG/. We need to check two things: (i) If c.�/ D 0, then c D 0; (ii) for
every � 2 Hq.G.1; n/IG/, there exists a characteristic class c such that c.�/ D � .

(i) Let c.�/ D 0. If � is an n-dimensional vector bundle whose base X is
a finite CW complex, then � D f �� for some f WX ! G.1; n/, and therefore
c.�/ D c.f ��/ D f �c.�/ D f �.0/ D 0. If the base X of � is an arbitrary CW
complex, and 0 ¤ c.�/ D ˛ 2 Hq.XIG/, then there exists a finite CW subcomplex
Y of X such that ˛jY ¤ 0; then 0 D c.�jY/ D c.�/jY D ˛jY ¤ 0, which is a
contradiction.

(ii) Let � 2 Hq.G.1; n/IG/; we want to define a characteristic class c with
c.�/ D � . Let � be an n-dimensional real vector bundle with a CW base X. Then,
for every finite CW subcomplex Y of X, we can define c.�jY / 2 Hq.YIG/ as f �� ,
where f WY ! G.1; n/ is a continuous map with f �� D �jY . Then, obviously, there
exists a unique ˛ 2 Hq.XIG/ such that ˛jY D c.�jY/ for every finite Y � X. We set
c.�/ D ˛.

(Both parts of this proof implicitly use the following property of cohomology.
Let X be a CW complex, and let F be the category of finite CW subcomplexes

of X and inclusions. Then Hq.XIG/ D  ��lim FHq.YIG/. This follows, for example,
from a similar property for homology and the universal coefficients formula for
cohomology. We leave the details to the reader.)

GENERALIZATION. Characteristic classes of Steenrod fibrations with the structure
group G taking values in the q-dimensional cohomology of the base with coefficients
in A correspond bijectively to elements of Hq.BGIA/.

E: Completeness of Systems of Euler, Stiefel–Whitney, Chern,
and Pontryagin Characteristic Classes

Theorem. (i) Every characteristic class of n-dimensional real vector bundles
with coefficients in Z2 is a polynomial of the Stiefel–Whitney classes
w1; : : : ;wn, and different polynomials are different characteristic classes.

(ii) Every characteristic class of n-dimensional complex vector bundles with
coefficients in Z is a polynomial of the Chern classes c1; : : : ; cn, and different
polynomials are different characteristic classes.

(iii) Every characteristic class of n-dimensional real vector bundles with coef-
ficients in Q, or R, or C is a polynomial of the (images with respect to
the inclusion of Z into the coefficient domain) of the Pontryagin classes
p1; : : : ; pŒn=2�, and different polynomials are different characteristic classes.

(iv) Every characteristic class of n-dimensional orientable vector bundles with
coefficients in Q, or R, or C is a polynomial of the (images with respect
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to the inclusion of Z into the coefficient domain) of the Pontryagin classes
p1; : : : ; pŒn=2� and, if n is even, the Euler class e, and different polynomials are
different characteristic classes.

We postpone the details of the proof to the next section. Here we only notice
that the proof of every part consists of two parts. First, we need to show that the
corresponding group

Hq.G.1; n/;GC.1; n/; or C.1; n/I Z2;Z;Q;R; or C/

has precisely the same size as the group of polynomials of the form indicated. This
can be easily deduced from the computation of the cohomology of Grassmannians
in Sect. 13.8.C. Next, we need to check that no one of these polynomials is zero
as a characteristic class [in the nonfield case (ii) we will need slightly more]. For
this purpose, we need a sufficient supply of explicit computations of characteristic
classes. At the moment, we do not have such a supply, but it will appear in the next
section.

19.5 The Most Important Properties of the Euler,
Stiefel–Whitney, Chern, and Pontryagin Classes

A: The Properties of the Stiefel–Whitney Classes

Theorem. The Stiefel–Whitney classes possess the following properties.

(1) For the Hopf (tautological) bundle � over RPn .n � 2/, 0 ¤ w1.�/ 2
H1.RPnIZ2/D Z2 and wi.�/ D 0 for i > 1.

(2) For arbitrary real vector bundles �; � with (the same) CW base,

wi.� ˚ �/ D
X

pCqDi

wp.�/wq.�/:

Remark. Statements (1) and (2) are often considered as axioms for Stiefel–Whitney
classes: Together with the property that Stiefel–Whitney classes are characteristic
classes, these axioms uniquely determine them. We will not return to this axiomatic
definition of Stiefel–Whitney classes, but the reader will be able to deduce all
necessary statements from the results of the current section. In details, this
axiomatic approach to all classical characteristic classes is developed in the book
Characteristic Classes by Milnor, Stasheff [60].

Proof of Part (1) is immediate. The restriction of � to RP1 D S1 is the Möbius
bundle, and obviously it has no nowhere vanishing section. Thus, � has no section
over the first skeleton, which means that the first obstruction w1.�/ 2 H1.RPnIZ2/
is not zero.
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Part (2) is equivalent to the statement .20/: for arbitrary real vector bundles �; �
with, possibly different, CW bases,

wi.� � �/ D
X

pCqDi

wp.�/ � wq.�/:

The proof of .20/ consists of three steps.

Step 1. Stiefel–Whitney classes invariant with respect to stable equivalence,
which is the same as the statement wi.� ˚ 1/ D wi.�/. This follows from the
inductive construction of Stiefel–Whitney classes outlined in Sect. 19.3.D. For the
first section of � ˚ 1 we can take the natural nonzero section of the summand 1.
Then the second section of � ˚ 1 is the first section of �, the third section of � ˚ 1
is the second section of �, and so on. We see that if dim � D n, then, for every k,
w.nC1/�.kC1/C1.� ˚ 1/ D wn�kC1.�/, which is our statement.

Step 2. Let dim X D dim � D p; dim Y D dim � D q (where X and Y are
the bases of � and �); statement .20/ in this case means wpCq.� � �/ D wp.�/ �
wq.�/. Fix a section of � which has no zeroes on Xp�1 and has transverse zeroes
on p-dimensional cells; for a p-dimensional cell e of X, let ne 2 Z2 be the number
of zeroes of the section on e reduced modulo 2. Similarly, fix a section of �, without
zeroes on Yq�1 and with transverse zeroes on q-dimensional cells, and let mf 2 Z2

be the number of zeroes of � on a cell f reduced modulo 2. Then wp.�/ is represented
by the cocycle e 7! ne, and wq.�/ is represented by the cocycle f 7! mf . The
two sections together form a section of � � � with no zeroes on .X � Y/pCq�1 and
with transverse zeroes on cells e � f , the number of which modulo 2 is nemf . Thus,
.e�f 7! nemf / is a cocycle of the class wpCq.���/ which shows that wpCq.���/ D
wp.�/ � wq.�/.

Step 3. The general case. Fix p; q with p C q D i; p � dim �; q � dim �,
and consider the restrictions �jXp ; �jYq . We know that � has dim � � p linearly
independent sections over Xp and � has dim � � q linearly independent sections
over Yq. From this, we conclude that

�jXp D �p ˚ .dim � � p/; �jYq D �q ˚ .dim �� q/

where �p and �q are bundles over Xp and Yq of dimensions p and q. Certainly, it is
also true that

.� � �/jXp�Yq D .�p � �q/C .dim � C dim � � p � q/:

Let

u D wi.� � �/ �
X

p0Cq0Di

wp0.�/ � wq0.�/ 2 Hi.X � YIZ2/:
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Then

ujXp�Yq D wi..� � �/jXp�Yq/ �Pp0Cq0Di wp0.�jXp/ � wq0.�jYq/

D wi.�p � �q/ �Pp0Cq0Di wp0.�p/ � wq0.�q/

D wi.�p � �q/ � wp.�p/ � wq.�q/ D 0

(here the first equality is obvious, the second equality follows from the result of step
1, the third equality follows from triviality of Stiefel–Whitney classes in dimensions
exceeding the dimension of the bundle, and the last equality is the result of step 2).
We see that ujXp�Yq D 0 for any p; q with pC q D i. Consider the homomorphism

Hi.X � YIZ2/ DLpCqDi Hp.XIZ2/˝ Hq.YIZ2/
!L

pCqDi Hp.XpIZ2/˝Hq.YqIZ2/
DLpCqDi Hi.Xp � YqIZ2/I

here the two equalities follow from Künneth’s formula, and the arrow denotes the
sum of homomorphisms induced by the inclusion maps Xp ! X; Yq ! Y. On the
one hand, every homomorphism Hp.XIZ2/ ! Hp.XpIZ2/ is a monomorphism
(since Hp.X;XpIZ2/ D 0/, and similarly for Y; thus, the preceding homomorphism
is a monomorphism. On the other hand, this homomorphism acts as

� 7! .� jXi�Y0 ; � jXi�1�Y1 ; : : : ; � jX1�Yi�1 ; � jX0�Yi / :

Hence, it takes u to 0, and hence u D 0. This completes the proof.
It is convenient to write the formulas from (2) and .20/ as

w.� ˚ �/ D w.�/w.�/; w.� � �/ D w.�/ � w.�/

where w is the formal sum 1C w1 C w2 C : : : .

B: The Splitting Principle for the Stiefel–Whitney Classes

We begin with a computation of the Stiefel–Whitney classes for a very important
example.

Proposition. Consider the vector bundle � � � � � � �
„ ƒ‚ …

n

over the space

RP1 � � � � �RP1
„ ƒ‚ …

n

: Let x1; : : : ; xn 2 H1.RP1 � � � � � RP1IZ2/ be the generators

of H�.RP1 � � � � � RP1IZ2/. Then

wi.� � � � � � �/ D ei.x1; : : : ; xn/;
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where ei is ith elementary symmetric polynomial.

Proof. Since w.�/ D 1C x, the preceding formula .20/ shows that

w.� � � � � � �/ D .1C x/ � � � � � .1C x/ D .1C x1/ : : : .1C xn/

D 1CPn
iD1 ei.x1; : : : ; xn/;

as required.

Now we can prove a result announced in the previous section.

Proof of the Theorem in Sect. 19.4.E, Part (i). It is well known in algebra that
every symmetric polynomial in n variables with coefficients in an arbitrary
integral domain R has a unique presentation as a polynomial in the elementary
symmetric polynomial; the uniqueness statement means that no nonzero
polynomial in e1; : : : ; en is equal to zero. If W D P.w1; : : : ;wn/ is a
nonzero polynomial of the Stiefel–Whitney classes, then W.� � � � � � �/ D
P.e1.x1; : : : ; xn/; : : : ; en.x1; : : : ; xn// ¤ 0, which shows that W is not zero
as a characteristic class. Hence, the dimension (over Z2) of the full space of
q-dimensional characteristic classes with coefficients in Z2 of n-dimensional real
vector bundles is at least the number of partitions q D 1 � r1C2 � r2C� � �Cn � rn with
nonnegative ris. But this number is precisely the number of q-dimensional cells in
the standard (Schubert) CW decomposition of G.1; n/, which, in turn, does not
exceed dimZ2 Hq.G.1; n/IZ2/, that is, the dimension of the space of characteristic
classes. Thus, all these numbers and dimensions are the same. This proves that all
the characteristic classes of n-dimensional vector bundles with coefficients in Z2

are polynomials in w1; : : : ;wn, as stated in part (i) of the theorem in Sect. 19.4.E.

Remark 1. This proof shows that dimZ2 Hq.G.1; n/IZ2/ is actually equal to the
number of q-dimensional Schubert cells, which means, in turn, that all the incidence
numbers in the cellular complex corresponding to the Schubert cell decomposition
of the Grassmannian are even. This fact is not new for us; it was offered as
Exercise 11 in Sect. 13.8.C. Now we have a proof of this fact, thus a (rather indirect)
solution of that exercise.

Remark 2. We see also that a nonzero characteristic class with coefficients in Z2 of
n-dimensional vector bundles takes a nonzero value on the bundle � ˚ � � � ˚ �. This
provides a method of finding relations between characteristic classes: A relation
holds if it holds for �˚ � � �˚ �. Usually, this statement is formulated in a seemingly
weaker, but actually equivalent form: To establish a relation between characteristic
classes it is sufficient to check it for splitting bundles, that is, for bundles isomorphic
to sums of one-dimensional bundles. This proposition is known under the name of
the splitting principle (later, we will deal with different versions of this principle).
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EXERCISE 14. Prove the following version of the splitting principle (and explain
why it is equivalent to the splitting principle). The Z2-cohomology homomorphism
induced by the map

RP1 � � � � �RP1
„ ƒ‚ …

n

! G.1; n/;

f`1 � R1g; : : : ; f`n � R1g� 7! `1 � � � � � `n � R1 � � � � � R1 D R1

is a monomorphism; moreover, its image in H�.RP1 � � � � � RP1IZ2/ D
Z2Œx1; : : : ; xn� is precisely the space of symmetric polynomials.

C: Stiefel–Whitney Classes and Operations over Vector Bundles

Formulas expressing the Stiefel–Whitney classes of the bundles �˝�;ƒk�; Sk�, and
so on via the Stiefel–Whitney classes of � and � (and the dimensions of � and �)
exist, but more complicated and less convenient, than the formulas for the Stiefel–
Whitney classes of the sum (or direct product). We will give a brief overview of this
subject.

Lemma. Let �; � be one-dimensional real vector bundle over the same CW base.
Then

w1.� ˝ �/ D w1.�/C w1.�/:

Proof. Fix sections s; t of � and � over the 1-skeleton X1 of the base X of � �. We
may assume that these sections have no zeroes over X0 and have transverse zeroes
over one-dimensional cells, and the zeroes of s are different from the zeroes of t.
Then s ˝ t is a section of � ˝ �, and the set of zeroes of s ˝ t is the union of the
set of zeroes of s and the set of zeroes of t. Let me; ne be residues modulo 2 of
the numbers of zeroes of the sections s and t within a one-dimensional cell of X.
Then the functions e 7! me; e 7! ne; e 7! me C ne are cocycles representing
w1.�/;w1.�/;w1.� ˝ �/, whence our result.

For our next statement, we will need some notations from algebra of symmetric
polynomials. Consider the ith symmetric polynomial of mn variables yjCzk; 1 � j �
m; 1 � k � n, and express it as a polynomial in elementary symmetric polynomials
separately in y1; : : : ym and z1; : : : ; zn (we assume that i � m and i � n):

ei.yj C zk/ D Em;nIi.e1.y/; e2.y/; : : : I e1.z/; e2.z/; : : : /I
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for example,

Em;nI1 D
m
X

jD1

n
X

kD1
.yj C zk/ D n

m
X

jD1
yj C m

n
X

kD1
zk D ne1.y/C me1.z/I

Em;nI2 D
X

.j0;k0/¤.j;k/
.yj C zk/.yj0 C zk0/

D n.n � 1/
m
X

jD1
y2j C n2

X

j0¤j

yjyj0 C 2.mn� 1/
m
X

jD1

n
X

kD1
yjzk

Cm.m � 1/
n
X

kD1
z2k Cm2

X

k0¤k

zkzk0

D n.n � 1/.e1.y/2 � 2e2.y//C 2n2e2.y/C 2.mn� 1/e1.y/e1.z/
Cm.m � 1/.e1.z/2 � 2e2.z//C 2m2e2.z/;

that is,

Em;nI2 D n.n� 1/
2

e1.y/
2 C ne2.y/C .mn � 1/e1.y/e1.z/

Cm.m � 1/
2

e1.z/
2 C me2.z/:

These examples show that it is possible to find explicit expressions for the
polynomials Em;nIi, but the formula may be complicated.

In addition, consider the elementary symmetric polynomials of

 

n

r

!

variables

xj1 C � � � C xjr 1 � j1 < � � � < jr � n. Obviously, they are symmetric polynomials in
x1; : : : ; xn, and we can write

ei.xj1 C � � � C xjr 1 � j1 < � � � < jr � n/ D FnIrIi.e1.x/; e2.x/; : : : /;

where FnIrIi is a polynomial. For example,

FnIrI1 D
 

n � 1
r � 1

!

e1.x/; FnI2I2 D .n � 1/.n � 2/
2

e1.x/
2 C .n � 2/e2.x/:

The polynomials F are related to the polynomials E. Namely, if we put x1 D
y1; : : : ; xm D ym; xmC1 D z1; : : : ; xmCn D zn, then, obviously, fxj C xkj1 � j <
k � m C ng D fyj C ykj1 � j < k � mgSfyj C zkj1 � j � m; 1 � k �
ngSfzj C zkj1 � j < k � ng, which shows that

FmCnI2Ii.e1.x/; e2.x/; : : : / D
X

pCqCrDi

FmI2Ip.e1.y/; e2.y/; : : : /

�Em;nIq.e1.y/; e2.y/; : : : ; e1.z/; e2.z/; : : : / � FnI2Ir.e1.z/; e2.z/; : : : /:
(	)
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And one more family of polynomials:

GnIrIi.e1.x/; e2.x/; : : : / D ei.xj1 C � � � C xjr j1 � j1 � � � � � jr � n/I

a computation shows that

GnIrI1 D
 

nC r � 1
r � 1

!

e1.x/;

GnI2 D .n � 1/.nC 2/
2

e21 C .nC 2/e2; if n > 1:

The formula (	) with the polynomials F replaced by polynomials G is also true.
Now, let us formulate the main results of this section.

Theorem 1. Let � and � be real vector bundles of dimensions m and n over the
same CW base. Then

wi.� ˝ �/ D Em;nIi.w1.�/;w2.�/; : : : Iw1.�/;w2.�/; : : : /I

thus, in particular, w1.� ˝ �/ and w2.� ˝ �/ are, respectively,

nw1.�/C mw1.�/

and

n.n� 1/
2

w1.�/
2 C nw2.�/ C.mn � 1/w1.�/w1.�/

Cm.m � 1/
2

w1.�/
2 C mw2.�/:

Theorem 2. Let � be an n-dimensional real vector bundle with a CW base. Then

wi.ƒ
r�/ D FnIrIi.w1.�/;w2.�/; : : : /I

in particular,

w1.ƒr�/ D
 

n � 1
r � 1

!

w1.�/;

w2.ƒ2�/ D .n � 1/.n � 2/
2

w1.�/C .n � 2/w2.�/:

Theorem 3. Let � be an n-dimensional real vector bundle with a CW base. Then

wi.S
r�/ D GnIrIi.w1.�/;w2.�/; : : : /I
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in particular,

w1.Sr�/ D
 

nC r � 1
r � 1

!

w1.�/;

w2.S2�/ D .n � 1/.nC 2/
2

w1.�/C .nC 2/w2.�/; if n > 1:

Proofs. We begin with Theorem 1 in the case when � D �. The class wi.� ˝ �/
is a characteristic class of a real vector bundle. Hence, by part (i) of the theorem
in Sect. 19.4.E, it must be a polynomial in Stiefel–Whitney classes. To identify
this polynomial, we need to compute the class for the bundle � D � � � � � � �

„ ƒ‚ …

n

over

RP1 � � � � �RP1
„ ƒ‚ …

n

; this bundle is the same as �1 ˚ � � � ˚ �n, where �j is the bundle

induced by � with respect to the projection of RP1 � � � � �RP1 onto the jth factor.
Then � ˝ � DLj;k.�j ˝ �k/ and

w.� ˝ �/ D
Y

j;k

w.�j ˝ �k/ D .by Lemma/
Y

j;k

.1C xj C xk/

D 1C
X

i	1
ei.xj C xkj1 � j � n; 1 � k � n/

D 1C
X

i	1
En;nIi.e1.x/; e2.x/; : : : ; e1.x/; e2.x/; : : : /

D 1C
X

i	1
En;nIi.w1.�/;w2.�/; : : : ;w1.�/;w2.�/; : : : /;

which is the statement of the theorem (for � D �).

Next, we prove Theorem 2. The proof is the same as the previous proof, and it is
based on the relation, for � D �1 ˚ � � � ˚ �n,

ƒr� D
M

1
j1<���<jr
n

.�j1 ˝ � � � ˝ �jr/;

which gives, by the lemma,

w.ƒr�/ D
Y

1
j1<���<jr
n

.1C .j1 C � � � C jr//

D 1C
X

1
j1<���<jr
n

e1.xj1 C � � � C xjr j1 � j1 < � � � < jr � n/:

The rest of the proof repeats the previous proof.
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The proof of Theorem 3 is so close to the proof of Theorem 2 that we do not
feel any necessity in detailing it [just mention that it is based on the relation Sr� D

M

1
j1
���
jr
n

.�j1 ˝ � � � ˝ �jr/].

Finally, let us prove Theorem 1 in the general case. Notice that for any vector
bundles � and �,

ƒ2.� ˚ �/ D ƒ2� ˚ .� ˝ �/˚ƒ2�;

and hence

w.ƒ2.� ˚ �// D w.ƒ2�/w.� ˝ �/w.ƒ2�/:

Since w D 1 C w1 C w2 C : : : is an invertible element of the ring H�.BIZ2/,
this formula determines w.� ˝ �/ if w.ƒ2�/; w.ƒ2�/ and ƒ2.� ˚ �/ are known.
The formula from Theorem 1 follows from the formula of Theorem 2 and the
relation (	).

D: Properties of the Euler, Chern, and Pontryagin Classes

For the Euler classes, a multiplication formula e.� ˝ �/ D e.�/e.�/ holds.
All the major properties of the Stiefel–Whitney classes can be repeated with

appropriate changes for the Chern classes. In particular, the class c1 of the Hopf
bundle �C is the standard generator of the group H2.CP1IZ/. There are the
multiplication formula

ci.� ˚ �/ D
X

pCqDi

cp.�/cq.�/

and the splitting principle. Like Stiefel–Whitney classes, the Chern classes are
invariant with respect to stable equivalence. The computation of the Chern classes of
tensor product, exterior powers, and symmetric powers of complex vector bundles
repeats the computations in Sect. 19.5.C.

EXERCISE 15. Prove that ci.�/ D .�1/ici.�/. Deduce from this that for every real
vector bundle � and every odd i the equality 2ci.C�/ D 0 (compare the comment to
the definition of the Pontryagin classes in Sect. 19.3.C).

EXERCISE 16. Define a polynomial Qr of r variables by the formula

Nr D Qr.e1; : : : ; er/;
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where the ei are elementary symmetric polynomials and Ni are sums of ith powers of
variables (so Q1 D e1; Q2 D e21 � 2e2; Q3 D e31 � 3e1e2 C 3e3; : : : ). For a complex
vector bundle � with the base X, put

chr.�/ D 1

rŠ
Qr.c1.�/; : : : ; cr.�// 2 H2r.XIQ/:

The (nonhomogeneous) characteristic class ch with coefficients in Q defined by the
formula

ch D ch0C ch1C ch2C � � � 2 Heven.XIQ/
is called the Chern character. Notice that ch0.�/ 2 H0.XIQ/ is just dim �.

Prove that

ch.� ˚ �/ D ch.�/C ch.�/ and ch.� ˝ �/ D ch.�/ ch.�/:

For the Pontryagin classes, the multiplication formulas and all the other formulas
are deduced from the corresponding formulas for the Chern classes and hold
“modulo 2-torsion”; for example,

2
�

pi.� ˚ �/ �
X

pCqDi
pp.�/pq.�/

�

D 0:

EXERCISE 17. Prove that stably equivalent bundles have equal Pontryagin classes.

E: More Relations Between Stiefel–Whitney, Chern,
and Euler Classes

In conclusion, we give two more formulas expressing the Stiefel–Whitney and
Chern classes via the Euler class. Let � be an n-dimensional real vector bundle
with a CW base X and � be the Hopf bundle over RP1. Consider the bundle � ˝ �
over X �RP1 (more precisely, it is the tensor product of bundles induced by � and
� with respect to the projections of the product X � RP1 onto the factors). Then

�2e.� ˝ �/ D wn.� ˝ �/ D
n
X

iD0
.wi.�/ � xn�i/ 2 Hn.X � RP1IZ2/;

where x 2 H1.RP1IZ2/ is the generator. Similarly, if � is an n-dimensional
complex vector bundle with a CW base X and �C is the (complex) Hopf bundle
over CP1, then

e.� ˝ �C/ D cn.� ˝ �/ D
n
X

iD0
.ci.�/ � xn�i/ 2 H2n.X � CP1IZ/;

where x 2 H2.CP1IZ/ is the generator.
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These formulas may be regarded as definitions of the Stiefel–Whitney and Chern
classes.

EXERCISE 18. Prove these formulas.

19.6 Characteristic Classes in Differential Topology

We can only touch on this vast subject.

A: Geometric Interpretation of the First Obstruction

Let .E;B;F; p/ be a homotopically simple locally trivial fibration where E and B are
smooth manifolds and the manifold B is closed, n-dimensional and oriented, and p
is a submersion, that is, a smooth map whose differential at every point has rank
equal to n. Assume also that �0.F/ D � � � D �k�2.F/ D 0 and �k�1.F/ D � . Then
the first obstruction to extending a section of our fibration lies in Hk.BI�/. Suppose
also that we were able to construct a section over B � X where X is a submanifold
of B (possibly, with singularities of codimension � 2) of dimension n � k or a
union of a finite number of such submanifolds which are connected and transversally
intersect each other, X D S

Xi (simple general position argumentations show that
it is always possible to do this). For every i, choose a nonsingular point xi of Xi and
construct a small .k � 1/-dimensional sphere si centered at xi in a k-dimensional
surface transversally intersecting Xi at xi. Since there is a section over si, and the
fibration is trivial in a proximity of xi, we obtain a continuous map Sk�1 ! p�1.xi/

which determines, since the fibration and the fiber are homotopically simple, an
element ˛i 2 �k�1.F/ D � .

Claim: The homology class
P

i ˛iŒXi� 2 Hn�k.BI�/ is the Poincaré dual of the
first obstruction to extending a section in our fibration. The proof is left to the reader.
(Hint: Triangulate the manifold B in such a way that X is disjoint from the simplices
of dimension less than k and intersects each k-dimensional simplex transversally in
at most one point.)

B: Differential Topology Interpretations of the Euler Class

For a closed oriented manifold X, the value of the Euler class of the tangent bundle
e.X/ D e.�X/ on the fundamental class ŒX� is equal to the Euler characteristic
�.X/ of X (this is Proposition 2 of Sect. 18.5). This implies that a closed manifold
possesses a nonvanishing vector field if and only if its Euler characteristic is zero
(corollary in Sect. 18.5).
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Some other properties of the Euler class are given here as exercises.

EXERCISE 19. Prove that a closed manifold X (orientable or not) possesses a
continuous family of tangent lines (equivalently: The tangent bundle �.X/ possesses
a one-dimensional subbundle) if and only if �.X/ D 0.

EXERCISE 20. Let .E;B;Rn; p/ be a smooth vector bundle (that is, a vector
bundle such that E and B are smooth manifolds, p is a submersion, and the vector
space operations in E are smooth). Suppose that B is closed and oriented. Let
sWB ! E be a section of � in a general position with the zero section. Show that
the intersection B\ s.B/ (we assume that B is embedded into E as the zero section)
represents the homology class of B which is the Poincaré dual of the Euler class
e.�/ of �.

EXERCISE 21. Let Y be a closed oriented submanifold of a closed oriented
manifold X, and let 
X.Y/ D .�.X//jY=�.Y/ be the corresponding normal bundle.
Prove the formula

D.e.
X.Y//� D iŠŒY�;

where D is Poincaré isomorphism (in Y), iWY ! X is the inclusion map, and ŒY� is
a homology class of X represented by Y. Corollary: If ŒY� D 0, then e.
X.Y// D 0;
in particular, the Euler class of the normal bundle of a manifold embedded into an
Euclidean space or a sphere is zero.

EXERCISE 22. The last statement does not hold for immersions. Show, in partic-
ular, that if f is an immersion of a closed oriented manifold of even dimension
n into R

2n with transverse self-intersections, then the algebraic number of the
self-intersection points (the reader will have to make up the definition of a sign
corresponding to a transverse self-intersection) is equal to one half of the “normal
Euler number,” that is, of the value of the Euler class of the normal bundle on the
fundamental class of the manifold. Example: Construct an immersion of S2 into R

4

with one transverse self-intersection (such a two-dimensional figure-eight) and find
the Euler class of the corresponding normal vector bundle.

C: Differential Topology Interpretations
of the Stiefel–Whitney Classes

In this section, we deal only with cohomology and homology with coefficients in
Z2 and understand accordingly Poincaré isomorphism D.

The Stiefel–Whitney classes of the tangent bundle of a smooth manifold X are
called the Stiefel–Whitney classes of X and are denoted as wi.X/. [In a similar
way, people consider the Pontryagin classes pi.X/ of a smooth manifold X and
the Chern classes ci.X/ of a complex manifold X.] Since the normal bundle of
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a smooth manifold embedded into a Euclidean space does not depend, up to a
stable equivalence, on the embedding, we can speak of the “normal Stiefel–Whitney
classes,” wi.X/, of a smooth manifold X. It follows from the multiplication formula
and the fact that the sum of the tangent and normal bundles is trivial that

X

pCqDi

wp.X/wq.Y/ D 0 for i > 0;

or w D w�1 (we already remarked in the end of Sect. 19.5.C that w is invertible in
the cohomology ring). Thus, the normal Stiefel–Whitney classes are expressed via
the usual (tangent) Stiefel–Whitney classes.

EXERCISE 23. Consider a generic smooth map (the reader is supposed to clarify the
meaning of the word generic) of a closed n-dimensional manifold X into R

q; q � n;
let Y � X be the set of points where this map is not a submersion (the rank of the
differential is less than q). Prove that Y is a .q � 1/-dimensional submanifold of X
[maybe, with singularities, but the class ŒY� 2 Hq�1.XIZ2/ is defined] and that

D�1ŒY� D wn�qC1.X/:

EXERCISE 24. Consider a generic smooth map of a closed n-dimensional manifold
X into R

q; q � n; let Y � X be the set of points where this map is not an immersion
(the rank of the differential is less than n). Prove that Y is a .2n�q�1/-dimensional
submanifold of X (maybe, with singularities) and that

D�1ŒY� D wqC1�n.X/:

EXERCISE 25. If an n-dimensional manifold X possesses an immersion into R
nCq,

then wi.X/ D 0 for i > q. (For closed manifolds, this follows from Exercise 24, but
actually this fact is much easier than Exercise 24, and it is more natural to prove it
directly.)

EXERCISE 26. If an n-dimensional manifold X possesses an embedding into R
nCq,

then wi.X/ D 0 for i � q. (To prove this, one needs to use, in addition to Exercise 25,
the corollary part of Exercise 21.)

EXERCISE 27. Prove that if 2k � n < 2kC1, then RPn has no immersion in R
2kC1�2

and no embedding in R
2kC1�1. (To prove this, one needs to use, besides Exercises 25

and 26, Exercise 12 (Sect. 19.2) and the theorem in Sect. 19.5.A.

Remark 1. Thus, if n D 2k, the n-dimensional manifold RPn cannot be embedded
into R

2n�1. This is a very rare phenomenon. The classical Whitney theorem asserts
that an n-dimensional manifold (with a positive n) can always be embedded into
R
2n (this result should not be confused with an earlier theorem of Whitney stating

that any smooth map of an n-dimensional manifold into any manifold of dimension
� 2nC 1 can be smoothly approximated by smooth embeddings); embeddings into
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R
2n�1 are almost always possible: For a nonexistence of such an embedding, it is

necessary and sufficient that n is a power of 2, and there exists a one-dimensional
cohomology class with coefficients in Z2 whose nth power is not zero (these
conditions imply the nonorientability).

Remark 2. Further information concerning embeddability of (real and complex)
projective spaces into Euclidean spaces can be obtained with the help of K-theory
(see Sect. 42.6 in Chap. 6).

EXERCISE 28. Let X be a triangulated smooth manifold. Denote by Ci the
i-dimensional classical chain of the barycentric subdivision of the triangulation
of X equal to the sum of all i-dimensional simplices of this subdivision. Prove that
Ci is a cycle and that

D�1ŒCi� D wi.X/

(ŒCi� is the homology class of Ci).

The values of the cohomology classes of the form wi1 .X/ : : :wir.X/ with
i1 : : : ir D n on the fundamental class of closed n-dimensional manifold (they
are residues modulo 2) are called Stiefel–Whitney numbers of the manifold X;
notation: wi1:::ir ŒX�. For example, two-dimensional manifolds have two Stiefel–
Whitney numbers: w11ŒX� and w2ŒX�.

EXERCISE 29. Find Stiefel–Whitney numbers of classical surfaces.

Remark. The reader will see that for any classical surface X; w11ŒX� D w2ŒX�.
A classical theorem in the topology of a manifold asserts any connected closed
two-dimensional manifold is a classical surface. Hence, the two Stiefel–Whitney
numbers, w11ŒX� and w2ŒX�, are always the same. Later in this section, we will see
that there are more relations between Stiefel–Whitney numbers.

Theorem. If a closed manifold is a boundary of a compact manifold, then all its
Stiefel–Whitney numbers are zeroes.

Proof. If X D @Y and iWX ! Y is the inclusion map, then �.X/ D �.Y/jX ˚ 1
(the normal bundle of the boundary is always trivial!). Hence, wj.X/ D i�wj.Y/ for
every j, and

hwj1 .X/ : : :wjr .X/; ŒX�i D hi�.wj1 .Y/ : : :wjr .Y//; ŒX�i
D hwj1 .Y/ : : :wjr .Y/; i�ŒX�i D 0

since i�ŒX� D 0 (the fundamental cycle of the boundary of a compact manifold is
the boundary of the fundamental cycle of this manifold).

This theorem provides a powerful necessary condition for a closed manifold to
be a boundary of a compact manifold.
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EXERCISE 30. Prove that if nC 1 is not a power of 2, then neither RPn nor CPn is
a boundary of a compact manifold.

The most striking fact, however, is that this necessary condition is also sufficient
for a closed manifold to be a boundary of a compact manifold (R. Thom, Fields
Medal of 1952). We will discuss the proof of this result briefly in Chaps. 5 and 6.
As we mentioned before, the Stiefel–Whitney numbers are not linearly independent
(w1ŒX� D 0 for any one-dimensional X, w11ŒX� D w2ŒX� for any two-dimensional X).
The fact is that a maximal linear independent system of Stiefel–Whitney numbers
of a closed n-dimensional manifold is formed by the numbers wj1:::jr ŒX� such that
j1 C � � � C jr D n; j1 � � � � � jr and no one of the numbers js C 1 is a power
of 2. (Corollary: Every closed three-dimensional manifold is the boundary of some
compact four-dimensional manifold; this is a classical theorem of Rokhlin.)

D: Differential Topology Interpretations
of the Pontryagin Classes

The following statement is similar to Exercise 23. Let X be a closed oriented
n-dimensional manifold and f WX ! R

n�2qC2 be a generic smooth map. Let Y � X
be the set of points where the rank of the differential of f does not exceed n�2q (that
is, is at least 2 less than its maximal possible value). Then Y is an oriented .n� 4q/-
dimensional manifold (maybe, with singularities), and the class ŒY� 2 Hn�4q.X/ is
the Poincaré dual to the Pontryagin class pq.X/ 2 H4q.XIZ/ of (the tangent bundle
of) the manifold X. A similar statement holds for the normal Pontryagin classes
(compare to Exercise 24.)

(The orientedness, and even orientability, of manifold X is actually not needed,
but, in general, we will need the version of Poincaré isomorphism developed in
Sect. 17.12.)

If X is a closed oriented manifold of dimension 4m, then the value of the class
pj1 .X/ : : : pjr.X/; j1 C � � � C jr D m on the fundamental homology class of X is
called a Pontryagin number and is denoted as pj1:::jr ŒX�. (It is convenient to assume
that X is not necessarily connected; the fundamental class of a disconnected X is
defined as the sum of the fundamental classes of the components.) If X is a boundary
of a compact oriented manifold, then all the Pontryagin numbers of X are zeroes
(this fact is proved precisely as the similar fact for the Stiefel–Whitney numbers).
There also is a Thom theorem which asserts that if all the Pontryagin numbers of a
closed orientable manifold are zeroes (for example, if its dimension is not divisible
by 4), then a union of several copies of X (taken all with the same orientation) is
a boundary of some compact manifold. Moreover, every set of integers fpj1:::jr j
j1 C � � � C jr D mg becomes, after a multiplication of all the numbers in the set by
the same positive integer, the set of Pontryagin numbers of some closed oriented
manifold of dimension 4m. (Actually, this theorem is way easier than the similar
theorem for the Stiefel–Whitney numbers; we will see this in Chap. 6.)
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A useful corollary of the Thom theorem (and the fact that if Y D X1
F

X2 is the
disjoint union of two closed oriented 4m-dimensional manifolds, then

pj1:::jr ŒY� D pj1:::jr ŒX1�C pj1:::jr ŒX2�

for every j1; : : : ; jr with j1 C � � � C jr D m) is the following statement.

EXERCISE 31. Suppose that for every closed oriented n-dimensional manifold
there is assigned an integer �.X/with the following properties: (1) If X is a boundary
of a compact oriented manifold, then �.X/ D 0; (2) �.X1

F

X2/ D �.X1/C �.X2/.
Prove that

�.X/ D
X

j1C���CjrDn=4

aj1:::jr pj1:::jr ŒX�;

where aj1:::jr are some rational numbers not depending on X. In particular, �.X/ D 0
if n is not divisible by 4.

This statement has only one broadly known application, but what an application
it is! Denote by �.X/ the signature of the intersection index form in the 2m-
dimensional homology of a 4m-dimensional closed oriented manifold X. The
theorem in Sect. 17.10 shows that � satisfies condition (1); condition (2) for
the signature is obvious. Hence, the signature is a rational linear combination of
Pontryagin numbers. In particular, �.X/ D ap1ŒX� if dim X D 4, �.X/ D bp2ŒX�C
cp11ŒX� if dim X D 8, and so on. To find a; b; c; : : : , we need to have a sufficient
supply of computations in concrete examples. For example, H2m.CP2m/ D Z. The
matrix of the intersection form is just .1/; hence, �.CP2m/ D 1. Furthermore,

�.CP2m/˚ 1 D .2mC 1/�C
(this is the complex version of Exercise 12), and hence

C�.CP2m/˚ 1C D .2mC 1/.�C ˚ �C/

(see Exercise 8), and

.p0 � p1 C p2 � � � � C .�1/mpm/.CP2m/ D Œ.1C x/.1 � x/�2mC1

D .1 � x2/2mC1

where x 2 H2.CP2m/ D Z is the canonical generator (see Sect. 19.5.D, including
Exercise 16). Hence,
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pi.CP2m/ D

8

ˆ
<

ˆ
:

 

2mC 1
i

!

x2i; if i � m;

0; if i > m:

In particular, p1.CP2/ D 3x2; p1ŒCP2� D 3; and, since �.CP2/ D 1, then for every
(closed, orientable) four-dimensional manifold X,

�.X/ D 1

3
p1ŒX�: (	)

(In particular, the Pontryagin number p1ŒX� of every closed orientable four-
dimensional manifold X is divisible by 3.) Furthermore, p11ŒCP4� D 25; p2ŒCP4� D
10; �.CP4/ D 1. In addition,

.p0 C p1 C p2/.CP2 � CP2/ D .p0 C p1/.CP2/ � .p0 C p1/.CP2/

(the multiplication formula for the Pontryagin classes holds only modulo 2-torsion,
but there is no torsion in the cohomology of complex projective spaces), and hence

p1.CP2 � CP2/ D .1 � 3x2/C .3x2 � 1/;
p21.CP2 � CP2/ D 18.x2 � x2/;

p2.CP2 �CP2/ D p1.CP2/ � p1.CP2/ D 3x2 � 3x2;
p11ŒCP2 � CP2� D 18; p2ŒCP2 � CP2� D 9;

and also �.CP2 � CP2/ D 1:

EXERCISE 32. Prove that the signature is multiplicative: �.X � Y/ D �.X/�.Y/.)

Hence, 1 D 10b C 25c; 1 D 9b C 18c; whence b D 7

45
; c D � 1

45
. Thus, for

dim X D 8,

�.X/ D 7p2ŒX� � p11ŒX�

45
: (		)

(Hence, 7p2ŒX� � p11ŒX� is divisible by 45, and if the first Pontryagin class of a
closed orientable eight-dimensional manifold is zero, then its signature is divisible
by 7.) The formulas (	), (		) form the beginning of an infinite chain of formulas
relating the signature to the Pontryagin numbers. The work of explicitly writing
these formulas was done in the 1950s by F. Hirzebruch. He calculated the Pontryagin
numbers of manifolds of the form CP2m1 � � � � �CP2mk (which, essentially, we have
done) and, using the fact that the signatures of all these manifolds are equal to 1,
he found the coefficients of the Pontryagin numbers in the formulas for signatures.
The resulting formulas are presented in his book [46].
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E: Invariance Problems for Characteristic Classes of Manifolds

As we know, the Euler class of a manifold can be expressed through the Betti
numbers of this manifold. It turns out that although the Stiefel–Whitney classes
are not determined by either homology groups or even a cohomology ring of this
manifold, still they are homotopy invariant; that is, a map of one closed manifold
into another one which is a homotopy equivalence takes the Stiefel–Whitney classes
into the Stiefel–Whitney classes. This fact will be established (or, at least, discussed)
in Chap. 4 (Sect. 31.2). For Pontryagin classes, however, the homotopy invariance
fails (the only homotopy invariant nonzero polynomial in Pontryagin classes is the
signature). In the 1960s, S. Novikov proved the difficult theorem of topological
invariance of rational Pontryagin classes (a homeomorphism between two smooth
closed orientable manifolds takes Pontryagin classes into Pontryagin classes modulo
elements of finite order; these elements of finite order may be nonzero—there are
examples). A decade before that, V. Rokhlin, A. Schwarz, and R. Thom proved
this statement for homeomorphisms, establishing a correspondence between some
smooth triangulations of two smooth manifolds (see Rokhlin and Schwarz [72],
Thom [85]). This result leads naturally to the problem of “combinatorial calculation
of Pontryagin classes,” that is, their calculation via triangulation (compare to
Exercise 29). At present, this problem has been solved only for the first Pontryagin
class (see the article by Gabrielov, Gelfand, and Losik [42]).



Chapter 3
Spectral Sequences of Fibrations

Lecture 20 An Algebraic Introduction

20.1 Preliminary Definitions

Let C be an Abelian group. We will consider three kinds of structures in C.

Definition 1. A differential in C is a homomorphism dWC ! C such that d2 D 0.
An Abelian group with a differential is called a differential group. We will use
notations Z D Ker d; B D Im d; H D Z=B (the condition d2 D 0 is equivalent
to the inclusion B � Z). The group H [also denoted as H.C; d/] is called the
homology group of the differential group .C; d/. Sometimes we will call elements of
the groups Z;B; and H cycles, boundaries, and homology classes. A homomorphism
f W .C; d/ ! .C0; d0/ between differential groups is a homomorphism f WC ! C0
commuting with the differentials: d0 ı f D f ı d. Such a homomorphism induces
homomorphisms Z ! Z0; B ! B0; and H ! H0 [where Z0;B0, and H0 mean for
.C0; d0/ the same as Z;B, and H mean for .C; d/]. The homomorphism H ! H0 may
be denoted by f�.

Definition 2. A filtration of C is a family of subgroups FpC � C; p 2 Z such that
if p < q, then FpC � FqC. We will also assume that

S

FpC D C and
T

FpC D 0.
A filtration fFpCg of C is called finite if for some m and n � m, FpC D 0 when
p < m and FpC D C when p � n. A filtration fFpCg is called positive if FpC D 0

for all p < 0. Usually, we will assume that the filtration is positive and finite, in
which case it is essentially a chain

0 D F�1C � F0C � F1C � : : : � Fn�1C � FnC D C

(but even in this case we have the right to use the notation FpC for p < �1 when it
is 0, and for p > n when it is C).
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Definition 3. A grading of C is a family of subgroups Cr � C; r 2 Z such that
C D L

r Cr . Usually (not always), we will assume that the grading is positive and
finite, meaning that actually C D Ln

rD0 Cr and Cr D 0 for r < 0 and r > n. For
a filtered group C (as in Definition 2) we define the adjoint graded group Gr C D
L

r.FrC=Fr�1C/. The groups C and Gr C are not always isomorphic as Abelian
groups (for example, the adjoint group to the group C D Z with a filtration 0 �
2Z � Z is Z2 ˚ Z 6Š Z), but they may be regarded as closely related. For example,
if a filtered group C is finite, then the group Gr C is also finite and has the same
order; if C has a finite rank, then Gr C also has a finite rank, the same as C, if the
filtration is finite; if C is a vector space (over some field), filtered by subspaces, then
Gr C is also a vector space over the same field, of the same dimension as C, if C is
finite dimensional.

Structures of these kinds may co-exist in the same Abelian group; then we usually
assume that they satisfy some compatibility conditions; actually, we will not even
explicitly state that these conditions are met; rather, we will state the opposite in the
rare cases when the structures considered are not supposed to be compatible.

If an Abelian group C possesses a differential d and a filtration fFpCg, then we
assume that for all p; d.FpC/ � FpC. In this case, we have differential groups



FpC; d jFpC
�

, and the inclusion map FpC! C induces a homology homomorphism
H.FpC; d jFpC/ ! H D H.C; d/, and its image is denoted as FpH. [Thus, FpH D
.FpC \ Ker d/=.FpC \ d.C//.] In this way, we obtain a filtration fFpHg of H.

If C has a differential d and a grading C DLr2Z Cr , then we usually assume that
d is homogeneous of some degree u 2 Z, which means that for all r; d.Cr/ � CrCu.
We are best familiar with the case u D �1. Then C is the same as a (chain) complex

: : :
dr�1 ��Cr�1

dr ��Cr
drC1 ��CrC1

drC2 �� : : :
in the sense of Sect. 12.2. The case u D 1 is represented by cochain complexes
(Sect. 15.1). Ahead, we will deal with differential graded groups with differentials
of all possible degrees. Notice that the homology group of a differential graded
group with homogeneous differential (of some degree u) has a natural grading:

Hr D Ker.dWCr ! CrCu/

Im.dWCr�u ! Cr/
:

EXERCISE 1. Prove that if the differential in C is homogeneous with respect to the
grading, then (whatever the degree of d is) H DLr Hr.

If C has a filtration, fFpCg, and a grading, C D L

r Cr, then the two structures
are called compatible if for every p; FpC DLr.FpC \ Cr/. This condition is quite
restrictive. It is stronger than it may seem at the first glance: A randomly chosen
filtration and grading do not satisfy it. Here is the simplest (?) example. Let C be a
free Abelian group with two generators: a and b (so C D Za ˚ Zb). Consider the
filtration 0 D F�1C � F0C � F1C D C with F0C D Z.a C b/ and the grading
C D C0 ˚ C1 with C0 D Za; C1 D Zb. Then

Z Š F0C ¤ .F0C \ C0/˚ .F/C \ C1/ D 0˚ 0 D 0:
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For a better understanding, we can notice that the filtration and the grading are
compatible if every FpC is generated by “homogeneous elements,” that is, by
elements belonging to the groups Cr.

EXERCISE 2. Prove that if the differential, the filtration, and the grading are
mutually compatible, then (whatever the degree of the differential is) the filtration
and the grading in the homology are compatible.

And the last common situation is when C has two (or more, but we will never
encounter this case) gradings, C D L

r Cr and C D L

s C0
s. These two gradings

are compatible (or form a bigrading) if C D L

r;s Cr;s, where Cr;s D Cr \ C0
s (or,

equivalently, if Cr DLs Cr;s; or, equivalently, if C0
s D

L

r Cr;s). A typical example
is contained in Exercise 3.

EXERCISE 3. Prove that if C possesses a compatible filtration fFpg and grading
C D L

s Cs, then Gr C acquires a natural bigrading: Gr C D L

p;r.FpC \
Cr/=.Fp�1C \ Cr/.

20.2 The Spectral Sequence of a Filtered Differential Group

Let C be a differential group with a differential d and a filtration fFpCg compatible
with d. We will assume that the filtration is finite and positive, and we will briefly
consider the case of the infinite filtration at the end of the section. In the next section,
we will adjust our construction to the case when C also possesses a grading.

Begin with a simple observation. Since d.FpC/ � FpC, the differential d induces
a differential d0pWFpC=Fp�1C ! FpC=Fp�1C [obviously, .d0p/

2 D 0] and the direct
sum of all d0p becomes a homogeneous differential of degree 0, d0WGr C ! Gr C.
Question: Are H.Gr C; d0/ and Gr H.C; d/ the same? Answer: not, in general.
Indeed, when we compute H.C/, we first restrict ourselves to Ker d D fc 2 C j
dc D 0g. But when we compute H.Gr C/, we take those c 2 FpC for which
dc 2 Fp�1C; that is, the group of “cycles” is bigger in the second computation.
On the other hand, when we compute H.C/, we factorize over d.C/, while in the
computation of H.Gr C/ we factorize over d.FpC/, which is not as big. This shows
that the group H.Gr C/ should be bigger than Gr H.C/.

This is what the spectral sequence exists for: a gradual, “monotonic” transition
from H.Gr C/ to Gr H.C/.

Now we pass to main definitions. For p; r � 0, put

Er
p D

FpC \ d�1.Fp�rC/

ŒFp�1C \ d�1.Fp�rC/�C ŒFpC \ d.FpCr�1C/�
; Er D

M

p
Er

p:

In words: We take elements of FpC whose differentials lie in a smaller group, Fp�rC;
then we factorize over those chosen elements which happen to be in Fp�1C and also
for those which are differentials, not of arbitrary elements of C, but only of elements
of FpCr�1C. Consider three particular cases.
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E0p D
FpC \ d�1.FpC/

ŒFp�1C \ d�1.FpC/�C ŒFpC \ d.Fp�1C/�

D FpC

Fp�1CC d.Fp�1C/
D FpC

Fp�1C
I

thus, E0 D Gr C;

E1p D
FpC \ d�1.Fp�1C/

ŒFp�1C \ d�1.Fp�1C/�C ŒFpC \ d.FpC/�

D FpC \ d�1.Fp�1C/
Fp�1CC d.FpC/

D Ker d0p
Im d0p

I

thus, E1 D H.Gr C; d0/. It is also clear that if r is big enough, then Fp�rC D 0 and
FpCr�1C D C. In this case, Er

p does not depend on r, and we will use the notations
E1

p ;E
1. We have

E1
p D

FpC \ Ker d

ŒFp�1C \ Ker d�C ŒFpC \ Im d�
D FpH.C/

Fp�1H.C/
; E1 D Gr H.C/:

To understand the relations between the (graded) groups Er; r D 0; 1; : : : ;1, we
introduce “differentials” dr

pWEr
p ! Er

p�r .
Let ˛ 2 Er

p, and let a 2 FpC \ d�1.Fp�rC/ be a representative of ˛. Then
da 2 Fp�rC and dda D 0, and hence da 2 d�1.0/ � d�1.Fp�2rC/. Thus, da 2
Fp�rC \ d�1.Fp�2rC/. But Er

p�r is the quotient of Fp�rC \ d�1.Fp�2rC/ over some
subgroup; the class of da in Er

p�r is taken for dr
p˛. We need to check the following

properties of this construction.

Proposition (J. Leray).

(1) dr
p is well defined; that is, dr

p˛ does not depend on the choice of a in ˛.
(2) dr

p�r ı dr
p D 0.

(3) Ker dr
p= Im dr

pCr Š ErC1
p . (The proof will contain a construction of a canonical

isomorphism.)

Proof. (1) Let a0 be a different representative of ˛ in FpC \ d�1.Fp�r/, that is,
a0 D aC bC c, where b 2 Fp�1C \ d�1.Fp�rC/ and c 2 FpC \ d.FpCr�1C/.
Then da0 D da C db C dc. But dc D 0 and db 2 Fp�rC \ d.Fp�1C/ D
Fp�rC \ d.F.p�r/Cr�1C/, which is a part of the denominator in the definition
of Er

p�r. This shows that da0 belongs to the same class in Er
p�r as da.

(2) A representative of dr
p�r ı dr

p˛ in Er
p�2r is dda, where a is a representative of ˛.

But dda D 0.
Our proof of part (3) consists of three steps.

Step 1. We prove that if for an ˛ 2 Er
p; dr

p˛ D 0, then there exists a representative
a 2 FpC \ d�1.Fp�rC/ of ˛ such that da 2 Fp�r�1C; that is, a belongs actually
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to FpC \ d�1.Fp�r�1C/. We begin with an arbitrary representative a0 2 FpC \
d�1.Fp�rC/ of ˛. The condition dr

p˛ D 0 means precisely that da0 belongs to the
“denominator” of Er

p�r, that is, to ŒFp�r�1C\ d�1.Fp�2rC/�C ŒFp�rC\ d.Fp�1C/�;
in other words, da0 D b C dc, where c 2 Fp�1C; dc 2 Fp�rC; b 2 Fp�r�1C; and
db 2 Fp�2rC (we will not need the last inclusion). Put a D a0 � c. Since c 2
Fp�1C \ d�1.Fp�rC/, a is just another representative of ˛. And da D da0 � dc D
b 2 Fp�r�1C, as required.

Step 2. For an ˛ 2 Ker dr
p, choose a representative a 2 FpC with da 2 Fp�r�1C,

as in step 1. Then a 2 FpC \ d�1.Fp�r�1C/; that is, a represents a certain element
ˇ 2 ErC1

p . Let us prove that this ˇ is determined by ˛, just providing a well-defined
homomorphism Ker dr

p ! ErC1
p . Letea 2 FpC be another representative of ˛ with

dea 2 Fp�r�1C. We want to prove that ea represents the same element of ErC1
p as

a, that is,ea � a 2 ŒFp�1C \ d�1.Fp�r�1C/� C ŒFpC \ d.FpCrC/�. But we already
know thatea � a 2 ŒFp�1C \ d�1.Fp�rC/�C ŒFpC \ d.FpCr�1C/�, and alsoea� a 2
d�1.Fp�r�1C/ and FpCr�1C � FpCrC. This gives us the required inclusion.

Step 3. It remains to check that KerŒKer dr
p ! ErC1

p � D Im dr
pCr. If ˛ D dr

pCrˇ,
then ˛ is represented by a D db, where b 2 FpCrC represents ˇ. But db 2 d.FpCrC/
and d.FpCrC/ is a part of the denominator of ErC1

p . Thus, a represents zero in ErC1
p ;

that is, ˛ 2 KerŒKer dr
p ! ErC1

p �—that is, Im dr
pCr � KerŒKer dr

p ! ErC1
p �. To prove

the opposite inclusion, take an ˛ 2 KerŒKer dr
p ! ErC1

p �. Then ˛ is represented
by some a 2 ŒFp�1C \ d�1.Fp�r�1C/� C ŒFpC \ d.FpCrC/�, that is, a D b C dc,
where b 2 Fp�1C\ d�1.Fp�r�1C/; c 2 FpCrC\ d�1.FpC/. This c represents some
element � of Er

pCr, and dr
pCr� is represented by dc D a � b. Since b 2 Fp�1C \

d�1.Fp�r�1C/ � Fp�1C \ d�1.Fp�rC/, b represents 0 in Er
p, and dc represents the

same element of Er
p as a. Thus, dr

pCr� D ˛ and KerŒKer dr
p ! ErC1

p � � Im dr
pCr.

This completes the proof of Leray’s proposition.

EXERCISE 4. Prove that the notations d0; d0p match the notations introduced in the
“simple observation” in the beginning of the section.

EXERCISE 5 (concerning Step 1 of the previous proof). Prove that if ˛ 2 E1p and
d1p˛ D 0, then the inclusion da 2 Fp�2C holds for an arbitrary, not specially chosen,
representative a of ˛ in FpC \ d�1.Fp�1C/.

We have completed the main construction of this chapter: that of a spectral
sequence. This construction will be enriched in subsequent sections and lectures,
but now let us observe what we have already achieved.

Input: a differential group .C; d/with a positive finite filtration fFpCg compatible
with the differential.

Output: a sequence of differential graded groups

n

Er D
M

p
Er

p; d
r D

X

p
Œdr

pWEr
p ! Er

p�r�/
o

;
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which is called the spectral sequence associated with the filtered differential groups
of the Input and which possesses the following properties:

(1) E0 D Gr.C; d/; E1 D H.Gr.C; d//.
(2) For every r, the graded group ErC1 is the homology group of the differential

graded group Er; dr (with a homogeneous differential of degree �r).
(3) For big r, the groups Er do not depend on r (that is, dr D 0), which justifies the

notation E1; the claim is that E1 D Gr H.C; d/.

Informally speaking, the spectral sequence begins “almost at C,” that is, at Gr C,
and “converges” “almost to H.C/,” that is, to Gr H.C/, in this way breaking the
computation of the homology of C into a sequence of elementary steps.

The construction of a spectral sequence is natural in the obvious sense: If there
is another differential group, C0; d0, with a filtration compatible with a differential,
then there arises a spectral sequence f0Er; 0drg associated with this group, and any
homomorphism C ! C0 compatible with differentials and filtrations induces
homomorphisms Er ! 0Er; 0 � r � 1 compatible with differentials and gradings
and coinciding with the induced homomorphisms Gr H.C; d/ ! Gr H.C0; d0/ for
r D 1.

We conclude the section with two remarks, one methodical and one historical.

Remark 1. The construction of the spectral sequence can be easily adapted to the
case when the filtration is infinite although still positive. The definitions and stated
properties of Er

p and dr
p (with finite r) remain the same. The difference is that the

sequence fails to stabilize. However, for every p, dr
p D 0 for r > p. Thus, in the

sequence of groups Er
p with p fixed and r > p, every group is a pure quotient of

the previous group, which gives us the right to speak of the “limit group” E1
p . The

graded group E1 is still Gr H.C/.

Remark 2. Spectral sequences were first introduced in 1945 by J. Leray in the
context of the sheaf theory (see Leray [53]). The significance of spectral sequences
for algebraic topology was demonstrated in 1951 by J.-P. Serre in his doctoral
dissertation [75]. With the appearance of homological algebra (the term was used
as the title of the famous book by Cartan and Eilenberg [29]), spectral sequences
became the main technical tool in this area. Modern mathematics contains dozens of
spectral sequences named after remarkable mathematicians. We will have to restrict
ourselves in this book to topological applications of spectral sequences.

20.3 The Case of a Graded Filtered Differential Group

Suppose that besides filtration and differential, the group C has a grading, C D
L

m Cm, compatible with filtration FpC DLp FpCm where FpCm D FpC\Cm, and
the differential; we suppose that the differential has the degree �1: d.Cm/ � Cm�1;
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we suppose also that the grading is finite (there are only finitely many nonzero Cm).
In this case, all terms of the spectral sequence acquire an additional structure: the
second grading. There will be no additional proposition to prove; all we need is a
modification of all notations.

For p; r � 0; q 2 Z, put

Er
pq D

FpCpCq \ d�1.Fp�rCpCq�1/
ŒFp�1CpCq \ d�1.Fp�rCpCq�1/�C ŒFpCpCq \ d.FpCr�1CpCqC1/�

;

Er DLp;q Er
pq: In particular,

E0pq D
FpCpCq

Fp�1CpCq
;

E1pq D
Ker

�

FpCpCq

Fp�1CpCq

d��! FpCpCq�1
Fp�1CpCq�1

�

Im

�

FpCpCqC1
Fp�1CpCqC1

d��! FpCpCq

Fp�1CpCq

� ;

E1
pq D

FpHpCq.C/

Fp�1HpCq.C/
:

(The reader may wonder why instead of CpCq;CpCq�1, etc. we do not take Cq;Cq�1,
etc. However, it is impossible to explain the reason for this before we consider
examples. We will see that for the most important examples, Er

pq will be zero for
p < 0 and for q < 0. At the moment, we can only say that for Er

pq, p is called the
filtration degree, q is called the complementary degree, and pC q is called the full
degree.)

The differential dr is defined in the same way as before (without an additional
grading): An ˛ 2 Er

pq � Er has a representative in a 2 FpCpCq with da 2
Fp�rCpCq�1, and the class of this da is taken for dr˛. This differential reduces the
filtration degree by r and reduces the full degree by 1; hence, the component dr

pq of
this differential on Er

pq is

dr
pqWEr

pq ! Er
p�r;qCr�1:

Part (3) of Leray’s proposition of Sect. 20.2 holds with an obvious enriching of
notations:

ErC1
pq D

KerŒdr
pqWEr

pq ! Er
p�r;qCr�1�

ImŒdr
pCr:q�rC1WEr

pCr;q�rC1 ! Er
pq�
:

There is a common graphic presentation of terms of the spectral sequence. For
every r, the groups Er

p;q are placed into the cell of a graph paper and the differentials
dr

pq are shown by arrows. Fragments of such diagrams (around a randomly chosen
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Fig. 75 Diagrams for the terms E0;E1;E2 of a spectral sequence

cell with p D 4; q D 5) are shown in Fig. 75. Differentials d0 act downward,
differentials d1 act from the right to the left, and differentials d2 act by what has been
cherished by generations of topologists—the “knight’s move.” Further differentials
act by a “mad knight’s move”: The arrow corresponding to the differential dr points
r cells left and r � 1 cells up.

The relations between the term E1 and H.C/ are shown in Fig. 76. On the graph
paper diagram for E1, consider the line pCq D n and mark on this line all nonzero
groups as J1; J2; : : : ; Jm, numbered in the order of increasing p and decreasing q.
Then

J1 � Hn.C/; J2 � Hn.C/=J1; J3 � .Hn.C/=J1/=J2; : : : ;
Jm D .: : : .Hn.C/=J1/=J2 : : :/=Jm�1:

In particular, if E1
pq D 0 for all pairs p; q with p C q D n, then Hn.C/ D 0; if,

for some n, there is only one pair p; q; pC q D n with E1
pq ¤ 0, then Hn.C/ equals

this E1
pq .

20.4 A Cohomological Version

No wonder that, both in topology and in algebra, spectral sequences are more often
applied to cohomology than to homology: Cohomological spectral sequences pos-
sess natural multiplicative structures (Lecture 24) as well as many other structures,
which we will study later (Chap. 4). From a purely algebraic point of view, the
main difference between chain and cochain complexes lies in the degree of the
differential: It is C1 rather than �1, and this does not affect the general theory
in any significant way. However, precisely how in general homology theory, the
transition from homology to cohomology results in replacing the notations Cn;Hn;

etc. by Cn;Hn; etc., the cohomological version of the previous theory requires some
changes in notation. Let us observe these changes.
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p

q

J1

J2

J3

Jm

p + q = n

E∞

Fig. 76 Diagrams for the E1-term

For a filtration in an Abelian group C we use the notation fFpCg; we assume that
FpC 
 FpC1C. A filtration is called positive if FpC D C for p < 0 and is called
finite if there are only finitely many terms FpC different from both 0 and C. Thus, a
finite positive filtration has the form

C D F0C 
 F1C 
 F2C 
 : : : 
 FnC 
 FnC1C D 0;

with the understanding that FpC D C if p < 0 and FpC D 0 if p > n. We assume
also that C possesses a grading C DLCr (usually, with finitely many nonzero Cr)
and a differential dWC! C such that

FpC DLr FpCr where FpCr D FpC \ Cr; d.FpC/ � FpC;
and d.Cr/ � CrC1:

Then we put

Epq
r D

FpCpCq \ d�1.FpCrCpCqC1/
ŒFpC1CpCq \ d�1.FpCrCpCqC1/�C ŒFpCpCq \ d.Fp�rC1CpCq�1/�

;

Er DLp;q Epq
r , and define a differential

dpq
r WEpq

r ! EpCr;q�rC1
r

in the usual way: For ˛ 2 Epq
r , we choose a representative a 2 FpCpCq \

d�1.FpCrCpCqC1/ and take for dpq
r ˛ the class of da 2 FpCrCpCqC1 in EpCr;q�r�1

r .
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Fig. 77 Diagrams for the terms E0;E1;E2 in the cohomological case

Leray’s proposition (and its proof), including the graded version of Sect. 20.3,
can be repeated with an appropriate notation change. In particular, Epq

rC1 D
Ker dpq

r = Im dp�1;qCr�1
r . The diagrams of Fig. 75 assume the form shown in Fig. 77.

The relations between E1 and H.C/ are still described by Fig. 76. The difference
is that now we need to order the groups in the line pC q D n from the bottom to the
top:

Jm � Hn.C/; : : : ; J2 � .: : : .Hn.C/=Jm/ : : :/=J3;
J1 D ..: : : .Hn.C/=Jm/ : : :/=J3/=J2:

20.5 Some Famous Spectral Sequences in Algebra (Exercises)

In this section we will consider some very mighty applications of spectral sequences
in algebraic topology. However, many famous spectral sequences arise in other
parts of mathematics. In this section, we will describe several of them (the reader
who wants to become familiar with more should use any comprehensive text in
homological algebra). But since this is not our subject, we will not prove much, so
this section will look like a sequence of exercises.

A: Double Complexes and Their Spectral Sequences

This is a general construction which provides a very rich source of more specific
spectral sequences. We will use here what can be called “homological notation.”
The reader can reverse all the arrows, switch the upper and lower indices, and obtain
a cohomological version of the construction.

Let C D L

p	0;q	0 Cpq be a doubly graded group endowed with two differ-
entials: dI

pqWCpq ! Cp�1;q and dII
pqWCpq ! Cp;q�1. In addition to the expectable
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assumptions that dI
p�1;q ı dI

pq D 0 and dII
p;q�1 ı dII

pq D 0, we assume that
dII

p�1;q ı dI
pqCdI

p;q�1 ı dII
pqD0. A doubly graded group C with differentials dI; dII

satisfying the conditions above is called a double complex.
For a double complex as above, we put Cn DLpCqDn Cpq. The differentials dI

pq

and dII
pq with pCq D n sum up to a homomorphism dnWCn ! Cn�1. The conditions

formulated above mean precisely that dn�1 ı dn D 0. That is, C DL

Cn becomes
a graded differential group with the differential of degree �1; it is called the total
complex of the double complex C D fCpqI dI

pq; d
II
pqg.

There are several homology theories related to a double complex. First, there are
homologies

HI
pq.C/ D Ker dI

pq= Im dI
pC1;q and HII

pq.C/ D Ker dII
pq= Im dI

p;qC1:

Next, since the differentials dI and dII commute (up to a sign), they give rise to
“differentials” dII

pqWHI
pq.C/ ! HI

p;q�1.C/ and dI
pq.C/WHII

pq.C/ ! HII
p�1;q.C/, which

gives rise to “double homologies”

HIIHI
pq.C/ and HIHII

pq.C/

(the reader should not think that they are the same). Also, there is the homology of
the total complex: Hn D Ker dn= Im dnC1.

For the total complex C, introduce two filtrations (sometimes they are called
stupid , in contrast to the fact that they form a foundation for numerous important
applications):

FI
pC D

M

s
p
Csq; FII

q C D
M

s
q
Cps:

There arise two spectral sequences, fIEr
pq;

Idr
pqg and fIIEr

pq;
IIdr

pqg, whose properties
are described in Exercise 6. We should warn the reader that in the second of these
spectral sequences the roles p and q are swapped: q is the filtering degree and p is the
complementary degree; this leads the differentials to act unusually: IIdr

pqW IIEr
pq !

IIEr
pCr�1;q�r.

EXERCISE 6. Prove that

(1) IE0pq D IIE0pq D Cpq:

(2) IE1pq D HII
pq.C/;

IIE1pq D HI
pq.C/:

(3) IE2pq D HIHII
pq.C/;

IIE2pq D HIIHI
pq.C/:

(4) IE1
pq D

FI
pHpCq

FI
p�1HpCq

; IIE1
pq D

FII
q HpCq

FII
q�1HpCq

:
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B: Application of Spectral Sequences of Double Complexes:
Coefficient Spectral Sequences

The majority of applications of double complex spectral sequences use the following
scheme. To solve some homology problem, we make up a double complex. There
arise two spectral sequences. Usually, one of these sequences turns out to be severely
degenerate; for example, its E1-term has only one nontrivial row or column. Then
all the higher differentials are zeroes, E1 D E1, and the homology of the total
complex is equal to the E1-term, which gives us an expression for it. After it, we
know the limit term of the other spectral sequence, and we also have information on
its initial term, E1 or E2. Thus, this spectral sequence relates something we know
with something we want to find.

The spectral sequence we are going to discuss may be regarded, as we will
explain later, as a generalization of the (exact) coefficient sequence. Let X be a
topological space, and let

0 ��G
" ��G0

˛1 ��G1

˛2 ��G2

˛3 �� : : :

be an exact sequence of Abelian groups (we assume it infinite to the right, but it
is possible –and desirable—that Gn D 0 for n big enough). Consider the double
complex C D L

p	0;q	0 Cq.XIGp/ (where Cq denotes a chain group, maybe
singular, maybe cellular—it does not matter) with the differentials @qWCq.XIGp/!
Cq�1.XIGp/ and .�1/p.˛p/�WCq.XIGp/! Cq.XIGp�1/ [here we assume G�1 to be
zero, not G, and, accordingly .˛0/� to be zero, not "; .�1/p at .˛p/� is necessary to
ensure that the condition relating Id to IId is met].

EXERCISE 7. (1) Prove that

IE1pq D
�

Hq.X W G/; if p D 0;
0; ifp ¤ 0:

Deduce that Hn D Hn.XIG/.
(2) Prove that

IIE1pq D Hq.XIGp/ and IId1pq D Œ.�1/p.˛p/�WHq.XIGp/! Hq�1.XIGp�1/�:

Exercise 7 shows that the spectral sequence IIE connects homology groups with
coefficients in G with homology with coefficients in Gp. In this sense, it is similar to
the coefficient homology sequence. Actually, if Gp D 0 for all p � 2, this spectral
sequence is algebraically equivalent to the coefficient homology sequence (see
Sect. 15.3). We prefer to state this fact in a more precise way later (see Exercise 2
in Sect. 5.3).

Cohomological versions of all these constructions exist.
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C: The Hochschild–Serre Spectral Sequence

There are several spectral sequences named after G. Hochschild and J.-P. Serre
(see Hochschild and Serre [47, 48]); each exists in homological and cohomological
versions. We will consider here the spectral sequence in the theory of Lie algebra
cohomology.

Let g be a Lie algebra over the field C, and let M be a g-module (that is
a complex vector space endowed by a linear map �W g ! End M such that
�Œg; h� D �.g/ ı �.h/ � �.h/ ı �.g/; we will abbreviate the formula Œ�.g/�.x/ to
gx). Define the “cochain space” Cn.gIM/ as HomC.ƒ

ng;M/ and the differential
dWCn.gIM/! CnC1.gIM/ by the formula

dc.g1 ^ : : : ^ gnC1/ D
X

1
s<t
nC1
.�1/sCt�1c.Œgs; gt� ^ g1 ^ : : :bgs : : :bgt : : : ^ gnC1/

�
X

1
u
nC1
.�1/uguc.g1 ^ : : :bgu : : : ^ gnC1/:

EXERCISE 8. Prove that d2 D 0.

The (co)homology of the complex fCn.gIM/; dg is called the cohomology of
the Lie algebra g with the coefficients in M and is denoted as Hn.gIM/. The space
Cn.gIM/ possesses a natural structure of a g-module:

.gc/.g1 ^ : : : ^ gn/ D
n
X

rD1
c.g1 ^ : : : ^ Œg; gr� ^ : : : ^ gn/� g.c.g1 ^ : : : ^ gn//;

and the differentials are g-homomorphisms. This implies a structure of a g-module
in Hn.gIM/, but

EXERCISE 9. Prove that the structure of a g-module in Hn.gIM/ is trivial: g˛ D 0
for any g 2 g; ˛ 2 Hn.gIM/.

Let h � g be a Lie subalgebra. Put

FpCpCq.gIM/ D fc 2 CpCq.gIM/ j c.g1 ^ : : : ^ gpCq/ D 0;
if g1; : : : ; gqC1 2 hg:

EXERCISE 10. (1) Prove that the spaces FpCpCq.gIM/ form a filtration compatible
with the differential; thus, there arises a spectral sequence with the limit term
Gr Hn.gIM/; this is the Hochschild–Serre spectral sequence.

(2) Prove that in this spectral sequence Epq
1 D Hq.hIHom.ƒq.g=h/; M// [we

expect that the reader will reconstruct the structure of an h-module in
Hom.ƒq.g=h/;M/].
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(3) Prove that if h is an ideal in g, then Epq
2 D Hp.g=hIHq.hIM//. [If h is an ideal,

then the spaces Cn.hIM/; Hn.hIM/ have a natural g-module structure; but,
according to Exercise 9, the h-module structure in Hn.hIM/ is trivial; hence,
the g-module structure in Hn.gIM/ is factorized to a g=h-module structure.]

Lecture 21 Spectral Sequences of a Filtered Topological
Space

21.1 General Constructions

A (positive, finite) filtration in a topological space X is a chain of subspaces,

; D X�1 � X0 � X1 � : : : � Xn D X

(when necessary, we will use the notation Xp D ; for p < �1 and Xp D X for
p > n). (The case of infinite filtration will be briefly discussed later.) The full chain
group, C D C�.XIG/ D L

r Cr.XIG/, has a grading (as shown), the differential
@WCr.XIG/ ! Cr�1.XIG/ (of degree �1), and the filtration FpC D C�.XpIG/ �
C�.XIG/, and these three structures are compatible with each other as described in
Sect. 20.1. Then the constructions of Sects. 20.2 and 20.3 can be applied, and they
lead to a spectral sequence fEr

pq; d
r
pqWEr

pq ! Er
p�r;qCr�1g. In our current notation,

Er
pq D

CpCq.XpIG/ \ @�1.CpCq�1.Xp�rIG//
ŒCpCq.Xp�1IG/ \ @�1.CpCq�1.Xp�rIG//�

CŒCpCq.XpIG/ \ @.CpCqC1.XpCr�1IG//�

and

E1
pq D

ImŒHpCq.XpIG/! HpCq.XIG/�
ImŒHpCq.Xp�1IG/! HpCq.XIG/� :

In addition, we can state that

E0pq D CpCq.Xp;Xp�1IG/;
d0pq D




@WCpCq.Xp;Xp�1IG/! CpCq�1.Xp;Xp�1IG/
�

;

E1pq D HpCq.Xp;Xp�1IG/;
d1pq D




@�WHpCq.Xp;Xp�1IG/! HpCq�1.Xp�1;Xp�2IG/
�

;

where the homomorphism @� in the second line belongs to the homology sequence
of the triple .Xp;Xp�1;Xp�2/.
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EXERCISE 1. Check the previous statements concerning E1
pq ;E

0
pq; and E1pq.

There is also a cohomology version of this spectral sequence. We consider
C D C�.XIG/ DLr Cr.XIG/ with the differential ıWCr.XIG/! CrC1.XIG/ and
the (decreasing) filtration FpC D C�.X;Xp�1IG/ � C�.XIG/. The compatibility
conditions hold, and the construction of Sect. 20.4 yields a spectral sequence
fEpq

r ; d
pq
r WEpq

r ! EpCr;q�rC1
r g with

Epq
r D

CpCq.X;Xp�1IG/\ ı�1.CpCqC1.X;XpCr�1IG//
ŒCpCq.X;XpIG/ \ ı�1.CpCqC1.X;XpCr�1IG//�

CŒCpCq.X;Xp�1IG/\ ı.CpCq�1.X;Xp�rIG//�;

Epq
0 D CpCq.Xp;Xp�1IG/;

dpq
0 D ŒıWCpCq.Xp;Xp�1IG/! CpCqC1.Xp;Xp�1IG/�;

Epq
1 D HpCq.Xp;Xp�1IG/;

dpq
1 D Œı�WHpCq.Xp;Xp�1IG/! HpCqC1.XpC1;XpIG/�

[the last ı� belongs to the cohomology sequence of the triple .XpC1;Xp; Xp�1/],

Epq1 D
KerŒHpCq.XIG/! HpCq.Xp�1IG/�
KerŒHpCq.XIG/! HpCq.XpIG/� :

Notice that the explicit formulas for E1 and d1 (for E1 and d1) allow us, as a rule,
to completely ignore the zeroth terms of spectral sequences; certainly, the higher
differentials dr and dr are described at the chain/cochain level, but we will see that
these direct descriptions are not really useful.

Notice also that if there is a different space, Y, with a (positive) filtration fYpg
and a continuous map f WX ! Y such that f .Xp/ � Yp for all p, then there arise
homomorphisms between homological and cohomological spectral sequences of
the filtered spaces X and Y, and these homomorphisms are compatible with the
descriptions of the zeroth, first, and1-th terms given above.

Recall in conclusion that all the constructions of this section can be applied to a
positive infinite filtration, ; D X�1 � X0 � X1 � X2 � : : : � X, on the condition
that X D S

p Xp and that X is furnished with a “weak topology”: A set F � X is
closed in X if and only if every intersection F \ Xp is closed in Xp.

21.2 A New Understanding of the Cellular Computation
of Homology and Cohomology

Here we restrict ourselves to the case of usual (integral) homology; the cases of
homology and cohomology with coefficients are not significantly different.
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Fig. 78 The spectral sequence of a CW complex filtered by the skeletons

Let X be a CW complex; let us filter it by skeletons: Xp D skp X D Xp. In the
corresponding homological spectral sequence,

E1pq D HpCq.X
p;Xp�1/ D

�

Cp.X/; if q D 0;
0; if q ¤ 0;

so the diagrams for the terms of this spectral sequence are as shown in Fig. 78.
Thus, the term E1 (as well as all the subsequent terms) contains only one nonzero

row, E1p0; with the differential d1p0, this row is nothing but the cellular chain complex
of X. Hence, in the term E2, the same row contains the cellular homology of X. All
the subsequent differentials are zero, since no one of them may connect two nonzero
groups. Thus, E2 D E1, and since for every n there is at most one nonzero group
E1

pq with pC q D n, that is, the group E1
n0 , then (according to a remark in the end

of Sect. 20.3), Hn.X/ D E1
n0 D E2n0 D the nth cellular homology group.

We also see that the property of the skeleton filtration that Hr.Xp; Xp�1/ D 0

for r ¤ p is crucial for this calculation of homology: The spectral sequence exists
independently of this property, but if the property does not hold, higher differentials
may appear, and the calculation becomes much less automatic.

21.3 A New Understanding of the Homology Sequence
of a Pair

Let .X:A/ be a topological pair. It can be regarded as a “two-term filtration,”

.; D X�1/ � .A D X0/ � .X D X1/:

The corresponding (homological) spectral sequence has the term E1 as shown in
Fig. 79, left, with the differential d1 D @�. Hence, the E2-term looks like Fig. 79,
right. The differentials dr; r � 2, are all zero, and hence E1 D E2.
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Fig. 79 The spectral sequence of a two-term filtration

According to Sect. 20.3, Hn.X/=E1
0;n D E1

1;n�1. This yields an exact sequence

Coker @�;nC1 ! Hn.X/! Ker @�;n;

that is, an exact sequence

HnC1.X;A/
@�;nC1��!Hn.A/��!Hn.X/��!Hn.X;A/

@�;n��!Hn�1.A/;

which is the same as the homological sequence of the pair .X;A/. In a similar
way, homological and cohomological sequences with arbitrary coefficients can be
presented as spectral sequences of two-term filtrations.

EXERCISE 2. Find an interpretation in terms of spectral sequences for the homo-
logical and cohomological sequences related to short exact sequences of coefficient
groups (Example C in Sect. 20.5 may be useful).

The reader may expect that spectral sequences of three-term filtrations, ; � B �
A � X, must be related to homological and cohomological sequences of triples. In
reality, a relation exists, but it is not as direct as in the case of pairs.

Lecture 22 Spectral Sequences of Fibrations: Definitions
and Basic Properties

22.1 The Main Construction

Let � D .E;B;F; p/ be a locally trivial fibration with a CW base B with skeletons
Bp. Consider a filtration fFpEg of the space E with FpE D p�1.Bp/ (we apologize for
these two ps, but these notations are so common!). The spectral sequence (homology
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or cohomology, with arbitrary coefficients) corresponding to this filtration is called
the spectral sequence of the fibration �. Let us begin with a calculation of the initial
terms, E1 and E2 (we begin with the homological case). For this computation,
we need an assumption which may provide some inconvenience later. In the next
section, we will show how to get rid of this assumption by modifying some
fundamental definitions.

Let sW I ! B be a path joining points b0; b1 2 B. As explained in Sect. 9.6
(for Serre fibrations, but locally trivial fibrations are Serre fibrations), this path
determines a (homotopically uniquely defined) homotopy equivalence p�1.b0/ !
p�1.b1/, and hence isomorphisms Hn.p�1.b0/IG/ Š ��Hn.p�1.b1/IG/. This iso-
morphism may depend on the path s (although it stays the same if the path s is
replaced by a homotopic path). Actually, the fibration � is called homologically
simple if this isomorphism does not depend on the path for any n and G. (We
can weaken this condition to a “homological simplicity with the coefficients in G,”
keeping the group G fixed in the definition.) For example, if the base B is simply
connected, then the fibration is homologically simple.

From now on, in this section, we assume the fibration � homologically simple.

Theorem. In the spectral sequence of a homologically simple (with coefficients in
G) fibration,

(1) E1pq D Cp.BIHq.FIG//.
(2) d1pq D Œ@pW Cp.BIHq.FIG//! Cp�1.BIHq.FIG//�.
(3) E2pq D Hp.BIHq.FIG//.
Proof. As we know from Sect. 21.1,

E1pq D HpCq.p
�1.Bp/; p�1.Bp�1/IG/:

Let fei j i 2 Ipg be the set of all p-dimensional cells of B, and let ci 2 ei; di � ei

be the center and a small ball around the center of the cell ei (with respect to
some characteristic map). Obviously, the pair .p�1.Bp/; p�1.Bp�1// is homotopy
equivalent to the pair .p�1.Bp/; p�1.Bp/�Si p�1.ci//, and, by the excision theorem,

HpCq.p�1.Bp/; p�1.Bp/ �Si p�1.ci/IG/
D HpCq.

