What is the tangent space to the paraboloid defined by
xt+yt—z2=qgat(/a,0,0), where (a > 0)?
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Let x,, ..., xy be the standard coordinate functions on R¥, and let
X be a k-dimensional submanifold of R¥. Prove that every point
x € X has a neighborhood on which the restrictions of some k-
coordinate functions x;, ..., x; form a local coordinate system.
[HINT: Let ey, . . ., ey be the usual basis for R¥. As a linear algebra
lemma, prove that the projection of T,(X) onto the subspace span-
ned by e, ..., e, is bijective for some choice of i), ..., i. Show
that this implies that (x,, ..., x;) defines a local diffeomorphism
of X into R¥ at the point x.]

For simplicity, assume that x,,..., x, form a local coordinate
system on a neighborhood V of x in X. Prove that there are smooth
functions g,,4, ..., gy on an open set U in R* such that " may be
taken to be the set

{(als"' agN(a)) € RN:

That is, if we define g: U -— R¥* by g = (g441,---,8n), then V
equals the graph of g. Thus every manifold is locally expressible as

s Qs Brs1(@), . .. a=(a,...,a,) € U}
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(a) Let x,, ..., xy be the standard coordinate functions on R", and let

(b

~

X be a k-dimensional submanifold of R¥. Prove that every point
x € X has a neighborhood on which the restrictions of some k-
coordinate functions x;, ..., x; form a local coordinate system.
[HINT: Letey, ..., ey be the usual basis for R¥. As a linear algebra
lemma, prove that the projection of T ,(X) onto the subspace span-
ned by e,, ..., e, is bijective for some choice of i,, ..., i. Show
that this implies that (x,, ..., x,) defines a local diffeomorphism
of X into R* at the point x.]

For simplicity, assume that x,, ..., x, form a local coordinate
system on a neighborhood V of x in X. Prove that there are smooth
functions g,.,;, ..., gy on an open set U in R* such that ¥ may be
taken to be the set

(@, ... ak ge1(@), ..., gM@) € RV: a=(a;,...,a) € U}

That is, if we define g: U -— R¥* by g = (gx41,...,8n), then V
equals the graph of g. Thus every manifold is locally expressible as
a graph.
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