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Chapter I

Vector spaces

1.1 VECTOR SPACES

The notions of group and field are defined in the Appendix: A.3 and A.5.1
respectively.

The fields Q (of rational numbers), R (of real numbers), and C (of complex
numbers) are familiar, and are the most commonly used. Most of the notions
and results we discuss are valid for vector spaces over arbitrary underlying
fields. When we do not need to specify the underlying field we denote it by the
generic F and refer to its elements as scalars. Results that require specific fields
will be stated explicitly in terms of the appropriate field.

1.1.1 DEFINITION: A vector space V over a field F is an abelian group
(the group operation written as addition) and a binary product (a, v) 7→ av of
F× V into V , satisfying the following conditions:

v-s 1. 1 v = v

v-s 2. a(bv) = (ab)v,

v-s 3. (a+ b)v = av + bv, a(v + u) = av + au.

A real vector space is a vector space over the field R; A complex vector

space is one over the field C.
Vector spaces may have additional geometric structure, such as inner prod-

uct, which we study in Chapter VI, or additional algebraic structure, such as
multiplication, which we just mention in passing.

1



2 LINEAR ALGEBRA

EXAMPLES:

a. Fn, the space of all F-valued n-tuples (a1, . . . , an) with addition and scalar
multiplication defined by

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn)

c(a1, . . . , an) = (ca1, . . . , can)

If the underlying field is R, resp. C, we denote the space Rn, resp. Cn.

We write the n-tuples as rows, as we did here, or as columns. (We sometime
write Fnc resp. Fnr when we want to specify that vectors are written as
columns, resp. rows.)

b. M(n,m; F), the space of all F-valued n×m matrices, that is, arrays

A =


a11 . . . a1m

a21 . . . a2m
... . . .

...
an1 . . . anm


with entries form F. The addition and scalar multiplication are again done
entry by entry. As a vector space M(n,m; F) is virtually identical with
Fmn, except that we write the entries in the rectangular array instead of a
row or a column.

We write M(n; F) instead of M(n, n; F) and when the underlying field is
either assumed explicitly, or is arbitrary, we may write simply M(n,m) or
M(n), as the case may be.

c. F[x], the space1 of all polynomials
∑
anx

n with coefficients from F. Addi-
tion and multiplication by scalars are defined formally either as the standard
addition and multiplication of functions, or by adding (and multiplying by
scalars) the corresponding coefficients. The two ways define the same op-
erations.

1F[x] is an algebra over F, i.e., a vector space with an additional structure, multiplication.
See A.5.2.
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I. VECTOR SPACES 3

d. The set CR([0, 1]) of all continuous real-valued functions f on [0, 1], and
the set C([0, 1]) of all continuous complex-valued functions f on [0, 1],
with the standard operations of addition and of multiplication of functions
by a scalars.

CR([0, 1]) is a real vector space. C([0, 1]) is naturally a complex vector
space, but becomes a real vector space if we limit the allowable scalars to
real numbers only.

e. The set C∞([−1, 1]) of all infinitely differentiable real-valued functions f
on [−1, 1], with the standard operations on functions.

f. The set TN of 2π-periodic trigonometric polynomials of degree ≤ N : the
functions admitting a representation as a sum of the form

∑
|n|≤N ane

inx.
Standard operations on functions.

g. The set of functions f which satisfy the differential equation

3f ′′′(x)− sinxf ′′(x) + 2f(x) = 0.

Standard operations.

1.1.2 ISOMORPHISM. The expression “virtually identical” in the compari-
son, in Example b. above, of M(n,m; F) with Fmn, is not a proper mathemat-
ical term. The proper term here is isomorphic.

DEFINITION: A map ϕ : V1 7→ V2 is called linear if, for all scalars a, b and
vectors v1, v2 ∈ V1

(1.1.1) ϕ(av1 + bv2) = aϕ(v1) + bϕ(v2).

Two vector spaces V1 and V2 over the same field are isomorphic if there
exist a bijective2 linear map ϕ : V1 7→ V2.

2That is ϕ maps V1 onto V2 and the map is 1− 1 (and linear); see Appendix A.2.
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4 LINEAR ALGEBRA

1.1.3 SUBSPACES. A (vector) subspace of a vector space V is a subset
which is closed under the operations of addition and multiplication by scalars
defined in V .

In other words, W ⊂ V is a subspace if a1w1 + a2w2 ∈ W for all scalars
aj and vectors wj ∈ W .

EXAMPLES:

a. Solution-set of a system of homogeneous linear equations.

Here V = Fn. Given the scalars aij , 1 ≤ i ≤ k, 1 ≤ j ≤ n we consider
the solution-set of the system of k homogeneous linear equations

(1.1.2)
n∑
j=1

aijxj = 0, i = 1, . . . , k.

This is the set of all n-tuples (x1, . . . , xn) ∈ Fn for which all k equations
are satisfied. If both (x1, . . . , xn) and (y1, . . . , yn) are solutions of (1.1.2),
and a and b are scalars, then for each i,

n∑
j=1

aij(axj + byj) = a
n∑
j=1

aijxj + b
n∑
j=1

aijyj = 0.

It follows that the solution-set of (1.1.2) is a subspace of Fn.

b. In the space C∞(R) of all infinitely differentiable real-valued functions f
on R with the standard operations, the set of functions f that satisfy the
differential equation

f ′′′(x)− 5f ′′(x) + 2f ′(x)− f(x) = 0.

Again, we can include, if we want, complex valued functions and allow, if
we want, complex scalars.

c. Subspaces of M(n):

The set of diagonal matrices—the n× n matrices with zero entries off the
diagonal (aij = 0 for i 6= j).

JANUARY 1, 2006 —DRAFT—



I. VECTOR SPACES 5

The set of (lower) triangular matrices—the n×nmatrices with zero entries
above the diagonal (aij = 0 for i < j).

Similarly set of upper triangular matrices, (aij = 0 for i > j).

d. Intersection of subspaces: If Wj are subspaces of a space V , then ∩Wj is
a subspace of V .

e. The sum3 of subspaces:
∑
Wj is defined by

∑
Wj = {

∑
vj : vj ∈ Wj}.

f. The span of a subset: The span of a subset E ⊂ V , denoted span[E], is
the set {

∑
ajej : aj ∈ F, ej ∈ E} of all the finite linear combinations of

elements of E. span[E] is a subspace; clearly the smallest subspace of V
that contains E.

1.1.4 DIRECT SUMS. If V1, . . . ,Vk are vector spaces over F, the (formal)

direct sum
⊕k

1 Vj = V1⊕ · · · ⊕Vk is the set {(v1, . . . , vk) : vj ∈ Vj} in which
we define addition:

(v1, . . . , vk) + (u1, . . . , uk) = (v1 + u1, . . . , vk + uk),

and multiplication by scalars: a(v1, . . . , vk) = (av1, . . . , avk).

DEFINITION: The subspaces Wj , j = 1, . . . , k of a vector space V are inde-

pendent if
∑
vj = 0 with vj ∈ Wj implies that vj = 0 for all j.

Proposition. IfWj are subspaces of V , then the map Φ ofW1⊕· · ·⊕Wk into
W1 + · · ·+Wk, defined by

Φ : (v1, . . . , vk) 7→ v1 + · · ·+ vk,

is an isomorphism if, and only if, the subspaces are independent.

3Don’t confuse the sum of subspaces with the union of subspaces which is seldom
a subspace, see exercise I.1.5 below.

—DRAFT— JANUARY 1, 2006



6 LINEAR ALGEBRA

PROOF: Φ is clearly linear and surjective. To prove it injective we need to
check that every vector in the range has a unique preimage, that is, to show that

(1.1.3) v′j , v
′′
j ∈ Wj and v′′1 + · · ·+ v′′k = v′1 + · · ·+ v′k

implies that v′′j = v′j for every j. Subtracting and writing vj = v′′j − v′j , (1.1.3)
is equivalent to:

∑
vj = 0 with vj ∈ Wj , which implies that vj = 0 for all j.

J

Notice that Φ is the “natural” map of the formal direct sum onto the sum of
subspaces of a given space.

In view of the proposition we refer to the sum
∑
Wj of independent sub-

spaces of a vector space as direct sum and write
⊕
Wj instead of

∑
Wj .

If V = U ⊕W , we refer to either U or W as a complement of the other in
V .

1.1.5 QUOTIENT SPACES. A subspace W of a vector space V defines an
equivalence relation4 in V:

(1.1.4) x ≡ y (mod W) if x− y ∈ W.

In order to establish that this is indeed an equivalence relation we need to check
that it is
a. reflexive (clear, since x− x = 0 ∈ W),
b. symmetric (clear, since if x− y ∈ W , then y − x = −(x− y) ∈ W),
and
c. transitive, (if x−y ∈ W and y−z ∈ W , then x−z = (x−y)+(y−z) ∈ W).

The equivalence relation partitions V into cosets or “translates” of W , that
is into sets of the form x+W = {v : v = x+ w,w ∈ W}.

So far we used only the group structure and not the fact that addition in V
is commutative, nor the fact that we can multiply by scalars. This information
will be used now.

We define the quotient space V/W to be the space whose elements are the
equivalence classes mod W in V , and whose vector space structure, addition
and multiplication by scalars, is given by:

4See Appendix A.1

JANUARY 1, 2006 —DRAFT—



I. VECTOR SPACES 7

if x̃ = x+W and ỹ = y +W are cosets, and a ∈ F, then

(1.1.5) x̃+ ỹ = x+ y +W = x̃+ y and ax̃ = ãx.

The definition needs justification. We defined the sum of two cosets by taking
one element of each, adding them and taking the coset containing the sum as
the sum of the cosets. We need to show that the result is well defined, i.e., that
it does not depend on the choice of the representatives in the cosets. In other
words, we need to verify that if x ≡ x1 (mod W) and y ≡ y1 (mod W), then
x+ y ≡ x1 + y1 (mod W). But, x = x1 + w, y = y1 + w′ with w,w′ ∈ W
implies that x + y = x1 + w + y1 + w′ = x1 + y1 + w + w′, and, since
w + w′ ∈ W we have x+ y ≡ x1 + y1 (mod W).

Notice that the “switch” w+ y1 = y1 +w is justified by the commutativity
of the addition in V .

The definition of ax̃ is justified similarly: assuming x ≡ x1 (mod W)
then ax − ax1 = a(x − x1) ∈ W , (since W is a subspace, closed under
multiplication by scalars) and ax ≡ ax1 (mod W) .

1.1.6 TENSOR PRODUCTS. Given vector spaces V and U over F, the set of
all the (formal) sums

∑
aj vj ⊗ uj , where aj ∈ F, vj ∈ V and uj ∈ U ; with

(formal) addition and multiplication by elements of F, is a vector space over F.
The tensor product V ⊗ U is, by definition, the quotient of this space by the

subspace spanned by the elements of the form

a. (v1 + v2)⊗ u− (v1 ⊗ u+ v2 ⊗ u),

b. v ⊗ (u1 + u2)− (v ⊗ u1 + v ⊗ u2),

c. a (v ⊗ u)− (av)⊗ u, (av)⊗ u− v ⊗ (au),

(1.1.6)

for all v, vj ∈ V u, uj ∈ U and a ∈ F.
In other words, V ⊗ U is the space of formal sums

∑
aj vj ⊗ uj modulo

the the equivalence relation generated by:

a. (v1 + v2)⊗ u ≡ v1 ⊗ u+ v2 ⊗ u,

b. v ⊗ (u1 + u2) ≡ v ⊗ u1 + v ⊗ u2,

c. a (v ⊗ u) ≡ (av)⊗ u ≡ v ⊗ (au).

(1.1.7)

—DRAFT— JANUARY 1, 2006



8 LINEAR ALGEBRA

Example. If V = F[x] and U = F[y], then p(x)⊗ q(y) can be identified with
the product p(x)q(y) and V ⊗ U with F[x, y].

EXERCISES FOR SECTION 1.1

I.1.1. Verify that R is a vector space over Q, and that C is a vector space over either
Q or R.

I.1.2. Verify that the intersection of subspaces is a subspace.

I.1.3. Verify that the sum of subspaces is a subspace.

I.1.4. Prove that M(n,m; F) and Fmn are isomorphic.

I.1.5. Let U andW be proper subspaces of a vector space V , neither of them contains
the other. Show that U ∪W is not a subspace.

Hint: Take u ∈ U \W , w ∈ W \ U and consider u+ w.

∗I.1.6. If F is finite, n > 1, then Fn is a union of a finite number of lines. Assuming
that F is infinite, show that the union of a finite number of subspaces of V , none of
which contains all others, is not a subspace.

Hint: Let Vj , j = 1, . . . , k be the subspaces in question. Show that there is no loss
in generality in assuming that their union spans V . Now you need to show that

⋃
Vj

is not all of V . Show that there is no loss of generality in assuming that V1 is not
contained in the union of the others. Take v1 ∈ V1 \

⋃
j 6=1 Vj , and w /∈ V1; show that

av1 + w ∈
⋃
Vj , a ∈ F, for no more than k values of a.

I.1.7. Let p > 1 be a positive integer. Recall that two integers, m, n are congruent
(mod p), written n ≡ m (mod p), if n −m is divisible by p. This is an equivalence
relation (see Appendix A.1). For m ∈ Z, denote by m̃ the coset (equivalence class) of
m, that is the set of all integers n such that n ≡ m (mod p).

a. Every integer is congruent (mod p) to one of the numbers [0, 1, . . . , p − 1].
In other words, there is a 1 – 1 correspondence between Zp, the set of cosets
(mod p), and the integers [0, 1, . . . , p− 1].

b. As in subsection 1.1.5 above, we define the quotient ring Zp = Z/(p) (both
notations are common) as the space whose elements are the cosets (mod p) in Z,

and define addition and multiplication by: m̃ + ñ = ˜(m+ n) and m̃ · ñ = m̃·n.
Prove that the addition and multiplication so defined are associative, commutative
and satisfy the distributive law.

JANUARY 1, 2006 —DRAFT—



I. VECTOR SPACES 9

c. Prove that Zp, endowed with these operations, is a field if, and only if, p is prime.

Hint: You may use the following fact: if p is a prime, and both n and m are not
divisible by p then nm is not divisible by p. Show that this implies that if ñ 6= 0
in Zp, then {ñm̃ : m̃ ∈ Zp} covers all of Zp.

1.2 LINEAR DEPENDENCE, BASES, AND DIMENSION

Let V be a vector space. A linear combination of vectors v1, . . . , vk is a
sum of the form v =

∑
ajvj with scalar coefficients aj .

A linear combination is non-trivial if at least one of the coefficients is not
zero.

1.2.1 Recall that The span of a set A ⊂ V , denoted span[A], is the set of all
vectors v that can be written as linear combinations of elements in A.
DEFINITION: A set A ⊂ V is a spanning set if span[A] = V .

1.2.2 DEFINITION: A set A ⊂ V is linearly independent if for every se-
quence {v1, . . . , vl} of distinct vectors in A, the only vanishing linear combi-
nation of the vj’s is trivial; that is, if

∑
ajvj = 0 then aj = 0 for all j.

If the set A is finite, we enumerate its elements as v1, . . . , vm and write the
elements in its span as

∑
ajvj . By definition, independence of A means that

the representation of v = 0 is unique. Notice, however, that this implies that the
representation of every vector in span[A] is unique, since

∑l
1 ajvj =

∑l
1 bjvj

implies
∑l

1(aj − bj)vj = 0 so that aj = bj for all j.

1.2.3 A minimal spanning set is a spanning set such that no proper subset
thereof is spanning.

A maximal independent set is an independent set such that no set that
contains it properly is independent.

Lemma.
a. A minimal spanning set is independent.
b. A maximal independent set is spanning.

PROOF: a. Let A be a minimal spanning set. If
∑
ajvj = 0, with distinct

vj ∈ A, and for some k, ak 6= 0, then vk = −a−1
k

∑
j 6=k ajvj . This permits

the substitution of vk in any linear combination by the combination of the other

—DRAFT— JANUARY 1, 2006



10 LINEAR ALGEBRA

vj’s, and shows that vk is redundant: the span of {vj : j 6= k} is the same as the
original span, contradicting the minimality assumption.

b. If B is independent and u /∈ span[B], then the union {u} ∪ B is inde-
pendent: assume otherwise, then there exists {v1, . . . , vl} ⊂ B and coefficients
d and cj , not all zero, such that du +

∑
cjvj = 0. Assuming d 6= 0 implies

u = −d−1 ∑
cjvj and u would be in span[v1, . . . , vl] ⊂ span[B], contradict-

ing the assumption u /∈ span[B]; so d = 0. But now
∑
cjvj = 0 with some

non-vanishing coefficients, contradicting the assumption thatB is independent.
It follows that if B is maximal independent, then u ∈ span[B] for every

u ∈ V , and B is spanning. J

DEFINITION: A basis for V is an independent spanning set in V . Thus,
{v1, . . . , vn} is a basis for V if, and only if, every v ∈ V has a unique repre-
sentation as a linear combination of {v1, . . . , vn}, that is a representation (or
expansion) of the form v =

∑
ajvj . By the lemma, a minimal spanning set is

a basis, and a maximal independent set is a basis.
A finite dimensional vector space is a vector space that has a finite basis.

(See also Definition 1.2.4.)

Theorem. If V is finite dimensional then:
a. Every spanning set can be trimmed to a basis.
b. Every independent set can be expanded to a basis.

PROOF: a. Let {vj}Nj=1 be a spanning set for V . Call inessential a vector vl
that is linearly dependent on {vj}l−1

j=1 , and essential otherwise. Observe that
an inessential vl is linearly dependent on the essential vectors preceding it.

Remove the inessential vectors. Since every vj is either essential or linearly
dependent on the preceding essential vectors, the essential vectors span V and
are independent, hence form a basis.

b. Let {uj}kj=1 be independent, and let {ej}nj=1 be a basis for V . Write
wj = uj for j = 1, . . . , k, and wk+j = ej for j = 1, . . . , n. The sequence
{wj} contains the basis {ej} and is therefore spanning. Now remove, as in part
a. the inessential vectors to obtain a basis, and observe that the first k vectors,
namely {uj}kj=1 are all essential, and hence form part of the basis. J

JANUARY 1, 2006 —DRAFT—



I. VECTOR SPACES 11

EXAMPLES:

a. In Fn we write ej for the vector whose j’th entry is equal to 1 and all
the other entries are zero. {e1, . . . , en} is a basis for Fn, and the unique

representation of v =

a1

...
an

 in terms of this basis is v =
∑
ajej . We refer

to {e1, . . . , en} as the standard basis for Fn.

b. The standard basis for M(n,m): let eij denote the n ×m matrix whose
ij’th entry is 1 and all the other zero. {eij} is a basis for M(n,m), anda11 . . . a1m

a21 . . . a2m

.

.

. . . .

.

.

.
an1 . . . anm

 =
∑
aijeij is the expansion.

c. The space F[x] is not finite dimensional. The infinite sequence {xn}∞n=0

is linearly independent, in fact a basis, and, as we see in the following
subsection, it cannot have a finite basis.

1.2.4 STEINITZ’ LEMMA AND THE DEFINITION OF DIMENSION.

Lemma (Steinitz). Assume span[v1, . . . , vn] = V and {u1, . . . , um} linearly
independent in V . Claim: the vectors vj can be (re)ordered so that, for every
k = 1, . . . ,m, the sequence {u1, . . . , uk, vk+1, . . . , vn} spans V .