S

i p�1.di/;
S

i p�1.di � ci/IG/
DLi HpCq.p�1.di/; p�1.di � ci/IG/
DLi HpCq.p�1.di/; p�1.di � Int di/IG/:

On the other hand, the fibration over the disk di is trivial with the fiber Fi D
p�1.ci/ � F, and the disk di may be regarded as a copy of the standard disk Dp

(provided that a characteristic map for the cell ei is fixed). Because of this,

HpCq.p�1.di/; p�1.di � Int di/IG/ D HpCq.Dp � Fi; Sp�1 � FiIG/
D Hq.FiIG/
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[the last equality follows from Künneth’s formula because Hi.Dp; Sp�1/ D Z if
i D p and is 0 if i ¤ p]. The final result is

E1pq D
M

i
Hq.FiIG/;

which means that elements of E1pq can be written as
P

i aiei, where ai 2 Hq.FiIG/.
However, if the fibration � is homologically simple, we can consider all ai as
belonging to one group, Hq.FIG/. Namely, if B is connected, then there are paths
joining every pair of points of B, each path establishes an isomorphism between
homology groups of fibers over its endpoints, and for a homologically simple
fibration, these isomorphisms do not depend on paths. In an unconnected case,
we obtain in this way only isomorphisms between homologies of fibers within
every component of the base, but we can also arbitrarily choose these isomorphisms
between fibers over points of different components. This completes the construction
of the isomorphism of part (1). To prove part (2), it is sufficient to compare the
description of d1pq in Sect. 21.1 and the definition of the cellular boundary operator
in Sect. 13.4. Part (3) directly follows from part (2).

EXERCISE 1. Generalize the theorem to Serre fibrations.

Thus, for a homologically simple fibration, E2pq D Hp.BIHq.FIG//. In particular,
E2pq D 0 if p < 0 or q < 0. If the base B and the fiber F are connected, then

E2p0 D Hp.BIH0.FIG// D Hp.BIG/;
E20q D H0.BIHq.FIG// D Hq.FIG/:

Also,

E2pq D ŒHp.B/˝ Hq.FIG/�˚ Tor.Hp�1.B/;Hq.GIF//:

If G D Z, then the last equality takes the form

E2pq D ŒE2p0 ˝ E20q�˚ Tor.E2p�1;q;E20;q/;

and the second summand disappears if the homology of the base or of the fiber has
no torsion. Also, if the coefficient domain is a field K, then E2pq D E2p0 ˝K E20q. All
this can be presented on the diagram of the E2-term, which we display in Fig. 80 in
the case when G D Z and the homology of B or F is torsion-free.

Corollary. �.E/ D �.B/�.F/.
Proof. Consider the homological spectral sequence with coefficients in Z and put

�.Er/ D
X

m
.�1/m rank

�M

pCqDm
Er

pq

�

:
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Hp(B) ⊗ Hq(F )

Fig. 80 The E2-term of the spectral sequence of a fibration

From the theorem we have

�.E2/ DPm.�1/m
P

pCqDm rank Hp.B/ rank Hq.F/
DPp;q.�1/p rank Hp.B/.�1/q rank Hq.F/ D �.B/�.F/:

It follows from the Euler–Poincaré lemma (see Sect. 13.7) that �.E2/ D �.E3/ D
: : : D �.E1/. Finally, �.E1/ D �.E/, since rank Hm.E/ DPpCqDm rank E1

pq .

EXERCISE 2. Prove that if the fibration � is trivial, that all the differentials in the
spectral sequence of this fibration beginning from d2 are zero (a spectral sequence
with this property is called degenerate).

Remarks Concerning Exercise 2. (1) A usual way to prove that a spectral sequence
of a fibration (and, actually, any spectral sequence) is degenerate is to show
that every element of E2pq is represented by a genuine cycle of E, not just by
a chain whose boundary has a filtration not exceeding p � 2. But the result
is actually quite expectable. Indeed, according to Exercise 17 in Sect. 15.6,
L

pCqDm Hp.BIHq.F// Š Hm.B � F/, and a similar result holds for homology with
arbitrary coefficients. This shows that if E D B�F, then E2 and E1 have “the same
size,” which makes any nontrivial differential impossible. This informal argument
becomes absolutely rigorous if we consider the case when the coefficient domain is
a field and the homologies of B and F are finite dimensional. The same can be said
in the case when the coefficient domain is Z and the homologies of B and F have no
torsion.

(2) Exercise 2 shows that of fibered spaces with a given base and fiber, the direct
product has “the biggest homology” (because nontrivial differentials make a spectral
sequence “decreasing”).

To finish this section, we remark that all definitions and statements can be
repeated with the obvious modification for cohomology. In particular, in the
cohomological spectral sequence of a (co)homologically simple fibration with a
cellular base,

Epq
2 D Hp.BIHq.FIG//:
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22.2 The Case When the Fibration Is Not Simple

To make this section shorter, we will give many results in the form of exercises.
This does not mean that the proofs are difficult; we are sure that a reader who finds
the subject interesting (and it is interesting indeed) will be able to reconstruct all
missing proofs without much effort.

A: Local Systems

Let X be a topological space. A local system of groups (D an ensemble of groupsD
a locally trivial sheaf) over X is a function which assigns to every point x 2 X a group
Gx and to every path sW I ! X joining x0 with x1 an isomorphism �sWGx0 ! Gx1
which depends only on the homotopy class of the path s and possesses the property
�ss0 D �s0 ı �s. Examples: (1) Gx D �n.X; x/ .n � 1/; �s D s# (see Sects. 6.2, 8.2);
(2) X is the base of a (locally trivial or Serre) fibration pWY ! X, Gx D Hn.p�1.x//,
and �x is an isomorphism constructed in Sect. 22.1 (similar for homology and
cohomology with coefficients).

From now on, we assume the space X path connected; if it is not, a local
system over X is just a collection of independently chosen local systems over path
components of X.

Choose a base point x0 in the base X of a local system fGx; �sg. Then every loop
with the beginning at x0 determines an automorphism of the group Gx0 , and in this
way there arises a group action of the group �1.X; x0/ in Gx0 .

EXERCISE 3. Let fGx; �sg; fG0
x; �

0
sg be two local systems over X. Prove that if there

exists an isomorphism Gx0 Š G0
x0 compatible with the actions of the group�1.X; x0/

described above, then the systems fGx; �sg and fG0
x; �

0
sg are isomorphic (in the

obvious sense).

EXERCISE 4. Show that an arbitrary group G with an arbitrary group action of the
group �1.X; x0/ is a group Gx0 for some local system fGx; �xg with the base X.

These statements create a way to construct a large number of new local systems.
For example, let X be a (connected) homology manifold, G D Z, and an element
˛ of �1.X; x0/ determines the multiplication by 1 or �1 if ˛ preserves or reverses
orientation. The resulting system is denoted as ZT ; it was considered, implicitly, in
Sect. 17.12.

B: Homology and Cohomology with Coefficients
in a Local System

Let G D fGx; �xg be a local system of Abelian groups over X. Denote by cn the center
of the standard n-dimensional simplex �n and by sn;i the straight path in �n from
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cn to the center of the ith .n� 1/-dimensional face of�n. A singular n-dimensional
chain of X with coefficients in G is defined as a (finite) linear combination

P

i gifi,
where fiW�n ! X is a singular simplex and gi 2 Gfi.cn/. The group of all such chains
is denoted as Cn.XIG/, and the boundary operator @ D @nWCn.XIG/! Cn�1.XIG/
is defined by the formula

@.gf / D
n
X

iD0
.�1/i�f ısn;i.g/
if :

The homology arising is denoted as Hn.XIG/; the cohomology Hn.XIG/ is defined
in a similar way.

A different approach to homology and cohomology with coefficients in local
systems exists, similar to that in Sect. 17.12. It works when the space X is “good
enough” in the sense that it has a universal covering �W bX ! X with the deck
transformation group equal to �1.X; x0/ (see Sect. 6.8). Let G D Gx0 . Consider the
subgroup of the group Cn.bXIG/ consisting of those c D P

i gifi (where gi 2 G and
fiW�n ! bX) such that for every ˛ 2 �1.X; x0/, ˛#c D P

i ˛.gi/fi (on the left-hand
side ˛ is regarded as a transformation bX ! bX; on the right-hand side it is regarded
as an automorphism of G). We denote this subgroup as Cn.XIG/ and notice that
@.Cn.XIG// � Cn�1.XIG/ (here @ is the boundary operator in the singular chains
of bX).

EXERCISE 5. Prove that this description of the singular chain complex of X with
coefficients in G is equivalent to the previous definition.

EXERCISE 6. Prove that (for a path connected space X) H0.XIG/ D fg 2 Gx0 j
˛g D g for all ˛ 2 �1.X; x0/ and H0.XIG/ D Gx0=G�

x0 , where G�
x0 is the subgroup

of Gx0 generated by all differences ˛g � g; ˛ 2 �1.X; x0/; g 2 Gx0 .

Homology and cohomology of a CW complex X with the coefficients in a
local system fGxg can be calculated by means of a cellular complex. Namely, an
n-dimensional cellular chain is a finite linear combination

P

i giei, where ei is an
oriented n-dimensional cell of X, and gi 2 Gxi , where xi 2 ei (the groups Gxi for
all points xi 2 ei are canonically isomorphic; we will denote Gxi simply by Gei );
the group of such cellular chains is denoted by Cn.XIG/. The boundary operator
@ D @nW Cn.XIG/! Cn�1.XIG/ acts via the formula

@.ge/ D
X

dim f Dn�1
f \e¤;

�e;f .g/f ;

where the operator �e;f WGe ! Gf is defined in the following way. Choose a
characteristic map hWDn ! X for the cell e (representing the chosen orientation of
e) with the following property. In f , there exists a small ball d (with the center y 2 f )
whose inverse image h�1.d/ is a finite union of balls di 2 Sn�1 such that each di is
mapped onto d homeomorphically; we put "i D ˙1 depending on whether di

h��! d
preserves or reverses orientation. Let c be the center of the ball Dn, ci D h�1.y/\di,



330 3 Spectral Sequences of Fibrations

and let si be the straight path in Dn joining c with ci. We define the homomorphism
�e;f WGh.c/ ! Gy by the formula �e;f .g/ DPi "i�hısi.g/.

EXERCISE 7. Prove that the homologies of the complexes

fCn.XIG/; @ng and fCn.XIG/; @ng
are the same. Make up and prove a similar statement for cohomology.

EXERCISE 8. Let X D RPn; G be an Abelian group and let TWG ! G be an
automorphism with T2 D id. Let the generator of the group �1.RPn/ act in G as T.
Denote by G the local system arising. Prove that the homomorphism

@W Cr.RPnIG/! Cr�1.RPnIG/; 0 < r � n
k k
G G

acts like idCT for r even and like id�T for r odd. Compute the homology
Hr.RPnIG/ in the general case and in the case G D Z;T D � id.

Remark. If n is even, then the last G is nothing but ZT from Sect. 17.12. Observe
Poincaré isomorphism for the nonorientable manifold RPn described in Sect. 17.12.

C: Main Theorem for Nonsimple Fibrations

Theorem.

E2pq D Hp.BI fHq.p
�1.x//g/;

where fHp.p�1//g is the local system described in Example .2/ following the
definition of a local system (see the beginning of Sect. 22.2.A). A similar thing holds
for the homology and cohomology spectral sequences with arbitrary coefficients.

EXERCISE 9. Prove the theorem (a proof is basically the same as that of the theorem
in Sect. 22.1).

EXERCISE 10. Prove that the equality �.E/ D �.B/�.F/ (see the corollary in
Sect. 22.1) also holds for nonsimple fibrations.

D: Obstruction Theory for Nonsimple Spaces and Fibrations

EXERCISE 11. Using cohomology with coefficients in local systems, extend the
obstruction theory (for both continuous maps and sections) to the cases of nonsimple
target space and nonsimple fibrations. Make up a definition of the (integral) Euler
class of nonorientable vector bundles.
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22.3 First Applications

A reader who has the impression (which we do not share) that the material of the
previous section is auxiliary and unnecessary is encouraged to switch on his or
her full attention. We will demonstrate now how even the preliminary information
we have can be used for quite nontrivial computations (although more serious
applications of spectral sequences are still ahead).

A: Homology of the Special Unitary Group SU.n/

As we know, the coset space SU.n/=SU.n�1/ is nothing but the sphere S2n�1. Thus,
there arises a fibration

SU.n/
SU.n�1/�����! S2n�1 .n � 2/

(we follow the tradition of writing the notation for a fiber of a fibration over the
arrow which denotes the projection of this fibration). If n D 2, then the fiber of this
fibration is one point. Hence, SU.2/ D S3 (we know this from Sect. 1.7). Thus, for
n D 3 we obtain a fibration

SU.3/
S3��! S5:

Since we know the (integral) homology of the base and the fiber, we can display a
full diagram of the E2-term of this spectral sequence (Fig. 81).

It is clear from this diagram that no one of the differentials d2; d3; d4; : : : (some
of them are shown in the diagram) connects two nonzero groups. Thus, E1 D E2.
Moreover, for every n, there is at most one nonzero group E1

pq with pC q D n. This
implies a full result for the homology of SU.3/:
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Fig. 81 The E2-term for the fibration SU.3/
S3��! S5
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Fig. 82 The E2-term for the fibration SU.4/
SU.3/��! S7

Hn.SU.3// D
�

Z for n D 0; 3; 5; 8;
0 for all other n:

Consider now the spectral sequence of the fibration SU.4/
SU.3/��! S7. The diagram

of the E2-term is shown in Fig. 82.
The same arguments as before (they are usually called “dimension arguments”)

work, the differentials d2; d3; d4; : : : are all trivial, E1 D E2, and we find that

Hn.SU.4// D
�

Z for n D 0; 3; 5; 7; 8; 10; 12; 15;
0 for all other n:

At this point the hope that we can proceed with the dimension arguments and show
that E1 D E2 for spectral sequences of all our fibrations arises. However, it turns
out that the case n D 4 is the last case when the dimension arguments (and at the
moment we have no other arguments) are sufficient for computing the homology of
SU.n/. Indeed, let us consider the initial term of the spectral sequence of the next

fibration, SU.5/
SU.4/��! S9 , shown in Fig. 83.

The dimension arguments show that in this spectral sequence E2 D : : : D E9 and
E10 D : : : D E1. However, the transition from E9 to E10 involves two potentially
nonzero differentials, d99;0WZ ! Z and d99;7WZ ! Z (shown by arrows in our
diagram). Actually, these differentials are trivial, and so are all the differentials of
all the spectral sequences of the fibrations considered. But at the moment we have
no means to prove this; we will do so in Lecture 24, where we will show that

Hr.SU.n// Š Hr.S
3 � S5 � : : : � S2n�1/:
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Fig. 83 The E2-term for the fibration SU.5/
SU.4/��! S9

[Notice that if n � 3, then the spaces SU.n/ and S3 � S5 � : : : � S2n�1 are not
homeomorphic: They have different groups �4. The reader can try to prove this, but
it is better to postpone this until the next chapter.]

B: Homology of Loop Spaces

Theorem. Let X be a topological space (with a base point), and let the space X be
.n � 1/-connected, that is,

�0.X/ D �1.X/ D : : : D �n�1.X/ D 0:

Then

Hr.X/ Š Hr�1.�X/ for r � 2n� 2;

and a similar isomorphism holds for homology and cohomology with arbitrary
coefficients.
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homology
of X

homology
of ΩX

dr
r,0

dn
2n,0

dn
n,n−1

zeroes
zeroes

zeroes

Z

0
0

n r 2n

n − 1

r − 1

2n − 2

Fig. 84 The spectral sequence of the fibration EX
�X��! X

Proof. We can restrict ourselves to the case when X is a CW complex; the transition
to the general case (which actually is not very important) may be based on the results
of Sects. 11.6 and 14.1.

Consider the spectral sequence of the fibration EX
�X��!X from Example 2 in

Sect. 9.4: EX is the space of paths beginning at the base point of X (we will
constantly use this fibration in the future). Since the space EX is contractible, in
E1 everything is trivial with the exception of E1

00 D Z. By Hurewicz’s theorem,
H1.X/ D : : : D Hn�1.X/ D 0, and hence there is nothing but zeroes in the
vertical strip in E2 formed by the 1st to .n � 1/st columns. Furthermore, since
�i.�X/ Š �iC1.X/ (see Exercise 11 in Sect. 9.9), we also have H1.�X/ D : : : D
Hn�2.�X/ D 0, and the horizontal strip in E2 formed by the 1st to .n�2/nd rows are
also filled with zeroes. A diagram for the E2-term (with some future differentials) is
shown in Fig. 84.

The corner cell contains the group E2n;n�1. The only potentially nonzero differen-
tial from this cell is directed to the .2n � 2/nd cell of the zeroth column; the only
differential directed to this cell comes from the 2nth cell in the zeroth row. Thus, the
groups below the .2n � 2/nd cell in the zeroth column and the groups to the left of
the 2nth cell of the zeroth row can be annihilated only by differentials acting from
the zeroth row to the zeroth column (and they must be annihilated since the E1-
term is zero). This shows that (actually, for all r) the differential dr

r;0WEr
r;0 ! Er

0;r�1
must be an isomorphism, and if r � 2n � 2, then this isomorphism connects the
groups Er

r;0 D E2r;0 D Hr.X/ and Er
0;r�1 D E20;r�1 D Hr�1.�X/, which are, thus,

isomorphic. This completes the proof.
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Remark. This proof actually provides for r � 2n � 2, a canonical isomorphism
.dr

r;0/
�1WHr�1.�X/ ! Hr.X/. For r D 2n � 1, our arguments fail only because

of the differential dn
n;n�1WEn

n;n�1 ! En
0;2n�2, so we have an isomorphism d2n�1

2n�1;0 of
E2n�1
2n�1;0 D E22n�1;0 D H2n�1.X/ onto the quotient of E20;2n�2 D H2n�2.�X/ over the

image of dn
n;n�1. This gives us the right to consider .d2n�1

2n�1;0/�1 as an epimorphism
H2n�2.�X/! H2n�1.X/.

We will prove in the next lecture that this isomorphism and this epimorphism are
actually induced by a certain continuous map, namely, by the map �.X/W†�X ! X
acting by the formula �X.s; t/ D s.t/ (where s 2 �X and t 2 I): The isomorphism
and the epimorphism can be described as

Hr�1.�X/
†�1

��!Hr.†�X/
.�X/���!Hr.X/:

We take the liberty of using this statement right now, before proving it.

C: A Generalization of Freudenthal’s Theorem

In Sect. 10.1, we proved Freudenthal’s theorem, which states that the suspension
homomorphism �r.Sn/ ! �rC1.SnC1 is an isomorphism for r � 2n � 2 and an
epimorphism for r D 2n � 1. In that section we promised to prove later a similar
statement where Sn is replaced by an arbitrary .n � 1/-connected CW complex. We
are going to do that now.

Theorem. Let X be an .n � 1/-connected CW complex. Then the suspension
homomorphism †W�r.X/ ! �rC1.†X/ is an isomorphism if r � 2n � 2 and is
an epimorphism if r D 2n� 1.

Proof. In this proof, it will be convenient to use the base point version of the
definition of the suspension (with the segment x0 � I contracted to a point). Besides
the map �X defined above (that definition works for the base point suspension), we
will consider the map �X WX ! �†X; Œ�X.x/�.t/ D .x; t/ [recall that the vertices of
the suspension, .x; 0/ and .x; 1/, are identified]. Obviously,

†X
†�X��!†�†X

�†X��!†X

is the identity, id†X . According to the result of the preceding subsection, Sect. B (the
statement whose proof was postponed to Lecture 23), �†X induces an isomorphism
in homology of dimensions� 2n [if X is .n�1/-connected, then†X is n-connected];
hence, †�X induces an isomorphism in homology of dimensions � 2n, and �X
induces an isomorphism in homology of dimensions� 2n�1 [the homomorphisms
.†�X/� and .�X/� are the same up to a dimension shift by 1]. By Whitehead’s
theorem (Sect. 14.5), �X induces isomorphisms in homotopy groups of dimensions
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� 2n � 2 and an epimorphism in homotopy groups of dimension 2n � 1. Finally,
consider the homomorphism

�r.X/
.�X/���!�r.�†X/ Š �rC1.†X/

(where the last isomorphism arises from the homotopy sequence of the fibration
EY

�Y��! Y; Y D †X; see Example 2 in Sect. 9.4).

Lemma. This homomorphism is just †W�r.X/! �rC1.†X/.

This is proved by a direct comparison of the definitions. We leave the details to
the reader.

Remark 1. The proof given above does not use Freudenthal’s theorem as given in
Sect. 10.1. Thus, in particular, we get a new proof of that theorem.

Remark 2. The last results may serve as one more illustration of the Eckmann–Hilton
duality described in Lecture 4. The operations� and † are dual to each other. The
spaces X and †X have equal (co)homology groups (with a dimension shift by 1);
their homotopy groups are the same in “stable dimensions,” that is, in dimensions
less than twice the connectivity of X. On the other hand, X and �X have the same
homotopy groups (again, with a dimension shift), while their (co)homology groups
are the same in stable dimensions.

Lecture 23 Additional Properties of Spectral Sequences
of Fibrations

23.1 Continuous Maps and Homomorphisms
of Spectral Sequences

For simplicity, we begin with the case of homology with coefficients in Z. The
cases of homology and cohomology with arbitrary coefficients are absolutely similar
and do not even deserve separate consideration. Without saying this explicitly, we
assume below throughout this lecture that the fibrations considered are homologi-
cally simple and their bases and fibers are path connected. (The reader will decide
at every occasion whether this is really necessary.)

Let

; D X�1 � X0 � X1 � : : : � X; ; D X0�1 � X0
0 � X0

1 � : : : � X0

be two spaces with filtrations. For the corresponding spectral sequences, we will use
the notations Er

pq; d
r
pq and 0Er

pq;
0dr

pq. Let f WX ! X0 be a continuous map such that
f .Xp/ � X0

p for every p. Such map induces, for all r, homomorphisms f#WCr.X/ !
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Cr.X0/ compatible with boundary operations and filtrations; it also induces, for all
r; p; q (including r D 1), homomorphisms

f� D .f�/rpqWEr
pq ! 0Er

pq

commuting with the differentials:

0dr
pq ı .f�/rpq D .f�/rp�r;qCr�1 ı dr

pq:

These homomorphisms are compatible with the statements of the Leray proposi-
tion in the best possible way:

(1) .f�/1pqWE1pq ! 0E1pq is the same as

f�WHpCq.Xp;Xp�1/! HpCq.X
0
p;X

0
p�1/:

(2) The homomorphism .f�/rC1
pq is the homology homomorphism induced by the

homomorphism .f�/rpq (compatible with the differentials d and 0d).
(3) The map .f�/1WLpCqDm E1

pq ! L

pCqDm
0E1

pq is induced by the map
f�WHm.X/! Hm.X0/.

The proof of this is obvious.
All these properties of homomorphisms .fast/rpq are briefly expressed in these

words: f.f�/rpqg is a homomorphism of the spectral sequence fEr
pq; d

r
pqg into the

spectral sequence f0Er
pq;

0dr
pqg (see Fig. 85).

Mark one obvious but important property of homomorphisms of spectral
sequences: If for some r, the homomorphism Er ! 0Er belonging to a
homomorphism between spectral sequences is an isomorphism, then so are all
homomorphisms Es ! 0Es with s > r (including s D 1). Moreover, if two
homomorphisms between two spectral sequences coincide on Er for some r, then
they coincide on Es for all s > r.

MAIN EXAMPLE. Let .E;B;F; p/ and .E0;B0;F0; p0/ be two homologically simple
fibrations with connected CW bases B;B0, and let f WE ! E0 be a fiberwise

(f∗)r
pq

dr
pq

dr
pq

Er Er

Fig. 85 Homomorphism between spectral sequences
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continuous map. The latter means that there exists a continuous map gWB ! B0
such that the diagram

E
f��! E0

?

?

?

?

y

p

?

?

?

?

y

p0

B
g��! B0

is commutative. For every point x 2 B, the map f induces a map h of the fiber
p�1.x/ into the fiber .p0/�1.g.x//, which, because of the homological simplicity,
induces homomorphisms h�WHq.F/! Hq.F0/ not depending on the choice of x.

By the cellular approximation theorem, the map g is homotopic to a cellular
map, and by the covering homotopy property, this homotopy (rather the homotopy
of p ı g) may be lifted to a homotopy of the map f . The new map f is compatible
with the filtrations in E and E0, and we can assume that the maps f and g had these
properties from the very beginning. Then a homomorphism f� arises between the
spectral sequences of the two fibrations.

Proposition. (1) The homomorphism .f�/2pqWHp.BIHq.F// ! Hp.B0IHq.F0//
coincides with the homomorphism induced by the maps g and h.

(2) For r � 2 (including r D 1), the homomorphisms .f�/rpq do not depend on the
choices of the cellular approximation of g and the mapping f compatible with
filtrations.

Proof of Part (1) The proof of part (1) is left to the reader (who will need to use
the details of the construction of the isomorphism E2pq Š Hp.BIHq.F//); part (2)
follows from part (1) in view of the preceding remark.

Corollary. Starting from the E2-term, the spectral sequence of a fibration does not
depend on the CW structure of the base.

Proof. If two fibrations differ only by a CW structure of the base B, we can apply
the proposition to a (possibly noncellular, but continuous) map idB.

Everything said in this section has obvious analogs for homology and coho-
mology with coefficients in an arbitrary Abelian group. The consideration of
homologically nonsimple fibrations here and further in this lecture is left to the
reader.

23.2 Zeroth Row and Zeroth Column

One can obtain important corollaries from the result of the previous section by
applying them to simplest maps between fibrations, namely, to the maps
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and
E B F E

B B pt B

...................................................................................................................................
...............
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...................................................................................................................................
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...............
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...............

p id p

....................................................................................................................... ................................ ....................................................................................................................... ................................

....................................................................................................................... ................................ ....................................................................................................................... ................................

p

id

⊂

∈

At the E2-level, the induced homomorphisms of spectral sequences are schemat-
ically shown in Fig. 86.

The E2-term of the fibration B
pt��!B, as well as all the subsequent terms,

consists of one (zeroth) row which contains homology of B. The homomorphism
f 2� is the identity on this row and is trivial on the remaining (shadowed) part
of E2. Similarly, for the fibration F

F��! pt, every term starting from E2 consists
of one (zeroth) column which contains homology of F, and homomorphism f 2� is an
isomorphism on this column and zero elsewhere. Since all the differentials (of the
homological spectral sequence) directed at the groups in the zeroth row, as well as
all the differentials from the groups in the zeroth column, are trivial (see Fig. 87), the
groups Er

m0 and Er
0m are, correspondingly, chains of subgroups and quotient groups:

E2p0 
 E3p0 
 E4p0 
 : : : 
 E1
p0 I

E20q

Im d��!E30q

Im d��!E40q

Im d��! : : : ��!E1
0q :

There arise a monomorphism and an epimorphism

E1
p0 ! E2p0 and E20q ! E1

0q :

On the other hand, E1
0q is a subgroup of the group Hq.E/, and E1

p0 is a quotient group
of the group Hp.E/. Consider composed homomorphisms

Hq.F/ D H0.BIHq.F// D E20q ! E1
0q � Hq.E/;

Hp.E/! E1
p0 � E2p0 D Hp.BIH0.F// D Hp.B/:

Proposition. These homomorphisms coincide with the homology homomorphisms
induced by the inclusion F ! E and the projection E! B.

homology of B homology of B

homology of F

zeroes
zeroes

f2
∗ f2

∗
and

Fig. 86 The homomorphisms between the E2-terms
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0

0

E2
p0 = Hp(B)

E2
0q = Hq(F )

Fig. 87 Differentials at the zeroth row and the zeroth column

Indeed, these homomorphisms coincide with the homology maps induced by the
maps between the fibered spaces described in the beginning of this section.

Precisely the same statements hold for homology groups with coefficients in an
arbitrary Abelian group. In the cohomology case they take the following form. The
spectral sequence provides a monomorphism and an epimorphism

E0q1 ! E0q
2 and Ep0

2 ! Ep01:

On the other hand, Ep01 is a subgroup of Hp.EIG/ and Eq01 is a quotient group of
Hq.EIG/. There arise compositions

Hp.BIG/ D Hp.BIH0.FIG// D Ep0
2 ! Ep01 � Hp.EIG/;

Hq.EIG/! E0q1 � E0q
2 D H0.BIHq.FIG// D Hq.FIG/:

Proposition. These homomorphisms coincide with the cohomology homomor-
phisms induced by the projection E! B and the inclusion F ! E.

23.3 Transgression

Consider differentials

dm
m0WEm

m0 ! Em
0;m�1 and d0;m�1

m WE0;m�1
m ! Em0

m

of the homological and cohomological spectral sequences of a homologically simple
fibration .E;B;F; p/ with connected B and F. As we noticed before, Em

m0 and E0;m�1
m

are subgroups of Hm.EIG/ and Hm�1.EIG/, while Em
0;m�1 and Em0

m are quotients of
groups Hm�1.FIG/ and Hm.EIG/. Hence, our differentials have the form
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Subgroup
of Hm−1(F )

Quotient
of Hm(B)

E0,m−1
m

d0,m−1
m

Em0
m

Subgroup

of Hm−1(F )
Quotient

of Hm(B)

0,m−1
m

d0,m−1
m

Em0
m

Em
0,m−1

dm
m0

Em
m0

Fig. 88 Transgression

If A;B are Abelian groups, then a homomorphism of a subgroup of A into
the quotient of B is called a partial multivalued homomorphism of A into B.
For partial multivalued homomorphisms A ! B we will sometimes use the

notation A
hÜB. Notice that partial multivalued homomorphisms always have

“inverses”: For a partial multivalued homomorphism A 
 C
f��!B=D, its inverse

is B=p�1 Im f
f �1

��!C=Ker f � A=Ker f (where p is the projection B ! B=D). In
particular, the inverse to a usual homomorphism f WA! B is the partial multivalued
homomorphism f �1W Im f ! A=Ker f .

Thus, our differentials are partial multivalued homomorphisms

Hm.BIG/Ü Hm�1.FIG/ and Hm�1.FIG/Ü Hm.BIG/:

These homomorphisms are called, respectively, homological and cohomological
transgression (see Fig. 88).

Elements of the domain of transgression are called transgressive. As far as we
know, this term is used only in the cohomology case.

Theorem. Homological and cohomological transgressions coincide, respectively,
with the following compositions:

Hm.BIG/ D Hm.B; ptIG/ .p�/
�1

Ü Hm.E;FIG/ @���!Hm�1.FIG/;
Hm�1.FIG/ ı�

��!Hm.E;FIG/ .p
�/�1

Ü Hm.B; ptIG/ D Hm.BIG/:

Proof. We will consider only the case of homology and of G D Z; all other cases
are similar. We can assume that B has only one zero-dimensional cell. Elements
of the group Em

m0 are represented by chains c 2 Cm.p�1Bm/ � Cm.E/ whose
boundaries belong to Cm�1.p�1.B0// D Cm�1.F/, that is, by relative cycles of the
pair .p�1.Bm/;F/. The identification of Em

m0 with a subgroup of the group Hm.B/ is
done by the map which assigns to the class of c the homology class of the cycle
p#.c/ of B. The differential dm

m0 takes this element of Em
m0 into the element of Em

0;m�1
represented by the cycle @c 2 Cm�1.F/. This is our statement.
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23.4 Application: Three Exact Sequences

In Sect. 21.3, we encountered a situation when the information contained in a
spectral sequence may be presented by an exact sequence. We will demonstrate
in this section three more exact sequences which are equivalent to (or, at least, can
be derived from) a certain spectral sequence of a fibration. Notice that at least two of
these exact sequences had been discovered before the method of spectral sequences
appeared in algebraic topology.

A: Gysin’s Sequence

Let .E;B; Sn; p/ be a homologically simple fibration with a spherical fiber (the
condition of homological simplicity is equivalent to the condition of orientability:
The fibers p�1.x/ have orientations continuously depending on x 2 B). The E2-term
of the homological spectral sequence of this filtration consists of two identical
rows containing the homology of B (Fig. 89). Potentially nontrivial differentials
are dnC1

m0 WEnC1
m0 ! EnC1

m�n�1;n, that is, Hm.B/! Hm�n�1.B/.
For every m, there are (at most) two nonzero groups E1

pq with pC q D m: E1
m0 D

Ker dnC1
m0 and E1

m�n;n D Coker dnC1
mC1;0; the second one is a subgroup of Hm.E/, while

the first one is the corresponding quotient group. This can be written as a short exact
sequence,

0! Coker dnC1
mC1;0 ! Hm.E/! Ker dnC1

m0 ! 0;

which is the same as a five-term exact sequence

HmC1.B/
dnC1

mC1;0��!Hm�n.B/��!Hm.E/��!Hm.B/
dnC1

m0��!Hm�n�1.B/:

Hm(B)

Hm−n−1(B)

dn+1
m0

p + q = m

p + q = m − 1

Fig. 89 Spectral sequence of a fibration with a spherical fiber
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These five-term fragments may be merged into one infinite exact sequence,

: : :
p���!HmC1.B/

d��!Hm�n.B/
`��!Hm.E/

p���!Hm.B/
d��! : : :

which is called the (homological) Gysin sequence. A similar sequence exists for
homology with arbitrary coefficients.

EXERCISE 1. Prove that in the Gysin sequence, the homomorphism p� is induced
by the projection p (essentially, this is contained in the proposition of Sect. 23.2),
the map ` (“lifting”) assigns to a homology class of a cycle in B the homology cycle
of its inverse image in E (in the smooth situation, when E and B are manifolds and p
is smooth, this is pŠ), and the map d is the_-product with the primary characteristic
class C 2 HnC1.BI�n.Sn// D HnC1.BIZ/ (see Sect. 18.5; it may be reasonable to
postpone proving the last statement until Sect. 23.5 or the next lecture).

The cohomological Gysin sequence is defined in a similar way. It looks like this:

: : :
p� ��HmC1.BIG/ d ��Hm�n.BIG/

`��!Hm.EIG/ p�

 ��Hm.BIG/ d �� : : : :

EXERCISE 2. Prove that in the cohomological Gysin sequence, the homomorphism
p� is induced by the projection p, the map ` is p

Š
) in the smooth situation, and the

map d is the ^-product with C 2 HnC1.BIZ/.

B: Wang’s Sequence

Let � D .E; Sn;F; p/ be a fibration with a spherical base. (If n � 2, this fibration
is automatically homologically simple; if n D 1, then we need to assume that
the fibration is homologically simple, but in this case, the construction presented
here requires some clarification.) The E2-term of the homological spectral sequence
consists of two identical columns, zeroth and nth; each contains homology of F. The
groups in these columns are connected with differentials dn (see Fig. 90).

Precisely as in Gysin’s case, we get a short exact sequence

0! Coker dn
n;m�nC1 ! Hm.E/! Ker dn

n;m�n ! 0

and then develop it into a long exact sequence

: : :
r��!Hm�nC1.F/

d��!Hm.F/
i���!Hm.E/

r��!Hm�n.F/
d��! : : : :

This is the homological Wang sequence. There is also the cohomological Wang
sequence, which is constructed similarly and has the following form:

: : :
r ��Hm�nC1.FIG/ d ��Hm.FIG/

i� ��Hm.EIG/ r ��Hm�n.FIG/ d �� : : :
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Hm(F )

Hm−n+1(F )
dn

n,m−n+1

p + q = m

p + q = m + 1

0 n

Fig. 90 Spectral sequence of a fibration with a spherical base

(it goes without saying that in the homological case we can also insert into all
homology groups of Wang’s sequence an arbitrary coefficient group G).

EXERCISE 3. Prove the following interpretation of the homomorphisms of the
homological Wang sequence. The map i� is just i�, where i is the inclusion map
F ! E. The operation r can be described as the “intersection” of a cycle of E with
F; in the smooth situation, r can be described as i

Š
. To obtain a geometric description

for d, consider the map hWDn ! Dn=Sn�1 D Sn (this map can be described as a
characteristic map for the n-dimensional cell of Sn). The fibration h�� with base Dn

must be trivial. Thus, the canonical map h�� ! � provides a map Dn � F ! E
which covers h. In particular, it restricts to the map ehW Sn�1 � F ! F, and d is
˛ 7�!eh�.ŒSn�1� � ˛/ (you need to prove this).

EXERCISE 4. State and prove all the similar facts for the cohomological Wang
sequence.

C: Serre’s Sequence

Let us suppose now that the fibration .E;B;F; p/ with a cellular base B has an
additional property: For some n,

�0.B/ D �1.B/ D : : : D �n�1.B/ D 0;
�0.F/ D �1.F/ D : : : D �n�2.F/ D 0:

Then the E2-term of the homological spectral sequence has the form familiar to us
from Sect. 22.3.B (see Fig. 91).

Since E2pq D 0 for p < n and for q < n � 1 (with the exception of E200 D Z), the
same is true of E1

pq , and, for m < 2n � 1, there is an exact sequence

0! E1
0m ! Hm.E/! E1

m0 ! 0:
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homology
of B

homology
of F

dm
m,0

d2n−1
2n−1,0

dn
2n,0

dn
n,n−1

zeroes
zeroes

zeroes

Z

0
0

Hn(B) Hm(B)
H2n−1(B)

H2n(B)

Hn−1(F )

Hm−1(F )

H2n−2(F )

p + q
= m

Fig. 91 The spectral sequence which implies the Serre exact sequence

But for m � 2n � 2, E1
m0 D KerŒdm

m;0WHm.B/ ! Hm�1.F/� and for m � 2n � 3,
E1
0m D CokerŒdmC1

mC1;0WHmC1.B/ ! Hm.F/�, which shows that for m � 2n � 3 the
short exact sequence above is equivalent to a five-term exact sequence

HmC1.B/! Hm.F/! Hm.E/! Hm.B/! Hm�1.F/:

In addition, E1
0;2n�2 is a quotient of H2n�2.F/ (which is factorized successively over

the images of two differentials). All this leads to the following long exact sequence
(the homomorphisms involved are known to us: They are p�, i�, where i is the
inclusion map F ! E, and the transgression � , which is, within this sequence, a
genuine, not partial and multivalued, homomorphism):

H2n�2.F/
i���!H2n�2.E/

p���!H2n�2.B/
���!H2n�3.F/

i���!
: : :

p���!Hn.B/
���!Hn�1.F/

i���!Hn�1.E/! 0:

This exact sequence is called the Serre exact sequence. It has a strong resemblance
to the homotopy sequence of the same fibration, but unlike the homotopy sequence,
it is finite (exists only in the “stable” dimensions).
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EXERCISE 5. Prove that for n � 1 � m � 2n� 2, the diagram

�m.F/
i���! �m.E/

p���! �m.B/
@��! �m�1.F/

?

?

?

?

y

h

?

?

?

?

y

h

?

?

?

?

y

h

?

?

?

?

y

h

Hm.F/
i���! Hm.E/

p���! Hm.B/
���! Hm�1.F/;

formed by homotopy and Serre sequences and Hurewicz homomorphisms, is
commutative.

If the homology of E is trivial (at least up to the dimension 2n � 2), the Serre
exact sequence implies isomorphisms between homologies of B and F with a shift
of dimensions by 1; we already observed this phenomenon in Sect. 22.3.B. It should
also be noted that the Serre sequence admits the transition to the homology with
coefficients in an arbitrary Abelian group G and also has the following cohomology
version:

H2n�2.FIG/ i� ��H2n�2.EIG/ p�

 ��H2n�2.BIG/ � ��
H2n�3.FIG/ i� �� : : : p�

 ��Hn.BIG/ � ��
Hn�1.FIG/ i� ��Hn�1.E/ 0:

We conclude this section by proving a statement whose proof was promised in
Sec. 22.3.B (and which was used in Sect. 22.3.C in the proof of a generalization of
Freudenthal’s theorem). Here we will prove an even stronger statement.

Proposition. Transgression Hm.XIG/ Ü Hm�1.�XIG/ is, for every m, a partial
multivalued homomorphism inverse to the homomorphism

Hm�1.�XIG/ †��!Hm.†�XIG/ .�X/���!Hm.XIG/:

Proof. Consider an auxiliary map 'WC�X ! EX (where C denotes the cone) which
assigns to a loop sW I ! X and a number t 2 I the “shortened loop” u 7! s.tu/. (This
map illustrates the fact that the fiber �X is contractible in EX.) In addition to that,
we consider the map � 0

X WC�X ! X defined (like �X) by the formula .s; t/ 7! s.t/
and form a diagram
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(we skip the notations for the coefficient group). Since the diagram is commutative,
we see that the homomorphism .�X/� ı †WHm�1.�X/ ! Hm.X/ is inverse to the
transgression @� ı .p�/�1WHm.X/! Hm�1.�X/; this is precisely what we need.

D: An Application of the Serre Sequence: A Factorization
Theorem for Relative Homotopy Groups

We know from Chap. 2 that relative homology groups, at least, for “good pairs,” can
be interpreted as absolute homology groups of the “quotient space”: Hq.X;A/ Š
eHq.X=A/; the isomorphism is induced by the projection map .X;A/ ! .X=A; pt/.
However, there is no similar result for homotopy groups. Now, we can state that the
factorization theorem for homotopy groups holds in “stable dimensions”; that is, the
following holds.

Proposition. Suppose that for a CW pair .X;A/, the homotopy groups �r.X/; �r.A/
are trivial for r < n. Then the homomorphism

�q.X;A/! �q.X=A/

is an isomorphism for q < 2n � 2 and is an epimorphism for q D 2n� 2.

Proof. Recall that the inclusion map iWA ! X is homotopy equivalent to a (Serre)
fibration pWeA ! X (this was done in a more general form in Sect. 9.7). The
construction runs as follows. eA is the space of paths sW I ! X with s.0/ 2 A.
The homotopy equivalenceeA ! A is established by the map s 7! s.0/. The map
pWeA ! X is defined by the formula p.s/ D s.1/; this map pWeA ! X is a Serre
fibration. The fiber F of this fibration is the space of paths s with s.0/ being a fixed
point a 2 X; we assume below that a 2 A � X. It follows from the homotopy
sequence of this fibration that �r.F/ D 0 for r < n � 1.

Now notice that the projection X ! X=A takes every path from F into a loop of
X=A, which yields a map F ! �.X=A/, or, equivalently, †F ! X=A. This map
induces homomorphisms Hq�1.F/ ! Hq.X=A/. Consider a diagram composed of
the homological sequence of the pair .X;A/, the Serre sequence of the fibration
pWeA ! X, and the homomorphism constructed above (plus a bunch of the identity
homomorphisms):

Hq.A/! Hq.X/! Hq.X=A/! Hq�1.A/! Hq�1.X/
k k " k k

Hq.A/! Hq.X/! Hq�1.F/ ! Hq�1.A/! Hq�1.X/:

It is important to notice that the bottom sequence, and hence the whole diagram,
exists only in stable dimensions.

A direct checking (which we leave to the reader) shows that this diagram is
commutative. Then the five-lemma shows that the middle vertical homomorphism
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is an isomorphism. Hence, our map †F ! X=A induces, in stable dimensions, a
homology isomorphism, and, according to Whitehead’s theorem, it also induces,
in the same dimensions, a homotopy group isomorphism. This is equivalent to our
statement (we leave to the reader details related to the boundary case q D 2n � 2).

23.5 Transgression and the Characteristic Class

Let � D .E;B;F; p/ be a homologically simple fibration, and let � D �n.F/ be
the first nontrivial homotopy group of F. We suppose that n � 2 or, at least,
that the group � is Abelian. In Hn.FI�/, there is the fundamental class c.F/ (it
would be awkward to use a more traditional notation FF for this class), which
can be described as the cohomology class whose value on the homology class
corresponding to an ˛ 2 �n.X/ is ˛ [we can write hcF; h.˛/i D ˛, where h is
the Hurewicz homomorphism], or cF is the characteristic class of the path fibration

EX
�X��!X: (This class was considered in Sect. 18.3 and Exercise 9 in Sect. 18.5.)

EXERCISE 6. Prove that the image of cF with respect to the (cohomological)
transgression equals the characteristic class C� of the fibration �. [Hint: We need
to prove that the fundamental class and the characteristic class have the same image
under the homomorphisms

These images are equal, actually, to the first [.n C 1/-dimensional] obstruction to
extending the map idWF ! F to a map E! F.]

EXERCISE 7. Extend the result of Exercise 6 to homologically nonsimple
fibrations.

Lecture 24 A Multiplicative Structure in a Cohomological
Spectral Sequence

Up to now, we have alternated between considering homological and cohomological
cases and did not see any significant difference between them. We have usually
discussed the homological case in detail and for the cohomological case only
pointed out the changes needed. However, the experience of the previous chapter
shows that cohomology has a serious advantage over homology, because of the
multiplicative structure (and some other structures, which we will consider in the
next chapter). In this lecture, we will furnish cohomological spectral sequences with
a multiplication.
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24.1 Main Results: The Multiplicative Structure
and Its Properties

Assume that the coefficient domain G is a ring, such as Z, or a field. We will
construct for every term Er (starting with r D 2) of the cohomological spectral
sequence of a fibration .E;B;F; p/ (with a CW base) a multiplication with the
following properties.

(1) The multiplication is bihomogeneous; that is, if ˛ 2 Epq
r and ˇ 2 Ep0q0

r , then
˛ˇ 2 EpCp0;qCq0

r .
(2) The differentials satisfy the product rule: If ˛ 2 Epq

r ; ˇ 2 Ep0q0

r , then

dpCp;qCq0

r .˛ˇ/ D .dpq
r ˛/ˇ C .�1/pCq˛.dp0q0

r ˇ/:

(3) The multiplication in ErC1 is induced by the multiplication in Er: If ˛; ˇ 2 ErC1
are represented by dr-cycles a; b 2 Er, then ˛ˇ is represented by the dr-cycle ab.

(4) The multiplication in E2 coincides with the multiplication in the cohomology of
B with the coefficients in the cohomology ring of F. (This statement concerns
the homologically simple case; in the case of homologically nonsimple fibra-
tion, it should involve a multiplication in the cohomology with coefficients in
local systems; we leave the details to the reader.)

(5) The multiplication in E1 is adjoint to the multiplication in H�.EIG/ in the
following sense. If a 2 FpHm.EIG/ and b 2 FqHn.EI G/, then ab 2
FpCqHmCn.EIG/, and if the elements ˛ 2 Ep;m�p1 ; ˇ 2 Eq;n�q1 , and � 2
EpCq;mCn�p�q1 are represented by a; b, and ab, then � D ˛ˇ.

In connection with statement (5), we will introduce an algebraic notion which
will also be useful in the future. Let A be a ring (not necessarily unitary), and let

A D F�1 
 F0A 
 F1A 
 : : : 
 FnA 
 FnC1A D 0

be a filtration of the Abelian group A. This filtration is called multiplicative if
.FpA/.FqA/ � FpCqA for all p and q. The group Gr A D L

.FpA=FpC1A/ adjoint
to A with respect to the multiplicative filtration as above has a natural structure of
a graded ring: If ˛ 2 FpA=FpC1A and ˇ 2 FqA=FqC1A and a 2 FpA; b 2 FqA
are representative of ˛ and ˇ, then ab 2 FpCqA represents some element of
FpCqA=FpCqC1A, and we take this element for ˛ˇ; it is obvious that this ˛ˇ does
not depend on the choice of a and b in ˛ and ˇ.

Notice that while the difference between Abelian groups G and Gr G in many
respects may be regarded as insignificant, this is not the case for the rings A and
Gr A: The multiplication in Gr A is far less rich than the multiplication in A. For
example, if the multiplication in Gr A is trivial (the product of any two elements
is zero), then for A this means only that .FpA/.FqA/ � FpCqC1A; shift by 1 the
filtration in any ring, and you will obtain a ring with this property. On the contrary,
any statement showing a nontriviality of the multiplication in Gr A implies, as a rule,
a similar statement for A. Here is an example.
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EXERCISE 1. Prove that if Gr A has no zero divisors, then A has no zero divisors.

There is another statement of this kind which will be useful later.

Proposition. Let A be a ring or an algebra over some field possessing a finite
.FnC1A D 0/ multiplicative filtration, and let fxig be a system of (multiplicative)
generators of Gr A with xi 2 Fpi A=FpiC1A. Further, letexi be a representative of xi in
FpiA � A. Then fexig is a system of generators of A.

Proof. Let y 2 FpA � A, and let x 2 FpA=FpC1A be the class of y. Then x D P.xi/

is a polynomial (with coefficients in Z or in the ground field) in the generators xi.
The same polynomial inexi differs from y by an element of a higher filtration: z D
y � P.exi/ 2 FpC1A. Apply the same construction to z, and we will get a polynomial
Q.exi/ such that z�Q.exi/ 2 FpC2A, so y�P.exi/�Q.exi/ 2 FpC2A. Proceeding in the
same way, we obtain a polynomial inexi whose difference with y belongs to FnC1A,
that is, equals 0.

24.2 The Construction of the Multiplication

We begin with a general algebraic construction in which a spectral sequence turns
out to be multiplicative. Let A be a filtered differential graded ring; that is, the
additive group of A is furnished by mutually compatible filtration fFpAg, grading
A D L

r Ar, and a differential dWA ! A of degree C1, and, in addition to
the compatibility, the filtration is multiplicative, the grading is also multiplicative
(ArAs � ArCs), and the differential satisfies the product rule [d.ab/ D .da/b C
.�1/ra.db/ for a 2 Ar; b 2 A]. In this situation, there is multiplication in the
spectral sequence which satisfies conditions (1)–(3) above and also condition (5)
with Hn.EIG/ replaced by the cohomology of A.

Let

˛ 2 Epq
r

D FpApCq \ d�1.FpCrApCqC1/
ŒFpC1ApCq \ d�1.FpCrApCqC1/�C ŒFpApCq \ d.Fp�rC1ApCq�1/�

and ˇ 2 Ep0q0

r . Choose representative a 2 ˛; b 2 ˇ; thus,

a 2 FpApCq; da 2 FpCrApCqC1; and b 2 Fp0

Ap0Cq0

; db 2 Fp0CrAp0Cq0C1:

Then

ab 2 FpCp0

ApCqCp0Cq0

;

.da/b 2 FpCp0CrApCp0CqCq0C1; a.db/ 2 FpCp0CrApCp0CqCq0C1I
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hence, d.ab/ D .da/b ˙ a.db/ 2 FpCp0CrApCp0CqCq0C1, that is, ab 2
d�1.FpCp0CrApCp0CqCq0C1/, so ab represents an element of EpCp0;qCq0

r which we take
for ˛ˇ. Certainly, we need to check that this ˛ˇ does not depend on the choice of
a 2 ˛ and b 2 ˇ. For example, suppose that we make a different choice for a: Take
some other a0 2 ˛. Then a0 D aCuCdv, where u 2 FpC1ApCq; v 2 Fp�rC1ApCq�1,
and a0b D ab C ub C .dv/b. We have ub 2 FpCp0C1ApCqCp0Cq0

and .dv/b D
˙d.vb/ ˙ v.db/; vb 2 Fp�rC1Cp0

ApCq�1Cp0Cq0

; v.db/ 2 FpCp0C1ApCqCp0Cq0 I that
is, a0b � ab belongs to the denominator in the definition of EpCp0;qCq0

r . Thus, the
choice of a does not affect ˛ˇ; the same is true for the choice of b.

Thus, we have an (obviously, bilinear) multiplication Epq
r � Ep0q0

r ! EpCp0;qCq0

r .
Properties (2) and (3) are obvious. Indeed, dpCp0;qCq0

r .˛ˇ/ is represented by d.ab/
(where a 2 ˛; b 2 ˇ), and d.ab/ D .da/bC.�1/pCqa.db/; hence, dpCp0;qCq0

r .˛ˇ/ D
dpq

r .˛/ˇ C .�1/pCq˛dp0q0

r .ˇ/; this proves (2). Furthermore, if b̨ 2 Epq
rC1; bˇ 2 Ep0q0

rC1
are represented by dr-cocycles ˛ 2 Epq

r ; ˇ 2 Ep0q0

r , then a representative of b̨bˇ in
FpCp0ApCp0CqCq0

is also a representative of ˛ˇ which implies (3). Property (5) (after
an appropriate modification) is obvious.

It remains to do the last thing: to define an appropriate multiplication for
cochains of the total space E of a fibration � D .E;B;F; p/; this multiplication
must be compatible with the already existing structures: filtration, grading, and the
differential (coboundary operator). To define this, we consider the diagram

E
�E��! E � E

?

?

?

?

y

p

?

?

?

?

y

p�p

B
�B��! B � B;

where �B and �E are diagonal maps. Then we consider a homotopy ht connecting
�B with some cellular approximation�ı

B and lift the homotopy ht ıp to a homotopy
of �E. There arises a map �ı

EWE ! E � E which is compatible with the filtrations
in E and E � E. After this, we define the “product” c1c2 of cochains c1 2 Cn1 .EIG/
and c2 2 Cn2 .EIG/ as .�ı

E/
#.c1 � c2/ 2 Cn1�n2 .EIG/. This product satisfies the

product rule with respect to the usual coboundary operator in the cochain complex
of E and induces the usual multiplication in the cohomology of E (since�ı

E � �E).
We leave to the reader the verification of the last necessary property of the resulting
multiplication in the cohomological spectral sequence of the fibration �.

EXERCISE 2. Prove that if the fibration � is homologically simple, then the
multiplication in the E2-term satisfies property (5).

Note that property (5) shows that the multiplication in the E2-term is associative
and skew-commutative [the latter means that if ˛ 2 Epq

2 and ˇ 2 Ep0q0

2 , then
ˇ˛ D .�1/.pCq/.p0Cq0/˛ˇ]. After this, property (3) implies the same properties of the
multiplication in Er for 3 � r � 1. (Certainly, for r D 0 and 1, we have no reasons
to expect that the multiplication in Er is either associative or skew-commutative;
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actually, the right choice of cellular approximations can make these multiplications
associative; but they cannot be made skew-commutative, as we will see in Chap. 4.)

24.3 The First Application: The Cohomology of SU.n/

Now we can finish the computation started in Sect. 22.3.A.

Theorem. There is a multiplicative isomorphism

H�.SU.n/IZ/ Š H�.S3 � S5 � : : : � S2n�1IZ/:

Remark 1. A more common way to describe the preceding result is to say
that H�.SU.n/IZ/ is an exterior algebra (over Z) with n � 1 generators of
dimensions 3; 5; : : : ; 2n � 1. The latter means that there are generators x2i�1 2
H2n�1.SU.n/IZ/; i D 2; 3; : : : ; n; of the ring H2n�1.SU.n/IZ/ with the generating
system of relations xixj D �xjxi for i < j and x2i D 0. A similar result holds for the
cohomology of SU.n/ with coefficients in any field.

Remark 2. The theorem implies that all the differentials of the homological

spectral sequence of the fibration SU.n/
SU.n�1/��! S2n�1 are trivial (this was proved

in Sect. 22.3.A for n � 4 and stated for all n). Indeed, for some n let some
differentials be nontrivial, but let all the differentials be trivial for all smaller n. Then
H�.SU.n�1//D H�.S3�S5� : : :�S2n�3/ and the E2-term of our spectral sequence
is isomorphic to H�.S3 � S5 � : : : � S2n�1/. But every nontrivial differential acts
between free Abelian groups, so it must affect the total rank of the corresponding
Er-term. Hence, we would have had

rank H�.SU.n// < rank H�.S3 � S5 � : : : � S2n�1/;

which contradicts the theorem, because the ranks of homology and cohomology
groups are the same in all dimensions.

Proof of Theorem. We proceed by induction. For n D 2, the statement is correct.
Suppose that H�.SU.n� 1/IZ/ is an exterior algebra with generators x3; : : : ; x2n�3.
Then the ring E2 becomes an exterior algebra with generators x2i�1 2 E0;2i�1

2 ; i D
2; 3; : : : ; n � 1; and y 2 E2n�1;0

2 (see the diagram in Fig. 92). By the dimension
arguments, E2 D E3 D : : : D E2n�1. Consider the differential d2n�1. It is zero on
the generators x2i�1 since it sends x2i�1 into E2n�1;.2i�1/�.2n�2/

2n�1 D 0; and more so,
it is zero on y. But since d2n�1 satisfies the product rule, it is zero on any product
of generators; that is, it is totally zero. Hence, E1 D E2 is an exterior algebra with
generators of (full) dimensions 3; 5; : : : ; 2n� 1.

That is not all, however. Our computation of E1 shows only that there is, for
our n, an additive isomorphism H�.SU.n/IZ/ Š H�.S3 � S5 � : : : � S2n�1/; but
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Fig. 92 Cohomological spectral sequence of the fibration SU.n/
SU.n�1/��! S2n�1

for our induction we need to know that there is a multiplicative isomorphism.
Take representatives of the generators x3; x5; : : : ; x2n�3; y in H�.SU.n/IZ/ (they
have dimensions 3; 5; : : : ; 2n � 3; 2n � 1); for the representatives of x3; : : : ; x2n�3
we preserve their notations, and for the representative of y we use the notation
x2n�1. By the proposition in Sect. 24.1, x3; x5; : : : ; x2n�1 is a system of generators
in H�.SU.n/IZ/. The relations xixj D �xjxi; x2i D 0 follow from the general
properties of cohomology and the fact that H�.SU.n/IZ/ has no torsion. If this
system of relations were not full, then H�.SU.n/IZ/ would have been obtained
from H�.S3 � S5 � : : :� S2n�1/ by an additional factorization which contradicts the
equality rank H�.SU.n/IZ/ D rank H�.S3 � S5 � : : : � S2n�1/.

EXERCISE 3. Prove that there is a multiplicative isomorphism

H�.CV.n; k/IZ/ Š H�.S2.n�k/C1 � S2.n�k/C3 � : : : � S2n�1IZ/

[see Sect. 1.8 for the definition of CV.n; k/].

24.4 Cohomology of Other Classical Groups

A: Symplectic Groups

EXERCISE 4. Prove that there is a multiplicative isomorphism

H�.Sp.n/IZ/ Š H�.S3 � S7 � : : : � S4n�1IZ/:
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Z
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d0,n−2
n−1

n − 2

Fig. 93 Cohomological spectral sequence of the fibration V.n; 2/
Sn�2��! Sn�1

B: Orthogonal Groups

Theorem. If K D Q, R, or C, then

H�.SO.n/IK/ D
8

<

:

H�.S3 � S7 � : : : � S4m�1IK/; if n D 2mC 1;
H�..S3 � S7 � : : : � S4m�5/�S2m�1IK/;

if n D 2m:

Proof. Since SO.2/ D S1 and SO.3/ D RP3 (see Sect. 1.7), for n D 2 and 3 the
statement is known to us. Assume that the statement is true for all SO.n0/with n0 < n
and begin with the case when n is odd.

The map SO.n/ ! V.n; 2/, which assigns to an orthogonal matrix the 2-frame
formed by its first two rows, is a fibration with the fiber SO.n � 2/ [one can notice
that V.n; 2/ D SO.n/=SO.n� 2/; see Sect. 1.9].

Lemma. If n is odd, then H�.V.n; 2/IK/ D H�.S2n�3IK/:
Proof. Consider the cohomological spectral sequence of the fibration

V.n; 2/
Sn�2

��! Sn�1

(which is, actually, the fibration of the manifold of unit tangent vectors to Sn�1 over
Sn�1) with the coefficients in Z (Fig. 93).

The only differential which can be nontrivial is the transgression d0;n�2
n�1 WZ! Z.

But, according to Sect. 23.5 (see Exercise 6), the image of the generator of E0;n�2
n�1 is

the characteristic class of the fibration, that is, the Euler characteristic of the sphere
Sn�1 times the generator of Hn�1.Sn�1IZ/ (see Proposition 2 of Sect. 18.5). Since
�.Sk/ D 2 if k is even and is 0 if k is odd, we conclude that d0;n�2

n�1 is 0 if n is even
and is a multiplication by 2 if n is odd. Thus, for n odd, the spectral sequence shows
that

Hq.V.n; 2/IZ/ D
8

<

:

Z; if q D 0; 2n� 3;
Z2; if q D n � 1;
0 for all other q:

This implies the statement of the lemma.
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1

x3

x7

x4m−5

y


...........

d0,4m−5
4m−4

...

...zeroes

zeroes

4m 1

Fig. 94 Cohomological spectral sequence of the fibration SO.2m C 1/
SO.2m�1/�����! V.2m C 1; 2/

[By the way, we see also that if n is even, then H�.V.n; 2/IZ/ Š H�.Sn�1 �
Sn�2IZ/, and similarly for the coefficients in K; we do not need this statement—at
least not now.]

Now let us return to the theorem. The cohomological spectral sequence of the

fibration SO.n/
SO.n�2/�����!V.n; 2/ for n D 2mC 1 (with coefficients in K) is shown

in Fig. 94. If we repeat the argumentation in Sect. 24.3 word for word, we obtain a
multiplicative isomorphism

H�.SO.2mC 1/IK/ Š H�.S3 � S7 � : : : � S4m�1IK/:
Note one more consequence of the triviality of the differentials in the last spectral

sequence: The homomorphism H�.SO.2mC1/IK/! H�.SO.2m�1/IK/ induced
by the inclusion map is onto.

Consider now the spectral sequence of the fibration

SO.2m/
SO.2m�1/�����! S2m�1

(Fig. 95).
The dimension argumentations do not prove the triviality of the differentials of

this spectral sequence, but still these differentials are all trivial: The composition

H�.SO.2mC 1/IK/��!H�.SO.2m/IK/ ���!H�.SO.2m� 1/IK/

induced by the composed inclusion SO.2m � 1/ ! SO.2m/ ! SO.2m C 1/ is
(as was shown above) an epimorphism, and therefore so is the homomorphism
marked by an asterisk. But the kernel of the differential considered is the image
of the homomorphism .	/; thus, these differentials are all zero. This completes the
proof.

Theorem. There is an additive isomorphism

H�.SO.n/IZ2/ Š H�.S1 � S2 � S3 � : : : � Sn�1IZ2/:
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Fig. 95 Cohomological spectral sequence of the fibration SO.2m/
SO.2m�1/�����! S2m�1

Moreover, there exist elements xn;i D xi 2 Hi.SO.n/IZ2/; i D 1; 2; : : : ; n � 1; with
the following properties:

(1) The monomials xi1xi2 : : : xis ; 1 � i1 < i2 < : : : < is � n � 1; form an additive
basis in H�.SO.n/IZ2/:

(2) The cohomology homomorphism induced by the inclusion map SO.n � 1/ !
SO.n/ takes xn;i with i < n � 1 into xn�1;i:

(3) xn;n�1 is the image of the generator of the group Hn�1.Sn�1IZ2/ with respect to
the homomorphism induced by the projection SO.n/! Sn�1.

Proof. Apply induction with respect to n. For n D 2 the statement is true. Consider
the spectral sequence of the fibration

SO.n/
SO.n�1/�����! Sn�1:

We want to prove that the differential (transgression)

d0;n�2
n�1 WHn�2.SO.n� 2/IZ2/! Hn�2.Sn�1IZ2/

takes xn�1 into 0 (all the rest is deduced in the usual way from the properties of the
spectral sequences). To prove this, consider the map between fibrations,

SO.n/ ��! V.n; 2/
?

?

?

?

y

SO.n�1/
?

?

?

?

y

Sn�2

Sn�1 id��! Sn�1

and the corresponding homomorphism between spectral sequences (Fig. 96).
It follows from the induction hypothesis that the homomorphism between

the E0;n�2
2 -terms takes the generator of the group Hn�2.Sn�2IZ2/ into xn�2 2
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xn−2

n 1

d0,n−2
n−1

Fig. 96 The homomorphism between spectral sequences

Hn�2.SO.n � 1/IZ2/. But in the spectral sequence of the fibration V.n; 2/! Sn�1,
our differential, as we know, is 0 (modulo 2). Hence, it is also 0 in our spectral
sequence.

Remark 1. The theorem shows that H�.SO.2m C 1/IZ2/ 6Š H�.Sp.2mC 1/IZ2/
although, according to Sect. 24.4.A, H�.SO.2mC 1/IK/ Š H�.Sp.2mC 1/IK/ for
K D Q;R;C.

Remark 2. The theorem does not describe the ring H�.SO.n/IZ2/, since what x2i
is remains unknown. For example, SO.3/ D RP3 (see Sect. 1.7), and the Z2-
cohomology of RP3 is additively generated by 1; x; x2; x3; x 2 H1.RP3IZ2/. Thus,
x21 D x2 for n D 3 (and consequently for all n � 3). In fact, the following is true:
The ring H�.SO.n/IZ2/ is generated by yi 2 H2i�1.SO.n/IZ2/; i D 1; 2; : : : ; Œn=2�;
with the defining system of relations (besides the commutativity relations) y2

ki

i D 0,
where 2ki is such a power of 2 that n � i � 2ki < 2n (see Kac [50]). The reader can
find some further information on the cohomology of Lie groups in the article by
Fuchs [39].

24.5 Cohomology of the Loop Space of a Sphere

Theorem.

Hm.�SnIZ/ D
�

Z; if m � 0 is divisible by n� 1;
0; if m is not divisible by n � 1:

Moreover, there exist generators xk 2 Hk.n�1/.�SnIZ/ such that xkx` D ˛k;`xkC`,
where
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˛k:` D

8

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
:

 

kC `
`

!

; if n is odd;
 

Œ.kC `/=2�
Œ`=2�

!

; if n is even; and at least one of k; ` is even;

0; if n is even; and both k; ` are odd:

Proof. The additive part follows directly from the exactness of the Wang sequence

applied to the path fibration ESn �Sn

��! Sn : Since Hm.ESnIZ/ D 0 for m > 0,
the differentials dm0

n WE0m
n ! En;m�n

n ; that is, Hm.�SnIZ/ ! Hm�n.�SnIZ/ are
isomorphisms for m > 0, whence the result. If we choose some generators xk in
E0;k.n�1/

n , then En;k.n�1/
n is generated by sxk, where s is the canonical generator in

En0
n D Hn.SnIZ/. If we require that x0 D 1 and d0;k.n�1/

n xk D sxk�1, the system
fxk 2 Hk.n�1/.�SnIZ/g is uniquely determined. Now, by the dimension arguments,
we must have xkx` D ˛k;`xkC` for some ˛k;` 2 Z, and, from the multiplicative
properties of the differentials,

d.xkx`/ D d.˛k;`xkC`/ D ˛k;`
sxkC`�1; and

d.xkx`/ D .dxk/x` C .�1/k.n�1/xkdx` D sxk�1x` C .�1/k.n�1/xksx`�1
D 
˛k�1:` C .�1/k.n�1/˛k;`�1

�

sxkC`�1

[here we use the fact that xks D .�1/k.n�1/nsxk D sxk]. Thus,

˛k;` D
�

˛k�1;` C ˛k;`�1; if n is odd;
˛k�1;` C .�1/k˛k;`�1; if n is even:

We leave for the reader’s entertainment deducing the formula for ˛k;` as stated in
the theorem from these Pascal triangle–like relations.

24.6 One More Example (Demonstrating the Perfidy
of the Multiplicative Adjointness)

Readers have certainly noticed that in the computation of cohomology of
SU.n/; SO.n/; and Sp.n/ we made the transition from the ring E1 to the
cohomology ring with some cautiousness although these cohomology rings finally
turned out to be isomorphic. This was not the case for H�.SO.n/IZ2/, but it does not
seem surprising for the case of finite coefficient domain. However, this isomorphism
does not hold even in the case of torsion-free integral cohomology, and even in the
case of coefficients in Q (or R, or C), as the following example shows.
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Z

Z

Z

Z

Fig. 97 The spectral sequence of the fibration E
S2��! S2

Suppose that we have a fibration with the base S2 and the fiber S2 (we do not
specify which). The E2-term of the cohomological spectral sequence of this fibration
is shown in Fig. 97.

By the dimension arguments, all the differentials are trivial, and E1 D E2. Thus,
the E1-term is additively generated by 1 2 E001; x 2 E021; y 2 E201; and xy 2 E221.
Accordingly, H�.EIZ/ is additively generated by 1 2 H0.EIZ/;ex;ey 2 H2.EIZ/,
andez 2 H4.EIZ/. Since E201 � H2.EIZ/,ey is essentially the same as y, and hence it
is well defined. However,ex is a representative of the class x 2 E021 D H2.EIZ/=E201
and it is defined up to a summand of the form key, where k is an integer. Since the
ring E1 is adjoint to the ring H�.EIZ/, we see thatey2 D 0:exey Dez, andex2 has a 0
image in the quotient group E401 of the group H4.EIZ/, which does not mean a thing,
since E401 D 0. Thus,ex2 D �ez, where � is an integer that is unknown to us. We can
influence � by adding toex a multiple ofey: .exCkey/2 Dex2C2kexeyCk2ey2 D .�C2k/ez.
Thus, we can shift � by any even number, which shows that there may be only two
essentially different cases: � is even and � is odd. [The rings with odd and even �
are not isomorphic: For � odd, every element of H4.EIZ/ is a square; for � even, the
generator of H4.EIZ/ is not a square.] Let us show that both cases are represented
by actual fibrations.

The case of even � occurs for the trivial fibration; this case is not interesting,
because for trivial fibrations we again have a multiplicative isomorphism E1 Š
H�.EIZ/.

Let us now construct a nontrivial fibration with the base and the fiber homeomor-
phic to S2. Choose a point a 2 CP2 � CP1, take a ball D4 � CP2 centered at a and
disjoint from CP1, and put X D CP2 � Int D4; this is a four-dimensional manifold
with the boundary S3. Draw all (complex, projective) lines through a. They are
disjoint in X, they cover X, and each of them intersects X by a two-dimensional disk
and intersects CP1 in one point (the “center” of this disk). As a result, X becomes
a fibered space with the base CP1 D S2 and the fiber D2; the boundary @X D S3

is fibered with the base S2 and the fiber @D2 D S1, and this is the Hopf fibration.
Take two copies of X and attach them to each other according to the identity map
of the boundary. We get a four-dimensional manifold which is known to us as the
connected sum E D CP2#CP2 of two copies of CP2 (we dealt with connected sums
in Sect. 17.10, Exercises 44 and 45 and an example between them; the construction
of a connected sum is shown in Fig. 98).
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X1
X2

X1#X2

Fig. 98 The connected sum X1#X2 of two manifolds, X1 and X2

The fibers of the two fibrations are also attached to each other, forming a fibration
of E over S2 with the fiber S2.

The cohomology of the space E can be found, for example, using the Mayer–
Vietoris sequence using the decomposition E D X [ X with X \ X D S3. The result
is that the cohomology H�.EIZ/ is additively generated by four classes, 1; x; y; z
of dimensions 0; 2; 2; 4. The two natural maps E ! CP2 (obtained by collapsing
one of the Xs to a point) map H�.CP2IZ/ onto subrings of H�.EIZ/ generated,
respectively, by 1; x; z and 1; y; z, which implies that [in H�.EIZ/] x2 D z and y2 D
z. Also, xy D 0 [the two-dimensional homology classes forming the basis in H2.E/
are represented by the two complex projective lines CP1 � X, and these two are
disjoint; their intersection number is 0]. We see that the cohomology ring of E is
not isomorphic to that of S2 � S2 (z is a square), which gives us an example of a
nontrivial multiplicative adjointness of E1 to H�.EIZ/.
Remark. If we replace in our construction C by R, then X will become a Möbius
band, and E will turn into a Klein bottle. So our E can be regarded as a “complex
Klein bottle.” Also, we can replaceC byH. This will give us an interesting nontrivial

fibration E
S4��! S4 .

In conclusion, we present several exercises concerning multiplicative cohomo-
logical spectral sequences.

EXERCISE 4. Let the homology of a connected closed orientable manifold X be
known. Find the homology of the manifold of nonzero tangent vectors to X.

EXERCISE 5. Find the (already known to you) cohomology ring of CPn using the

spectral sequence of the Hopf fibration S2nC1 S1��!CPn .

EXERCISE 6. Find the ring of rational cohomology of SU.n/=SO.n/.

EXERCISE 7. Find the ring of rational cohomology of SO.2n/=SU.n/, at least for
some small n (the first interesting case is n D 3).
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Lecture 25 Killing Spaces Method for Computing Homotopy
Groups

This lecture, as well as the two next lectures and a considerable part of subsequent
chapters, will be devoted to computing homotopy groups. We begin with a quotation
from an interview which Jean-Pierre Serre gave in Singapore in February 1985
(published in Mathematical Intelligencer, 1986, 8, 8–13).

Q: Have you ever had the experience where you found a problem to be impossible
to solve, and then after putting it aside for some time, an idea suddenly occurred
leading to the solution?

A: Yes, of course this happens quite often. For instance, when I was working
on homotopy groups (�1950), I convinced myself that, for a given space X, there
should exist a fiber space E, with base X, which is contractible; such a space would
indeed allow me (using Leray’s methods) to do lots of computations on homotopy
groups and Eilenberg–MacLane cohomology. But how to find it? It took me several
weeks (a very long time, at the age I was then1. . . ) to realize that the space of “paths”
on X had all the necessary properties—if only I dared call it a “fiber space,” which
I did. This was the starting point of the loop space method in algebraic topology;
many results followed quickly.

25.1 Killing Spaces Revisited

The initial Serre method of computing homotopy groups was based on considering
multiple loop spaces. Suppose that we want to calculate the homotopy groups of
some space X. Consider the sequence of spaces, X; �X; ��X; ���X; : : :. Imagine
that there is a way of calculating the homology of the loop space �Y, provided that
the homology of Y is known. For this, we can use the spectral sequence of the

path fibration EY
�Y��!Y . But the first nontrivial homology group of �kX is, by

Hurewicz’s theorem, the same as its first nontrivial homotopy group, say, �r.�
kX/,

which is, in turn, �rCk.X/.
We will not directly use this method here. We prefer another method, also

belonging to Serre: the method of killing spaces. (One can say that, roughly
speaking, these two Serre’s methods are closely related to each other and lead to
similar results.)

Killing spaces were introduced in Sect. 11.9. Remember that the killing space
XjnC1 is constructed for X in a canonical way and has the property

124 years—AF&DF.
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�q.XjnC1/ D
�

�q.X/; if q > n;
0; if q � n:

If �n.X/ D � is the first nontrivial homotopy group of X, then XjnC1 is related to X
by two fibrations:

X
XjnC1��!K.�; n/; XjnC1

K.�;n�1/�����!X:

The first of them was constructed in Sect. 11.9: Its projection belongs to the
homotopy class of maps corresponding to the fundamental class FX 2 Hn.XI�/.
The projection of the second fibration is homotopic to the inclusion XjnC1 ! X of
the fiber of the first fibration; in other words, it is the fibration over X induced by

the path fibration EK.�; n/
K.�;n�1/�����!K.�; n/ with respect to the projection of the

first fibration. In still other words, both fibrations may be described as parts of the
following commutative diagram of four fibrations:

XjnC1
XjnC1�����! 	

?

?

?

?

y

K.�;n�1/
?

?

?

?

y

K.�;n�1/

X
XjnC1�����! K.�; n/

(where all terms represent homotopy types; in particular, 	 denotes a contractible
space). We usually will use the second of these fibrations. In principle, if we know
the cohomology of K.�; n � 1/, then we can at least try to find the cohomology of
XjnC1, and hence the first nontrivial homotopy group of XjnC1, which is the second
nontrivial homotopy group of X. And so on.

25.2 First Application: A Computation of �nC1.Sn/

At the moment, we know almost nothing of the cohomology of the Eilenberg–
MacLane spaces. Still we know that K.Z; 2/ D CP1, and this makes it possible
to find H�.S3j4IZ/.
Theorem.

Hq.S3j4IZ/ Š
�

Zm; if q D 2mC 1; m D 2; 3; 4; : : : ;
0 for all other q > 0:
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Fig. 99 Spectral sequence of the fibration S3j4 K.Z;2/��! S3

Proof. Consider the Z-cohomology spectral sequence of the fibration S3j4 K.Z;2/��! S3

(see Fig. 99). Denote by x the (canonical) generator of the group H3.CP2IZ/ D
H2.K.Z; 2/IZ/ D E022 and denote by s the generator of the group H3.S3IZ/ D E302 .
Then

the group E0;2m
2 D Z is generated by xm,

the group E3;2m
2 D Z is generated by sxm,

and all the other groups Epq
2 are trivial.

Obviously, E3 D E2 and E1 D E4; but there are potentially nontrivial

differentials d3 D d0;2m
3 WE0;2m

3 ! E3;2m�2
3 , which are, for m � 1, Z ! Z. Since

H2.S3j4IZ/ D H3.S3j4IZ/ D 0, the differential d023 must be an isomorphism; thus,
d3.x/ D ˙s; we can assume that d3.x/ D s (although this is not important). Then, by
the product rule, d3.xm/ D mxm�1d3x D msxm�1; hence, the terms E3 and E1 look
like what is shown in Fig. 99. The theorem follows.

The formulas connecting integral homology and cohomology (Corollary 2 in
Sect. 15.5) show that for q > 0

Hq.S
3j4/ D

�

Zm; if q D 2m;
0; if q ¤ 4; 6; 8; : : :

and hence �4.S3j4/ D Z2 ) �4.S3/ D Z2 ) �nC1.Sn/ D Z2 for n � 3. The
reader who was able to get through the exercises in Sect. 10.5 already knows this
fact. But even for that reader the easiness of the proof may be strong evidence of
a big advantage of the method of spectral sequences. At the same time, we can see
a great importance of the “Eilenberg–MacLane cohomology” H�.K.�; n/I �/. The
rest of this chapter, as well as most of the next chapter, will be devoted mostly to
this cohomology.



26.1 The Case of Finite and Finitely Generated Group 367

Lecture 26 Rational Cohomology of K.�;n/ and Ranks
of Homotopy Groups

The computation of the Eilenberg–MacLane cohomology turned out to be hard
work. Still, the problem was fully solved (for finitely generated Abelian �) in
the 1950s, mostly by the French topologists A. Borel, H. Cartan, and J.-P. Serre.
The easiest part of this work was the computation of the rational cohomology ring
H�.K.�; n/IQ/. This lecture will be devoted to this computation and its corollaries.
We begin with a useful general result.

26.1 The Case of Finite and Finitely Generated Group

A: The Main Result

Theorem. If � is a finitely generated (finite) Abelian group, then for every finitely
generated Abelian group G and every n > 0 and q > 0, the group Hq.K.�; n/IG/
is finitely generated (finite).

Proof. Because of the universal coefficients formula, we can restrict ourselves to
the case when G D Z.

For n D 1, the statement is true: We know the spaces K.Z; 1/ D S1;K.Z2; 1/ D
RP1;K.Zm; 1/ D L1

m (the infinite-dimensional lens space) for m > 2 and their
cohomology:

Now assume the statement to be true for K.�; n � 1/ and assume that it
is wrong for K.�; n/. Let Hm.K.�; n/IZ/ be an infinitely generated (infinite)
cohomology group of K.�; n/ of the smallest positive dimension. Consider the

Z-cohomology spectral sequence of the fibration 	 K.�;n�1/�����!K.�; n/ , where 	
denotes the contractible space EK.�; n/ (see Fig. 100). It follows from the induction
hypothesis, the universal coefficients formula, and the definition of m that the groups
Epq
2 with p < m (except E002 ) are finitely generated (finite), while the group Em0

2 is
infinitely generated (infinite). [See Fig. 100, where the light squares correspond to
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Fig. 100 The spectral sequence of the fibration � K.�;n�1/�����! K.�; n/

finitely generated (finite) groups, and the dark square corresponds to an infinitely
generated (infinite) group.]

The groups Ep;q
r with p < m are obtained from Epq

2 by finitely many transitions
to subgroups and quotients, so they (except E00r ) are also finitely generated (finite).
Since the quotient of an infinitely generated (infinite) group over a finitely generated
(finite) subgroup is also an infinitely generated (infinite) group, all the groups

Em0
3 D Em0

2 =dm�2;1
2 .Em�2;1

2 /;

Em0
4 D Em0

3 =dm�3;2
3 .Em�3;2

3 /;

: : : : : : : : : : : : : : : : : : : : : : : : : : :

are infinitely generated (infinite), which contradicts the equality Em0
mC1 D Em01 D 0.

This completes the proof.

B: A Generalization: Classes of Abelian Groups

We say that a class C of Abelian groups is given if every Abelian group belongs
or does not belong to C, and (1) isomorphic groups belong or do not belong to
C simultaneously; (2) if a group belongs to C, then all its subgroups and all its
quotients belong to C; (3) if a subgroup H of a group G and the quotient G=H belong
to C, then G belongs to C. This definition has numerous variations (see Serre [76]
and subsequent works of different authors). Examples: finitely generated groups;
finite groups; periodic groups; finite p-groups.

EXERCISE 1. Prove that if C is a class of finitely generated Abelian groups, � 2 C,
and G is a finitely generated Abelian group, then Hq.K.�; n/IG/ 2 C for all n >
0; q > 0.
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C: Application

Theorem. Let X be a simply connected topological space such that all homology
groups Hq.X/; q > 0 are finitely generated (finite). Then all the homotopy groups
�q.X/ are finitely generated (finite).

Remark. The requirement of X being simply connected is not unnecessary: For
example, the homology groups of S1 _ S2 are all finitely generated, while the group
�2.S1 _ S2/ is not finitely generated. Still this requirement can be weakened to, say,
the requirement of X being homotopically simple.

Lemma. If all the homology groups of positive dimensions of the base and the fiber
of a homologically simple fibration are finitely generated (finite), then so are all
homology groups of positive dimension of the total space of this fibration. The same
is true for homology and cohomology with any finitely generated coefficients.

Proof of Lemma. Because of the universal coefficients formula, we can restrict
ourselves to the integral homology. In the homology spectral sequence of our
fibration, all the groups E2pq (except E200) are finitely generated (finite). Since the
transitions E2 ! E3 ! E4 ! : : : consist in taking subgroups and quotient groups,
the same is true for E1

pq , and hence for the homology groups of the total space.

EXERCISE 2. Let E
F��!B be a homologically simple fibration. Prove that if the

homology groups of positive dimensions of two of the three spaces E;B; and F are
finitely generated (finite), then the same is true for the homology groups of the third
space.

Proof of Theorem. We successively apply the lemma to fibrations

Xj3 K.H3.X/;1/�����!X; Xj4 K.H3.Xj3/;2/�����! Xj3; Xj5 K.H4.Xj4/;3/�����! Xj4; : : : ;

to prove that all homology groups of positive dimensions of the spaces
Xj3;Xj4;Xj5; : : : are finitely generated (finite). Hence, the groups �2.X/ D
H2.X/; �3.X/ D H3.Xj3/; �4.X/ D H4.Xj4/; �5.X/ D H5.Xj5/; : : : are finitely
generated (finite).

Corollary. The homotopy groups �m.S3/ are finite for all m � 4.

Proof. It was shown in Sect. 25.2 that all the groups Hm.S3j4/; m > 0, are finite.
Hence, by the theorem, the groups �m.S3j4/ are all finite, and �m.S3j4/ D �m.S3/
for all m � 4.

