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Theorem. Suppose that X is the boundary of D, a compact manifold with
boundary, and let F: D — R” be a smooth map extending f; that is, dF = .
Suppose that z is a regular value of F that does not belong to the image of f.
Then F~!(z) is a finite set, and W,(f, z) = # F~'(z) mod 2. That is, f winds
X around z as often as F hits z, mod 2. (See Figure 2-21.)
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. Suppose that F~!(z) = {y;, ..., y.}, and around each point y, let B, be

a ball, (That is, B, is the image of a ball in R” via some local parametriza-
tion of D.) Demand that the balls be disjoint from one another and from
X = 0dD. Letf,: dB, — R” be the restriction of F, and prove that

Wif,z) =Wy(fi,2)+ - + Wy(fi,z) mod?2. o >{ |
g — \
(See Figure 2-22.) >< — A 2
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4. Letz € R" — X. Prove that if x is any point of X’ and U any neighbor-

hood of x in R”, then there exists a point of U that may be joined to z TQ g &/v é — Ve )\&ﬁ
by a curve not intersecting X (Figure 2-23).
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