In particular, m ≤ n.

PROOF: Write u1 =
∑
ajvj , possible since span[v1, . . . , vn] = V . Reorder

the v′js, if necessary, to guarantee that a1 6= 0.
Now v1 = a−1

1 (u1 −
∑n
j=2 ajvj), which means that span[u1, v2, . . . , vn]

contains every vj and hence is equal to V .
Continue recursively: assume that, having reoredered the vj’s if necessary,

we have {u1, . . . , uk, vk+1, . . . , vn} spans V .
Observe that unless k = m, we have k < n (since uk+1 is not in the span

of {u1, . . . , uk} at least one additional v is needed). If k = m we are done. If
k < mwe write uk+1 =

∑k
j=1 ajuj+

∑n
j=k+1 bjvj , and since {u1, . . . , um} is

linearly independent, at least one of the coefficients bj is not zero. Reordering
the remaining vj’s if necessary, we may assume that bk+1 6= 0 and obtain,
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12 LINEAR ALGEBRA

as before, that vk+1 ∈ span[u1, . . . , uk+1, vk+2, . . . , vn], and, once again, the
span is V . Repeating the step (a total of) m times proves the claim of the
lemma. J

Theorem. If {v1, . . . , vn} and {u1, . . . , um} are both bases, then m = n.

PROOF: Since {v1, . . . , vn} is spanning and {u1, . . . , um} independent we
have m ≤ n. Reversing the roles we have n ≤ m. J

Steinitz’ lemma is a refinement of part b. of theorem 1.2.3: in a finite dimen-
sional vector space, every independent set can be expanded to a basis by adding,
if necessary, elements from any given spanning set. The additional information
here, that any spanning set has at least as many elements as any independent
set, that is the basis for the current theorem, is what enables the definition of
dimension.

DEFINITION: A vector space V is finite dimensional if it has a finite basis.
The dimension, dimV is the number of elements in any basis for V . (Well
defined since all bases have the same cardinality.)

As you are asked to check in Exercise I.2.9 below, a subspace W of a finite
dimensional space V is finite dimensional and, unless W = V , the dimension
dimW of W is strictly lower than dimV .

The codimension of a subspaceW in V is, by definition, dimV − dimW .

1.2.5 The following observation is sometimes useful.

Proposition. Let U and W be subspaces of an n dimensional space V , and
assume that dim U + dimW > n. Then U ∩W 6= {0}.

PROOF: Let {uj}lj=1 be a basis for U and {wj}mj=1 be a basis for W . Since
l + m > n the set {uj}lj=1 ∪ {wj}mj=1 is linearly dependent, i.e., the exist
a nontrivial vanishing linear combination

∑
cjuj +

∑
djwj = 0. If all the

coefficients cj were zero, we would have a vanishing nontrivial combination
of the basis elements {wj}mj=1, which is ruled out. Similarly not all the dj’s
vanish. We now have the nontrivial

∑
cjuj = −

∑
djwj in U ∩W . J
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I. VECTOR SPACES 13

EXERCISES FOR SECTION 1.2

I.2.1. The set {vj : 1 ≤ j ≤ k} is linearly dependent if, and only if, v1 = 0 or there
exists l ∈ [2, k] such that vl is a linear combination of vectors in {vj : 1 ≤ j ≤ l−1}.

I.2.2. Let V be a vector space, W ⊂ V a subspace. Let v, u ∈ V \ W , and assume
that u ∈ span[W, v]. Prove that v ∈ span[W, u].

I.2.3. What is the dimension of C5 considered as a vector space over R?

I.2.4. Is R finite dimensional over Q?

I.2.5. Is C finite dimensional over R?

I.2.6. Check that for every A ⊂ V , span[A] is a subspace of V , and is the smallest
subspace containing A.

I.2.7. Let U ,W be subspaces of a vector space V , and assume U∩W = {0}. Assume
that {u1, . . . , uk} ⊂ U and {w1, . . . , wl} ⊂ W are (each) linearly independent. Prove
that {u1, . . . , uk} ∪ {w1, . . . , wl} is linearly independent.

I.2.8. Prove that the subspaces Wj ⊂ V , j = 1, . . . , N are independent (see Defini-
tion 1.1.4) if, and only if, Wj ∩

∑
l 6=j Wl = {0} for all j.

I.2.9. Let V be finite dimensional. Prove that every subspace W ⊂ V is finite
dimensional, and that dimW ≤ dimV with equality only if W = V .

I.2.10. If V is finite dimensional, every subspace W ⊂ V is a direct summand.

∗I.2.11. Assume that V is n-dimensional vector space over an infinite F. Let {Wj} be
a finite collection of distinct m-dimensional subspaces.
a. Prove that no Wj is contained in the union of the others.
b. Prove that there is a subspace U ⊂ V which is a complement of every Wj .
Hint: See exercise I.1.6.

I.2.12. Let V and W be finite dimensional subspaces of a vector space. Prove that
V +W and V ∩W are finite dimensional and that

(1.2.1) dim(V ∩W) + dim(V +W) = dimV + dimW.

I.2.13. If Wj , j = 1, . . . , k, are finite dimensional subspaces of a vector space V
then

∑
Wj is finite dimensional and dim

∑
Wj ≤

∑
dimWj , with equality if, and

only if, the subspaces Wj are independent.

I.2.14. Let V be an n-dimensional vector space, and let V1 ⊂ V be a subspace of
dimension m.
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14 LINEAR ALGEBRA

a. Prove that V/V1—the quotient space—is finite dimensional.

b. Let {v1, . . . , vm} be a basis for V1 and let {w̃1, . . . , w̃k} be a basis for V/V1.
For j ∈ [1, k], let wj be an element of the coset w̃j .

Prove: {v1, . . . , vm} ∪ {w1, . . . , wk} is a basis for V . Hence k +m = n.

I.2.15. Let V be a real vector space. Let rl = (al,1, . . . , al,p) ∈ Rp, 1 ≤ l ≤ s

be linearly independent. Let v1, . . . , vp ∈ V be linearly independent. Prove that the
vectors ul =

∑p
1 al,jvj , l = 1, . . . , s, are linearly independent in V .

I.2.16. Let V and U be finite dimensional spaces over F. Prove that the tensor product
V ⊗ U is finite dimensional. Specifically, show that if {ej}n

j=1 and {fk}m
k=1 are bases

for V and U , then {ej ⊗ fk}, 1 ≤ j ≤ n, 1 ≤ k ≤ m, is a basis for V ⊗ U , so that
dimV ⊗ U = dimV dim U .

∗I.2.17. Assume that any three of the five R3 vectors vj = (xj , yj , zj), j = 1, . . . , 5,
are linearly independent. Prove that the vectors

wj = (x2
j , y

2
j , z

2
j , xjyj , xjzj , yjzj)

are linearly independent in R6.

Hint: Find non-zero (a, b, c) such that axj + byj + czj = 0 for j = 1, 2. Find
non-zero (d, e, f) such that dxj + eyj + fzj = 0 for j = 3, 4. Observe (and use) the
fact

(ax5 + by5 + cz5)(dx5 + ey5 + fz5) 6= 0

1.3 SYSTEMS OF LINEAR EQUATIONS.

How do we find out if a set {vj}, j = 1, . . . ,m of vectors in Fnc is linearly
dependent? How do we find out if a vector u belongs to span[v1...,vm]?

Given the vectors vj =

a1j

...
anj

, j = 1, . . . ,m, and and u =

c1

...
cn

, we

express the conditions
∑
xjvj = 0 for the first question, and

∑
xjvj = u for

the second, in terms of the coordinates.
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I. VECTOR SPACES 15

For the first we obtain the system of homogeneous linear equations:

(1.3.1)

a11x1 + . . . + a1mxm = 0
a21x1 + . . . + a2mxm = 0

...
...

an1x1 + . . . + anmxm = 0

or,

(1.3.2)
m∑
j=1

aijxj = 0, i = 1, . . . , n.

For the second question we obtain the non-homogeneous system:

(1.3.3)
m∑
j=1

aijxj = ci, i = 1, . . . , n.

We need to determine if the solution-set of (1.3.2), namely the set of all
m-tuples (x1, . . . , xm) ∈ Fm for which all n equations hold, is trivial or not,
i.e., if there are solutions other than (0, . . . , 0). For (1.3.3) we need to know
if the solution-set is empty or not. In both cases we would like to identify the
solution set as completely and as explicitely as possible.

1.3.1 Conversely, given the system (1.3.2) we can rewrite it as

(1.3.4) x1

a11

...
an1

 + · · ·+ xm

a1m

...
anm

 = 0

Our first result depends only on dimension. The m vectors in (1.3.4) are ele-
ments of the n-dimensional space Fnc . If m > n, any m vectors in Fnc are de-
pendent, and since we have a nontrivial solution if, and only if, these columns
are dependent, the system has nontrivial solution. This proves the following
theorem.

Theorem. A system of n homogeneous linear equations in m > n unknowns
has nontrivial solutions.
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16 LINEAR ALGEBRA

Similarly, rewriting (1.3.3) in the form

(1.3.5) x1

a11

...
an1

 + · · ·+ xm

a1m

...
anm

 =

c1

...
cn

 ,
it is clear that the system given by (1.3.3) has a solution if, and only if, the

column

c1

...
cn

 is in the span of columns

a1j

...
anj

, j ∈ [1, m].

1.3.2 The classical approach to solving systems of linear equations is the
Gaussian elimination— an algorithm for replacing the given system by an
equivalent system that can be solved easily. We need some terminology:

DEFINITION: The systems

(A)
m∑
j=1

aijxj = ci, i = 1, . . . , k.

(B)
m∑
j=1

bijxj = di, i = 1, . . . , l.
(1.3.6)

are equivalent if they have the same solution-set (in Fm).

The matrices

A =


a11 . . . a1m

a21 . . . a2m
... . . .

...
ak1 . . . akm

 and Aaug =


a11 . . . a1m c1
a21 . . . a2m c2

... . . .
...

...
ak1 . . . akm ck


are called the matrix and the augmented matrix of the system (A). The aug-
mented matrix is obtained from the matrix by adding, as additional column, the
column of the values, that is, the right-hand side of the respective equations.
The augmented matrix contains all the information of the system (A). Any
k × (m+ 1) matrix is the augmented matrix of a system of linear equations in
m unknowns.

JANUARY 1, 2006 —DRAFT—



I. VECTOR SPACES 17

1.3.3 ROW EQUIVALENCE OF MATRICES.

DEFINITION: The matrices

(1.3.7)


a11 . . . a1m

a21 . . . a2m
... . . .

...
ak1 . . . akm

 and


b11 . . . b1m
b21 . . . b2m

... . . .
...

bl1 . . . blm


are row equivalent if their rows span the same subspace of Fmr ; equivalently:
if each row of either matrix is a linear combination of the rows of the other.

Proposition. Two systems of linear equations in m unknowns

(A)
m∑
j=1

aijxj = ci, i = 1, . . . , k.

(B)
m∑
j=1

bijxj = di, i = 1, . . . , l.

are equivalent if their respective augmented matrices are row equivalent.

PROOF: Assume that the augmented matrices are row equivalent.
If (x1, . . . , xm) is a solution for system (A) and

(bi1, . . . , bim, di) =
∑

αi,k(ak1, . . . , akm, ck)

then
m∑
j=1

bijxj =
∑
k,j

αi,kakjxj =
∑
k

αi,kck = di

and (x1, . . . , xm) is a solution for system (B). J

DEFINITION: The row rank of a matrixA ∈M(k,m) is the dimension of the
span of its rows in Fm.

Row equivalent matrices clearly have the same rank.
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18 LINEAR ALGEBRA

1.3.4 REDUCTION TO row echelon FORM. The classical method of solving
systems of linear equations, homogeneous or not, is the Gaussian elimination.
It is an algorithm to replace the system at hand by an equivalent system that is
easier to solve.

DEFINITION: A matrix A =


a11 . . . a1m

a21 . . . a2m
... . . .

...
ak1 . . . akm

 is in row echelon form if the

following conditions are satisfied

ref–1 The first q rows ofA are linearly independent in Fm, the remaining k−q
rows are zero.

ref–2 There are integers 1 ≤ l1 < l2 < · · · < lq ≤ m such that for j ≤ q, the
first nonzero entry in the j’th row is 1, occuring in the lj’th column.

ref–3 The entry 1 in row j is the only nonzero entry in the lj column.

One can rephrase the last three conditions as: The lj’th columns (the “main”
columns) are the first q elements of the standard basis of Fkc, and every other
column is a linear combination of the “main” columns that precede it.

Theorem. Every matrix is row equivalent to a matrix in row-echelon form.

PROOF: If A = 0 there’s nothing to prove. Assuming A 6= 0, we describe an
algorithm to reduce A to row-echelon form. The operations performed on the
matrix are:

a. Reordering (i.e., permuting) the rows,
b. Multiplying a row by a non-zero constant,
c. Adding a multiple of one row to another.

These operations do not change the span of the rows so that the equivalence
class of the matrix is maintained. (We shall return later, in Exercise II.3.10, to
express these operations as matrix multiplications.)

Let l1 be the index of the first column that is not zero.
Reorder the rows so that a1,l1 6= 0, and multiply the first row by a−1

1,l1
.

Subtract from the j’th row, j 6= 1, the first row multiplied by aj,l1 .
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I. VECTOR SPACES 19

Now all the columns before l1 are zero and column l1 has 1 in the first row,
and zero elswhere.

Denote its row rank of A by q. If q = 1 all the entries below the first row
are now zero and we are done. Otherwise let l2 be the index of the first column
that has a nonzero entry in a row beyond the first. Notice that l2 > l1. Keep the
first row in its place, reorder the remaining rows so that a2,l2 6= 0, and multiply
the second row5 by a−1

2,l2
.

Subtruct from the j’th row, j 6= 2, the second row multiplied by aj,l2 .
Repeat the sequence a total of q times. The first q rows, r1, . . . , rq, are

(now) independent: a combination
∑
cjrj has entry cj in the lj’th place, and

can be zero only if cj = 0 for all j.
If there is a nonzero entry beyond the current q’th row, necessarily beyond

the lq’th column, we could continue and get a row independent of the first q,
contradicting the definition of q. Thus, after q steps, all the rows beyond the
q’th are zero. J

Observe that the scalars used in the process belong to the smallest field that
contains all the coefficients of A.

1.3.5 If A and Aaug are the matrix and the augmented matrix of a system
(A) and we apply the algorithm of the previous subsection to both, we observe
that since the augmented matrix has the additional column on the right hand
side, the first q (the row rank of A) steps in the algorithm for either A or Aaug
are identical. Having done q repetitions, A is reduced to row-echelon form,
while Aaug may or may not be. If the row rank of Aaug is q, then the algorithm
for Aaug ends as well; otherwise we have lq+1 = m + 1, and the row-echelon
form for the augmented matrix is the same as that of A but with an added row
and an added “main” column, both having 0 for all but the last entries, and 1 for
the last entry. In the latter case, the system corresponding to the row-reduced
augmented matrix has as it last equation 0 = 1 and the system has no solutions.

On the other hand, if the row rank of the augmented matrix is the same as
that of A, the row-echelon form of the augmented matrix is an augmentation of

5We keep referring to the entries of the successively modified matrix as aij .
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20 LINEAR ALGEBRA

the row-echelon form of A. In this case we can assign arbitrary values to the
variables xi, i 6= lj , j = 1, . . . , q, move the corresponding terms to the right
hand side and, writing Cj for the sum, we obtain

(1.3.8) xlj = Cj , j = 1, . . . , q.

Theorem. A necessary and sufficient condition for the system (A) to have so-
lutions is that the row rank of the augmented matrix be equal to that of the
matrix of the system.

The discussion preceding the statement of the theorem not only proves the
theorem but offers a concrete way to solve the system. The unknowns are now
split into two groups, q “main” ones and m− q “secondary”. We have “m− q

degrees of freedom”: the m− q secondary unknowns become free parameters
that can be assigned arbitrary values, and these values determine the “main”
unknowns uniquely.

Remark: Notice that the split into “main” and “secondary” unknowns depends
on the specific definition of “row–echelon form”; counting the columns in a
different order may result in a different split, though the number q of “main”
variables would be the same—the row rank of A.

Corollary. A linear system of n equations in n unknowns with matrix A has
solutions for all augmented matrices if, and only if, the only solution of the
corresponding homogeneous system is the trivial solution.

PROOF: The condition on the homogeneous system amounts to “the rows of
A are independent”, and no added columns can increase the row rank. J

1.3.6 DEFINITION: The column rank of a matrix A ∈ M(k,m) is the di-
mension of the span of its columns in Fkc.

Linear relations between columns of A are solutions of the homogeneous
system given by A. If B is row-equivalent to A, the columns of A and B have
the same set of linear relations, (see Proposition 1.3.3). In particular, if B is in
row-echelon form and {lj}qj=1 are the indices of the “main” columns inB, then
the lj’th columns in A, j = 1, . . . , q, are independent, and every other column
is a linear combination of these.
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I. VECTOR SPACES 21

It follows that the column rank of A is equal to its row rank. We shall
refer to the common value simply as the rank of A.

EXERCISES FOR SECTION 1.3

I.3.1. Identify the matrix A ∈M(n) of row rank n that is in row echelon form.

I.3.2. A system of linear equations with rational coefficients, that has a solution in
C, has a solution in Q. Equivalently, vectors in Qn that are linearly dependent over C,
are rationally dependent.

Hint: The last sentence of Subsection 1.3.4.

I.3.3. A system of linear equations with rational coefficients, has the same number
of “degrees of freedom” over Q as it does over C.

I.3.4. An affine subspace of a vector space is a translate of a subspace, that is a set
of the form v0 + V0 = {v0 + v : v ∈ V0}, where v0 is a fixed vector and V0 ⊂ V is a
subspace. (Thus a line in V is a translate of a one-dimensional subspace.)

Prove that a set A ⊂ V is an affine subspace if, and only if,
∑
ajuj ∈ A for all

choices of u1, . . . , uk ∈ A, and scalars aj , j = 1, . . . , k such that
∑
aj = 1.

I.3.5. If A ⊂ V is an affine subspace and u0 ∈ A, then A−u0 = {u−u0 :u ∈ A} is
a subspace of V . Moreover, the subspace A − u0, the “corresponding subspace” does
not depend on the choice of u0.

I.3.6. The solution set of a system of k linear equations in m unknowns is an affine
subspace of Fm. The solution set of the corresponding homogeneous system is the
“corresponding subspace”.

I.3.7. Consider the matrix A =


a11 . . . a1m

a21 . . . a2m

... . . .
...

ak1 . . . akm

 and its columns vj =

a1j

...
akj

.

Prove that a column vi end up as a “main column” in the row echelon form of A if,
and only if, it is linearly independent of the columns vj , j < i.

I.3.8. (continuation) Denote by B =


b11 . . . b1m

b21 . . . b2m

... . . .
...

bk1 . . . bkm

 the matrix in row echelon

form obtained fromA by the algorithm described above. Let l1 < l2, . . . be the indices
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22 LINEAR ALGEBRA

of the main columns in B and i the index of another column. Prove

(1.3.9) vi =
∑
lj<i

bjivlj .