EXERCISE 3. Prove that if all homology groups of some positive dimension of a
simply connected (or homotopically simple) space belong to a class C of finitely
generated Abelian groups, then all the homotopy groups of this space also belong to
the class C.
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EXERCISE 4. Prove the following “Hurewicz C-theorem”: If for some simply
connected space X, all homotopy groups �m.X/ with m < n belong to a class C
(as in Exercise 3), then the groups Hm.X/ with m < n also belong to C and the
Hurewicz homomorphism �n.X/ ! Hn.X/ is a C-isomorphism (that is, its kernel
and cokernel belong to C). Prove also the inverse statement where homology and
homotopy groups are swapped.

Remark. It follows from the Hurewicz C-theorem that for every prime p the order of
the group �m.S3/ with 4 � m < 2p is not divisible by p. To prove that, we apply the
Hurewicz C-theorem to the space S3j4 and the class C of finite Abelian groups of the
order not divisible by p. This statement will be radically generalized in Lecture 27
and then in Chap. 4.

A detailed exposition of the “C-theory” is contained in Serre’s article cited above.

26.2 The Computation of the Rings H�.K.�;n/IQ/
for Finitely Generated Abelian Groups �

Let � be a finitely generated Abelian group. Then � Š Z˚ : : :˚Z˚ �, where � is
a finite Abelian group. Accordingly, K.�; n/ D K.Z; n/ � : : : � K.Z; n/ � K.�; n/,
and, by Künneth’s formula,

H�.K.�; n/IQ/ D
H�.K.Z; n/IQ/˝ : : :˝ H�.K.Z; n/IQ/˝ H�.K.�; n/IQ/:

By the theorem in Sect. 26.1.A, H�.K.�; n/;Q/ D H�.ptIQ/ (if the integral
homology groups of a topological spaces are finite, then its rational cohomology
is trivial). Hence, we can remove the last factor in the formula for H�.K.�; n/IQ/
and all we need to compute is H�.K.Z; n/IQ/.
Theorem.

H�.K.Z; n/IQ/ D
�

ƒQ.x/; dim x D n; if n is odd;
QŒx�; dim x D n; if n is even:

Let us explain the notation. If K is a field, then ƒK.x1; : : : ; xm/ denotes the
exterior algebra with generators x1; : : : ; xm, that is, the algebra with these generators
and relations xixj D �xjxi and x2i D 0. The dimension of this algebra is 2m, and
an (additive) basis formed by monomials xi1 : : : xis with 1 � i1 < : : : < is � m.
Sometimes, the letter K denotes not a field, but a sufficiently good ring, like
Z; it may be omitted if the context allows that. The formula H�.K.Z; n/IQ/ D
ƒQ.x/; dim x D n has a very simple meaning:

H�.K.Z; n/IQ/ D H�.SnIQ/:
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Fig. 101 The spectral sequence of the fibration � K.Z;n�1/�����! K.Z; n/, n is even

By KŒx1; : : : ; xm� we understand (as usual) the ring of polynomials in x1; : : : xm with
the coefficients in K. Differently, this is a K-algebra with generators x1; : : : ; xm and
relations xixj D xjxi. The formula H�.K.Z; n/IQ/ means that Hq.K.Z; n/IQ/ D
K for q D 0; n; 2n; 3n; : : : and Hq.K.Z; n/IQ/ D 0 for all other q and that
Hkn.K.Z; n/IQ/ is generated by xk, where x is an arbitrarily chosen nonzero element
of Hn.K.Z; n/IQ/.
Proof of Theorem. For n D 1 (and n D 2) the statement is known to us, since
K.Z; 1/ D S1; K.Z; 2/ D CP1. We assume that the statement is true for K.Z; n�1/
and prove it for K.Z; n/. Consider the Q-cohomological spectral sequence of the
fibration

	 K.Z;n�1/�����!K.Z; n/

and begin with the case when n is even. By the induction hypothesis, H�.K.Z;
n � 1/IQ/ D H�.Sn�1IQ/, and the E2 D En-term of the spectral sequence looks
like the diagram in Fig. 101, left. Since Epq1 D 0 (except E001), all the differentials
dq�n;n

n WEq�n;n
n ! Eq;0

n with q ¤ 0 must be isomorphisms; that is, for q ¤ 0,
Hq�n.K.Z; n/IQ/ Š Hq.K.Z; n/IQ/ and

Hq.K.Z; n/IQ/ D
�

Q for q D 0; n; 2n; : : : ;
0 for all other q:

Moreover, there exist such nonzero y 2 Hn�1.K.Z; n � 1/IQ/ D E0;n�1
2 D E0;n�1

n

and xk 2 Hkn.K.Z; n/IQ/ D Ekn;0
2 D Ekn;0

n .k D 1; 2; 3; : : :/ that dn.y/ D
x1; dn.yx1/ D x2; and so on (see Fig. 101, right). But then

xk D dn.yxk�1/ D dn.y/xk�1 D x1xk�1;

from which xk D xk
1. This establishes an isomorphism between the rings

H�.K.Z; n/IQ/ and QŒx1�.

Now let n be odd. Then E0;k.n�1/
2 D Q with a generator xk, and E0;q2 D 0 if q is

not divisible by n � 1. Furthermore, since Hp.K.Z; n/IQ/ D 0 for 0 < p < n and
Hn.K.Z; n/IQ/ D Q (this is known to us, but also can be deduced from our spectral
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Fig. 102 The spectral sequence of the fibration � K.Z;n�1/�����! K.Z; n/, n is odd

sequence), then Ep;q
2 D 0 for 0 < p < n and En;k.n�1

2 D Q with the generator yxk,
where y 2 Hn.K.Z; n/IQ/ D En;0

2 is the image of x with respect to the differential
dn. Also, the rows with the numbers not divisible by n � 1 consist of zeroes; hence,
E2 D En. We have

dn.x
k/ D kxk�1dn.x/ D kyxk�1 ¤ 0I

the differential dn eliminates all the groups Ep;q
n with p D 0 and n (except E00n ).

Suppose now that there are nonzero elements of dimension greater than n in the
ring H�.K.Z; n/IQ/, and that z 2 Hm.K.Z; n/IQ/ has, among them, the smallest
dimension. But there are no elements in E2 whose differential (of some number� 2)
could hit z (see Fig. 102). This contradicts the equality Em;01 D 0.

Corollary. If rank� D r, then

H�.K.�; n/IQ/ D
�

ƒQ.x1; : : : ; xr/; dim xi D n; if n is odd;
QŒx1; : : : ; xr�; dim xi D n; if n is even:

26.3 Ranks of the Homotopy Groups of Spheres

Theorem.

rank�q.S
n/ D

�

1; if q D n; or n is even and q D 2n� 1;
0 in all other cases:
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Remark. We already know that �n.Sn/ D Z (Sect. 10.2) and that �4n�1.S2n/

contains an element of an infinite order: the Whitehead square of the generator of
�2n.S2n/ (see Sect. 16.5). Now we are going to show that

�4n�1.S2n/ D Z˚ a finite group;

and that all the other groups �q.Sn/ with q ¤ n are finite.

Lemma. Let X be a simply connected space with finitely generated homology such
that H�.XIQ/ Š H�.SmIQ/ for some odd m. Then all the groups �q.X/ with q ¤ m
are finite, and rank�m.X/ D 1.

Proof of Lemma. Since Hm.XIQ/ D Q, there exists an element � 2 Hm.XIZ/
of infinite order. Thus, there is a continuous map f WX ! K.Z;m/ such that
f �.'/ D � [where ' 2 Hm.K.Z;m/IZ/ is the fundamental class]. This shows
that f �WHm.K.Z;m/IQ/ is an isomorphism, and hence f �WH�.K.Z;m/IQ/ !
H�.XIQ/ is an isomorphism (in virtue of the theorem of Sect. 26.2 and assumptions
concerning the cohomology of X).

Turn f into a homotopy equivalent fibration, and let F be the fiber of this fibration.
Since the projection of this fibration induces an isomorphism in the rational
cohomology, the Q-cohomological spectral sequence shows that Hq.FIQ/ D 0

for any q > 0 (indeed, no differential of this spectral sequence can hit the zeroth
row, and if m is the smallest positive dimension of a nonzero rational cohomology
group of F, then E0m

2 ¤ 0 must stay in E1, which contradicts the isomorphism
above). By the theorem in Sect. 26.1.C, all the homotopy groups of F are finite. The
homotopy sequence of our fibration shows that every homomorphism f�W�q.X/ !
�q.K.�;m// has finite kernel and finite cokernel, which implies the statement of the
lemma.

Proof of Theorem. For n odd, the theorem follows directly from the lemma. Let n be

even. We already know that �n.Sn/ D Z. Consider the fibration SnjnC1
K.Z;n�1/�����! Sn .

The initial term of its Q-cohomological spectral sequence looks like what appears
in Fig. 103 with the differential d0;n�1

n WE0;n�1
n ! En;0

n killing both E0;n�1
n and En;0

n .

Fig. 103 The spectral sequence of the fibration SnjnC1

K.Z;n�1/�����! Sn
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We see that H�.SnjnC1IQ/ Š H�.S2n�1IQ/, and the lemma shows that

rank�q.S
njnC1/ D

�

1; if q D 2n� 1;
0; if q ¤ 2n� 1:

The theorem follows.

26.4 Theorem of H. Cartan and J.-P. Serre

We say that the rational cohomology of a space X forms a free skew-commutative
algebra with generators xs 2 Hms.XIQ/ if these generators are not tied by any
relations besides the relations of the skew commutativity: xsxt D .�1/msmt xtxs. In
other words,

H�.XIQ/ D ƒQ.odd dimensional xs/˝QŒeven dimensional xs�:

Example 1. Sn with n odd.

Example 2. SnjnC1 with n even.

Example 3. K.�; n/ with a finitely generated Abelian group � .

Example 4. SU.n/; Sp.n/; SO.n/.

Example 5. �Sn.

Actually, it is true that the rational cohomology of an arbitrary H-space, in
particular, of an arbitrary loop space, forms a free skew-commutative algebra. We
do not prove it here; a relevant reference is Milnor and Moore’s article [59].

Theorem (Cartan–Serre). Let X be a simply connected space with finitely gen-
erated homology groups. Suppose that the rational cohomology of X is a free
skew-commutative algebra,

H�.XIQ/ D ƒQ.x1; : : : ; xm/˝QŒy1; : : : ; y`�;

where the xs are odd-dimensional rational cohomology classes of X and the yt are
even-dimensional rational cohomology classes of X. Then the rank of �q.X/ equals
the number of q-dimensional elements among x1; : : : ; xm; y1; : : : ; y`.

In other words, for a simply connected space X with a free skew-commutative
rational cohomology algebra, there is a dimension-preserving bijection between
free additive generators of homotopy groups and free multiplicative generators of
a rational cohomology algebra.

Proof of Theorem. Since H�.XIQ/ D H�.XIZ/ ˝ Q and the homology groups
of X are finitely generated, there exist nonzero integers a1; : : : ; am; b1; : : : ; b`
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such that the classes a1x1; : : : ; amxm; b1y1; : : : ; b`y` belong to the image of the
homomorphism H�.XIZ/ ! H�.XIQ/ induced by the inclusion Z ! Q. With
respect to this homomorphism, letex1 7! a1x1; : : : ;ey` 7! b`y`. The classesexs;eyt give
rise to (homotopically well-defined) continuous maps X ! K.Z; is/; X ! K.Z; jt/,
where is D dim xs; jt D dim yt. Together, these maps determine a map

X ! Y D .�sK.Z; is// � .�tK.Z; jt// ; .	/

and this map induces an isomorphism in the rational cohomology (it follows from
the theorem in Sect. 26.3 and the assumptions of the theorem that the rational
cohomology algebras of X and Y are the same, and the mapping .	/ induces a
bijection between the generators of these algebras). As in the proof of the lemma in
Sect. 26.3, we can turn the map .	/ into a fibration, the projection of this fibration
induces an isomorphism in the rational cohomology, and hence the fiber F of this
fibration has trivial rational cohomology. Hence, the homotopy groups of F are all
finite (see theorem in Sect. 26.1.C), the homotopy sequence of our fibration shows
that every homomorphism f�W�q.X/ ! �q.Y/ has finite kernel and finite cokernel,
and hence the groups �q.X/ and �q.Y/ have the same ranks, which is our theorem.

The Cartan–Serre theorem implies some statements already known to us (for
example, the theorem of ranks of homotopy groups of odd-dimensional spheres)
and also some new statements, such as the following one.

Corollary.

�q.SU.n// D
�

Z˚ a finite group; if q D 3; 5; 7; : : : ; 2nC 1;
a finite group for all other qI

�q.SO.2mC 1// D
�

Z˚ a finite group; if q D 3; 7; 11; : : : ; 4m � 1;
a finite group for all other qI

�q.SO.2m// D
�

Z˚ a finite group; if q D 3; 7; 11; : : : ; 4m � 5; 2m� 1;
a finite group for all other qI

�q.Sp.n// D
�

Z˚ a finite group; if q D 3; 7; 11; : : : ; 4n � 1;
a finite group for all other q:

Remark. The exactness of the homotopy sequences of the fibrations

SO.n/
SO.n�1/�����! Sn�1; SU.n/

SU.n�1/�����! S2n�1; Sp.n/
Sp.n�1/�����! S4n�1;

and the triviality of the homotopy groups �q.Sm/ with q < m imply the isomor-
phisms

�q.SO.n � 1// Š �q.SO.n// for q < n � 2;
�q.SU.n� 1// Š �q.SU.n// for q < 2n � 2;
�q.Sp.n� 1// Š �q.Sp.n// for q < 4n � 2
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(induced by the corresponding inclusion maps). (In the “critical dimensions” q D
n � 2; 2n � 2; and 4n � 2, these inclusion homomorphisms are epimorphisms.)
Thus, for n large, the groups �q.SO.n//; �q.SU.n//; and �q.Sp.n// do not depend
on n; these stable groups are denoted as �q.SO/; �q.SU/; and �q.Sp/ [actually,
these groups are homotopy groups of groups of infinite matrices, SO D S

n SO.n/;
SU D S

n SU.n/; Sp D S

n Sp.n/]. Unlike the homotopy groups �q.SO.n//;
�q.SU.n//; and �q.Sp.n// (which are known only partially), the stable homotopy
groups are fully known:

�q.U/ D
�

Z for odd q;
0 for even qI �q.SO/ D

8

<

:

Z; if q � �1 mod 4;
Z2; if q � 0; 1 mod 8;
0 for all other qI

�q.Sp/ D �qC4.SO/ (compare with the last corollary). This fact was proved in the
late 1950s by Raoul Bott, who applied methods of variational calculus in the large
(this result is broadly known under the name of the Bott periodicity). A presentation
of Bott’s proof is contained in the last chapter of Milnor’s book [57]. Another proof
for the case of U is given in Chap. 6 of this book.

26.5 Comments About the Cartan–Serre Theorem

We have already noticed that the theorem on the ranks of homotopy groups of
an odd-dimensional sphere is a corollary of the Cartan–Serre theorem. However,
the case of an even-dimensional sphere is not covered by Cartan–Serre, since the
cohomology ring of an even-dimensional sphere has an undesirable relation: The
square of an even-dimensional generator is equal to 0. Still, we were able to compute
the ranks of the homotopy groups of an even-dimensional sphere. A reader may
create an impression that as soon as we know the rational cohomology ring of, say,
a simply connected CW complex, we can find the ranks of its homotopy groups. This
impression is wrong, however, as the following example shows. Take the bouquet
of two two-dimensional spheres, S2 _ S2.

EXERCISE 5. Using methods of this lecture, prove that rank�4.S2 _ S2/ D 2 (the
linearly independent elements of this group are Œ Œs1; s2�; s1� and Œ Œs1; s2�; s2�; where
s1 and s2 are the generators of the groups �2 of the two spheres and the square
brackets denote the Whitehead product; Sect. 10.5).

Take a spheroid S4 ! S2_S2 representing an infinite-order element of�4.S2_S2/
and attach a five-dimensional disk to S2 _ S2 using this spheroid. We get a space X
with a multiplicative isomorphism H�.XIQ/ Š H�.S2 _ S2 _ S5IQ/, but the ranks
of homotopy groups (in particular, of the groups �4) of X and S2_S2_S5 are not the
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same. A question arises: Is it possible to express in terms of rational cohomology
information about a (say, simply connected, CW) space sufficient for determining
the ranks of homotopy groups? The answer is yes; however, for this purpose,
we need to consider, in addition to the classical cohomological multiplication, a
sequence of “higher multiplications,” the Massey products (Massey products were
briefly mentioned in Lecture 17, see Exercise 52.).

Here is a construction of the first of them. Let ˛ 2 Hp.XIG/; ˇ 2 Hq.XIG/; � 2
Hr.XIG/ (where G is a ring) be cohomology classes such that ˛ˇ D 0 and ˇ� D 0.
Let a 2 ˛; b 2 ˇ; c 2 � be cocycles (it is not important what kind, maybe singular,
maybe classical, or maybe differential forms; the only thing that matters is the
existence for this kind of cochains of an associative bilinear product satisfying the
product rule and inducing the standard cohomological multiplication). Then there
are cochains e; f such that ıe D ab and ıf D bc. Consider the cochain ec�.�1/paf .
It is a cocycle:

ı.ec � .�1/paf D .ab/c� .�1/p.�1/pa.bc/ D 0;

and its cohomology class is called the Massey product of ˛; ˇ; � and is denoted
as h˛; ˇ; �i. Obviously, this cohomology class is not “well defined”: Varying the
choice of cochains e and f can result in adding to h˛; ˇ; �i an arbitrary class of
the form ˛�C 	� with � 2 HqCr�1.XIG/; 	 2 HpCq�1.XIG/. Thus, the Massey
product is a partial multivalued operation.

EXERCISE 6. Compute the Massey products in the cohomology of the space
.S2 _ S2/[ D5 considered above.

EXERCISE 7. Compute the Massey products in the cohomology of the complement
to the Borromean rings (compare Exercise 52 in Lecture 17).

It is possible to extend this construction to still “higher” Massey products. For
example, for a quadruple of cohomology classes ˛; ˇ; �; ı such that ˛ˇD0; ˇ�D0;
�ı D 0; h˛; ˇ; �i 3 0; hˇ; �; ıi 3 0, one can construct a cohomology class
h˛; ˇ; �; ıi with a still bigger indeterminacy than triple Massey products. And so
on. A general algebraic description of Massey products is contained in the article by
Fuchs and Weldon [41].

It turns out that the rational cohomology of a simply connected space, given with
the multiplicative structure and the whole infinite sequence of Massey products,
determines the ranks of homotopy groups (with Whitehead products and a sequence
of Whitehead–Massey products in homotopy groups tensored with Q).

A different approach (related to, but not based on Massey products) to rational
homotopy types was developed by Dennis Sullivan as the minimal model theory.
The main ingredient of this theory consists in assigning to a space a rational
cochain complex furnished with an associative skew-commutative multiplication
whose cohomology is the rational cohomology of the space (in Sullivan’s original
construction it is the complex of piecewise rational differential forms). A space is
called formal if there exists a multiplicative homomorphism from the cohomology
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ring into a minimal model which assigns to every cohomology class a cocycle
representing this class. It is true that for a formal space all the Massey products
in rational cohomology are zero (but this does not imply formality). For formal
spaces, a rational cohomology algebra determines ranks of homotopy groups (by a
procedure similar to that of this lecture). Examples of formal spaces include loop
spaces, spheres (both odd- and even-dimensional), Kähler manifolds, and symmetric
spaces. See the article by Deligne, Griffiths, Morgan, and Sullivan [33]; there is also
a famous book by Félix, Halperin, and Thomas [36].

Lecture 27 Odd Components of Homotopy Groups

In this lecture, p denotes an odd prime (the case of p D 2 will be considered in
Chap. 4).

27.1 Cohomology H�.K.�;n/IZp/ for a Finite Group �
of Order Not Divisible by p

Theorem. If p0 is a prime different from p, then

H�.K.Zp0s IZp/ Š H�.ptIZp/:

This fact is, essentially, known to us: For n D 1, it follows from standard
homology computations (see Chap. 2); in the general case it can be proved by

induction based on spectral sequences of fibrations 	
K.Zp0s ;n�1/
�����!K.Zp0s ; n/ .

Corollary. If � is a finite Abelian group whose order is not divisible by p, then every
Hq.K.�; n/IZ/; q > 0 is a finite Abelian group whose order is not divisible by p.

This follows from the theorem and the universal coefficients formula. (See also
Exercise 1 in Sect. 26.1.B.)

27.2 A Partial Computation of H�.K.Zp;n/IZ/

We will do this computation up to dimension nC 4p � 4. (It will be clear from the
computation why we restrict ourselves to this range of dimensions. We will continue
this computation in Chap. 4.)

It will be convenient for us (and for the reader) to begin the computation before
we state the final result.
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Fig. 104 The spectral sequence of the fibration L1

p

S1��!CP1

The cohomology of the space K.Zp; 1/ D L1
p is known to us:

Hq.K.Zp; 1/IZ/ D
�

Zp for an even q > 0;
0 for an odd q:

It is easy to see that, in the positive dimensions, there is a multiplicative isomor-
phism

H�.K.Zp; 1/IZ/ Š ZpŒx�; x 2 H2.K.Zp; 1/IZ/:

(This can be proved, for example, in the following way. Consider the spectral

sequence of the fibration L1
p

S1��!CP1 (see Fig. 104). From the product rule,
or, still simpler, from our knowledge of the additive structure of cohomology of
K.Zp; 1/, it follows that all the differentials are multiplications by p. Hence, in
E1, there remains only the zeroth row; hence, the homomorphism H�.CP1IZ/!
H�.K.Zp; 1/IZ/ is onto. The multiplicative structure of H�.CP1IZ/ implies our
statement.)

Consider now the Z-cohomological spectral sequence of the fibration

	 K.Zp;1/��! K.Zp; 2/ . Up to dimensions � 4p, this spectral sequence is sketched in

Fig. 105. From this spectral sequence we see that, up to dimension 4pC 1, the ring
H�.K.ZpIZ/ has the following structure. It has additive generators in dimensions
0; 3; 2pC1; 2pC2; 2pC4; 2pC5; we denote them as 1; y3; y2pC1; y2pC2; y2pC3; y2pC4.
These generators satisfy the relations pyi D 0; y3y2pC1 D y2pC4; y3y2pC2 D y2pC5.

Let us clarify this. The class y3 is, by definition, the transgression image of x.
From d3x D y3, we have

d3x
m D mxm�1y

� ¤ 0; if m is not divisible by p;
D 0; if m is divisible by p:

Since d3xp D 0, the classes xp and xp�1y3 remain in E4, but they cannot survive in
E1 D 0. They can be eliminated only by a differential which maps them into the
zeroth row. Hence, there are y2pC1 and y2pC2 in the zeroth row such that d2pC1xp D
y2pC1 and d2p�1.xp�1y3/ D y2pC2 [the last equality does not contradict the product
rule, because there is neither y3 nor xp�1 in E2p�2, and xp�1y3 is not a product in
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Fig. 105 The spectral sequence of the fibration � K.Zp ;1/�����! K.Zp; 2/

E2p�1]. The classes y2pC1 and y2pC2 must be present in E2 (otherwise, how can they
appear in E2pC1 and E2p�1?). Furthermore, by the product rule,

d3.xy2pC1/ D y3y2pC1 and d3.xy2pC2/ D y3y2pC2;

and these products cannot be zero, since otherwise xy2pC1 and xy2pC2 would have
stayed in E1, which is impossible. We put

y3y2pC1 D y2pC4; y3y2pC2 D y2pC5:

Finally, d3.xmy2pC1/ D mxm�1y2pC4; d3.xmy2pC2/ D mxm�1y2pC5; these differentials
are not zero for k < p, and xpy2pC1 already has the full dimension 4pC1; moreover,

d2pC1.x2p/ D 2xpd2pC1xp D 2xpy2pC1;
d2p�1.x2p�1y3/ D d2p�1.xp � xp�1y3/ D xpy2pC2:

Thus, there are no more elements of E2 of full dimension � 4pC 2 not eliminated
by the differentials d3; d2p�1 and d2pC1.

Now, we will not give the details of such an argumentation, instead restricting
ourselves to a picture.

The spectral sequence of the fibration 	 K.Zp;2/�����!K.Zp; 3/ is shown in Fig. 106.
We see that up to dimension 4pC 2, the ring H�.K.Zp; 3/I Z/ is generated by the
following elements:



382 3 Spectral Sequences of Fibrations

Fig. 106 The spectral sequence of the fibration � K.Zp ;2/�����! K.Zp; 3/

z4; z24; z
3
4; z

4
4; z

5
4; : : : I

z2pC2; z2pC2z4; z2pC2z24; : : : I
z2pC3; z2pC3z4; z2pC3z24; : : :

.dim zm D m/. Notice that some of the elements listed have the same dimension:

dim z
kC pC1

2

4 D dim z2pC2zk
4;

and it could happen that

pz2pC2 D rz
pC1
2

4 ; r 6� 0 mod p;

but it does not happen, since in this case we would have had

0 D .pz4/z2pC2 D z
1C pC1

2

4 ¤ 0:
Hence, all the elements listed have (additive) order p.

The spectral sequence of the fibration 	 K.Zp;3/�����!K.Zp; 4/ is similar to that of the

fibration 	 K.Zp;1/�����!K.Zp; 2/ ; it is shown in Fig. 107. The generators of dimensions
4; 2pC2, and 2pC3 of the ring H�.K.Zp; 3/IZ/ create in H�.K.Zp; 4/IZ/ elements
of dimensions 5; 2pC 3, and 2pC 4, and there arise also [because of the equality
d5.z

p
4/ D 0] entirely new elements of dimensions 4pC 1 and 4pC 2.
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Fig. 107 The spectral sequence of the fibration � K.Zp ;3/�����! K.Zp; 4/

Thus, H�.K.Zp; 4/IZ/ is additively generated in dimensions � 4p C 2 by the
elements

1;w5;w2pC3;w2pC4;w2pC3w5;w2pC4w5;w4pC1;w4pC2:

The further spectral sequences (alternatively, even and odd) are similar to those
above. Moreover, the dimensions of the pth degrees of nonzero elements of E2 will
be too large, and so we will no longer need to care about them. Here is the final
result.

Theorem. For an even n � 2, the ring H�.K.Zp; n/IZ/ in dimensions� nC4p�2
is generated additively by the following elements of order p:

�nC1; �nC2p�1; �nC2p; �nC4p�3; �nC4p�2;

and also �nC1�nC2p�1 and �nC1�nC2p if their dimensions belong to our range. For
an odd n � 3, this ring, in the same dimensions, is additively generated by the
following elements of order p:

�k
nC1 .k � 1/I �k

nC1�nC2p�1 .k � 0/I �k
nC1�nC2p .k � 0/I �nC4p�3; �nC4p�2:
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27.3 A Partial Computation of the Cohomology K.Z;n/
mod p

Theorem. In positive dimensions � n C 4p � 3, the ring H�.K.Z; n/IZp/ is
isomorphic to the ring H�.K.Zp; n � 1/IZ/.

Indeed, there is a multiplicative isomorphism eH�.K.Z; 2/IZp/ŠeH�.K.Zp; 1/IZ/.
On the other side, in the computation of H�.K.Zp; n/I Z/ (Sect. 27.2) we did not
use anything beside the multiplicative structure of H�.K.Zp; 1/IZ/ and general
properties of spectral sequences. Hence, this computation can be applied to the case
of H�.K.Z; n/I Zp/ without any changes.

Remark. We have to warn the reader that the multiplicative arguments alone do
not provide a full computation of the rings H�.K.Zp; n/I Z/ and H�.K.Z; n/IZp/.
Rather soon, there arises a situation when there are several different possibilities for
a differential not contradicting the product rule. (A full computation requires using
“cohomology operations,” which we will study in the next chapter.) In particular,
for n � 3, the rings eH�.K.Z; n/IZp/ and eH�.K.Zp; n� 1/IZ/ are not isomorphic in
all dimensions.

Let us now examine our knowledge of the cohomology H�.K.Z; n/I Z/. Accord-
ing to results of Lecture 26, there are Z-components in dimension n and, for n even,
in dimensions 2n; 3n; : : :. In the transition to H�.K.Z; n/IZp/, the universal coef-
ficients formula converts these Zs into Zps of the same dimensions, which agrees
with our results. But we know some other Zp-components in H�.K.Z; n/IZp/, in
particular, in dimensions n C 2p � 2 and n C 2p � 1. Since these components do
not originate from any Z-components in H�.K.Z; n/IZ/, they have to arise from
(the same) Zps -component in HnC2p�1.K.Z; n/ (as Zps ˝ Z and Tor.Zps ;Z/). We
do not know what s is, but, actually, s D 1, and, moreover, elements of the order
p2 in H�.K.Z; n/IZ/ first appear in dimension n C 2p2 � 1. We leave the proof of
this fact to the reader (who is recommended to begin by considering the integral

cohomological spectral sequence of the fibration 	 K.Z;2/�����!K.Z; 3/ ).

27.4 A Partial Computation of the p-Component
of the Homotopy Groups of Spheres

Theorem. If n � 3, then �nC2p�3.Sn/ 
 Zp; �nC4p�5.Sn/ 
 Zp, and the quotient

�

M4p�5
qD0 �nCq.S

n/

�

ı

.Zp ˚ Zp /

does not contain elements of order p.
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We will prove a weaker statement here. Namely, we will prove that the
p-component of the group

L4p�7
qD0 �nCq.Sn/ is concentrated in �nC2p�3.Sn/ and

equals Zp. To prove the theorem in full, we will need to compute just one more
differential. The reader will be able to fill this gap (and to proceed in computing the
p-components of the groups �nCq.Sn/ to q � p2) after reading the next chapter.

Let us turn to a proof. Consider the case of odd n � 7. In this case, the E2-term
of the cohomological spectral sequence of the fibration

SnjnC1
K.Z;n�1/�����! Sn

with the coefficients in Zp looks as shown in Fig. 108, left. From this spectral
sequence, the cohomology H�.SnjnC1IZp/ in dimensions� nC4p�4 is as follows:

We know that the integral cohomology of the space SnjnC1 is finite in all positive
dimensions. It follows from this fact and from the absence, in the dimensions con-
sidered, of elements of order p2 that the p-components of the integral cohomology
of SnjnC1 look the following way:

The integral homology is the same, only the dimensions nC2p�2 and nC4p�4
should be turned into nC 2p� 3 and nC 4p� 5.

The transition to SnjnC2; SnjnC3, and so on, up to SnjnC2p�3, does not affect
p-components of homology and cohomology, since the fibers of the fibrations
SnjnCq ! SnjnCq�1 with 1 < q � 2p � 3 are K.G;�/-spaces, with G being a finite
group of order prime to p; the positive-dimension homology and cohomology of
these spaces are also finite groups of orders prime to p (see Sect. 27.1). In particular,
the group H2nCp�3.Snj2nCp�3/ contains a componentZp and no other p-components.
Thus, �nCq.Sn/ has no p-components for q < 2p � 3 and the p-component of
�nC2p�3.Sn/ is Zp.

Next, we consider the fibration

It follows from what was done before that K.�nC2p�3.Sn/; n C 2p � 4/ D
K.Zp; n C 2p � 4/ � K.G; n C 2p � 4/, where G is a finite group of order prime
to p. The second factor does not affect p-components, so the p-components in the
integral cohomological sequence of this fibration look as shown in Fig. 108, right.
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Fig. 108 Spectral sequences for computing p-components

This shows that the first p-component in H�.SnjnC2p�2IZ/ can appear in dimension
nC4p�5 (in homology, in dimension nC4p�6). We cannot say more, since we do
not know the action of the differential labeled by the question mark. Actually, this
differential is not trivial, and this is sufficient for the proof of the theorem. But the
proof of this requires using Steenrod powers, which will appear in Chap. 4. What we
can do now is notice that the transitions SnjnC2p�2 ! : : :! SnjnC4p�7 do not affect
p-components, and hence the groups �nCq.Sn/ with 2p � 3 < q < 4p � 6 do not
have p-components.

This settles the case of odd n � 7. The case n D 3 is easier, since we already
know the homology of S3j4 (see Sect. 25.2). The case n D 5 is similar to the case
n � 7, but the computations look slightly different, because p.n� 1/ D 4p. Finally,
the case of even n, which is not much different from the case of odd n but is sort of
more cumbersome, is left to the reader.
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Corollary. The order of the stable homotopy group �S
k (see Sect. 10.4) is not

divisible by p for 1 � k < 2p � 3 and 2p � 3 < k < 4p � 5 and is divisible
by p but not by p2 for k D 2p � 3 and 4p� 5.

Notice that for the proof of this corollary, it is sufficient to know the theorem for
the case of odd n � 7 (which was considered in detail above).

FYI. There is extensive information concerning the p-components of homotopy
groups of spheres. Let us just mention the following result concerning stable
homotopy groups.

Proposition. All nontrivial p-components of �S
k with k � 2p.p�1/�1 are contained

in the following formula:

p-component of �S
k D

8

<

:

Zp; if k D 2i.p � 1/� 1; i D 1; : : : ; p � 1;
Zp; if k D 2p.p� 1/� 2;
Zp2 ; if k D 2p.p� 1/� 1:

The proof of this result, as well as of some further results, is contained in the
classical book by Toda [86]. We can also refer the reader to the later book by Mosher
and Tangora [63].



Chapter 4
Cohomology Operations

Lecture 28 General Theory

28.1 Definitions

Let n; q be two integers and let �;G be two Abelian groups. We say that a
cohomology operation ' of type .n; q; �;G/ is given if for every CW complex X
a map 'XWHn.XI�/ ! Hq.XIG/ is given and is natural with respect to X, in the
sense that the diagram

Hn.XI�/ 'X��! Hq.XIG/
x

?

?

?

?

f �

x

?

?

?

?

f �

Hn.YI�/ 'Y��! Hq.YIG/

is commutative for every continuous map f WX ! Y.
When no confusion is possible, we will abbreviate the notation 'X to '.
Notice that the map 'X is not assumed to be a homomorphism of the group

Hn.XI�/ into the group Hq.XIG/.
Since G is an Abelian group, the set of cohomology operations of the type

.n; q; �;G/ is an Abelian group. We denote this group by O.n; q; �;G/.

28.2 Classification

Theorem. There is a (canonical) isomorphism

O.n; q; �;G/ Š Hq.K.�; n/IG/:

© Springer International Publishing Switzerland 2016
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This beautiful and unexpected statement is actually almost obvious, as we will
immediately see.

Proof of Theorem. Recall that there is a natural bijection Hn.XI�/$ �.X;K.�; n//
between n-dimensional cohomology of X with coefficients in � and homotopy
classes of continuous maps X ! K.�; n/ (see Sect. 18.3). The construction of
this bijection uses a remarkable cohomology class F� 2 Hn.K.�; n/I�/, which
has several equivalent definitions; for example, the universal coefficients formula
isomorphism Hn.K.�; n/I�/ D Hom.Hn.K.�; n//; �/ D Hom.�; �/ connects
F� with id� . Namely, for an ˛ 2 Hn.XI�/, there exists a homotopically unique
continuous map h˛WX ! K.�; n/ such that h�̨.F�/ D ˛. Our bijection is ˛ $ Œh˛�.

Let us assign to a cohomology operation ' 2 O.n; q; �;G/ the cohomology class
'K.�;n/.F�/ 2 Hq.K.�; n/IG/. The formula ' 7! 'K.�;n/.F�/ determines a map
of O.n; q; �;G/ into Hq.K.�; n/IG/, which is, obviously, a group homomorphism.
We will show that it is actually an isomorphism.

Let us first prove that it is one-to-one. Let '; 2 O.n; q; �;G/ and let
'K.�;n/.F�/ D  K.�;n/.F�/. Consider an X and an ˛ 2 Hn.XI�/. Then ˛ D h�̨.F�/
and

'X.˛/ D 'X.h�̨.F�// D h�̨.'K.�;n/.F�//
D h�̨. K.�;n/.F�// D  X.h�̨.F�// D  X.˛/I

thus, ' D  .
Now let us prove that it is onto. Let � 2 Hq.K.�; n/IG/ be arbitrary. We need to

construct a cohomology operation ' 2 O.n; q; �;G/ such that 'K.�;n/.F�/ D � . For
an arbitrary ˛ 2 Hn.XI�/ put 'X.˛/ D h�̨.�/ 2 Hq.XIG/. Since hF� D idK.�;n/,
we have 'K.�;n/.F�/ D h�

K.�;n/.�/ D id� � D � . It remains to show that f'Xg is a
cohomology operation. Let f WX ! Y be a continuous map, and let ˇ 2 Hn.YI�/
be arbitrary. Then hf �ˇ � hˇ ı f [since .hˇ ı f /�.F�/ D f �.h�̌.F�// D f �ˇ] and
'X.f �ˇ/ D h�

f �ˇ.�/ D .hˇ ı f /�.�/ D f �.h�̌.�// D f �.'Y.ˇ/. This completes the
proof.

Corollary. A nonzero cohomology operation does not lower the dimension [that is,
if 0 ¤ ' 2 O.n; q; �;G/, then q � n.]

Indeed, Hq.K.�; n/IG/ D 0 for q < n, since K.�; n/ has no cells of dimension
< n.

Here is an example of a cohomology operation which is not a homomorphism.
Let � be a ring, and let n be an even number. The raising to a square Hn.XI�/ !
H2n.XI�/ is a cohomology operation which, in general, is not a homomorphism (it
certainly is a homomorphism if � D Z2).
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28.3 Examples

We know the cohomology H�.K.�; n/IQ/ for all finitely generated groups � .
In particular, if � is finite, then H�.K.�; n/I Q/ D 0, so there are no non-
trivial cohomology operations from cohomology with finite coefficients into rational
cohomology. If n is odd, then H�.K.Z; n/IQ/ D H�.SnIQ/, so every non-
trivial cohomology operation from odd-dimensional integral cohomology into
rational cohomology preserves dimension and is a fixed rational number times the
homomorphism induced by the inclusion Z ! Q. If n is even, there also appear
operations assigning to an integral cohomology class its powers (rationalized).

Consider now cohomology operations raising the dimension by one. Since
K.Z; n/ has no .n C 1/-dimensional cells, there are no nontrivial cohomology
operations from integral cohomology into any other cohomology raising dimension
by one. The space K.Zp; n/ has precisely one .nC 1/-dimensional cell (obtained by
attaching DnC1 to Sn by a spheroid Sn ! Sn of degree p). Thus, HnC1.K.Zp; n/IZp/

is, at most, Zp, so there is, up to a multiplication by a constant, at most one
cohomology operation of the type .n; nC1;Zp;Zp/. But we know such an operation:
the Bockstein homomorphism (see Sect. 15.3). Thus, the Bockstein homomorphism
(up to a multiplication by a constant) is the only cohomology operation in mod p
cohomology raising dimension by one.

EXERCISE 1. Prove that any cohomology operation of type .n; nC 1;C;A/ (where
C and A are Abelian groups) is the connecting homomorphism in the coefficient
exact sequence corresponding to some short exact sequence 0! A! B! C! 0.

28.4 Stable Cohomology Operations

A: Definition

A stable cohomology operation of type .r; �;G/ is a sequence of cohomology
operations 'n 2 O.n; nC r; �;G/; n D 1; 2; 3; : : : ; such that for every X and every
n the diagram

Hn(X; π)
(ϕn)

X−−−−−→ Hn+r(X; G)⏐⏐⏐	 Σ
⏐⏐⏐	 Σ

Hn+1(ΣX; π)
(ϕn+1)ΣX−−−−−→ Hn+r+1(ΣX; G)

(where† is the suspension isomorphism) is commutative.
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The set (Abelian group) of all stable cohomology operations of type .r; �;G/ is
denoted as StabO.r; �;G/.

For example, the different versions of the Bockstein homomorphism (Sect. 15.3)
are stable cohomology operations of types .1;Zp;Z/ and .1;Zp;Zp/.

B: Relations with the Cohomology Sequence of a Pair

Theorem. A stable cohomology operation is compatible with a cohomology
sequence of a CW pair; that is, for every CW pair .X;A/ and every stable
cohomology operation ' D f'ng 2 StabO.r; �;G/ the diagram

Hn+r(X ; G) Hn+r(A; G) Hn+r+1(X, A; G) Hn+r+1(X ; G)

Hn(X ; π) Hn(A; π) Hn+1(X, A; π) Hn+1(X ; π)
.................................................................................................................................................................
................
................
................

i∗

i∗

δ∗

δ∗

j∗

j∗

(ϕn)X (ϕn)A (ϕn+1)(X,A) (ϕn+1)X

is commutative.

(Here .'nC1/.X;A/ means .'nC1/.X=A/.)

Proof. We need to check the commutativity only for the middle square. But it is
obvious that ı�WHn.AI�/ ! HnC1.X;AI�/ D HnC1.X=AI�/ is the same as the
composition

Hn.AI�/ †��!HnC1.†AI�/ p�

��!HnC1.X [ CAI�/ D HnC1.X=AI�/;

where p is the projection X [ CA ! .X [ CA/=X D †A (and the last equality
arises from the canonical homotopy equivalence X [ CA � X=A) and similarly for
ı�WHnCr.AIG/ ! HnCrC1.X;AIG/. It remains to recall that a stable cohomology
operation commutes with both p� and †.

C: Relations with Transgression

Let us point out an important corollary of the last theorem. Let .E;B;F; p/ be a
fibration with a simply connected base, and let � be a stable cohomology operation
of the type .r; �;G/. Suppose that the cohomology class ˛ 2 Hq.FI�/ D E0q

2

is transgressive, that is, d2˛ D d3˛ D � � � D dq˛ D 0. Then the class �q.˛/ 2
HqCr.FIG/ D E0;qCr

2 is also transgressive, that is, d2'q.˛/ D d3'q.˛/ D � � � D
dqCr'q.˛/ D 0. Moreover, if �.˛/ D dqC1˛ 2 EqC1;0

2 D HqC1.BI�/=Ls
q Im ds

contains ˇ 2 HqC1.BI�/, then �.'q.˛// contains 'qC1.ˇ/ 2 HqCrC1.BIG/.
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(Less precisely, but more sonorously, this can be expressed by the words stable
cohomology operations commute with transgression.)

All this follows from the presentation of transgression as a composition

Hq.FI�/ ı�

��!HqC1.E;FI�/ .p
�/�1�Ü HqC1.B; ptI�/ D HqC1.BI�/

(see Sect. 23.3) and the fact that ' commutes with both ı� and p�: The inclusion ˇ 2
�.˛/ means that p�.ˇ/ D ı�.˛/; but then p�.'.ˇ// D '.p�.ˇ// D '.ı�.˛// D
ı�.'.˛/, which means that '.ˇ/ 2 �.'.˛//.

D: Classification

A stable cohomology operation � of the type .r; �;G/ is a sequence

'n 2 O.n; rC n; �;G/ D HrCn.K.�; n/IG/:

The condition of commuting with † means that fn.'n/ D 'n�1, where fn is the
composition

HrCn.K.�; n/IG/ i�n��!HrCn.†K.�; n � 1/IG/
†�1

��!HrCn�1.K.�; n � 1/IG/;

where, in turn, the map inW†K.�; n � 1/ ! K.�; n/ is determined by the
condition that i�n F� D †F� [the two F�s in the last formula lie, respectively, in
Hn.K.�; n/I�/ and Hn�1.K.�; n � 1/I�/]. Thus, in the language of algebra,

StabO.r; �;G/ D  ��lim .HrCn.K.�; n/IG/; fn/;

the inverse (projective) limit of the sequence

: : :
f4��!HrC3.K.�; 3/IG/ f3��!HrC2.K.�; 2/IG/

f2��!HrC1.K.�; 1/IG/

[recall that the inverse limit
 ��
lim .Gn; fn/ of a sequence

: : :
f4��!G3

f3��!G2

f2��!G1

of groups and homomorphisms is the group of sequences fgn 2 Gng such that
fn.gn/ D gn�1 for all n]. Our case is relatively simple: We know that if n >

r C 1, then the homomorphism fnWHrCn.K.�; n/IG/ ! HrCn�1.K.�; n � 1/IG/
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is an isomorphism (it is inverse to the transgression in the spectral sequence of

the fibration 	 K.�;n�1/�����!K.�; n/ ). For this reason,
 ��
lim .HrCn.K.�; n/IG/; fn/ D

HrCN.K.�;N/IG/ for N big enough (actually, for N � rC 1).
We will say that a cohomology group (or a cohomology class) of K.�; n/ has a

stable dimension if its dimension < 2n; otherwise, we say that it has a nonstable
dimension.

E: The Algebra of Stable Operations (the Steenrod Algebra)

The multiplicative structure in H�.K.�; n/IG/ (where G is a ring) does not deter-
mine any multiplication for stable operations (a product of two cohomology classes
of stable dimensions never has a stable dimension). However, the composition
product turns

L

r	0 StabO.r;G;G/ into a graded ring, whether G is a ring or
not. This ring of stable operations is a unitary associative ring, in general, not
commutative. Notice that the cohomology H�.XIG/ becomes a (graded) module
over this ring, and all induced homomorphisms f �.YIG/ ! H�.XIG/ become
module homomorphisms.

If G is a field, then the ring of stable cohomology operations becomes an algebra.
If G D Zp, then this algebra is called the Steenrod algebra and is denoted as Ap. In
the next lectures, we will study the structure of the Steenrod algebra in all details
(especially for p D 2).

Lecture 29 Steenrod Squares

29.1 An Introduction

We begin with a construction of some important elements of the Steenrod algebra
A2 which are called Steenrod squares. Steenrod squares Sqi are stable cohomology
operations which are additive homomorphisms

SqiWHn.XIZ2/! HnCi.XIZ2/:

They are defined for all i � 0 and possess the following properties (in addition to
the properties required by the definition of stable cohomology operations):

(1)

Sqi ˛ D
8

<

:

0; if i > dim˛;
˛2; if i D dim˛;
˛; if i D 0:



396 4 Cohomology Operations



29.2 Theorem of Existence and Uniqueness for Sqi 397

(2) The following Cartan’s multiplication formula holds:

Sqi.˛ � ˇ/ D
X

pCqDi

Sqp ˛ � Sqq ˇ:

Remark. Consider the map Sq D Sq0CSq1CSq2C : : : WH�.XI Z2/! H�.XIZ2/
[thus, for ˛ 2 Hn.XIZ2/, Sq ˛ D ˛CSq1 ˛C� � �CSqn�1 ˛C˛2]. Cartan’s formula
means that Sq.˛ � ˇ/ D Sq˛ � Sqˇ; that is, Sq is a multiplicative homomorphism.

Add to this that since Sq1 is not zero (Sq1 ˛ D ˛2 for dim˛ D 1), it must be the
Bockstein homomorphism (see Sect. 28.3).

29.2 Theorem of Existence and Uniqueness for Sqi

We will prove the existence and uniqueness of stable cohomology operations which
satisfy the properties listed above. Moreover, we will see that the uniqueness follows
from stability and property (1), and then we will prove Cartan’s formula as a
theorem.

Denote the fundamental class in Hn.K.Z2; n/IZ2/ by en. We need to define Sqi en

for all i and n. For n D 1 the definition is contained in property (1) [Sq0 e1 D
e1; Sq1 e1 D e21; Sqie1 D 0 for i > 1]. Suppose that we have already defined Sqien�1

for all i. Consider the spectral sequence of the fibration 	 K.Z2;n�1/�����!K.Z2; n/ .
For i < n � 1, the transgression provides an isomorphism

d0;nCi�1
nCi WHnCi�1.K.Z2; n � 1/IZ2/! HnCi.K.Z2; n/IZ2/I

we take the image of Sqi en�1 for Sqi en. Hereby, Sqi en is defined for i < n � 1. As
to i D n� 1, we have to observe the differential d0;2n�2

n WE0;2n�2
n ! En;n�1

n ; however,
d0;2n�2

n Sqn�1 en�1 D d0;2n�2
n .e2n�1/ D 2en�1d0;2n�2

n .en�1/ D 0, so Sqn�1 en�1
belongs to the domain of the differential

d0;2n�2
2n�1 WE0;2n�2

2n�1 ! E2n�1;0
2n�1 D H2n�1.K.Z2; n/IZ2/;

and we take d0;2n�2
2n�1 .Sqn�1 en�1/ for Sqn�1 en. Finally, we (have to) put Sqn en D e2n

and Sqi en D 0 for i > n.
Thus,

Sqi en 2 HnCi.K.Z2; n/IZ2/

is defined for all i and n, and Sq0 en D en;Sqn en D e2n;Sqi en D 0 for i > n. It
remains to check that the homomorphism

fnWHnCi.K.Z2; n/IZ2/! HnCi�1.K.Z2; n � 1/IZ2/

(see Sect. 28.4.D) takes Sqi en into Sqi en�1.
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Fig. 109 Construction of Steenrod squares

For i > n, we have nothing to prove: Sqi en and Sqi en�1 are both zeroes.
For i < n, the statement is true, since fn is inverse to the transgression in the
spectral sequence of Fig. 109, and this transgression takes Sqi en�1 into Sqi en

by our construction. The remaining case is i D n. But Sqn en D e2n and
Sqn en�1 D 0. The map fnWH2n.K.�; n/IZ2/ ! H2n�1.K.�; n � 1/IZ2/ factors
through i�n WH2n.K.�; n/IZ2/! H2n.†K.�; n � 1/IZ2/, and the latter takes e2n into
zero, since the multiplication in the cohomology of any suspension is trivial (see the
proof below). Hence, fn.Sqn en/ D fn.e2n/ D 0 D Sqn en�1.

To finish the proof, notice that for any space X, the diagonal map �W†X !
†X�†X is homotopic to a map taking†X into†X_†X: The homotopy htW†X !
†X �†X is defined by the formula ht.x/ D .'t.x/;  t.x//, where 't;  tW†X ! †X
are two homotopies of the identity map .'0 D  0 D id†X/ such that '1.C1X/ D
x0;  1.C2X/ D x0, where C1X;C2X are two cones composing †X and x0 2 †X is
an (arbitrarily chosen) base point. On the other hand, the cross-product of any two
cohomology classes of X of positive dimensions has zero restriction to†X_†X (at
least in the case when X is a CW complex). Hence, in the cohomology of †X, the
cup-product of any two classes of positive dimensions is zero.

29.3 Proof of Cartan’s Formula

We need to prove that for every CW complex X, every nonnegative integer i, and
every ˛; ˇ 2 H�.XIZ2/,

Sqi.˛ � ˇ/ D
X

pCqDi

Sqp ˛ � Sqq ˇ: (	)
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We can assume that ˛ 2 Hm.XIZ2/; ˇ 2 Hn.XIZ2/. There are some cases in which
the formula (	) is obvious. First, if m D 0 or n D 0, then the left-hand side and
the right-hand side of the equality (	) are simply the same (so we can assume that
m > 0 and n > 0). Second, if i > mCn, then both parts of the equality are zeroes: If
pCq > mCn and both p and q are nonnegative, then either p > m or q > n. Finally,
if i D mC n, then Sqi.˛ � ˇ/ D .˛ � ˇ/2 and the only potentially nonzero summand
on the right-hand side is Sqm ˛ � Sqn ˇ D ˛2ˇ2. Assume now that the formula (	)
has been proven for i > mC n � s .s > 0/ and prove it for i D mC n � s.

The formula which we want to prove is equivalent to the equality

SqmCn�s.˛ � ˇ/ D
X

pCqDmCn�s

Sqp ˛ � Sqq ˇ;

where ˛ 2 Hm.XIZ2/; ˇ 2 Hn.YIZ2/ and X;Y are CW complexes. The coho-
mology classes in the equality are in H2.mCn/�s.X � YIZ2/, but we have the right
to replace the product X � Y by the smash product X#Y D X � Y=X _ Y: Since
m > 0 and n > 0, the class ˛ � ˇ 2 HmCn.X � YIZ2/ is the image of the class
˛ � ˇ 2 HmCn.X#YIZ2/ with respect to the cohomology homomorphism induced
by the projection X � Y ! X#Y, so the formula for X#Y will imply the formula for
X �Y. And finally the most important remark: We do not need to prove our formula
for arbitrary X;Y; ˛; ˇ: It is sufficient to consider the case when X D K.Z2;m/
(which, to make our formulas shorter and better-looking, we will abbreviate to Km),
Y D Kn, and ˛ D em; ˇ D en.

Consider the maps

[where im; in are determined by the relations i�m.em/ D †em�1; i�n .en/ D †en�1;
compare with Sect. 28.4.D]. There arise cohomology homomorphisms

or
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Note some properties of the last two maps. First, if ˛ and ˇ are cohomology
classes of Km and Kn, then these two homomorphisms map ˛ � ˇ into, respectively,
fm.˛/ � ˇ and ˛ � fn.ˇ/; in particular, they take em � en in, respectively, em�1 � en

and em � en�1. Second, they both commute with all Steenrod squares (as well
as fm and fn). And third, if some � 2 Hr.Km#KnIZ2/ is annihilated by both
homomorphisms and r < 2.mCn/, then � D 0. The first two statements are already
known to us, so let us prove the third. Let � DP.˛i � ˇi/. We can assume that the
˛i are linearly independent, as well as the ˇi. Indeed, if, say, some ˛i0 is a linear
combination of other ˛i, then we can reduce the number of summands in the sum
P

i.˛i�ˇi/ D � by distributing the summand ˛i0 �ˇi0 among the other summands.
Thus, if the number of summands in our presentation of � is the minimum possible,
then there cannot be any linear dependence between the ˛i as well as between the
ˇi. Let � D P

i.˛i � ˇi/ be a presentation with this property. Our two maps take
� into, respectively,

P

i fm.˛i/ � ˇi and
P

i ˛i � fn.ˇi/, and if both are zeroes, then
fm.˛i/ D 0 and fn.ˇi/ D 0 for all i. But if a nonzero ˛ 2 Hr.KmIZ2/ is annihilated by
fm, then r � 2m (the first cohomology class with this property is e2m), and similarly
for ˇ 2 Hr.KnIZ2/. Hence, if a nonzero � is annihilated by both homomorphisms,
then dim � � 2.mC n/.

Now, let us return to Cartan’s formula. The difference

SqmCn�s.em � en/�
X

pCqDmCn�s

Sqp em � Sqq en

is taken by our homomorphisms into, respectively,

SqmCn�s.em�1 � en/�
X

pCqDmCn�s

Sqp em�1 � Sqq en;

SqmCn�s.em � en�1/ �
X

pCqDmCn�s

Sqp em � Sqq en�1:

Both are zeroes by the induction hypothesis [because mC n � s D .m � 1/C n �
.s�1/ D mC .n�1/� .s�1/], and, according to the observation made above, this
shows that

SqmCn�s.em � en/ �
X

pCqDmCn�s

Sqp em � Sqq en D 0

[since the dimension of the expression on the left-hand side is 2.m C n/ � s <
2.mC n/]. This completes the proof.
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Lecture 30 The Steenrod Algebra

30.1 The Structure of the Steenrod Algebra A2:
The Statements

The Steenrod algebra A D A2 is the algebra of all stable cohomology operations
over the field Z2 where the multiplication is defined as the composition. In this
section we will give a full algebraic description of A; proofs of these statements
will be given in subsequent sections.

It turns out that the algebra A is multiplicatively generated by Steenrod squares
Sqi; that is, every stable cohomology operation in Z2-cohomology is a linear
combination of iterations of Steenrod squares.

However, the Steenrod squares do not form a free system of multiplicative
generators: There are relations between them. In particular, an additive basis of the
algebra A is not formed by all iterations of Steenrod squares, but only by iterations

SqI D Sqi1 Sqi2 : : : Sqik

for which the sequence I D fi1; i2; : : : ; ikg satisfies the conditions

i1 � 2i2; i2 � 2i3; : : : ; ik�1 � 2ik

(such sequences are usually called admissible sequences, and the corresponding
iterations of Steenrod squares are called admissible iterations).

The multiplicative structure of A is determined by the so-called Adem relations
(see Adem [11]): If a < 2b, then

Sqa Sqb D
X

c

 

b � c � 1
a � 2c

!

SqaCb�c Sqc

[obviously, c in this sum varies from max.a � b C 1; 0/ to
ja

2

k

]. Notice that all

the iterations on Steenrod squares on the right-hand side of the Adem relation are
admissible: If a�2c � 0 and b�c�1 � 0, then aCb�c � 2cCcC1�c D 2cC1.
It is clear that using the Adem relations, one can reduce any iteration of Steenrod
squares to a linear combination of admissible iterations. Indeed, let us order all
the iterations of Steenrod squares lexicographically (fi1; i2; : : : g � fj1; j2; : : : g if for
some m, i1 D j1; : : : ; im�1 D jm�1; im > jm). Consider any iteration Sqi1 Sqi2 : : : Sqik .
If (for some m) im < 2imC1, then replace Sqim SqimC1 by the expression in the Adem
relation. Then our iteration becomes a linear combination of lexicographically
preceding iteration. Repeat this until we get a linear combination of admissible
iterations.

We will discuss corollaries of the Adem relations after we prove them
(Sect. 30.5).
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In conclusion, let us formulate the main technical result of this lecture. To do so,
we need one more definition. Let I D fi1; i2; : : : ; ikg be an admissible sequence. The
excess of I; exc I, is defined by the formula

exc I D .i1 � 2i2/C � � � C .ik�1 � 2ik/C ik D i1 � .i2 C � � � C ik/:

(In particular, the empty iteration is an admissible iteration of excess 0; Sqi is an
admissible iteration of excess i.)

Theorem. H�.K.Z2; n/IZ2/ is a polynomial algebra with the generators SqI en for
all admissible sequences I D fi1; : : : ; ikg with exc I < n.

This theorem belongs to J.-P. Serre [77]. It shows that all cohomology operations
acting in the cohomology modulo 2 are linear combinations of products of admis-
sible iterations of Steenrod squares, and these products are linearly independent.
For example, all cohomology operations H2.XIZ2/ ! H5.XIZ2/ are linear
combinations of (linearly independent) operations x 7! Sq2 Sq1 x; x 7! x � Sq1 x.

Serre’s theorem will be proven in Sect. 30.3. The main technical tool of this proof
(and many other proofs) is a theorem on spectral sequences, which we will prove in
the next section.

30.2 Borel’s Theorem

Suppose that there is a fibration .E;B;F; p/ with a simply connected base and the
following properties.

(1) eH�.EIZ2/ D 0.
(2) The algebra H�.FIZ2/ has a system of transgressive generators ai 2

Hmi.FIZ2/; m1 � m2 � : : : .
(3) Moreover, this system is simple in the sense that the monomials ai1ai2 : : : aik ; i1

< i2 < � � � < ik form an additive basis in H�.FIZ2/.
Theorem (Borel A. [22]). If conditions .1/ � .3/ are met, then H�.BIZ2/ is a
polynomial algebra with generators bi 2 HmiC1.BIZ2/, where the bi are arbitrary
representatives of �.ai/.

Proof of Theorem. We will construct some abstract spectral sequence, feEpq
r ;
edpq

r g,
with properties .1/–.3/, and then we will show that this abstract spectral sequence
coincides with the spectral sequence of our fibration.

Let eA D H�.FIZ2/ and eB D Z2Œb1; b2; : : : �, where the generators bi correspond
to the generators ai of eA and dim bi D miC1 (where mi D dim ai). Let eE2 D eA˝Z2

eB
(with the natural bigrading).

Now, we define the differentialsedr as acting in eE2. We putedrbi D 0 for all r,
edrai D 0 for r � mi (this means that every ai is transgressive), and dmiC1ai D bi.
Thus (if i1 � � � < ik; j1 < � � � < j`; si > 0),
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edr.ai1 : : : aik ˝ bs1
j1
: : : bs`

j`
/

D
(

ai2 : : : aik ˝ bi1b
s1
j1
: : : bs`

j`
; if i1 � j1 and r D mi1 C 1;

0 in all other cases:

Obviously, edr ıeds D 0 for any r and s, and for this reason the differentials edr

give rise to an (additive) spectral sequence. Namely, we put eE3 D Kered2= Imed2.
Then, sinceed3 commutes withed2, we can considered3 as acting in eE3, then we put
eE4 D Kered3= Imed3, and so on. We obtain an additive spectral sequence feEr;edrg,
and, obviously eE1 D eE001 (for every element ˛ of the additive basis of eE2, either
edr˛ ¤ 0 for some r, or ˛ 2 Imeds for some s).

Next, we want to show that the spectral sequence feEr;edrg is actually multiplica-
tive; that is,

edr.AA0/ D .edrA/A
0 C A.edrA

0/ (	)

for any monomials A;A0 in ai and bj (no minus signs, because everything is overZ2).
Only one difficulty arises here: If

A D ai1 : : : aik ˝ bs1
j1
: : : bs`

j`
;

A0 D ai01
: : : ai0

k0

˝ b
s0

1

j01
: : : b

s0

`0

j0
`0
;

then the product AA0 may contain an ai with i less than both i1 and i01 (this may arise
from the square of an ah, which appears in both A and A0). This does not happen,
however, because for any ai from our system of generators of H�.FIZ2/, the square
a2i is a sum like ah1 C � � � C ahm , not involving products ag1 : : : ags with s � 2. This
does not follow from the definition of a simple system of generators, but follows
from the existence of a fibration with the fiber F and eH�.EIZ2/ D 0; indeed, if a2i
involves a monomial ag1 : : : ags with s � 2, and g1 is the smallest index in all such
monomials, then g1 < i and in the spectral sequence of our fibration (actual, not
artificial) 0 D dg1.a

2
i / D dg1 .� � �C.ag1 : : : ags/C: : : / D � � �C.bg1ag2 : : : ags/C� � � ¤

0, a contradiction. This shows that the squares of ais from AA0 involve only ahs with
h > i, and hence AA0 does not contain ais with i < min.i1; i01/. After this remark,
checking the equality (	) is immediate. [Indeed, if i1 < i01, then edmi1C1.A0/ D 0

and edmi1C1.AA0/ D .edmi1C1A/A0, and if i1 D i01, then edmi1C1.AA0/ D 0 and
.edmi1C1A/A0 D A.edmi1C1A0/, so .edmi1C1A/A0 C A.edmi1C1A0/ D 0; in all other cases,
both sides of (	) are zeroes.]

Almost nothing remains. We have two multiplicative spectral sequences, fEr; drg
and feEr;edrg. Both of them have a trivial limit term, the E2-terms have the same
zeroth column, and there is a canonical multiplicative map of the zeroth row of
eE2 into the zeroth row of E2. Suppose that this map is not an isomorphism; this
means that either H�.BIZ2/ has an element which is not a polynomial in bis [let
c 2 Hm.BIZ2/ be such an element of the smallest dimension], or in H�.BIZ2/
there is a relation between bis [let P.b1; b2; : : : / D 0 be such a relation with the
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smallest possible dimension of the left-hand side]. In both cases we have an easy
contradiction: In the first case, the spectral sequence fEr; drg has nothing to kill
c, and it has to stay in E1; in the second case, the spectral sequence feEr;edrg has
nothing to kill P.b1; b2; : : : /, and it has to stay in eE1.

This completes the proof of Borel’s theorem.

30.3 Proof of Serre’s Theorem

We use the induction with respect to n. The case n D 1 is simple: Only the empty
sequence I has the excess 0, and H�.K.Z2; 1/IZ2/ D H�.RP1IZ2/ D Z2Œe1�.
Assume that n � 2 and H�.K.Z2; n � 1/IZ2/ D Z2ŒSqI en�1 j exc I < n � 1�
(the notation exc I means that I is admissible; we never state the admissibility
of a sequence separately). As we have remarked before, the system of generators
fSqI en�1g is not simple; to make it simple, we need to extend it to

fSqI en�1; .SqI en�1/2; .SqI en�1/4; � � � j exc I < n � 1g;

which is the same as

fSqI en�1;SqjIjCn�1 SqI en�1;Sq2.jIjCn�1/ SqjIjCn�1 SqI en�1;

Sq4.jIjCn�1/Sq2.jIjCn�1/SqjIjCn�1SqIen�1; � � � j exc I < n � 1g: (		)

Lemma. The system (		) is the same as fSqJ en�1 j exc J < ng.
Proof of Lemma. If I D fi1; : : : ; ikg, then, for

J D f2`.jIj C n � 1/; 2`�1.jIj C n � 1/; : : : ; 2.jIj C n � 1/;
jIj C n � 1; i1; : : : ; ikg; ` > 0;

we have

exc J D Œ2`.jIj C n � 1/ �2 � 2`�1.jIj C n � 1/�C : : :
CŒ2.jIj C n � 1/� 2 � .jIj C n � 1/�

„ ƒ‚ …

zero

C.jIj C n � 1 � 2i1/C .i1 � 2i2/C � � � C .ik�1 � 2ik/C ik
D jIj C n � 1 � jIj D n � 1:

Since [in (		)] exc I < n � 1 < n, we see that all members of the system (		) have
exc < n.

Prove now that every SqJ en�1 with exc J < n is contained in (		). Indeed, let
J D fj1; : : : ; jmg; exc J < n. If exc J < n� 1, then SqJ en�1 is contained in (		). Let
exc J D n � 1. Consider the sequence
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j1 � 2j2; j2 � 2j3; : : : ; jm�1 � 2jm; jm:

This is a sequence of nonnegative numbers with a positive sum, n � 1. Let the first
positive term of this sequence be js � 2jsC1 (we put, if necessary, jmC1 D 0). Put
I D fjsC1; : : : ; jmg. Then

n � 1 D exc J D .js � 2jsC1/C � � � C .jm�1 � 2jm/C jm
D js � jsC1 � � � � � jm D js � jIj;

so js D jIj C n � 1, and

J D f2s�1.jIj C n � 1/; : : : ; 2.jIj C n � 1/; jIj C n � 1; jsC1; : : : ; jmg;

so SqJ en�1 is in (		).
The lemma is proved, so let us return to the theorem. Consider the Z2-

cohomological spectral sequence of the fibration 	 K.Z2;n�1/�����!K.Z2; n/ . Since en�1 2
E0;n�1
2 is transgressive, and �.en�1/ D en 2 En0

2 , all elements of the system (		) are
transgressive, and its image with respect to the transgression is represented by the
system fSqJ en; exc J < ng (we use the lemma and the fact that all Steenrod squares
commute with the transgression; see Sect. 28.4.C). Thus, Borel’s theorem can be
applied, and it shows that H�.K.Z2; n/IZ2/ is a polynomial algebra generated by
SqJ en for all admissible sequences J with exc J < n, as was stated.

30.4 The Structure of the Steenrod Algebra (Modulo 2)

As was shown in Sect. 28.4, additively, Aq
2 D
 ��
lim nHnCq.K.Z2; n/IZ2/. Combining

this with Serre’s theorem, we arrive at the following result.

Theorem. The Steenrod algebra A2 is additively generated by admissible iterations
SqI (without restrictions on excesses).

Thus, all stable cohomology operations in the cohomology with coefficients in
Z2 are sums of iterations of Steenrod squares. Moreover, we see that there must
exist many relations between these iterations, since an arbitrary iteration is equal to
a sum of admissible iterations. We begin by studying these relations.



30.5 Relations 407

30.5 Relations

A: A Method of Finding Relations: the Splitting Principle

Suppose that we are given a certain (noncommutative) polynomial in Steenrod
squares, P.Sq1;Sq2; : : : /. How can we prove that it is equal to zero? Theoretically,
we need to prove the equality P.Sq1;Sq2; : : : /x D 0 for every cohomology class
x 2 Hn.XIZ2/ of every, say, CW complex X. Visibly, there arise two difficulties,
and each of them seems to be a dead end. First, how do we observe all cohomology
classes of all CW complexes? Second, even for an individual x, how do we compute
SqI x for an iteration SqI of Steenrod squares?

The second difficulty does not exist in the case when x is a product of one-
dimensional cohomology classes: Then SqI x can easily be found with Cartan’s
formula. And it turns out that we actually do not need anything else. Here is an
explanation.

Let P D RP1 � � � � �RP1
„ ƒ‚ …

N

. Then H�.P IZ2/ D Z2Œx1; : : : ; xN � with the

generators xi 2 H1.P IZ2/ coming from the ith factor RP1. Let u D uN D
x1 : : : xN 2 HN.P IZ2/.
Theorem. Let ' D P.Sq1;Sq2; : : : / D P

j SqIj be a polynomial in Steenrod
squares, and let N � jIjj for all j. If '.uN/ D 0, then ' D 0 [that is, '.x/ D 0

for any x 2 H�.XIZ2/ and any X].

Proof. We want to prove that if q � N, then the map �WAq D A
q
2 ! HNCq.P IZ2/,

�.'/ D '.u/, is a monomorphism. Let B
q D �.Aq/ � HNCq.P IZ2/ D

Z2Œx1; : : : ; xN �
NCq. All we need is to prove that dimZ2 A

q D dimZ2 B
q; we will do

this by a computation of both dimensions.
Let us begin with B

q. First, for any (not necessarily even stable) cohomology
operation  2 O.N;N C q;Z2;Z2/, the polynomial  .u/ 2 Z2Œx1; : : : ; xN � is
symmetric; indeed, the map � WP ! P defined as a permutation of the factors
RP1 takes u into U, and hence takes  .u/ into  .u/. Second,  .u/ is divisible
by u. Indeed, let Pi be the product of RP1s obtained from P by deleting the
ith factor. The inclusion map "iWPi ! P induces a map "�

i WZ2Œx1; : : : ; xN � !
Z2Œx1; : : :bxi : : : ; xN �, which acts to put xi D 0. This map takes u into 0, hence takes
 .u/ into 0; thus,  .u/ is divisible by every xi; that is, it is divisible by u. In one
word,  .u/ D u � s.x1; : : : ; xn/, where s is a symmetric polynomial.

EXERCISE 1. Prove that if q � N, then Sqq.u/ D u � eq.x1; : : : ; xN/, where eq is the
qth elementary symmetric polynomial [if q > N, then, certainly, Sqq.u/ D 0].

Let us call a polynomial from Z2Œx1; : : : ; xN � special if every monomial in this
polynomial has the form

x2
k1

1 x2
k2

2 : : : x2
kN

N
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(in particular, any special polynomial is divisible by u).

Lemma. B
q is the same as the set of symmetric special polynomials of degree NCq.

Proof of Lemma. First, let us notice that if dim x D 1, then Sqi xm D
 

m

i

!

xmCi;

indeed, Sq x D xC x2 D x.1C x/, and hence Sq.xm/ D .Sq x/m D xm.1C x/m D
m
X

iD0

 

m

i

!

xmCi. In particular,

Sqi
�

x2
k
�

D

8

ˆ
<

ˆ
:

x2
kC1
; if i D 2k;

x2
k
; if i D 0;

0 in all other cases:

Thus,

Sqi
�

x2
k1

1 x2
k2

2 : : : x2
kN

N

�

D
X

i1C���CikDi

Sqi1
�

x2
k1

1

�

Sqi1
�

x2
k2

2

�

: : : Sqi1
�

x2
kN

N

�

is a special polynomial which shows that every SqI takes special polynomials into
special polynomials. Since u is a special polynomial, we see that Bq consists of
symmetric (see a notice above) special polynomials.

Let us prove now that every symmetric special polynomial of degree N C q
belongs to B

q. The space of symmetric special polynomial of degree N C q has
a basis formed by the symmetrized monomials

Symm
�

x2
k

1 : : : x
2k

n1x
2k�1

n1C1 : : : x
2k�1

n2 : : : x2nk�1C1 : : : x
2
nk

xnkC1 : : : xN

�

; (	)

where 1 � n1 � n2 � � � � � nk � N and

n1.2
k � 1/C .n2 � n1/.2

k�1 � 1/C � � � C .nk � nk�1/ D q:

Let us order the monomials like the one in parentheses in (	) lexicographically.
Consider

Sq2
k�1n1 Sq2

k�2n2 : : : Sq2nk�1 Sqnk .u/:

This polynomial contains the monomial in (	) plus an amount of symmetrized
monomials which are lexicographically behind the monomial in (	). [Indeed, when
we apply Sqnk to u, we get precisely

Symm.x21 : : : x
2
nk

xnkC1 : : : xN/:
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Then we apply Sq2 nk�1 to this and get

Symm.x41 : : : x
4
nk�1

x2nk�1C1 : : : x
2
nk

xnkC1 : : : xN/

plus a variety of lexicographically smaller terms. And so on.] This shows that
the systems (	) and SqI u are related by a lower triangular matrix with 1s on the
diagonal, which provides the result we are looking for.

Thus, the lemma has been proven. Let us return to the theorem. The lemma shows
that the dimension of Bq is the number of partitions of q such that every part in
a power of 2 minus 1. On the other hand, the dimension of Aq is the number of
admissible sequences I with jIj D q. Let fi1; i2; : : : ; ikg be an admissible sequence
and let i1 C i2 C � � � C ik D q. Put ji D i1 � 2i2; j2 D i2 � 2i3; : : : ; jk�1 D ik�1 �
2ik; jk D ik. The statement that the given sequence is admissible means that all
js are nonnegative. These nonnegative numbers, arbitrarily chosen, determine the
admissible sequence. Express i in terms of j:

Summing up these equalities, we get

q D j1 C 3j2 C � � � C .2k�2 � 1/jk�2 C .2k�1 � 1/jk�1 C .2k � 1/jk

D
k
X

sD1
.2s � 1/js:

Hence, the dimension of Aq is also the number of partitions of q such that every part
in a power of 2 minus 1. Thus, dimA

q D dimB
q, which completes the proof of the

theorem.

B: Examples of Relations

The previous theorem paves a road to finding relations in the Steenrod algebra. Here
is the first example: Obviously,

Sqn.u/ D Symm.x21 : : : x
n
2xnC1 : : : xN/

and

Sq1 Sqn.u/ D .nC 1/ Symm.x21 : : : x
2
nC1xn2 : : : xN/:
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Thus,

Sq1 Sqn D
�

SqnC1; if n is even;
0; if n is odd:

Or,

Sq2 Sq2.u/ D Sq2 Symm.x21x
2
2x3 : : : xN/

D Symm.x41x
2
2x3 : : : xn/C 6 Symm.x21x

2
2x
2
3x
2
4x5 : : : xN/;

Sq3Sq1.u/ D Sq3 Symm.x21x2 : : : xN/

D Symm.x41x
2
2x3 : : : xn/C 4 Symm.x21x

2
2x
2
3x
2
4x5 : : : xN/;

which shows that Sq2Sq2 D Sq3Sq1.

C: Adem’s Relations

We already mentioned in Sect. 30.1 that a complete system of relations between the
Steenrod squares is formed by the so-called Adem’s relation: If a < 2b, then

Sqa Sqb D
Œa=2�
X

cDmax.a�bC1;0/

 

b � c � 1
a � 2c

!

SqaCb�c Sqc :

To prove this relation, we need only to check that the left- and right-hand sides take
equal values on u 2 HN.P IZ2/ (where N � aC b). Both values can be calculated
by means of Cartan’s formula. The left-hand side takes u into

X

s

 

aC b � 3s

b � a

!

Symm.x41 : : : x
4
s x2sC1 : : : x2aCb�sxaCb�sC1 : : : xN/;

while the right-hand side takes u into

X

c

X

s

 

bC a � 3s

b � s

! 

b � c � 1
a � 2c

!

� Symm.x41 : : : x
4
s x2sC1 : : : x2aCb�sxaCb�sC1 : : : xN/:

To prove the Adem relations, we need to check the congruence

 

bC a � 3c

b � s

!

�
X

c

 

bC a � 3c

c � s

! 

b � c � 1
a � 2c

!

mod 2;



30.6 Computing O.n; q;Z;Z2/ 411

which becomes, after the substitution d D a�2s; e D b�s; f D c�s, the congruence

 

d C e

e

!

D
Œd=2�
X

f Dmax.0;d�eC1/

 

d C e

f

! 

e � f C 1
d � 2f

!

mod 2;

which can be done by elementary means.
As we already mentioned in Sect. 30.1, the Adem system of relations is complete

since it can reduce every iteration of Steenrod squares to the sum of admissible ones,
and admissible iterations are linearly independent.

EXERCISE 2. Prove that the Steenrod squares Sq1;Sq2;Sq4;Sq8; Sq16; : : : form a
system of generators of the algebra A2, and this system is minimal. In other words,
prove that Sqn can be expressed as a polynomial in Sqi with 0 < i < n if and only if
n is not a power of 2.

EXERCISE 3. Find the defining system of relations between the generators of
Exercise 2 (no satisfactory solution of this is known).

EXERCISE 4 (Bullet–MacDonald). Prove that the Adem relations may be presented
as one identity,

P.s2 C st/P.t2/ D P.t2 C st/P.s2/;

where P.u/ DP Sqi ui.

30.6 Computing O.n; q;Z;Z2/

The computation of the cohomology of K.Z; n/ modulo 2 was done by J.-P. Serre
simultaneously with the computation of the cohomology of K.Z2; n/ modulo 2. No
wonder: The two computations are essentially the same (induction with respect to n
based on the Borel theorem). Here is the final result.

Theorem 1. If n � 2, then the ring H�.K.Z; n/IZ2/ is the ring of polynomials (with
coefficients in Z2) of generators SqI en where en 2 Hn.K.Z; n/IZ2/ is the generator
and I D .i1; i2; : : : ; ik/ is an admissible sequence with exc I < n and ik > 1 [the last
inequality is the only difference between the results for K.Z; n/ and K.Z2; n/].

Taking the limit for n!1 yields the following statement.

Theorem 2. The vector space
L

q StabO.q;Z;Z2/ has a basis consisting of all

operations SqI where I D .i1; i2; : : : ; ik/ is an admissible sequence with ik > 1.

The details of the proofs are left to the reader.
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Remark 1. We consider SqI a cohomology operation from the integral cohomology
to the cohomology modulo 2. Precisely, this means that in both statements SqI

means SqI ı�2, where �2 is the reduction modulo 2.

Remark 2. One should not think that Sq1 acts trivially in H�.K.Z; n/IZ2/. It is true
that Sq1 en D 0, but, for example, Sq1 Sq2 en D Sq3 en ¤ 0 for n � 3.

30.7 The Steenrod Algebra mod p

Let p be a prime number. For p > 2, as well as for p D 2, the only (up to a
factor) cohomology operation in the cohomology modulo p raising the dimension
by 1 is the Bockstein homomorphism ˇ. However, while for p D 2 the operation
ˇ D Sq1 is just one of the Steenrod squares, for p > 2 this operation plays a very
special role. The operations similar to other Steenrod squares also exist. Namely,
there exists a unique stable cohomology operation Pi

p 2 StabO.2i.p � 1/;Zp;Zp/

such that Pi
px D xp for x 2 H2i.XIZp/. This operation is called the (pth) Steenrod

power. In particular, Pi
2 D Sq2i. Precisely as for p D 2, P0p D id and Pi

px D 0 if
dim x < 2i.

It turns out that the Steenrod algebra Ap is multiplicatively generated by the
operations ˇp D ˇ and Pi

p. We put

Stk D
(

Pi
p for k D 2i.p� 1/;
ˇp ı Pi

p for k D 2i.p� 1/C 1:

Thus, the operations Stk are defined for k � 0; 1 mod 2.p�1/. Notice that for p D 2,
Stk D Sqk.

Let us describe the additive basis in Ap (over Zp). For a sequence I D
.i1; i2; : : : ; ik/ of integers� 0; 1 mod 2.p�1/, put StI D Sti1 Sti2 : : : Stik . A sequence
I is called admissible if

i1 � pi2; i2 � pi3; : : : ; ik�1 � pik:

For an admissible I, we refer to StI as to an admissible iteration. There is a theorem:
Admissible iterations StI form an additive basis in the Zp-algebra Ap.

This theorem was first proved by H. Cartan in the mid-1950s. To the reader who
wants to see a proof, we recommend reading the article by Postnikov [69].

The relations between the iterations StI are generated by the Adem relations
(see [12])
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Pa
pPb

p D
Œa=p�
X

cD0
.�1/cCa

 

.p� 1/.b� c/� 1
a � pc

!

PaCb�c
p Pc

pI

Pa
pˇpPb

p D
Œa=p�
X

cD0
.�1/cCa

 

.p� 1/.b� c/

a � pc

!

ˇpPaCb�c
p Pc

p

C
Œ.a�1/=p�
X

cD0
.�1/cCaC1

 

.p � 1/.b � c/ � 1
a � pc � 1

!

PaCb�c
p ˇpPc

p

(where a < pb).

30.8 Other Classification Results

We will need some new notations. Let K be a field. Denote as ƒ.m;K/ the graded
K-algebra with the basis f1; xg with deg x D m; x2 D 0 (this algebra is called the
exterior algebra with the generator x). Furthermore, denote as P.m;K/ theK-algebra
with the basis f1; x D x.1/; x.2/; : : : g with deg x.k/ D km and the multiplication

defined by the formula x.k/ � x.`/ D
 

kC `
k

!

x.kC`/ (this algebra is called the algebra

of modified polynomials). Of these algebras, we will form graded tensor products,
which are defined as the usual tensor products with the multiplication acting by the
formula .a˝ b/ � .c˝ d/ D .�1/deg b deg cac˝ bd (in this section, we will abbreviate
“graded tensor products” to “tensor products” since we will not consider any other
tensor products).

Fix a prime p and a group … D Z or Zps and set up a definition of a sequence
of numbers satisfying the condition .Cp/. Let us be given a sequence of integers
I D .i1; i2; : : : ; ik/. We say that I satisfies the condition .Cp/ if

(1) i1 � pi2; i2 � pi3; : : : ; ik�2 � pik�1; ik�1 � 2.p� 1/;
(2) ik D 0 if … D Z;
(3) ik D 0 or 1 if … D Zps ;
(4) i` � 0 or 1 mod 2.p� 1/ for 1 � ` � k.

Theorem (Cartan [28]). For n � 1 and a prime p > 2, the algebra
H�.K.…; n/IZp/ (where … D Z or Zps ) is isomorphic to the tensor product of
exterior algebras ƒ.m;Zp/ with generators of odd degrees and algebras of usual
polynomials with generators of even degrees. For n � 2 and p D 2, the algebra
H�.K.…; n/IZ2/ (where … D Z or Z2s ) is isomorphic to the tensor product of
algebras of usual polynomials. In both cases, the number of generators of degree
n C q is equal to the number of sequences I, with jIj D q satisfying the condition
.Cp/ and the condition pi < .p� 1/.nC q/.
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Remark. This theorem implies all the preceding classification results. If … D Z,
then the condition .Cp/ implies that ik D 0 and ik�1 � 2.p � 1/, and if p D 2,
then ik�1 � 2; that is, SqI does not contain Sq1. If p D 2, then the condition pi1 <

.p � 1/.nC q/ becomes the familiar condition exc I < n.

