Definición. Sea A subconjunto de una variedad k-dimensional X. Diremos que A tiene medida cero si para cada parametrización local $\phi: U \to X$ se cumple que $\phi^{-1}(A)$ tiene medida cero en \mathbb{R}^k .

Teorema. Si A es subconjunto de una variedad k-dimensional X, entonces A tiene medida cero si y solo si todo $x \in X$ tiene una parametrización local $\psi : U \to X$ tal que $\psi^{-1}(A)$ tiene medida cero en \mathbb{R}^k .

Demostración. La implicación hacia la derecha es directa de la definición, así que probaremos la otra. Sea $\phi: U \to X$ una parametrización local, con $V:=\operatorname{Im}(\phi)$. Por hipótesis sabemos que para cada $x \in X$ existe $\psi_x: U_x \to X$ tal que $\psi_x^{-1}(A)$ tiene medida cero. Definamos $V_x:=\operatorname{Im}(\phi_x)$ para todo $x \in X$. Notemos que $\{V_x\}_{x\in V}$ forma una cubierta abierta para V. Como los espacios Euclidianos cumplen el segundo axioma de numerabilidad, existe una sucesión $x_1, x_2, \ldots \in V$ tal que

$$V \subseteq \bigcup_{n>1} V_{x_n}. \qquad (*)$$

Fijemos $n \in \mathbb{N}$ y probemos que $\phi^{-1}(A \cap V \cap V_{x_n})$ tiene medida cero. Notemos primero que $V \cap V_{x_n}$ es un abierto, y cumple que está contenido en la imagen de ambas parametrizaciones ϕ y ψ_{x_n} . Entonces considerando ψ_{x_n} restringida al abierto $\psi_{x_n}^{-1}(V \cap V_{x_n})$, vemos que $\phi^{-1} \circ \psi_{x_n}$ es un difeomorfismo. Por otro lado, tenemos que

$$\psi_{x_n}^{-1}(A \cap V \cap V_{x_n}) \subseteq \psi^{-1}(A),$$

así que $\psi_{x_n}^{-1}(A \cap V \cap V_{x_n})$ tiene medida cero. Como $\phi^{-1} \circ \psi_{x_n}$ es suave, manda conjuntos de medida cero a conjuntos de medida cero, de modo que

$$(\phi^{-1} \circ \psi_{x_n}) (\psi_{x_n}^{-1} (A \cap V \cap V_{x_n})) = \phi^{-1} (A \cap V \cap V_{x_n})$$

tiene medida cero. Por (*) se sigue que

$$\phi^{-1}(A) = \phi^{-1}(A \cap V) = \phi^{-1}\left(\bigcup_{n \ge 1} A \cap V \cap V_{x_n}\right) = \bigcup_{n \ge 1} \phi^{-1}\left(A \cap V \cap V_{x_n}\right),$$

lo que implica que $\phi^{-1}(A)$ tiene medida cero.

Teorema de Sard. Sea $f: X \to Y$ una aplicación suave entre variedades, y sea C el conjunto de puntos críticos de f en X. Entonces f(C) tiene medida cero en Y.

Demostración. Utilizaremos el teorema anterior para la demostración. Sea $y \in Y$ y $\psi : U \to V \subseteq Y$ una parametrización al rededor de y. Queremos probar que $\psi^{-1}(f(C))$ tiene medida cero. Como f es suave, se sigue que $f^{-1}(V)$ es abierto. Entonces podemos cubrir $f^{-1}(V)$ con las imágenes de una sucesión de parametrizaciones locales $\phi_n : U_n \to V_n$, es decir,

$$f^{-1}(V) = \bigcup_{n \ge 1} V_n.$$

Se define $g_n := \psi^{-1} \circ f \circ \phi_n$. Entonces tenemos el diagrama conmutativo

$$V_{n} \xrightarrow{f} V$$

$$\phi_{n} \uparrow \qquad \qquad \downarrow \psi^{-1}$$

$$U_{n} \xrightarrow{q} U$$

Ya que ϕ_n y ψ^{-1} son difeomorfismos, tendremos que los puntos críticos de ϕ_n son $C_n = \phi_n^{-1}(C)$. Entonces

$$g_n(C_n) = (\psi^{-1} \circ f \circ \phi_n)(\phi_n^{-1}(C))$$
$$= (\psi^{-1} \circ f)(C \cap V_n),$$

y ya que los V_n cubren a $f^{-1}(V)$, se cumple que

$$\bigcup_{n\geq 1} g_n(C_n) = \bigcup_{n\geq 1} (\psi^{-1} \circ f)(C \cap V_n)
= (\psi^{-1} \circ f)(C \cap f^{-1}(V))
= \psi^{-1}(f(C) \cap V))
= \psi^{-1}(f(C)).$$