I.3.9. What is the row echelon form of the 7 × 6 matrix A, if its columns Cj , j =
1, . . . , 6 satisfy the following conditions:

a. C1 6= 0;
b. C2 = 3C1;
c. C3 is not a (scalar) multiple of C1;
d. C4 = C1 + 2C2 + 3C3;
e. C5 = 6C3;
f. C6 is not in the span of C2 and C3.

I.3.10. Given polynomials P1 =
∑n

0 ajx
j , P2 =

∑m
0 bjx

j , S =
∑l

0 sjx
j

of degrees n, m, and l < n + m respectively, we want to find polynomials q1 =∑m−1
0 cjx

j , and q2 =
∑n−1

0 djx
j , such that

(1.3.10) P1q1 + P2q2 = S.

Reduce the polynomial equation (1.3.10) to a system of linear equations, the un-
known being the coefficients c0, . . . , cm−1 of q1, and d0, . . . , dn−1 of q2.

The associated homogeneous system corresponds to the case S = 0. Show that it
has a nontrivial solutions if, and only if, P1 and P2 have a nontrivial common factor.
(You may assume the unique factorization theorem, A.6.3.)
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Chapter II

Linear operators and matrices

2.1 LINEAR OPERATORS (MAPS, TRANSFORMATIONS)

2.1.1 Let V and W be vector spaces over the same field.

DEFINITION: A map T : V 7→ W is linear if for all vectors vj ∈ V and scalars
aj ,

(2.1.1) T (a1v1 + a2v2) = a1Tv1 + a2Tv2.

This was discussed briefly in 1.1.2. Linear maps are also called linear oper-
ators, linear transformations, homomorphisms, etc. The adjective “linear” is
sometimes assumed implicitly. The term we use most of the time is operator.

EXAMPLES:

a. If {v1, . . . , vn} is a basis for V and {w1, . . . , wn} ⊂ W is arbitrary, then
the map vj 7→ wj , j = 1, . . . , n extends (uniquely) to a linear map T from
V to W defined by

(2.1.2) T :
∑

ajvj 7→
∑

ajwj .

Every linear operator from V into W is obtained this way.

b. Let V be the space of all continuous, 2π-periodic functions on the line. For
every x0 define Tx0 , the translation by x0:

Tx0 : f(x) 7→ fx0(x) = f(x− x0).
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24 LINEAR ALGEBRA

c. The transpose.

(2.1.3) A =


a11 . . . a1m

a21 . . . a2m
... . . .

...
an1 . . . anm

 7→ ATr =


a11 . . . an1

a12 . . . an2
... . . .

...
a1m . . . anm


which maps M(n,m; F) onto M(m,n; F).

d. Differentiation on F[x]:

(2.1.4) D :
n∑
0

ajx
j 7→

n∑
1

jajx
j−1.

There is no limiting process involved and the definition is valid for arbitrary
field F.

e. Differentiation on TN :

(2.1.5) D :
N∑
−N

ane
inx 7→

N∑
−N

in ane
inx.

There is no limiting process involved.

f. Differentiation on C∞[0, 1], the complex vector space of infinitely differ-
entiable complex-valued functions on [0, 1]:

(2.1.6) D : f 7→ f ′ =
df

dx
.

g. If V = W ⊕ U every v ∈ V has a unique representation v = w + u with
w ∈ W, u ∈ U . The map π1 : v 7→ w is the identity on W and maps
U to {0}. It is called the projection of V on W along U . The operator
π1 is linear since, if v = w + u and v1 = w1 + u1, then av + bv1 =
(aw + bw1) + (au+ bu1), and π1(av + bv1) = aπ1v + bπ1v1.

Similarly, π2 : v 7→ u is called the projection of V on U along W . π1

and π2 are referred to as the projections corresponding to the direct sum

decomposion.
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II. LINEAR OPERATORS AND MATRICES 25

2.1.2 We denote the space of all linear maps from V into W by L(V,W).
Another common notation is HOM(V,W). The two most important cases in
what follows are: W = V , and W = F, the field of scalars.

When W = V we write L(V) instead of L(V,V).
When W is the underlying field, we refer to the linear maps as linear func-

tionals or linear forms on V . Instead of L(V,F) we write V∗, and refer to it as
the dual space of V .

2.1.3 If T ∈ L(V,W) is bijective, it is invertible, and the inverse map T−1

is linear from W onto V . This is seen as follows: by (2.1.1),

T−1(a1Tv1 + a2Tv2) =T−1(T (a1v1 + a2v2)) = a1v1 + a2v2

= a1T
−1(Tv1) + a2T

−1(Tv2),
(2.1.7)

and, as T is surjective, Tvj are arbitrary vectors in W .
Recall (see 1.1.2) that an isomorphism of vector spaces, V and W is a

bijective linear map T : V 7→ W . An isomorphism of a space onto itself is
called an automorphism.

V and W are isomorphic if there is an isomorphism of the one onto the
other. The relation is clearly reflexive and, by the previous paragraph, symmet-
ric. Since the concatenation (see 2.2.1) of isomorphisms is an isomorphism,
the relation is also transitive and so is an equivalence relation. The image of
a basis under an isomorphism is a basis, see exercise II.1.2; it follows that the
dimension is an isomorphism invariant.

If V is a finite dimensional vector space over F, every basis v = {v1, . . . , vn}
of V defines an isomorphism Cv of V onto Fn by:

(2.1.8) Cv : v =
∑

ajvj 7→

a1

...
an

 =
∑

ajej .

Cv v is the coordinate vector of v relative to the basis v. Notice that this
is a special case of example a. above: we map the basis elements vj on the
corresponding elements ej of the standard basis, and extend by linearity.

If V and W are both n-dimensional, with bases v = {v1, . . . , vn}, and
w = {w1, . . . , wn} respectively, the map T :

∑
ajvj 7→

∑
ajwj is an isomor-
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phism. This shows that the dimension is a complete invariant: finite dimen-
sional vector spaces over F are isomorphic if, and only if, they have the same
dimension.

2.1.4 The sum of linear maps T, S ∈ L(V,W), and the multiple of a linear
map by a scalar are defined by: for every v ∈ V ,

(2.1.9) (T + S)v = Tv + Sv, (aT )v = a(Tv).

Observe that (T + S) and aT , as defined, are linear maps from V to W , i.e.,
elements of L(V,W).

Proposition. Let V and W be vector spaces over F. Then, with the addition
and multiplication by a scalar defined by (2.1.9), L(V,W) is a vector space
defined over F. If both V and W are finite dimensional, then so is L(V,W),
and dimL(V,W) = dimV dimW .

PROOF: The proof that L(V,W) is a vector space over F is straightforward
checking, left to the reader.

The statement about the dimension is exercise II.1.3 below. J

EXERCISES FOR SECTION 2.1

II.1.1. Show that if A is linearly dependent in V and T ∈ L(V,W), then TA is
linearly dependent in W .

II.1.2. Prove that an injective map T ∈ L(V,W) is an isomorphism if, and only if,
it maps some basis of V onto a basis of W , and this is the case if, and only if, it maps
every basis of V onto a basis of W .

II.1.3. Let V and W be finite dimensional with bases v = {v1, . . . , vn} and
w = {w1, . . . , wm} respectively. Let ϕij ∈ L(V,W) be defined by ϕijvi = wj and
ϕijvk = 0 for k 6= i. Prove that {ϕij : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a basis for
L(V,W).
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2.2 OPERATOR MULTIPLICATION

2.2.1 For T ∈ L(V,W) and S ∈ L(W, U) we define ST ∈ L(V, U) by
concatenation, that is: (ST )v = S(Tv). ST is a linear operator since

(2.2.1) ST (a1v1 + a2v2) = S(a1Tv1 + a2Tv2) = a1STv1 + a2STv2.

In particular, if V = W = U , we have T , S, and TS all in L(V).

Proposition. With the product ST defined above, L(V) is an algebra over F.

PROOF: The claim is that the product is associative and, with the addition de-
fined by (2.1.9) above, distributive. This is straightforward checking, left to the
reader. J

The algebra L(V) is not commutative unless dimV = 1, in which case it
is simply the underlying field.

The set of automorphisms, i.e., invertible elements inL(V) is a group under
multiplication, denoted GL(V).

2.2.2 Given an operator T ∈ L(V) the powers T j of T are well defined for
all j ≥ 1, and we define T 0 = I . Since we can take linear combinations of the
powers of T we have P (T ) well defined for all polynomials P ∈ F[x].

We denote

(2.2.2) P(T ) = {P (T ) :P ∈ F[x]}.

P(T ) will be the main tool in understanding the way in which T acts on V .

EXERCISES FOR SECTION 2.2

II.2.1. Prove that P(T ) is a commutative subalgebra of L(V).

II.2.2. For T ∈ L(V) denote comm[T ] = {S :S ∈ L(V), ST = TS}, the set of
operators that commute with T . Prove that comm[T ] is a subalgebra of L(V).

II.2.3. Verify that GL(V) is in fact a group.
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2.3 MATRIX MULTIPLICATION.

2.3.1 We define the product of a 1×n matrix (row) r = (a1, . . . , an) and an

n× 1 matrix (column) c =

b1

...
bn

, to be the scalar given by

(2.3.1) r · c =
∑

ajbj ,

Given A ∈M(l,m) and B ∈M(m,n), we define the product AB as the
l × n matrix C whose entries cij are given by

(2.3.2) cij = ri(A) · cj(B) =
∑
k

aikbkj

(ri(A) denotes the i’th row in A, and cj(B) denotes the j’th column in B).
Notice that the product is defined only when the number of columns in A

(the length of the row) is the same as the number of rows in B, (the height of
the column).

The product is associative: given A ∈ M(l,m), B ∈ M(m,n), and
C ∈ M(n, p), then AB ∈ M(l, n) and (AB)C ∈ M(l, p) is well defined.
Similarly, A(BC) is well defined and one checks that A(BC) = (AB)C by
verifying that the r, s entry in either is

∑
i,j arjbjicis.

The product is distributive: for Aj ∈M(l,m), Bj ∈M(m,n),

(2.3.3) (A1 +A2)(B1 +B2) = A1B1 +A1B2 +A2B1 +A2B2,

and commutes with multiplication by scalars:A(aB) = aAB.

Proposition. The map (A,B) 7→ AB, of M(l,m)×M(m,n) to M(l, n), is
linear in B for every fixed A, and in A for every fixed B.

PROOF: The statement just summarizes the properties of the multiplication
discussed above. J
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2.3.2 Write the n×m matrix
(
aij

)
1≤i≤n
1≤j≤m

as a “single column of rows”,


a11 . . . a1m

a21 . . . a2m

... . . .
...

an1 . . . anm

 =


(
a11 . . . a1m

)(
a21 . . . a2m

)
...(

an1 . . . anm

)
 =


r1

r2

...
rn


where ri =

(
ai,1 . . . ai,m

)
∈ Fmr . Notice that if

(
x1, . . . , xn

)
∈ Fnr , then

(2.3.4)
(
x1, . . . , xn

)

a11 . . . a1m

a21 . . . a2m

... . . .
...

an1 . . . anm

 =
(
x1, . . . , xn

)

r1

r2

...
rn

 =
n∑

i=1

xiri.

Similarly, writing the matrix as a “single row of columns”,
a11 . . . a1m

a21 . . . a2m

... . . .
...

an1 . . . anm

 =



a11

a21

...
an1



a12

a22

...
an2

 . . .

a1m

a2m

...
anm


 =

(
c1, c2, . . . , cm

)

we have

(2.3.5)


a11 . . . a1m

a21 . . . a2m

... . . .
...

an1 . . . anm



y1
y2
...
ym

 =
(
c1, c2, . . . , cm

)

y1
y2
...
ym

 =
m∑

j=1

yjcj .

2.3.3 If l = m = n matrix multiplication is a product within M(n).

Proposition. With the multiplication defined above, M(n) is an algebra over
F. The matrix I = In = (δj,k) =

∑n
1 eii is the identity1 element in M(n).

The invertible elements in M(n), aka the non-singular matrices, form a
group under multiplication, the general linear group GL(n,F).

Theorem. A matrix A ∈M(n) is invertible if, and only if its rank is n.

1δj,k is the Kronecker delta, equal to 1 if j = k, and to 0 otherwise.
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PROOF: Exercise II.3.2 below (or equation (2.3.4)) give that the row rank of
BA is no bigger than the row rank of A. If BA = I , the row rank of A is at
least the row rank of I , which is clearly n.

On the other hand, if A is row equivalent to I , then its row echelon form
is I , and by Exercise II.3.10 below, reduction to row echelon form amounts to
multiplication on the left by a matrix, so that A has a left inverse. This implies,
see Exercise II.3.12, that A is invertible. J

EXERCISES FOR SECTION 2.3

II.3.1. Let r be the 1 × n matrix all whose entries are 1, and c the n × 1 matrix all
whose entries are 1. Compute rc and cr.

II.3.2. Prove that each of the columns of the matrix AB is a linear combinations of
the columns of A, and that each row of AB is a linear combination of the rows of B.

II.3.3. Prove: If A is a diagonal matrix with distinct entries on the diagonal, and if B
is a matrix such that AB = BA, then B is diagonal.

II.3.4. Denote by Ξ(n; i, j), 1 ≤ i, j ≤ n, the n× n matrix
∑

k 6=i,j ekk + eij + eji

(the entries ξlk are all zero except for ξij = ξji = 1, and ξkk = 1 if k 6= i, j. This is
the matrix obtained from the identity by interchanging rows i and j.

Let A ∈M(n,m) and B ∈M(m,n). Describe Ξ(n; i, j)A and BΞ(n; i, j).

II.3.5. Let σ be a permutation of [1, . . . , n]. LetAσ be the n×nmatrix whose entries
aij are defined by

(2.3.6) aij =

{
1 if i = σ(j)

0 otherwise.

Let B ∈M(n,m) and C ∈M(m,n). Describe AσB and CAσ .

II.3.6. A matrix whose entries are either zero or one, with precisely one non-zero
entry in each row and in each column is called a permutation matrix. Show that the
matrix Aσ described in the previous exercise is a permutation matrix and that every
permutation matrix is equal to Aσ for some σ ∈ Sn.

II.3.7. Show that the map σ 7→ Aσ defined above is multiplicative: Aστ = AσAτ .
(στ is defined by concatenation: στ(j) = σ(τ(j)) for all j ∈ [1, n].)
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II.3.8. Denote by eij , 1 ≤ i, j ≤ n, the n × n matrix whose entries are all zero
except for the ij entry which is 1. With A ∈ M(n,m) and B ∈ M(m,n). Describe
eijA and Beij .

II.3.9. Describe an n × n matrix A(c, i, j) such that multiplying on the appropriate
side, an n× n matrix B by it, has the effect of replacing the i’th row in B by the sum
of the i’th row and c times the j’th row. Do the same for columns.

II.3.10. Show that each of the steps in the reduction of a matrix A to its row-echelon
form (see 1.3.4) can be accomplished by left multiplication of A by an appropriate
matrix, so that the entire reduction to row-echelon form can be accomplished by left
multiplication by an appropriate matrix. Conclude that if the row rank of A ∈ M(n)
is n, then A is left-invertible.

II.3.11. Let A ∈ M(n) be non-singular and let B = (A, I), the matrix obtained by
“augmenting” A by the identity matrix, that is by adding to A the columns of I in their
given order as columns n + 1, . . . , 2n. Show that the matrix obtained by reducing B
to row echelon form is (I,A−1).

II.3.12. Prove that if A ∈ M(n,m) and B ∈ M(m, l) then (AB)Tr = BTrATr.
Show that if A ∈ M(n) has a left inverse then ATr has a right inverse and if A has
a right inverse then ATr has a left inverse. Use the fact that A and ATr have the same
rank to show that if A has a left inverse B it also has a right inverse C and since
B = B(AC) = (BA)C = C, we have BA = AB = I and A has an inverse.

Where does the fact that we deal with finite dimensional spaces enter the proof?

II.3.13. What are the ranks and the inverses (when they exist) of the matrices

(2.3.7)


0 2 1 0
1 1 7 1
2 2 2 2
0 5 0 0

 ,


1 1 1 1 1
0 2 2 1 1
2 1 2 1 2
0 5 0 9 1
0 5 0 0 7

 ,


1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

 .

II.3.14. Denote An =
[
1 n

0 1

]
. Prove that AmAn = Am+n for all integers m,n.

2.4 MATRICES AND OPERATORS.

2.4.1 Recall that we write the elements of Fn as columns. A matrix A in
M(m,n) defines, by multiplication on the left, an operator TA from Fn to Fm.
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The columns of A are the images, under TA, of the standard basis vectors of
Fn (see (2.3.5)).

Conversly, given T ∈ L(Fn,Fm), if we take A = AT to be the m × n

matrix whose columns are Tej , where {e1, . . . , en} is the standard basis in Fn,
we have TA = T .

Finally we observe that by Proposition 2.3.1 the map A 7→ TA is linear.
This proves:

Theorem. There is a 1-1 linear correspondence T ↔ AT between L(Fn,Fm)
and M(m,n) such that T ∈ L(Fn,Fm) is obtained as a left multiplication by
the m× n matrix, AT .

2.4.2 If T ∈ L(Fn,Fm) and S ∈ L(Fm,Fl) and AT ∈ M(m,n), resp.
AS ∈M(l,m) are the corresponding matrices, then

ST ∈ L(Fn,Fl), ASAT ∈M(l, n), and AST = ASAT .
In particular, if n = m = l, we obtain

Theorem. The map T ↔ AT is an algebra isomorphism between L(Fn) and
M(n).

2.4.3 The special thing about Fn is that it has a “standard basis”. The corre-
spondence T ↔ AT (or A↔ TA) uses the standard basis implicitly.

Consider now general finite dimensional vector spaces V and W . Let T ∈
L(V,W) and let v = {v1, . . . , vn} be a basis for V . As mentioned earlier, the
images {Tv1, . . . , T vn} of the basis elements determine T completely. In fact,
expanding any vector v ∈ V as v =

∑
cjvj , we must have Tv =

∑
cjTvj .

On the other hand, given any vectors yj ∈ W , j = 1, . . . , n we obtain
an element T ∈ L(V,W) by declaring that Tvj = yj for j = 1, . . . , n, and
(necessarily) T (

∑
ajvj) =

∑
ajyj . Thus, the choice of a basis in V determines

a 1-1 correspondence between the elements ofL(V,W) and n-tuples of vectors
in W .

2.4.4 If w = {w1, . . . , wm} is a basis forW , and Tvj =
∑m
k=1 tk,jwk, then,

for any vector v =
∑
cjvj , we have

(2.4.1) Tv =
∑

cjTvj =
∑
j

∑
k

cjtk,jwk =
∑
k

(∑
j

cjtk,j
)
wk.

JANUARY 1, 2006 —DRAFT—



II. LINEAR OPERATORS AND MATRICES 33

Given the bases {v1, . . . , vn} and {w1, . . . , wm}, the full information about T
is contained in the matrix

(2.4.2) AT,v,w =


t11 . . . t1n
t21 . . . t2n
... . . .

...
tm1 . . . tmn

 = (Cw Tv1, . . . ,Cw Tvn).

The “coordinates operators”, Cw, assign to each vector in W the column of
its coordinates with respect to the basis w, see (2.1.8).

When W = V and w = v we write AT,v instead of AT,v,v.
Given the bases v and w, and the matrixAT,v,w, the operator T is explicitly

defined by (2.4.1) or equivalently by

(2.4.3) Cw Tv = AT,v,w Cv v.