It turns out that the homology algebra of K.…; n/ can also be fully described
[the multiplication in the homology of K.…; n/ is induced by the structure of an
H-space: K.…; n/ D �K.…; nC 1/].
Theorem (Cartan [28]). For n � 1 and a prime p > 2, the algebra
H�.K.…; n/IZp/ (where … D Z or Zps ) is isomorphic to the tensor product of
exterior algebrasƒ.m;Zp/ with generators of odd degrees and algebras of modified
polynomials with generators of even degrees. For n � 2 and p D 2, the algebra
H�.K.…; n/IZ2/ (where … D Z or Z2s ) is isomorphic to the tensor product of
algebras of modified polynomials. In both cases, the number of generators of degree
nCq is equal to the number of sequences I with jIj D q satisfying the condition .Cp/.

Theorem of a Choice of a Basis (Cartan). Let … D Z and en 2 Hn.K.Z; n/I
Zp/ be the generator. Then, for the generators of the exterior algebras and algebras
of usual polynomials in the theorem concerning H�.K.Z; n/IZp/, one can take the
classes StIp.en/ for all I satisfying the conditions .Cp/ and pi1 < .p � 1/.nC jIj/.

For the proofs of these results (as well as many other results) see the multivolume
edition Seminaire Henri Cartan (which can be found in major mathematical
libraries). See also Postnikov [69].

Lecture 31 Applications of Steenrod Squares

The general homotopy direction of this book forces us to consider Steenrod squares
mainly as a tool for calculating homotopy groups. Indeed, Steenrod squares are very
useful for this: In the next section, we will perform the calculation of the groups
�nC2.Sn/, and in the next chapter we will calculate the stable groups �nCq.Sn/ for
q � 13. One should not forget, however, that the homotopy calculations are, in some
sense, a side effect of Steenrod’s theory. To demonstrate this, we will display in this
lecture an array of applications of Steenrod squares; our aim will be diversity rather
than completeness.

31.1 Calculating Homotopy Groups

Here we assume that n is large.

From the spectral sequence of the fibration SnjnC1
K.Z;n�1/�����! Sn (see Fig. 110) we

obtain the following information about the cohomology of SnjnC1 modulo 2:
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We know that �nC1.Sn/ D Z2. The integral cohomological spectral sequence of

the fibration SnjnC2
K.Z2;n/�����! SnjnC1 looks like Fig. 111.

Sq5 e =
Sq4 e =
Sq3 e =
Sq2 e =

e

Sq1 v = Sq2 Sq1 u

v

Sq1 u

u

n + 4
n + 3
n + 2
n + 1

n

n − 1

s

es

...


.........

n

Fig. 110 The spectral sequence of the fibration SnjnC1

K.Z;n�1/�����! Sn

Sq2 Sq1 e, Sq3 e = Sq1 w

Sq2 e = w

Sq1 e

e

Sq1 vSq1 u vu

ue


.............


.............


............

...
. . .
. . .
. . .

Sq2 Sq1 u

n + 3
n + 2
n + 1

n

n + 1
n + 2

n + 3
n + 4

Fig. 111 The spectral sequence of the fibration SnjnC2

K.Z2;n/�����! SnjnC1
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For the cohomology of SnjnC2, we have

We already see that

HnC2.SnjnC2IZ2/ D Z2;

and hence,

�nC2.Sn/ D HnC2.SnjnC2/ D .Z orZ2s/˚ .a finite group of odd order/:

But the group �nC2.Sn/ is finite (see Sect. 26.3) and does not contain elements of an
odd order (Sect. 27.4). Thus,

�nC2.Sn/ D Z2s :

Actually, the fact that Sq1 w ¤ 0, that is, bnC2.w/ ¤ 0, already implies
that s D 1. But we will prove it using spectral sequences. The element w 2
HnC2.SnjnC2IZ2/ gives rise to a map SnjnC2! K.Z2; nC2/. Consider the fibration

E
K.Z2;nC1/�������! Sn

nC2 induced by the loop fibration 	 K.Z2;nC1/�������!K.Z2; nC 2/ . We
can call the total space E of the induced fibration an “underkilling space”: It follows
from the homotopy sequence of the fibration that

�q.E/ D
8

<

:

0; if q < nC 2;
�nC2.Sn/=Z2; if q D nC 2;
�q.Sn/; if q > nC 2:

(Actually, as we shall see in a moment, E is the killing space.) Consider the spectral

sequence of the fibration E
K.Z2;nC1/�������! SnjnC2 (Fig. 112).

Sq1 e

e

w
v

Sq1 w

n + 1
n + 2

n + 2
n + 3

Fig. 112 The spectral sequence of the fibration E
K.Z2;nC1/�������! SnjnC2 .
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We see from it (since Sq1 w ¤ 0, we cannot avoid using that!) that
HnC2.EIZ2/ D 0, hence HnC2.EIZ2/ D 0, hence �nC2.E/ is a group of odd
order, and hence it is 0, since �nC2.Sn/ is a 2-group. Thus, E is a killing space
SnjnC3 and �nC2.SnjnC2/ D �nC2.Sn/ D Z2.

By the way, we see also that HnC3.EIZ2/ D HnC3.SnjnC3IZ2/ D Z2. Hence, the
2-component of the group �nC3.Sn/ is a group of the form Z2s (with s > 0).

EXERCISE 1. Compute �nC3.Sn/. [Hint: Consider the “underkilling space” E1 with

a fibration E1
K.Z2;nC2/�������! SnjnC3 . Show that HnC3.E1IZ2/ is again Z2. The same

will be true for the next “underkilling space,” E2; E2
K.Z2;nC2/�������!E1 , and only the

third underkilling space, E3, manages to kill the 2-component of �nC3.Sn/. Hence,
the 2-component of �nC3.Sn/ is Z8. Furthermore, we know from Sect. 27.4 that the
group �nC3.Sn/ has a 3-component Z3 and has no p-components with p > 3. Thus,
�nC3.Sn/ D Z24. (If you do this exercise, you will give an algebraic proof of the
main result of one of the most difficult topological works of the pre-French epoch,
that is, the work by Rokhlin [71] in which the group �nC3.Sn/ was calculated by a
geometric method.)]

31.2 Steenrod Squares and the Stiefel–Whitney Classes

A: A Formula for Sqk wm

If we assign to a real vector bundle � the cohomology class Sqk wm.�/ of its base,
then we will get a new characteristic class of real vector bundles with values in Z2-
cohomology. But there is no such thing as “new characteristic classes”: We proved in
Sect. 19.4.D that every characteristic class of real vector bundles with values in Z2-
cohomology is a polynomial in the Stiefel–Whitney classes. What is this polynomial
in our case? It turns out that the following formula holds:

Sqk wm D
k
X

jD0

 

mC j� k � 1
j

!

wk�jwmCj:

We restrict ourselves to a draft of a proof given below; the reader may be able to
reconstruct the details.

First, we check that the left- and right-hand sides of the equality take equal values
on the fibration � � � � � � � with the base RPN � � � � � RPN , where � is the (one-
dimensional) Hopf bundle over RPN and N and the number of factors are both
sufficiently large. After this (or before this) we prove that no nonzero polynomial of
Stiefel–Whitney classes takes a zero value on the fibration � � � � � � �. (Notice that
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calculations for products of real projective spaces provide a key tool in the theories
of both Stiefel–Whitney classes and Steenrod squares.) This completes the proof.

For example,

Sq1 wm D w1wm C .m � 1/wmC1:

This shows that if w1 D 0, that is, if the vector bundle is orientable, then Sq1 wm D
wmC1 for every even m. But Sq1 is the Bockstein homomorphism. According to
the direct description of the Bockstein homomorphism (see Sect. 15.3), this means
that all odd-numbered Stiefel–Whitney classes of an orientable vector bundle are
integral; that is, they are images of integral cohomology classes of order 2 with
respect to the reduction homomorphism �2WH�.�IZ/! H�.�IZ2/.

B: A Digression: Thom Spaces and Thom Isomorphisms

Let � be a real vector bundle of dimension n with the base B and the total
space E. Fix Euclidean structures in all fibers of � (such that the square-of-length
function is continuous on the total space of �) and denote by D.�/ and S.�/ the
spaces of unit ball and unit sphere bundles associated with �. The quotient space
T.�/ D D.�/=S.�/ is called the Thom space of �. Obviously, T.�/ contains B (the
zero section of �) and is covered by n-dimensional spheres which have a common
point and otherwise are disjoint; each of these spheres contains one point of B (see
Fig. 113). Certainly these spheres are not canonically homeomorphic to Sn (since
the fibers of � are not canonically homeomorphic to R

n).
It is obvious that T.�/ does not depend, up to a homeomorphism, on the

Euclidean structures in the fibers. Moreover, this homeomorphism may be chosen
to be the identity on B and to preserve the decomposition of the Thom space into
n-dimensional spheres.

EXERCISE 2. Prove that if the bundle � is trivial, then T.�/ D †n.B t pt/ (where
† denotes the base point version of suspension; see Sect. 2.6).

EXERCISE 3. Prove the equality T.� � �/ D T.�/#T.�/.

EXERCISE 4. Construct a homeomorphism between the Thom space of the Hopf
bundle � over RPn and RPnC1. Give a similar construction for the complex case.

EXERCISE 5. Give a geometric description of the Thom space of the tautological
vector bundle over the Grassmannian.

If the base B is a CW complex, then T.�/ has a natural CW structure: The cells are
the inverse images of cells of B in D.�/�S.�/ (their dimensions are n more than the
dimensions of the cells in B) plus one more (zero-dimensional) cell obtained from
S.�/. Moreover, if the vector bundle is oriented, then our correspondence assigns to
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B

Fig. 113 The Thom space

oriented cells of B oriented cells of T.�/; moreover, the correspondence preserves
the incidence numbers. Thus, for an oriented vector bundle with a CW base, there
arise Thom isomorphisms

tW eHqCn.T.�/IG/ Š��!Hq.BIG//; tWHq.BIG/ Š��! eHqCn.T.�/IG/

where G is an arbitrary coefficient group. Moreover, if G D Z2, then the assumption
of orientability for � is not needed. Thom isomorphisms possess many naturality
properties, of which we mention the commutative diagrams

eHqCn.T.f ��/IG/ T.f /���! eHqCn.T.�/IG/
?

?

?

?

y

t

?

?

?

?

y

t

Hq.B0IG/ f���! Hq.BIG/

and

eHqCn.T.f ��/IG/ T.f /� �� eHqCn.T.�/IG/
x

?

?

?

?

t

x

?

?

?

?

t

Hq.B0IG/ f� �� Hq.BIG/ ;



420 4 Cohomology Operations

which arise for an arbitrary continuous map f WB0 ! B (between CW complexes);
T.f /W T.f ��/! T.�/ is the naturally arising map.

The Thom isomorphisms have a different description in the smooth case when B
is a closed oriented smooth manifold (say, of dimension m) and the oriented vector
bundle � is smooth (that is, E is a smooth manifold and pWE ! B is a smooth
submersion; we assume also that the Euclidean metric used in the definition of t is
smooth). Then the cohomological Thom isomorphism can be described, by means
of Poincaré isomorphisms, as a composition

Hq.BIG/ D��!Hm�q.BIG/ Š��!Hm�q.D.�/IG/
D�1

��!HmCn�mCq.D.�/; @D.�/ D S.�/IG/ D eHnCq.T.�/IG/

(where the middle arrow is induced by a homotopy equivalence), and a similar
description exists for the homological Thom isomorphisms. (All the orientability
assumptions may be dropped in the case of G D Z2.)

EXERCISE 6. Show that these description of Thom isomorphisms are equivalent to
those given before.

Proposition. Let � be an oriented vector bundle with a CW base B, let G be a ring,
and let ˛1 2 Hq1 .BIG/; ˛2 2 Hq2 .BIG/. Then

t.˛1 ^ ˛2/ D t.˛1/ ^ ˛2:

[The last cup-product has the following meaning:

t.˛1/ 2 Hq1Cn.D.�/; S.�/IG/; ˛2 2 Hq2 .BIG/ D Hq2 .D.�/IG/
) t.˛1/ ^ ˛2 2 HnCq1Cq2 .D.�/; S.�/IG/ :�

Proof. For a smooth � with a compact oriented base of dimension m, it follows
from the previous description of t. Indeed, according to that description, for an ˛ 2
Hq.BIG/, in Hm�q.D.�/IG/,

ŒB� _ ˛ D ŒD.�/; S.�/� _ t.˛/I

thus,

ŒD.�/; S.�/� _ t.˛1 ^ ˛2/ D ŒB� _ .˛1 ^ ˛2/ D .ŒB� _ ˛1/ _ ˛2
D .ŒD.�/; S.�/� _ t.˛1// _ ˛2 D ŒD.�/; S.�/� _ .t.˛1/ ^ ˛2/I

that is, t.˛1 ^ ˛2/ D t.˛1/ ^ ˛2:

EXERCISE 7. Deduce the general case of the proposition from the smooth case.
(Hint: For a compact B, the vector bundle � can be embedded into a vector bundle
e� with a closed oriented smooth base eB such that the embedding B! eB induces an
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isomorphism in homology up to an arbitrarily high dimension. The transition to a
noncompact case is straightforward.)

Corollary. For an arbitrary ˛ 2 Hq.BIG/,

t.˛/ D t.1/ ^ ˛:

The cohomology class t.1/ 2 Hn.T.�/IG/ is called the Thom class of the
bundle �.

Remark. We can generalize the proposition to the case when ˛1 2 Hq1 .BIG1/; ˛2 2
Hq2 and the cup-product ˛1 ^ ˛2 2 Hq1Cq2 .BIG/ is taken with respect to some
pairing G1 � G2 ! G (see the end of Sect. 16.2). Using that, we can generalize the
corollary to the case of an arbitrary Abelian group (not a ring) G considering the
Thom class as belonging to Hn.T.�/IZ/.

Let us do some final remark for the case when � is the normal bundle of a smooth
submanifold Y of a smooth manifold X.

EXERCISE 8. Prove that in this case T.�/ D X=.X � U/, where U is a tubular
neighborhood of Y.

EXERCISE 9. Let X and Y be closed oriented, and let dim X � dim Y D n. Prove
that the composition

Hq.YIG/ t��!HqCn.T.�/IG/ D HqCn.X=.X �U/IG/! HqCn.XIG/

(where the last map is induced by the projection X ! X=.X �U/) coincides with iŠ
(see Sect. 17.8), where i is the inclusion map Y ! X.

EXERCISE 10. Let X be an m-dimensional closed orientable manifold embedded in
Sn, and let U be a tubular neighborhood of X in Sn. Prove that the diagram

Hm−q(X ; G) = Hm−q(U ; G) = Hm−q(Sn − (Sn − U); G)

Hq(X ; G) Hn−m+q(Sn, Sn − U ; G)

D D

t

(where t denotes the Thom isomorphism associated with the normal bundle of X in
Sn) is commutative.
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C: An Sq-definition of the Stiefel–Whitney Classes

Theorem. For an arbitrary vector bundle � with a CW base,

wm.�/ D t�1 Sqm t.1/

(the equality holds in Z2-cohomology).

EXERCISE 11. Prove this theorem. [Hints: A standard proof of this result (which
can be found, for example, in the book by Milnor and Stasheff [60]) consists in
systematically checking for the classes t�1 Sqm t.1/ the axioms of Stiefel–Whitney
classes (mentioned in the beginning of Sect. 19.5). Another approach is based on the
splitting principle. Since both sides of the equality in the theorem are characteristic
classes of real vector bundles with values in the Z2-cohomology, it is sufficient to
prove the equality for products � � � � � � � of Hopf bundles. It is not hard to do this
(using the results of Exercises 3 and 4).]

Corollary. If � is the normal bundle of a submanifold Y of X, then

iŠ.wm.�// D Sqm iŠ.1/ D Sqm.D�1
X ŒY�/

(where i is the inclusion map Y ! X).

D: The Wu Formula

Put w D 1Cw1Cw2Cw3C : : : and Sq D 1C Sq1CSq2CSq3C : : : Notice that
the operation SqWH�.�IZ2/! H�.�IZ2/ is invertible: .Sq/�1 Sq D 1, where

.Sq/�1 D 1C Sq1CSq2CSq2 Sq1C.Sq4CSq3 Sq1/C : : : :

Theorem (Wu). Let X be a closed manifold. Then, for every ˛ 2 H�.XIZ2/,

h.Sq/�1w.X/;D.˛/i D hSq˛; ŒX�i:

This “Wu formula” completely determines the Stiefel–Whitney classes of (the
tangent bundle of) a closed smooth manifold. Its standard proof can be found in the
books by Milnor and Stasheff [60] (Sect. 11) or Spanier [79] (Sect. 10 of Chap. 6).

EXERCISE 12. Prove the Wu formula following the plan outlined here. The tangent
bundle of X is the same as the normal bundle of�.X/ in X�X, where�WX ! X�X
is the diagonal map. Hence,

�Šw.X/ D Sq.D�1
X�XŒ�.X/�/:
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Since p ı � D id (where p is the projection of X � X onto, say, the second factor),
the last formula can be rewritten as

w.x/ D pŠ Sq.D�1
X�XŒ�.X/�/:

But it may be deduced from the results of Lecture 17 (see Theorem 4 of Sect. 17.5
and Lemma 2 of Sect. 17.6) that D�1

X�XŒ�.X/� D
P

.˛�
i � ˛i/, where f˛ig is a basis

in the Z2-cohomology of X and f˛�
i g is the “dual” basis in the sense that h˛�

i ^

˛j; ŒX�i D ıij. It is true also that pŠ.˛ � ˇ/ D hˇ; ŒX�i˛. The reader will do the rest.

Corollary 1. The Stiefel–Whitney classes of a smooth manifold are its homotopy
invariants.

(This result was mentioned in Sect. 19.6.E.)

Corollary 2 (The Stiefel Theorem). Every closed orientable three-dimensional
manifold is parallelizable.

Proof. To prove that a closed orientable three-dimensional manifold X is paralleliz-
able, it is sufficient to construct two linearly independent (at every point) vector

fields on X, that is, to construct a section of the fibration E
V.3;2/�����!X associated

with the tangent bundle of X. Since V.3:2/ D RP3, we have �1.V.3; 2// D
Z2; �2.V.3; 2// D 0. The first obstruction to the construction of such a section
belongs to H2.XI�1.V.3; 2/// D H2.XIZ2/ and equals w2. All we need is
to prove that w2 D 0, since the next obstruction belongs to the zero group
H3.XI�2.V.3; 2///. To apply the Wu formula, let us determine the action of
Steenrod squares with values in H3.XIZ2/. The operation Sq1 D b2WH2.XIZ2/ !
H3.XIZ2/ is zero, because it is the Bockstein homomorphism, that is, a composition
H2.XIZ2/ ! H3.XIZ/ ! H3.XIZ2/, and the first arrow is zero, since it is
a homomorphism of a finite group into H3.XIZ/ D Z (the last equality holds
since X is orientable, and we may assume that X is connected). Furthermore,
Sq2WH1.XIZ2/ ! H3.XIZ2/ is zero, since Sq2 is zero on the one-dimensional
cohomology, and, the more so, Sq3WH0.XIZ2/ ! H3.XIZ2/ is zero. Hence,
hSq˛; ŒX�i D 0 when dim˛ ¤ 3; hence, Sq�1 w.X/ can take nonzero values only
in zero-dimensional cohomology, and hence Sq�1 w.X/ 2 H0.XIZ2/ ) w.X/ 2
H0.XIZ2/) w2.X/ D 0.

EXERCISE 13. Prove that if X is an n-dimensional manifold, then wm.X/ D 0 for
m > n�˛.n/ where ˛.n/ is the number of ones in the binary representation of n and
wm.X/ is the mth Stiefel–Whitney class of the normal bundle of X in an Euclidean
space. (This result belongs to W. S. Massey. The proof is quite involved but does
not use anything not known to the reader.)

EXERCISE 14. Prove that the bound n � ˛.n/ in Exercise 13 cannot be reduced.
Namely, if n D 2k1 C � � � C 2kr with k1; : : : ; kr 2 Z; k1 > � � � > kr � 0, then
wn�r.RP2

k1 � � � � �RP2
kr ¤ 0.
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FYI. The results in Exercises 13 and 14, together with Exercise 26 in Sect. 19.6,
gave rise to a known Massey conjecture that every closed (actually, not necessarily
closed) n-dimensional smooth manifold can be immersed into R

2n�˛.n/ (and, as
follows from Exercise 14, the dimension 2n � ˛.n/ cannot be reduced in this
statement). The Massey conjecture was proved by Ralph Cohen [31].

31.3 Steenrod Squares and Second Obstructions

It is not surprising that Steenrod squares were first discovered by Norman Steenrod.
But one should not think that the goal of the groundbreaking work of Steenrod
was studying any cohomology operations. The work (Steenrod [81]) was devoted
to an old homotopy problem. In the early 1930s, H. Hopf gave a homotopy
classification of continuous maps of an n-dimensional CW complex X into the n-
dimensional sphere. It turned out that these homotopy classes bijectively correspond
to cohomology classes in Hn.XIZ/1 (see Sect. 18.4); namely, the homotopy class
of a map f WX ! Sn is bijectively characterized by the cohomology class f �.s/ 2
Hn.XIZ/, where s 2 Hn.SnIZ/ is the canonical generator. Steenrod extended this
classification to maps X ! Sn, where dim X D nC 1. His results are described in
the following exercises.

EXERCISE 15. Let X be an .nC2/-dimensional CW complex, and let � 2 Hn.XIZ/.
Prove that a map f WX ! Sn such that f �.s/ D � exists if and only if Sq2.�2�/ D 0

(where �2 is the reduction modulo 2).

EXERCISE 16. Let X be an .nC1/-dimensional CW complex, and let � 2 Hn.XIZ/.
Construct a bijection between homotopy classes of maps such that f �.s/ D � and
the cokernel of the composition

Hn�1.XIZ/ �2��!Hn�1.XIZ2/ Sq2��!HnC1.XIZ2/:

EXERCISE 17 (This Exercise is independent of Exercises 15 and 16). Let f W SnC1!
Sn, n � 3 be a spheroid representing a nonzero element in �nC1.Sn/ Š Z2. Let
X D Sn [f DnC2. Find the action of Steenrod squares in the Z2-cohomology of X.

It should be noted that the original construction of Steenrod squares is substan-
tially different from the one presented above. Steenrod’s construction is outlined in
Exercises 18–20.

Let X be a CW complex. We pointed out before that the diagonal map �WX !
X � X is not cellular. We choose for it a cellular approximation�0 and consider the
chain homomorphism

D0 D �#
0W Cr.X � XIZ2/! Cr.XIZ2/:

1Certainly, Hopf did not formulate his result in terms of cohomology, which appeared in topology
several years later.
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Consider also the chain homomorphism TW Cr.X �XIZ2/! Cr.X �XIZ2/ induced
by the map tW .x; y/ 7! .y; x/. Although t ı� D �, the map t ı�0 is only homotopic
to �0. Because of this, there arises a cochain homotopy

D1W Cr.X � XIZ2/! Cr�1.X � XIZ2/; D1 ı ı C ı ı D1 D D0 CD0 ı T:

EXERCISE 18. Prove that there exists a whole sequence

DqW Cr.X � XIZ2/! Cr�q.X � XIZ2/; Dq ı ı C ı ı Dq D Dq�1 CDq�1 ı T:

EXERCISE 19. Prove that for a cocycle c 2 Cr.XIZ2/ the cochain Dq.c�c/ is also a
cocycle, and the cohomology class of this cocycle is determined by the cohomology
class of c (does not depend either on the choice of c within a cohomology class or
on the choice of the sequence Dq satisfying the conditions above). [By the way, it is
wrong, in general, that if b and c are cocycles, then Dq.b � c/ is a cocycle; to this
effect, find a formula for the coboundary of Dq.b� c/ in terms of coboundaries of b
and c and homomorphisms Dq;Dq�1.]

EXERCISE 20. Prove that if c is a cocycle of the class � 2 Hr.XIZ2/, then Dq.c�c/
is a cocycle of the class Sqr�q � .

Remark 1. According to Steenrod’s construction, the reason for the existence of
Steenrod squares lies in the noncommutativity of multiplication of cellular (or
classical) cochains. Actually, if the coefficients of a cohomology theory lie in Z

or Z2, then this multiplication cannot be commutative (otherwise, Steenrod squares
could not have existed). As we mentioned briefly at the end of Lecture 26, a (skew-)
commutative ring of cochains can be constructed when the coefficients are taken
in Q.

Remark 2. If X is an ordered triangulated space, then the choice of operations Dq

can be made quite explicit (in the spirit of the simplicial cup-product defined in
Sect. 16.2 [the usual notation: Dq.c1 � c2/ D c1 ^i c2]. However, the existing
formulas for ^i do not look encouraging. The reader can think of something more
appealing.

31.4 Nonexistence of Spheroids with an Odd Hopf Invariant

Theorem. If n is not a power of 2, the group �2n�1.Sn/ does not contain elements
whose Hopf invariant is odd. (See Remark 5 in Sect. 16.5.)

Remark. This theorem was proved by Hopf in the 1930s. However, the proof was
complicated and did not seem convincing to topologists of that time; even some
(false!) counterexamples to it were published by some prominent mathematicians.
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Proof of Theorem. Let ˛ 2 �2n�1.Sn/ be an element with an odd Hopf invariant,
and let Y D Sn [f D2n, where f W S2n�1 ! Sn is a spheroid of the class ˛. Then

Hq.YIZ2/ D
�

Z2; if q D 0; n; 2n;
0 for all other q;

and, by definition of the Hopf invariant, the squaring operation Hn.YI Z2/ !
H2n.YIZ2/ is nontrivial. But this operation is the same as Sqn, and if n is not a
power of 2, then Sqn may be presented as a polynomial of Sqi with 0 < i < n
(see Exercise 2 in Sect. 30.5). But since Hq.YIZ2/ D 0 for n < q < 2n, any such
polynomial is zero on Hn.YIZ2/. This contradiction proves the theorem.

Remark. As we mentioned in Lecture 16, there are no elements with odd Hopf
invariant in �2n�1.Sn/ with n > 8. One of the possible proofs of this fact consists
in a construction, which shows that the operations Sq16;Sq32; : : : , indecomposable
within the class of usual (“primary”) cohomology operations, are decomposable
within the class of (“secondary”) cohomology operation. We will not discuss this
(historically, first) proof in detail although some explanations will be made in
Chap. 5; a full presentation of this proof can be found in the book by R. E. Mosher
and M. C. Tangora [63]. Another (remarkably simple) proof using K-theory will be
presented in Chap. 6.

31.5 Lens Spaces

In this section we will use not Steenrod squares but only Bockstein homomorphisms,
and only for p > 2.

Let p and q be relatively prime integers, 1 < q < p; p > 2. Consider
the transformation T of the sphere S3 � C

2 acting by the formula T.z1; z2/ D
�

z1e
2� i
p ; z2e

2piq
p

�

. Obviously, T generates a free action of the group Zp in S3. The

quotient S3=Zp is denoted by L.p; q/ and is called the (three-dimensional) lens
space. (We have encountered infinite-dimensional lens spaces before.) The question
is, for which p; q; p0; q0 is the lens space L.p; q/ homeomorphic, or homotopy
equivalent, to the lens space L.p0; q0/? Since �1.L.p; q// D Zp, we can assume
from the very beginning that p0 D p (otherwise, the lens spaces cannot be either
homeomorphic, or homotopy equivalent).

Theorem. The lens spaces L.p; q/ and L.p; q0/ are homotopy equivalent if and only
if q0 � k2q mod p for some integer k.

We will sketch a proof of the “only if” part. The “if” part is less important; the
reader can prove it using the obstruction theory (and the fact that the dimensions of
lens spaces are small).

Obviously, Hr.L.p; q/IZp/ D Zp for r D 0; 1; 2; 3. Consider on S3 a big circle

arc joining the points .1; 0/ and .e
2� i
p ; 0/; this arc determines an element of the
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group �1.L.p; q// D H1.L.p; q// D Zp. Denote by a the element of H1.L.p; q/IZp/

which takes the value 1 2 Zp on this element.

Lemma.

hab.a/; ŒL.p; q/�i � q mod p

where b is the Bockstein homomorphism

H1.L.p; q/IZp/! H2.L.p; q/IZp/:

Proof of Lemma. The lens space has a natural cell decomposition which is obtained
from the following Zp-invariant cell decomposition of S3 with p cells in every
dimension 0; 1; 2; 3. The circle S1 D f.z; 0/ j jzj D 1g � S3 is divided by the p

points e0k D .e
2�ki

p ; 0/; k D 0; 1; : : : ; p � 1, into the union of p arcs; we denote
the (open) arc joining e0k with e0kC1 (throughout this section, we regard subscripts as

residues modulo p) as e1k . Next, we put e2k D f.z1; z2/ 2 S3 j z2 2 R>0 � e
2�ki

p g and
take for e3k the domain between e2k and e2kC1. We get the desired cell decomposition
of S3. (Some people say that this decomposition reminds them of an orange; if the
reader finds this comparison helpful, we appreciate it.) The transformation T maps
the cells e0k ; e

1
k ; e

2
k ; e

3
k homeomorphically onto e0kC1; e1kC1; e2kCq; e

3
kCq. Thus, our cell

decomposition of S3 gives rise to a cell decomposition of L.p; q/, with one cell in
every dimension, e0; e1; e2; e3. All the cells in S3 have natural orientations preserved
by T; thus, the cells in L.p; q/ are also naturally oriented.

Obviously, in the cellular complex of S3, @e2k D e10 C � � � C e1p�1; thus, in the
cellular complex of L.p; q/, @e2 D pe1 and bŒe2� D Œe1� (here b is the homological
Bockstein homomorphism). To finish the proof of the lemma, we need to check that
the intersection index of the Zp-cycles e1 and e2 in L.p; q/ is q.

Take a small generic perturbationee1 of the cycle e1. The inverse image of this
perturbed curve in S3 will be a T-invariant curveeS1 close to S1. We can think of this
curve as located on the torus jz1j D �; jz2j D ", where " is a small positive number
and � D p1 � "2. Let this curve start at .�; "/ 2 e20. Since it is T-invariant, it goes to

the point .�e
2� i
p ; "e

2�qi
p /, then to the point .�e

4� i
p ; "e

4�qi
p /, and so on. For example,

we can choose the perturbationee1 in such a way that the parametric equation of eS1

will be z.t/ D .�eti; "eqti/; 0 � t < 2� . Obviously, this curve intersects e20 at q

points (for t D 2�k

q
; k D 0; 1; : : : ; q� 1), and all the intersections are counted with

the same sign (we can assume that it is C just taking the right orientations). This
shows that �.e1; e2/ D q, as stated in the lemma.

Proof of Theorem. Consider also L.p; q0/ and let a0 be the same for L.p; q0/ as a is
for L.p; q/. Let

'WL.p; q/! L.p; q0/
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be a homotopy equivalence. Then

'�WH3.L.p; q//! H3.L.p; q
0//

is an isomorphism, and hence '�ŒL.p; q/� D ˙ŒL.p; q0/�. Further, let '�.a0/ D ka
(where k is a residue modulo p). Then

q0 D ha0b.a0/; ŒL.p; q0�i D ˙ha0b.a0/; '�ŒL.p; q/�i
D ˙h'�.a0b.a0//; ŒL.p; q/� D ˙hkab.ka/; ŒL.p; q/�i
D ˙k2hab.a/; ŒL.p; q/�i D ˙k2q;

which is our statement.
For example, the lens spaces L.5; 1/;L.5; 2/ are not homotopy equivalent (since

2 6� ˙k2 mod 5).
Add to this that if we are interested only in homotopy equivalences preserving

or reversing orientation, then ˙ in our statement can be replaced by, respectively,
C or �. For example, there is no orientation reversing map (that is, simply no
map of degree �1) of L.3; 1/ (this fact was proved by H. Kneser long before
the theory discussed in this section was created). Moreover, elementary number
theory states that if p is prime and p � 3 mod 4, then every q not divisible
by p is congruent either to a square or to a negative square (for example,
1; 2; 3; 4; 5; 6 � 12; 32;�22; 22;�33;�12 mod 7), but never to both; hence, in
this case every two lens spaces L.p; q/;L.p; q0/ are homotopy equivalent, but for
a homotopy equivalence its homotopy preserving or reversing is determined by
p; q; q0. On the contrary, if p � 1 mod 4, then every q is congruent modulo p
to both a square and a negative square, or to neither. Thus, in this case, if lens
spaces L.p; q/;L.p; q0/ are homotopy equivalent, then they can be related by both
orientation preserving and orientation reversing homotopy equivalences.

And a final remark. Homotopy equivalent lens spaces are not necessarily home-
omorphic. For example, the lens spaces L.7; 1/;L.7; 2/ are homotopy equivalent,
but not homeomorphic. This fact can be established with the help of the so-called
Reidemeister–Franz torsion. The reader can find details in the book by Dubrovin,
Fomenko, and Novikov [35] (Sect. 11 of Chap. 1, Problems 5–8), or in the book by
de Rham, Maumary, and Kervaire [34].



Chapter 5
The Adams Spectral Sequence

Lecture 32 General Idea

32.1 Introduction

As we demonstrated in the previous lecture, the information about the action of
stable cohomology operations may be used for computing stable homotopy groups.
If we know the cohomology of the space X, we can find, relatively easily, the “stable
part” of the cohomology of the first killing space of X, and then the same for the
second, the third, and so on killing spaces. Hurewicz’s theorem gives us, every time,
the corresponding homotopy group. This method (the Serre method) does not permit
us, however, to find the homotopy groups without dealing with other difficulties.

Let us imagine, for example, that we want to find stable homotopy groups
of some space X and that we know (in the stable range of dimensions) the
cohomology of X with any coefficients and with the action of all stable cohomology
operations. For example, let us imagine that the first nontrivial homotopy group of
X has dimension N and equals Z2. Consider the spectral sequence of the fibration

XjN K.Z2;N�1/�������!X .
To make the pictures more compact, we will draw the spectral sequences in two

rows. The lower row is the same as the lower row of our old pictures, only we
start not with the dimension 0, but from the positive dimension, where nontrivial
cohomology first appears. The upper row is what used to be the left column, located
in such a way that the cohomologies of the same dimension were above/below
each other. The differential (the transgression) acts downward/rightward. The group
adjoint to the cohomology group of the total space is now all in the column: The
lower group of the column is a subgroup of the cohomology group, and the upper
group is the quotient of the cohomology group over this subgroup. Certainly, our
picture shows only the stable dimensions.
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Fig. 114 The E2-term of the stable spectral sequence

The spectral sequence of our fibration is shown in Fig. 114. In the upper
row, there is the cohomology K.Z2;N � 1/ modulo 2, which coincides, in the
stable dimensions, with the Steenrod algebra A2. The differential takes e into the
differential ˛, and for any stable cohomology operation ', it takes '.e/ into '.˛/.
After this differential, in the upper row there remain all '.e/ such that '.˛/ D 0, and
in the lower row there remain all cohomology classes of X which are not obtained
from ˛ by cohomology operations. Thus, the cohomology of XjN is fully known to
us, but the action of the cohomology operations in this cohomology is known to us
only partially. Let us imagine, for example, that Sq30 ˛ D 0 and that in the Steenrod
algebra there is a relation Sq20 Sq30 D 0 (probably there is no such relation, but it is
not important to us). Then, in the upper row, there remains an element f D Sq30 e,
but in the cohomology of XjN this f is not an Sq30 of anything. What is Sq20 f ? This
cannot be an element of the upper row, since Sq20 Sq30 D 0. But it is possible that
Sq20 f D y 2 H�.XjN IZ2/ is not 0: f comes from Sq30 e 2 HNC29.K.Z2;N�1/IZ2/,
and y comes from an element of HNC49.XIZ2/ (Fig. 115).

f

y

Sq30 e

Sq20 f

E∞

Fig. 115 The E1-term of the stable spectral sequence

Thus, we have no full information on the action of cohomology operations in the
cohomology of XjN , and hence we cannot find the cohomology of the next killing
space.

The modern topology has no way to overcome this difficulty; the homotopy
groups of spheres have not been calculated yet. But there is a possibility to “expose
the difficulty in a pure form,” namely, to collect all the computations related
to stable homotopy groups into one spectral sequence. The initial term of this
spectral sequence will be known, and all the difficulties will be concentrated in the
computations of the differential. This is what the Adams spectral sequence is.



432 5 The Adams Spectral Sequence

Certainly, the role of the Adams spectral sequence is not restricted to exposing
difficulties: It also allows us to resolve part of them. Namely, the Adams spectral
sequence may be furnished with an amount of additional structures (for example,
the multiplicative structure) which do not show themselves at the level of usual
killing spaces and which provide rich information on the action of the differentials.

32.2 The Serre Method and the Adams Method:
A Comparison

The Serre method of computing homotopy groups consists in killing the cohomol-
ogy groups ordered by their dimension: First, we kill the nth group, then pass to the
.nC1/st, and so on. The Adams method also consists in killing cohomology groups,
but in a different order. Take a space X. For example, let it be .N�1/-connected, and
we want to find the p-components of its homotopy groups from the dimension N to
the dimension N C n. At the first step we kill all the cohomology of X modulo p in
these dimensions. One can do this in the following way. Every additive generator of
HNCq.XIZp/ determines a map X ! K.Zp;N C q/. All these generators determine
a map of X into the product…iK.Zp;N C qi/. There arises a fibration

The spectral sequence of this fibration looks as follows. In the upper row, there is
a “free Ap-module”; that is, the action of cohomology operations in this row, at least
in the dimensions not very much exceeding N, is free: There are no relations which
do not follow from the relations in the Steenrod algebra Ap itself. (See Fig. 116 for
the case p D 2.)

The differential provides an epimorphism of the upper row onto the lower row.
In the E1-term, in the upper row there remains the kernel of the differential, and
nothing remains in the lower row.

Fig. 116 The spectral sequence of the Adams killing



32.3 The Spectral Sequence 433

There arises a sequence of Adams killing spaces, X.1/; X.2/; X.3/; : : :, with a
chain of fibrations

: : :X.3/! X.2/! X.1/! X

whose fibers are products of K.Zp; n/s.
Notice that the killing of all elements of Zp-cohomology of X, as well as all

subsequent killing, may be made in a more economical way. For example, if we
kill the element � and, say, Pi

p� ¤ 0, we do not need to kill Pi
p� separately:

It will be killed automatically simultaneously with �. Speaking more algebraically,
we should not kill all elements of some basis of the vector space over Zp, but
rather all elements of some system of generators of an Ap-module. In other words,
consider an Ap-module H�.XIZp/. Then there exists a free Ap-module F0 with
an Ap-epimorphism F0 ! H�.XIZp/. [It is easy to understand: F0 is a free
module whose free generators bijectively correspond to the chosen generators of
the module H�.XIZp/.] The kernel of this epimorphism is again an Ap-module, but
not necessarily free. We construct a free Ap-module F1 and an Ap-epimorphism of
it onto our kernel, in other words, an Ap-homomorphism F1 ! F0 whose image
is the kernel of the epimorphism F0 ! H�.XIZp/. Repeating this construction, we
get an exact sequence

: : :! F3 ! F2 ! F1 ! F0 ! H�.XIZp/! 0

of Ap-modules and Ap-homomorphisms in which all the modules Fi are free. Such
a sequence is called a free resolution of the module H�.XIZp/. Free resolutions
have many remarkable properties, which we will discuss after we finish discussing
“general idea.”

32.3 The Spectral Sequence

Let us return to geometry. Our process is, in some sense, converging; that is, the
cohomology of the spaces X.k/ becomes less and less and, again in some sense,
completely vanishes at the limit. However, the Serre killing process was directly
related (via Hurewicz’s theorem) to the homotopy groups of the space. Namely,
we always killed the cohomology of the smallest dimension, and every killing
corresponded to some element of the homotopy group. It is not so, however, for
the Adams killing.

Let us return to the example which we considered in the very beginning
(Sect. 32.1): the .N � 1/-connected space X, �N.X/ D Z2, the group HN.XIZ2/
has a generator ˛, Sq30 ˛ D 0, in the cohomology of X there remains an element
f D Sq30 e, and (thanks to an imaginary relation Sq20 Sq30 D 0) Sq20 f D y 2
H�.XIZ2/ is not zero. If we had performed the Serre killing, we would not have
had to separately kill y: It would have been automatically killed together with
f 2 H�.XjN IZ2/. The Adams killing, however, removes both ˛ and y at the first
step. Thus, the Adams method contains more killings than the Serre method. If we



434 5 The Adams Spectral Sequence

Generators of the A-module H∗(X(3);Z2)

Generators of the A-module H∗(X(2);Z2)

Generators of the A-module H∗(X(1);Z2)

Generators of the A-module H∗(X;Z2) y

Sq20 g

...................
...................
...................
...................
...................
...................
...................
.............................................
.....................................

d2

Fig. 117 An overview of the Adams spectral sequence

count the number of generators killed by the Adams method in some dimension
N C q, we will get an upper estimate for the p-component (2-component in our
example) of �NCq.X/. This upper estimate is the initial term of the Adams spectral
sequence. The differentials of this spectral sequence remove all the extra elements,
according to the following scheme.

Observe that it is not only y that is an unnecessary killed element. In the
cohomology of X.1/, as well as in the cohomology of XjN , there is an element f . But
in the cohomology of XjN we have Sq20 f D y, while in the cohomology of X.1/,
Sq20 f D 0, which leads to the appearance of an extra element in the cohomology
of X.2/. Namely, when we kill f by some q, then Sq20 q remains, and this Sq20 g,
which even does not appear in the Serre method, has to be killed in the third step
of the Adams method. The initial term of the Adams spectral sequence is shown in
Fig. 117. The second differential of the Adams spectral sequence will take y into the
element coming from Sq20 g and will kill both of these extra elements.

The limit term of the Adams spectral sequence will be adjoint to the
p-components of the stable homotopy groups of X.

Lecture 33 The Necessary Algebraic Material

33.1 Modules, Free Modules

Let A be an associative algebra (with the unit) over a field K, and let it be Z-graded:

A DLq Aq D : : :˚ A�1 ˚ A0 ˚ A1 ˚ : : : ; ArAs � ArCs:

A left module over A (or an A-module) is a vector space T over K which is
Z-graded, T DLq Tq, and is furnished with a bilinear map A�T ! T; .a; t/ 7! at
such that

(1) If a 2 Aq; t 2 Tr, then at 2 TqCr.
(2) b.at/ D .ba/t for a; b 2 A; t 2 T.
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A right A-module is defined in a similar way (we will call left A-modules simply
A-modules).

A subset U of a A-module T is called a system of generators if every t 2 T can
be presented as a finite sum a1u1C : : :C anun with a1; : : : ; an 2 A; u1; : : : ; un 2 U.
A system of generators is called homogeneous if every u 2 U belongs to some Tq;
in other words, U � Tı where Tı D S

q Tq. If a presentation as above (with all ui

different) is unique for every (D for some) t 2 T, then the system of generators U
is called free, or a basis. A module which possesses a free system of generators is
called free. For example, A itself is a free A-module with one generator.

An obvious construction extends an arbitrary graded set U D S

q Uq to a free
A-module T D FU 
 U with a basis U.

A homomorphism (or module homomorphism or A-homomorphism) of an
A-module T into an A-module T 0 is a linear map f WT ! T 0 such that f .at/ D af .t/
for all a 2 A; t 2 T. A homomorphism f WT ! T 0 is called homogeneous
of degree d if f .Tq/ � T 0

qCd; a homogeneous homomorphism of degree 0 is
called simply a homogeneous homomorphism. Kernels and images of homogeneous
A-homomorphisms (of any degree) are (in the obvious sense) A-modules.

Here we often implicitly assume homomorphisms considered homogeneous
(of degree 0).

Obviously, for every A-module T there is an exact sequence

0! KT ! FTı

���!T ! 0;

where � is the extension of the inclusion map Tı ! T. In particular, every
A-module is an image of a (homogeneous) epimorphism of a free module. Notice
that FTı in this construction can be replaced by FU , where U is an arbitrary
homogeneous system of generators of T.

33.2 Projective Modules

An A-module P is called projective if every diagram of the form

M N 0

P

....................................................................................... .......................... ....................................................................................... ..........................

...................

...................

..................

...............................

..........................

with exact row can be extended to a commutative diagram

M N 0

P .

....................................................................................... .......................... ....................................................................................... ..........................

...................

...................

..................

...............................

..........................
............................

............................
............................

.........................................................................
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In other words, any homomorphism of P into a quotient module M=R can be
“lifted” to M, that is, factored as P ! M ! M=R where the second arrow is the
projection of a module onto the quotient module.

Proposition. An A-module P is projective if and only if it is a direct summand of
some free module.

Proof. First, let us prove that every free module is projective (this is, actually, the
only part of the proposition which will be used later). Let an A-module P be free;
let us prove that it is projective. Consider the diagram

in which the maps � and f are given and the map ' needs to be defined. Let Q � P
be a basis of P. For every q 2 Q choose a q0 2 M such that �.q0/ D f .q/ (it exists,
since � is onto). After it, extend the map Q ! M; q 7! q0 to an A-homomorphism
'WP! M (that is, put '


P

i aiqi
� DPi aiq0

i). Obviously, � ı ' D f .
Next, let us prove that a direct summand of a projective module is projective. Let

P be a projective module, and let P0 be a direct summand of P. This means that there
are module homomorphisms ˛WP ! P0; ˇWP0 ! P such that ˛ ı ˇWP0 ! P0 is id.
Consider the diagram shown on the left and add to it a couple of (solid) arrows as
shown on the right.

Since P is projective, we can apply the definition of the projectivity to the
homomorphism f ı ˛WP ! N; we get a homomorphism 'WP ! M such that
� ı ' D f ı ˛. Compose this equality with ˇW� ı .' ı ˇ/ D f ı ˛ ı ˇ D f ı id D f .
This establishes the projectivity of P0.

Finally, we need to prove that every projective module is a direct summand of
a free module. Let P be a projective module. As we have seen before, there is an
exact sequence FP

���!P ! 0 where FP is a free module. Since P is projective,
this exact sequence can be extended to a diagram

which show that P is a direct summand of the free module FP; FP D P˚ Ker� .
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33.3 Projective Resolutions

Let T be an arbitrary A-module. Then there exists an exact sequence

: : :! Pq ! Pq�1 ! : : :! P1 ! P0 ! T;

where Pq are projective modules. Such a sequence is called a projective resolution
of T. If all the modules Pq are free, then the sequence is called a free resolution.
Here is a construction of a free resolution. For every module T we have an exact
sequence

0! KT ! FT ! T ! 0

with the module FT being free. Put T1 D KT T2 D KT1 ; T3 D KT2 ; : : : : We have
exact sequences

0! T1 ! FT ! T ! 0;

0! T2 ! FT1 ! T1 ! 0;

0! T3 ! FT2 ! T2 ! 0;

: : : : : : : : : : : : : : : : : : : : :

of which we can compose one long exact sequence:

0 0 0 0

T3 T1

FT3 FT2 FT1 FT T 0

T2

0 0

................................................................................................................................
.........
.....................
................

................................................................................................................................
.........
.....................
................

.............................................................................................................................
.........
.....................
................

................................................................................................................................
........
.....................
................

............................................................................................................................
..........
.....................
................

.............................................................................................................................
..........
.....................
................

........................
........................
........................
...........................................................
.....................................

.......................
.......................
.......................
.......................
............................................
.....................................

.......................
........................
.......................
.......................
.....................................................
.....................................

.......................
........................
.......................
.......................
.....................................................
.....................................

.......................
........................
.......................
.......................
.....................................................
.....................................

.......................
........................
.......................
.......................
.....................................................
.....................................

.......................
........................
.......................
.......................
.....................................................
.....................................



...

The sequence of horizontal arrows is our resolution.
Certainly, a free (the more so, a projective) resolution of a given A-module is

not unique. In many cases, this creates a necessity of checking the independence
of various constructions of the choice of a resolution. Usually, we will leave this
checking to the reader, restricting ourselves to the remark that is always based on
the following proposition which is sometimes called the fundamental lemma of
homological algebra.
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Theorem. Let

: : : ��!P2
d2��!P1

d1��!P0
"��! T ��! 0;

: : : ��!P0
2

d0

2��!P0
1

d0

1��!P0
0

"0��! T 0��! 0

be projective resolutions of modules T;T 0, and let f WT ! T 0 be a module
homomorphism. Then the following holds.

(a) There exist module homomorphisms 'iWPi ! P0
i; i D 0; 1; 2; : : :, which make

the diagram

: : : ��! P2
d2��! P1

d1��! P0
"��! T ��! 0

?

?

?

?

y

'2

?

?

?

?

y

'1

?

?

?

?

y

'0

?

?

?

?

y

f

: : : ��! P0
2

d0

2��! P0
1

d0

1��! P0
0

"0��! T 0 ��! 0

commutative.
(b) If f' 0

ig is another family of homomorphisms with the same property, then there
exist module homomorphisms DiWPi ! P0

iC1; i D 0; 1; 2; : : : such that, for
i D 0; 1; 2; : : :,

' 0
i � 'i D Di�1 ı di C d0

iC1 ı Di

(in this formula, we mean that D�1 D 0.)

Proof of (a). First, let us construct '0. Since "0 is onto and P0 is projective, the
homomorphism f ı "WP0 ! T 0 can be factored through P0

0, that is, exists a
'0WP0 ! P0

0 such that "0 ı '0 D f ı ", as required. Suppose now that there are
already 'j; j < i satisfying the commutativity condition. Then 'i�2 ı d1�1 ı di D
0 ) d0

i�1 ı 'i�1 ı di D 0 ) Im.'i�1 ı di/ � Ker d0
i�1 ) Im.'i�1 ı di/ � Im d0

i .
For this reason, we can consider the composition 'i�1 ı di as a homomorphism
Pi ! Im d0

i , and since Pi is projective and the map d0
i WP0

i ! Im d0
i is onto, there

exists a 'iWPi ! P0
i such that d0

i ı 'i D 'i�1 ı di. This completes the proof of (a).

Proof of (b). First, let us construct D0. Since "0ı' 0
0 D "0ı'0 D f ı", "0ı.' 0

0�'0/ D
0 ) Im.' 0

0 � '0/ � Ker "0 D Im d0
1—hence, ' 0

0 � '0 can be regarded as a map
P0 ! Im d0

1—and since P0 is projective and the map d0
1WP0

1 ! Im d0
1 is onto, the

homomorphism ' 0
0 � '0 can be factored through P0

1; that is, ' 0
0 � '0 D d0

1 ı D0 for
some D0WP0 ! P0

1. Suppose now that Dj with j < i have been already constructed
and satisfy the condition requested. Then d0

i ı .' 0
i � 'i � Di�1 ı di/ D .' 0

i�1 �
'i�1/ ı di � d0

i ı Di�1 ı di D Œ' 0
i�1 � 'i�1 � .Di�2 ı di�1 C d0

i ı Di�1/� ı di D 0.
Hence, Im.' 0

i � 'i � Di�1 ı di/ � Ker d0
i D Im d0

iC1 and since Pi is projective and
d0

iC1WP0
iC1 ! Im d0

iC1 is onto, the homomorphism ' 0
i �'i�Di�1 ıdi can be factored

through P0
iC1; that is, ' 0

i � 'i � Di�1 ı di D d0
iC1 ı Di for some DiWPi ! P0

iC1; that
is, ' 0

i � 'i D Di�1 ı di C d0
iC1 ı Di. This is (b).
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EXERCISE 1. Prove that this theorem (and, actually, its proof) hold in the following,
more general, setting. (1) The modules Pi are projective, but the sequence : : : !
P2 ! P1 ! P0 ! T ! 0 is not necessarily exact: All we need is that it is a
complex; that is, the compositions of the consecutive homomorphisms are zeroes.
(2) The sequence : : :! P0

2 ! P0
1 ! P0

0 ! T 0 ! 0 is exact, but the modules P0
i are

not necessarily projective.

Notice finally that everything said in this section can be repeated word for word
for right A-modules.

33.4 Tor and Ext

(Compare with Sect. 15.4.) Let M be a right A-module and let N be a left A-module.
Fix a projective resolution

: : :! P2 ! P1 ! P0 ! M ! 0

of M and apply to the portion : : : ! P2 ! P1 ! P0 of this resolution the functor
˝AN1 with values in graded vector spaces over K. We get a sequence

: : :! P2 ˝A N ! P1 ˝A N ! P0 ˝A N .! 0! 0! : : :/;

which, in general, is not exact but still is a complex. The degree of nonexactness
of this sequence is measured by the homology of this complex, which is denoted as
TorA

n .M;N/:

TorA
n .M;N/ D

Ker.Pn ˝A N ! Pn�1 ˝A N/

Im.PnC1 ˝A N ! Pn ˝A N/
:

If M and N are positively graded, then the space TorA
n .M;N/ is graded:

TorA
n .M;N/ D

L

q TorA
n;q.M;N/, where

1Recall the definition of M ˝A N. Consider the vector space F generated by the set M � N and the
subspace G of F spanned by all elements of F of the form .m C m0; n/� .m; n/� .m:; n/; .m; n C
n0/� .m; n/� .m; n0/; .ma; n/� .m; an/ for all m;m0 2 M; n; n0 2 N; a 2 A. The quotient space
F=G is M ˝A N or, briefly, M ˝ N. The image of .m; n/ in M ˝ N is denoted as m ˝ n; thus,
m ˝ n is bilinear with respect to m and n and satisfies the relation ma ˝ n D m ˝ an. Notice that
M ˝A N is just a vector space, but if the algebra A is commutative, then it has a natural structure
of an A-module: a.m ˝ n/ D ma ˝ n. There is a generalization: If M is a B-A-bimodule and N is
an A-C-bimodule, then M ˝A N is a B-C-bimodule. Finally, notice that if M and N are positively
graded, then the space M ˝A N gets a grading: .M ˝A N/q is generated by the products m ˝ n with
m 2 Mr; n 2 Ns; r C s D q.
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TorA
n;q.M;N/ D

Ker..Pn ˝A N/q ! .Pn�1 ˝A N/q/

Im..PnC1 ˝A N/q ! .Pn ˝A N/q/
:

Notice that TorA
n is a (covariant) functor with respect to both variables M and N

(we leave to the reader the work of relating the last statement with different kinds of
homogeneity of homomorphisms).

EXERCISE 2. Prove that Tor is well defined: TorA
n .M;N/ does not depend on the

choice of a resolution.

EXERCISE 3. Prove that TorA
0 .M;N/ D M ˝A N.

EXERCISE 4. If at least one of the modules M;N is projective, then TorA
n .M;N/ D 0

for all n > 0.

EXERCISE 5. If the algebra A is commutative, then TorA
n .M;N/ has a natural

structure of an A-module.

EXERCISE 6. If the algebra A is commutative, then TorA
n .M;N/ Š TorA

n .N;M/
(Anti-hint: This is not really easy).

A transition from the definition and properties of the Tor operation to those of the
Ext operation is straightforward but still requires some changes in the initial settings.
First of all, we need to assume that both modules M and N are left (or both are right,
which will not make any difference). Again, we consider a projective resolution

: : :! P2 ! P1 ! P0 ! M ! 0

of M and apply to the portion : : : ! P2 ! P1 ! P0 of this resolution not the
functor ˝AN, but rather the functor HomA.�;N/. At this moment we need some
remarks concerning this functor.

The notation HomA.M;N/ means the vector space of not necessarily homoge-
neous A-homomorphisms f WM ! N satisfying the following, apparently artificial,
condition: There exists a positive integer C such that for every q, f .Mq/ �
LqCC

rDq�C Nr (we do not fix this C: It may be different for different f s). For such
a homomorphism f WM ! N and an arbitrary m 2 M, we have f .m/ 2 N DL

r Nr;
that is,

f .m/ D .: : : ; f .m/�2; f .m/�1; f .m/0; f .m/1; f .m/2; : : :/;
where f .m/r 2 Nr [with only finitely many f .m/q being different from 0]. Then we
can present f as a finite sum : : :C f�2C f�1C f0C f1C f2C : : : of homomorphisms
where fsjMq is defined by the formula fs.m/ D f .m/qCs. (Thus, fs D 0 if jsj > C.)
Obviously, fs is a homogeneous homomorphism of degree s, and we have

HomA.M;N/ DLs Homs
A.M;N/;

where Homs
A.M;N/ is the space of homogeneous homomorphisms M ! N of

degree s.
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It is well known that the two-variable functor HomA.M;N/ is covariant with
respect to N and contravariant with respect to M. Thus, when we apply to our
sequence the functor HomA.�;N/, all the arrows change their directions, and this is
what we get:

: : : HomA.P2;N/ HomA.P1;N/ HomA.P0;N/ . 0 : : :/:

The homology of this complex is Ext:

ExtnA.M;N/ D
Ker.HomA.Pn;N/! HomA.PnC1;N//
Im.HomA.Pn�1;N/! HomA.Pn;N//

:

Like Tor, Ext is graded: ExtnA.M;N/ D
L

s Extn;sA .M;N/, where

Extn;sA .M;N/ D
Ker.Homs

A.Pn;N/! Homs
A.PnC1;N//

Im.Homs
A.Pn�1;N/! Homs

A.Pn;N//
:

Notice also that, like Hom, Ext is covariant in the second variable and is contravari-
ant in the first variable.

EXERCISE 7. Prove that Ext is well defined: ExtnA.M;N/ does not depend on the
choice of a resolution.

EXERCISE 8. Prove that Ext0A.M;N/ D HomA.M;N/.

EXERCISE 9. If the module M is projective, then ExtnA.M;N/ D 0 for any N and
any n > 0.

EXERCISE 10. An alternative way of defining the Ext operation is to use injective
resolutions of the module N. The definition of an injective module is a replica of
the definition of the projective module with all arrows reversed. (In other words,
the module I is injective if any homomorphism of a submodule of some module M
into I can be extended to a homomorphism of M into I.) Modules possess injective
resolutions; an injective resolution of a module N is an exact sequence 0 ! N !
I0 ! I1 ! I2 ! : : :with all Ij injective. ExtnA.M;N/ can be defined as the homology
of the complex

.: : : 0! 0!/ HomA.M; I0/! HomA.M; I1/! HomA.M; I2/! : : : :

Reconstruct the details of this definition, prove that modules possess injective
resolutions, and prove the equivalence of the two definitions of Ext.

EXERCISE 11. Abelian groups can be regarded as Z-modules. Prove that for
arbitrary Abelian groups A;B,



33.4 Tor and Ext 443



444 5 The Adams Spectral Sequence

TorZn .A;B/ D
�

Tor.A;B/ for n D 1;
0 for n � 2;

Extn
Z
.A;B/ D

�

Ext.A;B/ for n D 1;
0 for n � 2;

where on the right-hand sides Tor and Ext are taken in the sense of Sect. 15.4.

Lecture 34 The Construction of the Adams Spectral
Sequence

34.1 Topological Adams Filtration

Let X be a topological space. Our goal is to find its stable homotopy groups�S
q .X/ D

�NCq.†
NX/, where N 
 q (according to the generalized Freudenthal theorem,

Sect. 23.3.C, this group does not depend on N). The main case: X D S0 (the two-
point space); then �S

q .X/ D �NCq.SN/ D �S
q .

Ahead, we fix a prime number p. We will denote the Steenrod algebra Ap simply
as A, and for the cohomology with coefficients in Zp we will use the notation with
the coefficient group omitted.

Since A acts in eH�, we can consider eH�.X/ as an A-module; its grading is
nonnegative (that is, all components of negative degrees are zero). Let us construct
for this A-module a free resolution. We already did this in Lecture 33. First, we take
a free module B0 with an epimorphism B0 ! eH�.X/. If we assume, for simplicity’s
sake, that X has finitely many cells in every dimension, then we can construct the
module B0, as well as all the modules which will appear in the future, with finitely
many generators of each degree.

The kernel of the epimorphism above is, in general, not free, and we cover it with
a new free module, B2, and so on. We arrive at the exact sequence

0 eH�.X/ B0  B1  B2  : : :

with all the modules Bi free.
The modules Bi are not cohomology modules for any topological space, because

nonzero cohomology modules are never free [for example, in the cohomology
modules there are always relations of the form Pi

p.x/ D 0 for i > .p�1/ dim x]. The
cohomology module with the smallest possible amount of relations iseH�.K.Zp; n//.
We want to “approximate” the modules Bi with modules of this kind.

Let N be a large number. The A-module eH�.†NX/ is the same as eH�.X/, only
the grading is shifted by N. Let ˛i 2 Hqi.X/ be the images of the free generators
of B0, that is, the chosen generators of the A-module eH�.X/. Consider the maps
†NX ! K.Zp;N C qi/ corresponding to the classes †N˛i 2 HNCqi.†NX/ for all i
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Fig. 118 The spectral sequence of the fibration †NX
X.1/��! Y0

such that qi < N. All together, they define a map †NX ! Y0 D …iK.Zp;N C qi/.
The A-module H�.Y0/ in dimensions from N to 2N coincides with the B0-module
in dimensions from 0 to N, and the map †NX ! Y0 induces a homomorphism
eH�.Y0/ ! eH�.†NX/ which coincides in the dimensions from N to 2N with the
homomorphism B0 ! eH�.X/ in dimensions from 0 to N.

We can regard the map†NX ! Y0 as a fibration; denote the fiber of this fibration
by X.1/ and put X.0/ D †NX. It would be not easy to fully describe eH�.X.1//, but
up to dimension 2N � 3 the A-module eH�.X.1//, up to a dimension shift by 1, is
the same as the A-module KerŒeH�.Y0/ ! H�.†NX/�; it is seen from the spectral
sequence of the fibration (Fig. 118).

The dimension shift occurs because the transgression raises the dimension by 1.
Thus, the A-moduleeH�.X.1// in dimensions from N � 1 to 2N� 3 is isomorphic to
the A-module KerŒB0 ! eH�.X/� in dimensions from 0 to N � 2 with a dimension
shift by N � 1.

Remark. Certainly, we can define X.1/ not as the fiber of the fibration †NX ! Y0,

but also as the total space of the fibration X.1/
…K.Zp;NCqi�1/�������! †NX induced by the

fibration 	…K.Zp;NCqi�1/�������! …K.Zp;NCqi/ D Y0 with respect to the map†NX ! Y0:

It is important that we have defined not only the space X.1/, but also the map
X.1/ ! †NX, and both this space and this map are defined up to a homotopy
equivalence.

Next, we do for X.1/ the same as we did for †NX. In the A-module eH�.X.1//,
we take a system of generators bijectively corresponding (up to dimension 2N � 3)
to the free generators of the A-module B1. Recall that there is an epimorphism B1 !
KerŒB0 ! eH�.X/�. The chosen generators differ from our previous generators by
the dimension shift by N � 1. Let ˇi 2 HNCri�1.X.1// be these generators. They
give rise to a map
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X.1/! Y1 D …K.Zp;N C ri � 1/:

The A-modules eH�.Y1/ and B1, up to the group H2N�3.Y1/, are the same with the
dimension shift by N � 1. We denote by X.2/ the fiber of the fibration homotopy
equivalent to the map X.1/! Y1. Thus, we obtain a space X.2/ and a map X.2/!
X.1/; both are well defined up to a homotopy equivalence.

Proceeding in the same way, we arrive at a sequence of spaces and maps,

: : :! X.3/! X.2/! X.1/! X.0/ D †NX:

In this sequence, X.i/ is the fiber of the fibration whose total space is (homotopy
equivalent to) X.i� 1/ and whose base is a product Yi�1 of the spaces K.Zp;m/.

Fix a dimension n� N. The A-module eH�.Yi/ up to dimension .N � iC 1/C n
and the A-module Bi up to dimension n are the same, only the gradings differ by
N � i C 1. (Actually, they coincide much further, namely, eH�.Yi/ up to dimension
� 2N and Bi up to dimension � N, but it is not important to us, since in the near
future we will take limits with both N and n going to1.)

On the other hand, we can consider the map X.iC 1/ ! X.i/ as a fibration. Its
fiber will be the product Zi of the same amount of K.Zp;m/s as Yi, only the numbers
m will be lower by 1. In our range of dimensions we can assume that Zi D �Yi and
Yi D †Zi.

The A-module eH�.Zi/ is isomorphic to Bi up do dimension N � i C n with
the dimension shift by N � i. Furthermore, eH�.X.i// coincides, up to dimension
N�iCn and with the dimension shift by N�i, with the kernel of the homomorphism
Bi�1 ! Bi�2 for i � 2 and with the kernel of the homomorphism B0 !
eH�.X/ for i D 1. Finally, the composition Zi � X.i C 1/ ! YiC1 induces a
homomorphismeH�.YiC1/! eH�.Zi/ which coincides, up to a dimension shift, with
the homomorphism BiC1 ! Bi from our resolution.

Notice also that all the spaces X.i/ are .N � 1/-connected. Let us clarify this for
the space X.1/. The difference in gradings of eH�.X.1// and KerŒB0 ! eH�.X/�
is N � 1. But the kernel is 0 in dimension 0: There are no relations between
the generators of eH0.X/. Thus, HN�1.X.1// D 0. Similarly, using the fact that
ŒKer.Bi ! Bi�1/�j D 0 for j � i, we deduce that the space X.i/ is .N�1/-connected
for all i.

Next, we want to replace the chain of maps between X.i/ by a filtration. For this,
we have to turn all these maps into embeddings. Construct the cylinders of all these
maps and attach them to each other as shown in Fig. 119. Denote by X0.k/ the part
of the space obtained to the left of X.k/ [including X.k/]. There arises a chain of
inclusion maps

: : : � X0.k/ � : : : � X0.2/ � X0.1/ � X0.0/;

which is homotopy equivalent to our chain of maps

: : :! X.3/! X.2/! X.1/! X.0/ D †NX:
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Fig. 119 The Adams filtration

In the future, we will not use the notation X0.k/—we will just write X.k/. We
can do it since all spaces and maps we construct are defined up to a homotopy
equivalence.

It will be convenient for us to put †NX D X.0/ D X.�1/ D X.�2/ D : : :, so
our filtration will be infinite both ways. Notice that the direction of this filtration is
not the same as in Chap. 3: The numeration goes backward.

34.2 The Groups and Differentials of the Spectral Sequence

The Adams spectral sequence is constructed from the filtration defined in Sect. 34.1
in the same way as the Leray spectral sequence is constructed from the filtration
defined in Sect. 22.1. The main difference is that now we will use homotopy
groups rather than homology groups. In general, homotopy groups cannot be used
to construct spectral sequences, roughly speaking, because of the absence of the
equality �q.A;B/ D �q.A=B/. However, as proven in Sect. 23.4, this equality holds
in stable dimensions (we will not use this fact explicitly, but this is the reason why
our constructions will go through).

Consider the inclusion map .X.s/;X.sC r//! .X.sC 1 � r/;X.sC 1//, where
r � 1, and introduce groups Es;t

r by the formula

Es;t
r D ImŒ�NCt�s.X.s/;X.sC r//! �NCt�s.X.sC 1 � r/;X.sC 1//�;

where t � n� s. One may wonder from where this restriction on t comes. Certainly,
the group Es;t

r is defined by this formula for all r; s; and t. But its definition involves
the arbitrarily chosen number N. How much does the group Es;t

r depend on N? The
cohomology of the space X.m/ in dimensions from N to N�mCn does not depend
on N. If we replace N by a bigger number, M, then the space X.m/ will be replaced
by a space eX.m/ that will be, up to dimension M � m C n, homotopy equivalent
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to †M�NX.m/. This shows that under our restrictions on t, the group Es;t
r does not

depend on N. If we take N and n sufficiently large, we obtain the groups Es;t
r well

defined for all r; s; and t.
There is another, equivalent, way of defining the groups Es;t

r . We put Es;t
r D

Gs;t
r =Ds;t

r ;, where

Gs;t
r D ImŒ�NCt�s.X.s/;X.sC r//! �NCt�s.X.s/;X.sC 1//�

Ds;t
r D ImŒ�NCt�sC1.X.sC 1 � r/;X.s//! �NCt�s.X.s/;X.sC 1//�;

and the homomorphisms come from homotopy sequences of triples .X.s/;
X.sC 1/; X.sC r//; .X.sC 1 � r/;X.s/;X.sC 1//. (This is the initial definition of
Adams.) To check that the second definition makes sense and that the two definitions
are equivalent, we consider the diagram

where all the arrows come from homotopy sequences of triples. In this diagram, the
triangle is commutative and the row is exact. We have

Es;t
r D Im.k ı g/; Gs;t

r D Im.g/; Ds;t
r D Im.h/:

Since h D g ı f , Im.h/ � Im.g/; thus, Ds;t
r � Gs;t

r . Furthermore,

Es;t
r D Im.k ı g/ D Im.g/=.Ker.k/ \ Im.g//

D Im.g/=.Im.h/\ Im.g// D Im.g/= Im.h/ D Gs;t
r =Ds;t

r ;

as stated.
Let us look more closely at the groups Es;t

r . They are defined for r � 1; s � 0;

t � 0; moreover, Es;t
r D 0 for t < s [this follows from the fact that all the spaces

X.s/ are .n� 1/-connected]. The term Er DLs;t Es;t
r is shown in Fig. 120 (note the

order of the axes!).
Let us look at how the group Es;t

r varies when r grows. Let us use the first
definition of Es;t

r . Then, starting from r D s C 1 (we assume s and t fixed), the
group �NCt�s.X.sC1�r/;X.sC1// stabilizes: It becomes �NCt�s.†

NX;X.sC1//.
However, the group �NCt�s.X.s/;X.s C r// has no reasons to stabilize. Still, it is
true that

ImŒ�NCt�s.X.s/;X.sC r//! �NCt�s.†
NX;X.sC 1//�

is a subgroup of

ImŒ�NCt�s.X.s/;X.sC rC 1//! �NCt�s.†
NX;X.sC 1//�;
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s

t

zeroes

Fig. 120 A graphic presentation of a term of the Adams spectral sequence

since the second map is the composition of the first map and the map

�NCt�s.X.s/;X.sC rC 1//! �NCt�s.X.s/;X.sC r//:

Thus, we can define the limit groups Es;t1 D
T

r>s Es;t
r and E1 DLs;t Es;t1.

It is equally easy to make this limit transition using the second description of the
groups Es;t

r .
Let us turn now to the differentials of the Adams spectral sequence. They will act

as ds;t
r WEs;t

r ! EsCr;tCr�1
r . Thus, the direction of the differentials is different from

the direction of the differential of the Leray spectral sequence (see Fig. 121).

s

t

zeroes

r − 1

rdr

Fig. 121 Differentials of the Adams spectral sequence

Consider the triples .X.s/;X.sCr/;X.sC2r// and .X.sC1� r/;X.sC1/;X.sC
rC 1// and the diagram
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where @1 and @2 are connecting homomorphisms in homotopy sequences of our
triples and f and g are homomorphisms used in the (first) definition of the terms
of the Adams spectral sequence: Im.f / D Es;t

r and Im.g/ D EsCr;tCr�1
r . The

commutativity of our diagram shows that @2 maps Im.f / into Im.g/. This is the
differential ds;t

r WEs;t
r ! EsCr;tCr�1

r .
It is obvious that dsCr;tCr�1

r ı ds;t
r D 0 (basically, this means that @ ı @ D 0). Now

we are in a position to state and prove the main result of this chapter.

34.3 The Adams Theorem

Theorem. Let X be a CW complex with finite skeletons, and let p be a prime number.
Then there exists a spectral sequence fEs;t

r ; ds;t
r WEs;t

r ! EsCr;tCr�1
r j r � 1; t �

s � 0g, with the following properties.

(1) There is a canonical isomorphism

Es;t
2 Š Exts;t

A
.eH�.X/IZp/:

Here Zp is regarded as an A-module with the trivial action of
L

q	0Aq with the
degree of the generator being 0.

(2) There is a canonical isomorphism

Es;t
rC1 D Ker ds;t

r = Im ds�r;t�rC1
r :

(3) For r > s, Im ds�r;t�rC1
r D 0; thus, Es;t

rC1 D Ker ds;t
r � Es;t

r ; let Es;t1 D
T

r>s Es;t
r .

Claim: For t > s, there exists a chain of subgroups

: : : � BsC1;tC1 � Bs;t � : : : � B1;t�sC1 � B0;t�s � �S
t�s.X/

such that Bs;t=BsC1;tC1 D Es;t1.
(4)

T

t�sDm Bs;t is the subgroup of �S
m.X/ consisting of all elements whose order is

finite and is not divisible by p.
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Notice that the adjointness of the limit term of the spectral sequence to the stable
homotopy group of X is substantially different from the adjointness in the Leray
theory. For every m � 0, there are, in general, infinitely many groups Es;t1 with
0 � s; t � s D m, as shown in the picture.
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Fig. 122 The structure of the E1-term

The sum E0;m1 ˚E1;mC11 ˚E2;mC21 ˚: : : of E1 groups marked in Fig. 122 is adjoint
to a quotient of the group �S

m.X/ with respect to a, possibly infinite, filtration. The
groups in the marked squares are all finite—actually, they are all finite sums of
groups Zp; however, the group to which the sum is adjoint may have elements of
infinite order. A typical example: The group Zp ˚ Zp ˚ Zp ˚ Zp ˚ : : : is adjoint to
Z with respect to the filtration : : : � p4Z � p3Z � p2Z � pZ � Z.

The proof of the Adams theorem (and some additional statements) is contained
in Sects. 34.4–34.8.

34.4 Proof of Statements (1) and (2)

The groups Es;t
r and the differentials ds;t

r have already been defined. Let us clarify
the structure of E1 and E2. By definition, Es;t

1 D �NCt�s.X.s/;X.s C 1//. By the

construction of X.k/, there is a fibration X.s/
X.sC1/��! …Km [here Km is an abbreviated

notation for K.Zp;m/]. As we know from Sect. 9.8, the projection of a Serre
fibration establishes an isomorphism between the relative homotopy groups of the
total space modulo a fiber and the homotopy groups of the base. Hence,

Es;t
1 D �NCt�s.X.s/;X.sC 1// D �NCt�s.…Km/:

On the other hand, in the stable dimensions (that is, when N 
 t�s), H�.X.s/;X.sC
1// is the same as eH�.…Km/, which is, again in the stable dimensions, a free module
over the Steenrod algebra A. We see that, again in the stable dimensions, the free
generators of H�.X.s/;X.sC 1// bijectively correspond to the additive generators
of
L

t Es;t
1 , which can be expressed as an isomorphism, with a grading shift by
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N � s,
L

t Es;t
1 D HomA.H�.X.s/;X.s C 1//;Zp/ (an A-homomorphism of a free

A-module into Zp is fully determined by the images of the generators, which are
chosen arbitrarily). Finally, we know from Sect. 34.1 that in the stable dimensions
the cohomology H�.X.s/;X.sC 1//, with the same dimension shift, coincides, as
an A-module, with Bs. This leads to the final result: Without any grading shift and
in all dimensions, there is an isomorphism

L

t Es;t
1 D HomA.Bs;Zp/:

Lemma. The differential ds;t
1 WEs;t

1 ! EsC1;t
1 coincides with the map HomA.Bs;Zp/

! HomA.BsC1;Zp/ induced by the A-homomorphism BsC1 ! Bs from the
resolution of eH�.X/ constructed in Sect. 34.1.

Proof of Lemma. The differential ds;t
1 is the connecting homomorphism �NCt�s

.X.s/; X.sC 1//! �nCt�s�1.X.sC 1/;X.sC 2// of the homotopy sequence of the
triple .X.s/; X.sC 1/;X.sC 2//. To prove our statement, we need to prove that the
connecting homomorphism H�.X.s C 1/;X.s C 2// ! H�C1.X.s/;X.s C 1// of
the same triple is the same as the homomorphism BsC1 ! Bs. In slightly different
notations, this was done in Sect. 34.1 (where the homomorphism BsC1 ! Bs was
identified as induced by the mapping Zi ! YiC1). Details (if there are any) are left
to the reader.

By the lemma and the definition of Ext, the latter is the homology of the complex
fEs;t

1 ; d
s;t
1 /. Thus, to finish the proof of statement (1), we need to prove statement (2).

Let us do this.
First, we will construct a homomorphism Ker ds;t

r ! Es;t
rC1. Consider the chain of

inclusions:

X.s� r/ 
 X.sC 1 � r/ 
 X.s/ 
 X.sC 1/ 
 X.sC r/ 
 X.sC rC 1/:

Let ˛ 2 Ker ds;t
r � Es;t

r . As an element of Es;t
r , ˛ belongs to the image of the

homomorphism�NCt�s.X.s/;X.sC r//! �NCt�s.X.sC 1� r/;X.sC 1//; in other
words, ˛ is an element of �NCt�s.X.sC 1� r/;X.sC 1//, which can be represented
by a spheroid

FW .DNCt�s; SNCt�s�1/! .X.s/;X.sC r//:

Since X.sC1�r/ � X.s�r/, we have ˛ 7! ˇ 2 �NCt�s.X.s�r/;X.sC1// and to be
an element of Es;t

rC1 D ImŒ�nCt�s.X.s/;X.sCrC1//! �NCt�s.X.s�r/;X.sC1//�,
it has to be representable by a spheroid GW .DNCt�s; SNCt�s�1/ ! .X.s/;X.s C
r C 1//. Is it? In general, it is not, but ˛ 2 Ker ds;t

r ; that is, ˛ is annihilated by
the boundary map �NCt�s.X.s C 1 � r/;X.s C 1// ! �NCt�s�1.X.s C 1/;X.sC
rC 1//. This means that our spheroid F has the following property: The restriction
FjSNCt�s�1 W SNCt�s�1 ! X.sC r/, regarded as a map into X.s � 1/, is homotopic to
a map into X.sC rC 1/. If we append this homotopy to the spheroid F, we will get
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a homotopy of the spheroid F to a spheroid GW .DNCt�s; SNCt�s�1/! .X.s/;X.sC
r C 1// within the class of spheroids of the pair .X.sC 1 � r/;X.sC 1//. Thus, ˛
is represented by this spheroid G, hence, so is ˇ, and hence ˇ 2 Es;t

rC1. Our map
˛ 7! ˇ is a homomorphism Ker ds;t

r ! Es;t
rC1, as required.

Next, we must prove that the homomorphism Ker ds;t
r ! Es;t

rC1 constructed above
is onto. The proof of this is more or less the previous proof read from the end to the
beginning. An element ˇ 2 Es;t

rC1 is an element of �NCt�s.X.s� r/;X.sC1//, which
can be represented by a spheroid GW .DNCt�s; SNCt�s�1/ ! .X.s/;X.s C r C 1//.
The same spheroid represents a certain element ˛ 2 �NCt�s.X.sC 1� r/;X.sC 1//
which belongs to the image of �NCt�s.X.s/;X.sC r//, that is, ˛ 2 Es;t

r . Moreover,
since the boundary of the spheroid G is contained in X.s C r C 1/, its class ˛ is
annihilated by the boundary homomorphism @W�NCt�s.X.sC 1 � r/;X.sC 1// !
�NCt�s�1.X.sC 1/;X.sC r C 1//, that is, ˛ 2 Ker ds;t

r . This is precisely what we
need.

It remains to check that the kernel of the epimorphism Ker ds;t
r ! Es;t

rC1 is
precisely Im ds�r;t�tC1

r .
First, let ˛ 2 Ker ds;t

r . As we have seen before, this means that ˛ is an element of
�NCt�s.X.sC1�r/;X.sC1// representable by a spheroid FW .DNCt�s; SNCt�s�1/!
.X.s/;X.sC r//. Furthermore, ˛ belongs to the kernel of the map Ker ds;t

r ! Es;t
rC1

if and only if F, regarded as a spheroid of the pair .X.s� r/;X.sC1//, is homotopic
to the trivial spheroid. This means that there exists a homotopy HWDNCt�s � I !
X.s� r/ which is F on the lower base and maps the side surface and the upper base
into X.sC 1/ (see Fig. 123). This map H may be regarded as a relative .NC t� sC
1/-dimensional spheroid of the pair .X.s � r/;X.s//. This spheroid determines an
element of �NCt�s�1.X.s� r/;X.s// whose image in �NCt�sC1.X.sC1�2r/;X.sC
1// is some element ˇ of Es�r;t�sC1

r . Modulo X.sC 1/, the boundary of the spheroid
H is F. Thus, ds�r;t�sC1

r ˇ D ˛, and ˛ 2 Im ds�r;t�sC1
r , as required.

F

H

X(s

X(s

X(s

X(s

X(s

+r)

)

+1)

−r)

+1)

DN+t−s × 0

DN+t−s × I

DN+t−s × 1

Fig. 123 A homotopy HW .DNCt�s � I; SNCt�s�1 � I/ ! .X.s � r/;X.s C 1// of
FW .DNCt�s; SNCt�s�1/ ! .X.s/;X.s C r//

Finally, we need to show that for every ˇ 2 Es�r;t�rC1
r , the element ˛ D

ds�r;t�rC1
r ˇ of Ker ds;t

r � Es;t
r has a zero image in Es;t

rC1. By definition, ˇ is an
element of �NCt�sC1.X.sC1�2r/;X.s� rC1// represented by a relative spheroid
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of a pair .X.s � r/;X.s//. Then ˛ is represented by an absolute spheroid of X.s/
which is homotopic to zero in X.s � r/. Hence, it represents a zero element in
�NCt�s.X.s� r/;X.sC 1//, that is, a zero element of Es;t

rC1.
This completes the proof of statement (2), and hence of statement (1).

34.5 A Digression: A Remark on the Resolutions

Let us describe the most convenient free resolution

: : :! B3 ! B2 ! B1 ! B0 ! eH�.X/

of the A-module eH�.X/. First, we take a “minimal” system of generators in the
module eH�.X/. We begin with a basis (over Zp) in the first nontrivial space eHq1 .X/.
Then, in the second nontrivial space, Hq2 .X/, we take the image of Hq1.X/ with
respect to the action of A, and take the basis in a complement to it. Then we do
the same with the third nontrivial cohomology space, and so on. We take for B0 the
free A-module on these generators, consider the kernel of the epimorphism B0 !
eH�.X/, choose generators in this kernel in the same way, get a B1, and so on.