Gracias a la igualdad anterior, basta probar que $g_n(C)$ tiene medida cero para todo C. Pero $g_n: U_n \to U$ es una aplicación entre espacios Euclidianos. De esta forma reducimos el **Teorema de Sard** al caso específico de aplicaciones entre espacios Euclidianos, que se demuestra en el siguiente **Teorema**.

Teorema. Sea $U \subseteq \mathbb{R}^n$ abierto y $f: U \to \mathbb{R}^p$ una aplicación suave, y sea

$$C := \{ x \in U | \text{rango } df_x$$

Entonces la imagen $f(C) \subseteq \mathbb{R}^p$ tiene medida cero.

Demostración. La prueba se hará por inducción sobre n. Notemos que el resultado tiene sentido para $n \ge 0$ y $p \ge 1$, tomando en cuenta que \mathbb{R}^0 es un punto, para el cual el teorema es cierto.

Sea $C_1 \subseteq C$ el conjunto de $x \in U$ tales que $df_x = 0$. Más generalmente, sea C_i el conjunto de $x \in U$ para los cuales todas las derivadas de orden menor o igual que i de f en x son cero, para $i \ge 1$. Entonces tenemos una cadena decreciente de conjuntos

$$C \supset C_1 \supset C_2 \supset \dots$$

La prueba se divide en los siguientes tres pasos

- Paso 1. $f(C-C_1)$ tiene medida cero.
- Paso 2. $f(C_k C_{k+1})$ tiene medida cero para $k \ge 1$.
- Paso 3. Si k > n/p 1, entonces $f(C_k)$ tiene medida cero.

Notemos que combinados estos tres hechos, tomando $K \ge n/p - 1$ y viendo que

$$f(C) = f(C - C_1) \cup \left(\bigcup_{k=1}^{K} f(C_k - C_{k+1})\right) \cup f(C_{K+1}).$$

se deduce directamente que f(C) tiene medida cero, por ser unión finita de conjuntos de medida cero. Dicho esto, nos concentraremos en demostrar cada paso.

• Prueba del Paso 1.

Si p=1, entonces necesariamente $C=C_1$, así que este caso es directo. Supongamos que $p\geq 2$. Para cada $x_0\in C-C_1$ encontraremos una vecindad $V\subseteq \mathbb{R}^n$ tal que $f(V\cap C)$ tiene medida cero. Ya que $C-C_1$ se puede cubrir con una cantidad numerable de estos abiertos, esto probará que $f(C-C_1)$ tiene medida cero.

Ya que $x_0 \notin C_1$, existe una derivada parcial de f en x_0 que no se anula. Sin pérdida de generalidad supongamos que es $\partial f_{x_1}/\partial x_1$. En ese caso, se define la aplicación $h: U \to \mathbb{R}^n$ como

$$h(x) := (f_1(x), x_2, ..., x_n).$$

Observemos que la matriz asociada a dh_{x_0} en la base canónica es triangular superior, con determinante

$$\det(dh_{x_0}) = \frac{\partial f_1}{\partial x_1}(x_0) \neq 0.$$

Como dh_{x_0} es no singular, por el teorema de la función inversa tenemos que h manda difeomórficamente una vencindad V de x_0 a un abierto V'. La composición $g := f \circ h^{-1}$ manda entonces V' a \mathbb{R}^p . Observemos que los puntos críticos de g son precisamente $h(V \cap C)$, así que el conjunto de valores críticos de g es