Let A ∈ M(m,n), and denote by Sv the vector in W whose coordinates with
respect to w are given by the column ACv v. So defined, S is clearly a linear
operator in L(V,W) and AS,v,w = A. This gives:

Theorem. Given the vector spaces V and W with bases v = {v1, . . . , vn}
and w = {w1, . . . , wm} repectively, the map T 7→ AT,v,w is a bijection of
L(V,W) onto M(m,n).

2.4.5 CHANGE OF BASIS. Assume now that W = V , and that v and w
are arbitrary bases. The v-coordinates of a vector v are given by Cv v and the
w-coordinates of v by Cw v. If we are given the v-coordinates of a vector v,
say x = Cv v, and we need the w-coordinates of v, we observe that v = C-1

v x,
and hence Cw v = Cw C-1

v x. In other words, the operator

(2.4.4) Cw,v = Cw C-1
v

on Fn assigns to the v-coordinates of a vector v ∈ V its w-coordinates. The
factor C-1

v identifies the vector from its v-coordinates, and Cw assigns to the
identified vector its w-coordinates; the space V remains in the background.
Notice that C-1

v,w = Cw,v
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Suppose that we have the matrix AT,w of an operator T ∈ L(V) relative
to a basis w, and we need to have the matrix AT,v of the same operator T ,
but relative to a basis v. (Much of the work in linear algebra revolves around
finding a basis relative to which the matrix of a given operator is as simple as
possible—a simple matrix is one that sheds light on the structure, or properties,
of the operator.) Claim:

(2.4.5) AT,v = Cv,wAT,w Cw,v,

Cw,v assigns to the v-coordinates of a vector v ∈ V its w-coordinates; AT,w
replaces the w-coordinates of v by those of Tv; Cv,w identifies Tv from its
w-coordinates, and produces its v-coordinates.

2.4.6 How special are the matrices (operators) Cw,v? They are clearly non-
singular, and that is a complete characterization.

Proposition. Given a basis w = {w1, . . . , wn} of V , the map v 7→ Cw,v is a
bijection of the set of bases v of V onto GL(n,F).

PROOF: Injectivity: Since Cw is non-singular, the equality Cw,v1 = Cw,v2

implies C-1
v1

= C-1
v2

, and since C-1
v1

maps the elements of the standard basis
of Fn onto the corresponding elements in v1, and C-1

v2
maps the same vectors

onto the corresponding elements in v2, we have v1 = v2.
Surjectivity: Let S ∈ GL(n,F) be arbitrary. We shall exhibit a base v such

that S = Cw,v. By definition, Cw wj = ej , (recall that {e1, . . . , en} is the
standard basis for Fn). Define the vectors vj by the condition: Cw vj = Sej ,
that is, vj is the vector whose w-coordinates are given by the j’th column of S.
As S is non-singular the vj’s are linearly independent, hence form a basis v of
V .

For all j we have vj = C-1
v ej and Cw,v ej = Cw vj = Sej . This proves

that S = Cw,v J

2.4.7 SIMILARITY. The matrices B1 and B2 are said to be similar if they
represent the same operator T in terms of (possibly) different bases, that is,
B1 = AT,v and B2 = AT,w.

If B1 and B2 are similar, they are related by (2.4.5). By Proposition 2.4.6
we have
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Proposition. The Matrices B1 and B2 are similar if, and only if there exists
C ∈ GL(n,F) such that

(2.4.6) B1 = CB2C
−1.

We shall see later (see exercise V.6.3) that if there exists such C with entries
in some field extension of F, then one exists in M(n,F).

2.4.8 The operators S, T ∈ L(V) are said to be similar if there is an operator
R ∈ GL(V) such that

(2.4.7) T = RSR−1.

EXERCISES FOR SECTION 2.4

II.4.1. Prove that S, T ∈ L(V) are similar if, and only if, their matrices (relative to
any basis) are similar. An equivalent condition is: for any basis w there is a basis v

such that AT,v = AS,w.

II.4.2. Let Fn[x] be the space of polynomials
∑n

0 ajx
j . Let D be the differentiation

operator and T = 2D + I .
a. What is the matrix corresponding to T relative to the basis {xj}n

j=0?
b. Verify that, if uj =

∑n
l=j x

l, then {uj}n
j=0 is a basis, and find the matrix

corresponding to T relative to this basis.

II.4.3. Prove that if A ∈ M(l,m), the map T : B 7→ AB is a linear operator
M(m,n) 7→ M(l, n). In particular, if n = 1, M(m, 1) = Fm

c and M(l, 1) = Fl
c and

T ∈ L(Fm
c ,Fl

c). What is the relation between A and the matrix AT defined in 2.4.3
(for the standard bases, and with n there replaced here by l)?

2.5 KERNEL, RANGE, NULLITY, AND RANK

2.5.1 DEFINITION: The kernel of an operator T ∈ L(V,W) is the set

ker(T ) = {v ∈ V :Tv = 0}.

The range of T is the set

range(T ) = TV = {w ∈ W :w = Tv for some v ∈ V}.

The kernel is also called the nullspace of T .
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Proposition. Assume T ∈ L(V,W). Then ker(T ) is a subspace of V , and
range(T ) is a subspace of W .

PROOF: If v1, v2 ∈ ker(T ) then T (a1v1 + a2v2) = a1Tv1 + a2Tv2 = 0.
If vj = Tuj then a1v1 + a2v2 = T (a1u1 + a2u2). J

If V is finite dimensional and T ∈ L(V,W) then both ker(T ) and range(T )
are finite dimensional; the first since it is a subspace of a finite dimensional
space, the second as the image of one, (since, if {v1, . . . , vn} is a basis for V ,
{Tv1, . . . , T vn} spans range(T )).

We define the rank of T , denoted ρ(T), as the dimension of range(T ). We
define the nullity of T , denoted ν(T), as the dimension of ker(T ).

Theorem (Rank and nullity). Assume T ∈ L(V,W), V finite dimensional.

(2.5.1) ρ(T) +ν(T) = dimV.

PROOF: Let {v1, . . . , vl} be a basis for ker(T ), l = ν(T), and extend it to a ba-
sis of V by adding {u1, . . . , uk}. By 1.2.4 we have l+k = dimV . The theorem
follows if we show that k = ρ(T). We do it by showing that {Tu1, . . . , Tuk}
is a basis for range(T ).

Write any v ∈ V as
∑l
i=1 aivi +

∑k
i=1 biui. Since Tvi = 0, we have

Tv =
∑k
i=1 biTui, which shows that {Tu1, . . . , Tuk} spans range(T ).

We claim that {Tu1, . . . , Tuk} is also independent. To show this, assume
that

∑k
j=1 cjTuj = 0, then T

(∑k
j=1 cjuj

)
= 0, that is

∑k
j=1 cjuj ∈ ker(T ).

Since {v1, . . . , vl} is a basis for ker(T ), we have
∑k
j=1 cjuj =

∑l
j=1 djvj for

appropriate constants dj . But {v1, . . . , vl} ∪ {u1, . . . , uk} is independent, and
we obtain cj = 0 for all j. J

The proof gives more than is claimed in the theorem. It shows that T can
be “factored” as a product of two maps. The first is the quotient map V 7→
V/ ker(T ); vectors that are congruent modulo ker(T ) have the same image
under T . The second, V/ ker(T ) 7→ TV is an isomorphism. (This is the
Homomorphism Theorem of groups in our context.)
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2.5.2 The identity operator, defined by Iv = v, is an identity element in the
algebra L(V). The invertible elements in L(V) are the automorphisms of V ,
that is, the bijective linear maps. In the context of finite dimensional spaces,
either injectivity (i.e. being 1-1) or surjectivity (onto) implies the other:

Theorem. Let V be a finite dimensional vector space, T ∈ LV . Then

(2.5.2) ker(T ) = {0} ⇐⇒ range(T ) = V,

and either condition is equivalent to: “T is invertible”, aka “nonsingular”.

PROOF: ker(T ) = {0} is equivalent to ν(T) = 0, and range(T ) = V is
equivalent to ρ(T) = dimV . Now apply (2.5.1). J

2.5.3 As another illustration of how the “rank and nullity” theorem can be
used, consider the following statment (which can be seen directly as a conse-
quence of exercise I.2.12)

Theorem. Let V = V1 ⊕ V2 be finite dimensional, dimV1 = k. Let W ⊂ V
be a subspace of dimension l > k. Then dimW ∩ V2 ≥ l − k.

PROOF: Denote by π1 the restriction to W of the projection of V on V1 along
V2. Since the rank of π1 is clearly ≤ k, the nullity is ≥ l − k. In other words,
the kernel of this map, namely W ∩ V2, has dimension ≥ l − k. J

EXERCISES FOR SECTION 2.5

II.5.1. Assume T, S ∈ L(V). Prove that ν(ST) ≤ ν(S) +ν(T) .

II.5.2. Give an example of two 2 × 2 matrices A and B such that ρ(AB) = 1 and
ρ(BA) = 0.

II.5.3. Given vector spaces V and W over the same field. Let {vj}n
j=1 ⊂ V and

{wj}n
j=1 ⊂ W . Prove that there exists a linear map T : span[v1, . . . , vn] 7→ W such

that Tvj = wj , j = 1, . . . , n if, and only if, the following implication holds:

If aj , j = 1 . . . , n are scalars, and
n∑
1

ajvj = 0, then
n∑
1

ajwj = 0.
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Can the definition of T be extended to the entire V?

II.5.4. What is the relationship of the previous exercise to Theorem 1.3.5?

II.5.5. The operators T, S ∈ L(V) are called “equivalent” if there exist invertible
A,B ∈ L(V) such that

S = ATB (so that T = A−1SB−1).

Prove that if V is finite dimensional then T, S are “equivalent” if, and only if

ρ(S) = ρ(T) .

II.5.6. Give an example of two operators on F3 that are equivalent but not similar.

II.5.7. Assume T, S ∈ L(V). Prove that the following statements are equivalent:

a. ker(S) ⊂ ker(T ),

b. There exists R ∈ L(V) such that T = RS.

Hint: For the implication a. =⇒ b.: Choose a basis {v1, . . . , vs} for ker(S). Expand
it to a basis for ker(T ) by adding {u1, . . . , ut−s}, and expand further to a basis for V
by adding the vectors {w1, . . . , wn−t}.

The sequence {Su1, . . . , Sut−s} ∪ {Sw1, . . . , Swn−t} is independent, so that R
can be defined arbitrarily on it (and extended by linearity to an operator on the entire
space). Define R(Suj) = 0, R(Swj) = Twj .

The other implication is obvious.

II.5.8. Assume T, S ∈ L(V). Prove that the following statements are equivalent:

a. range(S) ⊂ range(T ),

b. There exists R ∈ L(V) such that S = TR.

Hint: Again, b. =⇒ a. is obvious.
For a. =⇒ b. Take a basis {v1, . . . , vn} for V . Let uj , j = 1, . . . , n be such that

Tuj = Svj , (use assumption a.). Define Rvj = uj (and extend by linearity).

II.5.9. Find bases for the null space, ker(A), and for the range, range(A), of the
matrix (acting on rows in R5) 

1 0 0 5 9
0 1 0 −3 2
0 0 1 2 1
3 2 1 11 32
1 2 0 −1 13

 .
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II.5.10. Let T ∈ L(V ), l ∈ N. Prove:

a. ker(T l) ⊆ ker(T l+1); equality if, and only if range(T l) ∩ ker(T ) = {0}.

b. range(T l+1) ⊆ range(T l); equality if, and only if, ker(T l+1) = ker(T l).

c. If ker(T l+1) = ker(T l), then ker(T l+k+1) = ker(T l+k) for all positive integers
k.

II.5.11. An operator T is idempotent if T 2 = T . Prove that an idempotent operator
is a projection on range(T ) along ker(T ).

?2.6 NORMED FINITE DIMENSIONAL LINEAR SPACES

2.6.1 A norm on a real or complex vector space V is a nonnegative function
v 7→ ‖v‖ that satisfies the conditions

a. Positivity: ‖0‖ = 0 and if v 6= 0 then ‖v‖ > 0.

b. Homogeneity: ‖av‖ = |a|‖v‖ for scalars a and vectors v.

c. The triangle inequality: ‖v + u‖ ≤ ‖v‖+ ‖u‖.

These properties guarantee that ρ(v, u) = ‖v−u‖ is a metric on the space,
and with a metric one can use tools and notions from point-set topology such
as limits, continuity, convergence, infinite series, etc.

A vector space endowed with a norm is a normed vector space.

2.6.2 If V and W are isomorphic real or complex n-dimensional spaces and
S is an isomorphism of V onto W , then a norm ‖·‖∗ on W can be transported
to V by defining ‖v‖ = ‖Sv‖∗. This implies that all possible norms on a real
n-dimensional space are copies of norms on Rn, and all norms on a complex
n-dimensional space are copies of norms on Cn.

A finite dimensional V can be endowed with many different norms; yet, all
these norms are equivalent in the following sense:

DEFINITION: The norms ‖·‖1 and ‖·‖2 are equivalent, written: ‖·‖1 ∼ ‖·‖2

if there is a positive constant C such that for all v ∈ V

C−1‖v‖1 ≤ ‖v‖2 ≤ C‖v‖1
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The metrics ρ1, ρ2, defined by equivalent norms, are equivalent: for v, u ∈ V

C−1ρ1(v, u) ≤ ρ2(v, u) ≤ Cρ1(v, u).

which means that they define the same topology—the familiar topology of Rn

or Cn.

2.6.3 If V and W are normed vector spaces we define a norm on L(V,W)
by writing, for T ∈ L(V,W),

(2.6.1) ‖T‖ = max
‖v‖=1

‖Tv‖ = max
v 6=0

‖Tv‖
‖v‖

.

Equivalently,

(2.6.2) ‖T‖ = inf{C : ‖Tv‖ ≤ C‖v‖ for all v ∈ H}.

To check that (2.6.1) defines a norm we observe that properties a. and b. are
obvious, and that c. follows from2

‖(T + S)v‖ ≤ ‖Tv‖+ ‖Sv‖ ≤ ‖T‖‖v‖+ ‖S‖‖v‖ ≤ (‖T‖+ ‖S‖)‖v‖.

L(V) is an algebra and we observe that the norm defined by (2.6.1) onL(V)
is submultiplicative: we have ‖STv‖ ≤ ‖S‖‖Tv‖ ≤ ‖S‖‖T‖‖v‖, where
S, T ∈ L(V) and v ∈ V , which means

(2.6.3) ‖ST‖ ≤ ‖S‖‖T‖.

EXERCISES FOR SECTION 2.6

II.6.1. Let V be n-dimensional real or complex vector space, v = {v1, . . . , vn} a
basis for V . Write ‖

∑
ajvj‖v,1 =

∑
|aj |, and ‖

∑
ajvj‖v,∞ = max|aj |.

Prove:
a. ‖·‖v,1 and ‖·‖v,∞ are norms on V , and

(2.6.4) ‖·‖v,∞ ≤ ‖·‖v,1 ≤ n‖·‖v,∞

2Notice that the norms appearing in the inequalities are the ones defined on W , L(V,W),
and V , respectively.
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b. If ‖·‖ is any norm on V then, for all v ∈ V ,

(2.6.5) ‖v‖v,1 max‖vj‖ ≥ ‖v‖.

II.6.2. Let ‖·‖j , j = 1, 2, be norms on V , and ρj the induced metrics. Let {vn}∞n=0

be a sequence in V and assume that ρ1(vn, v0) → 0. Prove ρ2(vn, v0) → 0.

II.6.3. Let {vn}∞n=0 be bounded in V . Prove that
∑∞

0 vnz
n converges for every z

such that |z| < 1.
Hint: Prove that the partial sums form a Cauchy sequence in the metric defined by
the norm.

II.6.4. Let V be n-dimensional real or complex normed vector space. The unit ball
in V is the set

B1 = {v ∈ V : ‖v‖ ≤ 1}.

Prove that B1 is
convex: If v, u ∈ B1, 0 ≤ a ≤ 1, then av + (1− a)u ∈ B1.
Bounded: For every v ∈ V , there exist a (positive) constant λ such that cv /∈ B for
|c| > λ.
Symmetric, centered at 0: If v ∈ B and |a| ≤ 1 then av ∈ B.

II.6.5. Let V be n-dimensional real or complex vector space, and let B be a bounded
symmetric convex set centered at 0. Define

‖u‖ = inf{a > 0 : a−1u ∈ B}.

Prove that this defines a norm on V , and the unit ball for this norm is the given B

II.6.6. Describe a norm ‖ ‖0 on R3 such that the standard unit vectors have norm 1
while ‖(1, 1, 1)‖0 < 1

100 .

II.6.7. Let V be a normed linear space and T ∈ L(V). Prove that the set of vectors
v ∈ V whose T -orbit, {Tnv}, is bounded is a subspace of V .
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Chapter III

Duality of vector spaces

3.1 LINEAR FUNCTIONALS

Let V be a finite dimensional vector space with basis {v1, . . . , vn}. Every
element v ∈ V can be written, in exactly one way, as

(3.1.1) v =
n∑
1

aj(v)vj ,

the notation aj(v) comes to emphasize the dependence of the coefficients on
the vector v.

Let v =
∑n

1 aj(v)vj , and u =
∑n

1 aj(u)vj . If c, d ∈ F, then

cv + du =
n∑
1

(caj(v) + daj(u))vj

so that
aj(cv + du) = caj(v) + daj(u).

In other words, aj(v) are linear functionals on V .
A standard notation for the image of a vector v under a linear functional v∗

is (v, v∗). Accordingly we denote the linear functionals corresponding to aj(v)
by v∗j and write

(3.1.2) aj(v) = (v, v∗j ) so that v =
n∑
1

(v, v∗j )vj .

Proposition. The linear functionals v∗j , j = 1, . . . , n form a basis for the dual
space V∗.
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PROOF: Let u∗ ∈ V∗. Write bj(u∗) = (vj , u∗), then for any v ∈ V ,

(v, u∗) = (
∑
j

(v, v∗j )vj , u
∗) =

∑
j

(v, v∗j )bj(u
∗) = (v,

∑
bj(u∗)v∗j ),

and u∗ =
∑
bj(u∗)v∗j . It follows that {v∗1, . . . , v∗n} spans V∗. On the other

hand, {v∗1, . . . , v∗n} is independent since
∑
cjv

∗
j = 0 implies (vk,

∑
cjv

∗
j ) =

ck = 0 for all k. J

Corollary. dimV∗ = dimV .

The basis {v∗j }n1 , j = 1, . . . , n is called the dual basis of {v1, . . . , vn}. It
is characterized by the condition

(3.1.3) (vj , v∗k) = δj,k,

δj,k is the Kronecker delta, it takes the value 1 if j = k, and 0 otherwise.

3.1.1 The way we add linear functionals or multiply them by scalars guaran-
tees that the form (expression) (v, v∗), v ∈ V and v∗ ∈ V∗, is bilinear, that is
linear in v for every fixed v∗, and linear in v∗ for any fixed v. Thus every v ∈ V
defines a linear functional on V∗.