With a resolution constructed in this way, we will have all the homomorphisms
HomA.Bk;Zp/ ! HomA.BkC1;Zp/ trivial [indeed, every A-homomorphism Bk !
Zp vanishes at all elements of the form

P

i 'ia
.k/
i , where a.k/i are our generators of Bk

and deg'i > 0, and our homomorphism BkC1 ! Bk takes all the generators of BkC1
into elements of such a form]. Thus, for our resolution, the complex fHomA.Bk;Zp/g
has a trivial differential, and, consequently,

Extk
A
.eH�.X/;Zp/ D HomA.Bk;Zp/:

34.6 Proof of Statements (3) and (4): The Case of Finite
Stable Homotopy Groups

In this section, we assume that all the stable homotopy groups of X are finite. Then
the same is true for all the spaces X.s/.

Let us introduce a convenient notation. Every finite Abelian group is decomposed
into the sum of two groups: “p-component” and “non-p-component.” We will
denote these groups as compp G and compp G, respectively. Thus, G D compp G˚
compp G, the order of compp G is a power of p, and the order of compp G is not
divisible by p.

Lemma 1. The group compp �NCq.X.s// does not depend on s.
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Proof. According to Sect. 34.1, there is a fibration X.s/
X.sC1/��! Ys. Since the base of

this fibration is a product of spaces of the type K.Zp;m/, the homotopy groups of
the base have no nontrivial non-p-components, and the homotopy sequence of our
fibration yields the result.

Lemma 2. For q < n, there exists an s0 such that

compp �NCq.X.s// D 0
for s > s0.

Proof. Let m be a smallest integer < n for which

compp HNCm.X.s// ¤ 0:
Then m is also the smallest integer < n for which

compp �NCm.X.s// ¤ 0
(strictly speaking, here we need the reference to the C-theorem of Hurewicz, as
presented in Sect. 26.1.B; but the fact is obvious: It is sufficient to consider the
sequence of killing spaces for X.s/). The map X.s/ ! Ys induces an epimorphism
of the homotopy groups �NCm [if compp �NCm.X.s// is the sum of k cyclic
groups of the form Zpr , then �NCm.Ys/ is the sum of k groups Zp, and the map
compp �NCm.X.s// ! �NCm.Ys/ is the sum of projections Zpr ! Zp]. Obviously,
the group compp �NCm.X.s C 1// is the kernel of this map. Hence, the order of
the last group is less than the order of compp �NCm.X.s// (all homotopy groups
considered have finite orders!). From this, if m0 is the smallest integer < n such
that compp �NCm0.X.s C 1// ¤ 0, then either m0 > m or m0 D m, but the order
of compp �NCm.X.s C 1// is less than the order of compp �NCm.X.s//. The result
follows.

Lemma 3. Let q < n. .1/. If 0 � s < s0, then �NCq.X.s/;X.s0// is a p-group. .2/.
If s0 is sufficiently large, then �NCq.X.s/;X.s0// D compp �NCq.X.s//.

Proof. The statement follows from Lemmas 1 and 2 and the exactness of the
homotopy sequence

�NCq.X.s0//! �NCq.X.s//! �NCq.X.s/;X.s0//
! �NCq�1.X.s0//! �NCq�1.X.s//:

By Lemma 1, in this sequence both the first and last arrows are iso-
morphisms on compp; hence, both KerŒ�NCq�1.X.s0// ! �NCq�1.X.s//�
and CokerŒ�NCq.X.s0// ! �NCq.X.s//� are p-groups, and hence so is
�NCq.X.s/;X.s0//. This is (1). Furthermore, if s0 is large, then the p-components
of �NCq.X.s0// and �NCq�1.X.s0// are trivial, and hence KerŒ�NCq�1.X.s0// !
�NCq�1.X.s//� D 0 and CokerŒ�NCq.X.s0//! �NCq.X.s//� D compp �NCq.X.s//,
which implies (2).
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We pass to statements (3) and (4) of the Adams theorem. Set

Bs;t D ImŒ�NCt�s.X.s//! �NCt�s.X.0// D �NCt�s.†
NX/ D �S

t�s.X/�

(where N is large). We get a sequence of inclusions (a filtration)

: : : � Bs;t � Bs�1;t�1 � : : : � B0;t�s

in which B0;t�s D ImŒ�NCt�s.X.0//
id!�NCt�s.X.0//� D �NCt�s.†

NX/ D �S
t�s.X/:

We want to prove that Es;t1 D Bs;t=BsC1:tC1 and that
\

t�sDm

Bs;t D compp �
S
m.X/:

By our definition,

Es;t
M D ImŒ�NCt�s.X.s/;X.sCM//! �NCt�s.†

NX;X.sC 1//�;
where N � t � s. By Lemma 3, �NCt�s.†

NX;X.sC 1// is a p-group; if M is large,
then �NCt�s.X.s/;X.sCM// D compp �NCt�s.X.s//. Hence, for large M,

Es;t
M D ImŒ�NCt�s.X.s//! �NCt�s.†

NX;X.sC 1//�:
This does not depend on M, so this is, actually, Es;t1. The homomorphism
�NCt�s.X.s//! �NCt�s.†

NX;X.sC 1// is a composition

�NCt�s.X.s//! �NCt�s.†
NX/! �NCt�s.†

NX;X.sC 1//�;

where the kernel of the second homomorphism is ImŒ�NCt�s.X.s C 1// !
�NCt�s.†

NX/�, which is contained in the image of the first homomorphism. Hence,

Es;t1 D
ImŒ�NCt�s.X.s//! �NCt�s.†

NX/�

KerŒ�NCt�s.†NX/! �NCt�s.†NX;X.sC 1//�

D ImŒ�NCt�s.X.s//! �NCt�s.†
NX/�

ImŒ�NCt�s.X.sC 1//! �NCt�s.†NX/�
D Bs;t

BsC1;tC1 ;

which is statement (3) of the Adams theorem. Furthermore, for M large, by
Lemmas 1 and 2,

BsCM;tCM D ImŒ�NCt�s.X.sCM/! �NCt�s.†
NX/�

D compp �NCt�s.†
NX/ D compp �

S
t�s.X/;

which is statement (4) of the Adams theorem.
This completes the proof of the Adams theorem in the case of finite stable groups.

It remains to prove statements (3) and (4) in the general case. This requires some
preparation.
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34.7 The Adams Spectral Sequence and Continuous Maps

Let us consider the behavior of the Adams spectral sequence with respect to
continuous maps. Suppose that the previous construction of the Adams spectral
sequence (including the special choice of resolutions) has been performed for
spaces X;X0. Let f WX ! X0 be a continuous map. It induces the A-homomorphism
f �WeH�.X0/! eH�.X/. The fundamental lemma of homological algebra (the theorem
of Sect. 33.3) provides a (homotopically unique) homomorphism between the
projective resolutions, that is, a commutative diagram

: : :
ˇ3��! B2

ˇ2��! B1
ˇ1��! B0

ˇ0��! eH�.X/
x

?

?

?

?

'2

x

?

?

?

?

'1

x

?

?

?

?

'0

x

?

?

?

?

f �

: : :
ˇ0

3��! B0
2

ˇ0

2��! B0
1

ˇ0

1��! B0
0

ˇ0

0��! eH�.X0/:

We want to convert this into a map between Adams filtrations, that is, a homotopy
commutative diagram

: : : ��! X.2/ ��! X.1/ ��! X.0/ D †NX
?

?

?

?

y

?

?

?

?

y

?

?

?

?

y

†N f

: : : ��! X0.2/ ��! X0.1/ ��! X0.0/ D †NX0:

The construction is as follows. Up to a dimension shift (by N), the A-
homomorphisms ˇ0WB0 ! eH�.X/ and ˇ0

0WB0
0 ! eH�.X0/ are induced by

maps †NX ! Y0 and †NX0 ! Y 0
0, which can be regarded as fibrations with

the fibers X.1/ and X0.1/. Since Y0 and Y 0
0 are products of Eilenberg–MacLane

spaces, the A-homomorphism '0 is induced by the (homotopically well-defined)
map Y0 ! Y 0

0, which forms (together with the map †Nf ) a map between the
fibrations †NX ! Y0 and †NX0 ! Y 0

0. In particular, there arises a map between
the fibers, X.1/ ! X0.1/, which forms, together with †Nf and the inclusion maps
X.1/ ! †NX D X.0/ and X0.1/ ! †NX0 D X0.0/, a homotopy commutative
diagram

X.1/ ��! X.0/
?

?

?

?

y

?

?

?

?

y

†N f

X0.1/ ��! X0.0/:

Next, we notice that, up to a dimension shift, eH�.X.1// and eH�.X0.1// are Kerˇ0
and Kerˇ0

0. Since B1 and B0
1 are (again, up to a dimension shift) cohomology

modules of spaces Y1 and Y 0
1 (which are products of Eilenberg–MacLane spaces),

the homomorphismsˇ1WB1 ! Kerˇ0 and ˇ0
1WB0

1 ! Kerˇ0
0 are induced by the maps
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X.1/! Y1 and X0.1/! Y 0
1, which can be regarded as fibrations with the fibers X.2/

and X0.2/. The homomorphism'1 gives rise to a map Y1 ! Y 0
1, which, together with

the already constructed map X.1/ ! X0.1/, forms a map between these fibrations
and, in particular, between their fibers. We obtain a map X.2/ ! X0.2/, which,
together with the map X.1/ ! X0.1/ constructed before and the inclusion maps
X.2/! X.1/ and X0.2/! X0.1/, form a homotopy commutative diagram

X.2/ ��! X.1/
?

?

?

?

y

?

?

?

?

y

X0.2/ ��! X0.1/:

Proceeding in the same way, we obtain the map between the Adams filtrations for X
and X0, as promised.

The map between the Adams filtrations induces homomorphisms between all
relative homotopy groups involved in the construction of the Adams spectral
sequences and, consequently, between the whole Adams spectral sequences. The
meaning of this is presented in the following theorem.

Theorem. A map f WX ! X0 induces a homomorphism of the Adams spectral
sequence fEs;t

r ; d
s;t
r g of X into the Adams spectral sequence f0Es;t

r ;
0ds;t

r g of X0, that
is, a set of homomorphisms f s;t

r WEs;t
r ! 0Es;t

r such that

(1) These homomorphisms commute with the differentials; that is, the diagram

Es;t
r

ds;t
r��! EsCr;tCr�1

r?

?

?

?

y

f s;t
r

?

?

?

?

y

f sCr;tCr�1
r

0Es;t
r

0ds;t
r��! 0EsCr;tCr�1

r

is commutative.
(2) The map frC1WErC1 ! 0ErC1 is the map of the homology of the complex fEr; drg

into the homology of the complex f0Er;
0drg induced by the map frWEr ! 0Er.

(3) The homomorphism

f s;t
2 WEs;t

2 D Exts;t
A
.eH�.X/;Zp/! 0Es;t

r D Exts;t
A
.eH�.X0/;Zp/

is induced by the A-homomorphism f �WeH�.X0/! eH�.X/.

Let us clarify the last statement. The Ext functor is contravariant with respect to
the first argument (and covariant with respect to the second argument). Namely, an
A-homomorphism M2 ! M1 gives rise to a (homotopically unique) homomorphism
of a projective resolution of M2 into a projective resolution of M1. The operation
Hom.�;N/ reverses all the arrows, and the resulting homology homomorphism
maps Ext�;�

A
.M1;N/ into Ext�;�

A
.M2;N/.
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The theorem is obvious, and we can add to it one more statement, which is
equally obvious but not fully proved, since we have not given a proof, in the general
case, of the corresponding statement of the Adams theorem. (Certainly, we will not
use this statement before we finish the proof of the Adams theorem.)

(4) The limit map f s;t1 WEs;t1 ! 0Es;t1 is induced by the map f�W�S�.X/! �S�.X0/:

Corollary. The Adams spectral sequence of X, beginning from the E2-term, depends
only on the stable homotopy type of X.

34.8 End of Proof of the Adams Theorem

In the general case, the homotopy groups �NCq.X.s// are not finite, but they
are finitely generated (since X was assumed to be a CW complex with finite
skeletons). The decomposition G D compp G ˚ compp G (see Sect. 34.6) in the
case when G is finitely generated, but not necessarily finite, should be replaced
by the decomposition G D Compp G ˚ compp G, where compp G is the same as
before, the subgroup of G consisting of 0 and all elements of finite order prime to p,
and Compp G Š .G= compp G/. Thus, Compp G is the sum of a group of the form
Z ˚ : : : ˚ Z and a finite group whose order is a power of p. (The decomposition
G D Compp G˚ compp G is not canonical, but this is not important for us.)

Lemma 1 of Sects. 34.6 (with its proof) remains valid for our new case; so
does part (1) of Lemma 3. Lemma 2, however, should be modified. If the group
�NCq.†

NX/ is infinite, then we cannot expect that Compp �NCq.X.s// will be zero
for sufficiently large s; actually, all the groups �NCq.X.s/ have the same rank. The
role of Lemma 2 in our new setting will be played by the following proposition.

Proposition. If the order of ˛ 2 �NCq.X.s// is 1 or a power of p, then, for M
sufficiently large, ˛ does not belong to the image of the homomorphism �NCq.X.sC
M//! �NCq.X.s//. In other words,

\

M
ImŒ�NCq.X.sCM//! �NCq.X.s//� D compp �NCq.X.s//:

Proof. First, notice that it is sufficient to prove the proposition in the case when
s D 0, that is, ˛ 2 �NCq.†

NX/; indeed, the sequence : : :! X.sC2/! X.sC1/!
X.s/ is the Adams filtration for X.s/.

The main ingredient of the proof is the geometric construction presented in
Fig. 124. Take the suspension †X and some positive integer k and then collapse
to points pk � 1 parallel copies of X. We obtain a map of †X into a garland of pk

copies of†X attached to each other by vertices. This garland is homotopy equivalent
to the pk-fold bouquet †X _ : : : _ †X. Then we apply the map of this bouquet
onto †X, which is the identity on every †X in the bouquet. The composition map
hW†X ! †X may also be described as the smash product X#S1 ! X#S1 of the
identity map X ! X and a map S1 ! S1 of degree pk.
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Fig. 124 A pk-fold map †X ! †X

Then we take the cone X0 of the map h constructed; that is, we attach the cone
C.†X/ to †X by the map h of the base of the cone onto †X. There arises the
inclusion map †X ! X0 of the base of the mapping cone into this cone; we will
also need the .N � 1/-fold suspension †NX ! †N�1X0 of this map.

Lemma. The stable homotopy groups of the space X0 are finite. (They are actually
p-groups.)

Proof of Lemma. Consider the homotopy sequence of the pair .†N�1X0; †NX/:

�NCqC1.†N�1X0; †NX/
@��!�NCq.†

NX/! �NCq.†
N�1X0/

��!�NCq.†
N�1X0; †NX/

@��!�NCq�1.†NX/:

In stable dimensions,

�NCqC1.†N�1X0; †NX/ D �NCqC1.†N�1X0=†NX/
D �NCqC1.†NC1X/ D �NCq.†

NX/;

and the map @W�NCqC1.†N�1X0; †NX/ D �NCq.†
NX/ ! �NCq.†

NX/ is induced
by the map shown in Fig. 124. It is clear that this map is the multiplication by pk

(it is seen in Fig. 124 for the classes of spheroids of †X which are suspensions
over spheroids of X; but in stable dimensions all spheroids in †X are homotopic
to suspensions). It remains to notice that both the kernel and cokernel of the
multiplication by pk are finite p-groups; hence, �NCq.†

N�1X0/ is also a finite p-
group. This proves the lemma.

Now return to the proposition. The map †NX ! †N�1X0 constructed above
gives rise to a map between the Adams filtrations:
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: : :! X.2/ ! X.1/ ! X.0/ D †NX
# # # #

: : :! X0.2/! X0.1/! X0.0/ D †N�1X0:

Assume now that k is so large that ˛ is not divisible by pk. The homotopy sequence
above (in the proof of the lemma) shows that the kernel of the map �NCq.†

NX/!
�NCq.†

N�1X0/ consists of elements divisible by pk. Thus, ˛ does not belong to
this kernel, and hence its image ˇ 2 �NCq.†

N�1X0/ is not zero, but its order is a
power of p. Since the stable homotopy groups of X0 are finite, we can apply to X0
Lemma 2 of Sect. 34.6, and it implies that for sufficiently large M, ˇ does not belong
to the image of the homomorphism�NCq.X0.M//! �NCq.†

N�1X0/. Hence, ˛ does
not belong to the image of the homomorphism �NCq.X.M// ! �NCq.†

NX/. This
completes the proof of the proposition.

Now we can prove, in the general case, statements (3) and (4) of the Adams
theorem. The proof repeats the proof in Sect. 34.6 with only one difference. We can
no longer state, for M large, that

Es;t
M D ImŒ�NCt�s.X.s/;X.sCM//! �NCt�s.†

NX;X.sC 1//�
is the same as

ImŒ�NCt�s.X.s//! �NCt�s.†
NX;X.sC 1//�:

We will prove instead that the intersection
\

M large

Es;t
M D

\

M large

ImŒ�NCt�s.X.s/;X.sCM//! �NCt�s.†
NX;X.sC 1//�

is the same as

ImŒ�NCt�s.X.s//! �NCt�s.†
NX;X.sC 1//�;

so it is still true that the last image is Es;t1, and the rest of the proof goes smoothly.
Thus, we want to prove that if some ˇ 2 �NCt�s.†

NX;X.s C 1// does not
belong to the image of �NCt�s.X.s//, then ˇ also does not belong to the image of
�NCt�s.X.s/;X.sCM// for M sufficiently large. Consider the commutative diagram
with an exact row,
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We want to prove that if ˇ … Im.'3 ı '1/, then ˇ … Im.'3 ı '1/ for large M. Let
˛ D @3.ˇ/ 2 �NCt�s�1.X.sC 1/. Then either ˛ D 0 or ˛ ¤ 0, and the order of ˛ is
a power of p [because �NCt�s.†

NX;X.sC 1// is a finite p-group].
Let ˛ D 0. If ˇ D '3� for a � 2 �NCt�s.X.s/;X.sC 1//, then @2� D ˛ D 0,

hence � D '1ı for some ı 2 �NCt�s.X.s//, and hence ˇ D '3 ı '1ı 22 .'3 ı '1, a
contradiction. Hence, ˇ … Im'3; even more, ˇ … Im.'3 ı '2/ for any M.

Let ˛ be a nonzero element whose order is a power of p. Then, by the proposition,
˛ … Im'4 for a large M. Then ˛ … Im.'4 ı @2/ D Im.@3 ı '3 ı '2/, and hence
ˇ … Im.'3 ı '2.

This completes the proof of the Adams theorem.

Lecture 35 Multiplicative Structures

The multiplicative structure in the cohomological Leray spectral sequence appeared
because the cohomology groups of which this spectral sequence is made possess
a multiplicative structure. The groups of which the Adams spectral sequence is
made are homotopy groups which do not possess any multiplicative structure. Well,
there certainly is the Whitehead product, but it is useless for the Adams spectral
sequence since it is zero in the stable dimensions. For this reason, the Adams
spectral sequence does not have, at least, an immediate multiplicative structure.
Still, there is a way to introduce a multiplication in the Adams spectral sequence
of a space X, at least in the case when X is a sphere; but this case is very important
and interesting.

Let us begin with this case. If we imagine that there is a multiplicative structure
in the Adams spectral sequence of the sphere, then the sum

L

q �
S
q .S

0/ should be
a ring. What is the multiplication in this sum? It turns out that this multiplication
exists, is very natural, and can be described in a purely geometric way.

35.1 The Composition Product in the Stable Homotopy
Groups of Spheres

Let ˛ 2 �S
k .S

0/; ˇ 2 �S
` .S

0/. We can regard ˛ as an element of �NCk.SN/

and ˇ as an element of �NCkC`.SNCk/ (where N 
 k; `). Spheroids aW SNCk !
SN; bW SNCkC` ! SNCk representing ˛ and ˇ can be composed to create a spheroid
a ı bW SNCkC` ! SN , which, in turn, belongs to some class in �NCkC`.SN/ D
�S

kC`.S0/. We denote this element as ˛ ı ˇ and call it the composition product
of ˛ and ˇ. It is obvious that the composition product is well defined; that is, ˛ ı ˇ
depends only on ˛ and ˇ.

There is another definition of the composition product; we will give this
definition and then establish its equivalence to the previous definition. Let ˛ 2
�NCk ! SN; ˇ 2 �NC`.SN/, and let aW SNCk ! SN and bW SNC` ! SN be
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spheroids of the classes ˛ and ˇ. We define ˛ ı ˇ as .�1/Nk times the class of
a spheroid a#bW SNCk#SNC` ! SN#SN , that is, S2NCkC` ! S2N . Again, we have
˛ ı ˇ 2 �S

kC`.S0/.

Proposition 1. The two definitions of ı are equivalent.

Proof. The map .�1/Nk.a#b/ D ..�1/Nka/#bW SNCk#SNC` ! SN#SN can be
presented as a composition of two maps,

SN Sk SN+# #

SN Sk SN# #

................................................................................................................................
..................
...................
..................

................................................................................................................................
..................
...................
..................

................................................................................................................................
..................
...................
..................
bidid

..................................................................................................................................................
..................
...................
..................

..................................................................................................................................................
..................
...................
..................
id(−1 (Nka

SNSN #

Now, supplement this composition with a map swapping the two copies of SN in
the second row. To make this map homotopic to the identity, we make one of the
maps SN ! SN not the identity, but rather .�1/N id. After that, we also swap the two
copies of SN , and again, to make the map homotopic to the identity, we turn one of
the maps SN ! SN into .�1/N id. Thus, our map is homotopic to the composition

This composition is a map SN#SNCkCl ! SN#SN , which is the #-product of the
identity map SN ! SN and the composition

SNCkC` †kb��! SNCk D Sk#SN swap��! SN#Sk .�1/Nka�����! SN:
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Since the degree of the swap map is Nk, this composition is homotopic to a ı b, as
described in the first definition. This completes the proof of Proposition 1.

Proposition 2. The composition product is skew-commutative, that is, ˇ ı ˛ D
.�1/k`˛ ı ˇ.

Proof. Let aW SNCk ! SN and bW SNC` ! SN be spheroids of classes ˛ and ˇ. There
is an obvious homotopy commutative diagram

By Proposition 1, the classes ˇ ı ˛ and ˛ ı ˇ are represented by the spheroids
..�1/N`b#a and ..�1/Nka#b, and we have

ˇ ı ˛ D .�1/Nl.�1/.NCk/.NC`/.�1/Nk.�1/N˛ ı ˇ D .�1/k`˛ ı ˇ:

Proposition 3. The composition product is distributive:

.ˇ C �/ ı ˛ D ˇ ı ˛ C � ı ˛I ˛ ı .ˇ C �/ D ˛ ı ˇ C ˛ ı �:

Proof. Since we have already proven that the composition product is skew-
commutative, it is sufficient to prove any one of these formulas, and we will prove
the second one. Actually, we will prove a stronger statement, namely, that for any
ˇ; � 2 �m.Sn/ and ˛ 2 �n.X/ (where X is arbitrary), the equality ˛ ı .ˇ C �/ D
˛ ıˇC˛ ı� holds. In other words, for any spheroids b; cW Sm ! Sn, and aW Sn ! X,
the spheroids a ı .bC c/; .a ı b/C .a ı c/W Sm ! X are homotopic, whereC stands
for the sum of spheroids as defined in Sect.8.1. But it is obvious that these spheroids
are not just homotopic—they are the same.

Since the associativity of the composition product is obvious, we can say that
the direct sum �S�.S0/ D

L

q �
S
q .S

0/ acquires the structure of graded associative
skew-commutative ring.

Remark. As we noticed in the proof of Proposition 3, the composition products
exist not only in stable homotopy groups, and not only of spheres. However, even
for a homotopy group of spheres, the composition product does not have any good
algebraic properties. Certainly, it is associative: If ˛ 2 �m.Sn/; ˇ 2 �`.Sm/; and
� 2 �k.S`/, then .˛ ı ˇ/ ı � D ˛ ı .ˇ ı �/. However, no kind of commutativity can
exist: If ˛ 2 �m.Sn/ and ˇ 2 �`.Sm/, then ˛ ı ˇ cannot be equal to ˙ˇ ı ˛ simply
because the latter is not defined. The “right distributivity” ˛ı.ˇC�/ D ˛ıˇC˛ı�
holds (as shown in the proof of Proposition 3), but the “left distributivity” may fail.
Here is the simplest example: If � 2 �2.S2/ is the class of the identity spheroid and
˛ 2 �3.S2/ is the Hopf class, then .2�/ ı ˛ is not 2˛ (which would have followed
from the left distributivity), but rather 4˛.
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EXERCISE 1. Prove this using the Hopf invariant.

35.2 An Algebraic Digression

A: Definition and Examples

An associative unitary graded algebra A D L

m Am over a field K is called a Hopf
algebra if the following axioms hold.

(1) Am D 0 for negative m, and A0 D K.
(2) There is defined a diagonal map or comultiplication �WA ! A ˝K A which

is a homomorphism between graded algebras (the multiplication in A ˝K A is
defined by the rule .˛ ˝ ˇ/ � .˛0 ˝ ˇ0/ D .�1/degˇ deg˛0

˛˛0 ˝ ˇˇ0).
(3) If deg a D d > 0, then �.a/ D a˝ 1C : : :C .�1/d1˝ a, where : : : denotes a

sum of tensor products of elements of positive degrees.
(4) The comultiplication� is coassociative; that is, the diagram

is commutative.

A remarkable property of the definition of a Hopf algebra is its symmetry with
respect to the multiplication 	WA˝K A! A .	.a˝ b/ D ab/ and comultiplication
�WA! A˝K A. This symmetry displays itself in the following fact.

EXERCISE 2. Prove that if A is a Hopf algebra, then the graded dual space A� D
L

m.A
m/� is a Hopf algebra with respect to the multiplication��WA�˝K A� ! A�

and the comultiplication 	�WA� ! A� ˝K A�.

Details concerning Hopf algebras can be found in the article by Milnor and
Moore [59].

Example 1. Cohomology (as well as homology) of an H-space X with coefficients
in a field is a Hopf algebra: The multiplication and comultiplication are induced by
the diagonal map X ! X � X and the product map X � X ! X (plus Künneth’s
formula).
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Example 2. The Steenrod algebra is a Hopf algebra: The comultiplication is defined
by the formula

�.ˇ/ D ˇ ˝ 1 � 1˝ ˇ; �.Ps
p/ D

X

sCtDi

Ps
p ˝ Pt

p

(in particular, if p D 2, then�.Sqi/ DPsCtDi Sqs˝Sqt).

B: Modules over Hopf Algebras and Their Tensor Products

If A is a Hopf algebra and B;C are A-modules, then the tensor product B˝K C also
has a natural structure of an A-module. Indeed, B ˝K C is naturally an .A ˝K A/-
module, and the algebra homomorphism�WA! A˝K A turns it into an A-module.

Remark. The Hopf algebra structure on the Steenrod algebra is compatible with
Künneth’s formula. Namely, if X and Y are arbitrary spaces, then eH�.X#YIZp/ D
H�.XIZp/ ˝ eH�.YIZp/. Thus, there are two ways to furnish eH�.X#YIZp/ with
an A-module structure: First, the cohomology of any space has a structure of an
A-module; second, it is an A-module, because it is the tensor product of two A-
modules. Cartan’s formula shows that these two structures are the same.

Proposition. For any Hopf algebra A, the A-module A˝K A is free.

Proof. Let faig be a K-basis of A composed of homogeneous elements ai 2 Ami such
that mi � mj for i � j. We will prove that f1˝ aig is a free system of generators of
A˝K A. First, let us prove that the system f1˝ aig does generate A˝K A. For this,
we need to prove that for every j; k, the product aj ˝ ak can be expressed as a linear
combination of elements 1˝ ai with coefficients in A. If aj D 1, it is true. Assume
that our statement has been proven for all aj0 ˝ ak0 with deg aj0 < deg aj. Then it is
also true for aj˝ak, since aj˝ak�aj.1˝ak/ D aj˝ak�.aj˝1C: : :/.1˝ak/ is a linear
combination (over K) of products aj0 ˝ ak0 with deg aj0 < deg aj. Next, let us prove
that the system f1 ˝ aig is linearly independent over A. Let

P

m bm.1 ˝ aim/ D 0

(where bm 2 A). Assume that deg ai1 � deg ai2 � deg ai3 � : : :. Then the sum
P

m bm.1˝ aim/ contains the term b1 ˝ ai1 , which is not cancelled with anything in
this sum; this is a contradiction.

Corollary. If B and C are free A-modules, then B˝K C is also a free A-module.

Proof. A free A-module is a direct sum of modules isomorphic to A (with a possible
grading shift).
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C: Exts, Cohomology, and Related Multiplicative Structures

Let A be a Hopf algebra, and let M0;M00;N0;N00 be A-modules. We will define a
multiplication (pairing)

Exts
0;t0

A .M0;N0/˝K Exts
00;t00

A .M00;N00/

��! Exts
0Cs00;t0Ct00

A .M0 ˝K M00;N0 ˝K N00/:

Let

: : :
@0

3��!P0
2

@0

2��!P0
1

@0

1��!P0
0

"0��!M0 ��! 0;

: : :
@00

3��!P00
2

@00

2��!P00
1

@00

1��!P00
0

"00��!M00 ��! 0

be free resolutions of the modules M0;M00. We consider the following free resolution
of the module M0 ˝K M00:

: : :
@3��! .P0

2 ˝K P00
0/˚ .P0

1 ˝K P00
1 /˚ .P0

0 ˝K P00
2 /

@2��!
.P0

1 ˝K P00
0 /˚ .P0

0 ˝K P00
1/

@1��! .P0
0 ˝K P00

0 /
"��!M0 ˝K M00 ��! 0

where for ˛0 2 P0i; ˛00 2 P00
j

@pCq.˛ ˝ ˛0/ D @0
p.˛

0/˝ ˛00 C .�1/i˛0 ˝ @00
j .˛

00/

and " D "0 ˝ "00. There is a natural homomorphism

HomA.P
0
i;N

0/˝K HomA.P
00
j ;N

00/! HomA.P
0
i ˝K P00

j ;N
0 ˝K N00/;

which yields, after the transition to the homologies of the Hom complexes, the
promised pairing of Exts.

EXERCISE 3. If M0 D M00 D N0 D N00 D K (with the natural structure of
A-modules), then the construction described above determines a bigraded ring
structure in

L

s;t Exts;tA .K;K/.

Definition. The spaces Exts;tA .K;K/ are called cohomology spaces of A and are
denoted by Hs;t.A/.

Thus, we have defined the (bigraded) cohomology algebra of a Hopf algebra.

EXERCISE 4. This is an associative skew-commutative algebra.

If in the construction above M00 D M ¤ K, then we get a homomorphism

Exts
0;t0

A .K;K/˝K Exts
00;t00

A .M;K/! Exts
0Cs00;t0Ct00

A .M;K/:
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Briefly, we can say that for every A-module M, Ext�;�A .M;K/ is an H�;�.A/-module.
Furthermore, if M! N is an A-homomorphism, then the induced map

Ext�;�A .N;K/! Ext�;�A .M;K/

is an H�;�
A .A/-homomorphism.

35.3 The Multiplicative Structure in the Adams Spectral
Sequence

Theorem (Adams). If X D S0, then in the Adams spectral sequence, there arises a
multiplication Es;t

r ˝ Es0;t0
r ! EsCs0;tCt0

r with the following properties.

(1) The multiplication is associative and skew-commutative.
(2) The multiplication Es;t

2 ˝ Es0;t0

2 ! EsCs0;tCt0

2 coincides with the multiplication in
the cohomology of the Steenrod algebra.

(3) dr.uv/ D .dru/v C .�1/sCtu.drv/ (where u 2 Es;t
r ).

(4) The multiplication in ErC1 is induced by the multiplication in Er.
(5) The multiplication in E1 is adjoint to the composition multiplication �S

k .S
0/˝

�S
` .S

0/! �S
kC`.S0/.

Proof. We will prove a more general statement, and for this purpose we begin with
considering two arbitrary spaces, X0 and X00. Let

: : : ��!B0
2��!B0

1��!B0
0��!eH�.X0/;

: : : ��!B00
2 ��!B00

1 ��!B00
0 ��!eH�.X00/

be free A-resolutions of the A-modules eH�.X0/ and eH�.X00/. Let

: : : ��!X0.2/��!X0.1/��!X0.0/ D †N0

X0;

: : : ��!X00.2/��!X00.1/��!X00.0/ D †N00

X00

be the corresponding Adams filtrations. Let us construct a filtration in
.†N0

X0/#.†N00

X00/ D †N0CN00

.X0#X00/. Put

X.n/ D
[

iCjDn

.X0.i/#X00.j// and Yn D X.n/=X.nC 1/I

obviously,

Yn D
_

iCjDn
Œ.X0.i/=X0.iC 1//#.X00.j/=X00.jC 1//�:
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But the spaces X0.i/=X0.i C 1/ and X00.j/=X00.j C 1/ are homotopy equivalent, in
stable dimensions, to the products Y 0

i and Y 00
j of the Eilenberg–MacLane spaces used

in the construction of the Adams filtrations fX0.i/g and fX00.j/g. Hence, eH�.Yn/ D
L

iCjDnŒ
eH�.Y 0

i /˝ eH�.Y 00
j /�. We see that the filtration

: : : ��!X.2/��!X.1/��!X.0/ D †N0CN00

.X0#X00/

is the Adams filtration corresponding to the resolution

: : :! .B0
2 ˝ B00

0 /˚ .B0
1 ˝ B00

1/˚ .B0
0 ˝ B00

2/! .B0
1 ˝ B00

0 /˚ .B0
0 ˝ B00

1/

! .B0
0 ˝ B00

0/! eH�.X0#X00/! 0

of eH�.X0#X00/. Consider the Adams spectral sequences for the spaces X0;X00;X0#X00
corresponding to these resolutions and filtrations. The multiplication

Es0;t0
r .X0/˝ Es00;t00

r .X00/! Es0Cs00;t0Ct00
r .X0#X00/

is defined in the following way. Let

˛0 2 Es0;t0
r .X0/ D ImŒ�N0Ct0�s0.X0.s0/;X0.s0 C r//

! �N0Ct0�s0.X0.s0 C 1 � r/;X0.s0 C 1//�;
˛00 2 Es00;t00

r .X00/ D ImŒ�N00Ct00�s00.X00.s00/;X00.s00 C r//
! �N00Ct00�s00.X00.s00 C 1 � r/;X00.s00 C 1//�:

Take elements of the homotopy groups �N0Ct0�s0.X0.s0/;X0.s0 C r// and
�N00Ct00�s00.X00.s00/;X00.s00 C r// whose images are ˛0 and ˛00 and choose spheroids,
that is, maps of the cubes IN0Ct0�s0

and IN00Ct00�s00

into X0 and X00 such that the cubes
are mapped into X0.s0/ and X00.s00/ and their boundaries are mapped into X0.s00 C r/
and X00.s00 C r/. Then we form the “product” of these maps, that is, a map

IN0Ct0�s0 � IN00Ct00�s00 D IN0CN00Ct0Ct00�s0�s00 ! X0 � X00 ! X0#X00:

This map takes the cube IN0CN00Ct0Ct00�s0�s00

into X0.s0/#X00.s00/ � X.sC s0/ and its
boundary into ŒX0.s0 C r/#X00.s00/�

S

ŒX0.s0/#X.s00 C r/� (see Fig. 125).

Hence, this map is a spheroid of a pair .X.s0C s00/;X.sC s00C r// and determines
an element of

�N0CN00CtCt00�s0�s00.X.s0 C s00/;X.sC s00 C r//:

The image of this element in

�N0CN00CtCt00�s0�s00.X.s0 C s00 C 1 � r/;X.sC s00 C 1//
is an element of Es0Cs00;t0Ct00

r .X0#X00/, which is taken for the product ˛0˛00.
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ss + r

s + r

s

Fig. 125 Product of relative spheroids

The product rule

ds0Cs00;t0Ct00
r .˛0˛00/ D

�

ds0;t0
r ˛0

�

� ˛00 C .�1/s0Ct0˛0 �
�

ds00;t00
r ˛00

�

holds for this multiplication; for r D 2 the multiplication coincides with the
multiplication

Exts
0;t0

A
.eH�.X0/;Zp/ ˝Exts

00;t00

A
.eH�.X00/;Zp//

! Exts
0Cs00;t0Ct00

A
.eH�.X0#X00/;Zp/

defined above (Sect. 35.2.C) and for r D1 turns into a multiplication

E��1 .X0/˝ E��1 .X00/! E��1 .X0#X00/

adjoint to the multiplication �S
k .X

0/˝ �S
` .X

00/! �S
kCl.X

0#X00/.
We leave to the reader the verification of all these statements.
If X0 D X00 D S0, then the statement proved becomes that of the Adams theorem.
If X0 D S0 and X00 D X is arbitrary, then our construction defines for E��

r .X/
a structure of an E��

r .S0/-module compatible with differentials. For r D 2, this
structure coincides with the structure of an H��.A/-module in Ext��

A
.eH�.X/;Zp/

(see Sect. 35.2.C), and for r D 1 it is adjoint to the structure of a �S�.S0/-module
in �S�.X/ defined by the composition product.
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Lecture 36 An Application of the Adams Spectral Sequence
to Stable Homotopy Groups of Spheres

We begin with a computation of the E2-term of the Adams spectral sequence for the
case of 2-components of stable homotopy groups of spheres, that is, the cohomology
of the Steenrod algebra mod 2.

36.1 The Additive Structure of E2

Let us describe a free A D A2-resolution

: : :! B2 ! B1 ! B0 ! Z2

of the A-module eH�.S0IZ2/ D Z2. For B0 we can take A. The epimorphism
B0 ! Z2 isomorphically maps A

0 D Z2 onto Z2 and is zero on
L

q>0A
q D eA.

To define B1, we need a system of generators in the A-module eA. But we know
such a system of generators: It is f˛k D Sq2

k�1g. Thus, B1 is a free A-module
whose generators have the same degrees as ˛k; we denote them again as ˛k; so
the map B1 ! B0 is defined by the formula ˛k 7! Sq2

k�1

. The (free) generators
of B2 correspond to (and have the same notation as) the generators ˇk of the
Ker.B1 ! B0/, that is, to the generators of the module of relations between
Sq1;Sq2;Sq4;Sq8; : : : over A. The space A

1 is one-dimensional and is spanned by
˛1 D Sq1; no relations, so far. The space A

2 is one-dimensional and is spanned by
˛2 D Sq2; the first relation arises: Sq1 ˛1 D 0. The space A

3 is two-dimensional
with the basis Sq3;Sq2 Sq1, that is, Sq2 ˛1 and Sq1 ˛2. There are no relations. The
space A

4 is also two-dimensional, with the basis Sq4 D ˛3; Sq3Sq1 D Sq3˛1.
But in the free A-module B1 there are two more additive generators: Sq2˛2 and
Sq2Sq1˛1. In A

4, they must be linear combinations of elements of our basis, and
they are Sq2˛2 D Sq2Sq2 D Sq3Sq1 D Sq3˛1 and Sq2Sq1˛1 D Sq2Sq1Sq1 D 0.
Thus, two more relations arise: Sq2˛2 D Sq3˛1 and Sq2Sq1˛1 D 0. This work can
be continued indefinitely; in the following table, we show additive generators of eA
and additive generators of the module of relations in eA [that is, in Ker.B1 ! B0/]
to degree 12; these relations are determined with the help of Adem’s formulas.

Deg Generators Relations

1 ˛1

2 ˛2 Sq1 ˛1 D 0
3 Sq1 ˛2;Sq2 ˛1

4 ˛3;Sq3 ˛1 Sq2 ˛2 D Sq3 ˛1; Sq2 Sq1 ˛1 D 0
5 Sq1 ˛3;Sq4 ˛1 Sq2 Sq1 ˛2 D Sq1 ˛3 C Sq4 ˛1;

Sq3 ˛2 D 0; Sq3 Sq1 ˛1 D 0
(continued)
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Deg Generators Relations

6 Sq2 ˛3; Sq4 ˛2; Sq5 ˛1 D Sq3 Sq1 ˛2;

Sq5 ˛1 Sq4 Sq1 ˛1 D 0
7 Sq3 ˛3; Sq5 ˛2; Sq6 ˛1 D Sq2 Sq1 ˛3;

Sq4 Sq2 ˛1; Sq6 ˛1 Sq4 Sq1 ˛2 D Sq5 ˛2; Sq5 Sq1 ˛1 D 0
8 ˛4; Sq6 ˛2 Sq4 ˛3 D Sq7 ˛1 C Sq6 ˛2,

Sq5 Sq2 ˛1; Sq7 ˛1 Sq3 Sq1 ˛3 D Sq7 ˛1;Sq5 Sq1 ˛2 D 0;
Sq5 Sq2 ˛1 D Sq4 Sq2 ˛2,

Sq4 Sq2 Sq1 ˛1 D 0; Sq6 Sq1 ˛1 D 0
9 Sq1 ˛4; Sq4 Sq1 ˛3 D Sq1 ˛4 C Sq7 ˛2 C Sq8 ˛1,

Sq6 Sq1 ˛2; Sq4 Sq1 ˛3 C Sq4 Sq2 Sq1 ˛2,

Sq7 ˛2; Sq8 ˛1 CSq6 Sq1 ˛1 D 0,

Sq5 ˛3 D Sq7 ˛2; Sq5 Sq2 ˛2 D 0;
Sq5 Sq2 Sq1 ˛1 D 0; Sq7 ˛1 D 0

10 Sq4 Sq2 ˛3; Sq2 ˛4 D Sq4 Sq2 ˛3 C Sq8 ˛2 C Sq7 Sq2 ˛1;

Sq7 Sq1 ˛2 Sq6 ˛3 D Sq7 Sq1 ˛2; Sq5 Sq1 ˛3 D Sq9 ˛1;

Sq7 Sq2 ˛1; Sq6 Sq2 ˛2 D Sq6 Sq3 ˛1; Sq6 Sq2 Sq1 ˛1 D 0;
Sq8 ˛2; Sq9 ˛1 Sq8 Sq1 ˛1 D 0

11 Sq3 ˛4; Sq9 ˛2; Sq3 ˛4 D Sq5 Sq2 ˛3 C Sq9 ˛2;

Sq7 Sq3 ˛1 Sq4 Sq2 Sq1 ˛3 D Sq8 Sq2 ˛1 C Sq10 ˛1
Sq8 Sq2 ˛1; Sq6 Sq1 ˛3 D Sq8 Sq1 ˛2 C Sq9 ˛2;

Sq10 ˛1 Sq6 Sq2 Sq1 ˛2 C Sq9 ˛2 C Sq8 Sq1 ˛2
D Sq7 Sq3 ˛1; Sq7 ˛3 D 0;

Sq6 Sq3 ˛2 D 0; Sq7 Sq2 ˛2 D Sq7 Sq3 ˛1;

Sq6 Sq3 Sq1 ˛1 D 0; Sq7 Sq2 Sq1 ˛1 D 0;
Sq9 Sq1 ˛1 D 0; Sq2 Sq1 ˛4 D Sq10 ˛1

12 Sq4 ˛4; Sq8 ˛3; Sq3 Sq1 ˛4 D Sq11 ˛1;

Sq9 Sq1 ˛2; Sq7 Sq1 ˛3 D Sq9 Sq1 ˛2;

Sq10 ˛2; Sq5 Sq2 Sq1 ˛3 D Sq11 ˛1 C Sq9 Sq1 ˛2;

Sq8 Sq3 ˛1; Sq6 Sq2 ˛3 D Sq11 ˛1 C Sq9 Sq2 ˛1 C Sq10 ˛2
Sq9 Sq2 ˛1; CSq8 Sq3 ˛1 C Sq9 Sq1 ˛2;

Sq11 ˛1 Sq6 Sq3 Sq1 ˛2 D Sq9 Sq2 ˛1 C Sq8 Sq3 ˛1;

Sq7 Sq2 Sq1 ˛2 D Sq9 Sq1 ˛2; Sq7 Sq3 ˛2 D 0;
Sq8 Sq2 ˛2 D Sq8 Sq3 ˛1; Sq7 Sq3 Sq1 ˛1 D 0;
Sq8 Sq2 Sq1 ˛1 D 0; Sq10 Sq1 ˛1 D 0
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The generators of the module Ker.B1 ! B0/ are underlined in the right column
of the last diagram. Within our range of degrees there are six of them (of degrees 2,
4, 5, 8, 9, and 10). We denote them as ˇ1; : : : ; ˇ6; thus, the homomorphism B2 ! B1
acts by the formulas

ˇ1 7! Sq1 ˛1;
ˇ2 7! Sq2 ˛2 C Sq3 ˛1;
ˇ3 7! Sq2 Sq1 ˛2 C Sq1 ˛3 C Sq4 ˛1;
ˇ4 7! Sq4 ˛3 C Sq7 ˛1 C Sq6 ˛2;
ˇ5 7! Sq4 Sq1 ˛3 C Sq1 ˛4 C Sq8 ˛1 C Sq7 ˛2;
ˇ6 7! Sq2 ˛4 C Sq4 Sq2 ˛3 C Sq8 ˛2 C Sq7 Sq2 ˛1:

The next table shows the bases in the module Ker.B1 ! B0/ and in the module
of relations in this module [which is the same as Ker.B2 ! B1/]. Thus, the left
column of this table is the same as the right column in the previous column, only
everything is expressed in terms of ˇk.

Deg Generators Relations

2 ˇ1

3 Sq1 ˇ1 D 0
4 ˇ2; Sq2 ˇ1
5 ˇ3; Sq3 ˇ1; Sq1 ˇ2 Sq2 Sq1 ˇ1 D 0
6 Sq4 ˇ1; Sq1 ˇ3 Sq2 ˇ2 D Sq4 ˇ1 C Sq1 ˇ3;

Sq3 Sq1 ˇ1 D 0
7 Sq5 ˇ1; Sq2 ˇ3; Sq3 ˇ2 D Sq5 ˇ1; Sq4 Sq1 ˇ1 D 0

Sq2 Sq1 ˇ2
8 ˇ4; Sq6 ˇ1; Sq4 ˇ2; Sq2 Sq1 ˇ3 D Sq3 Sq1 ˇ2 C Sq6 ˇ1;

Sq4 Sq2 ˇ1; Sq5 Sq1 ˇ1 D 0
Sq3 Sq1 ˇ2;

Sq3 ˇ3
9 ˇ5; Sq7 ˇ1; Sq7 ˇ1 D Sq3 Sq1 ˇ3;

Sq5 Sq2 ˇ1; Sq5 ˇ2 D Sq4 Sq1 ˇ2;

Sq5 ˇ2; Sq2 ˇ4; Sq4 Sq2 Sq1 ˇ1 D 0;
Sq6 Sq1 ˇ1 D 0

(continued)
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Deg Generators Relations

10 ˇ6; Sq8 ˇ1; Sq1 ˇ5 D Sq5 ˇ3 C Sq4 Sq1 ˇ3 C Sq8 ˇ1;

Sq5 ˇ2; Sq2 ˇ4; Sq4 Sq1 ˇ3 D Sq4 Sq2 ˇ2 C Sq6 Sq2 ˇ1;

Sq6 Sq2 ˇ1; Sq5 Sq1 ˇ2 D 0; Sq5 Sq2 ˇ1 D 0;
Sq4 Sq2 ˇ2: Sq7 Sq1 ˇ1 D 0

11 Sq9 ˇ1; Sq7 Sq2 ˇ1; Sq2 Sq1 ˇ4 D Sq4 Sq2 Sq1 ˇ2;

Sq6 Sq3 ˇ1; CSq7 ˇ2 C Sq6 ˇ3;

Sq7 ˇ2; Sq6 Sq1 ˇ2; Sq5 Sq2 ˇ2 D Sq9 ˇ1 C Sq7 Sq2 ˇ1;

Sq2 Sq1 ˇ4; Sq6 ˇ3; Sq5 Sq1 ˇ3 D Sq9 ˇ1; Sq6 Sq2 Sq1 D 0;
Sq4 Sq2 ˇ3; Sq1 ˇ6; Sq8 Sq1 ˇ1 D 0
Sq3 ˇ4; Sq2 ˇ5;

12 Sq10 ˇ1; Sq8 Sq2 ˇ1; Sq4 ˇ4 D Sq2 ˇ6 C Sq3 ˇ5;

Sq7 Sq3 ˇ1; Sq8 ˇ2; CSq3 Sq1 ˇ4 C Sq8 ˇ2;

Sq5 Sq2 Sq1 ˇ2; Sq4 Sq2 Sq1 ˇ3 D Sq5 Sq2 Sq1 ˇ2
Sq7 Sq1 ˇ2; CSq10 ˇ1 C Sq8 Sq2 ˇ1;

Sq6 Sq1 ˇ3; Sq7 ˇ3 D Sq5 Sq2 Sq1 ˇ2 C Sq3 Sq1 ˇ4;

Sq3 Sq1 ˇ4; Sq6 Sq2 ˇ2 D Sq6 Sq1 ˇ3 C Sq7 Sq3 ˇ1;

Sq3 ˇ5; Sq2 ˇ6; Sq2 Sq1 ˇ5 D Sq10 ˇ1;

Sq5 Sq2 ˇ3: Sq6 Sq3 Sq1 ˇ1 D 0;
Sq7 Sq2 Sq1 ˇ1 D 0; Sq9 Sq1 ˇ1 D 0

Within our range of degrees, the module Ker.B2 ! B1/ has five generators
�1; : : : ; �5 (underlined in the right column of the last diagram), of degrees 4, 6,
10, 11, and 12. We attribute the same notations to the free generators of B3. Thus,
the homomorphism B3 ! B2, in our degrees, acts by the formulas

�1 7! Sq1 ˇ1;
�2 7! Sq2 ˇ2 C Sq1 ˇ3 C Sq4 ˇ1;
�3 7! Sq1 ˇ5 C Sq5 ˇ3 C Sq8 ˇ1 C Sq4 Sq1 ˇ3;
�4 7! Sq6 ˇ3 C Sq4 Sq2 Sq1 ˇ2 C Sq7 ˇ2 C Sq2 Sq1 ˇ4;
�5 7! Sq2 ˇ6 C Sq3 ˇ5 C Sq3 Sq1 ˇ4 C Sq4 ˇ4 C Sq8 ˇ2:

The next table shows the bases in the module Ker.B2 ! B1/ (expressed in �k)
and in the module of relations in this module, which is the same as Ker.B3 ! B2/.
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Deg Generators Relations

3 �1

4 Sq1 �1 D 0
5 Sq2 �1
6 �2; Sq3 �1 Sq2 Sq1 �1 D 0
7 Sq1 �2; Sq4 �1 Sq3 Sq1 �1 D 0
8 Sq2 �2; Sq5 �1 Sq4 Sq1 �1 D 0
9 Sq2 Sq1 �2; Sq3 �2; Sq5 Sq1 �1 D 0

Sq6 �1 Sq4 Sq2 �1:

10 �3; Sq3 Sq1 �2; Sq4 �2; Sq6 Sq1 �1 D 0; Sq4 Sq2 Sq1 �1 D 0
Sq7 �1; Sq5 Sq2 �1:

11 �4; Sq1 �3; Sq5 �2; Sq4 Sq1 �2 D Sq1 �3;

Sq6 Sq2 �1; Sq8 �1: CSq5 �2 C Sq8 �1;

Sq7 Sq1 �1 D 0; Sq5 Sq2 Sq1 �1 D 0
12 �5; Sq1 �4; Sq2 �3; Sq5 Sq1 �2 D Sq0 �1;

Sq4 Sq2 �2; Sq6 �2; Sq6 Sq2 Sq1 �1 D 0; Sq8 Sq1 �1 D 0
Sq6 Sq3 �1; Sq7 Sq2 �1;

Sq9 �1

We see that the module Ker.B3 ! B2/ has two generators (underlined in the
preceding table), of degrees 4 and 11. We denote them as ı1 and ı2 and use the same
notation for the free generators of the module B4. The map B4 ! B3 (within our
range of degrees) acts according to the formulas

ı1 7! Sq1 �1;
ı2 7! Sq1 �3 C Sq4 Sq1 �2 C Sq5 �2 C Sq8 �1:

Furthermore, it is clear that, up to degree 12, all relations between ı1 and ı2 have
the form Œ: : :�Sq1 ı1 D 0, and so, up to degree 12, the module Ker.B4 ! B3/ has
only one generator, Sq1 ı1, and its degree is 5. Thus, the free module B5 has (within
our range of degrees) only a generator of degree 5. In a similar way, free modules
B6; : : : ;B12 have, in degrees not exceeding 12, one generator each; the degrees of
these generators are 6; : : : ; 12. The maps Bk ! Bk�1; k D 6; : : : ; 12 take each of
these generators into Sq1 of the previous generator. The modules Bk with k > 12 do
not have any nonzero components of degree � 12.

As we have shown, Exts
A
.Z2;Z2/ D HomA.Bs;Z2/, so we know all the additive

generators of the cohomology Hs;t.A/ of the Steenrod algebra for t � 12. In
other words, we know the additive structure of the E2-term of the Adams spectral
sequence for t � 12 (Fig. 126).
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Fig. 126 The E2-term of the Adams spectral sequence for S0

Now, we make the following general observation. Obviously, the minimal degree
of a relation in the A-module Ker.Bk ! Bk�1/ is at least one more than the minimal
degree of a generator of this module. This shows that the minimal degree of a
generator of Bk exceeds, at least by one, the minimal degree of a generator of Bk�1.
This observation, however, gives nothing for our spectral sequence: We already
know that the module Bk has a generator of degree k and has no generators of smaller
degrees. In particular, we cannot guarantee that even the diagonal t� s D 1 does not
contain infinitely many elements. But we can say more if we consider the Adams
spectral sequence for the Serre killing space SnjnC1.

The A-module of the cohomology of SnjnC1 can be found from the spectral

sequence of the fibration SnjnC1
K.Z;n�1/�����! Sn . In the stable dimensions, this is the

same as the cohomology of K.Z; n � 1/ with Hn�1.K.Z; n � 1// D Z2 deleted.
We know that, up to a dimension shift by n � 1, this A-module is the same as the
module eA factorized over the right ideal generated by Sq1. Thus, the zeroth row of
the Adams spectral sequence for SnjnC1 is the same, up to a dimension shift, as the
first row of the Adams spectral sequence for S0, only the generator ˛1 is deleted. It
is easy to show that, also in the rows above, the spectral sequences for SnjnC1 and
S0 differ only by a dimension shift (by 1 downward and by n � 1 to the right) and
by deleting the diagonal 1; ˛1; ˇ1; �1; ı1; : : :.

EXERCISE 1. Prove this.

The transition from S0 to SnjnC1 turns the diagram in Fig. 126 into the following
diagram in Fig. 127.

Fig. 127 The E2-term of the Adams spectral sequence for SnjnC1
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Let us now apply to this spectral sequence our observation regarding the minimal
degree of a generator of the module Bk. We see that in the spectral sequence for S0

the second-lowest degree of a generator in the kth row grows with k growing. Since
in the fifth row the second-lowest degree of a generator is at least 13, we deduce
that all the nontrivial terms Es;t

2 with 0 < t � s � 7 are shown in Fig. 126. This
yields some preliminary results regarding the orders of the stable homotopy groups
of spheres.

Consider possible differentials. By the dimension arguments, within the diagram
in Fig. 126, there are two possibilities for a nontrivial differential: First, ˛2 can be
mapped by a differential into one of �1; ı1; : : :; second, there is a possible differential
ˇ6 7! ı2. The first, however, does not happen, since this would have implied that
�nC1.Sn/ D 0, while we know that it is Z2. Actually, d2ˇ6 is also 0, but we cannot
prove this before we study the multiplicative structure in our spectral sequence. But
even without this, we see now that the orders of the 2-components of the stable
groups �nCk.Sn/ with k D 1; 2; 3; 4; 5; 6; 7 are 2, 2, 8, 1, 1, 2, 16 or 8.

36.2 The Multiplicative Structure

It is clear that we can obtain from a resolution

: : :
@3��!B2

@2��!B1
@1��!B0

@0��!Z2 ��! 0

of the A-module Z2 a resolution of the module Ker @k simply by cutting the
resolution of Z2 in the appropriate place:

: : :
@kC4��!BkC3

@kC3��!BkC2
@kC2��!BkC1

@kC1��! Ker @k ��! 0:

Hence, Exts;t
A
.Ker @k;Z2/ D ExtsCkC1;t

A
.Z2;Z2/ and the action of H��.A/ in both

Exts is the same.
Suppose that we want to compose the “multiplication table” by, for example,

the element Sq1 D ˛1 of Ker @0 D eA. Consider the A-homomorphism eA ! Z2,
which takes ˛1 into 1 2 Z2. This homomorphism lowers the degrees by 1. Hence,
the induced homomorphism Ext��

A
.Z2;Z2/ ! Ext��

A
.eA;Z2/ has the bidegree

.0; 1/. Thus, we have a homomorphism Exts;t
A
.Z2;Z2/ ! Exts;tC1

A
.eA;Z2/ D

ExtsC1;tC1
A

.Z2;Z2/. This homomorphism takes 1 into ˛1 and, hence, an arbitrary
element � into �˛1.

To determine this homomorphism between the Exts, we need to construct the
corresponding map between the resolutions, that is, the commutative diagram
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: : :
@3��! B2

@2��! B1
@1��! B0

@0��! Z2 ��! 0
x

?

?

?

?

f3

x

?

?

?

?

f2

x

?

?

?

?

f1

x

?

?

?

?

f0

: : :
@4��! B3

@3��! B2
@2��! B1

@1��! eA ��! 0

in which f0.˛1/ D 1 and every fi lowers degrees by 1. Since the modules B1;B2; : : :
are free, it is sufficient to define f1; f2; : : : on the generators.

Begin with f1. The map @1 takes the generators ˛k of B1 into the elements Sq2
k�1

ofeA (which are also denoted by ˛k). Hence, f0 ı @1.˛1/ D 1 and f0 ı @1.˛k/ D 0 for
k > 1. Since B0 D eA and @0.1/ D 1; @0.eA/ D 0, we can put f1.˛1/ D 1; f1.˛k/ D 0
for k > 1. [Notice that the homomorphisms fi are not determined by our conditions
uniquely; for example, we could take for f1.˛k/ with k > 1 an arbitrary element of
B0 D A of the appropriate degree; we choose these f .˛k/ in the most convenient
way, taking care only of the commutativity of the diagram.]

Turn now to f2. Using the description of the homomorphism B2 ! B1 (denoted
now as @2) given in Sect. 36.1 and the fact that f1 takes ˛1 to 1 and kills ˛k

with k > 1, we conclude that f1 ı @2 D @1 ı f2 takes ˇ1; ˇ2; ˇ3; ˇ4; ˇ5; ˇ6 into
Sq1;Sq3;Sq4;Sq7;Sq8;Sq7 Sq2. Thus, we should take for f .ˇ1/; : : : ; f .ˇ6/ arbitrary
elements of B1, which are taken by @1 into the combination of the Steenrod
squares listed. Since @1 takes ˛1; ˛2; ˛3; ˛4 into Sq1;Sq2;Sq4;Sq8, we can put
f2.ˇ1/ D ˛1; f2.ˇ3/ D ˛3; f2.ˇ5/ D ˛4, and f2.ˇ6/ D Sq7 ˛2. Since Sq3 D Sq1 Sq2

and Sq7 D Sq3 Sq4 (Adem’s formulas), we can also put f2.ˇ2/ D Sq1 ˛2 and
f2.ˇ4/ D Sq3 ˛3.

To determine f3, we find, using the formulas known to us, the expressions for
f2 ı @3.�i/:

f2 ı @3.�1/ D Sq1 ˛1;
f2 ı @3.�2/ D Sq1 ˛3 C Sq2 Sq1 ˛2 C Sq4 ˛1;
f2 ı @3.�3/ D Sq1 ˛4 C Sq5 ˛3 C Sq4 Sq1 ˛3 C Sq8 ˛1;
f2 ı @3.�4/ D Sq6 ˛3 C Sq7 Sq1 ˛2;
f2 ı @3.�5/ D Sq3 ˛4 C Sq5 Sq2 ˛3 C Sq9 ˛2;

and then take for f3.�1/; : : : ; f3.�5/ elements of B2 whose @2-images are the right-
hand sides of the last formulas. We can find such elements of B2 using the
expressions for @2.ˇi/ from Sect. 36.1 and Adem’s formulas; a possible choice of
these five elements (of degrees 2, 5, 9, 10, 11) is ˇ1I ˇ3I ˇ5 C Sq1 ˇ4I Sq1 ˇ5 C
Sq2 ˇ4 C Sq8 ˇ1I Sq1 ˇ6. We take those for f3.�i/.

Finally, f3 ı @4.ı1/ D Sq1 ˇ1 D @3.�1/ and f3 ı @4.ı2/ D Sq1 ˇ5 C Sq4 Sq3 ˇ3 C
Sq5 ˇ3 C Sq8 ˇ1 D @3.�3/, and we can put f4.ı1/ D �1 and f4.ı2/ D �3.
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Here is a full diagram of the action of homomorphisms fi in degrees� 12:

Now consider the homomorphisms

f �
k WHomA.Bk�1;Z2/! HomA.Bk;Z2/:

The additive generators of HomA.Bk;Z2/ correspond to the free generators of the
module Bk and are denoted by the same letters: Each takes the chosen generator to 1
and takes all other generators, as well as the images of all the generators (including
the chosen one) with respect to Steenrod squares and their compositions, to zero.
This gives the following description of f �

k :

Since, with our choice of generators, Extk
A
.Z2;Z2/ is not different from

HomA.Bk;Z2/ (see Sect. 34.5), our homomorphism � 7! �˛1 acts on the generators
in E2 by the same formulas. Thus,

˛21 D ˇ1; ˛1˛3 D ˇ3; ˛1˛4 D ˇ5; ˛1ˇ1 D �1;
˛1ˇ3 D �2; ˛1ˇ5 D �3; ˛1�1 D ı1; ˛1�3 D ı2;

and all the other products of ˛1 with the generators in Fig. 126 are zeroes (which
also follows directly from the grading argumentations). Notice that the relations
˛21 D ˇ1; ˛1ˇ1 D �1; ˛1�1 D ı1 form a beginning of an infinite sequence, which
shows that for every s, the generator of Es;s

2 Š Z2 is the ˛s
1.
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In a similar way, one can find products of generators of E2 with ˛2; ˛3, and any
other generator. The computation (which is way easier than the computation above)
shows that

˛22 D ˇ2; ˛2˛4 D ˇ6; ˛2ˇ2 D �4; ˛2ˇ6 D �5; ˛23 D ˇ4; ˛3ˇ4 D �5;

and all other pairwise products of generators listed in Fig. 126 are zeroes.
Below, we will use classical notations for cohomology classes of the Steenrod

algebra. The classes ˛1; ˛2; ˛3; : : : are usually denoted as h0; h1; h2; : : : (and they
are called Hopf classes). With these notations, the part of the E2-term of the Adams
spectral sequence for S0 known to us (and presented in Fig. 126) looks like what
appears in Fig. 128.

Here a is a new multiplicative generator. By the way, we can now state that
d2.ˇ6/ D d2.h1h3/ D 0, and so the stable homotopy group �nC7.Sn/ has order 16,
not 8.

We see that the problem of the computation of the stable homotopy groups of
spheres falls into two parts: the computation of the cohomology of the Steenrod
algebra and the computation of the differentials of the Adams spectral sequence.
The first part is reduced to a purely mechanical work (or to a computer program)
and can be done up to any degree. In the book Stable Homotopy Theory of Adams
(see Adams [2]) the result of this computation is presented for t � s � 17. Thus,
the diagram in Fig. 128 can be considerably extended; the additional part of this
diagram is shown in Fig. 129. Since obtaining this diagram requires only boring but
automatic work, we may consider it as established. To get this diagram we would
have to investigate the Steenrod algebra not to degree 12, as we did, but to degree 27.
In particular, we see that E10;t2 D 0 for 10 < t � 27, and hence, for 0 < t � s � 17,
the E2 contains no nontrivial elements not shown in Figs. 128 and 129.

Fig. 128 Multiplicative structure of the E2-term of the Adams spectral sequence for S0
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Fig. 129 Multiplicative structure of the E2-term of the Adams spectral sequence for S0 (continu-
ation)

Figures 128 and 129 show three polygonal lines. The right one bounds the
domain t� s � 17, and the middle one bounds the domain t� s � 13. The meaning
of the remaining (left) polygonal line will be explained in Sect. 36.4.

The grading arguments show that all the differentials of the multiplicative
generators h0; h1; h2; h3; a; b; c; d; e; f ; i; j are zeroes. Hence, Es;t1 D Es;t

2 for t �
s � 13, and we can derive the following statement concerning the first 13 stable
homotopy groups of spheres.

The orders of 2-components of the groups �S
r .S

0/ for r D 1; 2; : : : ; 13 are as
follows:

2; 2; 8; 1; 1; 2; 16; 4; 8; 2; 8; 1; 1:

The elements 1; h0; h20; h
3
0; : : : generate a group Z2 ˚ Z2 ˚ Z2 ˚ : : : adjoint to

�S
0 .S

0/ D Z. The filtration in this group must be Z 
 2Z 
 4Z 
 8Z 
 : : :. Thus,
hr
0 2 Er;r

2 represents in �S
0 .S

0/ D Z the element 2r. From this we see that if for some
u 2 Es;t

2 ; hr
0u ¤ 0 and u represents some � 2 �S

t�s.S
0/, then 2r� ¤ 0 in � 2 �S

t�s.S
0/.

In particular, we see from Figs. 128 and 129 that �S
3 .S

0/; �S
7 .S

0/; and �S
11.S

0/ are
cyclic groups of orders 8, 16, and 8. This gives us full information about the groups
�S

r .S
0/ with r � 13, except the cases r D 8; 9.

The group �S
8 .S

0/ has order 4. It has a subgroup Z2 generated by some element
u represented by a 2 E3;111 , and the quotient of �S

8 .S
0/ over this subgroup is also a

group Z2 generated by h1h3 2 E2;101 . Choose a representative v 2 �S
8 .S

0/ for this
generator. Then there are two possibilities: 2v D 0 or 2v ¤ 0. But since h0.h1h3/ 2
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E3;111 is zero, this class 2v must have filtration > 11. But there are no elements of
filtration > 11 in

L

s Es;sC81 ; thus, 2v D 0 and �S
8 .S

0/ Š Z2 ˚ Z2. [It is possible
to prove in a different way that 2v D 0. Since v represents h1h3, we can take for
v the product of elements of �S

1 .S
0/ and �S

7 .S
0/, which represent h1 and h3. But

�S
1 .S

0/ Š Z2, and thus the first of these two factors has order 2. Hence, the product
has order 2.]

Finally, the group �S
9 .S

0/ has order 8. In
L

s Es;sC91 , there are three generators:
h32; b, and c. The representatives of the generators b and c generate in �S

9 .S
0/ a

subgroup isomorphic to Z2˚Z2; the proof is the same as for �S
8 .S

0/. The quotient of
�S
9 .S

0/ over this subgroup is Z2, which leaves us with two possibilities for �S
9 .S

0/:
Z2 ˚ Z2 ˚ Z2 or Z4 ˚ Z2. But the generator of the quotient �S

9 .S
0/=Z2 ˚ Z2/

represents h32 2 E3;121 ; so we can take for this generator ˛ ı ˛ ı ˛, where ˛ is the
generator of �S

3 .S
0/, and it has order 2, since ˛ ı ˛ 2 �S

6 .S
0/ already has order 2.

Thus, �S
9 .S

0/ Š Z2 ˚ Z2 ˚ Z2, and we now know the 2-components of all groups
�S

r .S
0/ with r � 13:

Z2; Z2; Z8; 0; 0; Z2; Z16; Z2 ˚ Z2; Z2 ˚ Z2 ˚ Z2; Z2; Z8; 0; 0:

We can also derive some results from the multiplicative structure in our spectral
sequence. If � 2 �S

1 .S
0/ is the generator, then �2 generates �S

2 .S
0/, and �3 D 4˛,

where ˛ is the generator of �S
3 .S

0/. The group �S
6 .S

0/ is generated by ˛2. The
elements of the group �S

7 .S
0/ are not decomposable into compositions; denote the

generator of this group by ˇ. Then the group �S
8 .S

0/ is generated by �ˇ and an
indecomposable generator � . The group �S

9 .S
0/ is generated by ˛3 D �2ˇ and two

more generators, one of which is indecomposable, and the other may be equal to �� .
The group �S

10.S
0/ is generated by the product of one of these generators by �, and

the group �S
11.S

0/ is generated by an indecomposable element.
In addition to all this, we remark that the computation of 2-components of

14th and further stable homotopy groups of spheres encounters a difficulty: The
grading arguments no longer guarantee the triviality of differentials. And, indeed,
nontrivial differentials appear at the first opportunity. It turns out that d2.h4/ D
h0h23; d3.h0h4/ D h0i, and h3.h20h4/ D h20i.

36.3 The Odd Components

Within our dimension range, the only necessity for considering the Adams spectral
sequence arises for p D 3. Indeed, we already know (see Sect. 27.4) that the first
p-component in the stable homotopy groups of spheres is Zp � �S

2p�3.S0/ and the
second is Zp � �S

4p�5.S0/; thus, besides Z5 � �S
7 .S

0/ and Z7 � �S
11.S

0/, the groups
�S

n .S
0/ with n � 13 do not have p-components with p > 3.
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The 3-components are as follows:

0; 0; Z3; 0; 0; 0; Z3; 0; 0; Z3; Z9; 0; Z3

(it will be a good exercise for the reader to prove this result using the Adams spectral
sequence for p D 3).

The composition multiplication in these groups is trivial. Thus, we have

�n.Sn/ D Z for n � 1;
�nC1.Sn/ D Z2 for n � 3;
�nC2.Sn/ D Z2 for n � 4;
�nC3.Sn/ D Z24 for n � 5;
�nC4.Sn/ D 0 for n � 6;
�nC5.Sn/ D 0 for n � 7;
�nC6.Sn/ D Z2 for n � 8;
�nC7.Sn/ D Z240 for n � 9;
�nC8.Sn/ D Z2 ˚ Z2 for n � 10;
�nC9.Sn/ D Z2 ˚ Z2 ˚ Z2 for n � 11;
�nC10.Sn/ D Z6 for n � 12;
�nC11.Sn/ D Z504 for n � 13;
�nC12.Sn/ D 0 for n � 14;
�nC13.Sn/ D Z3 for n � 15:

36.4 The Adams Theorems on the Initial Term
of His Spectral Sequence

It is shown that homological algebra can be applied to stable homotopy theory. In
this application, we deal with A-modules, where A is the mod p Steenrod algebra.
Obtaining a concrete geometrical result by this method usually involves work of two
different sorts. To illustrate this, we consider the spectral sequence

Exts;t
A
.eH�.YIZp/;eH

�.XIZp// H) p�
S�.X;Y/:

Here each group Exts;t which occurs in the E2-term can be effectively computed;
the process is purely algebraic. However, no such effective method is given for
computing the differentials dr in the spectral sequence or to determine the group
extension by which p�

S�.X;Y/ is built up from the E1-term; these are topological
problems.

A mathematical logician might be satisfied with this account: an algorithm is
given for computing E2; to find the maps dr still requires intelligence. The practical
mathematician, however, is forced to admit that the intelligence of mathematicians
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is an asset at least as reliable as their willingness to do large amounts of tedious
mechanical work2. In fact, when a chance has arisen to show that such a differential
dr is nonzero, it has been regarded as an interesting problem, and duly solved.
However, the difficulty of actually computing groups Exts;t

A
.L;M/ has remained the

greatest obstacle to the method.

As we can see from this quotation from Adams’ article (Adams [8]), its author
did not think that the existence of the algorithm for computing the cohomology is
equivalent to its computing. Adams devoted several works to this subject. Here we
will formulate his most important results.

Theorem of the First Three Rows (Adams [1]).

(1) The group E12 D
L

t Es;t
1 is additively generated by the elements hi 2

E1;1C2
i

2 ; i D 0; 1; 2; : : :.
(2) The group E22 D

L

t Es;t
2 is additively generated by the linearly independent

elements hihj; 0 � i � j; j ¤ iC 1; the products hihiC1 are all equal to 0.
(3) In the group E32 D L

t Es;t
3 the following relations hold: hiC2h2i D

h3iC1; h2iC2hi D 0. The set of products hihjhk; 0 � i � j � k with the products
hihjhjC1; hihiC1hk; h2i hiC2, and hih2iC2 deleted is linearly independent in E32.

Notice that part (3) does not give a full description of E32: It can contain elements
which cannot be expressed in terms of his. We know one such element: This is
a 2 E3;112 .

Triviality Theorem (Adams [7]). Es;t
2 D 0 for s < t < f .s/, where

f .4n/ D 12n� 1; n > 0;
f .4nC 1/ D 12nC 2; n � 0;
f .4nC 2/ D 12nC 4; n � 0;
f .4nC 3/ D 12nC 6; n � 0:

The part of the E2-term which is zero by this theorem is marked (by the left
polygonal line) in Figs. 128 and 129.

Periodicity Theorem (Adams [7]). For every k, there exists a neighborhood Nk of
the line t D 3s in which the groups Es;t

2 are periodic with the period .2kC2; 3 � 2kC2/.
The union of these neighborhoods Nk is a domain s < t < g.s/, where g.s/ satisfies
the inequalities 4s � g.s/ � 6s.

2This was written in the precomputer era.
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36.5 A Final Remark

We conclude this lecture with an example of an Adams spectral sequence with a
nontrivial differential.

Let X D K.Z4; n/, where n is large enough. The stable homotopy groups of X
up to dimension � 2n are �S

n .X/ D Z4; �
S
i .X/ D 0 for i ¤ n. The A-module

eH�.XIZ2/ is isomorphic to eH�.K.Z; n/IZ2/˝ eH�.K.Z; nC 1/IZ2/; that is, it has
two generators, ˛ 2 Hn.XIZ2/ and ˇ 2 HnC1.XIZ2/, with Sq1 ˛ D 0; Sq1 ˇ D 0.
This shows that in the E2-term of the Adams spectral sequence for X, there are two
nontrivial diagonals, as shown in Fig. 130.

Fig. 130 The Adams spectral sequence for X D K.Z4; n/

Obviously, d2.ˇhk
0/ D ˛hkC2

0 for k D 0; 1; 2; : : :: Otherwise, the order of the
group �S

n .X/ could not equal 4.

Lecture 37 Partial Cohomology Operation

In our presentation of the Adams spectral sequence, we avoid using partial
cohomology operations; we did not even mention the term although it could be
appropriate under the title “General idea.” Still, it would be fair to say that the notion
of a partial cohomology operation is a true base for the Adams method.

37.1 The Construction of Partial Cohomology Operations

Let
Xm

iD1 ˇi˛i

be a relation in the Steenrod algebra Ap, where ˛i; ˇi are stable cohomology
operations of degrees, respectively, qi; n � qi. For every N, the operation ˛i

determines a map
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ęiWK.Zp;N/! K.Zp;N C qi/;

and all these operations together determine a map

ęWK.Zp;N/!
Y

i

K.Zp;N C qi/:

Consider the induced fibration

E �����! 	
?

?

?

?

y

Q

K.Zp;NCqi�1/
?

?

?

?

y

Q

K.Zp;NCqi�1/

K.Zp;N/
ę��!QK.Zp;N C qi/:

The Zp-cohomology spectral sequence of this fibration is presented in
Fig. 131. We see that the element

P

ˇiui 2 E0;NCn�1
2 remains in E1 and

determines, because of this, in the group HNCn�1.EIZp/ a coset of the subgroup
ImŒHNCn�1.K.Zp;N/ ! HNCn�1.EIZp/�. Choose some element v of this coset. It
is clear from the definition that the image of v with respect to the homomorphism

HNCn�1.EIZp/! HNCn�1.
Y

K.Zp;N C qi � 1/IZp/

is
P

i ˇiui.

βiui

u1

u2

. . .

um

u α1u α2u . . . αmu 0

............................................................................................................................................................................................................................................................................................................................................................................................................................. ...........................
...............


...............


...............


...............

N N + q1 N + q2 N + qm N + n

N + q1 − 1

N + q2 − 1

N + qm − 1

N + n − 1

Fig. 131 The spectral sequence of the fibration E ! K.Zp;N/
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For an arbitrary X, we define a (natural with respect to X) homomorphism

m
\

iD1
Ker




˛iWHN.XIZp/ ! HNCq�i.XIZp/
�

��! HNCn�1.XIZp/
m
P

iD1
Im



ˇiWHNCqiC1.XIZp/! HNCn�1.XIZp/
�

:

This is our secondary operation.
Let � 2 HN.XIZp/, and let ˛i.�/ D 0 for i D 1; 2; : : : ;m. Consider the map

e�WX ! K.Zp;N/ corresponding to the cohomology class �. Its composition with the
map ę is homotopy trivial, and hence the fibration induced over X by the fibration
E ! K.Zp;N/ is trivial [it coincides with the fibration induced by the fibration
	 !Q

K.Zp;N C qi/ via the map ęıe�]. Hence, it has a section

X �QK.Zp;N C qi � 1/ � E0 ��! E
?

?

?

?

y

x

?

?

?

?

?

?

?

?

y

X
e���! K.Zp;N/:

The composition of this section with the upper horizontal map is a mape�WX ! E
which forms, with the other maps of the diagram, the commutative triangle

Obviously, ��u D �. We take for '.�/ 2 HNCn�1.XIZp/ the cohomology class
e��.v/. It is not uniquely defined, since the section used for the construction of the
mape� was not uniquely defined. How not unique is this section? Its existence was
derived from the equality E0 D X �QK.Zp;N C qi � 1/, and the section itself was
defined by the formula x 7! .x;	/. Any other section acts according to the formula
x 7! .x; �.x//, where � D .�1; : : : ; �m/WX !Q

K.Zp;N C qi � 1/ is some map.

EXERCISE 1. This change of section gives rise to the change of the element '.�/
by the element '.�/CPm

iD1 ˇi�
�
i .ui/, where ui 2 HNCqi�1.K.Zp;N C qi � 1/IZp/

are the fundamental classes.

This shows that ˇ.�/ is defined uniquely as an element of the quotient group
indicated above.
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Thus, we have constructed a secondary operation '. It is a family of partial
multivalued homomorphisms HN.XIZp/ Ü HNCn�1.XIZp/ (partial because they
are defined only on the intersection of the kernels of the operations ˛i; multivalued
because they are defined modulo the images of the operations ˇi).

Notice that the secondary operation � is uniquely determined by the relation
P

ˇi˛i D 0 up to addition of the usual (primary) cohomology operations [this
nonuniqueness arises from the nonuniqueness of the class v 2 HNCn�1.EIZp/; see
above].

EXERCISE 2. Formulate and prove the properties of the secondary operations,
including their naturality and stability.

The best-known example of a secondary cohomology operation is the so-called
second Bockstein homomorphism. It corresponds to the relation ˇ2 D 0 and thus
is defined on the kernel and takes values modulo the image of the usual, “first”
Bockstein homomorphism. If � 2 HN.XIZp/, then, to define ˇ.�/, we take a
mod p cocycle x in the class �, and then choose an integral cochain,ex, which is
projected onto x by reducing modulo p. The ˇ.�/ is represented by the cocycle
1

p
ıex, and the equality ˇ.�/ D 0 means that there exists an integral cochainey such

that
1

p
ıex � ıey mod p. In other words, ı.ex � pey/ is divisible by p2, and we define

ˇ2.�/ 2 HNC1.XIZp/ as the cohomology class of the cocycle
1

p2
ı.ex � pey/.

EXERCISE 3. What are the space E and the cohomology class v which correspond,
according to the constructions of this section, to the relation ˇ2 D 0?

Similar to the second Bockstein homomorphism, one can construct the “third

Bockstein homomorphism” using the cocycle
1

p3
ı.ex � pey � p2ez/, and then fourth,

fifth, etc. Bockstein homomorphisms. These are examples of ternary, quaternary,
quinary, etc. cohomology operations. For example, a ternary operation corresponds
to a relation like

P

ˇi'i D 0, where the ˇi are primary cohomology operations and
the 'i are secondary cohomology operations. A reader who is interested in higher
cohomology operations can construct a theory of n-ary cohomology operations with
an arbitrary n.

If one does not restrict this theory to stable operations, and considers arbitrary
coefficient groups, then it becomes true that the cohomology with the action of all
this higher cohomology operations fully determines the homotopy type of a simply
connected space. The reader can try to make this statement formal and precise, but
in this form it becomes more or less tautological. A more interesting statement of
this kind is discussed in Sect. 37.4.
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Fig. 132 A differential in the Adams spectral sequence arising from a secondary cohomology
operation

37.2 Higher Cohomology Operations and Differentials
of the Adams Spectral Sequence

We will not discuss in detail the relations between higher cohomology operations
and differentials of the Adams spectral sequence. Instead, we restrict ourselves to a
simple remark.

Suppose that in the Adams spectral sequence for some space X, there are
elements y1 2 Es;t0

2 ; y2 2 Es;t
2 , and z 2 EsC2;tC1

2 (see Fig. 132). Then y1 and y2
are generators of the A-module eH�.X.s/IZp/. Assume that y2 D '.y1/ [better to
say y2 2 '.y1/], where ' is a secondary cohomology operation constructed from
some relation

P

ˇi˛i D 0 in the Steenrod algebra.
By the construction of secondary cohomology operations, ˛iy1 D 0. These are

relations in the A-module eH�.X.s/IZp/. If we apply the operation ˇi to the relation
˛iy1 D 0 and then sum up all the results, then we get the relation 0 D 0. Thus,
we have a relation in the module of relations. Assume that this relation is one of
generators in the module of relations in eH�.X.s/IZp/ and that this generator is z
(indeed, it has the same degree as z).

EXERCISE 4. Prove that in the Adams spectral sequence d2y2 D z.

37.3 Higher Cohomology Operations and Homotopy
Groups of Spheres

The E2-term of the Adams spectral sequence for S0 is related to the primary,
secondary, and so on cohomology operations in the obvious way. The elements
in the first row correspond to primary operations; the elements in the second
row correspond to the relations in the Steenrod algebra, that is, to the secondary
operations, and so on. On the other hand, elements of the stable homotopy groups
of spheres arise from the Adams spectral sequence. What is the relation between
(primary and higher) cohomology operations and stable homotopy groups of
spheres?
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Am element ˛ of �NCk.SN/ .k � 0/ is a class of spheroids SNCk ! Sn.
Attach DNCkC1 to SN by such a spheroid. We get a CW complex whose homotopy
type depends only on ˛; we denote this CW complex by X˛ . Obviously, X˛
has nontrivial cohomology groups in two positive dimensions: HN.X˛IZp/ Š
Zp; HNCkC1.X˛IZp/ Š Zp.