$$g(h(V\cap C))=(f\circ h^{-1})(h(V\cap C))=f(V\cap C).$$

Entonces nos concentraremos en probar que los valores críticos de g tienen medida cero. Para cada $(t, x_2, ..., x_n) \in V'$ notemos que $g(t, x_2, ..., x_n)$ se encuentra en el hiperplano $\{t\} \times \mathbb{R}^{p-1}$. Entonces $g(\{t\} \times \mathbb{R}^{n-1}) \subseteq \{t\} \times \mathbb{R}^{p-1}$. Dicho esto, podemos definir

$$g^t: (\{t\} \times \mathbb{R}^{n-1}) \cap V' \to \{t\} \times \mathbb{R}^{p-1}$$

como la restricción de g. Notemos que un punto de $\{t\} \times \mathbb{R}^{n-1}$ es punto crítico de g^t si y sólo si es punto crítico de g, esto podemos notarlo ya que

$$\left(\frac{\partial g_i}{\partial x_j}(t, x_2, ..., x_n)\right)_{ij} = \begin{pmatrix} 1 & 0 \\ 0 & \left(\frac{\partial g_i^t}{\partial x_j}(t, x_2, ..., x_n)\right)_{ij} \end{pmatrix}.$$

Aquí se aplica la hipótesis de inducción para afirmar que los valores críticos de g^t tienen medida cero. Entonces los valores críticos de g intersectan a cada hiperplano $\{t\} \times \mathbb{R}^{p-1}$ en un conjunto de medida cero. Entonces por el teorema de Fubini, tenemos que el conjunto

$$f(V \cap C)$$

tiene medida cero.

• Prueba del Paso 2.

La prueba es casi igual, pero más sencillo, porque no es necesario aplicar Fubini. En este caso se toma $x_0 \in C_k - C_{k+1}$ y w como una derivada parcial de orden k de f, tal que $\frac{\partial w}{\partial x_1}$ no se anula en x_0 y definimos $h: U \to \mathbb{R}^n$ como

$$h(x) := (w(x), x_2, ..., x_n).$$

Tendremos que h manda difeomórficamente una vecindad V de x_0 a un abierto V'. Notemos que h manda $C_k \cap V$ al hiperplano $\{0\} \times \mathbb{R}^{n-1}$, y es aquí donde notamos que no será necesario utilizar Fubini, solo la hipótesis de inducción. El resto de la prueba se hace igual que en el Paso 1, con t = 0.

Prueba del Paso 3.

Sea $S \subseteq U$ un cubo cuyos lados miden $\delta > 0$, para δ suficientemente pequeño (se puede encontrar porque U es abierto). Si k es suficientemente grande (k > n/p - 1), se probará que $f(C_k \cap S)$ tiene medida cero. Ya que C_k se puede cubrir con una cantidad numerable de estos cubos, esto probaría que $f(C_k)$ tiene medida cero.

Por el teorema de Taylor, la compacidad de S, y la definición de C_k , vemos que

$$f(x+h) = f(x) + R(x,h),$$

donde

$$||R(x,h)|| < a ||h||^{k+1}$$
 (*)

siempre que $x \in C_k \cap S$ y $x + h \in S$. Aquí a es una constante que depende solamente de f y S. Ahora tomamos $r \in \mathbb{N}$ y subdividimos S en r^n cubos cuyo lado mide δ/r . Sea $x \in C_k$ y S_1 un cubo de la subdivisión que contiene a x. Entonces cualquier punto de S_1 escrito como x + h debe cumplir

$$||h|| < \sqrt{n} \left(\frac{\delta}{r}\right),$$

ya que el lado derecho de la desigualdad es el largo de la diagonal de S_1 , la distancia máxima a la que pueden estar dos puntos en el cubo S_1 . De (*) se sigue que $f(S_1)$ está contenido en un cubo con lados b/r^{k+1} centrado en f(x), donde $b = 2a(\sqrt{n}\delta)^{k+1}$ es constante. Se deduce que $f(C_k \cap S_1)$ está contenido en la unión de a lo más r^n cubos que suman un volumen total

$$v \le r^n \left(\frac{b}{r^{k+1}}\right)^p = b^p r^{n-(k+1)p}$$

donde el lado derecho de la desigualdad tiende a cero cuando $r \to \infty$, ya que

$$k > n/p - 1 \quad \Rightarrow \quad n - (k+1)p < 0.$$