Da compact manifold with (?)

Theorem. Suppose that X is the boundary of D, a compact manifold with boundary, and let $F: D \to \mathbb{R}^n$ be a smooth map extending f; that is, $\partial F = f$. Suppose that z is a regular value of F that does not belong to the image of f. Then $F^{-1}(z)$ is a finite set, and $W_2(f, z) = \#F^{-1}(z) \mod 2$. That is, f winds X around z as often as F hits z, mod z. (See Figure 2-21.)

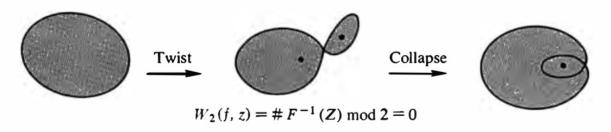
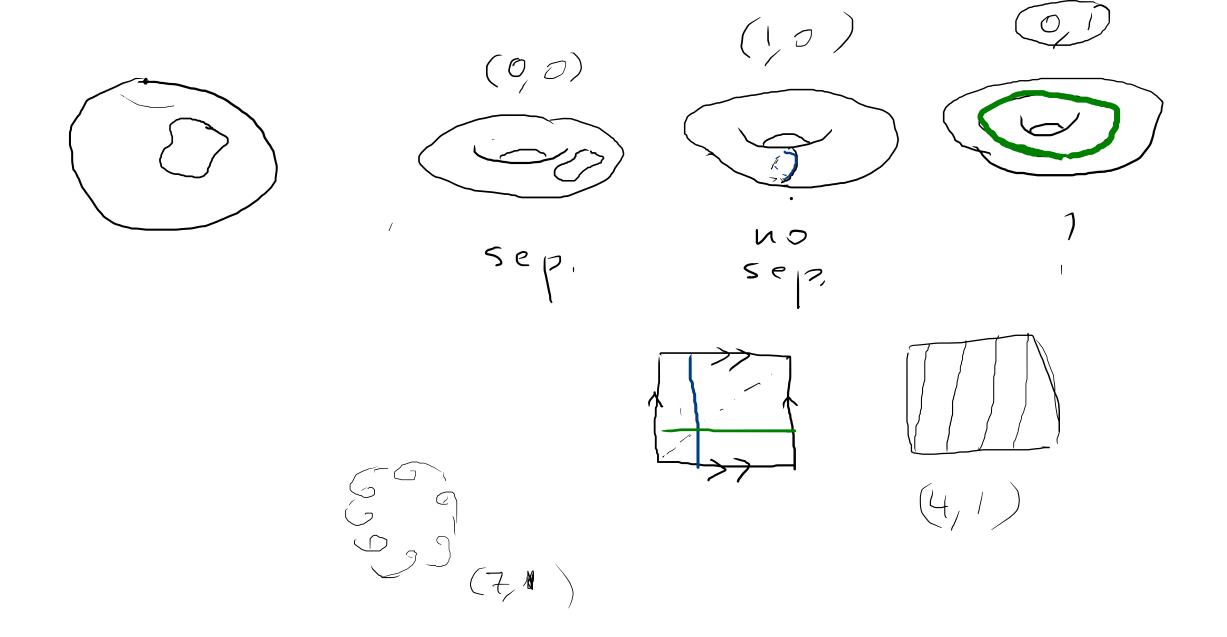


Figure 2-21



bor del teo de la pag. 87 Sen D= U CR, Uab., OD= X Var. Lomp. acotado de dim n-1 $\stackrel{\mathsf{Teo}}{=} \forall \, t \in \mathbb{D} \setminus X \qquad \qquad W_{2}(2, X) = 1$ t val reg de FID COR" $\#F^{-1}(z) = \#z = 1 = z W_{z}(z, X)$. 5; 2 ¢ F(D) => u, x >s^-1 se ext. a u 1,) -5"-1 \Rightarrow $W_{2}(2,X) = gimalo(u) = 20$ Teo de exercia2. Suppose that $F^{-1}(z) = \{y_1, \dots, y_l\}$, and around each point y_i let B_i be a ball, (That is, B_i is the image of a ball in \mathbb{R}^n via some local parametrization of D.) Demand that the balls be disjoint from one another and from $X = \partial D$. Let $f_i : \partial B_i \to \mathbb{R}^n$ be the restriction of F, and prove that

$$W_2(f,z) = W_2(f_1,z) + \cdots + W_2(f_l,z) \mod 2.$$