EXERCISE 5. Prove that the higher cohomology operation corresponding to the
element of the E2-term of the Adams spectral sequence which becomes in E1 an
element represented by ˛ acts nontrivially in the cohomology of X˛. (Hint: Consider
the Adams spectral sequences for X˛ and SN and the homomorphism of the first into
the second arising from the inclusion map SN ! X˛.

Consider, for example, the elements h1; h2; h3; : : : of the first row of the mod
2 Adams spectral sequence for S0. Those which survive to E1 correspond to the
elements ˛ of the groups �NC1.SN/; �NC3.SN/; �NC7.SN/; : : : such that in the
corresponding spaces X˛ the operations Sq2;Sq4;Sq8; : : : act nontrivially. Adams
proved that the elements hi with i � 4 do not survive to E1: They are killed by
differentials. For example, d2h4 D h0h23 ¤ 0. This shows that a space of the form
SN[DNCq with a nontrivial action of Sqq exists only for q D 1; 2; 4; 8. We explained
in Sect. 31.4 that this is equivalent to the fact that a group �4n�1.S2n/ contains an
element with odd Hopf invariant only for n D 1; 2, and 4.

Let us mention a more classical (and actually equivalent) approach to the problem
of the odd Hopf invariant (known as the Frobenius conjecture). As explained in
Sect. 31.4, the reason why the operation Sqq cannot act nontrivially in the space SN[
DNCq, if q is not a power of 2, is the fact that for such a q, the Steenrod squares Sqq

are expressed as sums of compositions of Steenrod squares Sqr with r < q (which
act trivially in SN [ DNCq). However, Sq16;Sq32; : : : are not decomposable into
compositions. Why are there no spaces SN[DNC16; SN[DNC32; : : : with nontrivial
actions of Sq16;Sq32; : : :? The answer is simple: Sq16;Sq32; : : : are decomposable,
but not through Steenrod squares, but rather through higher cohomology operations.
The reader can try to prove that for Steenrod squares Sq2

r
, the existence of such a

decomposition is equivalent to the nontriviality of some differentials of the Adams
spectral sequence for the elements hr of the E2-term.

37.4 Postnikov Towers

We already know that the homotopy groups of a space (even of a CW complex)
do not fully determine its homotopy type. There are two exceptions: when all the
homotopy groups are trivial, and when there is only one nontrivial homotopy group.

Even in the case of two nontrivial homotopy groups it is not necessarily so.
Indeed, let …1 and …2 be two Abelian groups, and let n1 and n2 be two integers
with 1 < n1 < n2 (to avoid unnecessary complications, we do not consider the
case n1 D 1). Suppose that a CW complex X has trivial homotopy groups of
all dimensions except n1 and n2, and �n1 .X/ D …1; �n2 .X/ D …2. Then there
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arises a (homotopically unique) map X ! K.…1; n1/ which may be considered a
fibration, and the fiber is K.…2; n2/. In the cohomology spectral sequence of this
fibration with coefficients in…2, the fundamental class u2 2 Hn2 .K.…2; n2/I…2/ D
E0;n22 is transgressive and is taken by the transgression into some element f1 of
En2C1;0
2 D Hn2C1.K.…1; n1/I…2/. This f1, on one hand, fully determines the

fibration, and hence (the homotopy type of) X, and on the other hand it can be
regarded as a (primary) cohomology operation Hn1.�I…1/! Hn2C1.�I…2/. Thus,
the homotopy type of a space X with two nontrivial homotopy groups is determined
by these groups plus one primary cohomology operation, which is called the (first)
Postnikov factor of X.

Suppose now that Y is a space (a CW complex) with three nontrivial homotopy
groups, �n1 .Y/ D …1; �n2 .Y/ D …2; �n3 .Y/ D …3; where 1 < n1 < n2 < n3.
The capping operation (described in Sect. 11.9) may turn Y into a space X 
 Y
with only two nontrivial homotopy groups, �n1 .X/ D …1; �n2 .X/ D …2, such
that the homomorphisms �q.Y/ ! �q.X/ induced by the inclusion map Y ! X
are the identity maps for q D n1; n2. If we turn this inclusion map into the
homotopy equivalent fibration, then the fiber of this fibration will be K.…3; n3/.
The transgression in the cohomology spectral sequence of this fibration takes the
fundamental class u3 2 Hn3 .K.…3; n3/I…3/ into some class f2 2 Hn3C1.XI…3/ and
this class fully determines the fibration and hence Y (provided that X is known).

We explained in Sect. 37.1 that the class f2 can be regarded as a secondary
cohomology operation defined on the kernel of the primary cohomology operation
f1. Let us repeat this explanation using the data of the current construction. Let W
be some space (some CW complex), and let � 2 Hn1 .XI…1/. The class � gives
rise to a map hWW ! K.…1; n1/. If we assume that f1.�/ D 0, then the fibration

over W induced by the fibration X
K.…2;n2/��! K.…1; n1/ via the map h is trivial, and

h can be lifted to a mapehWW ! X; we put f2.�/ D eh�.f2/ 2 Hn3C1.WI…3/ (we
use the same notations for cohomology operations and cohomology classes which
determine them). Thus, f2 is a partial multivalued operation; it is partial, because it
is defined only on the kernel of f1, and it is multivalued because the choice ofeh is
not unique. The operation f2 is called the second Postnikov factor of W.

EXERCISE 6. Prove that the values of f2 are defined up to the image of the primary
cohomology operation Hn2 .�I…2/ ! Hn3C1.�I…3/, which is the first Postnikov
factor of the killing space Wjn2 .

This construction may be repeated infinitely many times. The result is schemati-
cally shown in Fig. 133.

The notation K.…1; n1I…2; n2I : : :/ means a space X with nontrivial homotopy
groups �n1 .X/ D …1; �n2 .X/ D …2; : : :. As we know, the homotopy groups do not
determine the homotopy type, so these notations do not fully specify the spaces. The
space W appears as the limit of the vertical sequence. The cohomology classes ui are
the fundamental classes, and � means the transgressions. The transgression images
f1; f2; f3; : : : are cohomology operations: f1 is a primary operation, f2 is a secondary
operation defined on the kernel of f1, f3 is a ternary operation defined on the kernel
of f2, and so on. These cohomology operations are called Postnikov factors.
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K(Π1, n1)

K(Π1, n1; Π2, n2)

K(Π1, n1; Π2, n2; Π3, n3)

. . . . . .

..........................................................................................................................................................................................................................

....................
...
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...
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K(Π2, n2)

K(Π3, n3)

K(Π4, n4)

Hn2(K(Π2, n2); Π2) u2 −→ f1 ∈ Hn2+1(K(Π1, n1); Π2)

Hn3(K(Π3, n3); Π3) u3 −→ f2 ∈ Hn3+1(K(Π1, n1; Π2, n2); Π3)

Hn4(K(Π4, n4); Π4) u4 −→ f3 ∈ Hn4+1(K(Π1, n1; Π2, n2; Π3, n3); Π4)
τ

τ

τ

Fig. 133 The Postnikov tower

Thus, according to the Postnikov theory, the homotopy type of a simply
connected CW complex is determined by the homotopy groups plus a sequence
of cohomology operations, a primary one, a secondary one, and so on, such that
every operation from this sequence in defined on the kernel of the previous one.

EXERCISE 7. Reconstruct the details of this construction (including the limit
transition).

EXERCISE 8. Prove that the first Postnikov factor of Sn (with n � 3) is Sq2. Try to
describe the second Postnikov factor.



Chapter 6
K-Theory and Other Extraordinary
Cohomology Theories

Lecture 38 General Theory

38.1 Introduction

K-theory emerged as an independent part of topology in the late 1950s, when
the limits of the possibilities of the methods based on spectral sequences and
cohomology operations (and studied in Chaps. III–V) became visible. Progress in
homotopy topology considerably slowed down, the leading topologists got involved
in cumbersome calculations, the results became less and less impressive, and to
obtain them one had to combine a great inventiveness with a readiness to do a huge
amount of tedious work. To get these activities revived a radical method was needed.
And it was found! It consisted of replacing cohomology as the basic homotopy
invariant by an entirely new object, the so-called K-functor.

The history of K-theory is enlightening. The period of its active development was
unbelievably short: The first works in K-theory were published in 1959, and as early
as 1963 most of its results were completed (including all the results described below,
with the exception of the proof of the Adams conjecture). And it is remarkable that
all works in K-theory of this period belong to four authors: Frank Adams, Michael
Atiyah, Raoul Bott, and Friedrich Hirzebruch. There is no name of Alexander
Grothendieck on this list, for he has no works in topology; but according to common
opinion, it was Grothendieck who had first conceived of the key ideas of K-theory
that found their applications not only in topology.

The topological applications of K-theory obtained during its “heroic period”
were really impressive. Let us mention only a simple proof of the nonexistence
of division algebras in dimensions different from 1, 2, 4, 8; the precise com-
putation of the maximal number of linearly independent vector fields on the
sphere of an arbitrary dimension; the computation of the order of the image
of the “J-homomorphism” �n.SO/ ! �S

n ; theorems of nonembeddability and
nonimmersibility of various manifolds into Euclidean spaces; as well as various
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integrality theorems for rational linear combinations of characteristic classes. The
solution of the problem of the index of an elliptic operator found in 1963 by Atiyah
and Singer would have been totally impossible without K-theory.

The majority of topologists became aware of the existence of K-theory only after
its construction had mainly been completed and its most remarkable applications
had mostly been obtained. Nevertheless, they found work to do. They included
K-theory in the frames of a general theory of “extraordinary cohomology.” It turned
out that K-theory is a rather modest representative of the family of extraordinary
cohomologies. The main reason for that is as follows. As the reader remembers,
for the usual cohomology (for example, with the coefficients in Z) the following
Whitehead theorem holds: If X and Y are simply connected CW complexes, and if
a continuous map f WX ! Y induces an isomorphism f �WH�.YIZ/ ! H�.XIZ/,
then f is a homotopy equivalence (see Sect. 14.5). K-theory also assigns to a (finite)
CW complex a graded group that depends on it in a functorial way, but there is no
analog of Whitehead’s theorem: It is quite possible that f �WK�.Y/ ! K�.X/ is an
isomorphism, but f is not a homotopy equivalence. Some extraordinary theories
were conceived (or, better to say, recollected) that have all the advantages of
K-theory and are free of this flaw.

The best known of these theories is the cobordism theory, which exists in a
variety of versions (the same is true for K-theory, by the way). For cobordisms, the
analog of Whitehead’s theorem is valid; thus, from the point of view of homotopy
theory, cobordism theory is not worse than cohomology. The topologists were able
to construct for cobordisms an analog of the Adams spectral sequence, the so-called
Adams–Novikov spectral sequence, which was repeatedly applied to homotopy
calculations. A theory of cobordism-valued characteristic classes proved to be very
useful. At last the assertion that cobordisms are better than K-theories had a precise
statement: The (complex) K-theory may be embedded into the (complex) cobordism
theory as a direct summand. We pay a tribute to cobordism theories by devoting a
separate lecture to them (Lecture 44).

Nevertheless, one has to admit that from the viewpoint of applications, K-theory
considerably surpasses all other extraordinary cohomology theories. Thus, K-theory
is the main subject of this chapter. By necessity, we restrict ourselves almost entirely
to the complex case.

38.2 Definitions

A: The Groups K.X/

Let X be a finite CW complex. Usually we assume that X has a base point, x0. Denote
by F.X/ the set of equivalence classes of complex vector bundles with the base X.
If X is connected, then F.X/ D `

n	0 Fn.X/, where Fn.X/ is the set of classes of
n-dimensional vector bundles with the base X. If X is not connected, then we do not



38.2 Definitions 497

require that the dimensions of the fibers over different components be the same; in
this case we define the dimension of the bundle as the dimension of the fiber over
the base point, if there is one.

There are two binary operations in F.X/: direct sum and tensor product. With
respect to addition (direct summation), F.X/ is a commutative semigroup with zero;
the multiplication is commutative, associative, distributive with respect to addition,
and possesses the identity element.

There is a general operation in algebra which converts a commutative semigroup
with zero into a commutative group (the so-called Grothendieck group). Namely, let
F be a commutative semigroup with zero. Consider the set of all formal differences
a � b; a 2 F; b 2 F and introduce the following equivalence relation in this set:
.a � b/ � .c � d/ if there exists some e 2 F such that a C d C e D b C c C e.
Obviously, this relation is reflexive and symmetric.

EXERCISE 1. Check that it is also transitive.

Denote by G.F/ the set of equivalence classes of formal differences in F, and
define an addition operation in G.F/ by the formula fa� bgC fc� dg D f.aC c/�
.bC d/g.
EXERCISE 2. Check that G.F/ with this operation is a group.

This is the Grothendieck group of the semigroup F. The formula a 7! fa � 0g
defines a map F ! G.F/.

EXERCISE 3. Check that this map is a homomorphism [with respect to the addition
operations in F and G.F/].

EXERCISE 4. This map is not necessarily an injection: Give an example.

EXERCISE 5. Let G be an Abelian group. Prove that any homomorphism F ! G
is uniquely decomposed into a composition of the canonical map F ! G.F/ and a
group homomorphism G.F/! G.

EXERCISE 6. Prove that the last property of the group G.F/ and the homomorphism
F! G.F/ uniquely determines both.

Let us return to the vector bundles.

Definition. K.X/ D G.F.X//. The elements of the group K.X/ are sometimes
called virtual vector bundles over X.

A continuous map f WX ! Y defines, in the obvious way, the “induced
homomorphism” f �WK.Y/ ! K.X/. Homotopic continuous maps always induce
equal homomorphism; thus, K.X/ is a homotopy invariant of X.

Example. F.pt/ D Z	0;K.pt/ D Z; the same holds for any contractible space.

The homomorphism dimWF.X/ ! Z	0 determines a homomorphism
dimWK.X/ ! Z. This is seen from Exercise 5 but may be described directly:
dimfa � bg D dim a � dim b (check that it is well defined). Notice that the
dimension of a virtual vector bundle may be negative.
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Proposition 1. (i) For any virtual vector bundle ˛ 2 K.X/ there exist a usual
vector bundle a and an integer N such that ˛ D fa � Ng: (Recall that in
the theory of vector bundles N denotes the standard trivial vector bundle of
dimension N; X � C

N ! X.)
(ii) Virtual vector bundles ˛ D fa � Ng and ˇ D fb � Mg are equal if and only

if dim a D dim b and the vector bundles a and b are stably equivalent (see the
definition in Sect. 19.1).

The proof is based on the following lemma.

Lemma. For any vector bundle a over (a finite CW complex) X there exists a vector
bundle a over X such that the sum a˚ a is trivial.

Proof of Lemma. According to Sect. 19.4, a D f ��, where � is the tautological
bundle over an appropriate complex Grassmannian and f is a continuous map of X
into this Grassmannian. Hence, we need to prove the lemma only in the case when
a itself is the tautological bundle � over the Grassmannian CG.NI n/. Denote by
�? the “dual tautological bundle,” whose fiber over x 2 CG.NI n/ is the orthogonal
complement x? to x in C

N . The fiber of � ˚ �? over x is x˚ x? D C
N . Hence, the

bundle � ˚ �? is trivial.

Proof of Proposition. (i) Let ˛ D fc�dg, and let d be a bundle such that d˚d D N.
Then the virtual bundle fc � dg is equivalent to f.c ˚ d/ � .d ˚ d/g D fa � Ng,
where a D c˚ d.

(ii) The equality fa�Ng D fb�Mgmeans that a˚M˚c D b˚N˚c for some c.
Choose a c such that c˚c D K. Then a˚M˚K D a˚M˚c˚c D b˚N˚c˚c D
b ˚ N ˚ K; hence, a is stably equivalent to b. Conversely, let the bundles a and b
be stably equivalent, which means that a˚ K D b ˚ L for some K and L. Hence,
a ˚ K ˚ M ˚ N D b ˚ L ˚ M ˚ N, and since dim.a � N/ D dim.b � M/ and
dim.aCK/ D dim.bCL/, then KCN D LCM, and therefore a˚M˚c D b˚N˚c,
where c D K C N D LCM, which shows that a � N is equivalent to b �M.

B: The Groups eK.X/

Definition. eK.X/ D KerŒdimWK.X/! Z�.

Since K.pt/ D Z and dimWK.pt/ ! Z is an isomorphism, our definition is
equivalent to the following definition:

eK.X/ D KerŒK.X/! K.x0/�;

where x0 is the base point of X.
Obviously, K.X/ D eK.X/˚ Z always.

Theorem. eK.X/ is the set of classes of stably equivalent vector bundles over X.
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Proof. The preceding proposition implies that any element ˛ of eK.X/ is represented
by the difference a� dim a where a is a vector bundle, and a is determined by ˛ up
to stable equivalence. At the same time, the difference a� dim a determines for any
vector bundle a a certain element of eK.X/.

Set

BU D CG.1;1/ D lim
n!1 lim

N!1CG.N; n/; U D lim
n!1 U.n/:

The above theorem has the following important

Corollary. eK.X/ D �.X;BU/.

Proof. We need to prove that classes of stably equivalent vector bundles over (a
finite CW complex) X correspond one-to-one to homotopy classes of maps X !
BU. According to Sect. 19.4, a vector bundle (of dimension n) over X gives rise
to a continuous map X ! CG.1; n/ and since CG.1; n/ � CG.1;1/ also
gives rise to a continuous map X ! CG.1;1/. But it is obvious that the maps
X ! CG.1; n1/;X ! CG.1; n2/, which correspond to two vector bundles over
X, are homotopic in CG.1;1/ if and only if these two vector bundles are stably
equivalent.

Homotopy Lemma. For every r, there is an isomorphism �r.U/ D �rC1.BU/. The
same is true if BU and U are replaced by BU.n/ D CG.1; n/ and U.n/.

Let us prove the assertion concerning BU.n/ and U.n/ (the part concerning BU
and U may be obtained by considering the obvious limits). We have a fibration

CV.1; n/ U.n/��!CG.1; n/; that is EU.n/
U.n/��!BU.n/

with EU.n/ being contractible. [The reader may prove the contractibility of
CV.1; n/ as an exercise; for our purposes, however, it is sufficient to know that
�r.CV.1; n// D 0 for any G, and this follows from the equality �r.CV.N; n// D 0
for � 2.N � n/; see Sect. 19.3.] The isomorphism needed arises from the exactness
of the homotopy sequence of this fibration.

EXERCISE 7. Prove the following stronger form of the homotopy lemma: The
spaces �BU and U are homotopy equivalent, and the spaces �BU.n/ and U.n/
are homotopy equivalent.

EXERCISE 8. A further strengthening of the homotopy lemma: The spaces above
are homotopy equivalent as H-spaces.

APPLICATION. eK.Sr/ Š �r.BU/ D �r�1.U/: In particular, eK.S2/ D �1
.U/ D Z.

Notice that the group eK.S2/ is generated by the stable class of the Hopf bundle �
over S2 D CP1. [In other words, eK.S2/ is generated by the class of the virtual bundle
� � 1.] Indeed, the Hopf bundle � is not stably trivial since its first Chern class c1.�/
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does not vanish (see Sect. 19.5); hence, � determines a nonzero element of eK.S2/.
But this element cannot be divisible, since it is always true that c1.�1 ˚ �2/ D
c1.�1/ C c1.�2/ and hence c1.n�/ D nc1.�/, which shows that c1 of a divisible
vector bundle is divisible, while c1.�/ is the generator of the group H2.S2IZ/ Š Z,
which is not divisible.

Furthermore, K.S2/ D eK.S2/˚ Z D Z˚ Z. This group is generated by � and 1.
Thus, we have an isomorphism

K.S2/��!Z˚ Z; � 7! .c1.�/; dim �/

[we regard c1.�/ as an integer, because H2.S2IZ/ Š Z]. In particular, the bundles
.� ˝ �/ ˚ 1 and � ˚ � determine the same element of K.S2/ (actually, these two
vector bundles are equivalent), and hence we have the relation

�2 D 2� � 1

in K.S2/ [and .� � 1/2 D 0 in eK.S2/].

C: The Groups Kq.X;A/ with q � 0

Let .X;A/ be a finite CW pair (a finite CW complex and a CW subcomplex of it).
For q � 0, put

Kq.X;A/ D eK.†�q.X=A//;
Kq.X/ D Kq.X;;/;
eKq.X/ D Kq.X; x0/;

where x0 is the base point. Obviously,

K0.X/ D eK.X=;/ D eK.X t pt/ D K.X/

[eK.X t pt/ is the group of virtual bundles over X t pt of dimension 0 over pt, which
is simply the group of virtual bundles over X],

eK0.X/ D eK.X=x0/ D eK.X/:

(Notice, however trivial it is, that the quotient X=; consists of X and one more
isolated point: The elements of the set X=; are elements of the difference X�; D X
and one more element f;g.)
Example. Kq.pt/ D eKq.pt=;/ D eKq.pt t pt/ D eK.†�q.S0// D eK.S�q/ D
��q.BU/:
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In K-theory, the groups Kq.X;A/ with q > 0 are, certainly, also studied, but
just to define them we need the so-called Bott periodicity, and we postpone any
discussion of this group until Sect. 38.3.

D: K-Sequences of Pairs

Lemma. The functor eK is half-exact. This means that for any (finite CW) pair
.X;A/, the sequence

eK.X=A/��! eK.X/��! eK.A/

of homomorphisms induced by the inclusion A! X and the projection X ! X=A is
exact.

The easiest way to prove it is to use the equality eK.Y/ D �.Y;BU/:
Now for a pair .X;A/, consider the following diagram:

A ��! X ��! X=A
�

�

x

?

X ��! X [ CA ��! †A
�

�

x

?

X [ CA ��! CX [ CA ��! †X:

The vertical arrows of this diagram denote homotopy equivalences: the factorization
over CA and the factorization over CX. All the rows have the form B ! Y !
Y=B. This lets us identify all the eK-groups for the spaces in any column and get the
sequence

eK.A/  � eK.X/  � eK.X=A/  � eK.†A/  � eK.†X/;

which is exact by the lemma. Notice that the first, second, and fourth arrows in
this sequence are induced, correspondingly, by the inclusion map A ! X, by the
projection X ! X=A, and by the inclusion map †A ! †X. Precisely in the same
way, using the pair .†X; †A/ instead of the pair .X;A/, we construct the exact
sequence

eK.†A/  � eK.†X/  � eK.†X=†A/  � eK.†2A/  � eK.†2X/;

and, furthermore, the exact sequence

eK.†qA/  � eK.†qX/ � eK.†qX=†qA/
 � eK.†qC1A/  � eK.†qC1X/
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for any q � 0. All these sequences may be combined into one long exact sequence

eK.A/ � eK.X/  � eK.X=A/  � : : :

 � eK.†qX=†qA/  � eK.†qC1A/  � eK.†qC1X/  � : : :

If we replace in this sequence the spaces X and A first by the spaces Xtpt and Atpt,
and then by the spaces X=B and A=B, where B is a CW subcomplex of A, then we
get (using the definitions from Sect. 38.2.C) exact sequences

K0.A/ � K0.X/  � K0.X;A/  � K�1.A/  � : : :
 � K�q.X/  � K�q.X;A/ � K�q�1.A/  � K�q�1.X/  � : : :

and

K0.A;B/  � K0.X;B/  � K0.X;A/  � K�1.A;B/  � : : :
 � K�q.X;B/  � K�q.X;A/ � K�q�1.A;B/  � K�q�1.X;B/  � : : : :

These are the K-sequences of pairs and triples.
Naturally, continuous maps between (finite CW) pairs induce homotopy invariant

homomorphisms of all groups Kq (in the opposite direction), and these homomor-
phisms are compatible with all the K-sequences of pairs and triples.

Remark. The geometric construction, which we used for the definition of the
K-sequences of pairs and triples, may be continued. As a result we will get a
sequence of continuous maps

A��!X��!X=A Ü †A ��!†X
��!†.X=A/ Ü †2A��! : : : ;

where dotted arrows are defined up to a homotopy. This sequence is called the
Puppe sequence. The Puppe sequence is homotopy exact in the sense that any three-
term fragment of this sequence is homotopy equivalent to a fragment of the form
B! Y ! Y=B.

E: Attempts to Generalize K to the Case of Infinite
CW Complexes

There is no satisfactory generalization of K-theory to the case of infinite CW
complexes. Let us consider several possible versions of the definition of K-groups
in this case.

VERSION 1. K.X/ is the Grothendieck group of the semigroup of the equivalence
classes of vector bundles.
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VERSION 2. eK.X/ D �.X;BU/; K.X/ D eK.X/˚ Z.

VERSION 3. K.X/ D lim �K.Y/, where the limit is taken with respect to all finite

CW subcomplexes of X.

Version 1 looks the most natural, but nothing is known about such a “K-functor”:
It is unlikely that it possesses any good properties. It is not even clear how to
compute it, for example, in the case X D CP1. Versions 2 and 3 appear to make
more sense; the corresponding K-functors are denoted by the symbols k and K,
respectively. The biggest advantage of K-theory is its relatively easy computability:
actually, the methods of computing groups K.X/, developed in Lecture 39 ahead,
if applied to an infinite CW complex X, yield precisely K.X/. However, there are
no exact sequences of pairs and triples in this theory: It is not hard to construct an
example of an infinite CW pair .X;Y/ with K.X=Y/ D 0; K.Y/ D 0; but K.X/ ¤ 0
(the reader may try to construct such an example after reading Lecture 39). On the
contrary, the k-functor is (half) exact, but it is very difficult to compute its values.
Indeed, let us try to understand the difference between k and K. There is an obvious
map k ! K [a continuous map X ! BU restricts to a map Y ! BU, and hence to
an element of eK.Y/ for any finite CW subcomplex Y of X; these elements compose
an element of lim �K.Y/ D eK.X/].

EXERCISE 9. Prove that this mapek.X/! eK.X/ is an epimorphism.

What is the kernel of this map? This kernel consists of classes of maps X ! BU
which are homotopic to a constant on any finite CW subspace Y � X, but still not
homotopic to a constant on the whole X. Is such an odious thing possible? It turns
out that yes!

Definition. A continuous map of a CW complex X into some topological space is
called a phantom map if it is not homotopic to a constant, but its restriction to any
finite CW subspace of X is homotopic to a constant.

The first example of a phantom, rather a complicated one, was constructed by
J. F. Adams and G. Walker (see [10]). Simpler examples were found later, and
now an example of a phantom map CP1 ! S3 is known (the reader may try to
construct such a map). Relationships between k- and K-theories were first studied
by Atiyah and Hirzebruch, and later by V. Buchstaber and A. Mishchenko [26].
We will mention two of Buchstaber and Mishchenko’s results. (1) If all the odd-
numbered Betti numbers of X are 0, then k.X/ D K.X/. (2) Let X D K.Z; 3/.
Then eK.X/ D 0, whileek.X/ D bZ=Z, where bZ is the completion of the group Z

with respect to all finite index subgroups. (In other words,bZ is the subgroup of the
infinite product Z2�Z3�Z4� : : : consisting of such sequences .a2; a3; a4; : : : / that
aqr � aq mod q for any integers q; r; the groupZ is embedded intobZ by the formula
n 7! .res2 n; res3 n; res4 n; : : : /; in other words, Z � bZ is the group of stabilizing
sequences; it is clear that it is considerably less thanbZ.)
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38.3 Bott Periodicity

A: The Statement of Bott’s Theorem

As we already noticed, K.S2/ D Z˚ Z, and the generators of the two groups Z are
the classes 1 and � of the trivial bundle and the Hopf bundle. Let X be a finite CW
complex, and let ˛1; ˛2 2 K.X/. Then we can consider the virtual bundle

.˛1 ˝ 1/C .˛2 ˝ �/ 2 K.X � S2/:

Theorem (Bott). For any finite CW complex X, the mapping

K.X/˚ K.X/��!K.X � S2/; .˛1; ˛2/ 7! .˛1 ˝ 1/C .˛2 ˝ �/

is an isomorphism.

We postpone the proof of this theorem until Sect. 38.3.C. Now we will reduce its
statement to a more convenient to us (and, actually, more habitual) form.

Consider the K-sequence of the pair .X � S2;X _ S2/ W

� � � ! K�1.X � S2/! K�1.X _ S2/! K.X � S2;X _ S2/

! K.X � S2/
���!K.X _ S2/

(recall that K0 D K). Obviously, K.X_S2/ D K.X/˚K.S2/ [actually, K.X_S2/ D
Z˚ eK.X _ S2/ D Z˚ eK.X/˚ eK.S2/; K.X/ D Z˚ eK.X/;K.S2/ D Z˚ eK.S2/].
Furthermore, any a 2 K.X/ is the image with respect to the homomorphism 	 of
p�
1a 2 K.X�S2/ and any b 2 K.S2/ is the image of p�

2b 2 K.X�S2/. Hence, 	 is an
epimorphism, and in a similar way the map K�1.X � S2/! K�1.X _ S2/ from the
above sequence is an epimorphism. Hence, K.X�S2;X_S2/ is simply the kernel of
the homomorphism	. According to Bott’s theorem, any element of K.X�S2/ has the
form .˛1˝1/C.˛2˝�/. Rewrite the last sum as .˛˝.��1//C.ˇ˝�/. The restriction
of this virtual bundle to X � X � S2 is equal to ˛ � dim.� � 1/C ˇ � dim 1 D ˇ; the
restriction of this virtual bundle to S2 � X�S2 is equal to dim˛ � .��1/Cdimˇ �1.
Thus, our virtual bundle belongs to the kernel of the homomorphism 	 if and only
if ˇ D 0 and dim˛ D 0, that is, if it has the form ˛ ˝ .� � 1/ with ˛ 2 eK.X/. We
see that the map

˛ 7! ˛ ˝ .� � 1/

establishes an isomorphism

eK.X/��!K.X � S2;X _ S2/ D eK..X � S2/=.X _ S2// D eK.†2X/:
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Thus, we obtain

Corollary. There is an isomorphism that is natural with respect to X:

eK.X/ Š eK.†2X/:

In the case X D Sq, this implies [since eK.Si/ D �i.BU/]

Corollary of corollary. For any q,

�q.BU/ Š �q�2.BU/;

and hence �q.U/ Š �q�2.U/.

It was this theorem that was originally proved by Bott and which is known as
(unitary) Bott periodicity. Since �1.U/ D Z and �2.U/ D �2.SU/ ˚ �2.S1/ D
�2.SU/˚ �2.S1/ D 0,

�i.U/ D
�

Z for i odd;
0 for i even;

and

�i.BU/ D eK.Si/ D
�

Z for i even;
0 f or i odd:

B: The Completion of the Construction of K-Theory

We postpone the proof of Bott’s theorem a little more and show how it can be used to
complete the construction of K-theory. The corollary of Bott’s theorem given in this
section shows that for any (finite CW) pair .X;A/ and any q � 0, there is a natural
[with respect to continuous maps between pairs and to connecting homomorphisms
Kq.X;A/ Kq�1.AIB/] isomorphism

Kq.X;A/ Š Kq�2.X;A/:

We use this isomorphism to define Kq.X;A/ for all q: By definition,

Kq.X;A/ D Kq�2N.X;A/; N > max.0; q/

[the groups Kq�2N.X;A/ with different large N are identified by means of the Bott
periodicity isomorphism]. We get a 2-periodic extraordinary cohomology theory
(the precise meaning of this term will be explained in Sect. 38.5), that is, a rule
that assign to a finite CW pair .X;A/ a sequence of groups Kq.X;A/; q 2 Z
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and a sequence of homomorphisms Kq.A/ D Kq.A;;/ ! KqC1.X;A/, and to
a continuous map .X;A/ ! .Y;B/ between two finite CW pairs a sequence of
homomorphisms Kq.Y;B/ ! Kq.X;A/, and all these groups and homomorphisms
are homotopy invariant and satisfy suitable conditions of the commutativity of
diagrams and the exactness of sequences (see the details in Sect. 38.5). In addition to
this, compatible with all these structures are isomorphisms Kq.X;A/ D Kq�2.X;A/.
(The last feature illustrates the important difference between K and H, since Hq D 0
for q < 0:)

Now we can apply to K-theory all the standard corollaries of the exactness of the
sequences of pairs and triples. In particular, there are suspension isomorphisms

†W eKq.X/ Š eKqC1.†X/

[the exactness of the eK-sequence of the pair .CX;X/

eKq.CX/ ��! eKq.X/ ��! KqC1.CX;X/ ��! eKqC1.CX/
k k
0 0

implies that eKq.X/ Š KqC1.CX;X/ D eKqC1.†X/].

EXERCISE 10. Define a natural multiplication in K-theory,

Kq.X;A/˝ Kr.X;A/��!KqCr.X;A/:

C: Proof of Bott’s Theorem

We will prove that Bott’s map K.X/ ˚ K.X/ ! K.X � S2/; .˛1; ˛2/ 7! .˛1 ˝ 1/
C .˛2 ˝ �/ is an epimorphism. The proof that it is a monomorphism is based on
similar ideas, and we will restrict ourselves to a short sketch of this proof (which
will probably be sufficient for the reader). The full proof of Bott’s theorem may be
found in the books by Atiyah [16], Karoubi [51], Mishchenko [61], J. Schwartz [73],
and Husemoller [49]). All these proofs, like the proof presented below, are based
on K-theory; the original proof given by Bott was based on differential geometry
and the Morse theory; it is presented in the book The Morse Theory by J. Milnor
(Milnor [57]).

Consider a vector bundle � over X � S2. The base X � S2 splits into the union of
two copies of X � D2. Over each of the two pieces the vector bundle is the product
of some vector bundle over X (we denote this by ˛) and D2. The two pieces of
the base are attached along X � S1 (S1 is the equator of the sphere S2); for any
z 2 S1 the restrictions �jX �D2 are attached by an isomorphism u.z/W˛ ! ˛ which
covers the identity of the base X. Hence, for each x 2 X we have an automorphism
depending on z, u.x; z/W˛x ! ˛x, of the fiber ˛x of the vector bundle ˛ over the
point x. Hence, our vector bundle is determined by the pair ˛; u; we use the notation
� D Œ˛; u�.
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EXERCISE 11. Prove that

(i) � D Œ1; z�1�.
(ii) Œ˛1; u1�˚ Œ˛2; u2� D Œ˛1 ˚ ˛2; u1 ˚ u2�.

(iii) Œ˛1; u1�˝ Œ˛2; u2� D Œ˛1 ˝ ˛2; u1 ˝ u2�.

Take the Fourier series for the function u.x; z/ with respect to z (we regard z as a
point in S1 D fjzj D 1g � C

2):

u.x; z/ D
X

k2Z
uk.x/z

k:

Here uk.x/ are endomorphisms of the vector space ˛x which may be degenerate.
It is clear that the vector bundle � will not be affected if we replace u by a

sufficiently close map. Hence, we may assume that u is a trigonometric polynomial:

u.x; z/ D
N
X

kD�N

uk.x/z
k:

The tensor multiplication of the function u by z corresponds to the tensor multipli-
cation of the vector bundle � by ��1 (see Exercise 11). Replace the vector bundle �
by � 0 D � ˝ ��N . Then � 0 D Œ˛; u0�, where

u0 D
m
X

kD0
uk.x/z

k; m D 2N:

Let � 00 D � 0˚ .m˛˝ I/ D Œ˛00; u00�, where ˛00 D .mC1/˛ and u00 D u0˚ I˚� � �˚ I:
Thus, the matrix u00 has the form

...

u

I

I
zeroes

zeroes

Multiply this matrix from the left and from the right by, respectively,

...

. . .I u∗
1 u∗

m

I

I

zeroes
and ...

...

I

I

I

−zI

−zI
zeroes zeroes

zeroes
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This multiplication does not change the bundle (both matrices are homotopic as
maps X � S1! fmatricesg to the constant identity matrix) and it reduces the matrix
u00.x; z/ to the form a.x/C b.x/z, where a.x/ and b.x/ are, respectively,

...

. . .u0 u1 um

I

I
zeroes

zeroes
and ...

−I

−I

zeroes

zeroes

Lemma from Linear Algebra. Let a and b be two endomorphisms of a complex
vector space V with Ker a \ Ker b D 0. Consider c�;	 D �a C 	b .�; 	 2
C; .�; 	/ ¤ .0; 0//, and let .�iW	i/ 2 CP1; i D 1; : : : ;m, all be pairwise different
solutions of the equation det c�;	 D 0. Then there exist direct decompositions

V D A1 ˚ A2 ˚ : : :Am; V D B1 ˚ B2 ˚ : : :Bm

such that c�;	.Ai/ � Bi for all �;	 and Ai

c�;	��!Bi is an isomorphism for .�W	/ ¤
.�iW	i/.

The proof is left to the reader.
Let c�;	.x/ D �a.x/C 	b.x/W˛00

x ! ˛00
x . Since the endomorphism a.x/C zb.x/

with jzj D 1 is invertible, the equation det c�;	.x/ D 0 has no solutions .�; 	/ with
j�j=j	j D 1. The lemma implies that the decompositions ˛00

x D ˇx ˚ �x and ˛00
x D

ˇx ˚ � x exist such that c�;	.x/.ˇx/ � ˇx; c�;	.x/.�x/ � � x, and c�;	.x/Wˇx Š ˇx

for j�j=j	j � 1, c�;	.x/W �x Š � x for j�j=j	j � 1. In particular,

ˇx
a.x/��!ˇx and �x

b.x/��! � x

are isomorphisms. Denote by d�;	.x/ and e�;	.x/ maps

ˇx

c�;	.x/�����!ˇx

a.x/�1�����!ˇx and �x

c�;	.x/�����! � x

b.x/�1�����! �x:

It follows from the preceding remark that d�;	.x/ is invertible for j�j=j	j � 1 and
e�;	.x/ is invertible for j�j=j	j � 1. Assume that X is connected (this assumption
is harmless). Then ˇx; �x; ˇx; � x compose vector subbundles ˇ; �; ˇ; � of the vector
bundle ˛00, and

� 00 D Œˇ; d1;z�˚ Œ�; e1;z�:
But d1;z is homotopic to d1;0 and e1;z is homotopic to e0;z within the class of invertible
maps (the homotopies are d1;tz and et;z). Thus,

� 00 D Œˇ; d1;0�˚ Œ�; e0;z�
D Œˇ; 1�˚ Œ�; z� D .ˇ ˝ 1/˚ .� ˝ ��1/:
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Finally, we have

.� ˝ ��N/˚ .m˛ ˝ 1/ D .ˇ ˝ 1/˚ .� ˝ ��1/I

that is,

� D ...ˇ � m˛/˝ 1/˚ .� ˝ ��1//˝ �N :

This completes the proof of K.X/˚ K.X/! K.X � S2/ being an epimorphism.
The fact that it is a monomorphism may be proved in a very similar way. We

simply need a relative version of the preceding theorem: If .X;Y/ is a finite CW
pair, � is a vector bundle over X � S2, and f is an isomorphism

�jY ��! .˛ ˝ 1/˚ .ˇ ˝ �/;

where ˛ and ˇ are vector bundles over Y, then there exists an isomorphism

� ˚ N ��! .ę˝ 1/˚ .eˇ ˝ �/˚ N

(where ę and eˇ are vector bundles over X) compatible with the preceding isomor-
phism. Once proved, the last assertion may be applied to the pair .X� I;X�f0; 1g/,
which yields the monomorphism theorem. Another way to prove it is to use easily
available information on the homotopy groups of BU (see Exercise 12).

EXERCISE 12. Deduce the fact that K.X/˚K.X/! K.X�S2/ is a monomorphism
from the fact that it is an epimorphism in the following way. The epimorphness
implies that the map �i.BU/ ! �iC2.BU/ is an epimorphism for all i. But
�1.BU/ D 0; �2.BU/ D Z. Hence, �i.BU/ D 0 for any odd i, and either
the map �i.BU/ ! �iC2.BU/ is always an isomorphism, or the group �i.BU/
is finite for sufficiently large i. The latter contradicts the rank computations:
rank�i.BU/ D rank�i�1.U/ is equal to 1 for any even i (see Sect. 26.4). Hence,
it is an isomorphism, which easily implies that K.X/ ˚ K.X/ ! K.X � S2/ is
an isomorphism for any X (the last implication is contained, implicitly, in the next
section).

38.4 Chern Character

A: Chern Character in K-Theory

In Sect. 19.5.D we define the Chern character, which is a characteristic class of
complex vector bundles taking values in Heven.XIQ/ D H0.XIQ/˚H2.XIQ/˚: : : ,
where X is the base of the bundle; notation: � 7! ch �. This characteristic class is
additive and multiplicative:
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ch.�1 ˚ �2/ D ch �1 C ch �2; ch.�1 ˝ �2/ D ch�1ch�2:

The first property lets us extend ch to the K-theory:

chWK.X/��!Heven.XIQ/I

the second property makes this K-theory’s character multiplicative. Furthermore,
this definition obviously gives rise to a definition of the character

chWKq.X;A/��!
�

Heven.X;AIQ/ for q even;
Hodd.X;AIQ/ for q oddI

Hodd D H1 ˚ H3 ˚ : : : /. The following notation is convenient:

Hq.X;A/ D
�

Heven.X;AIQ/ for q even;
Hodd.X;AIQ/ for q odd:

This H looks like K in some respects: It has exact sequences of pairs and triples,
but also it is 2-periodic: Hq D HqC2. The character ch becomes then a sequence of
homomorphisms

chWKq.X;A/��!Hq.X;A/;

which commutes with the induced homomorphisms and connecting homomor-
phisms of the sequences of pairs and triples.

EXERCISE 13. Prove that ch commutes with the 2-periodicity isomorphisms
Kq.X;A/! KqC2.X;A/ and idWHq.X;A/! HqC2.X;A/.

EXERCISE 14. Prove that this map ch is multiplicative (cf. Exercise 10).

B: Chern Character chQ

Let

chQ D ch˝QWKq.X;A/˝Q��!Hq.X;A/˝Q D Hq.X;A/:

Theorem. The map chQ is an isomorphism for any Q and any .finite CW) pair
.X;A/. In particular,

K.X/˝Q Š Heven.XIQ/;

and the rank of the group K.X/ is equal to the sum of the even Betti numbers of X.
[For example, rank K.S2/ D 2, as we already know.]
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Proof. It is sufficient to consider the case when A D ; [since Kq.X;A/ D eKq.X=A/
and Hq.X;A/ D eHq.X=A/].

The statement of the theorem is obvious if dim X D 0, that is, if X is a
finite set. Since there are suspension isomorphisms for both K ˝ Q and K, and
chQ commutes with these isomorphisms, then chQ is an isomorphism also for the
(multiple) suspensions over finite sets, that is, for bouquets of spheres of equal
dimensions. We proceed by induction.

Assume that dim X D n > 1 and that for CW complexes of dimension less than
n the theorem is right. Let Xn�1 be the .n � 1/-skeleton of X; then X=Xn�1 is a
bouquet of n-dimensional spheres. Consider the commutative ladder composed of
the H- and K-sequences of the pair .X;Xn�1/ and the appropriate homomorphisms
chQ:

Kq�1.Xn�1/˝Q ��! Kq.X;Xn�1/˝Q ��! Kq.X/˝Q

?

?

?

?

y

chQ

?

?

?

?

y

chQ

?

?

?

?

y

chQ

Hq�1.Xn�1/ ��! Hq.X;Xn�1/ ��! Hq.X/

��! Kq.Xn�1/˝Q ��! KqC1.X;Xn�1/˝Q

?

?

?

?

y

chQ

?

?

?

?

y

chQ

��! Hq.Xn�1/ ��! HqC1.X;Xn�1/ :

All the vertical homomorphisms, with the exception of the middle one, are
isomorphisms: For two of them it follows from the inequality dim Xn�1 < n; for
the other two it is true because X=Xn�1 is a bouquet of n-dimensional spheres. It
remains to apply the five-lemma.

38.5 Extraordinary Homology and Cohomology

A: Eilenberg–Steenrod Axioms

Let us return to Chap. 2. In that chapter we assign to every finite CW pair (actually,
to every topological pair, but it is not important to us now) .X;A/ a sequence of
groups Hq.X;A/; q 2 Z [we put Hq.X;A/ D 0 for q < 0] and homomorphisms
@�WHq.X;A/ ! Hq�1.A/ [we put Hr.Y/ D Hr.Y;;/] and to every continuous map
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yW .X;A/ ! .Y;B/ a sequence of homomorphisms f�WHq.X;A/ ! Hq.Y;B/ such
that id� D id; .f ıg/� D f� ıg�; f� ı@� D @� ı f�. In addition, the following axioms
hold:

HOMOTOPY AXIOM. If f � g, then f� D g�.

EXACTNESS AXIOM. The sequences of pairs are exact. (Corollary: The sequences
of triples are exact.)

FACTORIZATION AXIOM. The projection .X;A/ ! .X=A; pt/ induces for all q

isomorphisms Hq.X;A/ Š Hq.X=A; pt/ .
defD eHq.X=A//.

DIMENSION AXIOM. Hq.pt/ D 0 for q ¤ 0.

These axioms are called Eilenberg–Steenrod axioms. If we add to these axioms
the statement that H0.pt/ D Z, then the following uniqueness theorem will hold:
The theory fHq; @�; fqg satisfying all the axioms above is unique and coincides
with the theory of usual (singular) homology. Actually, this theorem was proven
in Lecture 13, where we calculated the homology of CW complexes (and CW pairs)
using only the properties of homology listed above.

Drop the requirement H0.pt/ D Z and call the group G D H0.pt/ the coefficient
group. Then a similar uniqueness theorem states that a theory satisfying all the
Eilenberg–Steenrod axioms coincides with the theory of usual homology with the
coefficients in G.

The Eilenberg–Steenrod axiom system of cohomology is set up in a similar way,
and it satisfies the same uniqueness theorems.

B: Extraordinary Theories

Suppose that for every finite CW pair .X;A/ there is defined in some way a sequence
of Abelian groups hq.X;A/ and homomorphisms @�W hq.X;A/ ! hq�1.A/ [we put
hr.Y/ D hr.Y;;/] and for every continuous map f W .X;A/! .Y;B/ there is defined
a sequence of homomorphisms f�W hq.X;A/ ! hq.Y;B/ such that id� D id; .f ı
g/� D f� ı g�; f� ı @� D @� ı f�. Suppose now that the homotopy, exactness, and
factorization axioms hold, but the dimension axiom may fail. In this case we say that
fhq; @�; fqg is an extraordinary (or generalized) homology theory. An extraordinary
(or generalized) cohomology theory is defined in a similar way.

K-theory is an example of an extraordinary cohomology theory. H is another
example. Some other examples are considered in Sect. 38.5.D and Lecture 44.

EXERCISE 15. Prove that hq.X1 t X2/ D hq.X1/ ˚ hq.X2/ for any extraordinary
homology theory h (and that the same is true for extraordinary cohomology).
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C: Generalized Uniqueness Theorem

Let h and k be two extraordinary cohomology theories (or extraordinary homology
theories; in the homological case all that is said here is valid with appropriate
modifications: One should lower some indices, reverse some arrows, etc.). We say
that a homomorphism 'W h! k is given if for every finite CW pair .X;A/ there are
homomorphisms

' D '.X;A/W hq.X;A/��!kq.X;A/

such that for any .X;A/; .Y;B/, and f W .X;A/! .Y;B/, the diagrams

hq.X;A/
ı�

 �� hq�1.A/
?

?

?

?

y

'

?

?

?

?

y

'

kq.X;A/
ı�

 �� kq�1.A/

and

hq.X;A/
f �

 �� hq.Y;B/
?

?

?

?

y

'

?

?

?

?

y

'

kq.X;A/
f �

 �� kq.Y;B/

are commutative.

Theorem. Let 'W h! k be a homomorphism of the theory h into the theory k such
that for any q

'.pt;;/W hq.pt/��! kq.pt/

is an isomorphism. Then

'.X;A/W hq.X;A/��! kq.X;A/

is an isomorphism for any q and .X;A/; in particular, in this case h Š k.

Proof. The proof repeats that of the theorem in Sect. 38.4.B (where chQ plays the
role of '); we only need to prove that '.X;A/ is an isomorphism if dim X D 0. This
follows from Exercise 15 but can also be proved by induction over the number of
points in X. Let X consist of n � 2 points. Then X D Y=;, where Y consists of
n � 1 points. The h- and k-sequences of the pair .X; pt/ can be arranged in the
commutative ladder

hq�1.pt/! hq.X; pt/! hq.X/! hq.pt/! hqC1.X; pt/
?

?

?

?

y

'

?

?

?

?

y

'

?

?

?

?

y

'

?

?

?

?

y

'

?

?

?

?

y

'

kq�1.pt/ ! kq.X; pt/ ! kq.X/ ! kq.pt/ ! kqC1.X; pt/;
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in which all the maps ' except the middle one are isomorphisms [since hr.X; pt/ D
hr.Y=;; pt/ D hr.Y;;/ D hr.Y/]. Hence, the middle homomorphism ' is also an
isomorphism.

Remark. If hq.pt/ Š kq.pt/, but the isomorphism is not induced by any map h! k,
then the theories h and k may be nonisomorphic. For example,

Kq.pt/ Š Hq
Z
.pt/;

where Hq
Z
.X;A/ D Heven .odd/.X;AIZ/, but, as we will prove in Lecture 39,

K.RPn/ 6Š Heven.RPnIZ/:

D: Examples of Extraordinary Theories

Along with the complex K-theory there exists the real K-theory. We do not deal with
it here although in some cases this will cost us a little weakening of the result (see,
for example, the remarks in Sects. 41.3 and 42.5). The role similar to that of BU is
played in the real K-theory by the space BSO D GC.1;1/ [in another version of
it by the space BO D G.1;1/], and the role of the Bott 2-periodicity is played
by the real Bott 8-periodicity �i.SO/ Š �iC8.SO/. See the details in Atiyah [16] or
Karoubi [51].

There also exists a general construction that generalizes both complex and real
K-theories, as well as the usual cohomology (and homology).

Definition. A spectrum, or an�-spectrum, is a sequence of CW complexes Wi and
continuous maps fiWWi ! �WiC1 .i � 1/.

Notice that for any topological spaces A;B with base points there exists a natural
one-to-one correspondence between continuous maps A ! �B and †A ! B (we
mean the suspension operation for spaces with base points; see Sect. 6.2): For a
map f WA ! �A, the corresponding map f W†f ! B is defined by the formula
f .a; t/ D Œf .a/�.t/. In particular, �.A; �B/ D �.†A;B/.

Definition. Let .X;A/ be a CW pair, and let W D fWi; fig be an arbitrary �-
spectrum. The homology and cohomology groups of the pair .X;A/ with the
coefficients in W are defined by the formulas (in which q 2 Z)

hq.X;AIW/ D lim�!
N

�.†N.X=A/;WNCq/;

hq.X;AIW/ D lim�!
N

�NCq.WN#.X=A//:



38.5 Extraordinary Homology and Cohomology 515

CLARIFICATION. The maps

�.†N.X=A/;WNCq/��!�.†NC1.X=A/;WNC1Cq/

D �.†N.X=A/;�WNC1Cq/

that give rise to the first limit are induced by the maps fNCqWWNCq ! �WNCqC1.
The maps

�NCq.WN#.X=A//��!�NC1Cq.WNC1#.X=A//

that give rise to the second limit are defined by the map †WN ! WNC1
corresponding to fN , as the composition

�NCq.WN#.X=A//
†��!�NC1Cq.†.WN#.X=A///

D �NC1Cq.†WN#.X=A//��!�NC1Cq.WNC1#.X=A//:

EXERCISE 16. Define induced and connecting homomorphisms for the groups
hq.X; AIW/ and hq.X;AIW/ in such a way that they form an extraordinary
cohomology theory and an extraordinary homology theory.

Examples. The usual homology and cohomology (with coefficients in G) corre-
spond to the Eilenberg–MacLane spectrum in which Wi is K.G; i/ and fi is the
standard homotopy equivalence K.G; i/ ! �K.G; i C 1/. (It is known to us for
cohomology; for homology this is an exercise.) The complex K-theory corresponds
to the periodic �-spectrum U;BU;U;BU; : : : with the homotopy equivalences
U ! �BU and BU ! �U (the first equivalence was announced in Exercise 7;
the second is one of the forms of Bott periodicity). The homology in this spectrum,
the so-called K-homology, is also very important, but we will not consider it. The
real K-theory is defined by a 8-periodic spectrum, in which

W8r D BSO; W8r�1 D SO; : : : ;W8r�k D �kBSO for k < 8:

One more example: The spherical spectrum S in which Wi D Si and the map
Si ! �SiC1 correspond to the standard homeomorphism†Si ! SiC1. Cohomology
groups are stable homotopy groups �S

q .X;A/ and the so-called stable cohomotopy
groups

�
q
S .X;A/ D lim�!

N

.†NCq.X=A/; SN/:

Finally, remark that an arbitrary theory of extraordinary homology or cohomol-
ogy is obtained by the procedure described above from some �-spectrum. This can
easily be deduced from the so-called Brown representability theorem, which can be
found, for example, in Spanier [79].
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Lecture 39 Calculating K-Functor: Atiyah–Hirzebruch
Spectral Sequence

39.1 The Construction of the Atiyah–Hirzebruch Spectral
Sequence

A: The Statement

We will present a construction that assigns to a finite CW space X a family of
Abelian groups Ep

r D Ep
r .X/ and homomorphisms dp

r WEp
r ! EpCr

r ; p � 0; r � 2

with the following properties.

(1) Ep
2 D Hp.XIZ/.

(2) Ep
rC1 D Ker dr

p= Im dp�r
r (we mean that Im dp�r

r D 0 for r > p).
(3) dp

r D 0 and Ep
rC1 D Ep

r for any even r and any p.

Since the CW complex X is finite, (1) and (2) imply also that dp
r D 0 and Ep

rC1 D Ep
r

for sufficiently large r. These groups Ep
r , which do not depend on r, we denote by

Ep1.

(4) Ep1 D
KerŒKp.X/! Kp.Xp�2/�
KerŒKp.X/! Kp.Xp/�

:

Let us explain what this means. Put

.r/Kp.x/ D KerŒKp.X/��!Kp.Xr/�:

These groups compose filtrations (Bott’s periodicity lets us assume that p D 0 or 1)

K0.X/ D .�1/K0.X/ 
 .0/K0.X/ 
 � � � 
 .n/K0.X/ D 0;
K1.X/ D .�1/K1.X/ 
 .0/K1.X/ 
 � � � 
 .n/K1.X/ D 0;

where n D dim X. Notice that if X is connected, then .0/K0.X/ D eK.X/.

Lemma. For r even,

.r/K0.X/ D .rC1/K0.X/; .r�1/K1.X/ D .r/K1.X/:

Proof. Consider the fragment of the K-sequence of the triple .X;XrC1;Xr/:

K0(X, Xr+1) K0(X, Xr) K0(Xr+1, Xr)−→ −→

K0(∨Sr+1)K−r−1(∨S0) ==0

↓
by Bott’s periodicity
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The exactness implies that the natural map

K0.X;XrC1/��!K0.X;Xr/

is epimorphic. Consider now the following fragment of the commutative ladder
composed of the K-sequences of the pairs .X;Xr/ and .X;XrC1/:

K0.X;Xr/
˛��! K0.X/

ˇ��! K0.Xr/
?

?

?

?

y

" k

K0.X;XrC1/
���! K0.X/

ı��! K0.XrC1/:

The epimorphness of " implies that Im˛ D Im � , but Im˛ D Kerˇ; Im � D Ker ı.
Hence, Kerˇ D Ker ı, which is our statement in the case of K0.

The statement for K1 is proven in the same way.

The lemma implies that our filtrations actually have the form

K0.X/ D .0/K0.X/ 
 .2/K0.X/ 
 .4/K0.X/ 
 : : :
K1.X/ D .�1/K1.X/ 
 .1/K1.X/ 
 .3/K1.X/ 
 : : : ;

and statement (4) shows that the graded groups

E01 ˚ E21 ˚ E41 ˚ E61 ˚ : : : ;
E11 ˚ E31 ˚ E51 ˚ E71 ˚ : : :

are adjoint to these filtrations.
(5) A continuous map f WX ! Y induces (depending only on the homotopy class

of f ) homomorphisms f �WEp
r .Y/ ! Ep

r .X/ which satisfy the following conditions:
(a) the diagrams

Ep
r .Y/

d
p
r��! EpCr

r .Y/
?

?

?

?

y

f �

?

?

?

?

y

f �

Ep
r .X/

d
p
r��! EpCr

r .X/

are commutative; (b) f �WEp
rC1.Y/ ! Ep

rC1.X/ coincides with the homology
homomorphism induced by f �WEp

r .Y/ ! Ep
r .X/; (c) f �WEp

2.Y/! Ep
2.X/ coincides

with f �W Hp.YIZ/ ! Hp.XIZ/; (d) f �WEp1.Y/ ! Ep1.X/ is induced by the
homomorphism f �WK�.Y/! K�.X/.
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Notice that (5) contains the topological, and even homotopical, invariance of the
spectral sequence.

(6) The spectral sequence is multiplicative: All E�
r D ˚pEp

r are graded rings,
the differentials dp

r satisfy the product formula, the multiplication in E�
2 coincides

with the multiplication in H�.XIZ/, the multiplication in E�1 is adjoint to the
multiplication in K�.X/ (see Exercise 10 in Lecture 38).

(7) All the differentials dp
r have finite order.

We can prove this property even before constructing the spectral sequence.
Obviously, rank Ep

rC1 � rank Ep
r , and the equality holds if and only if dp

r and dp
pCr

both have finite order. Hence, if some differential has infinite order, then

rank.K0.X/˚ K1.X// D rank E�1 < rank E�
2 D rank H�.XIZ/;

which contradicts the theorem in Sect. 38.4.
Let us tensor our spectral sequence with Q. Item (7) will imply that all the

differentials will become zero, and we will have E�
2 ˝Q D E�1˝Q. Hence, we get

some isomorphisms K0.X/˝Q Š Heven.XIQ/;K1.X/˝Q Š Hodd.XIQ/.
(8) These isomorphisms coincide with chQ (see Sect. 38.4).

B: Construction of the Spectral Sequence

Put

Ep;q
r D

KerŒKpCq.XpCr�1;Xp�r/! KpCq.Xp�1;Xp�r/�

KerŒKpCq.XpCr�1;Xp�r/! KpCq.Xp;Xp�r/�

and define the differential dp;q
r WEp;q

r ! EpCr;q�rC1
r in the following way. Consider

the commutative diagram

KpCq.XpCr�1;Xp�r/
˛��! KpCq.Xp;Xp�r/

?

?

?

?

y

ı�

?

?

?

?

y

ı�

KpCqC1.XpC2r�1;XpCr�1/
ˇ��! KpCqC1.XpC2r�1;Xp/:

The composition ı� ı ˛ D ˇ ı ı�WKpCq.XpCr�1;Xp�r/ ! KpCqC1.XpC2r�1;Xp/

may be regarded as a map

KpCq.XpCr�1;Xp�r/=Ker˛! Imˇ:

But, by definition, Ep;q
r is a subgroup of the group KpCq.XpCr�1;Xp�r/=Ker˛, while

EpCr;q�rC1
r is a quotient of the group

Imˇ D KerŒKpCqC1.XpC2r�1;Xp/! KpCqC1.XpCr�1;Xp/�:
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Hence, the last map induces some homomorphism

Ep;q
r ��!EpCr;q�rC1

r :

This is dp;q.
It is easy to check that dpCr;q�rC1

r ı dp;q
r D 0 and that

Ep;q
rC1 D Ker dp;q

r = Im dp�r;qCrC1
r :

With this we have already constructed a certain spectral sequence, but it is not the
one we were to construct, for the sequence constructed consists of groups with two
superscripts, while the proposed sequence consists of groups with one superscript.
Let us compute Ep;q

1 and Ep;q
2 . By definition,

Ep;q
1 D

KerŒKpCq.Xp;Xp�1/! KpCq.Xp�1;Xp�1/�
KerŒKpCq.Xp;Xp�1/! KpCq.Xp;Xp�1/�

D KpCq.Xp;Xp�1/ D eKpCq.
W

p�cells
Sp/

DLp�cells
eKpCq.Sp/ DLp�cells Kq.pt/ D Cp.XIKq.pt//:

It is easy to check (we leave the details to the reader) that

dp;q
1 D ıW Cp.XIKq.pt//��! CpC1.XIKq.pt//

and hence

Ep;q
2 D Hp.XIKq.pt//:

Since

Kq.pt/ D
�

Z for q even;
0 for q odd;

the second term of our spectral sequence has the following structure; the odd rows
contain only zeroes, while the even rows contain the integral cohomology of X:

. . .

H�.XIZ/
zeroes

H�.XIZ/
zeroes

H�.XIZ/
zeroes

H�.XIZ/
. . .
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Moreover, Bott’s 2-periodicity shows that our spectral sequence is 2-periodic
with respect to q: Ep;q

r D Ep;qC2
r and dp;q

r D dp;qC2
r for all p; q; r < 1 and Ep;q1 D

Ep;qC21 . Therefore, we can identify all the groups Ep;2s
r into one group Ep

r and all the
differentials dp;2s

r WEp;2s
r ! EpCr;2s�rC1

r with r odd into one differential dp
r W EP

r !
EpCr

r (the rest of Ep;q
r and dp;q

r are equal to 0). We arrive at the spectral sequence we
need. By the way, the unexpected property (3) becomes obvious.

We leave the reader to check the remaining properties.
The spectral sequence constructed is called the Atiyah–Hirzebruch spectral

sequence (Atiyah and Hirzebruch [19]).
The Atiyah–Hirzebruch spectral sequence has the obvious relative version

H�.X;AIZ/ ) K�.X;A/ and the equally obvious reduced version eH�.XIZ/ )
eK�.X/ (when related to a spectral sequence, the notation G ) H means that the
initial, usually the second, term of the spectral sequence is G, while its limit term is
adjoint to H with respect to some filtration).

EXERCISE 1. Prove that the order of the torsion in the groups K0.X/;K1.X/ divides
the order of the torsion in the groups Heven.XI Z/;Hodd.XIZ/, respectively.

C: Generalizations

The Atiyah–Hirzebruch spectral sequence [rather its .Ep;q
r ; dp;q

r /-version of
Sect. 39.1.B] exists for any extraordinary homology or cohomology theory; it
has the form

H�.XI h�.pt//) h�.X/ or H�.XI h�.pt//) h�.X/:

A further generalization of this spectral sequence provides a “spectral sequence of
a fibration .E;B;F; p/”:

H�.BI h�.F//) h�.E/ or H�.BI h�.F//) h�.E/:

(The construction of both spectral sequences is similar to the previous construction.)
The second spectral sequence may be nontrivial even for a trivial fibration. Still,

it is possible to obtain a K-analog of Künneth’s formula (see Atiyah [14]).

39.2 Examples of Calculations

A: K�.CPn/

The second term of the Atiyah–Hirzebruch spectral sequence has the form

Z 0 Z 0 Z : : : 0 Z

0 1 2 3 4 : : : 2n� 1 2n



39.2 Examples of Calculations 521

All the differentials are zeroes by the dimension argumentations. The general
properties of the adjointness operation imply that

K0.CPn/ D Z˚ � � � ˚ Z
„ ƒ‚ …

nC1 summands

K1.CPn/ D 0:

We will prove the following detailed explanation of this statement.

Theorem. Multiplicatively, K0.CPn/ D ZŒ��=.�nC1/, where � D � � 1 .� is the
Hopf bundle).

Lemma. The image of the homomorphism

chW eK.S2n/ ��! eH�.S2nIQ/ D H2n.S2nIQ/
k k
Z Q

coincides with H2n.S2nIZ/ D Z � Q D H2n.S2nIQ/:
Proof of Lemma. For n D 1 this is known to us; the general case follows by
induction because of the commutativity of the following diagram:

eK0.X/
ch��! eHeven.XIQ/

?

?

?

?

y

†2

?

?

?

?

y

†2

eK2.X/
ch��! eHeven.XIQ/

?

?

?

?

y

Bott k
eK0.X/

ch��! eHeven.XIQ/:

Proof of Theorem. Let x 2 H2.CP2IZ/ be the generator. Let us compute the Chern
characters:

ch � D ec1.�/ D ex D 1C xC x2

2
C : : : I

ch � D ch � � 1 D xC x2

2
C : : : I

ch � k D xk C k

2
xkC1 C : : : I

ch �n D xn; ch �nC1 D 0:

This computation shows that �nC1 D 0 and 1; �; �n are linear independent in
K.CPn/, and hence [since K.CPn/ D Z

n], they generate K.CPn/ over Q. Show
that they generate K.CPn/ over Z. We know this for CP1; assume that it is
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true for CPn�1. Let ˛ 2 K.CPn/, and let ˛ D r0 C r1� C � � � C rn�
n. Then

˛jCPn�1 D r0 C r1� C � � � C rn�1�n�1, and hence r0; : : : ; rn�1 2 Z. Therefore,
r0Cr1�C� � �Crn�1�n�1 2 K.CPn/, and hence rn�

n 2 K.CPn/. Furthermore, since
rn�

njCPn�1 D 0, the exactness of the K-sequence of the pair .CPn;CPn�1/ implies
that rn�

n belongs to the image of the homomorphism eK.S2n/ D K.CPn;CPn�1/!
K.CPn/. Hence, chrn�

n, which is rnxn, is equal to the Chern character of the image
of some element of eK.S2n/, which belongs to H2n.CPnIZ/ according to the lemma.
Hence, rn 2 Z.

B: K�.RPn/

The initial term of the reduced Atiyah–Hirzebruch spectral sequence for RPn with
n D 2m; 2mC 1 has the form

K0(X, Xr+1) K0(X, Xr) K0(Xr+1, Xr)−→ −→

K0(∨Sr+1)K−r−1(∨S0) ==0

↓
by Bott’s periodicity

All the differentials are trivial by the dimension argumentations, and we have

K1.RPn/ D
�

0 for n even;
Z for n oddI

the order of the group eK.RPn/ is equal to 2Œn=2�.

Theorem. eK.RPn/ is a cyclic group of order 2Œn=2�.

Proof. Since the inclusion RP2m ! RP2mC1 induces, as is seen from the Atiyah–
Hirzebruch spectral sequence, an isomorphism between the groups eK0, it is
sufficient to prove the theorem for n D 2m. The natural embedding RP2m !
CP2m is homotopic, by the cellular approximation theorem, to some cellular map
f WRP2m ! CPm. It is easy to see that the induced cohomology homomorphism

f �WH�.CPmIZ/! H�.R2mIZ/

is an epimorphism. Property (5) of the Atiyah–Hirzebruch spectral sequence implies
then that

f �W eK.CPm/! eK0.RP2m/
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is also an epimorphism, which implies, in virtue of the last theorem, that eK0.RP2m/

is spanned by ˇ; ˇ2; : : : ; ˇm, where ˇ D f �� . But � D � � 1. It is easy to see that
f �� D C�R, the complexification of the real Hopf bundle over RP2m. It is also obvi-
ous that .�R/2 D 1 (actually, the square of any real one-dimensional vector bundle is
equal to 1, for if dim	 D 1, then 	˝	 D S2	, and a section of S2	 is an Euclidean
structure in 	, which always exists). Hence, .C�R/2 D 1; ˇ2 D .C�R � 1/2 D
�2C�R C 2 D �2ˇ; ˇ3 D .�2ˇ/ˇ D �2ˇ2 D 4ˇ; : : : ; ˇm D .�2/m�1ˇ. This
shows that an arbitrary element of eK0.RP2m/ is a multiple of ˇ; that is, the group
eK0.RP2m/ is cyclic.

Corollary of Proof. Any complex vector bundle over RP2m or RP2mC1 is stably
equivalent to the vector bundle kC�R, and the vector bundles kC�R and lC�R are
stably equivalent if and only if k � l mod 2m.

C: Other Computations of K-Functors

Other computations of K-functors in particular, for Grassmann manifolds and flag
manifolds, are contained in Chapter IV of Karoubi’s book [51] (see Sect. 38.3.C). By
the way, Karoubi does not use in his computations the Atiyah–Hirzebruch spectral
sequence, so the reader may try to improve his computations. For the computation
of the K-functor of the classical Lie groups, see Atiyah [15].

39.3 Differentials of the Atiyah–Hirzebruch Spectral
Sequence

The first (possibly) nontrivial differential of the Atiyah–Hirzebruch spectral
sequence is

d3 D dn
3WHn.XIZ/! HnC3.XIZ/:

EXERCISE 2. Show that d3 is a stable cohomology operation.

Although we have not calculated H�.K.Z; n/IZ/, the reader can easily deduce
from the results of Lecture 27 that

HnC3.K.Z; n/IZ/ D Z2 .n � 3/:

Thus, there exists a unique nontrivial stable cohomology operation which maps
integral cohomology into integral cohomology and raises dimensions by 3. This
operation acts as
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Hn.XIZ/ �2��!Hn.XIZ2/ Sq2��!HnC2.XIZ2/ ˇ��!HnC3.XIZ/:

After we reduce it mod 2, this operation becomes Sq1Sq2 D Sq3, and it is natural to
denote it by eSq3.

Theorem. d3 D eSq3.

Proof. Since the only alternative to this equality is d3 D 0, it is sufficient to give an
example when this differential is nontrivial.

Take a map ˛W S5 ! S4 not homotopic to a constant and consider the space
S4 [˛ D6. Since �5.S4/ D Z2, the map ˇW S5 ���! S5

˛��! S4 with deg� D 2 is
homotopic to 0, and there exists a map � WD6 ! S4 with � jS5 D ˇ. This map,
combined with the map

D6 D CS5
C���!CS5 D D6 ���! S4 [˛ D6;

yields a map ıW .D6[D6/ D S6! S4[˛ D6, and we set X D .S4[˛ D6/[ı D7. For
X, we need to know only that X 
 S4 and that the cohomology of X is as follows:

Hq(X ;Z2) 0 Z2 0 Z2 Z2 0

Hq(X ;Z) 0 Z 0 0 Z2 0

q < 4 4 5 6 7 > 7

Moreover, the operation Sq3WH4.XIZ2/ ! H7.XIZ2/ is not trivial. [To check
this notice that the operation Sq2WH4 ! H6 (with coefficients in Z2) is not trivial in
S4 [˛ D6 (as we know from Lecture 31), and the Bockstein homomorphism H6 !
H7 (again with coefficients in Z2) is not trivial in X=S4.]

If the differential d43WE43.X/ ! E73.X/ of the Atiyah–Hirzebruch spectral
sequence were trivial, then the homomorphism eK.X/ ! eK.S4/ induced by the
embedding S4 ! X would have been an isomorphism. In particular, the map
'W S4 ! BU corresponding to the generator of eK.S4/ D Z would have been
extendable to a continuous map  WX ! BU. But the map '�WH4.BUIZ2/ !
H4.S4IZ2/ is not trivial. [Indeed, the Chern character of the generator � of eK.S4/ is
the generator of H4.S4IZ/; at the same time, ch2.�/ D 1

2
c21.�/ � c2.�/ D �c2.�/;

hence, '�.H4.BUIZ// 3 �c2.�/ D 1 2 H4.S4IZ/, and hence '�WH4.BUIZ2/ !
H4.XIZ2/ must be nontrivial, which contradicts the commutativity of the diagram

H4.BUIZ2/  �

��! H4.XIZ2/
?

?

?

?

y

Sq3

?

?

?

?

y

Sq3

0 D H7.BUIZ2/  �

��! H7.XIZ2/:�
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Corollary of Proof. There exist simply connected finite CW complexes X;Y and a
continuous map f WX ! Y which is not a homotopy equivalence, but which induces
an isomorphism f �WK�.Y/ ! K�.X/. (This fact was promised and commented on
in Sect. 37.1.)

Proof. One can take X from the previous proof and put Y D S4. It is easy to
show that the map S4 ! S4 of degree 2 may be extended to a map X ! S4;
the extended map is f . The computations above imply that f �W eK�.Y/ ! eK�.X/
is an isomorphism, and f is not a homotopy equivalence, since f �WH4.YIZ2/ !
H4.XIZ2/ is not an isomorphism.

Notice that there exists only partial information about the subsequent differen-
tials. It is known that for any prime p the differential dr with r < 2p � 1 has order
not divisible by p, while the differential d2p�1 has order not divisible by p2. See the
details in the article by Buchstaber [24].

Lecture 40 The Adams Operations

40.1 Definition and Main Properties

A: Introduction

A cohomology operation in K-theory (and in any extraordinary cohomology theory
as well) is defined precisely in the same way as the usual cohomology operation.
Namely, it is a class of homomorphisms

˛X WK.X/��!K.X/

[or Kq.X/ ! Kq.X/, but we prefer to ignore this opportunity] defined for all finite
CW complexes X and satisfying the condition of the commutativity of diagrams

K.X/
˛X��! K.X/

?

?

?

?

y

f �

?

?

?

?

y

f �

K.Y/
˛Y��! K.Y/

for all continuous maps f WY ! X. An approach to the classification of such
operations is suggested by the general idea of Sect. 28.2, which reduces the
classification problem to the problem of the calculation of the K-functor for BU
(with simultaneous overcoming of the difficulties related to BU being an infinite
CW complex; see Sect. 38.2.E). All these problems have been long solved; the
results related to the complex case are presented in Sect. 4.7 of Karoubi’s book
(see Sect. 38.3.C), while the real case is studied in the article by Anderson [13].
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We systematically ignore the real case. As to the complex case, we restrict
ourselves to considering the most important specific cohomology operations in the
K-theory. The readers of Karoubi’s book know that these operations exhaust the
whole variety of the cohomology operation in the complex K-theory—in the same
sense in which the Steenrod squares and Steenrod powers exhaust the entire variety
of ordinary cohomology operations.

B: The Definition of Adams Operations

A cohomology operation in K-theory should assign to a virtual vector bundle with
the base X another virtual vector bundle with the same base X. If we drop the
adjective “virtual” here, then we will have no difficulties in constructing such
operations. Indeed, linear algebra provides a lot of ways to assign in a natural
way a vector space to another vector space, and these linear algebra operations
usually give rise to operations for vector bundles: One can associate with a vector
bundle � a vector bundle � ˝ �, or ƒ2�, or S2�, or one can take any complex linear
representation (of some dimension N) of the group GL.n;C/ [or U.n/] and assign,
with the help of this representation, some N-dimensional complex vector bundle
to a given n-dimensional complex vector bundle. The common flaw of all these
constructions is the lack of additivity: .�1˚ �2/˝ .�1˚ �2/ ¤ .�1˝ �1/˚ .�2˝ �2/,
etc. Therefore, these constructions cannot be extended to the K-theory. Adams’
construction provides a way (unique, in a sense: See the section of Karoubi’s book
mentioned above) to compose from these operations an additive combination.

Let e1; e2; e3; : : : be the elementary symmetric polynomials [that is,
ek.x1; : : : ; xm/ D P

1
i1<���<ik
m xi1 : : : xik ;m 
 k�, and let N1;N2;N3; : : : be the
Newton symmetric polynomials .Nk.x1; : : : ; xm/ D xk

1 C � � � C xk
m/. Let

N1 D P1.e1/; P1.t1/ D t1;
N2 D P2.e1; e2/ P2.t1; t2/ D t21 � 2t2;
N3 D P3.e1; e2; e3/; P3.t1; t2; t3/ D t31 � 3t1t2 C 3t3
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

For a complex vector bundle (not virtual!), put

 k.�/ D Pk.�;ƒ
2�;ƒ3�; : : : /:

For instance,

 1.�/ D �;
 2.�/ D � ˝ � � 2ƒ2�;

 3.�/ D � ˝ � ˝ � � 3� ˝ƒ2� C 3ƒ3�;

: : : : : : : : : : : : : : : : : : : : : : : :
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According to this definition,  k.�/ is a virtual vector bundle.

Lemma.  k.� ˚ �/ D  k.�/˚  k.�/.

Proof. Divide the variables x1; : : : ; xm into two groups, y1; : : : ; yr and z1; : : : ; zs (r; s,
and m D rC s are very large). Obviously,

Nk.x/ D Nk.y/C Nk.z/; ek.x/ D
X

uCvDk

eu.y/ev.z/;

where e0 is 1. Hence,

Pk.e1.y/; e2.y/; : : : / CPk.e1.z/; e2.z/; : : : /

D Pk

 

X

uCvD1
eu.y/ev.z/;

X

uCvD2
eu.y/ev.z/; : : :

!

I

that is,

Pk.˛1; ˛2; : : : /C Pk.ˇ1; ˇ2; : : : / D Pk

 

X

uCvD1
˛uˇv;

X

uCvD2
˛uˇv; : : :

!

(where ˛0 D ˇ0 D 1). Substitute ƒu� and ƒv� for ˛u and ˇv and use the equality

M

uCvDw

ƒu� ˝ƒv� D ƒw.� ˚ �/:

We arrive at the equality

Pk.�;ƒ
2�; : : : /C Pk.�;ƒ

2�; : : : / D Pk.� ˚ �;ƒ2.� ˚ �/; : : : /I

that is,  k.�/C  k.�/ D  k.� ˚ �/:
The lemma lets us extend the definition of the operation  k to virtual bundles.

We get a cohomology operation

 kWK.X/! K.Y/

(it is obvious that  k commutes with the homomorphisms f �). By construction,  k

is additive:

 k.� C �/ D  k.�/C  k.�/:
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C: The Properties of the Operations  k

Theorem. (1) dim k.�/ D dim �.
(2)  k.��/ D  k.�/ k.�/.
(3)  k ı  l.�/ D  kl.�/.
(4) chq  k.�/ D kq chq �:

(5) If � is a geometric (that is, not virtual) one-dimensional vector bundle, then
 k.�/ D �k.

(6) If p is a prime, then  p.�/ � �p mod p.
(7) Put  0.�/ D dim �;  �k.�/ D  k.�/ .k > 0/. Properties .1/–.5/ hold for the

operations  k; k 2 Z defined in this way.

Proof. (1) Since the operations  k and dim are both additive, we need only to
consider the case when � is a geometric vector bundle. In this case we have
.n D dim �/:

dim k.�/ D Pk.dim �; dimƒ2�; : : : ; dimƒk�/ D Pk

 

n;

 

n

2

!

; : : : ;

 

n

k

!!

D Pk.e1.1; : : : ; 1
„ ƒ‚ …

n

/; e2.1; : : : ; 1
„ ƒ‚ …

n

/; : : : ; ek.1; : : : ; 1
„ ƒ‚ …

n

//

D Nk.1; : : : ; 1
„ ƒ‚ …

n

/ D 1k C � � � C 1k
„ ƒ‚ …

n

D n:

(5) If � is a one-dimensional geometric vector bundle, then ƒr� D 0 for r > 1,
and  k.�/ D Pk.�; 0; 0; : : : ; 0/ D �k:

(6) This follows from Np � .e1/p mod p.
The most natural proof of statements (2)–(4) is based on the informal “splitting

principle” that was mentioned in Sect. 19.5. This principle states that in proofs of
various formulas involving complex vector bundles and their characteristic classes
one can restrict oneself to the case when these bundles are split into the sums
of one-dimensional bundles. Technically this is based on the fact that the natural
embedding B.U.1/ � � � � � U.1// D .CP1/n ! BU.n/ D CG.1; n/ induces
a monomorphism both in cohomology (this is essentially known to us) and in K-
theory (this is deduced by means of the Atiyah–Hirzebruch spectral sequence). We,
however, will give shorter proofs, which use the splitting principle implicitly.

(4) The formula � 7! .chq  k� � kq chq �/ defines a characteristic class
of complex vector bundles with values in 2q-dimensional rational cohomology.
According to the results of Lecture 19 [see part (iii) of the theorem in Sect. 19.4.E)],
this class may be represented as a (rational) polynomial in Chern classes. Also,
it was proven in Sect. 19.5 that any nonzero polynomial in Chern classes takes a
nonzero value on the vector bundle � � � � � � �

„ ƒ‚ …

n

with the base .CP1/n, where n is

sufficiently large. But
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ch k.� � � � � � �
„ ƒ‚ …

n

/

D ch k.p�
1 � ˚ � � � ˚ p�

n �/ D chŒ k.p�
1 �/˚ � � � ˚  k.p�

n �/�

D chŒ.p�
1 �

k/˚ � � � ˚ .p�
n �

k/� D p�
1 .ch �/k C � � � C p�

n .ch �/k

D p�
1ekx C � � � C p�

n ekx D
n
X

iD1
ekxi D

1
X

qD0

kq

qŠ

n
X

iD1
xq

i :

[Notations: pi is the projection of .CP1/n onto the ith factor; x 2 H2.CP1IZ/ and
x1; : : : ; xn 2 H2..CP1/nIZ/ are the cohomological generators.] Hence,

chq  k.� � � � � � �/ D kq

qŠ

n
X

iD1
xq

i ;

in particular,

chq.� � � � � � �/ D 1

qŠ

n
X

iD1
xq

i ;

whence

chq  k.� � � � � � �/ D kq ch.� � � � � � �/;

which completes the proof.
(3) It is sufficient to prove the formula in the case when � is the tautological

vector bundle over the Grassmannian. Since the cohomology of the Grassmannian
is torsion-free, then its K-functor is also torsion-free (this is seen from the Atiyah–
Hirzebruch spectral sequence; compare with Exercise 1 in Sect. 39.1). Hence, the
Chern character is a monomorphism (its kernel is always finite), and we need only
to prove that

ch. k ı  l.�// D ch. kl.�//;

which follows from (4):

chq. k ı  l.�// D kq chq. l.�// D kqlq chq � D .kl/q chq � D chq. kl.�//:

(2) The proof is similar to the previous one: It is sufficient to consider the case
when � and � are the vector bundles over the product of two Grassmannians that are
pull-backs of the tautological vector bundles over the factors. The cohomology of
the product of two (complex) Grassmannians is again torsion-free, and we have the
right to apply the Chern character to both sides of the equality to be proved. Thus,
all we need is the following immediate calculation:
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chq  k.��/ D kq chq.��/ D kq
X

sCtDq

chs � cht �

D
X

sCtDq

.ks chs �/.kt cht �/ D
X

sCtDq

.chs k�/.cht  k�/

D chqŒ. k�/. k�/�:

(7) All we need to prove this is chq � D .�1/q chq �, and  k� D  k� . The first is
known [follows from c1.�/ D �c1.�/], and the second is proved by comparing the
Chern characters of the two sides of the equality.

Corollary from (1).  .eK.X// � eK.X/. Thus,  k may be regarded as an operation
eK.X/! eK.X/.

Corollary from (3).  k ı  l D  l ı k.