If {v1, . . . , vn} is a basis for V , and {v∗1, . . . , v∗n} the dual basis in V∗, then
(3.1.3) identifies {v1, . . . , vn} as the dual basis of {v∗1, . . . , v∗n}. The roles of
V and V∗ are perfectly symmetric and what we have is two spaces in duality,
the duality between them defined by the bilinear form (v, v∗). (3.1.2) works in
both directions, thus if {v1, . . . , vn} and {v∗1, . . . , v∗n} are dual bases, then for
all v ∈ V and v∗ ∈ V∗,

(3.1.4) v =
n∑
1

(v, v∗j )vj , v∗ =
n∑
1

(vj , v∗)v∗j .

The dual of Fnc (i.e., Fn written as columns) can be identified with Fnr (i.e.,
Fn written as rows) and the pairing (v, v∗) as the matrix product v∗v of the row
v∗ by the column v, (exercise III.1.4 below). The dual of the standard basis of
Fnc is the standard basis Fnr .
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3.1.2 ANNIHILATOR. Given a set A ⊂ V , the set of all the linear func-
tionals v∗ ∈ V∗ that vanish identically on A is called the annihilator of A and
denoted A⊥. Clearly, A⊥ is a subspace of V∗.

Functionals that annihilate A vanish on span[A] as well, and functionals
that annihilate span[A] clearly vanish on A; hence A⊥ = (span[A])⊥.

Proposition. Let V1 ⊂ V be a subspace, then dimV1 + dimV⊥1 = dimV .

PROOF: Let {v1, . . . , vm} be a basis for V1, and let {vm+1, . . . , vn} complete
it to a basis for V . Let {v∗1, . . . , v∗n} be the dual basis.

We claim, that {v∗m+1, . . . , v
∗
n} is a basis for V⊥1 ; hence dimV⊥1 = n−m

proving the proposition.
By (3.1.3) we have {v∗m+1, . . . , v

∗
n} ⊂ V⊥1 , and we know these vectors to

be independent. We only need to prove that they span V⊥1 .
Let w∗ ∈ V⊥1 , Write w∗ =

∑n
j=1 ajv

∗
j , and observe that aj = (vj , w∗).

Now w∗ ∈ V⊥1 implies aj = 0 for 1 ≤ j ≤ m, so that w∗ =
∑n
m+1 ajv

∗
j . J

Theorem. Let A ⊂ V , v ∈ V and assume that (v, u∗) = 0 for every u∗ ∈ A⊥.
Then v ∈ span[A].

Equivalent statement: If v /∈ span[A] then there exists u∗ ∈ A⊥ such that
(v, u∗) 6= 0.

PROOF: If v /∈ span[A], then dim span[A, v] = dim span[A] + 1, hence
dim span[A, v]⊥ = dim span[A]⊥−1. It follows that span[A]⊥ ) span[A, v]⊥,
and since functionals in A⊥ which annihilate v annihilate span[A, v], there ex-
ist functionals in A⊥ that do not annihilate v. J

3.1.3 Let V be a finite dimensional vector space and V1 ⊂ V a subspace. Re-
stricting the domain of a linear functional in V∗ to V1 defines a linear functional
on V1.

The functionals whose restriction to V1 is zero are, by definition, the el-
ements of V⊥1 . The restrictions of v∗ and u∗ to V1 are equal if, and only if,
v∗ − u∗ ∈ V⊥1 . This, combined with exercise III.1.2 below, gives a natural
identification of V∗1 with the quotient space V∗/V⊥1 .
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EXERCISES FOR SECTION 3.1

III.1.1. Given a linearly independent {v1, . . . , vk} ⊂ V and scalars {aj}k
j=1. Prove

that there exists v∗ ∈ V∗ such that (vj , v
∗) = aj for 1 ≤ j ≤ k.

III.1.2. If V1 is a subspace of a finite dimensional space V then every linear functional
on V1 is the restriction to V1 of a linear functional on V .

III.1.3. Let V be a finite dimensional vector space, V1 ⊂ V a subspace. Let
{u∗k}r

k=1 ⊂ V∗ be linearly independent mod V⊥1 (i.e., if
∑
cku

∗
k ∈ V⊥1 , then ck = 0,

k = 1, . . . , r). Let {v∗j }s
j=1 ⊂ V⊥1 , be independent. Prove that {u∗k} ∪ {v∗j } is linearly

independent in V∗.
III.1.4. Show that every linear functional on Fn

c is given by some (a1, . . . , an) ∈ Fn
r

as x1

...
xn

 7→ (a1, . . . , an)

x1

...
xn

 =
∑

ajxj

III.1.5. Let V and W be finite dimensional vector spaces.
a. Prove that for every v ∈ V and w∗ ∈ W∗ the map

ϕv,w∗ : T 7→ (Tv,w∗)

is a linear functional on L(V,W).
b. Prove that the map v ⊗ w∗ 7→ ϕv,w∗ is an isomorphism of V ⊗ W∗ onto the

dual space of L(V,W).

III.1.6. Let V be a complex vector space, {v∗j }s
j=1 ⊂ V∗, and w∗ ∈ V∗ such that for

all v ∈ V ,
|〈v, w∗〉| ≤ maxs

j=1|〈v, v∗j 〉|.

Prove that w∗ ∈ span[{v∗j }s
j=1].

III.1.7. Linear functionals on RN [x]:

1. Show that for every x ∈ R the map ϕx defined by (P,ϕx) = P (x) is a linear
functional on RN [x].

2. If {x1, . . . , xm} are distinct andm ≤ N+1, then ϕxj are linearly independent.

3. For every x ∈ R and l ∈ N, l ≤ N , the map ϕ(l)
x defined by (P,ϕ(l)

x ) = P (l)(x)
is a (non-trivial) linear functional on RN [x].
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III.1.8. Let xj ∈ R, lj ∈ N, and assume that the pairs (xj , lj), j = 1, . . . , N + 1,
are distinct. Denote by #(m) the number of such pairs with lj > m.
a. Prove that a necessary condition for the functionals ϕ(lj)

xj to be independent on
RN [x] is:

(3.1.5) for every m ≤ N , #(m) ≤ N −m.

b. Check that ϕ1, ϕ−1, and ϕ(1)
0 are linearly dependent in the dual of R2[x], hence

(3.1.5) is not sufficient. Are ϕ1, ϕ−1, and ϕ
(1)
0 linearly dependent in the dual of

R3[x]?

3.2 THE ADJOINT

3.2.1 The concatenation w∗T of T ∈ L(V,W), and w∗ ∈ W∗, is a linear
map from V to the underlying field, i.e. a linear functional v∗ on V .

With T fixed, the mappingw∗ 7→ w∗T is a linear operator T ∗ ∈ L(W∗,V∗).
It is called the adjoint of T .

The basic relationship between T, T ∗, and the bilinear forms (v, v∗) and
(w,w∗) is: For all v ∈ V and w∗ ∈ W∗,

(3.2.1) (Tv,w∗) = (v, T ∗w∗).

Notice that the left-hand side is the bilinear form on (W,W ∗), while the right-
hand side in (V, V ∗).

3.2.2 Proposition.

(3.2.2) ρ(T*) = ρ(T) .

PROOF: Let T ∈ L(V,W), assume ρ(T) = r, and let {v1, . . . , vn} be a basis
for V such that {vr+1, . . . , vn} is a basis for ker(T ). We have seen (see the
proof of theorem 2.5.1) that {Tv1, . . . , T vr} is a basis for TV = range(T ).

Denote wj = Tvj , j = 1, . . . , r. Add the vectors wj , j = r+ 1, . . . ,m so
that {w1, . . . , wm} be a basis for W . Let {w∗1, . . . , w∗m} be the dual basis.

Fix k > r; for every j ≤ r we have (vj , T ∗w∗k) = (wj , w∗k) = 0 which
means T ∗w∗k = 0. Thus T ∗W∗ is spanned by {T ∗w∗j}rj=1.

For 1 ≤ i, j ≤ r, (vi, T ∗w∗j ) = (wi, w∗j ) = δi,j , which implies that
{T ∗w∗j}rj=1 is linearly independent in V∗.

Thus, {T ∗w∗1, . . . , T ∗w∗r} is a basis for T ∗W∗, and ρ(T*) = ρ(T). J
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3.2.3 We have seen in 3.1.1 that if V = Fnc , W = Fmc , both with standard
bases, then V∗ = Fnr , W∗ = Fmr , and the standard basis of Fmr is the dual basis
of the standard basis of Fnc .

If A = AT =

 t11 . . . t1n

... . . .
...

tm1 . . . tmn

, is the matrix of T with respect to the stan-

dard bases, then the operator T is given as left multiplication by A on Fnc and
the bilinear form (Tv,w), for w ∈ Fmr and v ∈ Fnc , is just the matrix product

(3.2.3) w(Av) = (wA)v.

It follows that T ∗w = wAT , that is, the action of T ∗ on the row vectors in Fmr
is obtained as multiplication on the right by the same matrix A = AT .

If we want1 to have the matrix of T ∗ relative to the standard bases in Fnc
and Fmc , acting on columns by left multiplication, all we need to do is transpose
wA and obtain

T ∗wTr = ATrwTr.

3.2.4 Proposition. Let T ∈ L(V,W). Then

(3.2.4) range(T )⊥ = ker(T ∗) and range(T ∗)⊥ = ker(T ).

PROOF: w∗ ∈ range(T )⊥ is equivalent to (Tv,w∗) = (v, T ∗w∗) = 0 for all
v ∈ V , and (v, T ∗w∗) = 0 for all v ∈ V is equivalent to T ∗w∗ = 0.

The condition v ∈ range(T ∗)⊥ is equivalent to (v, T ∗w∗) = 0 for all
w∗ ∈ W∗, and Tv = 0 is equivalent to (Tv,w∗) = (v, T ∗w∗) = 0 i.e.
v ∈ range(T ∗)⊥. J

EXERCISES FOR SECTION 3.2

1This will be the case when there is a natural way to identify the vector space with its dual, for
instance when we work with inner product spaces. If the “identification” is sesquilinear, as
is the case when F = C the matrix for the adjoint is the complex conjugate of ATr, , see Chapter
VI.
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III.2.1. If V = W ⊕ U and S is the projection of V on W along U (see
2.1.1.g), what is the adjoint S∗?

III.2.2. Let A ∈M(m,n; R). Prove

ρ(ATrA) = ρ(A)

III.2.3. Prove that, in the notation of 3.2.2, {w∗j}j=r+1,...,m is a basis for
ker(T ∗).

III.2.4. A vector v ∈ V is an eigenvector for T ∈ L(V) if Tv = λv with
λ ∈ F; λ is the corresponding eigenvalue.

Let v ∈ V be an eigenvector of T with eigenvalue λ, and w ∈ V∗ an
eigenvector of the adjoint T ∗ with eigenvalue λ∗ 6= λ. Prove that (v, w∗) = 0.
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Chapter IV

Determinants

4.1 PERMUTATIONS

A permutation of a set is a bijective, that is 1-1, map of the set onto itself.
The set of permutations of the set [1, . . . , n] is denoted Sn. It is a group under
concatenation—given σ, τ ∈ Sn define τσ by (τσ)(j) = τ(σ(j)) for all j.
The identity element of Sn is the trivial permutation e defined by e(j) = j for
all j.

Sn with this operation is called the symmetric group on [1, . . . , n].

4.1.1 If σ ∈ Sn and a ∈ [1, . . . , n] the set {σk(a)}, is called the σ-orbit of
a. If σa = a the orbit is trivial, i.e., reduced to a single point (which is left
unmoved by σ). A permutation σ is called a cycle, and denoted (a1, . . . , al),
if {aj}lj=1 is its unique nontrivial orbit, aj+1 = σ(aj) for 1 ≤ j < l, and
a1 = σal. The length of the cycle, l, is the period of a1 under σ, that is, the
first positive integer such that σl(a1) = a1. Observe that σ is determined by
the cyclic order of the entries, thus (a1, . . . , al) = (al, a1, . . . , al−1).

Given σ ∈ Sn, the σ-orbits form a partition of [1, . . . , n], the corresponding
cycles commute, and their product is σ.

Cycles of length 2 are called transpositions.

Lemma. Every permutation σ ∈ Sn is a product of transpositions.

PROOF: Since every σ ∈ Sn is a product of cycles, it suffices to show that
every cycle is a product of transpositions.

Observe that

(a1, . . . , al) = (al, a1, a2, . . . , al−1) = (a1, a2)(a2, a3) · · · (al−1, al)

51



52 LINEAR ALGEBRA

(al trades places with al−1, then with al−2, etc., until it settles in place of a1;
every other aj moves once, to the original place of aj+1). Thus, every cycle of
length l is a product of l − 1 transpositions. J

Another useful observation concerns conjugation in Sn. If σ, τ ∈ Sn, and
τ(i) = j then τσ−1 maps σ(i) to j and στσ−1 maps σ(i) to σ(j). This means
that the cycles of στσ−1 are obtained from the cycles of τ by replacing the
entries there by their σ images.

In particular, all cycles of a given length are conjugate in Sn.

4.1.2 THE SIGN OF A PERMUTATION. There are several equivalent ways
to define the sign of a permutation σ ∈ Sn. The sign, denoted sgn [σ], is to take
the values±1, assign the value−1 to each transposition, and be multiplicative:
sgn [στ ] = sgn [σ] sgn [τ ], in other words, be a homomorphism of Sn onto the
multiplicative group {1,−1}.

All these requirements imply that if σ can be written as a product of k
transpositions, then sgn [σ] = (−1)k. But in order to use this as the definition

of sgn one needs to prove that the numbers of factors in all the representations
of any σ ∈ Sn as products of transpositions have the same parity. Also, finding
the value of sgn [σ] this way requires a concrete representation of σ as a product
of transpositions.

We introduce sgn in a different way:

DEFINITION: A set J of pairs {(k, l)} is appropriate for Sn if it contains
exactly one of (j, i), (i, j) for every pair i, j, 1 ≤ i < j ≤ n.

The simplest example is J = {(i, j) : 1 ≤ i < j ≤ n}. A more general
example of an appropriate set is: for τ ∈ Sn,

(4.1.1) Jτ = {(τ(i), τ(j)) : 1 ≤ i < j ≤ n}.

If J is appropriate for Sn, and σ ∈ Sn, then1

(4.1.2)
∏
i<j

sgn (σ(j)− σ(i)) =
∏

(i,j)∈J
sgn (σ(j)− σ(i)) sgn (j − i)

1The sign of integers has the usual meaning.
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since reversing a pair (i, j) changes both sgn (σ(j)−σ(i)) and sgn (j− i), and
does not affect their product.

We define the sign of a permutation σ by

(4.1.3) sgn [σ] =
∏
i<j

sgn (σ(j)− σ(i))

Proposition. The map sgn : σ 7→ sgn [σ] is a homomorphism of Sn onto the
multiplicative group {1,−1}. The sign of any transposition is −1.

PROOF: The multiplicativity is shown as follows:

sgn [στ ] =
∏
i<j

sgn (στ(j)− στ(i))

=
∏
i<j

sgn (στ(j)− στ(i)) sgn (τ(j)− τ(i))
∏
i<j

sgn (τ(j)− τ(i))

= sgn [σ] sgn [τ ].

Since the sign of the identity permutation is +1, the multiplicativity implies
that conjugate permutations have the same sign. In particular all transpositions
have the same sign. The computation for (1, 2) is particularly simple:

sgn (j − 1) = sgn (j − 2) = 1 for all j > 2, while sgn (1− 2) = −1
and the sign of all transpositions is −1. J

EXERCISES FOR SECTION 4.1

IV.1.1. Let σ be a cycle of length k; prove that sgn [σ] = (−1)(k−1).

IV.1.2. Let σ ∈ Sn and assume that its has s orbits (including the trivial orbits, i.e.,
fixed points). Prove that sgn [σ] = (−1)n−s

IV.1.3. Let σj ∈ Sn, j = 1, 2 be cycles with different orbits, Prove that the two
commute if, and only if, their (nontrivial) orbits are disjoint.

4.2 MULTILINEAR MAPS

Let Vj , j = 1, . . . , k, and W be vector spaces over a field F. A map

(4.2.1) ψ : V1 × V2 · · · × Vk 7→ W
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is multilinear, or k-linear, (bilinear—if k = 2) if ψ(v1, . . . , vk) is linear in each
entry vj when the other entries are held fixed.

When all the Vj’s are equal to some fixed V we say that ψ is k-linear on V .
If W is the underlying field F, we refer to ψ as a k-linear form or just k-form.

EXAMPLES:

a. Multiplication in an algebra, e.g., (S, T ) 7→ ST in LV or (A,B) 7→ AB in
M(n).

b. ψ(v, v∗) = (v, v∗), the value of a linear functional v∗ ∈ V∗ on a vector
v ∈ V , is a bilinear form on V × V∗.

c. Given k linear functionals v∗j ∈ V∗, the product ψ(v1, . . . , vk) =
∏

(vj , v∗j )
of is a k-form on V .

d. Let V1 = F[x] and V2 = F[y] the map (p(x), q(y)) 7→ p(x)q(y) is a
bilinear map from F[x]× F[y] onto the space F[x, y] of polynomials in the
two variables.

? 4.2.1 The definition of the tensor product V1⊗V2, see 1.1.6, guarantees that
the map

(4.2.2) Ψ(v, u) = v ⊗ u.

of V1×V2 into V1⊗V2 is bilinear. It is special in that every bilinear map from
(V1,V2) “factors through it”:

Theorem. Let ϕ be a bilinear map from (V1,V2) intoW . Then there is a linear

map Φ: V1 ⊗ V2 −→W such that ϕ = ΦΨ.

The proof consists in checking that, for vj ∈ V1 and uj ∈ V2,∑
vj ⊗ uj = 0 =⇒

∑
ϕ(vj , uj) = 0

so that writing Φ(v ⊗ u) = ϕ(v, u) defines Φ unambiguously, and checking
that so defined, Φ is linear. We leave the checking to the reader.
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? 4.2.2 Let V and W be finite dimensional vector spaces. Given v∗ ∈ V∗

w ∈ W , and v ∈ V , the map v 7→ (v, v∗)w is clearly a linear map from V
to W (a linear functional on V times a fixed vector in W) and we denote it
(temporarily) by v∗ ⊗ w.

Theorem. The map Φ : v∗ ⊗w 7→ v∗ ⊗ w ∈ L(V,W) extends by linearity to
an isomorphism of V∗ ⊗W onto L(V,W).

PROOF: As in ? 4.2.1 we verify that all the representations of zero in the tensor
product are mapped to 0, so that we do have a linear extension.

Let T ∈ L(V,W), v = {vj} a basis for V , and v∗ = {v∗j } the dual basis.
Then, for v ∈ V ,

(4.2.3) Tv = T
(∑

(v, v∗j )vj
)

=
∑

(v, v∗j )Tvj =
(∑

v∗j ⊗ Tvj
)
v,

so that T =
∑
v∗j ⊗ Tvj . This shows that Φ is surjective and, since the two

spaces have the same dimension, a linear map of one onto the other is an iso-
morphism. J

When there is no room for confusion we omit the underlining and write the
operator as v∗ ⊗ w instead of v∗ ⊗ w.

EXERCISES FOR SECTION 4.2

IV.2.1. Assume ϕ(v, u) bilinear on V1 × V2. Prove that the map T : u 7→ ϕu(v) is a
linear map from V2 into (the dual space) V∗1 . Similarly, S : v 7→ vϕ(u) is linear from
V1 to V∗2 .