40.2 A Short Proof of the Nonexistence of Spheroids with
Odd Hopf Invariant

(Adams and Atiyah [9]) Let � 2 �4n�1.S2n/. Attach the ball D4n to the sphere S2n

by means of a spheroid S4n�1 ! S2n of the class �. The resulting space X has the
following cohomology:

Hq.XIZ/ D
�

Z for q D 0; 2n; 4n;
0 otherwise:

Let a 2 H2n.XIZ/ and b 2 H4n.XIZ/ be the natural generators. Then a2 D hb,
where h 2 Z. The number h is called the Hopf invariant of the class �. The following
theorem was stated and commented on in this book several times (see, in particular,
Sects. 16.5 and 31.4).

Theorem. If n ¤ 1; 2; 4; then there are no elements with odd Hopf invariant in
�4n�1.S2n/.

Proof. Since there are always elements with the Hopf invariant 2 in �4n�1.S2n/ and
since the Hopf invariant is additive (see Sect. 16.5), it is sufficient to prove that for
n ¤ 1; 2; 4 there are no elements with the Hopf invariant 1 in �4n�1.S2n/. Let h D 1,
that is, a2 D b.

Compute eK.X/. Since eK1.S2n/ D eK1.S4n/ D 0, the eK-sequence of the pair
.X; S2n/ has the form

0��! eK.S4n/��! eK.X/��! eK.S2n/��! 0;

and its exactness implies eK.X/ Š eK.S2n/˚ eK.S4n/ D Z˚ Z. There are canonical
generators ˛ 2 eK.S2n/; ˇ 2 eK.S4n/. Take generators ę; eˇ in eK.X/: eˇ is defined
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canonically, as the image of ˇ, while ę is an arbitrary inverse image of ˛ and is
defined up to adding a multiple ofeˇ. Since ch ˛ D a, chˇ D b, then cheˇ D b and
chęD aCeb, where e is some rational number unknown to us. (This number is not
important for the current proof, but it will play a crucial role in Lecture 41.) Since

chę2 D .chę/2 D .aC eb/2 D a2 D cheˇ;

then ę2 D eˇ. Furthermore, property (4) of the operations  k implies

 k
ęD kn

ęC 	kˇ .	k 2 Z/;  k
eˇ D k2n

eˇ:

The congruence 2ęD ę2 mod 2 implies that 	2 is odd (this is the crucial point of
the proof!). Hence,

 2 3ęD  2.3n
ęC 	3eˇ/ D 6n

ęC 3n	2eˇ C 22n	3eˇ;

 3 2ęD  3.2n
ęC 	2eˇ/ D 6n

ęC 2n	3eˇ C 32n	2eˇ;

which implies, since  2 3 D  3 2, that

3n	2 C 22n	3 D 2n	3 C 32n	2I 	23n.3n � 1/ D 	32n.2n � 1/:

Since 	2 is odd, 3n � 1 is divisible by 2n, which is possible only for n D 1; 2; 4.
[Indeed, obviously 32s � 1 mod 8 and 32sC1 � 3 mod 8. Therefore, if n D 2lm

with m odd, then (for l � 1)

3n � 1 D .32l�1m C 1/.32l�2m C 1/ : : : .3m C 1/.3m � 1/
D 2 � � � � � 2
„ ƒ‚ …

l�1
�4 � 2 � fodd numberg D 2lC2 � fodd numbergI

that is, for n even the number of factors 2 in the prime factorization of 3n � 1 is
l C 2 if n is even and 1 in n is odd. Hence, the divisibility of 3n � 1 by 2n implies
n D 2lm � lC 2; if m D 1, then this inequality holds for l � 2; if m � 3, then this
inequality never holds.]

Recall that the existence in �4n�1.S2n/ of an element with the Hopf invariant
odd is equivalent to the parallelizability of the sphere S2n�1. Hence, the problem
considered above has a natural extension: What is the maximal possible number of
pointwise linear independent tangent vector fields on the sphere Sm? If the sphere
Sm is parallelizable, then this number is equal to m; if it is not parallelizable, one
can say only that this number is less than m. What is this number? The answer is
contained in the following result.

Theorem. Let n D .2aC1/24bCc, where a; b; c are nonnegative integers and c � 3.
Put �.n/ D 2cC8b. Then on the sphere Sn�1 there exists �.n/�1 linear independent
vector fields and there is no �.n/ linear independent vector fields.
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The first part of this theorem is classical; it has been proved by Radon and
Hurwitz; the proof consists in a direct construction and is not related in any way
to homotopy topology. The second part [that there are no �.n/ vector fields] was
proved by Adams, who reduced it to the computation of the operations  k in the
K-functor of “truncated projective spaces” RPs=RPt. The reader can find the details
in the original article by Adams (see Adams [3]); this paper is very famous because
it is the paper where the operations  k were first introduced. In what is for the
reader a more convenient, self-contained way, this result (both Radon–Hurwitz’s
and Adams’ parts) is presented in the book [73] of J. Schwartz (mentioned in
Sect. 38.3.C).

Lecture 41 J-functor

41.1 Definition and Relations to Homotopy Groups
of Spheres

A: Definition

Let � and � be two complex vector bundles of the same dimension with the same
base, and let S.�/ and S.�/ be the corresponding sphere bundles. The vector bundles
� and � are called homotopy equivalent or J-equivalent if there exists a fiberwise
map S.�/! S.�/ that covers the identity of the base and has degree 1 on each fiber.

Let X be a finite CW complex. An element ˛ 2 eK.X/ is called J-trivial if ˛ D
f� � �g and the vector bundles � and � are J-equivalent. Obviously, J-trivial virtual
vector bundles form a subgroup of eK.X/ � K.X/; we denote this subgroup by T.X/
and put

J.X/ D K.X/=T.X/; eJ.X/ D eK.X/=T.X/:

Thus,eJ.X/ D KerŒdimW J.X/! Z�; J.X/ D Z˚eJ.X/:
J-functor was thoroughly studied in the four articles “On J.X/, I–IV” of Adams

([4]–[7]).

EXERCISE 1. Prove that T.X/ � eK.X/ consists of classes of stably equivalent
vector bundles over X such that an arbitrary vector bundle of sufficiently large
dimension from this class is J-equivalent to a trivial bundle.

A continuous map f WX ! Y induces homomorphisms f �W J.Y/ ! J.X/ and
f �WeJ.Y/ ! eJ.X/, which makes J and eJ functors. We will see, however, that the
functoreJ is not half-exact; that is, the sequence

eJ.X=A/��!eJ.X/��! J.A/;

induced by the inclusion map A ! X and the projection X ! X=A, does not have
to be exact.
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B: J-Homomorphism and J-Functor of the Sphere

The action of the group U.n/ in S2n�1 determines a map U.n/ ! Maps.S2n�1 !
S2n�1/. If we compose this map with the suspension map †WMaps.S2n�1 !
S2n�1/ ! Maps.S2n ! S2n/ we will get a map of the group U.n/ into the space
of maps S2n ! S2n which fix some point (any of the two poles), that is, a map

U.n/! �2nS2n:

The corresponding homomorphism of homotopy groups

�i.U.n//! �i.�
2nS2n/! �2nCi.S

2n/

is called the J-homomorphism (or Whitehead J-homomorphism). We will deal
mainly with the stable J-homomorphism .n
 i/ in the case of odd i:

JW�2k�1.U.n// D Z! �2nC2k�1.S2n/ D �S
2k�1:

The image of this homomorphism is a cyclic subgroup of the group �S
2k�1, which, as

we will see, can have a big order (in the case of even k). [Actually, there is also the
image of the “real J-homomorphism” JW�4k�1.SO.n// D Z ! �S

4k�1; which may
be slightly (two times) bigger than the image of the complex J-homomorphism. We
will comment on the difference between these two images in Lecture 42.]

Let us relate now the J-homomorphism to eJ.Sm/.

Theorem. eJ.Sm/ D ImŒJW�m�1.U/! �S
m�1�:

Essentially, this fact is obvious. An n-dimensional complex vector bundle over
Sm is determined by the “attaching map” Sm�1 ! U.n/, which is used for gluing
together two trivial bundles over the hemispheres Dm

˙ � Sm along the equator
Sm�1 D @Dm

˙; J-triviality of the resulting vector bundle means precisely that the
attaching map is homotopic to the constant within the space of maps .S2n�1 !
S2n�1/ 
 U.N/.

C: J-Functor as an Image of the K-Functor in a Half-Exact
Functor

Consider for a finite CW complex X the set of all oriented sphere bundles with the
base X, that is, locally trivial fibrations over X with the fibers homeomorphic to a
sphere and compatibly oriented. Again, if X is disconnected, we allow the fibers over
different components to have different dimensions. Two sphere bundles, p1WE1 ! X
and p2WE2 ! X, are called equivalent if there exists a continuous map E1 ! E2
which for each x 2 X maps p�1

1 .x/ onto p�1
2 .x/ with the degreeC1.
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EXERCISE 2. Check that this is an equivalence relation.

Denote the set of classes of all sphere bundles over X by S.X/. The dimension of
a sphere bundle is defined as the dimension of the fiber over the base point plus 1;
equivalent sphere bundles have equal dimensions.

For sphere bundles there is an addition operation: The sum of two sphere bundles
is defined with the help of the “fiberwise join”:

E1 	X E2 D f.y1; y2; t/ 2 E1 � E2 � Ijp1.y1/ D p2.y2/g
.y1; y2; t/ � .y0

1; y
0
2; t/

�

if y1 D y0
1; t D 0

or y2 D y0
2; t D 1

:

This operation makes S.X/ a commutative semigroup. The corresponding
Grothendieck group is denoted by….X/. There is an obvious map dimW….X/! Z.
It is clear that

….X/ D Z˚ e….X/;

where e….X/ D Ker dim.

EXERCISE 3. Prove that e….X/ is the group of classes of stably equivalent sphere
bundles. (Two sphere bundles are called stably equivalent if their multiple suspen-
sions are equivalent. The suspension over a sphere bundle is defined as a fiberwise
suspension; in other words, the multiple suspension is the sum with the trivial sphere
bundle.)

A continuous map f WX ! Y induces in a natural way the homomorphisms
f �W….Y/ ! ….X/; f �W e….Y/ ! e….X/, which depend only on the homotopy class
of f .

EXERCISE 4. Prove that e… is a half-exact functor; that is, the sequence

e….X=A/��! e….X/��! e….A/

is exact for any finite CW pair .X;A/.

There is a natural (functorial) homomorphism K.X/ ! ….X/ (it assigns to a
vector bundle the corresponding sphere bundle). Obviously, J.X/ is the image of
K.X/ in ….X/.

Theorem.

e….Sn/ D
�

0 for n D 1;
�S

n�1 for n > 1:

Proof. A sphere bundle of dimension N over Sn is determined by the attaching
map Sn�1 ! Map1.S

N�1 ! SN�1/, where Map1 denotes the topological space



41.1 Definition and Relations to Homotopy Groups of Spheres 537

of maps of degree 1. But Map1.S
N�1 ! SN�1/ is a fibration over SN�1 with

the fiber .�N�1SN�1/0 (the subscript 0 refers to a connected component). Hence,
if N 
 n > 1, then homotopy classes of attaching maps compose the group
�n�1.�N�1SN�1/ D �S

n�1:

Corollary. The group e….Sn/ is finite for any n.

Theorem. The group e….X/ is finite for any finite CW complex X.

Proof. Obviously, e….pt/ D 0. Assume that the statement is true for CW complexes
that contain fewer cells than X. Let Y be a CW complex obtained from X by
removing one cell of maximal dimension, say, n. Then we have an exact sequence

e….Sn/��! e….X/��! e….Y/

in which the first and last groups are finite; hence, e….X/ is also finite.

Corollary. The groupeJ.X/ is finite for any finite CW complex X.

Indeed,eJ.X/ � e….X/.

D: Some Properties of the Functor f…

The half-exact functor e… gives rise to a “half of a cohomology theory”:

….X;A/ D e….†�q.X=A// for q � 0:

However, the absence of the Bott periodicity for…makes it difficult to define groups
…q.X;A/ with q > 0. Nevertheless, for … (and for any half-exact functor as well),
there exists an analog of the Atiyah–Hirzebruch spectral sequence: The groups Ep;q

r
are defined for p � 0 and q � 0, and Ep;q

2 D Hp.XI e….S�q//; the groups Ep;q1 with
pC q D r � 0 compose a group adjoint to …r.X/ (with respect to some filtration).
(See Fig. 134.)

Notice also that if X D †Y, then

e….X/ D �.Y; �N SN/I

that is, e….X/ D eP0.Y/ D eP1.X/, where P is the extraordinary “cohomotopy
cohomology theory” (see Sect. 38.5.D). Hence, for any finite CW pair .X;A/

….X;A/ D PqC1.X;A/ for q � �1:

This lets us say that the functor … is close to the cohomotopy theory with the
dimensions shifted by 1. Unfortunately, it is not known whether the equality
…0.X;A/ D P1.X;A/ holds for any finite CW pair .X;A/.
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Fig. 134 The Atiyah–Hirzebruch spectral sequence for …

41.2 The Adams Conjecture

A: Introduction

Although it has been long proven, the following statement is still called the Adams
conjecture.

Theorem. For any finite CW complex X and any ˛ 2 K.X/ and k 2 Z, there exists
N such that

kN. k.˛/ � ˛/ 2 T.X/:

Adams first stated this conjecture in the article “On J.X/, I” (Adams [4]). He
himself proved it for one-dimensional geometric bundles. After that the Adams
conjecture constantly attracted the attention of the leading topologists, but it was
proved only in 1970. In that year, first Quillen [70] announced a proof of the
conjecture (his detailed paper was published later), and then Sullivan obtained
another proof, which used, among other things, some of Quillen’s ideas. Sullivan’s
proof with some preparatory material and further results was presented in his MIT
lectures (1970), notes of which were broadly available. (These notes were published
in a Russian translation as a book entitled Geometric Topology, in 1975. Thirty years
later, in 2005, an English-language book named Geometric Topology: Localization,
Periodicity, and Galois Symmetry, was published by Springer; see Sullivan [83].)
Both proofs were long and complicated. However, in 1975 Becker and Gottlieb [21]
were able to find a relatively simple proof of Adams’ conjecture, based on the notion
of the transfer; this proof is given later in this section.
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B: The Case of One-Dimensional Vector Bundle

If ˛ is a one-dimensional geometric vector bundle, then Adams’ conjecture is a
corollary of the following Adams–Dold theorem.

Theorem. Let �1; �2 be two complex vector bundles of the same dimension with a
finite CW base X. Suppose that there exists a fiberwise map S.�1/ ! S.�2/ that
covers the identity map of X and has degree k > 0 on each fiber [S.�/, as usual,
denotes the sphere bundle associated with the complex vector bundle �]. Then for
some M and N the vector bundles kN�1 ˚M and kN�2 ˚M are J-equivalent.

First, let us show how this result implies the Adams conjecture for geometric
one-dimensional bundles. Let ˛ be such a bundle. According to property (5) of the
Adams operations,  k.˛/ D ˛k. Furthermore, it is obvious that there exists a map
S.˛/ ! S.˛k/ of degree k on each of the fibers: It is defined in the fibers by the
formula z 7! zk. Hence, by the Adams–Dold theorem, kN�1 ˚M is J-equivalent to
kN�2 ˚M, whence kN. k.˛/ � ˛/ 2 T.X/:

Proof of the Adams–Dold Theorem. First, let us reduce the general case of the
theorem to the case when the vector bundle �2 is trivial. Assume that the theorem
has already been proven in this case, and pick a vector bundle � such that the
sum � ˚ �2 is trivial. The degree k fiberwise map S.�1/ ! S.�2/ becomes, after
adding �, a degree k fiberwise map S.�˚ �1/! S.�˚ �2/. By our assumption, for
some N and M, the vector bundle kN.� ˚ �1/ ˚ M is J-equivalent to the vector
bundle kN.� ˚ �2/ ˚ M. But then kN.� ˚ �1/ ˚ M ˚ kN�2 is J-equivalent to
kN.� ˚ �2/ ˚ M ˚ kN�2; that is, kN�1 ˚ M0 is J-equivalent to kN�1 ˚ M0, where
M0 D M ˚ kN.�˚ �2/. Thus, the theorem is valid in the general case.

Consider now the case when �2 is trivial. Let � be a vector bundle of dimension
n with base X, and let E be the space of the associated sphere bundle. Let f WE !
X� S2n�1 be a degree k fiberwise map. Denote by lE the space of the sphere bundle,
associated with l�; thus, lE is the space of the sphere bundle over X with the fiber
S2in�1, whose fiber over x 2 X is the l-fold join of the fiber of the bundle E ! X
over x. Furthermore, denote by lf the map lE ! X � S2ln�1, which is the fiberwise
l-fold join of the map f . We will prove the following.

There exist a positive integer N and a fiberwise map gW kNE! X�S2kNn�1, which
has the degree 1 on each fiber and such that the diagram

kNE
g��! X � S2kN n�1

�

�

�

�

?

?

?

?

y

idX�h

kNE
kN f��! X � S2kNn�1

;

in which h is a map of degree kN, is fiberwise homotopy commutative.
This is, certainly, sufficient for us; actually, the existence of g is all we need.
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We will prove our statement by induction with respect to the number of cells in
X. Let X be obtained by attaching an m-dimensional cell to a CW complex Y of
dimension � m; assume that the statement has already been proven for Y (with N
replaced with some N0). Choose a characteristic map .Dm; Sm�1/ ! .X;Y/ of the
cell X � Y and take the induced bundle over Dm. Of course, this bundle is trivial.
Thus, our problem is reduced to the following one. We have a fiberwise homotopy
commutative diagram

Sm�1 � SM�1 g0

��! Sm�1 � SM�1
�

�

�

�

?

?

?

?

y

idSm�1�h0

Sm�1 � SM�1 f 0

��! Sm�1 � SM�1
;

of fiberwise [over Sm�1] maps, in which f 0 has degree kN0

on the fibers, g0 has degree
1 on fibers, and h0 has degree kN0

. Let f 0 be extended to a fiberwise map FWDm �
SM�1 ! Dm�SM�1. We want to extend, for some N00, the map kN00

g0W Sm�1�S NM�1 !
Sm�1 � S NM�1, where NM D kN00

M, to a map GWDm � S NM�1 ! Dm � S NM�1 such that
the diagram

Dm � S NM�1 G��! Dm � S NM�1
�

�

�

�

?

?

?

?

y

idDm �Nh

Dm � S NM�1 F��! Dm � S NM�1;

where Nh has degree kN ; N D N0 C N00, is fiberwise homotopy commutative. In
other words, we have the following problem. Denote by G.M; r/ the space of maps
SM�1 ! SM�1 of degree r. The map g0 determines, via the formula g0.x; y/ D
.x; Œ�.x/�.y//, some map � W Sm�1 ! G.M; 1/, and we need to prove that it has the
following property. The composition

Sm�1 ���!G.M; 1/ h0ı��!G.M; kN0

/; (	)

where the second arrow is the composition with a fixed map h0W Sm�1 ! Sm�1 of
degree kN0

, is homotopic to a constant map. But � represents a certain element c of
the group

�m�1.G.M; 1// D �S
m�1;

and the composition (	) being homotopic to a constant means precisely that
kN0

c D 0.
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Homotopy Lemma. If a spheroid ˛W Sl ! G.M; 1/; M 
 l, represents some a 2
�S

l , then the spheroid ˛ 	 � � � 	 ˛
„ ƒ‚ …

q

W Sl ! G.qM; 1/;

˛ 	 � � � 	 ˛.x/
D 
˛.x/ 	 � � � 	 ˛.x/W SM�1 	 � � � 	 SM�1 ! SM�1 	 � � � 	 SM�1� ;

represents qa 2 �S
l .

Proof of Lemma. We can assume that ˛ takes the base point of Sl to the identity
map. Replace the map ˛ 	 � � � 	 ˛ by a homotopic map ˛1 	 � � � 	 ˛q, where ˛i D
˛ıˇi; ˇiW Sl ! Sl is a map which maps into the base point the complement to a small
ball di � Sl and stretches di onto the whole sphere Sl; the balls di are supposed to be
disjoint. Obviously, ˛1 	 � � � 	˛q is the sum of q spheroids, of which each represents
in �S

l the same element, as ˛.

Now we can complete the proof of the theorem. Put N00 D N0. The lemma implies
that the map � 	 � � � 	 �

„ ƒ‚ …

kN0

is homotopic to a constant. But this map is induced by kN0

g0;

hence, kN0

g0 may be extended to a map G; for Nh we take h 	 � � � 	 h
„ ƒ‚ …

kN0

.

C: The Theorem of Becker and Gottlieb on the Existence
of Transfer

The general case of Adams’ conjecture may be reduced to its one-dimensional case
via a pure geometrical result of Becker and Gottlieb.

Let G be a compact Lie group [a compact subgroup of the group GL.N;R/], and
let M be a closed smooth manifold with a smooth action of the group G. Further, let
pWE! X be a smooth fiber bundle with the fiber M and the structure group G.

Denote for a topological space Y by YC the disjoint union Y t pt. It is important
for us that

†NYC D .Y � Sn/=.Y � pt/I

that is, an N-fold suspension over YC is the union of N-dimensional spheres passing
through the points of Y and attached to each other in one point (see Fig. 135).

Notice also that†NYC is also the Thom space of the N-dimensional trivial vector
bundle over Y (see Sect. 31.2).

Theorem (Becker and Gottlieb [21]). For a sufficiently large N, there exists a map

tW†NXC ! †NEC
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Y pt

Fig. 135 †NYC

such that the composition

†NXC t��!†NEC †N p��!†NXC

maps each of the N-dimensional spheres of which †NXC is made (see above) into
the same sphere with degree �.M/ (the Euler characteristic of the manifold M).

The map t is called the transfer.

Example. Let pWE ! X be a finite covering. One can assume that E � X � R
N

and p is the restriction of the projection X � R
N ! X. The normal bundle to E in

X � R
N is trivial (normal spaces to E are projected isomorphically onto the factor

R
N). Denote by D an open ball in R

N such that E � X � D, and by U a narrow
tubular neighborhood of E in X �R

N . A map

.X � R
N/=.X � .RN � D// ��! .X � R

N/=..X �R
N/� U/

k k
†NXC †NEC

arises. We take this map for t; check that the requirements of the theorem are met.

Proof of Theorem. The construction in the general case generalizes the construction
of the last example.

Lemma. Let M be a closed smooth manifold with a smooth action of the group
G. Then there exist a linear representation of the group G in some R

N and
an equivariant (that is, commuting with the operators from G) C1 embedding
M! R

N.

Proof of Lemma. Let L be the space of all C1-functions on M. The formula gf .x/ D
f .gx/; g 2 G; f 2 L; x 2 M defines a representation of the group G in L. As is known
from representation theory (see, e.g., Kirillov [52], Sect. 9.2), finite-dimensional
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subrepresentations of L span a dense subspace of L; in other words, for any function
f 2 L there exists an arbitrary function close (in C1-topology) to it, Nf 2 L,
which is contained in a finite-dimensional subrepresentation of L. Take an arbitrary
embedding M ! R

k; let f1; : : : ; fkWM ! R be the coordinate functions. Choose
functions Nf1; : : : ; Nfk which are contained in finite-dimensional subrepresentations
NL1; : : : ; NLk of L and which are so close to f1; : : : ; fk that the map M ! R

k with
the coordinate functions Nf1; : : : ; Nfk is still an embedding. Let gi1; : : : ; gini be a basis
of the space NLi .ni D dim NLi/. These functions compose a map M ! R

ni , which
is actually an equivariant map M ! NL0

i (the latter is the dual of NLi). All together,
the maps g1; : : : ; gk compose an equivariant map M ! NL0

1 � � � � � NL0
k, which is an

embedding because Nf1; : : : ; Nfk are among the linear combinations of its coordinate
functions.

Now fix an equivariant map of the manifold M into the space R
N of a

representation of the group G. Since the group G is compact, the action of G in R
N

is orthogonal with respect to an Euclidean structure (take any symmetric positive
definite bilinear structure in R

n and average it with respect to G). Take an open
"-neighborhood T of M in R

N (with respect to this Euclidean structure, with a
sufficiently small "); since the action of G is orthogonal, this neighborhood is G-
invariant. Embed R

N now into SN D R
N [ 1 and extend the action of G in R

N

to SN by g.1/ D 1 for all g 2 G. The quotient SN=.SN � T/ is the Thom space
of the normal bundle 
 of M in R

N ; thus, we have constructed an equivariant map
SN ! T.
/. Furthermore, the bundle 
 is embedded into the sum 
 ˚ � , where
� is the tangent bundle of M, and this defines a map T.
/ ! T.
 ˚ �/, which is
certainly also equivariant. Since 
 ˚ � D N, then T.
 ˚ �/ D †NMC. Thus, we
have constructed an equivariant map SN ! †NMC [the action of the group G in
†NMC D .M � SN/=.M � pt/ is induced by the actions of G in M and SN].

Let us show that the degree of the map

SN ��!†NMC ��! SN

is equal to �.M/. The map acts like this. The points from SN � T go to 1 2 SN ;
a point x 2 T is mapped into the vector v 2 R

N � SN parallel to the line through
X perpendicular to M, directed from M to x and having length '.l/, where l is the
distance from x to M, and ' is a monotone function Œ0; "/ ! Œ0;1/ such that
'.0/ D 0; ' 0.0/ D 1, and limt!" '.t/ D 1 (see Fig. 136).

Let us compute the degree of this map. Find the inverse image of a vector v0 2
R

n. This inverse image consists of points x 2 SN at the distance l D '�1.kv0k/
from M such that the direction of the perpendicular from x to M coincides with the
direction of the vector�v0. Consider on M the field of vectors of length l parallel to
�v0, and project this field orthogonally onto M. We obtain a tangential vector field
on M whose singularities correspond exactly to the points of the inverse image of
v0 (see Fig. 137).

It is easy to understand that the signs, with which the points of the inverse image
are counted when the degree of the map is computed, coincide with the signs with
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T

M

∞

0

Fig. 136 The map SN ! †N MC ! Sn

M −v0

Fig. 137 Computing deg.Sn ! Sn/

which the corresponding singularities of the vector field are counted when the Euler
characteristic is computed. Hence, the degree of our map SN ! SN equals the Euler
characteristic of M.

For each fiber of the fibration pWE ! X its homeomorphism with M is given up
to a transformation from G. Since our construction is equivariant, it may be applied
to the fibers of the fibration pWE ! X. As a result, we obtain for each point x 2 X
a map SN D SN

x ! †N.p�1.x//C that takes the point 1 into the base point of
the suspension †N.p�1.x//C. All together these maps define a map of the space
composed of the spheres SN

x glued together in the point1 into the space composed
of the suspensions†N.p�1.x//C glued together in the base point. Obviously, both of
these spaces are Thom spaces: The first one is the Thom space of the vector bundle
� over X with the fiber RN associated with the fibration pWE ! X by means of our
representation of G in R

N ; the second is the Thom space of the fibration p�� over
E (also with the fiber RN). The composition of this map T.�/ ! T.p��/ with the
natural projection T.p��/ ! T.�/ has degree �.M/ on each of the N-dimensional
spheres of which the Thom space T.�/ is made. If the vector bundle � is trivial, this
completes the proof. If it is nontrivial, then we find a vector bundle � over X (which
does not have to be related in any way to G) such that the sum � ˚ � is trivial; after
it we extend our map in the obvious way to a map
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T.� ˚ �/��! T.p�.� ˚ �//:

[When we pass from T.�/ to T.� ˚ �/, each of the spheres SN
x , of which the space

T.�/ is made, is multiplied tensorially by the augmented fiber ��
x D �x [1 of the

bundle � over x; similarly, when we pass from T.p��/ to T.p�.�˚�//, the part of the
space T.p��/ which lies over the fiber p�1.x/ of the fibration pWE! X is multiplied
tensorially by ��

x . The “extension” mentioned above is reduced to the tensor product
of the map SN

x ! †N.p�1.x//C constructed above with ��
x .]

The last map is our t. This completes the proof of the Becker–Gottlieb theorem.

Corollary. Let pWE ! X denote the same as in the Becker–Gottlieb theorem, and
let �.M/ D 1. Then p�WP.X/ ! P.E/ is a monomorphism for any half-exact
functor P.

Proof. The composition †NpC ı tW†NXC ! †NXC maps each of the N-
dimensional spheres, of which †NXC is made, onto itself with degree �.M/ D 1.
Hence, it maps each of the cells of †NXC onto itself with degree 1, which implies
that the cohomology homomorphism

t� ı .†NpC/	WH�.†NXCIA/! H�.†NXCIA/

is an isomorphism for any coefficient group A. Hence,

.†NpC/�WH�.XIA/! H�.EIA/

is a monomorphism onto a direct summand. The Atiyah–Hirzebruch spectral
sequence shows then that the same is true for any half-exact functor P.

D: Direct Image (The Case of Coverings)

As we know, a continuous map X ! Y induces a homomorphism K.Y/ ! K.X/.
However, even for usual (ordinary) homology and cohomology we encountered the
situation when a continuous map induces homological and cohomological homo-
morphism which has a “wrong direction” (see Sect. 17.7). A similar phenomenon
in the K-theory will be discussed in all generality in Lecture 42, but now we will
consider it in the simplest situation.

Let �WY ! X be a finite covering, and let � be a (complex) vector bundle of
dimension n over Y. Then a vector bundle �Š� of dimension hn over X arises, where
h is the number of sheets of the covering: The fiber of �Š� over x 2 X is the sum of
fibers of � over the points of ��1.x/. The operation �Š is clearly additive; hence, it
gives rise to a homomorphism �ŠWK.Y/! K.X/. The equality dim.�Š�/ D h dim �
shows that �Š.eK.Y// � eK.X/. It is clear also that the homomorphism �Š commutes
with  k and takes J-trivial virtual bundles into J-trivial virtual bundles.
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E: Proof of the Adams Conjecture in the General Case

We need to prove that

kN. k.�/ � �/ 2 T.X/

for any � 2 K.X/ and k and for N sufficiently large. We may assume that � is a
geometric (not virtual) bundle; let dim � D n. Consider the principal bundle pWE!
X with the fiber U.n/ associated with �. Distinguish the following subgroups of the
group U.n/:

T; the group of diagonal matrices;
N; the normalizer of T, that is, the group of unitary matrices which preserve the

union of coordinate axes;
L; the subgroup of N consisting of matrices that preserve the nth coordinate axis.

Obviously, T � L � N, and jN=Tj D nŠ and jL=Tj D .n � 1/Š. Consider the
sequence of fibrations

E
T�!
p1

E=T
.n � 1/Š������!

p2
E=L

n�!
p3

E=N
U.n/=N������!

p4
X:

Lemma. �.U.n/=N/ D 1:
Actually, this is quite a general fact: The Euler characteristic of the quotient of

a simple compact Lie group G over its maximal torus T is equal to the order jWj
of the Weyl group W, the normalizer N of the torus T is an jWj-fold covering of
T, and hence �.G=N/ D 1. In the case of U.n/ it may be easily checked directly.
Namely, G=T D U.n/=T is the flag manifold in C

n, and this manifold has a CW
decomposition with precisely nŠ cells, all of which are even-dimensional, hence
�.U.n/=T/ D nŠ. Another way of proving this consists in considering chain of
fibrations

U.n/=Tn
U.n�1/=Tn�1�����! CPn�1; : : : ;U.3/=T3

U.2/=T2��! CP2; U.2/=T2 D CP1

[where Tk denotes the group of diagonal matrices in U.k/]. Since the Euler
characteristic of the fibered space is the product of those of the base and the fiber
(see Sect. 21.1), it follows that

�.U.n/=T/ D
n�1
Y

kD1
�.CPk/ D

n�1
Y

kD1
.kC 1/ D nŠ:

Finally, �.U.n/=N/ D 1 since there is an nŠ-fold covering U.n/=T ! U.n/=N.
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According to the results of Sect. 41.2.C (see the corollary), the projection
p4WE=N ! X induces a monomorphism….X/! ….E=N/. Hence, it is sufficient to
prove the J-triviality of kN. k � 1/�, where � D p�

4 �. A point of the space E=N is a
pair .x; ˛/, where ˛ is an unordered system of n pairwise orthogonal lines in the fiber
�x of the bundle �. A point of the space E=L is a triple .x; ˛; l/, where x and ˛ are as
before, and l is one of the lines from ˛. Consider the one-dimensional bundle! over
E=L whose fiber over the point .x; ˛; l/ is the line l. Obviously, .p3/Š! D �. Hence,
.p3/ŠŒkN. k � 1/!� D kN. k � 1/�. But the virtual bundle kN. k � 1/! is J-trivial
according to Sect. 41.2.B, and hence kN. k � 1/� is also J-trivial (Sect. 41.2.D).
This completes the proof of Adams’ conjecture.

41.3 An Application to the Homotopy Groups of Spheres

In this section we will study the order of the cyclic group

eJ.S2n/ D Im.JW�2n�1.U/��!�S
2n�1/ � �S

2n�1:

A: Upper Bound

We know that eK.S2n/ D Z and  kW eK.S2n/ ! eK.S2n/ is the multiplication by kn.
Thus, Adams’ conjecture implies that for any k and sufficiently large N (which
depends on k and n)

kN.kn � 1/eK.S2n/ � T.S2n/:

Denote by dn the largest integer with the following property: For any k there is an N
such that dn divides kN.kn � 1/.
Theorem. jeJ.S2n/j � dn.

This follows directly from Adams’ conjecture.
What is dn?
Let us find d2. The greatest common divisor of the numbers 2N.22 � 1/ D 2N � 3

and 3N.32 � 1/ D 3N � 8 equals 24. On the other hand, it is easy to check that the
number kN.kn � 1/ is always divisible by 24. Hence, d2 D 24.

Let us find d3. The greatest common divisor of the numbers 2N.23 � 1/ D 2N � 7
and 3N.33 � 1/ D 3N � 26 equals 2. The number kN.k3 � 1/ is always even. Hence,
d3 D 2.

Let us find d4. The greatest common divisor of the numbers 2N.24�1/ D 2N � 15
and 3N.34�1/ D 3N �80 equals 240. It is not hard to check that the number kN.kn�1/
is always divisible by 240. Hence, d4 D 240.
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One can easily check that dk D 2 for any odd k. For even k the numbers dk are
expressed in terms of so-called Bernoulli numbers. The Bernoulli number Bs; s � 1
is defined by the power series

x

1 � e�x
D 1C x

2
C

1
X

sD1
.�1/s�1Bs

x2s

.2s/Š
:

The following table contains several first Bernoulli numbers.

s

Bs

denominator
of Bs/4s

1
6

1
30

1
42

1
30

5
66

691
2730

7
6

3617
510

1 2 3 4 5 6 7 8

24 240 504 480 264 65520 24 16320

Bernoulli numbers are studied in textbooks in number theory. At the same
time, as the reader will see in this and upcoming sections, these numbers are very
important for topology, and topologists made considerable contributions to their
study. The information about Bernoulli numbers relevant for topology is contained
in Sect. 2 of Adams’ “On J(X). II” (see Adams [5]). In particular, the following
theorem is proved there.

Theorem. The number ds is equal to the denominator of the irreducible fraction
equal to Bs=4s.

(See the third line of the preceding table.)
Thus, the numbers in the third line of the table provide upper bounds for the

orders of images of the J-homomorphism in �S
4s�1.

B: Lower Bound

Let � 2 �2NC2n�1.S2N/. Attach to S2N the ball D2NC2n by means of the spheroid
S2NC2n�1 D @D2NC2n ! S2N of the class �. We will obtain the space X� for which

Hq.X�IZ/ D
�

Z for q D 0; 2N; 2N C 2n;
0 otherwise:

Denote by a and b the natural generators of the groups H2N.X�IQ/ and
H2NC2n.X�IQ/.
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Since X�=S2N D S2NC2n, there is an exact sequence

0 ��! eK.S2NC2n/ ��! eK.X�/ ��! eK.S2N/ ��! 0;

k k
Z Z

which shows that eK.X�/ Š Z˚Z. One of the generators of this group,eˇ, is defined
canonically as the image of the natural generator ˇ of the group eK.S2NC2n/. The
other generator, ę, is defined up to adding a multiple ofeˇ; it is the inverse image of
the natural generator ˛ of eK.S2N/. Since ch˛ D a and chˇ D b,

chęD aCeeb;ee 2 Q

cheˇ D b

(compare with Sect. 39.2). Since ę is defined only up to adding a multiple ofeˇ, the
numberee is defined only mod 1. Let e D e.�/ 2 Q=Z be the corresponding residue.
This residue is called Adams’ e-invariant of �.

EXERCISE 5. Prove that eW�2NC2n�1.S2N/! Q=Z is a homomorphism.

EXERCISE 6. Prove that e.†�/ D e.�/.

Example. Let � 2 �7.S4/ be the class of the Hopf map S7 ! S4. Let us compute
e.�/.

Obviously, X� D HP2, the quaternionic projective plane. Consider in K.HP2/
the class of the tautological bundle �H regarded as a two-dimensional complex
vector bundle. The Chern classes of the bundle �H are known to us: c1.�H/ D 0

[because H2.HP2IZ/ D 0], c2.�H/ D a (this is the Euler class of �H, that is, the first
obstruction to a section of the corresponding sphere bundle), and ci.�H/ D 0 for
i > 2 (because dimC �H D 2). The components of the Chern character are expressed
in terms of the Chern classes. In particular,

ch2�H D 1

2
.c21 � 2c2/;

ch4 �H D 1

24
.c41 � 4c21c

2 C 2c22 C 4c1c3 C 4c4/:

Hence, ch2 �H D �a; ch4�H D a2

12
D b

12
; that is,

ch �H D 2 � aC 1

12
b:

k
dimC �H

Hence, for ęwe can take 2 � �H, and e.�/ D � 1
12

.
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This shows that the class †N� generates in �NC7.SNC4/ a subgroup of order at
least 12. (Actually, this order is equal to 24—see Chap. 5.)

This example shows a way to obtain lower bounds for the order of the image
of the J-homomorphism: to compute the e-invariant for the J-image of the group
�2s�1.U/ and to take the denominator.

EXERCISE 7. Let � be a geometric vector bundle representing an element ˛ of the
group eK.S2n/, and let dimC � D N. Then the Thom space T.�/ has the homotopy
type X�, where � D J.˛/ 2 �2NC2n�1.S2N/.

This statement shows that for finding lower bounds of the order of the image of
the J-homomorphism, one needs to know how to compute the Chern character for
the elements of the K-functor of the Thom space. This is the subject of Lecture 42.

Lecture 42 The Riemann–Roch Theorem

42.1 The General Riemann–Roch Theorem

A: The Orientability of a Vector Bundle with Respect to a
Cohomology Theory

Let h be an extraordinary (possibly, ordinary) cohomology theory (see Sect. 38.5).
Let � D .pWE! X/ be a (complex or real) vector bundle. Consider the Thom space
T.�/. As we know (see Sect. 31.2.B) there is an isomorphism

H�.XIG/ Š H�.T.�/IG/;

shifting the dimensions by n D dimR �, where G is Z2 in the general case and
an arbitrary Abelian group for an oriented (in particular, complex) vector bundle
�. The following question arises: Is there a similar isomorphism for the theory
h? The answer is suggested by the results mentioned above: The existence of the
isomorphism depends on a certain “orientability” condition which varies with the
theory h.

We restrict ourselves here to the case of multiplicative theories; that is, we assume
that h.X/ is, for any X, a graded ring with the identity element 1 2 h0.X/; moreover,
we assume that there exists a multiplication

hp.X;A/˝ hq.X;B/! hpCq.X;A [ B/:

All these multiplications should be compatible with the homomorphisms induced
by continuous maps (we left the precise statements of axioms to the reader). In
particular, all h�.X;A/ become modules over the ring h�.pt/ (because h�.pt/ is
naturally mapped into h�.X/: The homomorphism is induced by the map X ! pt).
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The suspension isomorphism hq.pt/ ! ehqCn.Sn/ gives rise to a canonical
generator sn

h 2ehn.Sn/ of the h�.pt/-module h�.Sn/: It is the image of 1 2 h0.pt/.

EXERCISE 1. For any X, the suspension isomorphism †nWehq.X/ ! ehqCn.†nX/ is
expressed via sn

h:

hq(X) = hq(X, pt)

...........

...........

®

hq(X × Sn,Sn)

...........

...........

p∗
1®......................................................................................................................... ................................

sn
h p∗

2s
n
h

......................................................................................................................... ................................

...........

...........
...........
...........

hn(Sn) = hq(Sn, pt) hn(X × Sn,Sn)

.............................................................................................. ................................

hq+n(X × Sn,X ∨ Sn)

...........

...........

(p∗
1®)(p∗

2s
n
h)

=

=

hq+n(ΣnX)

Σn®

...........

...........

Definition. A (real or complex) vector bundle � is called orientable with respect to
the theory h, or simply h-orientable, if there exists an element u 2 ehn.T.�//; n D
dimR � such that for any x 2 X the homomorphismehn.T.�// !ehn.Sn/ induced by
the embedding of the augmented fiber ��

x D �x [1 � Sn into T.�/ takes u into "sn
h,

where " is an invertible element of the ring h0.pt/. Any u with this property is called
an h-orientation of the vector bundle �.

Obviously, any vector bundle is H�. IZ2/-orientable, and the H�. IZ/-
orientability is the orientability in the usual sense. We will investigate here the
notion of orientability with respect to K-theory. We will see that any complex
vector bundle is K-orientable, while for real vector bundles the necessary and
sufficient condition of K-orientability is the usual orientability plus vanishing an
integral analog of the Stiefel–Whitney class w3.

B: Thom Isomorphism

Suppose that a vector bundle � D .pWE! X/ is h-orientable and fix an h-orientation
u 2ehn.T.�//; n D dimR �. Denote by E0 the complement to the zero section in E;
obviously,ehr.T.�// D hr.E;E0/. The map

tW hq.X/ D hq.E/
�u2hn.E;E0/�����! hqCn.E;E0/ DehqCn.T.�//

is called the Thom homomorphism. Sometimes instead of t we will use more detailed
notations th or t�h.

Remark. Obviously, t.˛ˇ/ D ˛t.ˇ/ D t.˛/ˇ ŒD ˛ˇu �.

Theorem. The Thom homomorphism is an isomorphism.



554 6 K-Theory and Other Extraordinary Cohomology Theories

Proof. For A � X there is an obvious relative Thom homomorphism

tW hq.X;A/��!ehqCn.T.�/;T.�jA//;

and the diagram

hq−1(A)

hq+n−1(T (»|A))

hq(X,A)

hq+n(T (»),T (»|A))

hq(X)

hq+n(T (»))................................................................................... ...................

................................................................................... ...................

................................................................................... ...................

................................................................................... ...................

..................................................................
........
...........
........

..................................................................
........
...........
........

..................................................................
........
...........
........

hq(A)

hq+n(T (»|A))

hq+1(X,A)

hq+n+1(T (»),T (»|A))

................................................................................... ...................

................................................................................... ...................

................................................................................... ...................

................................................................................... ...................

..................................................................
........
...........
........

..................................................................
........
...........
........

t t t

t t

(∗)

is commutative. If X�A is one cell of, say, dimension m, then, independently of the
bundle �, the second and fifth homomorphisms t of the diagram (	) become

ehq.Sm/!ehqCn.SmCn/; ehqC1.Sm/!ehqCnC1.SmCn/;

and Exercise 1 shows that they are just †n; in particular, they are isomorphisms.
Assuming by induction that for �jA the homomorphism t has been already proven
to be an isomorphism, we get the same for � by applying the five-lemma to the
commutative ladder (	).

In this section, we will use the term “Thom isomorphism” instead of “Thom
homomorphism.”

C: The Riemann–Roch Theorem

Let h and k be two multiplicative cohomology theories, and let � W h ! k be a
multiplicative map taking 1 2 h0.pt/ into 1 2 k0.pt/. (We do not assume that �
is homogeneous with respect to the gradings.) Let � be a vector bundle oriented
with respect to both theories, and let X be the base of �. Consider the diagram

h�.X/ ���! k�.X/
?

?

?

?

y

t�h

?

?

?

?

y

t�k

eh�.T.�// ���!ek�.T.�//:



42.1 The General Riemann–Roch Theorem 555

Let us ask whether this diagram is commutative. The examples which are known to
us show that it is not, in general. Indeed, let h D k D H�. IZ2/ and let � D Sq D
1C Sq1C Sq2C : : : (the multiplicativity of this map is stated by Cartan’s formula;
see Lecture 29). As we know,

t�1 ı Sq ı t.1/ 2 H�.XIZ2/

is not 1, but rather w.�/ D 1Cw1.�/Cw2.�/C : : : , the total Stiefel–Whitney class
of the vector bundle � (see Sect. 31.2).

Definition.

T� .�/ D .t�k/�1 ı � ı t�h.1/ 2 k�.X/

is called the Todd class of the vector bundle � (with respect to � W h! k).

This is a characteristic class of vector bundles which are simultaneously h-
oriented and k-oriented. The previous example shows that TSq D w.

Theorem. For any ˛ 2 h�.X/,

.t�k/
�1 ı � ı t�h.˛/ D �.˛/T� .�/:

Proof. �.t�h.˛// D �.˛ � t�h.1// D �.˛/ ��.t�h.1// D �.˛/ � t�kT� .�/ D t�k.�.˛/ �T� .�//:
It is this obvious statement that is called the general Riemann–Roch theorem. It

stops being trivial as soon as we consider specific examples, since then it includes
an explicit description of the class of orientable bundles and an explicit computation
of T� . We will see this in the rest of this section, where the Chern character ch will
be taken for � . But first we will point out a corollary of the general Riemann–Roch
theorem.

D: Direct Image in Extraordinary Cohomology

(We leave to the reader to compare the material of this subsection with that of
Sect. 41.2.D.) A smooth closed manifold is called h-(co)orientable if its normal
bundle in a sphere of a large dimension is h-orientable. Let X and Y be two smooth
closed h-oriented manifolds, and let f WX ! Y be a continuous map. For a large
(much larger than dim X and dim Y) integer N, fix a smooth embedding 'WY ! SN

and approximate the composition'ıf WX ! SN by a smooth embedding WX ! SN .
The manifold  .X/ is contained in a narrow tubular neighborhood V of '.Y/;
choose a still more narrow tubular neighborhood U of .X/, such that it is contained
in V . Consider the natural map



556 6 K-Theory and Other Extraordinary Cohomology Theories

SN=.SN � U/
g��! SN=.SN � V/

k k
T.
.X// T.
.Y//;

where 
.X/ and 
.Y/ are the normal bundles of the manifolds Y and X in SN . Since
the vector bundles 
.X/ and 
.Y/ are h-orientable, there arises a map

h�.X/
th��!eh�.T.
.X///

g�

��!eh�.T.
.Y///
t�1h��! h�.Y/:

EXERCISE 2. This map is determined by the map f , even by the homotopy class of
the map f .

EXERCISE 3. If h is the theory of ordinary cohomology (with arbitrary coefficients,
if the manifolds X and Y are orientable, and with the coefficients in Z2 in the general
case), then this map coincides with the map fŠ defined in Sect. 17.7.

In the general case, this map is also denoted by fŠ. Obviously,

fŠ.h
q.X// � hqCn�m.Y/;

where m D dim X; n D dim Y. The element fŠ˛ of h�.Y/ is called the direct image
of ˛ 2 h�.X/.

EXERCISE 4. Prove that for any ˛ 2 h�.X/; ˇ 2 h�.Y/

fŠ.f
�.ˇ/˛/ D ˇfŠ.˛/:

Let h and k be two multiplicative cohomology theories, let � W h ! k be a
multiplicative map, and let X be a smooth closed manifold which is both h-orientable
and k-orientable. The Todd class of the normal bundle 
.X/ of X with respect to � ,
that is,

.t
.X/k /�1 ı � ı t
.X/h .1/ 2 k�.X/;

is called the Todd class of the manifold X and is denoted by T .X/ or T� .X/. The
Riemann–Roch theorem has the following corollary (which is also sometimes called
the Riemann–Roch theorem).

Theorem. Let X and Y be smooth closed manifolds, which are simultaneously h-
oriented and k-oriented, and let f WX ! Y be continuous maps. Then the Todd
classes T .X/ and T .Y/ measure the degree of noncommutativity of the diagram

h�.X/ ���! k�.X/
?

?

?

?

y

fŠ

?

?

?

?

y

fŠ

h�.Y/ ���! k�.Y/:
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More precisely, for any ˛ 2 h�.X/,

fŠ.�.˛/ � T .X// D �.fŠ.˛// � T .Y/:

Proof. Apply to both sides of the last equality the isomorphism t
.Y/k :

t
.Y/k ŒfŠ.�.˛/ � T .X//�
D t
.Y/k Œ.t
.Y/k /�1g�t
.X/k .�.˛/ � .t
.X/k /�1�t
.X/h .1//�

D g�t
.X/k .�.˛/ � .t
.X/k /�1�t
.X/h .1// D g�.�.˛/ � �t
.X/h .1//

D �g�.˛ � t
.X/h .1// D �g�t
.X/h .˛/I

t
.Y/k Œ�.fŠ.˛// � T .Y/�
D t
.Y/k Œ�..t
.Y/h /�1g�t
.X/h .˛// � ..t
.Y/k /�1�.t
.Y/h .1//�

D �Œ..t
.Y/h /�1g�t
.X/h .˛// � t
.Y/h .1/� D �g�t
.X/h .˛/:

[We always use the multiplicative property of the Thom isomorphism: ˛ � t.ˇ/ D
t.˛/ � ˇ D t.˛/ � ˇ.]

Example. Let h D k D H�. IZ2/; � D Sq;X be an arbitrary smooth closed
manifold, and let Y be the point. The description of the direct image given in
Sect. 17.7 shows that the homomorphism

fŠWH�.XIZ2/! H�.YIZ2/ D Z2

acts as x 7! hx; ŒX�i. Furthermore, T .X/ D t�1Sq t.1/ D 1C Nw1.X/C Nw2.X/C : : :
is the total normal Stiefel–Whitney class of X (see Sect. 30.2C), that is, T .X/ D
w.X/�1, where w.X/ is the total (tangential) Stiefel–Whitney class of the manifold
X. (And, certainly, T .Y/ D 1 and Sq in H�.YIZ2/ D Z2 is the identity map.) Apply
the Riemann–Roch theorem:

hSq x ^ w.X/�1; ŒX�i D hx; ŒX�i:

Put Sq x ^ w.X/�1 D Sq˛. Then Sq x D Sq ˛ ^ w.X/; x D ˛ ^ Sq�1w.X/, and,
finally,

hSq˛; ŒX�i D h˛ ^ Sq�1w.X/; ŒX�i D hSq�1w.X/;D.˛/i;

where D is Poincaré isomorphism. This is the Wu formula (see Sect. 31.2.D).
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42.2 The Riemann–Roch Theorem in K-Theory for Complex
Vector Bundles

The goals of this section are to prove that complex vector bundles are orientable,
and possess a canonical orientation, with respect to the complex K-theory and to
compute the corresponding Todd class.

Let � D .pWE! X/ be a complex vector bundle with a finite CW base X. Put

�0.�/ D 1˚ƒ2� ˚ƒ4� : : : ;

�1.�/ D � ˚ƒ3� ˚ƒ5� : : : ;

�.�/ D �0.�/ � �1.�/ 2 eK.X/:

Lemma. If the vector bundle � possesses a nonvanishing section, then �0.�/ �
�1.�/. Moreover, there is a natural construction which assigns to a nonvanishing
section of � an equivalence �0.�/ ! �1.�/.

CONSTRUCTION. A nonvanishing section of the vector bundle � is the same as a
splitting � D 1˚ �. Butƒr.1˚ �/ D ˚sCtDr.ƒ

s1˝ƒt�/ D ƒr�˚ƒr�1�. Hence,

�0.1˚ �/
�1.1˚ �/

	

D 1˚ �˚ƒ2�˚ƒ3�˚ƒ4�˚ƒ5�˚ : : :

Consider the vector bundle p�� over E. This bundle has a natural section: The
fiber of the bundle p�� over a point y 2 E is naturally identified with the fiber
�p.y/ 3 y of the bundle � over p.y/, and we assign to the point y 2 E the point
y 2 �p.y/ D .p��/y. This section vanishes over the zero section X � E and nowhere
vanishes over E0 D E � X. Hence, the preceding lemma provides the equivalence
between the restrictions to E0 of �0.p��/ and �1.p��/, and therefore the equivalence
between the restrictions to E0 of their complex conjugates, �0.p� N�/ and �1.p� N�/.
This lets us consider

�.p� N�/ D �0.p� N�/� �1.p� N�/

as an element of K.E;E0/ D eK.T.�//. Denote this element by u.�/.
[Let us explain the last step of the construction of u.�/. If �1 and �2 are two

vector bundles over X with a given equivalence over A � X, then the difference
�1 � �2 may be regarded as an element of K.X;A/. Namely, let � be a bundle over
X such that the sum �2 ˚ � is trivial; fix a trivialization �2 ˚ �  ! N. Then
�1 � �2 D .�1 ˚ �/ � .�2 ˚ �/ D .�1 ˚ �/ � N, and for the bundle �1 ˚ � a
trivialization is given over A. This lets us glue all the fibers of �1˚ � over A and get
a vector bundle over X=A.]

Theorem. (i) The element u.�/ of eK.T.�// is a K-orientation of the bundle �; this
K-orientation is natural in the sense that if � 0 is another complex vector bundle
of the same dimension (possibly over a different base) and a map � 0 ! � maps
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isomorphically each fiber of the bundle � 0 onto some fiber of the bundle �, then the
corresponding map T.� 0/ ! T.�/ induces a map eK.T.�// ! eK.T.� 0// that takes
u.�/ into u.� 0/.

To state the second part of the theorem, we consider the symmetric power series

F.x1; : : : ; xn/ D
n
Y

iD1

1 � e�xi

xi

and define a power series G.y1; : : : ; yn/ by the formula

F.x1; : : : ; xn/ D G.e1.x1; : : : ; xn/; : : : ; en.x1; : : : ; xn//;

where ei.x1; : : : ; xn/ is the ith elementary symmetric function. A computation shows
that

G.y1; : : : ; yn/ D 1 � 1
2

y1 C 1

12
.2y21 � y2/ � 1

24
.y31 � y1y2/

C 1

720
.6y41 � 9y21y2 C 2y22 � y1y3 C y4/C : : : :

(ii) The Todd class

T .�/ D .t�H�. IQ//
�1 ch u.�/ 2 H�.XIQ/

corresponding to the orientation u.�/ is equal to G.c1.�/; : : : ; cn.�//.

Proof. Let us show first that (ii) implies (i). We must show that the restriction of
the class u.�/ to the augmented fiber of the bundle �, that is, to S2n � T.�/, is the
generator of the group eK.S2n/ D Z. This restriction is u.�0/, where �0 is the (trivial)
n-dimensional bundle over the point. But all the Chern classes of �0 are trivial, hence

.t�0H�. IQ//
�1ch u.�0/ D G.c1.�0/; : : : ; cn.�0// D 1;

and ch u.�0/ D t�0H�. IQ/.1/ is the generator of the group H2n.S2nIZ/. Hence, u.�0/ 2
eK.S2n/ is the generator.

The uniqueness part of (i) is obvious.
Now prove (ii). A priori, T .�/ is a characteristic class of �; that is, homogeneous

components of T .�/ are rational polynomials of Chern classes. Hence, it is sufficient
to prove our formula for T .�/ in the case when � is the direct product � � � � � �
� of a number of Hopf bundles over some CPN . Furthermore, it is obvious that
T .�1 ˚ �2/ D T .�1/˚ T .�2/ [this follows from the obvious equality �.�1 ˚ �2/ D
�.�1/�.�2/]. Hence, we can restrict ourselves to the case when � is just the Hopf

bundle � over CPN . In this case our formula takes the form T .�/ D 1 � e�x

x
, where

x 2 H2.CPN IQ/ is the generator. Observe now that T.�/ D CPNC1. Indeed, fix a
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a

x

S2
x

CPN

CPN+1

Fig. 138 The Thom space of the Hopf bundle

point a 2 CPNC1 � CPN and draw all possible (complex projective) lines through
a (see Fig. 139). Each of these lines intersects CPN in its own point; that is, CPNC1
is made of two-dimensional spheres S2x ; x 2 CPN , all attached to each other in one
common point. We see that CPNC1 is the Thom space of a certain one-dimensional
complex vector bundle whose total space is CPNC1 � a. This is the normal bundle
of CPN in CPNC1, that is, � (Fig. 138).

Let us show now that u.�/ 2 eK.CPNC1/ is the virtual bundle 1 � � over CPNC1
(we use the notation � for the Hopf bundle over CPN and CPNC1 as well). Indeed, a
point of CPN is a line through the origin in C

NC1, a point of CPNC1 is a line through
the origin in C

NC2, and is it natural to take for a the line perpendicular to C
NC1. The

projection pWCPNC1 � a ! CPN is induced by the orthogonal projection of CNC2
onto C

NC1. The fiber of the bundle � over l 2 CRN is the line l � CPNC1 itself;
the fiber of the bundle p�� overel 2 CPNC1 � a is the projection of the lineel in
C

NC1, which is naturally identified withel. Thus, the lifted bundle p�� is �j
CPNC1�a.

The isomorphism between �1.p��/ D p�� and �0.p��/ D 1 over the complement
to CPN consists in the projection of the fibers of the bundle �j

CPNC1�a onto the line
a � C

NC2. Hence, when we pass from CPNC1 � a to T.�/ D CPNC1, then �.p��/
becomes 1��, which shows that u.�/ D 1��. Thus, ch u.�/ D ch.1��/ D 1�e�x.

Finally, it is obvious that the cohomological Thom isomorphism tHWH�
.CPN IZ/! eH�.CPNC1IZ/ acts as xk 7! xkC1. Therefore,

T .�/ D t�1
H .1 � e�x/ D 1 � e�x

x
:

This completes the proof of the theorem.

Thus, in our case the Riemann–Roch theorem takes the following form.

Theorem. For an n-dimensional complex vector bundle � over a finite CW base X,
there exists a natural (with respect to �) Thom isomorphism t�K WK.X/ ! eK.T.�//
such that

ch.t�K˛/ D t�H.ch˛ � T .�//;
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where ˛ 2 k.X/; t�H is the cohomological Thom isomorphism, and

T .�/ D G.c1.�/; : : : ; cn.�//;

where G is the power series defined by the formula

G.e1.x1; : : : /; e2.x1; : : : /; : : : / D
Y 1 � e�xi

xi
:

42.3 Application: The Computation of the e-Invariant

Recall the definition of the e-invariant of the class � 2 �2NC2n�1.S2N/: We construct
the space X� D S2N [f D2NC2n, where f W S2NC2n�1 ! S2N is a spheroid of the class
�; next we take in eK.X�/ Š Z ˚ Z an arbitrary element ę whose restriction to
S2N � X is the standard generator of the group eK.S2N/ D Z; then

chęD aCeeb;

where a 2 H2N.X�IQ/; b 2 H2NC2n.X�IQ/ are the standard generators, andee 2 Q;
the residue e.�/ 2 Q=Z modulo 1 is determined by the class �; this residue is the
e-invariant of the class �.

Our goal is to calculate e.�/ in the case when � is the J-image of the generator
of the group eK.S2n/ D Z. We noticed in Lecture 41 (see Exercise 7) that in this case
X� is the Thom space T.�/, where � is the vector bundle over S2n representing the
generator of eK.S2n/. Notice, in addition to that, that we can take u.�/ 2 eK.S2n/ for
ę, for the restriction of u.�/ to S2N is the generator of eK.S2N/, by the definition of
the orientation. According to the Riemann–Roch theorem,

ch u.�/ D t�HT .�/ D t�HG.c1.�/; c2.�/; : : : /:

But the classes ci.�/ with 0 < i < n are all zero (because the corresponding
cohomology groups of the sphere are all zero), and cn.�/ may be easily calculated:

ch � D dim � C s2n 2 H�.S2nIQ/;

where s2n is the generator of the group H2n.S2nIZ/. Let us find the coefficient with
which cn appears in chn. By construction,

chn D 1

nŠ
Pn.c1; : : : ; cn/;

n
X

iD1
xn

i D Pn.e1.x1; : : : ; xn/; : : : ; en.x1; : : : ; xn//:
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Substitute xi D "i
n, where "n is the primitive root of degree n of 1, in the last equality.

We will have e1.x/ D � � � D en�1.x/ D 0; en.x/ D ˙1;P xN
i D n. This shows that

cn appears in Pn with the coefficient˙n, and, hence,

sn D chn.�/ D 1

nŠ
.˙n/cn.�/;

cn.�/ D ˙.n � 1/Šsn:

Thus,

chęD ch u.�/ D t�H.1˙ .n � 1/Š	sn/ D a˙ .n � 1/Š	b;

where 	 is the coefficient with which cn.�/ appears G.c1.�/; c2.�/; : : : /; thus,

e D ˙.n � 1/Š	:

It is easy to show that if n is odd and greater than 1, then 	 D 0. If n D 2m is even,

then it turns out that 	 D ˙ Bm

2mŠ
[for m D 1; 2; it is seen from the partial formula

for the series G.y1; y2; : : : / given in Sect. 44.2 above]. To prove this, consider the
class T �1.�/ D U.c1.�/; c2.�/; : : : / where

U.e1.x/; e2.x/; : : : / D
Y xi

1 � e�xi
:

Obviously, for our � this class is equal to

a˙ .n � 1/	b:

Furthermore, it can be shown by elementary means that in the series U the
coefficients in the terms with e1.x/k and ek.x/ coincide for any k (see the proof
in Hirzebruch’s book [46], Remark 7.2 in Sect. 1.7 of Chap. 1). And it is easy
to find the coefficient in the term with e1.x/2m: Put x1 D z; x2 D � � � D 0; then
e1.x/ D z; e2.x/ D � � � D 0,

Y xi

1 � e�xi
D z

1 � e�z
D 1C 1

2
zC

1
X

sD1
.�1/s�1 Bs

.2s/Š
z2s;

k
U.e1.x/; e2.x/; : : : / D U.z; 0; : : : /I

that is, the coefficient at e1.x/2m is equal to˙ Bm

.2m/Š
.
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Thus, if n D 2m, then

e.�/ D ˙.2m � 1/Š Bm

.2m/Š
D ˙Bm

2m
:

We have proven

Theorem. jeJ.S4m/j is greater than or equal to the denominator of the irreducible
fraction equal to Bm=2m.

Let us compare this result with the result of Sect. 41.3. We proved there that
jeJ.S4m/j is less than or equal to the denominator of Bm=4m. Since the numerator of
Bm is always odd (it is an easy result from number theory), we see that our upper
bound for jeJ.S4m/j is always twice the lower bound. Since in both theorems “greater
than or equal to” should be read as “divisible by,” the number jeJ.S4m/jmust be equal
either to the denominator of Bm=2m or to the denominator of Bm=4m.

Actually, the situation is as follows (see Karoubi’s book). If m is even, then the
order of the groupeJ.S4m/ is equal to the denominator of Bm=2m; but in this case the
homomorphism

Z D �4m�1.U/! �4m�1.SO/ D Z

induced by the embedding U ! SO is the multiplication by 2, which implies that the
J-image of the group �4m�1.SO/ has order equal to the denominator of Bm=4m. If m
is odd, then the above homomorphism is an isomorphism, but in this case jeJ.S4m/j
coincides with its upper bound, namely, with the denominator of Bm=4m. Thus, for
any m, the group�S

4m�1 contains a cyclic subgroup of order equal to the denominator
of Bm=4m. It is also known that this subgroup of �S

4m�1 is always a direct summand.

42.4 The Riemann–Roch Theorem in K-Theory for Spinor
Vector Bundles

Not only complex vector bundles are orientable with respect to the (complex) K-
theory. Actually, the following proposition holds.

Theorem. An orientable real vector bundle � is K-orientable if and only if
wZ

3 .�/ D 0, where wZ

3 is the characteristic class corresponding to the nontrivial
element of the group H3.GC.1; n/IZ/ Š Z2. An equivalent condition: The Stiefel–
Whitney class w2.�/ 2 H2.XIZ2/ (where X is the base of �; X is supposed to
be a finite CW complex) is integral, that is, belongs to the image of the reducing
mod 2 homomorphism �2WH2.XIZ/ ! H2.XIZ2/. A choice of a K-orientation is
equivalent to a choice of the inverse image ew2.�/ 2 H2.XIZ/ of the class w2.�/.
[K-orientation of a complex vector bundle � corresponds toew2.�/ D c1.�/.]
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Here we will restrict ourselves to the construction of a K-orientation for a real
vector bundle with a chosen class ew2. The reader may find a complete proof of the
preceding theorem in Karoubi’s book.

A: The Group SpinC

The construction of the K-orientation of a complex vector bundle given in Sect. 42.2
was based on the following observation: The natural representation of the group
U.n/ in ƒ�

C
n splits into the sum ƒeven

C
n ˚ ƒodd

C
n of subrepresentations, and

these two subrepresentations are isomorphic as representations of the smaller group
U.n� 1/ � U.n/. We will see now that there exist much bigger [than U.n/] groups
which have representations in ƒ�

C
n with similar properties.

The vector space ƒ�
C

n has a natural Hermitian structure:ƒk
C

n with different
k that are orthogonal to each other, and the length of v1 ^ � � � ^ vk is the
(nonnegative) volume of the parallelepiped spanned by v1; : : : ; vk. Due to this,
Endƒ�

C
n possesses a natural conjugation 	 with 	2 D 1. For v 2 C

n define Fv 2
Endƒ�

C
n as the operator of the exterior multiplication by v, and put 'v D FvCF�

v .
(F�
v is “the differentiation with respect to v.”) Obviously, '�

v D 'v; '
2
v D kvk2

(indeed, FvF�
v C F�

vFv D kvk2; F2v D 0;F� 2
v D 0/, and v 7! 'v is a linear

embedding C
n ! Endƒ�

C
n.

Denote by PinC.2n/ the subset of Endƒ�
C

n consisting of endomorphisms of
ƒ�

C
n that satisfy the following three conditions.

(i) x� ı x D 1 (in other words, x is a unitary transformation ofƒ�
C

n; in particular,
the endomorphism x is invertible).

(ii) The endomorphism x is homogeneous (of degree 0 or 1) with respect to the
gradingƒ�

C
n D ƒeven

C
n ˚ƒodd

C
n.

(iii) For any v 2 C
n there exists a w 2 C

n such that x'vx� D 'w.

Obviously, PinC.2n/ is a Lie group.
Denote by SpinC.2n/ the subset of the group PinC.2n/ that consists of those x

for which x.ƒeven
C

n/ � ƒeven
C

n; x.ƒodd
C

n/ � ƒodd
C

n: Obviously, SpinC.2n/ is
an index-2 subgroup of PinC.2n/.

For each x 2 PinC.2n/, define a real linear transformation of � WCn ! C
n by the

formula

�.v/ D
�

w if x 2 SpinC.2n/
�w if x … SpinC.2n/;

where w is defined in condition (iii) above. This transformation is obviously
orthogonal (kwk2 D '2w D x'vx�x'vx� D x'2vx� D xkvk2x� D kvk2xx� D kvk2).
Hence, we obtain a homomorphism

� WPinC.2n/! O.2n/:
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Proposition 1. This is an epimorphism whose kernel is the group S1 � SpinC.2n/
of multiplication by complex numbers of absolute value 1. The group SpinC.2n/ is
precisely ��1.SO.2n//.

Proof. Obviously, 'v 2 PinC.2n/� SpinC.2n/ for any unit vector v 2 C
n. Further-

more, �.'v/ is in this case the reflection of Cn in the real hyperplane orthogonal to v.
[Indeed,�'v'v'�

v D �'3v D �'vI �'v'iv'
�
v D �.FvCF�

v /.FivCF�
iv/.FvCF�

v / D
�i.FvCF�

v /.Fv�F�
v /.FvCF�

v / D �i.F�
vFvF�

v�FvF�
vFv/ D �i.F�

v�Fv/ D 'ivI if v
and w are complex orthogonal, then �'v'w'

�
v D �'v'w'v D '2v'w D 'w.] Hence,

the image of the homomorphism � contains all the reflections in hyperplanes, and
hence it contains the whole group O.2n/.

Prove now that the kernel of the homomorphism � consists of the multiplications
by complex numbers of absolute value 1. Let x 2 PinC.2n/ belong to Ker � .

Suppose first that x 2 SpinCƒ�
C

n. Then x 2 Ker � means that 'vx D x'v for
any v 2 C

n, or, equivalently, for any v 2 C
n with kvk D 1. Denote by C

n�1
v the

(complex) orthogonal complement to v. Then

ƒ�
C

n D .1C v/ ^ƒ�
C

n�1
v ˚ .1 � v/ ^ƒ�

C
n�1
v ;

and 'v is id on the first of these two summands and �id on the second. Since x
commutes with 'v , the summands .1˙v/^ƒ�

C
n�1
v should be invariant with respect

to x [for example, if ˛ 2 .1 C v/ ^ ƒ�
C

n�1
v , then 'vx.˛/ D x'v.˛/ D x'v.˛/ D

x.˛/, whence x.˛/ 2 .1C v/ ^ƒ�
C

n�1
v ]. We can write

x..1C v/ ^ aC .1 � v/ ^ b/ D .1C v/ ^ y.a/C .1 � v/ ^ z.b/;

where y and z are endomorphisms of the spaceƒ�
C

n�1
v . It is checked automatically

that actually y; z 2 SpinC.2n � 2/; moreover, they belong to the kernel of the
homomorphism SpinC.2n � 2/ ! SO.2n � 2/ similar to � . By induction, we
can assume that y and z are multiplications by complex numbers ˇv and �v with
jˇvj D j�vj D 1. Furthermore,

x.1/ D x

�

.1C v/1
2
C .1 � v/1

2

�

D .1C v/ˇv
2
C .1� v/�v

2

D ˇv C �v
2

C ˇv � �v
2

v:

Since x.1/ does not depend on v, we see first that ˇv � �v D 0, that is, ˇv D �v , and
second that ˇv C �v does not depend on v. Hence, ˇv D �v D ˇ; jˇj D 1, and x is
the multiplication by ˇ.

The remaining case x … SpinC.2n/ is still easier, since in this case

x..1C v/ ^ aC .1 � v/ ^ b/ D .1C v/ ^ y.b/C .1 � v/ ^ z.a/;



566 6 K-Theory and Other Extraordinary Cohomology Theories

and y; z 2 .PinC.2n� 2/� SpinC.2n� 2//\Ker � , which implies by induction that
y D z D 0, and hence x D 0.

Finally, the part of the proposition that has been already proven shows that
the group PinC.2n/ is generated by the transformations 'v and multiplications by
constants of absolute value 1; it is clear that a word of these generators belongs to
either SpinC.2n/ or ��1SO.2n/ if and only if it involves an even number of 'vs. This
implies the last part of the proposition.

Remark 1. A similar real construction gives rise to the groups PinR.k/ and SpinR.k/.
The group SpinR.k/ is a twofold covering of SO.k/; the group PinR.k/ consists of
two components, one of which is SpinR.k/. The group SpinR.2n/ is contained in
SpinC.2n/, and the projections � of these two groups onto SO.2n/ are compatible
with each other.

Remark 2. The group U.n/ is included in SpinC.2n/ as the group of transformations
which preserve not only the grading ƒ�

C
n D ƒeven

C
n ˚ ƒodd

C
n, but also a

finer grading ƒ�
C

n D ˚qƒ
q
C

n. The restriction of the projection � WSpinC.2n/ !
SO.2n/ to U.n/ coincides with the natural embedding U.n/! SO.2n/.

Thus, we have constructed a group SpinC.2n/ and its (unitary) representation
in ƒ�

C
n, and this representation is decomposed into the sum of two (actually,

irreducible) subrepresentations:ƒ�
C

n D ƒeven
C

n ˚ƒodd
C

n.

Proposition 2. ƒeven
C

n andƒodd
C

n are isomorphic as representations of the group
SpinC.2n � 2/ � SpinC.2n/.

Proof. The embedding SpinC.2n � 2/ ! SpinC.2n/ is induced by the embedding
C

n�1 ! C
n. Let v 2 C

n be a unit vector orthogonal to C
n�1. Then the operator

'vWƒeven
C

n ! ƒodd
C

n is a SpinC.2n� 2/-isomorphism.
In conclusion, consider the cohomology of the group SpinC.2n/.

Proposition 3. If n > 1, then

H1.SpinC.2n/IZ/ D ZI H2.SpinC.2n/IZ/ D 0:

Lemma. If n > 1, then the fibration SpinC.2n/ ! SO.2n/ (with the fiber S1) is
nontrivial.

Proof of Lemma. The group SpinC.2n/ contains the twofold covering SpinR.2n/ of
the group SO.2n/. If the fibration of the lemma is trivial, then the composition

SpinR.2n/��!SpinC.2n/
D��! SO.2n/� S1

projection�����!S1

maps the points of each fiber of the twofold covering SpinR.2n/! SO.2n/ into the
opposite points of the circle. In this case we would have a commutative diagram
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SpinR.2n/ ��! S1

?

?

?

y

?

?

?

y

SO.2n/ ��! S1

whose vertical arrows are twofold coverings. But the map SO.2n/ ! S1 should be
homotopic to constant since H1.SO.2n/IZ/ D 0, which contradicts the nontriviality
of the covering SpinR.2n/! SO.2n/.

Proof of Proposition 3. The fibration SpinC.2n/! SO.2n/ is simple since its fibers
have canonical orientations as cosets of the group S1. The E2-term of the spectral
sequence of this fibration looks like

Z

Z 0

0

Z2

Z2

and the differential d0;12 WE0;12 D Z ! E2;02 D Z2 cannot be trivial, since its image
contains the first (and the last) obstruction to a section (see Sect. 18.5). Thus, the
spectral sequence implies our statement.

B: Spinor Vector Bundles and Their Characteristic Classes

A spinor structure, or, more specifically, a complex spinor structure or SpinC-
structure, in an oriented real 2n-dimensional vector bundle is, by definition, a
reduction of its structure group SO.2n/ to SpinC.2n/. Let us explain this. As
we said in Sect. 19.1.E, an oriented real 2n-dimensional vector bundle over X
may be given by an open covering fUig of X and a family of continuous maps
'ijWUi \ Uj ! SO.2n/ that satisfy some conditions [namely, 'ij.x/'jk.x/'ki.x/ D 1
for x 2 Ui \Uj \Uk]. A reduction is defined by a family of liftings e…ijWUi \Uj !
SpinC.2n/ of the maps 'ij such that the condition above remains valid. The reader
will reconstruct the notion of equivalence for reductions.

Vector bundles whose structure group is reduced to SpinC.2n/ are called spinor
bundles. (Notice that a complex spinor bundle is not, in general, a complex bundle.)

To proceed further we need some knowledge of general classifying spaces. For
any topological group G there exists a CW complex BG such that the fibrations with
a finite CW base X and a structure group G are in a one-to-one correspondence
with the homotopy classes of maps X ! BG. This BG is unique up to a homotopy
equivalence. It is called a classifying space for G. Here are some other properties of
classifying spaces: There exists a contractible topological space EG with a (right)
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free action of G, such that BG D EG=G; in particular, there is a principal G-bundle
EG ! BG; a group homomorphism G ! H defines (up to a homotopy) a map
BG ! BH; moreover, if G ! H is an epimorphism with the kernel F, then
there is a fibration BG ! BH with the fiber BF. All this is easy to prove—the
most difficult thing is to construct the space BG; this difficulty is resolved by using
Milnor’s construction in which EG is the infinite join of the group G:

EG D : : : ..G 	 G/ 	 G/ 	 G : : : :

The classifying spaces for some groups are already known to us:

BU.n/ D CG.1; n/;BO.n/ D G.1; n/;BSO.n/ D GC.1; n/;

and if � is a discrete group, then B� D K.�; 1/. See Sect. 4.4 of the book by Fuchs
and Rokhlin [40] for further details.

Thus, there exists a classifying space BSpinC.2n/ such that all complex spinor
bundles with a finite CW base X are in one-to-one correspondence with the
homotopy classes of maps X ! BSpinC.2n/, and the characteristic classes of
complex spinor bundles correspond to the cohomology of the space BSpinC.2n/.
The group fibration

SpinC.2n/
S1��! SO.2n/

gives rise to a fibration

BSpinC.2n/
BS1��!BSO.2n/

in which BSO.2n/ D GC.1; 2n/; BS1 D BU.1/ D CG.1; 1/ D CP1 D K.Z; 2/.
One can say more: The introduction of a complex spinor structure into an oriented
2n-dimensional real vector bundle corresponds to a lifting of a map X ! BSO.2n/
to a map X ! BSpinC.2n/.

It may be deduced in the usual way from Proposition 3 and the spectral sequences
of the fibrations

ESpinC.2n/
SpinC.2n/�����!BSpinC.2n/; ESO.2n/

SO.2n/�����!BSO.2n/

that Hi.BSO.2n/IZ/ D 0 for i D 1; 2, H3.BSO.2n/IZ/ D Z2, and
H3.BSpinC.2n/IZ/ D 0. The E2-term of the spectral sequence of the fibration

BSpinC.2n/
K.Z;2/�����!BSO.2n/
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looks like

Z

Z 0 0

0 0 0 0

0 0

0

Z2

Z2

. . .

. . .

. . .

and, since H3.BSpinC.2n/IZ/ D 0, the nontrivial group E3;02 cannot survive until
E1, which means that the differential d0;23 W E0;23 D Z ! E3;03 D Z2 must be
nontrivial; the image of this differential should contain the only nonzero element
of H3.BSO.2n/IZ/, which we denote by wZ

3 . Now we can classify complex spinor
structures in oriented even-dimensional real vector bundles. An oriented real 2n-
dimensional vector bundle � over X corresponds to a map f� WX ! BSO.2n/; a spinor
structure is a lifting of this map into BSpinC.2n/, that is, a section of a fibration
Y ! X induced by the fibration BSpinC.2n/! BSO.2n/ by means of the map f� :

Y ��! BSpinC.2n/
?

?

?

y
K.Z;2/

?

?

?

y
K.Z;2/

X
f���! BSO.2n/:

The only obstruction to this section is the class f �
� wZ

3 , that is, the characteristic

class of the bundle � that corresponds to wZ

3 . Since wZ

3 D ˇw2, where w2 2
H2.BSO.2n/IZ2/, we arrive at the following result.

Proposition 4. An oriented real vector bundle � with a finite CW base X possesses
a complex spinor structure if and only if wZ

3 .�/ D 0, or, equivalently, the class
w2.�/ is integral; that is, it belongs to the image of the reduction homomor-
phism �2WH2.XIZ/ ! H2.XIZ2/. Moreover, the classes of equivalent complex
spinor structures in � are in one-to-one correspondence with elements of the set
��1
2 .w2.�// � H2.XIZ/.

EXERCISE 5. Prove the last statement of Proposition 4 (Hint: difference cochains).

EXERCISE 6. A complex vector bundle � has a canonical complex spinor structure
because of the inclusion U.n/ � SpinC.2n/. Prove that this structure corresponds to
the class c1.�/ � ��1

2 .w2.�//.

Proposition 5. H�.BSpinC.2n// is the ring of polynomials of the following vari-
ables: c .dim c D 2/; p1; : : : ; pn .dim pi D 4i/; � .dim� D 2n/. Thus, rational
characteristic classes of complex spinor bundles are rational polynomials of
Pontryagin and Euler characteristic classes of this bundle regarded as an oriented
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real vector bundle without spinor structure, and the characteristic class c, which
is the image in the rational cohomology of the integral cohomology class from
��1
2 .w2.�//, which determines the spinor structure.

The first statement follows from the spectral sequence of the fibration

BSpinC
K.Z;2/�����!BSO.2n/

and the computation of the rational cohomology of the space BSO.2n/ from
Lecture 19. The rest of Proposition 5 is left to the reader as an exercise.

As we noticed several times, complex vector bundles are also spinor bundles.
Therefore, characteristic classes of spinor bundles are also characteristic classes of
complex vector bundles, and hence they should be expressed in terms of Chern
classes. It is easy to find these expressions by computing the classes c; pi; � for the
vector bundle � � � � � � � over CPn � � � � �CPn (n factors). The computation shows

c.� � � � � � �/ D x1 C � � � C xn;

pi.� � � � � � �/ D ei.x21; : : : ; x
2
n/;

�.� � � � � � �/ D x1 : : : xn;

where the ei are elementary symmetric polynomials. This lets us express c; pi; �

directly via ci:

c D c1; pi D c2i C ci�1ciC1 C � � � C c2i; � D cn:

However, this direct expression is less useful than the above indirect one.

C: K-Orientation of Spinor Bundles, Todd Class,
and Riemann–Roch Theorem

The K-orientation of a spinor bundle � D .pWE! X/ is constructed in the same way
as the K-orientation of a complex vector bundle. The unitary representation of the
group SpinC.2n/ inƒeven

C
n andƒodd

C
n lets us associate with � vector bundles with

the base X and the fibers ƒeven
C

n and ƒodd
C

n. Denote these bundles by �0.�/ and
�1.�/. The lifted bundles p��0.�/ and p��1.�/ over E are canonically isomorphic
over E0 D E � X by Proposition 2; hence, the difference p��0.�/� p��1.�/ may be
regarded as an element of K.E;E0/ D eK.T.�//; denote this element by u.�/.

Theorem. (i) u.�/ is a K-orientation of �.
(ii) The Todd class

T .�/ D t�1
H ch u.�/ 2 Heven.XIQ/
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is equal to

ec=2A.p1.�/; p2.�/; : : : /;

where the power series A is determined by the formula

A.e1.x
2
1; x

2
2; : : : /; e2.x

2
1; x

2
2; : : : /; : : : / D

Y sinh.xi=2/

xi=2
:

Remark 1. The characteristic class A.p1.�/; p2.�/; : : : / is called the (reduced)
Atiyah–Hirzebruch class of the real vector bundle �.

Remark 2. The K-orientation of a complex vector bundle � that was introduced
in Sect. 41.2 coincides with the K-orientation in the spinor sense of the vector
bundle N�.

The proof of this theorem is essentially known to us. As in the case of the
similar theorem in Sect. 41.2, the first part follows from the second; as to T .�/,
it is computed in the following way. First, if the bundle � is complex, then our
T .�/ coincides with T . N�/ of Sect. 41.2. Second, the class T .�/ is stable, that is,
T .�˚2/ D T .�/. Hence, T .�/ cannot depend on the Euler class �. These properties
of T .�/ determine this class completely [since a symmetric polynomial cannot have
two different expressions in terms of e1.x1; : : : / and ei.x21; : : : /]. It remains to use
the equality

1� e�x

x
D e�x=2 sinh.x=2/

x=2
:

Here is a computation of several first terms of the series A.p/ and A.p/�1:

A.p/ D 1C 1

24
p1 C 1

5760
.3p21 C 4p2/C : : : ;

A.p/�1 D 1 � 1

24
p1 C 1

5760
.7p21 � 4p2/C : : : :

Now we combine the general theorems of Sect. 41.1 with the results of the
calculations above to arrive at the main results of this section: Riemann–Roch
theorems for Thom isomorphisms and direct images.

Theorem. Let � be a complex spinor vector bundle with a finite CW base X. Then
for any ˛ 2 K.X/,

ch.t�H.ch˛ � ec.�/=2A.p1.�/; p2.�/; : : : /:

Theorem. Let X;Y be manifolds whose normal bundles 
.X/; 
.Y/ in a sphere of
a large dimension are furnished with a complex spinor structure; let f WX ! Y be a
continuous map. Then for any ˛ 2 K.X/,
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fŠ.ch˛ � e�c.
.X//A.Npi.X// D ch.fŠ˛/ � e�c.
.Y//A.Npi.Y//

[Npi.X/ D pi.
.X//; Npi.Y/ D pi.
.Y// are normal Pontryagin classes of manifolds
X;Y].

The reader may find a number of other propositions of this kind in the book by
Karoubi, Chap. 5, Sect. 4.

42.5 First Application: Integrality Theorems

The last theorem is highly nontrivial even in the case when Y is a point.

Theorem. Let X be a closed smooth oriented manifold with integral w2.X/, and
let c 2 H2.XIZ/ be some class whose image in H2.XIZ2/ is w2.X/. Then for any
˛ 2 K.X/, the value of the class

e�c=2 ch ˛ � A�1.p1.X/; p2.X/; : : : /

on the fundamental class ŒX� of the manifold X is integral.

Proof. Apply the last theorem of the last section to the map f WX ! pt. We have

Z 2 dim fŠ˛ D ch fŠ˛ D .ch fŠ˛/ � T .pt/
D fŠ.ch ˛ � e�c.
.X//=2A.Np1.X/; p2.X/; : : : /
D fŠ.e�c=2 � ch˛ � A�1.p1.X/; p2.X/; : : : /
D he�c=2 � ch˛ � A�1.p1.X/; p2.X/; : : : /; ŒX�i

[we have used the equality A.p/ D a�1.p/ which follows from the obvious
multiplicativity of the class A: A.� ˚ �/ D A.�/A.�/].

Put in the theorem ˛ D 1 (the case when ˛ ¤ 1 is also very interesting, as
we will see in the next section). We get a theorem of divisibility for characteristic
numbers of the manifold with the class w2 being integral.

Examples. Let X be a closed oriented manifold, and let c 2 H2.XIZ/ be an arbitrary
cohomology class whose image in the cohomology mod 2 is w2. If dim X D 4,
then p1 � 3c2 is divisible by 24. If dim X D 6, then c3 � cp1 is divisible by 48. If
dim X D 8, then 15c4 C 30p1c2 C 7p21 � 4p2 is divisible by 5760. [The divisibility
holds in the group Hdim X.XIZ/.]

If we use the real K-functor instead of the complex K-functor, then we can get
a small but essential improvement of these results. Namely, the orientability of an
orientable real vector bundle with respect to the real K-theory is equivalent to the
reducibility of the structure group—not to the group SpinC, but to the smaller group
SpinR. The latter means that the class w2 needs not just to be integral but rather to
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be 0. On the other hand, the real Todd class is equal to one half of the complex Todd
class, which lets us enhance the divisibility theorems in the case w2 D 0 by the
additional factor 2.

Examples. Let X be a closed oriented manifold with w2 D 0. If dim X D 4, then p1
is divisible by 48. If dim X D 8, then 7p21 � 4p2 is divisible by 11520.

At first glance, this supplement does not look very essential. To illustrate
the opposite, consider the case when X is a closed simply connected four-
dimensional manifold with w2.X/. The Wu formulas for Stiefel–Whitney classes
(see Sect. 30.2) easily imply that the last statement is equivalent to the triviality of
the homomorphism Sq2WH2.XIZ2/ ! H4.XIZ2/, which is the plain squaring. In
the language of integral homology this means that the square of an arbitrary two-
dimensional cohomology class is even; that is, the diagonal entries of the matrix of
the intersection form H2.XIZ2/ � H2.XIZ2/ ! Z are all even. There is a term in
algebra which describes this situation: an even form. There exists Serre’s theorem,
which states that the signature of an even unimodular form is divisible by 8. But it
is known (see Sect. 19.5) that the signature of this form is equal to hp1.x/; ŒX�i=3.
Hence, our complex integrality theorem only repeats the algebraic result, while the
more subtle real theorem gives rise to the following highly important result.

Theorem. The signature of the intersection form of a closed simply connected
smooth four-dimensional manifold X with w2.X/ D 0 is divisible by 16.

This is the famous Rokhlin’s theorem that was proved in 1952. It shows that not
any integral unimodular quadratic form can be the intersection form of a smooth
closed simply connected manifold; this fact has numerous applications in topology.
Notice that until 1982 there were no known integral unimodular quadratic forms
which could not be intersection forms of smooth closed four-dimensional manifolds
but which were not prohibited by Rokhlin’s theorem. Such forms became known in
a great variety after the work of Donaldson, who proved that if the intersection form
of a smooth closed 4-manifold is positive definite, then it can be reduced to the sum
of squares over Z.

42.6 Second Application: Theorems of Nonembeddability

The Riemann–Roch theorem and the integrality theorem have the following gen-
eralization. Let � W h ! k be a multiplicative homomorphism of one cohomology
theory into another, and let � be a vector bundle which is oriented with respect to
the theory k but, in general, is not even orientable with respect to h. Let uk 2ek.T.�//
be a k-orientation, and let uh 2 eh.T.�// be arbitrary. These uk and uh give rise to,
correspondingly, the Thom isomorphism tk and the Thom homomorphism th, and it
should be remarked that the latter, as well as the former, possesses the multiplicative
property.

Theorem. For any ˛ 2 h.X/ (where X is the base of the bundle �),
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t�1
k ı � ı th.˛/ D �.˛/T .�/;

where T .�/ D t�1
k ı � ı th.1/ 2 k.X/.

The proof is as before (see Sect. 41.1).
The statements of the Riemann–Roch theorem for the direct image and of the

integrality theorem are precisely as above, and we do not repeat them.
Consider the following example. The group SO.2k/ has a unitary representation

in ƒ�
C
2k. There is an equivariant operator

	Wƒr
C
2k ! ƒ2k�r

C
2k;

in particular,

	Wƒk
C
2k ! ƒk

C
2k:

The spaceƒk
C
2k is decomposed into the direct sumƒkCC

2k˚ƒk�C2k of eigenspaces
of 	 corresponding to the eigenvalues 1 and �1. Set

T0 � T1 D C �ƒ1
C
2k Cƒ2

C
2k � � � � C .�1/kƒkCC

2k:

This is a “difference” between two unitary representations of the group SO.2k/. It is
easy to understand that these two representations are equivalent as representations of
SO.2k�1/. Hence, for any 2k-dimensional oriented vector bundle � D .pWE! X/,
we obtain, in complete analogy with previous constructions, an element

v.�/ D T0p
�� � T1p

�� 2 K.E;E � X/ D eK.T�/:

Denote by B.�/ the counterpart of the Todd class for v.�/ and ch. A computation (a
replica of the computation above) shows that

B.�/ D 1

2

"

k
Y

iD1

exi � e�xi

xi
C

k
Y

iD1

.exi � 1/.e�x1 � 1/
x1

#

;

pi.�/ D ei.x
2
1; : : : ; x

2
k/; �.�/ D x1 : : : xk:

EXERCISE 7. Using this computation, show that v.�/, in general, is not an orienta-
tion.

All the results of this section taken together give rise to the following result.

Theorem. The number

hch˛ � B.
.X//; ŒX�i
is integral for any ˛ 2 K.X/.
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Let us introduce now some notation. For z 2 Heven.xIQ/; z D z0C z1C : : : ; zi 2
H2i.XIQ/, set z.t/ D †qtqzq; recall that if z D ch˛ and t 2 Z, then z.t/ D ch t˛

(see Sect. 40.1.C). For a closed 2n-dimensional manifold X, a class c 2 H2.XIQ/,
and a virtual bundle ˛ 2 K.X/, put

H.t/ D hec=2 � .ch˛/.t/ � A�1.p1.X/; p2.X/; : : : /; ŒX�i:

This is a polynomial of degree n in t with rational coefficients; its coefficient at tn

is equal to hchn ˛; ŒX�i. The theorem of Sect. 41.5 [with the remark that .ch˛/.t/ D
ch t˛] shows that the polynomial H.t/ takes integral values at integral points. In
addition, the last integrality theorem yields the following result.

Theorem. If the manifold X admits a smooth embedding in S2nC2k, then the number

2nCk�1H.1=2/

is integral.

Proof. As we proved in Sect. 19.6, the Euler class of the normal bundle of a
manifold embedded into a sphere is always equal to zero. Hence, in the expression
for B.
.X//, the second term, namely,

Y .exi � 1/.e�xi � 1/
xi

;

equals 0: It is divisible by x1 : : : xk. Hence, in the expression for B.
.X// the second
term may be removed, and we see that

ch˛ � B.
.X// D .�1/k2nCk�1H.1=2/:

[Indeed,

ch ˛

2

Y exi � e�xi

xi
and 2nCk�1.ch ˛/1=2

Y sinh.xi=2/

xi=2

have the same terms of degree n (where the formal variables xi have degree 2).]
Now we can prove a mighty nonembeddability theorem.

Theorem. Let X be a smooth closed manifold of dimension 2n > 2 with wZ

3 D 0,
and let there exist an ˛ 2 K.X/ such that the integer hnŠ chn ˛; ŒX�i is odd. Then X
cannot be smoothly embedded in S4n�ı.n/, where ı.n/ is the number of digits 1 in the
binary presentation of the number n.

Proof. Consider the polynomial H.t/ that corresponds to an arbitrary c from
��1
2 .w2.X// and the ˛ from the theorem. According to the remark above, this

polynomial takes integral values for integral t. Hence,
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H.t/ D an
t.t � 1/ : : : .t � nC 1/

nŠ
C an�1

t.t � 1/ : : : .t � nC 2/
.n � 1/Š

C� � � C a2
t.t � 1/
2

C a1tC a0

with integral ai. Since an D hnŠ chn ˛; ŒX�i (see above), then an is odd. Furthermore,
according to the previous theorem, 2nCk�1H.1=2/ is an integer. On the other hand,
the expression for H given above shows that

2nCk�1H.1=2/ D 2k�1.anbC nc/=nŠ;

where b is odd and c is even. But it is well known that the prime decomposition of
nŠ contains precisely n � ı.n/ factors 2. Hence, k � 1 � n � ı.n/, which completes
the proof.

In the statement of the theorem, the condition of the existence of ˛ holds, in
particular, if there exists such d 2 H2.XIZ/ that hdn; ŒX�i is odd: In this case we
take for ˛ the stable class of the one-dimensional vector bundle � with c1.�/ D d,
and we will have ch � D ec1.�/ D ed and chn � D dn=nŠ. In particular, the theorem
holds for complex projective spaces:

Corollary. CPn cannot be embedded in S4n�2ı.n/.

To estimate the strength of this result, let us compare it with the nonembeddabil-
ity theorems of Sect. 19.6. For example, according to the results of Lecture 19,
CP1000 cannot be embedded in S2046, and according to the results here it cannot
be embedded in S3988. (Let us add that the general results of differential topology
provide an embedding of CP1000 into S3999.) All the results of this section belong to
Atiyah and Hirzebruch; they are contained in their article [18].

42.7 Conclusion: The Origin of the Name

The term “Riemann–Roch theorem” is known in algebraic geometry. In the most
classical way, it refers to the formula

r.�D/ � i.D/ D d.D/� gC 1;

where D is a divisor on a Riemannian surface of the genus g, d.D/ is the degree of
D, r.�D/ is the dimension of the space of meromorphic functions with the divisor
greater than or equal to �D, and i.D/ is the dimension of the space of meromorphic
1-forms with the divisor greater than or equal to D. This theorem may be regarded as
the computation of the Euler characteristic for the sheaf of holomorphic line bundle
over X determined by the divisor D. The initial version of the integrality theorem of
Sect. 42.5 was a generalization of the classical Riemann–Roch theorem; see Atiyah
and Hirzebruch [17, 19]:
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Theorem. Let X be a smooth complex projective algebraic variety, let c be its first
Chern class, and let � be a holomorphic bundle over X. Then the value of the
cohomology class

ec=2 � ch � � A�1.p1.X/; p2.X/; : : : /

on ŒX� is equal to the Euler characteristic of the sheaf of holomorphic sections of �.

When this theorem was translated from the holomorphic setting into the dif-
ferential one, the Euler characteristic disappeared, only the integrality statement
remained. But the theorem was still called a Riemann–Roch theorem, and even the
more general theorems of Sect. 41.1 were given this label.

It should be mentioned that of the creators of K-theory only Adams was a
“pure topologist”; Bott was known by his works in differential geometry and
global calculus of variations; Atiyah, Hirzebruch, and especially Grothendieck were
famous in algebraic geometry. This showed itself in the terminology accepted in K-
theory. Besides “Riemann–Roch theorem,” the term “K-theory” has an origin in
algebraic geometry. Moreover, Atiyah and Hirzebruch called the polynomial H.t/
of Sect. 42.6 the Hilbert polynomial of the variety X, for it is the Hilbert polynomial
of X in the case when X is a complex projective algebraic variety, c is its first Chern
class, and ˛ is the restriction to X of the Hopf bundle over the ambient complex
projective space.

Lecture 43 The Atiyah–Singer Formula: A Sketch

The Atiyah–Singer formula for the index of an elliptic operator is one of the
most significant mathematical results of the second half of the 20th century. Its
importance is not restricted to its numerous applications in mathematics and physics.
It reminded experts in analysis of the necessity of studying topology and to
topologists of the necessity of studying analysis, and in this way it promoted the
rebirth of mathematics as a united discipline.

There are books devoted to the Atiyah–Singer theorem (the best known is
Palais [66]). The goals of this lecture are more modest: to stimulate the reader’s
interest and to give a preliminary acquaintance with the subject.

43.1 Elliptic Operators and Their Indices

Let U be a domain in R
n, let C1.U/ be the space of complex-valued C1-functions

on U, and let

DW C1.U/! C1
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be a differential operator of order k. [The last assumption can be easily formulated
in the coordinate language, but it also has an invariant description: If functions f ; g 2
C1.U/ have, at some point x 2 U, equal k-jets, then Df .x/ D Dg.x/.]

[Let us recall the definition of a jet. If X;Y are manifolds and x 2 X; y 2 Y,
then a k-jet with the source x and target (value) y is defined as a class of C1-maps
f W .X; x/! .Y; y/with respect to the following equivalence relation: f � g if kf .z/�
g.z/k D O.kz � xk/k, where the norms are taken with respect to arbitrary local
coordinate systems at x and y.]

Thus, we assume that D is an operator of order k (and is not an operator of order
k � 1). The symbol (or principal symbol) �D of D is the function on the space T�U
of the cotangent bundle ��.U/ of the domain U. In coordinates, the symbol has the
following description: If

D D
X

k1C���CknDk

'k1:::kn.x/
@k

@xk1
1 : : : @xkn

n

C terms of orders < k;

then

�D.x1; : : : ; xnI �1; : : : ; �n/ D
X

k1C���CknDk

'k1:::kn.x/�
k1
1 : : : �

kn
n ;

where �i D dxi are coordinates in the cotangent space T�X. It is important that the
symbol also has a coordinate-free description. Namely, let us identify the space T�X
with the space J1.U;R/0 of 1-jets with the value 0. Then

�D.x; y/ D 1

kŠ
Df k.x/;

where y 2 J1.U;R/0 and f is an arbitrary representative of the jet y.
This invariant definition of the symbol makes possible its generalization to

differential operators C1.X/ ! C1.X/, where X is an arbitrary smooth manifold;
in this case the symbol is a function on the space T�X of the cotangent bundle ��.X/
of the manifold X. A further generalization: Let �; � be complex vector bundles with
the base X. The statement that

DW C1.�/! C1.�/

[where C1.�/ and C1.�/ are spaces of smooth sections] is a differential operator of
order k has an obvious meaning. Let pWT�X ! X be the projection of the fibration
��.X/. Then the symbol of the operator D is the vector bundle map

�DW p�� ! p��;
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which is defined by the formula

�D.y; z/ D
�

y;
1

kŠ
ŒD.f kg/�.x/

�

;

where y 2 I.X;R/0 is a cotangent vector to X at the point x 2 X, f 2 C1.X/ is a
representative of the jet y, z 2 �x is a point of the fiber of the bundle � over x, and g
is a section of the bundle � such that g.x/ D z. Thus, the symbol �D maps linearly
the fiber of the bundle p�� over a cotangent vector of the manifold X into the fiber
of the bundle p�� over the same cotangent vector. Obviously, over the zero section
X � T�X the symbol �D vanishes.

The operator D is called elliptic if for every nonzero cotangent vector y the
operator �D yields an isomorphism .p��/y ! .p��/y.

The following statement is proved in analysis (see Palais’ book):

Theorem. An elliptic operator on a compact manifold X has a finite-dimensional
kernel and a finite-dimensional cokernel.

An operator with finite-dimensional kernel and finite-dimensional cokernel is
called a Fredholm operator. The index ind D of a Fredholm, in particular, elliptic,
operator D is defined by the formula

ind D D dim Ker D � dim Coker D:

This definition is justified by the fact that in the process of a deformation
of an operator in the class of Fredholm operators the dimensions of kernel and
cokernel may vary, but the index stays unchanged. This fact led to a general problem
formulated in the 1950s by I. M. Gelfand: Express the index of an elliptic operator
in topological terms.

The Atiyah–Singer formula provided a solution of this general Gelfand’s prob-
lem.

Before stating the formula, we will consider several examples.

43.2 Examples

All examples considered here and in Sect. 43.4 assume some knowledge of the de
Rham theory not presented in this book. A reader who is not familiar with this
theory will have either to skip this section and Sect. 43.4 or, what is better, to
study this theory. It is presented in many books, for example, in Differential Forms
in Algebraic Topology by Bott and Tu [23], or in Modern Geometry. Methods of
Homology Theory by Dubrovin, Fomenko, and Novikov [35].

A. Let X be a closed oriented smooth 2n-dimensional manifold with a fixed
Riemannian metric (that is, with fixed Euclidean structures in the fibers of the
tangent bundles depending smoothly on a point of the base). Denote by �kX the
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space of C1 exterior differential forms of degree k. There are operators

dW�kX ! �kC1X;
	W�kX ! �2n�kX;
ıW�kX ! �k�1X;

where d is the exterior differential, 	 is a fiberwise operator defined by the formula

Œ	'�.v1; : : : ; v2n�k/ D '.w1; : : : ;wk/ � vol.v1; : : : ; 2vn�k;w1; : : : ;wk/

vol.w1; : : : ;wk/
;

where v1; : : : ; v2n�k are arbitrary tangent vectors to X and w1; : : : ;wk are arbitrary
linearly independent tangent vectors orthogonal to v1; : : : ; v2n�k (check that the
right-hand side of this formula does not depend on the choice of w1; : : : ;wk), and
ı D 	 ı d ı 	. Obviously, d and ı are adjoint operators.

Consider the operator

dC ıW��X ! ��X:

EXERCISE 1. Prove that dC ı is an elliptic operator.

There is no sense in computing the index of this operator: It is self-adjoint, its
kernel and cokernel are adjoint to each other, hence, they have the same dimension,
and the index is zero. To straighten the things, let us consider the operator

.dC ı/j�evenXW�evenX ! �oddX:

Obviously, the form ' 2 �2kX belongs to the kernel of the operator d C ı if
and only if d' D 0 and ı' D 0. Differential forms with these properties are called
harmonic. There is a well-known Hodge theorem: Every de Rham cohomology class
contains one and only one harmonic form (that is, for every closed form  , there
exists a unique harmonic form ' such that  � ' 2 Im d). This lets us (in virtue of
de Rham’s theorem) make an identification

Ker.dC ı/j�evenX D Heven.XIR/:

The cokernel Coker.dC ı/j�evenX is the kernel of the adjoint operator, which is
nothing but .d C ı/j�oddX W�oddX ! �evenX. Hence,

Coker.dC ı/j�evenX D Hodd.XIR/

and

ind.dC ı/j�evenX D dim Heven.XIR/� dim Hodd.XIR/ D �.X/:
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B. Obviously, .	j�kX/
2 D .�1/k: Consider the operator

˛ D 	 � ik.k�1/�nW�kX ! �2n�kX:

Obviously, ˛2 D 1. Put

��̇ X D f' 2 ��X j ˛.'/ D ˙'g:

EXERCISE 2. Prove that .dC ı/ 
��̇ X
� � ���X:

EXERCISE 3. Prove that if n is odd, then the index of the operator .dC ı/j��

C
X is

0, and if n is even, then this index is equal to the signature of the intersection form
of the manifold X.

43.3 The Formula

Let

DW C1.�/! C1.�/

be an elliptic operator, and let

�DW p�� ! p��

be its symbol (we use notations from Sect. 43.1). Since �D is an isomorphism over
the complement to the zero section, we can consider the difference p��� p�� as an
element from eK.T.��.X/// (compare with Sects. 42.2, 42.4, and 42.6). We denote
this element by †D and put

ch D D t�1
H ch†D 2

�

Heven.XIQ/; if dim X is even;
Hodd.XIQ/; if dim X is odd:

Theorem.

ind D D ˝.ch D � T .C�.X//�1/; ŒX�˛ ;

where T .C�.X// denotes the Todd class (see Sect. 41.2) of the complexification of
the tangent bundle. In other words,

T .C�.X//�1 D U.p1.X/; p2.X/; : : : /;



43.4 Back to Examples 583

where the power series U is defined by the formula

U.e1.x
2
i /; e2.x

2
i /; : : : / D �

Y x2i
.1 � e�xi/.1� exi/

:

There is some apparent similarity between this theorem and the Riemann–Roch
theorem. In any case, the integrality of the right-hand side can be established by
methods developed in Lecture 42 (see Sect. 42.6). But certainly the main thing in
this theorem is the fact that this right-hand side is equal to the index of the operator
D.

We will not discuss here the proof of this theorem, we will just present a general
plan. It is not hard to prove a “cobordism invariance” of index: If the bundles �
and � over X can be extended to bundlese� ande� over a compact manifold W with
the boundary X, and the elliptic operator D can be extended to an elliptic operator
eDW C1.e�/! C1.e�/, then the index of the operator D equals zero. In addition to that,
the index of the elliptic operator is additive (if X D X1

`

X2 and D D D1

`

D2, then
ind D D ind D1C ind D2) and multiplicative (if X D X1�X2 and D D D1˝D2, then
ind D D ind D1 �ind D2). All this lets us reduce the general problem of computing the
index to the problem of computing the index of several explicitly defined operators
(in the spirit of the examples in Sect. 43.2), and this can be done without serious
difficulties.

43.4 Back to Examples

1. The symbol of the operator dCı (considered as defined on the whole space��X)
has the following description. Over a cotangent vector v 2 T�

x X to the manifold X at
the point x, it is the operator 'vW .ƒ�T�

x X/˝C! .ƒ�T�
x X/˝C (see Sect. 42.4). Let

D D .dC ı/j�evenX . The comparison of the construction of†D with the construction
in Sect. 42.2 shows that †D is precisely the canonical K-orientation u.C��.X// 2
eK.T.C��.X/// of the complex vector bundle C��.X/ restricted from T.C��.X// to
T.��.X//.

EXERCISE 4. Let � be an arbitrary oriented (in the usual sense) real vector bundle,
let C� be its complexification, and let �WT.�/ ! T.C�/ be the embedding induced
by the canonical embedding � ! C�. Then, for every ˛ 2 H�.T.C�/IG/, the
following equality holds:

�

t�H
��1

��˛ D
�

tC�H

��1
.˛/ � �.X/:
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Let us now apply the Atiyah–Singer formula.

indD D h.chD �T .C��.X//�1/; ŒX�i
D h..t��.X/

H /�1 ch†D � T .C��.X//�1/; ŒX�i
D h..t��.X/

H /�1 ch ��u.C��.X// � T .C��.X//�1/; ŒX�i
D h..t��.X/

H /�1�� ch u.C��.X// � T .C��.X//�1/; ŒX�i
D h.�.��.x// � .t��.X/

H /�1 ch u.C��.X// � T .C��.X//�1/; ŒX�i
D h.�.��.x// � T .C��.X// � T .C��.X//�1; ŒX�i
D h�.��.X//; ŒX�i D �.X/:

Thus, the calculation based on the Atiyah–Singer formula yields the same result as
the direct calculation in Sect. 43.2.A.

2. The calculation of the index of the elliptic operator considered in Sect. 43.2.B
based on the Atiyah–Singer formula provides an expression of this index, that is, of
the signature of the manifolds, via the Pontryagin numbers. The reader can check
that the formulas arising are precisely those obtained in Sect. 19.6.D.

3. Let X be a complex manifold, and let � be a holomorphic vector bundle with
the base X. Consider the space �p;q.XI �/ of differential forms of type p; q on X
with the coefficients in sections of the bundle � and “anti-holomorphic differential”
d00W�p;q.XI �/! �p;qC1.XI �/. By Dolbeault’s theorem (see, for example, Chern’s
book [30]) the cohomology of the sheaf C!.�/ of germs of holomorphic sections of
the bundle � can be calculated by the complex

� � � ! �p;q.XI �/ d00

��!�p;qC1.XI �/! : : : :

From this it can be easily deduced that the index of the operator .d00 C ı00/j�0;even.XI�/
is just the Euler characteristic

P

.�1/r dim Hr.XI �/ of the sheaf C!.�/. The
calculation of this index using the Atiyah–Singer formula yields an expression of
this Euler characteristic in terms of topological invariants, certainly the same as
stated in the Atiyah–Hirzebruch theorem (see Sect. 42.7).

4. Notice in conclusion that all the integrality theorems from Lecture 42,
including the theorems in Sect. 42.6, can be deduced from the Atiyah–Singer
formula applied to an appropriate elliptic operator.

Lecture 44 Cobordisms

Not unlike the Atiyah–Singer theorem, the cobordism theory is the subject of whole
books (see, for example, Stong [82]). In this lecture, we restrict ourselves to defining
cobordisms, listing their major properties, and describing their relations to the
K-theory.
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44.1 Definitions

A: Bordisms

Let X be a topological space. A (closed) n-dimensional singular manifold of X is,
by definition, a pair .M; f / where M is a closed smooth n-dimensional manifold
and f is a continuous map of M into X. Singular manifolds .M1; f1/ and .M2; f2/
are called bordant if there exists a compact manifold W with the boundary @W D
M1 t M2 and a continuous map FWW ! X such that FjM1 D f1 and FjM2 D f2.
The set of classes of bordant n-dimensional singular manifolds of X is denoted by
�O

n .X/. The operation of the disjoint summation
`

of singular manifolds makes
this set an Abelian group [in which, by the way, every element has the order 2 (or
1): the bordism 2.M; f / � .;;�/ is provided by the manifold W D M � I and the
composition of the projection M�I ! M and f ]. A continuous map X ! Y induces,
in an obvious way, homomorphisms�O

n .X/! �O
n .Y/, and, putting

�O
n .X/ D 0 for n < 0;

e�O
n .X/ D Ker.�O

n .X/! �O
n .pt//;

�O
n .X;A/ D e�O

n .X=A/;

we compose of groups �O
n a theory of extraordinary homology, which is called the

theory of (unoriented) bordisms.
If we equip these definitions with orientations, we arrive at the definition of

oriented bordisms, �SO
n . Emphasize that in this definition both manifolds M and W

must be oriented, and in the definition of a bordism we should assume, in addition to
the equality @W D M1tM2, that the orientation of M1 must be compatible with that
of W, and the orientation of M2 must be opposite the orientation compatible with
that of W. The operation of inversion in the group�SO

n corresponds to the operation
of reversion of the orientation. It does not follow from anything, and, as we will see
later, it is not true that all elements of the group�SO

n .X/ must have order 2.
One more version of bordisms will arise if we assume that the manifolds M

and W are endowed with compatible stable almost complex structures; that is, the
bundles �.M/ ˚ N and �.W/ ˚ N (with some N) are equipped with structures of
complex vector bundles. The corresponding notation is �U

n .X/.
We should mention that in modern topology many other versions of bordism

(and cobordism) theories are considered. Some of them will be mentioned here. For
further information on these theories, see the book by Stong mentioned above.

B: Thom Spectra

The bordism theories fit into the general scheme of constructing extraordinary
homology theories using spectra (see Sect. 38.5.D).
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Denote by MO.n/ the Thom space of the tautological vector bundle �n over
BO.n/ D G.1; n/, and by MSO.n/ and MU.n/ the Thom spaces of the tautological
bundles �C

n and �Cn over BSO.n/ D GC.1; n/ and BU.n/ D CG.1; n/. We
will construct maps †MO.n/ ! MO.n C 1/; †MSO.n/ ! MSO.n C 1/; and
†2MU.n/! MU.nC1/. The restriction of the bundle �nC1 to G.1:n/ is, obviously,
�n ˚ 1; the inclusion map �n ˚ 1! �nC1 determines a map T.�n ˚ 1/! T.�nC1/.
But it is clear that T.�˚1/ D †T.�/ for an arbitrary real vector bundle � (the same
is true for complex vector bundles with † replaced by †2). Thus, we obtain a map
†MO.n/! M/.nC 1/; the other two maps are constructed in a similar way.

The spaces MO.n/;MSO.n/;MU.n/, with the maps constructed above, compose
the spectra

: : : ;MO.n/;MO.nC 1/; : : :
: : : ;MSO.n/;MSO.nC 1/; : : :
: : : ;MU.n/;†MU.n/;MU.nC 1/;†MU.nC 1/; : : :

[the maps comprising the last spectrum are id†MU.n/ and our map†.†MU.n// D
†2MU.n/! MU.nC 1/]. These spectra are called Thom spectra and are denoted
as MO;MSO, and MU.

Theorem. The bordism theories coincide with the extraordinary homology theories
with the coefficients in the Thom spectra. In other words,

e�O
n .X/ D lim�nCN.X#MO.N//;

e�SO
n .X/ D lim�nCN.X#MSO.N//;
e�U

n .X/ D lim�nC2N.X#MU.N//:
(	)

Before proving this theorem, it is appropriate to make the following remark.
In the course of this book we have encountered Thom spaces in several different
contexts: in connection with characteristic classes (Lecture 31), in connection with
orientations of vector bundles (Lecture 42), etc. But all these things are byproducts
of the Thom theory, whose main result consists in the equalities (	) in the case of
X D S0. In this case, the equalities (	) take the form

e�O
n .S

0/ D �O.pt/ D lim�nCN.S0#MO.N// D lim�nCN.MO.N//;
�SO.pt/ D lim�nCN.MSO.N//;
�U.pt/ D lim�nCN.MU.N//:

Notice also that for sufficiently large N the groups �nCN.MO.N//;
�nCN.MSO.N//; and �nC2N.MU.N//; do not depend on N (prove that!), so in
all these equalities we can drop the lim symbol.

But what is �

n .pt/ (for 
 D O; SO;U)? A singular manifold of a point is a pair

consisting of a manifold M (possibly, with some structure) and a map M ! pt. But
there is only one map of M into pt, so we do not need to specify this map.
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The notation�

n .pt/ is commonly abbreviated to �


n . Elements of the group�O
n

are classes of closed smooth abstract (that is, not embedded or mapped anywhere) n-
dimensional manifolds with respect to the following equivalence relation: M1 � M2

(M1 is cobordant to M2) if there exists a compact manifold W with @W D M1 tM2.
The sum, which is also the difference (all elements have order 2), is defined as a
disjoint union. The direct product operation makes �O� D

L

n�
O
n into a graded

ring.
In Sect. 19.6.C we formulated Thom’s results, which provided a classification of

smooth closed manifolds up to a cobordism. Some partial results on a cobordism
classification for oriented manifolds are formulated in Sect. 19.6.D (closed oriented
manifolds M1 and M2 are oriented cobordant if there exists a compact oriented
manifold W with @W D M1 t .�M2/ where �M2 denotes the manifold M2 with
the opposite orientation). Now we can add to these cases the case of closed stably
almost complex manifolds with an appropriate cobordism relation.

Let us prove that �O
n D �nCN.MO.n//. First, we will construct a map �O

n !
�nCN.MO.N//. Let X be a closed n-dimensional manifold. Embed it into SnCN ,
where N is sufficiently large. By the results of Sect. 19.4, the normal bundle 
 of the
manifold X in SnCN can be mapped into the tautological bundle �N over BO.N/ D
G.1;N/, and this map is homotopically unique. There arises a map of the Thom
space T.
/ into T.�N/ D MO.N/. But T.
/ D SnCN=.SnCN � U.X//, where U.X/
is a tubular neighborhood of X in SnCN . The composition

SnCN ! SnCN=.SnCN �U.X// D T.
/! MO.N/

determines an element of the group �nCN.MO.N//, which, as the reader can check,
depends only on (N and) the class of the manifold X in �O

n ; thus, we obtain a
map �O

n ! �nCN.MO.N//. Next, let us construct a map �nCN.MO.N// ! �O
n .

An element of the group �nCN.MO.N// is represented by a spheroid 'W SnCN !
MO.N/. We can assume that the image of this map is contained in the Thom
space of the tautological bundle over G.M;N/ with some large M; to avoid
cumbersome notations, we will denote this finite-dimensional Thom space again
by MO.N/. Furthermore, the map 'W SnCN ! MO.N/ can be assumed smooth in
the complement to the inverse image of the base point 1 of the space MO.N/
(MO.N/�1 is a smooth manifold). Finally, a small perturbation of this map makes
it generic with respect to the manifold G.M;N/ � MO.N/ in the following sense:
If '.x/ 2 G.M;N/, then the image with respect to (the differential of) the map ' of
the tangent space TxSnCN composes, in the sum with T'.x/G.M;N/, the whole space
T'.x/MO.N/. This property of the map ' is called transversally regular, or t-regular
(where t may be regarded as an abbreviation of the word “transversally” or of the
name of Thom), with respect to G.M;N/ (see Fig. 139).

The transverse regularity implies that the inverse image '�1.G.M; N/ D X �
SnCN is a smooth submanifold of the sphere SnCN whose codimension in the sphere
is equal to the codimension of G.M;N/ is MO.N//, that is, is equal to N; thus,
dim X D n. (For details related to the t-regularity, see the books Beginner’s Course
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'(Sn+N )

G(M,N)

MO(N)

Fig. 139 t-regular map

in Topology by Fuchs and Rokhlin [40] or Differential Topology by Hirsch [45].) It
is not hard to prove (again, we leave the details to the reader) that the class of the
manifold X in�O

n depends only on the original element of the group�nCN.MO.N//,
so we get a map �nCN.MO.N// ! �O

n . And we also leave to the reader the proof
of the facts that the maps�O

n  ! �nCN.MO.N// constructed are mutually inverse
homomorphisms.

Proofs of the equalities

�SO
n D �nCN.MSO.N// and �U

n D �nC2N.MU.N//

are absolutely similar (one needs only to notice that furnishing the tangent bundle of
a manifold by an orientation or a stable complex structure is equivalent to endowing
with an orientation or a complex structure the normal bundle of the manifold in a
sphere of a sufficiently large dimension).

This completes the proof in the case X D S0. The transition to the general case
does not meet any serious difficulties, and we will restrict ourselves to a general
outline. Let .M; f / be a closed n-dimensional singular manifold of the space X. Let
us embed M into SnCN . As before, we construct a map 'W SnCN ! MO.N/ which
takes the complement of a tubular neighborhood to M in SnCN to the base point. The
map f WM ! X is extended, in an obvious way, to a mapef WU ! X, and the maps '
andef compose a map SnCN ! .X �MO.N//=X,

s 7!
�

base point; if s … U;
.ef .s/; '.s//; if s 2 U:

The composition of this map with the projection .X � MO.N//=X ! X#MO.N/
determines an element of �nCN.X#MO.N//, and it is not hard to show that
this gives rise to a map �O

n .X/ ! �nCN.X#MO.N//, in particular, e�O
n .X/ !

�nCN.X#MO.N//. The fact that it is an isomorphism can be proved directly, or
deduced from the general theory of Sect. 38.5. (Consider �O� and homology with
coefficients in the Thom spectrum MO as two different extraordinary homology
theories; one can check that the construction above determines a homomor-
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phism between these two theories, and then apply the uniqueness theorem from
Sect. 38.5.C.)

The oriented and complex cases are similar.

C: Cobordisms

The construction of Sect. 38.5 gives not only extraordinary homology, but also
extraordinary cohomology. The extraordinary cohomology theories corresponding
to the Thom spectra are called theories of cobordisms. The notations are ��

O D
L

�n
O; �

�
SO D

L

�n
SO; �

�
U D

L

�n
U . Thus,

�n
O.X;A/ D �.†N.X=A/;MO.nC N//;

�n
SO.X;A/ D �.†N.X=A/;MSO.nC N//;
�n

U.X;A/ D �.†2N.X=A/;MU.nC N//:

In particular,

�n
O.pt/ D �.SN ;MO.nC N// D �N.MO.nC N/ D �O�n.pt/;

and, similarly,

�n
SO.pt/ D �SO�n.pt/; �n

U.pt/ D �U�n.pt/:

Thus, in particular,�n

.pt/ D 0 for n > 0; 
 D O; SO;U.

EXERCISE 1. Cobordisms possess natural multiplicative structures: Reconstruct
the details.

EXERCISE 2. Let X be a closed manifold of dimension m. Then�n
O.X/ is the group

of equivalence classes of pairs .M;F/ where M is a closed manifold of dimension
m � n and f WM ! X is a continuous map. The groups �n

SO.X/ and �n
U.X/ are

described in the same way, but with an additional condition that the virtual bundle
f ��.X/ � �.M/ (over M) is furnished, respectively, with an orientation or a stable
complex structure. In particular,

�O
n .X/ D �m�n

O .X/ always;
�SO

n .X/ D �m�n
SO .X/; if X is oriented;

�U
n .X/ D �m�n

U .X/; if the tangent bundle �.X/;
is furnished by a stable complex structure

(“Poincaré isomorphisms”).
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H∗(X ) or H∗(X ; Z2)

Fig. 140 Atiyah–Hirzebruch spectral sequence for �O and �SO

D: A Relation to the Usual Homology and Cohomology

The bordisms of all kinds are related to each other and to the homology by natural
maps which compose the diagram

�U
n .X/ ��! �SO

n .X/ ��! �O
n .X/

# # #
Hn.X/ D Hn.X/ ��! Hn.XIZ2/:

The upper horizontal arrows are defined by partial or full forgetting additional
structure, the lower horizontal arrow is the reduction mod 2, and the vertical arrows
act according to the formula .M; f / 7! f�ŒM�. These vertical homomorphisms have
a transparent geometric sense. Namely, the class ˛ 2 Hn.X/ belongs to the image
of the homomorphism �SO

n .X/ ! Hn.X/ if and only if it is represented by a
cycle realizable as an oriented singular manifold. Moreover, if X is a manifold
of dimension > 2n, then this singular deformation may be turned, by a small
perturbation, into an embedded manifold. Thus, our homomorphism is directly
related to the problem of realizing homology classes by (nonsingular) submanifolds,
which we discussed in Sect. 17.2. A similar sense (but without orientations and with
coefficients in Z2) can be attributed to the homomorphism�O

n .X/! Hn.XIZ2/.
Notice also that the homomorphisms considered are also closely related with the

Atiyah–Hirzebruch spectral sequence, more precisely, with its differentials. Namely,
also, at the moment we know nothing of the group of bordisms of a point (we will
study them in the next section); it is clear a priori that �O

n .pt/ D �SO
n .pt/ D 0 for

n < 0, and �O
0 .pt/ D Z2; �

SO
0 .pt/ D Z. Therefore, the Atiyah–Hirzebruch spectral

sequence for�O�.X/ and�SO� .X/ looks like what is shown in Fig. 140.
The kernels of differentials acting from H�.X/ and H�.XIZ2/ are quotient

groups of �SO� .X/ and �O�.X/; this is how our homomorphisms�SO� .X/ ! H�.X/
and �O�.X/ ! H�.XIZ2/ are defined. Thus, the obstruction to realizability of a
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homology class by a singular manifold, in particular, by a submanifold, lies in
the nontriviality of differentials of the Atiyah–Hirzebruch spectral sequence. See
the details in two works of Buchstaber [24] and [25]. We restrict ourselves to
a remark that all the differentials of the Atiyah–Hirzebruch spectral sequences
have finite order, and, consequently, the homomorphisms �SO� .X/ ! H�.X/ and
�U� .X/! H�.X/ have finite cokernels (for finite CW-complexes X).

E: Homotopy Sufficiency

As we noticed earlier (see Sects. 38.1 and 39.3), K-theory is not homotopy sufficient
in the sense that a map of a simply connected finite CW complex X into a simply
connected finite CW-complex Y inducing an isomorphism K�.X/ Š K�.Y/ does
not have to be a homotopy equivalence. Contrary to this, the theories �SO� .X/ and
�U� .X/ [as well as ��

SO.X/ and��
U.X/] are homotopy sufficient.

Theorem. If a continuous map f WX ! Y of one simply connected CW complex to
another one is such that one of the homomorphisms

f�W�SO� .X/! �SO� .Y/;
f�W�U� .X/! �U� .Y/;
f �W��

SO.Y/! ��
SO.X/;

f �W��
U.Y/! ��

U.X/

is an isomorphism, then f is a homotopy equivalence.

Proof. Let us begin with the case of f�W�SO� .X/ ! �SO� .Y/. It is sufficient to
prove that f induced an isomorphism in the (integral) homology. Furthermore, if
we turn the map f into an embedding homotopy equivalent to this map and then
use the exactness of the homology sequence of a pair, we arrive at the following,
equivalent statement: If for a finite CW complex Z, e�SO� .Z/ D 0, which is the
same as �SO� .Z/ D �SO� .pt/, then eH�.Z/ D 0. We can assume that Z is connected.
Suppose that eH�.Z/ ¤ 0; let q be the smallest positive number such that Hq.Z/ is not
zero. Then, the Hurewicz homomorphism �q.Z/ ! Hq.Z/ is an isomorphism, and
hence there exists a nontrivial homology class ˛ 2 Hq.Z/ which is represented by a
spheroid Sq ! Z. But Sq is an orientable q-dimensional manifold, so this spheroid
may be regarded as an oriented singular manifold. This singular manifold represents
an element of e�SO

q .Z/, nontrivial since it has a nontrivial image in homology. Thus,
e�SO

q .Z/ ¤ 0, a contradiction. The case of �U is the same: A sphere has a stably
trivial normal bundle, so the spheroid as above also represents a nontrivial element
of e�U

q .Z/. The reduction of cases of f � to the cases of f� can be based on Exercise 2;
we leave the details to the reader.
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44.2 Computations

A:�O�

Theorem 1. �O� is the ring of polynomials (over Z2) of variables xi; dim xi D i,
where i runs through positive integers not of the form 2s � 1; s � 1. For xi, one can
take the class of an arbitrary smooth closed i-dimensional manifold X such that

hPi.w1; : : : ;wi/; ŒX�i ¤ 0;

where Pi is the (reduced modulo 2) polynomial which expresses the symmetric
function

P

xi
k via the elementary symmetric functions (see Sect. 40.1.B) and ŒX�

is the fundamental homology class mod 2 of X.

This theorem belongs to Thom. Its proof runs as follows. We need to find the
homotopy groups �nCN.MO.N//; n � N. It is clear a priori that all elements of
these groups have order 2. The mod 2 cohomology of MO.N/ is known to us: The
Thom isomorphism connects it with the mod 2 cohomology of BO.N/ � G.1;N/
calculated in Lecture 13 (Sect. 13.8.C). It can be easily shown with the help of the
multiplication

H�.MO.N/IZ2/ � H�.BO.N/IZ2/! H�.MO.N/IZ2/

that the cohomology H�.MO.N/IZ2/ is generated additively by all elements of the
form uwi1 ; : : : ; uwir ; 1 � i1 � � � � � ir, where u 2 HN.MO.N/IZ2/ is the Thom
class and wi 2 Hi.BO.N/IZ2/ are the Stiefel–Whitney classes. The formulas

Sqk w D
X

 

m � k

j

!

wk�jwmCj and Sqk u D uwk

(see Sect. 31.2) can be used to compute the action of the Steenrod squares in
H�.MO.N/IZ2/. This computation yields the following result: Up to dimension 2N,
the cohomology H�.MO.N/IZ2/ is a free module over the Steenrod algebra A2, and
the generators of this free module may be explicitly found (we recommend to the
reader to do this computation). [Notice the fact that the A2-module H�.MO.N/IZ2/
is free has a simple proof involving almost no calculations; see Stong’s book.]

Let us use the Adams spectral sequence (Chap. 5). We see that in the initial
term of this spectral sequence only the first row is different from zero, and the
nonzero elements in this row correspond to the free generators of the A2-module
H�.MO.N/IZ2/. (The other rows contain relations between generators, relations
between relations, and so on, but here are no such things, since the module is
free.) Hence, in the Adams spectral sequence, up to a certain dimension, all the
differentials are trivial, and this leads to an immediate computation of the homotopy
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groups. [Actually, this shows that up to dimension � 2N the space MO.N/ is
homotopy equivalent to a product of K.Z2;N C k/s.]

This computation implies the fact (already known to us from Lecture 19) that
the class of a manifold in �O� is fully determined by its Stiefel–Whitney numbers
(we leave to the reader the deduction of this fact from Theorem 1). In Sect. 19.6.D,
we also noticed that the Stiefel–Whitney numbers are not independent and provided
examples of relations between them. Now we can give a full list of these relations.

Theorem 2. Let 'WHn.BO.N/IZ2/ ! Z2 be a homomorphism. There exists a
smooth closed n-dimensional manifold M such that for every ˛ 2 Hn.BO.N/IZ2/,

h˛M; ŒM�i D '.˛/;

where ˛M is a characteristic class of (the tangent bundle of) the manifold M, if and
only if for every ˇ 2 H�.BO.N/IZ2/,

'.Sqˇ C ˇ Sq�1 w/ D 0

(where Sq D 1C Sq1CSq2C : : : and w D 1C w1 C w2 C : : : ).
(The reader can prove this theorem for an exercise or find the proof in Stong’s

book.)
Let us look at what this theorem means for small dimensions. A simple

computation shows that

Sq�1 w D 1C w1 C .w21 C w2/C w1w2 C .w22 C w1w3 C w4/C : : : :

For a ˇ 2 H�.BO.N/IZ2/, we denote by Fq.ˇ/ the component of dimension q of
Sqˇ C ˇ Sq�1 w. The last formula gives

F0( ) F1( ) F2( ) F3( ) F4( )

1
w1

w2
1

w2

w3
1

w3

w1w2

1
0
0
0
0
0
0

w1

0
0
0
0
0
0

w2
1 + w2

0
0
0
0
0
0

w1w2

w3
1 + w1w2

w3
1

w3

0
0
0

w2
2 + w1w3 + w4

w2
1w2

w2
1w2

w2
1w2

0
0

w1w3 + w2
1w2

β β β β β β

By Theorem 2, every polynomial in the qth column of this table takes zero value
on the fundamental class mod 2 of every smooth closed q-dimensional manifold, and
this gives all relations between Stiefel–Whitney numbers. In particular, all Stiefel–
Whitney numbers of one- and three-dimensional manifolds are equal to zero (for
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one-dimensional manifolds it is obvious; for three-dimensional manifolds it was
proven by Rokhlin several years before Thom’s work); if dim X D 2, then w21ŒX� D
w2ŒX� (we already know this), and if dim X D 4, then w21w2ŒX� D w1w3ŒX� D 0 and
w22ŒX� D w4ŒX�.

In conclusion, we will give one of the possible descriptions of multiplicative
generators xi of the ring �O� (see Theorem 1). If i is even, then xi D RPi; if i D
2p.2q C 1/ � 1; p � 1; q � 1, then xi is a submanifold of the product RPm �
RPn; m D 2pC1q; n D 2p, which is determined, in the homogeneous coordinates
.u0W : : : W um/; .v0W : : : W vn/, by the equation F.u; v/ D 0, where F is an arbitrary
bilinear form of rank n. (This system was found in 1965 by Milnor; another system
of generators was found in 1956 by Dold.)

B:�SO
�

Theorem 3. �SO� ˝Q is the ring of polynomials (over Q) of variables of degree 4i.
More precisely: The homomorphism �SO ! ZŒt1; t2; : : : �; deg.ti/ D 4i determined
by the formula

M 7!
X

i1
���
ir

pi1 : : : pir ŒM�ti1 : : : tir

has, in every dimension, a finite kernel and finite cokernel.

This fact, which has already been mentioned in Sect. 19.6.D, may be formulated
in the following way. (1) If the dimension of an oriented manifold M is not divisible
by 4, then, for some k, the manifold kM is oriented cobordant to zero. (2) If
oriented manifolds M1 and M2 have equal dimensions divisible by 4 and have equal
Pontryagin numbers, then, for some k, the manifolds kM1 and kM2 are oriented
cobordant. (3) Every set fpi1:::ir j i1 C � � � C ir D tg of integers is proportional to the
set of Pontryagin numbers of some oriented 4t-dimensional manifold. Theorems 4
and 6, stated below, imply that in statements (1) and (2) one can take k D 2.

A proof of Theorem 3 is relatively simple: It is based on Cartan–Serre’s theorem
(Sect. 26.4). First of all, we already know that

rank Hs.BSO.N// D
8

<

:

0; if s is not divisible by 4;
the number of partitions of t

into sums of natural numbers; if s D 4t:

(Sect. 13.8.C). By the Thom isomorphism, the group HNCs.MSO.N// has the same
rank. If we restrict ourselves to dimensions < 2N, we can assume that the ring of
the rational cohomology of MSO.N/ is free (relations may appear in dimensions
� 2N). Hence, for s� N, the rank of the group �SO

s D �NCs.MSO.N// coincides
with the rank of the group Hs.BSO.N//. It is easy to see that the rank of the group
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�SO
s calculated this way is as stated in Theorem 3. It remains to notice that the

Pontryagin numbers pi1:::ir are linearly independent (see Sect. 19.6.D) and hence
they determine a monomorphism of the space �SO� ˝�Q into QŒt1; t2; : : : �. Since the
dimensions of homogeneous components are the same, this monomorphism has to
be an isomorphism.

Below, we give a survey of further results. Most are proved in Stong’s book; see
also bibliography in that book.

Theorem 4 (Milnor, Averbuch). The ring �SO� does not have elements of an odd
order.

The most elegant proof of this result uses the Adams spectral sequence modulo
an odd prime.

Theorem 5 (Milnor, Novikov). The ring �SO� =Tors is isomorphic to the ring of
integral polynomials of variables of dimension 4i; i D 1; 2; 3; : : : .

(This theorem may be regarded as a more precise version of Theorem 3.)

Theorem 6 (Rokhlin, Wall). The ring �SO� does not have elements of order 4.

Theorem 7. The quotient ring �SO� =2�SO� may be described in the following way.
Let W be a subring of the ring Z2Œxi; i D 1; 2; : : : ; dim xi D i� generated by
x2k; x2k�1 .k ¤ 2j/ and .x2j/2, and let @WW ! W be the differential defined by the
formulas @x2k D x2k�1; @x2k�1 D 0; @ .x2j/2 D 0. Then �SO� =2�SO� is isomorphic to
Ker @, and the image of Tors�SO� in Ker @ coincides with Im @.

Because of the absence in �SO� of the 4-torsion (Theorem 6), it is sufficient,
for the proof of Theorem 7, to know H�.MSO.N/IZ2/ as an A2-module. The
computation of this module was done by Novikov. He proved that the A2-module
H�.MSO.N/IZ2/ coincides (up to dimension � 2N) with the Z2-cohomology of a
product of some spaces of the type K.Z2;NC k/ and K.Z;NC k/. Notice that even
in stable dimensions the space MSO.N/ does not have a homotopy type of a product
of Eilenberg–MacLane spaces: The Postnikov factors (see Sect. 37.4) are not zero,
but have odd orders.

Theorem 8. The homomorphism �SO� ! �O� of forgetting orientation maps iso-
morphically the ring �SO� =2�SO� onto the subring Ker @ � �O� D Z2Œx2; x4; x5; : : : �,
where xi; i ¤ 2j � 1 are (appropriately chosen) generators of the ring �O� (see
Theorem 1).

As we already noted, Theorem 3 shows that an arbitrary set

fp11;i2;::: j i1 � i2 � : : : ; i1 C i2 C � � � D tg

becomes, after multiplication by some integer, the set of Pontryagin numbers of
some 4t-dimensional manifold. It remains to find this integer, which can be done by
the following statement:
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Theorem 9 (Stong). A set fpi1;i2;::: j i1 C i2 C � � � D 4tg is the set of Pontryagin
numbers of a smooth oriented closed 4t-dimensional manifold if and only if this
does not contradict the integrality theorems from Sect. 42.5.

In conclusion, we present a useful corollary from theorems given above.

Corollary. For n � 3, every smooth closed oriented n-dimensional manifold is the
boundary of a smooth compact oriented .nC1/-dimensional manifold. Every smooth
closed oriented four-dimensional manifold is oriented cobordant to a connected sum
of some number of manifoldsCP2 or�CP2. The sign is determined by the sign of the
signature of a given manifold, and the number of summands is equal to the absolute
value of the signature.

(These results belong to Rokhlin; they were obtained way before the general
theorems concerning the structure of �SO� .)

C:�U�

Theorem 10 (Milnor, Novikov). The ring�U� is isomorphic to the ring of integral
polynomials of generators of dimension 2i; i D 1; 2; : : : . The generators are
represented by some complex projective algebraic manifolds.

Notice that after a tensor multiplication by Q, this theorem becomes a corollary
of the Cartan–Serre theorem (compare with Theorem 3). Moreover, Theorem 10
shows that the Chern numbers fully determine the class of a stably almost complex
manifold in �U� .

Theorem 11 (Stong, Hattori). A set fci1;i2;::: j i1C i2C � � � D tg is the set of Chern
numbers of a smooth closed stably almost complex 2t-dimensional manifold if and
only if this does not contradict the integrality theorems from Sect. 42.5.

Theorem 12 (Milnor, Novikov). The forgetful homomorphism �U� ! �SO� maps
the ring �U� epimorphically onto �SO� =Tors. The forgetful homomorphism �U� !
�O� maps the ring �U� epimorphically onto the subring of �O� consisting of the
squares of elements of the ring �O� .

D: Other Types of Cobordisms

Historically, the first computation of cobordism groups was done by Pontryagin,
who proved, in the 1930s, that the ring �fr� of cobordism classes of cobordisms of
“framed” manifolds, that is, manifolds with trivialized normal bundles, coincides
with the (composition) ring of stable homotopy groups of spheres. (Pontryagin’s
work also contains a corresponding nonstable statement. See the details in his
book [68].)
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There exist computations of cobordism rings of many other types (see sur-
vey of results in Chap. 4 of Stong’s book). Let us mention the computation
of SU-cobordisms by Conner, Floyd, and Wall, and the computation of spinor
cobordisms by Anderson, Brown, and Peterson (in both cases, important preliminary
results belong to Novikov).

44.3 Relations to K-Theory

In accordance with the general arrangements of this chapter, we restrict ourselves
to the complex version of K-theory. For a more complete and detailed presentation,
see Conner and Floyd [32].

A: The Homomorphism �

We are going to define a multiplicative map

	W��
U ! K�

of the theory of unitary cobordisms into the (complex) K-theory. Let ˛ 2 e�n
U.X/,

and let M 
 N 
 jnj C dim X. This ˛ can be represented by a map

f W†2N�nX ! T.�/;

where � is the (complex) tautological bundle over CG.M;N/. According to
Sect. 42.2, the bundle � possesses a canonical K-orientation u.�/ 2 eK.T.�//; put

	.˛/ D f �.u.�// 2 eK.†2N�nX/ D eKn�2N.X/ D eKn.X/:

Obviously, this 	.˛/ is well defined.

EXERCISE 3. Check that 	 is a multiplicative map of the theory ��
U into the

K-theory.

EXERCISE 4. Show that the homomorphism

	W��2n
U .pt/! K�2n.pt/ D Z

assigns to the class of a 2n-dimensional closed stably almost complex manifold M
its “Todd genus”

T .M/ D hT .�.M//; ŒM�i ;
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where T .�.M// D G.c1.M/; c2.M/; : : : /, where, in turn,

G.e1.x1; x2; : : : /; e2.x1; x2; : : : /; : : : / D
Y

i

1 � e�xi

xi
:

EXERCISE 5. Describe the composition map

��
U

	��!K
ch��!H�.�IQ/:

B: Chern Classes with Values in Cobordisms

Theorem. There exists a unique function which assigns to a complex vector bundle
� with a finite CW base X the “Chern classes” �i.�/ 2 �2i

U.X/; i D 1; : : : ; dim �
which possess the following properties (we put �.�/ D 1C�1.�/C� � �C�dim �.�/):

(1) �.f ��/ D f ��.�/.
(2) �.� ˚ �/ D �.�/�.�/.
(3) If � is the (one-dimensional) Hopf bundle over CPn, then �.�/ D 1C � , where

� 2 �2
U.CPn/ is the cobordism class represented by CPn�1 (see Exercise 2).

What is presented below is a sketch of a proof. The reader can find all the details
in the book by Conner and Floyd cited above.

The construction which proves both existence and uniqueness of the classes �i

is as follows. If the bundle � is one-dimensional, then it is induced by the Hopf
bundle over CPN with N large enough [indeed, BU.1/ D CP1], and the class �.�/
is determined by condition (3). Assume that cobordism Chern classes with required
properties have already been constructed for bundles of dimension < n, and let
dim � D n. Consider the fibration pW bX ! X with the fiber CPn�1 associated with
� [points of bX are passing through the origin lines in the fibers of �]. The bundle
p�� splits canonically into the sum of a one-dimensional bundle and an .n � 1/-
dimensional complement: The fiber .p��/`, where ` 2 bX is a line in the fiber �x of
� .x D p.`/ 2 X/, coincides with �x and canonically splits as `˚`?. Thus, in virtue
of the induction hypothesis and condition (2), the cobordism Chern classes of p��
are defined. By condition (1), we must have

p�.�.�// D �.p�.�//;

and our goal will be achieved if we show that

p�W��
U.X/! ��

U.
bX/

is a monomorphism. But this follows from a general fact established by Dold.
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Lemma. Let h be a multiplicative extraordinary cohomology theory and let �WE !
X be a locally trivial fibration with the fiber F, where X and F are finite CW
complexes, and X is connected. Let iWF ! E be the inclusion map. Furthermore, let
h�.F/ be a free h�.pt/-module with generators i�c1; : : : ; i�cn for some c1; : : : ; cn 2
h�.E/. Then h�.E/ is a free h�.X/-module with generators c1; : : : ; cn; in other
words, for every a 2 h�.E/, there exist unique a1; : : : ; an 2 h�.X/ such that

a D ��.a1/c1 C � � � C ��.an/cn:

In particular, ��W h�.X/! h�.E/ is a monomorphism.

We leave the proof of this lemma to the reader. It can be easily deduced from
the cobordism spectral sequence of the fibration � . Another plan, which is realized
in the work of Conner and Floyd, consists in first proving the statement for trivial
bundles, and then using multiple Mayer–Vietoris–like sequences (see Sect. 12.7).

Dold’s lemma can be applied to our fibration pWbX ! X. Indeed, it is easy to prove
with the help of the Atiyah–Hirzebruch spectral sequence that ��

U.CPn�1/ is a free
��

U.pt/-module with the generators 1; �; �2; : : : ; �n�1, where � 2 �2.CPn�1/ is the
element described in condition (3) of our theorem. In particular, � D �1.�/, where
� is the Hopf bundle over CPn�1. But the fibration � is the restriction of some one-
dimensional bundle over bX 
 CPn�1, namely, the one-dimensional summand of
the splitting of the bundle p�� into a sum. Hence, the class � is the image of some
class e� 2 �2

U.
bX/ (the first cobordism Chern class of the one-dimensional bundle

mentioned above) with respect to the homomorphism induced by the inclusion map
CPn�1 ! bX, and the classes �2; : : : ; �n�1 are images of the classese�2; : : : ;e�n�1.

This completes the proof of the theorem.

C: Interaction of � and �

Since

�1.� ˚ �/ D �1.�/C �1.�/;

there arises a homomorphism

�1WK.X;A/! �2
U.X;A/:

Denote be �01 the composition

K.X;A/ D eK.X=A/ D eK�2.X=A/
D eK.†2.X=A//

�1��!e�2.†2.X=A// D e�0
U.X=A/ D �0

U.X;A/:
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EXERCISE 6. Show that the composition

K.X;A/
�01��!�0

U.X;A/
	��!K.X;A/

is � id. (Hint: It is sufficient to check this for X D pt;A D ;.)

Corollaries (From Exercise 6).

(i) There exists a natural additive direct summand embedding

K.X;A/! �0
U.X;A/:

(ii) There is a natural multiplicative Z2-graded isomorphism

K�.X;A/ D ��
U.X;A/˝��

U.pt/ Z;

where the action of ��
U.pt/ in Z is determined by the Todd genus��

U.pt/! Z.
(See Exercise 4.)

44.4 Cohomology Operations in Cobordisms
and the Adams–Novikov Spectral Sequence

As we stated before (see the introductory phrase of Lecture 40), cohomology
operations may be defined in any extraordinary cohomology theory. Here we will
consider cohomology operations in the theory�U.

Examples of cohomology operations. In our constructions of cohomology
operations ˛ we will restrict ourselves to the description of the map

˛XW��
U.X/! ��

U.X/

for the case when X is a closed stably almost complex manifold. It is sufficient,
since an arbitrary finite CW complex Y can be represented as a retract of such a
manifold X (for example, of the Cartesian square of the double of the closure of its
neighborhood in an Euclidean space), and then ��

U.Y/ will be a direct summand in
��

U.X/. In this case, we will use the interpretation of cobordisms given in Exercise 2.
We will consider two ways of constructing cohomology operations. The first

one will work, actually, for any multiplicative cohomology theory. It consists in a
fixation of some element a of the ring ��

U.pt/ and assigning to an arbitrary X the
operation of the multiplication by a:

��
U.X/

�a��!��
U.X/:
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Let us give a geometric description of this construction. If an element a 2 ��2r
U .pt/

is represented by a 2r-dimensional manifold A, and the element of ��
U.X/ is

represented by a map f WZ ! X (with an appropriate structure, as indicated
in Exercise 2), then the image of this element of ��

U.X/ with respect to our
cohomology operation is represented by the composition

Z � A
projection�����!Z

f��!X:

This operation reduces the dimension by 2r.
Another way to construct cobordism cohomology operations assumes that a

sequence ! D .!1; !2; : : : / of nonnegative integers with finitely many nonzero
terms is fixed. Consider again an element of the ring ��

U.X/ represented by a map
f WZ ! X and a complex vector bundle � over Z stably equivalent to the virtual
bundle f ��.X/� �.Z/. According to Sect. 44.3, there is a characteristic class

�!.�/ D �1.�/!1�2.�/!2 � � � 2 �2j!j
U .Z/;

where j!j D !1 C 2!2 C : : : . This class is represented by some map gWW ! Z
(again, with an appropriate structure). The image of our element of ��

U.X/ with
respect to our cohomology operation is represented by the composition

W
g��! Z

f��!X:

This operation is denoted as s! ; it raises the dimension by 2j!j.
All the cobordism cohomology operations considered above are, obviously,

stable (that is, they commute with the suspension isomorphism).

B: The Landweber–Novikov Algebra

Denote by AU the algebra of all stable cohomology operations in ��
U . The

following theorem (which we formulate here without a proof) was proved in 1967
independently by Landweber and Novikov.

Theorem. (i) The subgroup of the algebra AU generated by the operations s! is
closed with respect to the composition; that is, this subgroup is, actually, a
subalgebra.

(ii) The map��
U˝S! AU defined by the formula ˛˝s 7! ˛ıs is a monomorphism

and has a dense image.

The algebra S is called the Landweber–Novikov algebra.
The following interpretation of the Landweber–Novikov algebra was found by

Buchstaber and Shokurov (see [27]). Denote by Diff1.Z/ the group of formal
diffeomorphisms of a line of the form
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t 7! tC x1t
2 C x2t

3 C : : : ; x1; x2; � � � 2 Z:

Notice that the group Diff1.Z/ acts in the ring P D ZŒx1; x2; : : : � of functions
on itself by left translations. Denote by S the algebra of all Diff1.Z/-invariant

formal differential operators in P, that is, formal power series in
@

@x1
;
@

@x2
; : : :

with coefficients in ZŒx1; x2; : : : � which take elements from P into elements of P
and commute with the transformations from Diff1.Z/. For an arbitrary sequence
! D .!1; !2; : : : / as above, define an operator D! 2 S by the formula

P.x ı y/ D
X

!
D!P.x/y!;

where x D .x1; x2; : : : /; y D .y1; y2; : : : /; ı is the operation in Diff1.Z/, and y!

means y!11 y!22 : : : . For example,

D.1;0;0;::: / D @

@x1
C

1
X

kD2
kxk�1

@

@xk
;

D.0;1;0;::: / D @

@x2
C

1
X

kD3
.k � 1/xk�2

@

@xk

D.2;0;0;::: / D 1

2

@2

@x21
C

1
X

kD2
kxk�1

@2

@x1@xk

C1
2

1
X

kD2

1
X

`D2
k`xk�1x`�1

@2

@xk@x`
C 1

2

1
X

kD3
.k � 1/.k � 2/xk�2

@

@xk
:

The following theorem is the main result of Buchstaber and Shokurov.

Theorem. The correspondence s! $ D! yields an isomorphism between the rings
S and S.

The isomorphism S Š S makes P an S-module, and this module also has a
cobordism interpretation. Namely, denote by �r

U.Z/ the part of the tensor product
�r

U ˝ Q which is distinguished by the condition that all the Chern numbers are
integers. Thus,�r

U � �r
U.Z/ � �r

U˝Q. It follows from the results of Sect. 44.2.C
that the group�r

U.Z/=�
r
U is finite. The action of the operations from S is naturally

extended from��
U to ��

U.Z/.

Theorem. The isomorphism between S and S can be extended to an isomorphism
between the S-module��

U.Z/ and the S-module P.
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C: The Adams–Novikov Spectral Sequence (Novikov [65])

The homotopy sufficiency of the theory of unitary cobordisms (see Sect. 44.1.E)
creates a principal possibility for computing stable homotopy groups for a space
with known cobordism groups (with the action of operations from AU). This possi-
bility finds its realization in the cobordism analogy of the Adams spectral sequence,
the so-called Adams–Novikov spectral sequence. It is defined for an arbitrary finite
CW complex X, has the initial term ExtAU .�

�
U.X/;�

�
U/, and converges to the stable

homotopy groups of X. In the case on the one-point X, we obtain a spectral sequence

ExtAU .�
�
U; �

�
U/ H) �S�;

converging to the homotopy groups of spheres. The main difficulty in applications
of this spectral sequence stems from the fact that not too much is known about its
initial term. Let us mention some results concerning this term.

Part (ii) of the Landweber–Novikov theorem shows that

ExtAU .�
�
U; �

�
U/ D ExtS.Z; ��

U/;

and the Buchstaber–Shokurov theorem allows us to replace S in this equality by S.
It is not hard to prove that

ExtS.Z;P/ D 0:

Buchstaber suggested that to compute ExtS.Z; ��
U/ one should use the filtration

0 D N0 � N1 � � � � � N1 D ��
U.Z/;

where N0 D ��
U ; Nr

i D f� 2 �r
U.Z/ j s!� 2 NrC2j!j

i�1 for j!j > 0g: The
quotients Nr

i =Nr
i�1 are finite and trivial as S-modules. (Currently, N1=N0 and N2=N1

are known; see Shokurov [78].) The Buchstaber filtration gives rise to a trigraded
spectral sequence

fEs;t;q
r ; s � 0; q � 0; sC t � 0; ds;t;q

r WEs;t;q
r ! Es�r;tCr�1;q

r g

in which E0;�;�1 D Ext�S .Z; ��
U/;E1 D E0;0;01 D Z, and, for s > 0,

Es;t;�
1 D Ext�.sCt/;�

S .Z;Ns=Ns�1/:

Since Ns=Ns�1 is a trivial S-module, we have (by Künneth’s formula)
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Ext�.sCt/;q
S .Z;Ns=Ns�1/ D

M

q1Cq2Dq

nh

Ext�.sCt/;q1
S .Z;Z/˝ .N�q2

s =N�q2
s�1 /

i

˚ Tor
�

Ext�.sCt/C1;q1
S .Z;Z/;




N�q2
s =N�q2

s�1
�
�o

:

Thus, to compute the initial term of the Buchstaber spectral sequence, we need to
know ExtS.Z;Z/, and this problem, in virtue of the equality S D S, may be regarded
as a problem from the cohomology theory of infinite-dimensional Lie groups and
Lie algebras. Within this theory, it is possible to prove that

rank Extu;vS .Z;Z/ D
�

1; if v D 3u2 ˙ u;
0 otherwise

(see the book by Fuchs [38]).



Captions for the Illustrations

Page viii. Alexander sphere, the so-called “wild sphere” or “horned sphere”. This
sphere separates three-dimensional Euclidean space into the union of two regions.
One of them is homeomorphic to a 3-ball, the other is nonsimply connected. This
embedding of 2-sphere in 3-space is “wild,” i.e., nonlocally flat, in the infinite set of
points, which is the Cantor set. Let us recall that the regular smooth embedding of a
2-sphere separates 3-space into the union of two simply connected regions

Page xi. The first step in the infinite process of construction of Alexander sphere. We
see two “fingers,” and at their end we see two new “fingers” that are “almost linked”
in 3-space but do not touch one another. On the foreground we see the process of
construction of “killing spaces” (see Chap. 3)

Page 9. Two-dimensional surfaces in three-dimensional space. On the left, like
leafs of a fern, grow projective planes (projective 2-spaces). In the foreground is
the Möbius strip in the form of a “crossed cap.” We can also see the surfaces of
high genus, i.e., 2-spheres with a large number of handles. The surfaces are not the
manifolds. They are homeomorphic to a 2-sphere with three identified points

Page 14. Bifurcations of two-dimensional surfaces inside three-dimensional mani-
folds. I. Two tori are “glued” along the common nontrivial cycle and are transformed
into one torus. Such bifurcations appear in the integrable Hamiltonian systems with
two degrees of freedom

Page 15. Bifurcations of two-dimensional surfaces inside three-dimensional mani-
folds. II

605
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Page 32. Topological zoo. At the right upper corner, we see the construction of a
topological complex with a trivial one-dimensional homology group. But in this
complex, there is a pair of limit points, where arbitrary small neighborhood for each
of these two points has a nontrivial one-dimensional homology group. We then see
the procedure of turning inside out the two-dimensional torus with a hole in ambient
three-dimensional Euclidean space. As a result, we obtain again the 2-torus with a
hole, but the parallel and meridian of the torus change places (switch positions).
The inner side of the torus becomes the outer side. Then, at the left bottom corner,
we see the so-called Antoine necklace. This is obtained as the intersection of
the consequence of embedded solid tori. This “necklace” is totally disconnected
compact perfect metric space and consequently is homeomorphic to the Cantor set.
Then we see minimal surface (soap film) with boundary. It is interesting to note that
this surface can be continuously mapped on its boundary curve (circle) in such a
way that the mapping on the boundary is identical. But the boundary circle is not
a deformational retract of the surface! This minimal surface is the connected sum
of a standard Möbius strip with the so-called “triple Möbius strip,” which is not a
manifold. In the center of the drawing, we see 2-adic solenoid

Page 43. Two-dimensional surfaces. Two spheres with handles are shown as well as
projective planes and “crossed caps,” i.e., representations (models) of the Möbius
strip in three-dimensional Euclidean space, such that its boundary becomes a flat
circle. Almost everywhere such a “model” is a smooth immersion of a Möbius strip
in 3-space, except for two points (branching points)

Page 55. Simplicial (cell) approximation theorem. Arbitrary continuous mapping of
polyhedra can be continuously deformed into simplicial mapping. The idea of the
proof is as follows. Using the small perturbation of the mapping in the image space,
we can “clean out” a small ball. Then the images of the simplexes can be moved into
some sub-polyhedrons formed by the simplices of the same dimension or of lower
dimensions

Page 61. Action of fundamental group on the higher homotopy groups. I. The
element of some homotopy group is represented as spheroid in ambient space,
i.e., by a continuous mapping of the sphere. The element of a fundamental group
is realized by some “loop.” Then, from the spheroid the thin tube grows, moving
along the “loop” until it reaches the initial point of the loop. Thus, each spheroid
is replaced by a new spheroid. This procedure determines the automorphism of the
fundamental group

Page 77. Action of fundamental group on the higher homotopy groups. II. Each
topological space has some homotopy invariants. Among them, the homotopy
groups have an important place. The first of these groups is called the fundamental
group. Their elements are the classes of homotopic “loops.” This group acts by
automorphisms on the other homotopic groups
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Page 78. Knots in three-dimensional manifolds. The theory of classification of the
knots and analysis of their invariants is one of the most complicated fields in modern
mathematics

Page 89. Two-dimensional torus covers twice the Klein bottle. This mapping is
called two-sheeted covering

Page 105. Fiber bundles (foliated spaces or fibrations). These spaces can be
considered as a union of fibers, i.e., of subspaces that are “similar.” They can be
homeomorphic to some fixed topological space. The fibers are parametrized by
points of some other space called “base of fibration”

Page 120. Dehn twisting along the circles (cycles) on surfaces. These operations are
the automorphisms of two-dimensional surface

Page 130. Turning inside out of two-dimensional sphere in three-dimensional
Euclidean space. It is possible to interchange the outer and inner surfaces of
two-dimensional sphere in three-dimensional Euclidean space by using a smooth
regular deformation (without singularities). Important to note that we allow the self-
intersection of the 2-sphere in the process of turning inside out. This deformation—
family of smooth regular immersions—is nontrivial and here only one of its steps is
shown (see the figure from the right)

Page 136. It is possible to turn inside out the two-dimensional sphere in ambient
three-dimensional Euclidean space in the class of smooth immersions. It is clear that
it is impossible to turn inside out the smooth circle embedded in Euclidean plane in
the class of smooth immersions. Some singularities appear during the deformation
when we try to contract the infinitely small loops. On the other hand, we can turn
inside out 2-sphere in ambient three-dimensional Euclidean space in the class of
smooth regular immersions. The rough scheme of deformation is shown in the
drawing. We can see the nine steps of regular homotopy. The position number IX is
“symmetrical,” and at this moment 2-sphere appears to be in the small neighborhood
of the immersed in 3-space two-dimensional projective plane. This immersion is
usually called the Bolyai surface. We can then turn inside out the 2-sphere near
projective plane and repeat the process of deformation in the opposite direction

Page 159. The space, which is locally homologically disconnected (in Chech’s
sense) in dimension one. This is a two-dimensional locally compact Hausdorff space
with a trivial one-dimensional homology group (two-dimensional homology group
is also equal to zero). On the other hand, the space contains two remarkable points.
The first at the left bottom corner and the second located “in infinity.” Their arbitrary
open neighborhood (different from the whole complex, of course) has a nontrivial
one-dimensional homology group. The complex is glued from an infinite number of
“shells.” The hole of each “shell” is glued by the scroll of the next “shell.”
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Page 164. Cellular subdivision, cellular chains, and cellular homotopy

Page 167. Simplicial subdivisions and triangulations of polyhedra. Simplicial
complexes are obtained from the standard simplices as a result of “regular gluing”
along their faces. Simplicial spaces are cell complexes

Page 177. 2-adic solenoid. Let us take the solid torus, i.e., “filled torus.” We then
take a second solid torus and embed it inside the first one, twisting twice along the
axis of the first torus. This process is then repeated with a third solid torus, and
this goes on. Let us consider the “limit” of these solid tori. This limit is called
2-adic solenoid. It turns out that the “finite 2-adic twistings” appear in modern
Hamiltonian and symplectic topology. They describe the important properties of
some Liouville integrable differential equations. See details in the book by A.T.
Fomenko. “Symplectic Geometry”. Second revised edition. – Gordon and Breach,
1995

Page 198. Foliations of three-dimensional manifolds. I. We see the transformation of
two tori into one as a result of gluing-bifurcation along the nontrivial cycle (circle).
Such bifurcations appear in symplectic topology. The regular fibers are diffeomor-
phic to 2-tori, and the singular fibers are constructed in a more complicated way

Page 199. Foliations of three-dimensional manifolds. II. Transformation of one
torus again into one torus in the neighborhood of a singular fiber of the type (1, 2)
inside the three-dimensional Seifert fibration

Page 216. Between two maxima of a smooth function on the two-dimensional
surface there always exists the saddle point. Let us consider a smooth Morse
function (i.e., with nondegenerate critical points) on 2-surface and assume that this
function has two local maxima. Then “between them” there always exists a saddle
point, i.e., “mountain pass.” Let us consider the rubber thread on the surface and
fix its ends in the maxima points. The thread starts to deform along the surface and
stops soon. It then passes through the saddle point

Page 234. Fantasy on the subject of fractals, analogues of Cantor sets, and
noninteger Hausdorff dimension

Page 254. How to unclasp one’s fingers in three-dimensional Euclidean space. I.
The 2-sphere with two handles can be embedded in three-dimensional Euclidean
space in such a way that the handles will be “linked.” But using the regular isotopy
(in the class of smooth embeddings), we can deform the surface into a standard
position and obtain the standard “pretzel.” Several consecutive steps of such a
deformation are shown in the next figures

Page 255. How to unclasp one’s fingers in three-dimensional Euclidean space. II
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Page 256. How to unclasp one’s fingers in three-dimensional Euclidean space. III

Page 257. How to unclasp one’s fingers in three-dimensional Euclidean space. IV

Page 258. How to unclasp one’s fingers in three-dimensional Euclidean space. V

Page 265. Hopf fibration and the subdivision of a 3-sphere into the union of two
solid tori. Let us take two solid tori and glue their boundaries (two tori) by a
diffeomorphism, changing the parallel and meridian of the torus. We obtain 3-
sphere. Let us foliate each of these two solid tori into the union of circles of a type
(1,1), i.e., the circles go once along the parallel and once along the meridian. This is
the well-known Hopf fibration of a 3-sphere, with the circle as the fiber

Page 296. Fibrations with singularities. We see here the “tangent bundle” of a circle
with one singular point. The base here is a circle, embedded into the 2-plane and
having one singular point, where the tangent line is not determined. If the circle is
regularly embedded, then its tangent bundle is homeomorphic to a cylinder

Page 306. Spectral sequences and the orbits of group actions. I. The symmetry
groups play an important role in many mathematical and physical problems. If the
Lie group acts on some topological space, then this action determines the foliation
into the union of the orbits of action. The topology of such foliations can be analyzed
with the help of spectral sequences

Page 307. Spectral sequences and the orbits of group actions. II. The orbit of group
action is the set of points obtained from the one point under action by all elements
of the group of transformation. Different orbits can have different types, topologies,
volumes, and dimensions. The volumes of the orbits determine the function on the
space of orbits. This function plays an important role in the minimal surface theory
and does not vary under the action of the symmetry groups

Page 320. The terms of spectral sequence. The calculation of the homology and
cohomology groups of the topological space can be realized in some cases if we can
represent the space as foliated space. Then we can calculate the infinite sequence
of the “tables” – the terms of spectral sequence. They are connected by differential
operators, which allow us to calculate “the limit table” that gives us the necessary
information about homology groups (cohomology groups) of foliated space

Page 348. Differentials in spectral sequences. The homomorphisms-differentials in
each term-table of a spectral sequence act approximately in the direction shown in
the picture

Page 351. The space of paths on the cell complex. For each cell complex X, there
always exists the contractible fibrated space with the base X. This is the space of all
paths starting at the same point on the complex X
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Page 353. Method of “killing spaces.” This procedure is used to calculate homotopy
groups for topological foliated spaces (Serre method)

Page 370. Bott periodicity and Grassmannian manifolds. Periodicity theorem for
stable homotopy groups of classical Lie groups is proved with the help of the
bundles of geodesics connecting the pairs of fixed points in symmetric spaces. The
middle points of these geodesics, which connect the points E and –E on unitary
group U(n), form the Grassmannian manifold

Page 392. Spectral sequences, cohomological operations, and homotopy groups

Page 396. Method of killing spaces and spectral sequences

Page 403. Three-dimensional lens spaces. These 3-manifolds are obtained by
factorization of three-dimensional sphere with respect to the special actions of finite
Abelian groups

Page 430. Differentials in spectral sequences

Page 436. Consecutive terms (tables) of spectral sequence. Each such table is
endowed by differential (by special homomorphism), which allows us to calculate
the next term (table)

Page 443. The terms of spectral sequence

Page 453. Homotopy groups of spheres. The calculation of these groups is a very
complicated problem

Page 484. Homotopy groups of topological spaces. The elements of homotopy
groups are the classes of homotopic mappings of a sphere into topological space.
The problem of effective calculation of homotopy groups is very complicated

Page 526. The problem of effective algorithmic calculation of homotopy groups of
spheres is not yet finally solved

Page 534. Spectral sequences and differentials (homomorphisms)

Page 550. Homotopy of the Riemannian surface of algebraic function. We see here
a “three-dimensional model” for the smooth deformation of Riemannian 2-surface
of the function w=[(z � a/.z � b/.z � c/.z � d/]1=2 in four-dimensional ambient
Euclidean space (two-dimensional complex space). The 2-surface is diffeomorphic
to a torus if all polynomial roots a, b, c, d are different. If the same roots coincide
(i.e., multiple roots appear), then the Riemannian surface is deformed in such a way
that some disappearing cycles appear
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Page 552. Fantasy on the theme of K-theory, spinor foliations, and differentials in
spectral sequences

Page 580. The kernels of differentials in spectral sequences and cobordisms

Page 618. Homotopy groups of spheres
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