IV.2.2. Let V1 and V2 be finite dimensional, with bases {v1, . . . , vm} and {u1, . . . , un}
respectively. Show that every bilinear form ϕ on (V1,V2) is given by an m× n matrix
(ajk) such that if v =

∑m
1 xjvj and u =

∑n
1 ykuk then

(4.2.4) ϕ(v, u) =
∑

ajkxjyk = (x1, . . . , xm)

a11 . . . a1n

... . . .
...

am1 . . . amn


y1...
yn


IV.2.3. What is the relation between the matrix in IV.2.2 and the maps S and T
defined in IV.2.1?
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IV.2.4. Let V1 and V2 be finite dimensional, with bases {v1, . . . , vm} and {u1, . . . , un}
respectively, and let {v∗1 , . . . , v∗m} be the dual basis of {v1, . . . , vm}. Let T ∈ L(V1,V2)
and let

AT =

a11 . . . a1m

... . . .
...

an1 . . . anm


be its matrix relative to the given bases. Prove

(4.2.5) T =
∑

aij(v∗j ⊗ ui).

4.2.3 If Ψ and Φ are k-linear maps of V1 ×V2 · · · × Vk into W and a, b ∈ F
then aΨ + bΦ is k-linear. Thus, the k-linear maps of V1 × V2 · · · × Vk into W
form a vector space which we denote by ML({Vj}kj=1,W).

When all the Vj are the same space V , the notation is: ML(V⊕k,W).
The reference to W is omitted when W = F.

4.2.4 Example b. above identifies enough k-linear forms

4.3 ALTERNATING N -FORMS

4.3.1 DEFINITION: An n-linear form ϕ(v1, . . . , vn) on V is alternating if
ϕ(v1, . . . , vn) = 0 whenever one of the entry vectors is repeated, i.e., if vk = vl
for some k 6= l.

If ϕ is alternating, and k 6= l then

ϕ(· · · , vk, · · · , vl, · · · ) = ϕ(· · · , vk, · · · , vl + vk, · · · )
= ϕ(· · · ,−vl, · · · , vl + vk, · · · ) = ϕ(· · · ,−vl, · · · , vk, · · · )
= −ϕ(· · · , vl, · · · , vk, · · · ),

(4.3.1)

which proves that a transposition (k, l) on the entries of ϕ changes its sign. It
follows that for any permutation σ ∈ Sn

(4.3.2) ϕ(vσ(1), . . . , vσ(n)) = sgn [σ]ϕ(v1, . . . , vn).

Condition (4.3.2) explains the term alternating and when the characteristic
of F is 6= 2, can be taken as the definition.

JANUARY 1, 2006 —DRAFT—



IV. DETERMINANTS 57

If ϕ is alternating, and if one of the entry vectors is a linear combination
of the others, we use the linearity of ϕ in that entry and write ϕ(v1, . . . , vn)
as a linear combination of ϕ evaluated on several n-tuples each of which has a
repeated entry. Thus, if {v1, . . . , vn} is linearly dependent, ϕ(v1, . . . , vn) = 0.
It follows that if dimV < n, there are no nontrivial alternating n-forms on V .

Theorem. Assume dimV = n. The space of alternating n-forms on V is
one dimensional: there exists one and, up to scalar multiplication, unique
non-trivial alternating n-form D on V . D(v1, . . . , vn) 6= 0 if, and only if,
{v1, . . . , vn} is a basis.

PROOF: We show first that if ϕ is an alternating n-form, it is completely de-
termined by its value on any given basis of V . This will show that any two
alternating n-forms are proportional, and the proof will also make it clear how
to define a non-trivial alternating n-form.

If {v1, . . . , vn} is a basis for V and ϕ an alternating n-form on V , then
ϕ(vj1 , . . . , vjn) = 0 unless {j1, . . . , jn} is a permutation, say σ, of {1, . . . , n},
and then ϕ(vσ(1), . . . , vσ(n)) = sgn [σ]ϕ(v1, . . . , vn).

If {u1, . . . , un} is an arbitrary n-tuple, we express each ui in terms of the
basis {v1, . . . , vn}:

(4.3.3) uj =
n∑
i=1

ai,jvi, j = 1, . . . , n

and the multilinearity implies

ϕ(u1, . . . , un) =
∑

a1,j1 · · · an,jnϕ(vj1 , . . . , vjn)

=
( ∑
σ∈Sn

sgn [σ]a1,σ(1) · · · , an,σ(n)

)
ϕ(v1, . . . , vn).

(4.3.4)

This show that ϕ(v1, . . . , vn) determines ϕ(u1, . . . , un) for all n-tuples,
and all alternating n-forms are proportional. This also shows that unless ϕ is
trivial, ϕ(v1, . . . , vn) 6= 0 for every independent (i.e., basis) {v1, . . . , vn}.

For the existence we fix a basis {v1, . . . , vn} and set D(v1, . . . , vn) = 1.
Write D(vσ(1), . . . , vσ(n)) = sgn [σ] (for σ ∈ Sn) and D(vj1 , . . . , vjn) = 0 if
there is a repeated entry.
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For arbitrary n-tuple {u1, . . . , un} define D(u1, . . . , un) by (4.3.4), that is

(4.3.5) D(u1, . . . , un) =
∑
σ∈Sn

sgn [σ]a1,σ(1) · · · an,σ(n).

The fact that D is n-linear is clear: it is defined by multilinear expansion. To
check that it is alternating take τ ∈ Sn and write

D(uτ(1), . . . , uτ(n)) =
∑
σ∈Sn

sgn [σ]aτ(1),σ(1) · · · aτ(n),σ(n)

=
∑
σ∈Sn

sgn [σ]a1,τ−1σ(1) · · · an,τ−1σ(n) = sgn [τ ]D(u1, . . . , un)
(4.3.6)

since sgn [τ−1σ] = sgn [τ ] sgn [σ]. J

Observe that if {u1, . . . , un} is given by (4.3.3) then {Tu1, . . . , Tun} is given
by

(4.3.7) Tuj =
n∑
i=1

ai,jTvi, j = 1, . . . , n

and (4.3.4) implies

(4.3.8) D(Tu1, . . . , Tun) =
D(u1, . . . , un)
D(v1, . . . , vn)

D(Tv1, . . . , T vn)

4.4 DETERMINANT OF AN OPERATOR

4.4.1 DEFINITION: The determinant detT of an operator T ∈ L(V) is

(4.4.1) detT =
D(Tv1, . . . , T vn)
D(v1, . . . , vn)

where {v1, . . . , vn} is an arbitrary basis of V and D is a non-trivial alternating
n-form. The independence of detT from the choice of the basis is guaranteed
by (4.3.8).

Proposition. detT = 0 if, and only if, T is singular, (i.e., ker(T ) 6= {0}).
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PROOF: T is singular if, and only if, it maps a basis onto a linearly depen-
dent set. D(Tv1, . . . , T vn) = 0 if, and only if, {Tv1, . . . , T vn} is linearly
dependent. J

4.4.2 Proposition. If T, S ∈ L(V) then

(4.4.2) detTS = detT detS.

PROOF: If either S or T is singular both sides of (4.4.4) are zero. If detS 6= 0,
{Svj} is a basis, and by (4.4.1),

detTS =
D(TSv1, . . . , TSvn)
D(Sv1, . . . , Svn)

· D(Sv1, . . . , Svn)
D(v1, . . . , vn)

= detT detS.
J

? 4.4.3 ORIENTATION. When V is a real vector space, a non-trivial alternat-
ing n-formD determines an equivalence relation among bases. The bases {vj}
and {uj} are declared equivalent if D(v1, . . . , vn) and D(u1, . . . , un) have the
same sign. Using −D instead of D reverses the signs of all the readings, but
maintains the equivalence. An orientation on V is a choice which of the two
equivalence classes to call positive.

4.4.4 A subspaceW ⊂ V is T -invariant, (T ∈ L(V)), if Tw ∈ W whenever
w ∈ W . The restriction TW , defined by w 7→ Tw for w ∈ W , is clearly a
linear operator on W .

T induces also an operator TV/W on the quotient space V/W , see 5.1.5.

Proposition. If W ⊂ V is T -invariant, then

(4.4.3) detT = detTW detTV/W .

PROOF: Let {wj}n1 be a basis for V , such that {wj}k1 is a basis for W . If TW
is singular then T is singular and both sides of (4.4.3) are zero.

If TW is nonsingular, then w = {Tw1, . . . , Twk} is a basis for W , and
{Tw1, . . . , Twk;wk+1, . . . , wn} is a basis for V .

Let D be a nontrivial alternating n-form on V . Then Φ(u1, . . . , uk) =
D(u1, . . . , uk;wk+1, . . . , wn) is a nontrivial alternating k-form on W .
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The value of D(Tw1, . . . , Twk;uk+1, . . . , un) is unchanged if we replace
the variables uk+1, . . . , un by ones that are congruent to them mod W , and
the form Ψ(ũk+1, . . . , ũn) = D(Tw1, . . . , Twk;uk+1, . . . , un) is therefore a
well defined nontrivial alternating n− k-form on V/W .

detT =
D(Tw1, . . . , Twn)
D(w1, . . . , wn)

=

D(Tw1, . . . , Twk;wk+1, . . . , wn)
D(w1, . . . , wn)

· D(Tw1, . . . , Twn)
D(Tw1, . . . , Twk;wk+1, . . . , wn)

=

Φ(Tw1, . . . , Twk)
Φ(w1, . . . , wk)

·Ψ(T̃wk+1, . . . , T̃wn)
Ψ(w̃k+1, . . . , w̃n)

= detTW detTV/W .

J

Corollary. If V =
⊕
Vj and all the Vj’s are T -invariant, and TVj denotes the

restriction of T to Vj , then

(4.4.4) detT =
∏
j

detTVj .

4.4.5 THE CHARACTERISTIC POLYNOMIAL OF AN OPERATOR.
DEFINITIONS: The characteristic polynomial of an operator T ∈ L(V) is
the polynomial χT (λ) = det (T − λ) ∈ F[λ].

Opening up the expression D(Tv1 − λv1, . . . , T vn − λvn), we see
that χT is a polynomial of degree n = dimV , with leading coefficient (−1)n.

By proposition 4.4.1, χT (λ) = 0 if, and only if, T − λ is singular, that is
if, and only if, ker(T − λ) 6= {0}. The zeroes of χT are called eigenvalues

of T and the set of eigenvalues of T is called the spectrum of T , and denoted
σ(T ).

For λ ∈ σ(T ), (the nontrivial) ker(T − λ) is called the eigenspace of
λ. The non-zero vectors v ∈ ker(T − λ) (that is the vectors v 6= 0 such that
Tv = λv) are the eigenvectors of T corresponding to the eigenvalue λ.

EXERCISES FOR SECTION 4.4

IV.4.1. Prove that if T is non-singular, then detT−1 = (detT )−1

IV.4.2. If W ⊂ V is T -invariant, then χT (λ) = χTW
χTV/W

.
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4.5 DETERMINANT OF A MATRIX

4.5.1 Let A = {aij} ∈ M(n). The determinant of A can be defined in
several equivalent ways: the first—as the determinant of the operator that A
defines on Fn by matrix multiplication; another, the standard definition, is di-
rectly by the following formula, motivated by (4.3.5):

(4.5.1) detA =

∣∣∣∣∣∣∣∣∣∣
a11 . . . a1n

a21 . . . a2n
... . . .

...
an1 . . . ann

∣∣∣∣∣∣∣∣∣∣
=

∑
σ∈Sn

sgn [σ]a1,σ(1) · · · an,σ(n).

The reader should check that the two ways are in fact equivalent. They each
have advantages. The first definition, in particular, makes it transparent that
det(AB) = detA detB; the second is sometimes readier for computation.

4.5.2 COFACTORS, EXPANSIONS, AND INVERSES. For a fixed pair (i, j)
the elements in the sum above that have aij as a factor are those for which
σ(i) = j their sum is

(4.5.2)
∑

σ∈Sn, σ(i)=j

sgn [σ]a1,σ(1) · · · an,σ(n) = aijAij .

The sum, with the factor aij removed, denoted Aij in (4.5.2), is called the
cofactor at (i, j).

Observe that partitioning the sum in (4.5.1) according to the value σ(i) for
some fixed i gives the expansion of the determinant along its i’th row:

(4.5.3) detA =
∑
j

aijAij .

If we consider a “mismatched” sum:
∑
j aijAkj for i 6= k, we obtain the de-

terminant of the matrix obtained from A by replacing the k’th row by the i’th.
Since this matrix has two identical rows, its determinant is zero, that is

(4.5.4) for i 6= k,
∑
j

aijAkj = 0.

—DRAFT— JANUARY 1, 2006



62 LINEAR ALGEBRA

Finally, write Ã =


A11 . . . An1

A12 . . . An2

... . . .
...

A1n . . . Ann

 and observe that
∑
j aijAkj is the

ik’th entry of the matrix AÃ so that equtions (4.5.3) and (4.5.4) combined are
equivalent to

(4.5.5) AÃ = detA I.

Proposition. The inverse of a non-singular matrix A ∈M(n) is 1
det(A)Ã.

Historically, the matrix Ã was called the adjoint of A, but the term adjoint

is now used mostly in the context of duality.

4.5.3 THE CHARACTERISTIC POLYNOMIAL OF A MATRIX.
The characteristic polynomial of a matrix A ∈ M(n) is the polynomial

χA(λ) = det (A− λ).

Proposition. If A, B ∈ M(n) are similar then they have the same character-
istic polynomial. In other words, χA is similarity invariant.

PROOF: Similar matrices have the same determinant: they represent the same
operator using different basis and the determinant of an operator is independent
of the basis. Equivalently, if B = CAC−1, then detB = det(CAC−1) =
detC detA(detC)−1 = detA.

Also, ifB = CAC−1, thenB−λ = C(A−λ)C−1, which implies det(B−
λ) = det(A− λ). J

The converse is not always true—matrices (or operators) that have the same
characteristic polynomials may not be similar. See exercise IV.5.2.

If we write χA =
∑n

0 ajλ
j , then

an = (−1)n, a0 = detA, and an−1 = (−1)n−1
n∑
1

aii.

The sum
∑n

1 aii, denoted traceA, is called the trace of the matrix A. Like any
part of χA, the trace is similarity invariant.
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The trace is just one coefficient of the characteristic polynomial and is not
a complete invariant. However, we shall see later that the traces of Aj for all
1 ≤ j ≤ n determine χA(λ) completely.

EXERCISES FOR SECTION 4.5

IV.5.1. A matrix A = {aij} ∈ M(n) is upper triangular if aij = 0 when i > j.
A is lower triangular if aij = 0 when i < j. Prove that if A is either upper or lower
triangular then detA =

∏n
i=1 aii.

IV.5.2. Let A 6= I be a lower triangular matrix with all the diagonal elements equal
to 1. Prove that χA = χI (I is the identity matrix); is A similar to I?

IV.5.3. How can the algorithm of reduction to row echelon form be used to compute
determinants?

IV.5.4. Let A ∈ M(n). A defines an operator on Fn, as well as on M(n), both by
matrix multiplication. What is the relation between the values of detA as operator in
the two cases?

IV.5.5. Prove the following properties of the trace:

1. If A,B ∈M(n), then trace(A+B) = traceA+ traceB.

2. If A ∈M(m,n) and B ∈M(n,m), then traceAB = traceBA.

IV.5.6. If A,B ∈M(2), then (AB −BA)2 = −det (AB −BA)I .

IV.5.7. Prove that the characteristic polynomial of the n × n matrix A = (ai,j) is
equal to

∏n
i=1(ai,i − λ) plus a polynomial of degree bounded by n− 2.

IV.5.8. Assuming F = C, prove that trace
(
ai,j

)
is equal to the sum (including

multiplicity) of the zeros of the characteristic polynomial of
(
ai,j

)
. In other words, if

the characteristic polynomial of
(
ai,j

)
is equal to

∏n
j=1(λ−λj), then

∑
λj =

∑
ai,i.

IV.5.9. Let A = (ai,j) ∈ M(n) and let m > n/2. Assume that ai,j = 0 whenever
both i ≤ m and j ≤ m. Prove that det(A) = 0.

IV.5.10. The Fibonacci sequence is the sequence {fn} defined inductively by:
f1 = 1, f2 = 1, and fn = fn−1 + fn−2 for n ≥ 3, so that the start of the sequence is
1, 1, 2, 3, 5, 8, 13, 21, 34, . . . .

Let (ai,j) be an n× n matrix such that ai,j = 0 when |j − i| > 1 (that is the only
non-zero elements are on the diagonal, just above it, or just below it). Prove that the
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number of non-zero terms in the expansion of the detrminant of (ai,j) is at most equal
to fn+1.

IV.5.11. The Vandermonde determinant. Given scalars aj , j = 1, . . . , n, the
Vandermonde determinant V (a1, . . . , an) is defined by

V (a1, . . . , an) =

∣∣∣∣∣∣∣∣∣
1 a1 a2

1 . . . an−1
1

1 a2 a2
2 . . . an−1

2
...

...
...

...
...

1 an a2
n . . . an−1

n

∣∣∣∣∣∣∣∣∣
Use the following steps to compute V (a1, . . . , an). Observe that

V (a1, . . . , an, x) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 a1 a2
1 . . . an

1

1 a2 a2
2 . . . an

2
...

...
...

...
...

1 an a2
n . . . an

n

1 x x2 . . . xn

∣∣∣∣∣∣∣∣∣∣∣∣
is a polynomial of degree n (in x).

a. Prove that

V (a1, . . . , an, x) = V (a1, . . . , an)
n∏

j=1

(x− aj)

b. Use induction to prove V (a1, . . . , an) =
∏

i<j(aj − ai).

IV.5.12. A trigonometric polynomial P (x) =
∑m

j=1 aje
iαjx that has a zero of order

m (a point x0 such that P (j)(x0) = 0 for j = 0, . . .m− 1) is identically zero.

IV.5.13. Let C ∈M(n,C) be non-singular. Let <C, resp. =C, be the matrix whose
entries are the real parts, resp. the imaginary parts, of the corresponding entries in C.
Prove that for all but a finite number of values of a ∈ R, the matrix <C + a=C is
non-singular.
Hint: Show that replacing a single column in C by the corresponding column in
<C + a=C creates a non-singular matrix for all but one value of a. (The determinant
is a non-trivial linear function of a.)

IV.5.14. Given that the matrices B1, B2 ∈ M(n; R) are similar in M(n; C), show
that they are similar in M(n; R).

JANUARY 1, 2006 —DRAFT—



Chapter V

Invariant subspaces

The study of linear operators on a fixed vector space V (as opposed to
linear maps between different spaces) takes full advantage of the fact that L(V)
is an algebra. Polynomials in T play an important role in the understanding
of T itself. In particular they provide a way to decompose V into a direct sum
of T -invariant subspaces (see below) on each of which the behaviour of T is
relatively simple.

Studying the behavior of T on various subspaces justifies the following
definition.

DEFINITION: A linear system, or simply a system, is a pair (V, T ) where V
is a vector space and T ∈ L(V). When we add adjectives they apply in the
appropriate place, so that a finite dimensional system is a system in which V is
finite dimensional, while an invertible system is one in which T is invertible.

5.1 INVARIANT SUBSPACES

5.1.1 Let (V, T ) be a linear system.

DEFINITION: A subspace V1 ⊂ V is T -invariant if TV1 ⊆ V1. If V1 is
T -invariant and v ∈ V1, then T jv ∈ V1 for all j, and in fact P (T )v ∈ V1 for
every polynomial P . Thus, V1 is P (T )-invariant for all P ∈ F[x].
EXAMPLES:

a. Both ker(T ) and range(T ) are (clearly) T -invariant.
b. If S ∈ L(V) and ST = TS, then ker(S) and range(S) are T -invariant

since if Sv = 0 then STv = TSv = 0, and TSV = S(TV) ⊂ SV . In particu-
lar, if P is a polynomial then ker(P (T )) and range(P (T )) are T -invariant.
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c. Given v ∈ V , the set span[T, v] = {P (T )v :P ∈ F[x]} is clearly a
subspace, clearly T -invariant, and clearly the smallest T -invariant subspace
containing v.

5.1.2 Recall (see 4.4.5) that λ ∈ F is an eigenvalue of T if ker(T − λ) is
nontrivial, i.e., if there exists vectors v 6= 0 such that Tv = λv (called eigen-

vectors “associated with”, or “corresponding to” λ). Eigenvectors provide the
simplest—namely, one dimensional—T -invariant subspaces.

The spectrum σ(T ) is the set of all the eigenvalues of T . It is (see 4.4.5)
the set of zeros of the characteristic polynomial χT (λ) = det (T − λ). If the
underlying field F is algebraically closed every non-constant polynomial has
zeros in F and every T ∈ L(V) has non-empty spectrum.

Proposition (Spectral Mapping theorem). Let T ∈ L(V), λ ∈ σ(T ), and
P ∈ F[x]. Then

a. P (λ) ∈ σ(P(T )).
b. For all k ∈ N,

(5.1.1) ker((P (T )− P (λ))k) ⊃ ker((T − λ)k).

c. If F is algebraically closed, then σ(P(T )) = P (σ(T )).

PROOF: a. (P (x)−P (λ)) is divisible by x−λ: (P (x)−P (λ)) = Q(x)(x−λ),
and (P (T )− P (λ)) = Q(T )(T − λ) is not invertible.

b. (P (x)−P (λ)) = Q(x)(x−λ) implies: (P (x)−P (λ))k = Qk(x−λ)k, and
(P (T )−P (λ))k = Qk(T )(T −λ)k. If v ∈ ker((T −λ)k), i.e., (T −λ)kv = 0,
then (P (T )− P (λ))kv = Qk(T )(T − λ)kv = 0.

c. If F is algebraically closed and µ ∈ F, denote by cj(µ) the roots of P (x)−µ,
and by mj their multiplicities, so that

P (x)− µ =
∏

(x− cj(µ))mj , and P (T )− µ =
∏

(T − cj(µ))mj .

Unless cj(µ) ∈ σ(T ) for some j, all the factors are invertible, and so is their
product. J

Remark: If F is not algebraically closed, σ(P(T )) may be strictly bigger
than P (σ(T )). For example, if F = R, T is a rotation by π/2 on R2, and
P (x) = x2, then σ(T ) = ∅ while σ(T 2) = {−1}.
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V. INVARIANT SUBSPACES 67

5.1.3 T -invariant subspaces are P (T )-invariant for all polynomials P . No-
tice, however, that a subspace W can be T 2-invariant, and not be T -invariant.
Example: V = R2 and T maps (x, y) to (y, x). T 2 = I , the identity, so that ev-
erything is T 2-invariant. But only the diagonal {(x, x) :x ∈ R} is T -invariant.

Assume that T, S ∈ L(V) commute.

a. T commutes with P (S) for every polynomial P ; consequently (see 5.1.1 b.)
ker(P (S)) and range(P (S)) are T -invariant. In particular, for every λ ∈ F,
ker(S − λ) is T -invariant.

b. If W is a S-invariant subspace, then TW is S-invariant. This follows from:

STW = TSW ⊂ TW.

There is no claim that W is T -invariant1. Thus, kernels offer “a special situa-
tion.”

c. If v is an eigenvector for S with eigenvalue λ, it is contained in ker(S − λ)
which is T invariant. If ker(S−λ) is one dimensional, then v is an eigenvector
for T .

5.1.4 Theorem. Let W ⊂ V , and T ∈ L(V). The following statements are
equivalent:
a. W is T -invariant;
b. W⊥ is T ∗-invariant.

PROOF: For all w ∈ W and u∗ ∈ W⊥ we have

(Tw, u∗) = (w, T ∗u∗).

Statement a. is equivalent to the left-hand side being identically zero; statement
b. to the vanishing of the right-hand side. J

1An obvious example is S = I , which commutes with every operator T , and for which all
subspaces are invariant.
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5.1.5 If W ⊂ V is a T -invariant subspace, we define the restriction TW of

T to W by TWv = Tv for v ∈ W . The operator TW is clearly linear on W ,
and every TW -invariant subspace W1 ⊂ W is T -invariant.

Similarly, if W is T -invariant, T induces a linear operator TV/W on the
quotient V/W as follows:

(5.1.2) TV/W(v +W) = Tv +W.

v+W is the coset ofW containing v and, we justify the definition by showing
that it is independent of the choice of the representative: if v1 − v ∈ W then,
by the T -invariance of W , Tv1 − Tv = T (v1 − v) ∈ W .

The reader should check that TV/W is in fact linear.

5.1.6 The fact that when F algebraically closed, every operator T ∈ L(V)
has eigenvectors, applies equally to (V∗, T ∗).

If V is n-dimensional and u∗ ∈ V∗ is an eigenvector for T ∗, then Vn−1 =
[u∗]⊥ = {v ∈ V : (v, u∗) = 0} is T invariant and dimVn−1 = n− 1.

Repeating the argument in Vn−1 we find a T -invariant Vn−2 ⊂ Vn−1 of
dimension n− 2, and repeating the argument a total of n− 1 times we obtain:

Theorem. Assume that F is algebraically closed, and let V be a finite dimen-
sional vector space over F. For any T ∈ L(V), there exist a ladder2 {Vj},
j = 0, . . . , n, of T -invariant subspaces of Vn = V , such that

(5.1.3) V0 = {0}, Vn = V; Vj−1 ⊂ Vj , and dimVj = j.

Corollary. If F is algebraically closed, then every matrix A ∈ M(n; F) is
similar to an upper triangular matrix.

PROOF: Apply the theorem to the operator T of left multiplication by A on
Fnc . Choose vj in Vj \ Vj−1, j = 1, . . . , n, then {v1, . . . , vn} is a basis for V
and the matrix B corresponding to T in this basis is (upper) triangular.

The matrices A and B represent the same operator relative to two bases,
hence are similar. J

2Also called a complete flag.
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Observe that if the underlying field is R, which is not algebraically closed,
and T is a rotation by π/2 on R2, T admits no invariant subspaces.

EXERCISES FOR SECTION 5.1

V.1.1. Let W be T -invariant, P a polynomial. Prove that P (T )W = P (TW).

V.1.2. Let W be T -invariant, P a polynomial. Prove that P (T )V/W = P (TV/W).

V.1.3. Let W be T -invariant. Prove that ker(TW) = ker(T ) ∩W .

V.1.4. Prove that every upper triangular matrix is similar to a lower triangular one
(and vice versa).

V.1.5. If V1 ⊂ V is a subspace, then the set {S :S ∈ L(V), SV1 ⊂ V1} is a
subalgebra of L(V).

V.1.6. Show that if S and T commute and v is an eigenvector for S, it need not be an
eigenvector for T (so that the assumption in the final remark of 5.1.3 that ker(S − λ)
is one dimensional is crucial).

V.1.7. Prove theorem 5.1.6 without using duality.
Hint: Start with an eigenvector u1 of T . Set U1 = span[u1]; Let ũ2 ∈ V/U1 be an
eigenvector of TV/U1 , u2 ∈ V a representative of ũ2, and U2 = span[u1, u2]. Verify
that U2 is T -invariant. Let ũ3 ∈ V/U2 be an eigenvector of TV/U2 , etc.

5.2 THE MINIMAL POLYNOMIAL

5.2.1 THE MINIMAL POLYNOMIAL FOR (T, v).
Given v ∈ V , let m be the first positive integer k such that {T jv}k0 is linearly
dependent or, equivalently, that Tmv is a linear combination of {T jv}m−1

0 ,
say3

(5.2.1) Tmv = −
m−1∑

0

ajT
jv.

The coefficients aj are uniquely determined—this since, by assumption,
{T jv}m−1

0 is independent. For k > 0 we have Tm+kv =
∑m−1

0 ajT
j+kv, and

induction on k establishes that Tm+kv ∈ span[v, . . . , Tm−1v]. It follows that
{T jv}m−1

0 is a basis for span[T, v].

3The minus sign is there to give the common notation: minPT,v(x) = xm +
∑m−1

0
ajx

j
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DEFINITION: The polynomial minPT,v(x) = xm +
∑m−1

0 ajx
j , with aj

defined by (5.2.1) is called the minimal polynomial for (T, v).

Theorem. minPT,v(x) is the monic polynomial of lowest degree that satisfies
P (T )v = 0.

The set NT,v = {P ∈ F[x] :P (T )v = 0} is an ideal in F[x]. The theorem
identifies minPT,v as its generator.

Observe thatP (T )v = 0 is equivalent to “P (T )u = 0 for all u ∈ span[T, v]”.

5.2.2 CYCLIC VECTORS. A vector v ∈ V is cyclic for the system (V, T ) if
it is not contained in any T -invariant proper subspace, that is, if span[T, v] = V .
Not every linear system admits cyclic vectors4; a system that does is called a
cyclic system.

If v is a cyclic vector for (V, T ) and minPT,v(x) = xn +
∑n−1

0 ajx
j , then

the matrix of T with respect to the basis v = {v, Tv, . . . , Tn−1v} has the form

(5.2.2) AT,v =


0 0 . . . 0 −a0

1 0 . . . 0 −a1

0 1 . . . 0 −a2

...
...

...
...

0 0 . . . 1 −an−1


We normalize v so that D(v, Tv, . . . , Tn−1v) = 1 and compute the character-
istic polynomial (see 4.4.5) of T , using the basis v = {v, Tv, . . . , Tn−1v}:

(5.2.3) χT (λ) = det (T − λ) = D(Tv − λv, . . . , Tnv − λTn−1v).

Replace Tnv = −
∑n−1

0 akT
kv, and observe that the only nonzero summand

in the expansion ofD(Tv−λv, . . . , T jv−λT j−1v, . . . , Tn−1v−λTn−2v, T kv)
is obtained by taking −λT jv for j ≤ k and T jv for j > k so that

D(Tv−λv, . . . , Tn−1v−λTn−2v, T kv) = (−λ)k(−1)n−k−1 = (−1)n−1λk.

4Consider T = I
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Adding these, with the weights−ak for k < n−1 and−λ−an−1 for k = n−1,
we obtain

(5.2.4) χT (λ) = (−1)n minPT,v(λ).

In particular, (5.2.4) implies that if T has a cyclic vector, then χT (T ) = 0.
This is a special case, and a step in the proof, of the following theorem.

Theorem (Hamilton-Cayley). χT (T ) = 0.

PROOF: We show that χT is a multiple of minPT,v for every u ∈ V . This
implies χT (T )v = 0 for all u ∈ V , i.e., χT (T ) = 0.

Let u ∈ V , denote U = span[T, u] and minPT,u = λm +
∑m−1

0 ajλ
j .

The vectors u, Tu, . . . , Tm−1u form a basis for U . Complete {T ju}m−1
0 to a

basis for V by adding w1, . . . , wn−m. Let AT be the matrix of T with respect
to this basis. The top left m × m submatrix of AT is the matrix of TU , and
the (n − m) × m rectangle below it has only zero entries. It follows that
χT = χTU

Q, whereQ is the characteristic polynomial of the (n−m)×(n−m)

lower right submatrix of A, and since χTU
= (−1)m minPT,u (by (5.2.4)

applied to TU ) the proof is complete. J

An alternate way to word the proof, and to prove an additional claim along
the way, is to proceed by induction on the dimension of the space V .

ALTERNATE PROOF: If n = 1 the claim is obvious.
Assume the statement valid for all systems of dimension smaller than n.
Let u ∈ V , u 6= 0, and U = span[T, u]. If U = V the claims are a conse-

quence of (5.2.4) as explained above. Otherwise, U and V/U have both dimen-
sion smaller than n and, by Proposition 4.4.3 applied to T −λ, (exercise IV.4.2)
we have χT = χTU

χTV/U
. By the induction hypothesis, χTV/U

(TV/U ) = 0,
which means that χTV/U

(T ) maps V into U , and since χTU
(T ) maps U to 0

we have χT (T ) = 0. J

The additional claim is:

Proposition. Every prime factor of χT is a factor of minPT,u for some u ∈ V .
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PROOF: We return to the proof by induction, and add the statement of the
proposition to the induction hypothesis. Each prime factor of χT is either a
factor of χTU

or of χTV/U
and, by the strengthened induction hypothesis, is

either a factor of minPT,u or of minPTV/U ,ṽ for some ṽ = v + U ∈ V/U .

In the latter case, observe that minPT,v(T )v = 0. Reducing mod U gives
minPT,v(TV/U )ṽ = 0, which implies that minPTV/U ,ṽ divides minPT,v. J

5.2.3 Going back to the matrix defined in (5.2.2), let P (x) = xn +
∑
bjx

j

be an arbitrary monic polynomial, the matrix

(5.2.5)


0 0 . . . 0 −b0
1 0 . . . 0 −b1
0 1 . . . 0 −b2
...

...
...

...
0 0 . . . 1 −bn−1

 .

is called the companion matrix of the polynomial P .
If {u0, . . . , un−1} is a basis for V , and S ∈ L(V) is defined by: Suj =

uj+1 for j < n − 1, and Sun−1 = −
∑n−2

0 bjuj . Then u0 is cyclic for
(V, S), the matrix (5.2.5) is the matrix AS,u of S with respect to the basis
u = {u0, . . . , un−1}, and minPS,u0 = P .

Thus, every monic polynomial of degree n is minPS,u, the minimal poly-
nomial of some cyclic vector u in an n-dimensional system (V, S).

5.2.4 THE MINIMAL POLYNOMIAL.
Let T ∈ L(V). The set NT = {P :P ∈ F[x], P (T ) = 0} is an ideal in
F[x]. The monic generator5 for NT , is called the minimal polynomial of T and
denoted minPT. To put it simply: minPT is the monic polynomial P of least
degree such that P (T ) = 0.

Since the dimension of L(V) is n2, any n2 + 1 powers of T are linearly
dependent. This proves that NT is non-trivial and that the degree of minPT is
at most n2. By the Hamilton-Cayley Theorem, χT ∈ NT which means that
minPT divides χT and its degree is therefore no bigger than n.

5See A.6.1
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The condition P (T ) = 0 is equivalent to “P (T )v = 0 for all v ∈ V”,
and the condition “P (T )v = 0” is equivalent to minPT,v divides minPT. A
moment’s reflection gives:

Proposition. minPT is the least common multiple of minPT,v for all v ∈ V .

Invoking proposition 5.2.2 we obtain

Corollary. Every prime factor of χT is a factor of minPT.

We shall see later (exercise V.3.7) that there are always vectors v such that
minPT is equal to minPT,v.

5.2.5 The minimal poynomial gives much information on T and on polyno-
mials in T .

Lemma. Let P1 be a polynomial. Then P1(T ) is invertible if, and only if, P1

is relatively prime to minPT.

PROOF: Denote P = gcd(P1,minPT). By Theorem A.6.2, there exist poly-
nomials q, q1 such that q1P1 + qminPT = P . Substituting T for x we have
q1(T )P1(T ) = P (T ).

If P = 1, P1(T ) is invertible and q1(T ) is its inverse.
If P 6= 1 we write minPT = PQ, so that P (T )Q(T ) = minPT(T ) = 0

and hence ker(P (T )) ⊃ range(Q(T )). The minimality of minPT guarantees
that Q(T ) 6= 0 so that range(Q(T )) 6= {0}, and since P is a factor of P1,
ker(P1(T )) ⊃ ker(P (T )) 6= {0} and P1(T ) is not invertible. J

Comments:
a. If P1(x) = x, the lemma says that T itself is invertible if, and only if,
minPT(0) 6= 0. The proof for this case reads: if minPT = xQ(x), and T is
invertible, then Q(T ) = 0, contradicting the minimality. On the other hand if
minPT(0) = a 6= 0, write R(x) = a−1x−1(a − minPT), and observe that
TR(T ) = I − a−1 minPT(T ) = I .

b. If minPT is P (x), then the minimal polynomial for T + λ is P (x − λ).
It follows that T − λ is invertible unless x − λ divides minPT, that is unless
minPT(λ) = 0.
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EXERCISES FOR SECTION 5.2

V.2.1. Let T ∈ L(V) and v ∈ V . Prove that if u ∈ span[T, v], then minPT,u divides
minPT,v .

V.2.2. Let U be a T -invariant subspace of V and TV/U the operator induced on V/U .

Let v ∈ V , and let ṽ be its image in V/U . Prove that minPTV/U ,ṽ divides minPT,v .

V.2.3. If (V, T ) is cyclic (has a cyclic vector), then every S that commutes with T
is a polynomial in T . (In other words, P(T ) is a maximal commutative subalgebra of
L(V).)
Hint: If v is cyclic, and Sv = P (T )v for some polynomial P , then S = P (T )

V.2.4. (V, T ) is cyclic if, and only if, deg minPT = dimV

V.2.5. If minPT is irreducible then minPT,v = minPT for every v 6= 0 in V .

V.2.6. Let P1, P2 ∈ F[x]. Prove: ker(P1(T )) ∩ ker(P2(T )) = ker(gcd(P1, P2)).

V.2.7. (Schur’s lemma) A system {W,S}, S ⊂ L(W), is minimal if no nontrivial
subspace of W is invariant under every S ∈ S.

Assume {W,S} minimal, and T ∈ L(W).

a. If T commute with every S ∈ S , so does P (T ) for every polynomial P .

b. If T commute with every S ∈ S, then ker(T ) is either {0} or W . That means that
T is either invertible or identically zero.

c. With T as above, the minimal polynomial minPT is irreducible.

d. If T commute with every S ∈ S , and the underlying field is C, then T = λI .

Hint: The minimal polynomial of T must be irreducible, hence linear.

V.2.8. Assume T invertible and deg minPT = m. Prove that

minPT-1(x) = cxm minPT(x−1),

where c = minPT(0)−1.

V.2.9. Let T ∈ L(V). Prove that minPT vanishes at every zero of χT .
Hint: If Tv = λv then T kv = λkv and P (T )v = P (λ)v for any polynomial.
V.2.10. What is the characteristic, resp. minimal, polynomial of the 7 × 7 matrix(
ai,j

)
defined by

ai,j =

{
1 if 3 ≤ j = i+ 1 ≤ 7,

0 otherwise.
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V.2.11. Assume that A is a non-singular matrix and let ϕ(x) = xk +
∑k−1

0 ajx
j

be its minimal polynomial. Prove that a0 6= 0 and explain how knowing ϕ gives an
efficient way to compute the inverse A−1.

5.3 REDUCING.

5.3.1 Let (V, T ) be a linear system. A subspace V1 ⊂ V reduces T if it is
T -invariant and has a T -invariant complement, that is, a T -invariant subspace
V2 such that V = V1 ⊕ V2.

A system (V, T ) that admits no reducing subspaces is irreducible. We say
also that T is irreducible on V . An invariant subspace is irreducible if T re-
stricted to it is irreducible .

Theorem. Every system (V, T ) is completely decomposable, that is, can be
decomposed into a direct sum of irreducible systems.

PROOF: Use induction on n = dimV . If n = 1 the system is trivially irre-
ducible. Assume the validity of the statement for n < N and let (V, T ) be of
dimension N . If (V, T ) is irreducible the decomposition is trivial. If (V, T ) is
reducible, let V = V1⊕V2 be a non-trivial decomposition with T -invariant Vj .
Then dimVj < N , hence each system (Vj , TVj ) is completely decomposable,
Vj =

⊕
k Vj,k with every Vj,k T -invariant, and V =

⊕
j,k Vj,k. J

Our interest in reducing subspaces is that operators can be analyzed sepa-
rately on each direct summand (of a direct sum of invariant subspaces).

The effect of a direct sum decomposition into T -invariant subspaces on the
matrix representing T (relative to an appropriate basis) can be seen as follows:

Assume V = V1 ⊕ V2, with T -invariant Vj , and {v1, . . . , vn} is a basis for
V such that the first k elements are a basis for V1 while the the last l = n − k

elements are a basis for V2.
The entries ai,j of the matrix AT of T relative to this basis are zero unless

both i and j are ≤ k, or both are > k. AT consists of two square blocks
centered on the diagonal. The first is the k × k matrix of T restricted to V1

(relative to the basis {v1, . . . , vk}), and the second is the l × l matrix of T
restricted to V2 (relative to {vk+1, . . . , vn}).
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Similarly, if V =
⊕s

j=1 Vj is a decomposition with T -invariant compo-
nents, and we take as basis for V the union of s successive blocks—the bases
of Vj , then the matrix AT relative to this basis is the diagonal sum6 of square
matrices, Aj , i.e., consists of s square matrices A1,. . . , As along the diagonal
(and zero everywhere else). For each j, Aj is the matrix representing the action
of T on Vj relative to the chosen basis.

5.3.2 The rank and nullity theorem (see Chapter II, 2.5) gives an immediate
characterization of operators whose kernels are reducing.

Proposition. Assume V finite dimensional and T ∈ L(V). ker(T ) reduces T
if, and only if, ker(T ) ∩ range(T ) = {0}.

PROOF: Assume ker(T )∩ range(T ) = {0}. Then the sum ker(T )+ range(T )
is a direct sum and, since

dim (ker(T )⊕ range(T )) = dim ker(T ) + dim range(T ) = dimV,

we have V = ker(T ) ⊕ range(T ). Both ker(T ) and range(T ) are T -invariant
and the direct sum decomposition proves that they are reducing.

The opposite implication is proved in Proposition 5.3.3 below. J

Corollary. ker(T ) and range(T ) reduce T if, and only if, ker(T 2) = ker(T ).

PROOF: For any T ∈ L(V) we have ker(T 2) ⊇ ker(T ) and the inclusion is
proper if, and only if, there exist vectors v such that Tv 6= 0 but T 2v = 0,
which amounts to Tv ∈ ker(T ). J

5.3.3 Given that V1 ⊂ V reduces T—there exists a T -invariant V2 such that
V = V1 ⊕ V2—how uniquely determined is V2. Cosidering the somewhat ex-
treme example T = I , the condition of T -invariance is satified trivially and we
realize that V2 is far from being unique. There are, however, cases in which the
“complementary invariant subspace”, if there is one, is uniquely determined.
We propose to show now that this is the case for the T -invariant subspaces
ker(T ) and range(T ).

6Also called the direct sum of Aj , j = 1, . . . , s
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Proposition. Let V be finite dimensional and T ∈ L(V).
a. If V2 ⊂ V is T -invariant and V = ker(T )⊕ V2, then V2 = range(T ).
b. If V1 ⊂ V is T -invariant and V = V1 ⊕ range(T ), then V1 = ker(T ).

PROOF: a. As dim ker(T )+dimV2 = dimV = dim ker(T )+dim range(T ),
we have dimV2 = dim range(T ). Also, since ker(T ) ∩ V2 = {0}, T is 1-1
on V2 and dimTV2 = dim range(T ). Now, TV2 = range(T ) ⊂ V2 and, since
they have the same dimension, V2 = range(T ).

b. TV1 ⊂ V1 ∩ range(T ) = {0}, and hence V1 ⊂ ker(T ). Since V1 has the
same dimension as ker(T ) they are equal. J

5.3.4 THE CANONICAL PRIME-POWER DECOMPOSITION.

Lemma. If P1 and P2 are relatively prime, then

(5.3.1) ker(P1(T )) ∩ ker(P2(T )) = {0}.

If also P1(T )P2(T ) = 0 then V = ker(P1(T )) ⊕ ker(P2(T )), and the corre-
sponding projections are poynomials in T .

PROOF: Given that P1 and P2 are relatively prime there exist, By Appendix
A.6.1, polynomials q1, q2 such that q1P1 + q2P2 = 1. Substituting T for the
variable we have

(5.3.2) q1(T )P1(T ) + q2(T )P2(T ) = I.

If v ∈ ker(P1(T )) ∩ ker(P2(T )), that is, P1(T )v = P2(T )v = 0, then
v = q1(T )P1(T )v + q2(T )P2(T )v = 0. This proves (5.3.1) which implies, in
particular, that dim ker(P1(T )) + dim ker(P2(T )) ≤ n.

If P1(T )P2(T ) = 0, then the range of either Pj(T ) is contained in the
kernel of the other. By the Rank and Nullity theorem

n = dim ker(P1(T ))+dim range(P1(T ))

≤dim ker(P1(T )) + dim ker(P2(T )) ≤ n.
(5.3.3)

It follows that dim ker(P1(T )) + dim ker(P2(T )) = n, which implies that
ker(P1(T ))⊕ ker(P2(T )) is all of V . J
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Observe that the proof shows that

(5.3.4) range(P1(T )) = ker(P2(T )) and range(P2(T )) = ker(P1(T )).

Equation (5.3.2) implies that ϕ2(T ) = q1(T )P1(T ) = I − q2(T )P2(T ) is
the identity on ker(P2(T )) and zero on ker(P1(T )), that is, ϕ2 is the projection
onto ker(P2(T )) along ker(P1(T )).

Similarly, ϕ1(T ) = q2(T )P2(T ) is the projection onto ker(P1(T )) along
ker(P2(T )).

Corollary. For every factorization minPT =
∏l
j=1 Pj into pairwise relatively

prime factors, we have a direct sum decomposition of V

(5.3.5) V =
l⊕

j=1

ker(Pj(T )).

PROOF: Use induction on the number of factors. J

For the prime-power factorization minPT =
∏

Φmj

j , where the Φj’s are
distinct prime (irreducible) polynomials in F[x], and mj their respective multi-
plicities, we obtain the canonical prime-power decomposition of (V, T ):

(5.3.6) V =
k⊕
j=1

ker(Φmj

j (T )).

The subspaces ker(Φmj

j (T )) are called the primary components of (V, T )

Comments: By the Cayley-Hamilton theorem and corollary 5.2.4, the prime-
power factors of χT are those of minPT, with at least the same multiplicities,
that is:

(5.3.7) χT =
∏

Φsj

j , with sj ≥ mj .

The minimal polynomial of T restricted to ker(Φmj

j (T )) is Φmj

j and its
characteristic polynomial is Φsj

j . The dimension of ker(Φmj

j (T )) is sj deg(Φj).
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5.3.5 When the underlying field F is algebraically closed, and in particular
when F = C, every irreducible polynomial in F[x] is linear and every polyno-
mial is a product of linear factors, see Appendix A.6.5.

Recall that the spectrum of T is the set σ(T ) = {λj} of zeros of χT or,
equivalently, of minPT. the prime-power factorization of minPT (for systems
over an algebraically closed field) has the form minPT =

∏
λ∈σ(T )(x−λ)m(λ)

where m(λ) is the multiplicity of λ in minPT.
The space Vλ = ker((T −λ)m(λ)) is called the generalized eigenspace, or,

nilspace of λ. The canonical decomposition of (V, T ) is given by:

(5.3.8) V =
⊕

λ∈σ(T )

Vλ.

5.3.6 The projections ϕj(T ) corresponding to the the canonical prime-power
decomposition are given by ϕj(T ) = qj(T )

∏
i6=j Φmi

i (T ), where the polyno-
mials qi are given by the representations (see Corollary A.6.2)

qj
∏
i6=j Φmi

i + q∗jΦ
mj

j = 1.

An immediate consequence of the fact that these are all polynomials in T is
that they all commute, and commute with T .

IfW ⊂ V is T -invariant then the subspaces ϕj(T )W = W∩ker(Φmj

j (T )),
are T -invariant and we have a decomposition

(5.3.9) W =
k⊕
j=1

ϕj(T )W

Proposition. The T -invariant subspaceW is reducing if, and only if, ϕj(T )W
is a reducing subspace of ker(Φmj

j (T )) for every j.

PROOF: If W is reducing and U is a T -invariant complement, then

ker(Φmj

j (T )) = ϕj(T )V = ϕj(T )W ⊕ϕj(T )U ,

and both components are T -invariant.
Conversely, if Uj is T -invariant and ker(Φmj

j (T )) = ϕj(T )W ⊕ Uj , then
U =

⊕
Uj is an invariant complement to W . J
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5.3.7 Recall (see 5.3.1) that if V =
⊕s

j=1 Vj is a direct sum decomposition
into T invariant subspaces, and if we take for a basis on V the union of bases of
the summands Vj , then the matrix of T with respect to this basis is the diagonal

sum of the matrices of the restrictions of T to the components Vj . By that we
mean

(5.3.10) AT =


A1 0 . . . 0 0
0 A2 0 . . . 0
0 0 A3 0 . . .
...

...
. . .

...
0 0 0 0 As


where Aj is the matrix of TVj (the restriction of T to the component Vj in the
decomposition.)

EXERCISES FOR SECTION 5.3

V.3.1. Let T ∈ L(V), k > 0 and integer. Prove that ker(T k) reduces T if, and only
if ker(T k+1) = ker(T k).
Hint: Both ker(T k) and range(T k) are T -invariant.

V.3.2. Let T ∈ L(V), and V = U ⊕W with both summands T -invariant. Let π be
the projection onto U along W . Prove that π commutes with T .

V.3.3. Prove that if (V, T ) is irreducible, then its minimal polynomial is “prime
power” that is, minPT = Φm with Φ irreducible and m ≥ 1.

V.3.4. If Vj = ker(Φmj

j (T )) is a primary component of (V, T ), the minimal polyno-
mial of TVj

is Φmj

j .

V.3.5. Show that if minPT = Φm, with Φ irreducible, then there exist vectors v ∈ V
such that minPT,v = minPT.

V.3.6. Let v1, v2 ∈ V and assume that minPT,v1 and minPT,v2 are relatively prime.

Prove that minPT,v1+v2 = minPT,v1 minPT,v2 .
Hint: Write Pj = minPT,vj

Q = minPT,v1+v2 , and let qj be polynomials such
that q1P1 + q2P2 = 1. Then Qq2P2(T )(v1 + v2) = Q(T )(v1) = 0, and so P1 Q.
Similarly P2 Q, hence P1P2 Q. Also, P1P2(T )(v1 + v2) = 0, and Q P1P2.

V.3.7. Show that there always exist vectors v ∈ V such that minPT,v = minPT.
Hint: use the prime-power decomposition and the previous exercise.
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5.4 SEMISIMPLE SYSTEMS.

5.4.1 DEFINITION: The system (V, T ) is semisimple if every T -invariant
subspace of V is reducing.

Theorem. The system (V, T ) is semisimple if, and only if, minPT is square
free (that is, the multiplicities mj of the factors in the canonical factorization
minPT =

∏
Φmj

j are all 1).

PROOF: Proposition 5.3.6 reduces the general case to that in which minPT is
Φm with Φ irreducible.

a. When m > 1. Φ(T ) is not invertible and hence the invariant subspace
ker(Φ(T )) is non-trivial nor is it all of V . ker(Φ(T )2) is strictly bigger than
ker(Φ(T )) and, by corollary 5.3.2, ker(Φ(T )) is not Φ(T )-reducing, and hence
not T -reducing.

b. When m = 1. Observe first that minPT,v = Φ for every non-zero v ∈ V .
This since minPT,v divides Φ and Φ is prime. It follows that the dimension
of span[T, v] is equal to the degree d of Φ, and hence: every non-trivial T -

invariant subspace has dimension ≥ d.
Let W ⊂ V be a proper T -invariant subspace, and v1 6∈ W . The subspace

span[T, v1]∩W is T -invariant and is properly contained in span[T, v1], so that
its dimension is smaller than d, hence span[T, v1] ∩W = {0}. It follows that
W1 = span[T, (W, v1)] = W ⊕ span[T, v1].

If W1 6= V , let v2 ∈ V \ W1 and define W2 = span[T, (W, v1, v2)]. The
argument above shows that W2 = W ⊕ span[T, v1]⊕ span[T, v2]. This can be
repeated until, for the appropriate7 k, we have

(5.4.1) V = W ⊕
⊕

k
j=1 span[T, vj ]

and
⊕k

1 span[T, vj ] is clearly T -invariant. J

Remark: Notice that if we takeW = {0}, the decomposition (5.4.1) expresses
(V, T ) as a direct sum of cyclic subsystems.

7The dimension of Wi+1 is dimWi + d, so that kd = dimV − dimW .
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5.4.2 If (V, T ) is semisimple and F is algebraically closed, and in particular
if F = C, all irreducible polynomials in F[x] are linear. If Φj(T ) = T − λj
with λj ∈ F, then the canonical prime-power decomposition has the form

(5.4.2) V =
⊕

ker(T − λj),

and, for each j, the restriction of T to ker(T − λj) is just multiplication by λj .

5.4.3 If F is not algebraically closed and minPT = Φ is irreducible, but non-
linear, we have much the same phenomenon, but in somewhat hidden form.

Lemma. Let T ∈ L(V), and assume that minPT is irreducible in F[x]. Then
P(T ) = {P (T ) :P ∈ F[x]} is a field.

PROOF: If P ∈ F[x] and P (T ) 6= 0, then gcd(P,Φ) = 1 and hence P (T ) is
invertible. Thus, every non-zero element in P(T ) is invertible and P(T ) is a
field. J

? 5.4.4 V can now be considered as a vector space over the extended field
P(T ) by considering the action of P (T ) on v as a multiplication of v by the

“scalar” P (T ) ∈ P(T ). This defines a system (VP(T ), T ). A subspace of
(VP(T )) is precisely a T -invariant subspace of V .

The subspace span[T, v], in V (over F) becomes “the line through v in
(VP(T ))”, i.e. the set of all multiples of v by scalars from P(T ); the statement
“Every subspace of a finite-dimensional vector space (here V over P(T )), has
a basis.” translates here to: “Every T -invariant subspace of V is a direct sum of
cyclic subspaces, that is subspaces of the form span[T, v].”

EXERCISES FOR SECTION 5.4

V.4.1. a. If T is diagonalizable then (V, T ) is semisimple.

b. If F is algebraically closed and (V, T ) is semisimple, then T is diagonalizable

V.4.2. An algebra B ⊂ L(V) is semisimple if every T ∈ B is semisimple. Prove
that if B is commutative and semisimple, then dimB ≤ dimV .
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V.4.3. Let V = V1 ⊕ V0 and let B ⊂ L(B) be the set of all the operators S such that
SV1 ⊂ V0, and SV0 = {0}. Prove that B is a commutative subalgebra of L(V) and
that dimB = dimV0 dimV1. When is B semisimple?

V.4.4. Let B be the subset of M(2; R) of the matrices of the form
[
a b

−b a

]
. Prove

that B is an algebra over R, which is in fact a field isomorphic to C.

V.4.5. Let V be an n-dimensional real vector space, and T ∈ L(V) an operator with
non-linear irreducible minimal polynomial. Prove that n is even and explain: (V, T ) is
“isomorphic” to (Cn/2, sI) (s a complex number, I the identity on Cn/2).

5.5 NILPOTENT OPERATORS

The canonical prime-power decomposition reduces every system to a direct
sum of systems whose minimal polynomial is a power of an irreducible polyno-
mial Φ. If F is algebraically closed, and in particular if F = C, the irreducible
polynomials are linear, Φ(x) = (x − λ) for some scalar λ. We consider here
the case of linear Φ, and discuss the general case in section ? 5.6.

If minPT = (x−λ)m, then minP(T-λ) = xm and the structure of S = T−λ
clarifies the structure of T . We therefore focus on the case λ = 0.

5.5.1 DEFINITION: An operator T ∈ L(V) is nilpotent if for some posi-
tive integer k, T k = 0. The height of (V, T ), denoted height[(V, T )], is the
smallest positive k for which T k = 0.

If T k = 0, minPT divides xk, hence it is a power of x. In other words, T
is nilpotent of height k if minPT(x) = xk.

For every v ∈ V , minPT,v(x) = xl for an appropriate l. The height,
height[v], of a vector v (under the action of T ) is the degree of minPT,v, that
is smallest integer l such that T lv = 0. It is the height of T W , where W =
span[T, v], the span of v under T . Since for v 6= 0, height[Tv] = height[v]−1,
elements of maximal height are not in range(T ).

EXAMPLE: V is the space of all (algebraic) polynomials of degree bounded by
m, (so that {xj}mj=0 is a basis for V), T the differentiation operator:

(5.5.1) T (
m∑
0

ajx
j) =

m∑
1

jajx
j−1 =

m−1∑
0

(j + 1)aj+1x
j .
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The vector w = xm has height m + 1, and {T jw}mj=0 is a basis for V (so that

w is a cyclic vector). If we take vj = xm−j

(m−j)! as basis elements, the operator
takes the form of the standard shift of height m+ 1.

DEFINITION: A k-shift is a k-dimensional system {V, T} with T nilpotent
of height k. A standard shift is a k-shift for some k, that is, a cyclic nilpotent
system.

If {V, T} is a k-shift, v0 ∈ V and height[v0] = k, then {T jv0}k−1
j=0 is a

basis for V , and the action of T is to map each basis element, except for the
last, to the next one, and map the last basis element to 0. The matrix of T with
respect to this basis is

(5.5.2) AT,v =


0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
0 0 . . . 1 0


Shifts are the building blocks that nilpotent systems are made of.

5.5.2 Theorem (Cyclic decomposition for nilpotent operators). Let (V, T )
be a finite dimensional nilpotent system of height k. Then V =

⊕
Vj , where Vj

are T -invariant, and (Vj , TVj ) is a standard shift.
Moreover, if we arrange the direct summands so that kj = height[(Vj , T )]

is monotone non-increasing, then {kj} is uniquely determined.

PROOF: We use induction on k = height[(V, T )].

a. If k = 1, then T = 0 and any decomposition V =
⊕
Vj into one dimen-

sional subspaces will do.

b. Assume the statement valid for systems of height less that k and let (V, T )
be a (finite dimensional) nilpotent system of height k.

Write Win = ker(T ) ∩ TV , and let Wout ⊂ ker(T ) be a complementary
subspace, i.e., ker(T ) = Win ⊕Wout.

(TV, T ) is nilpotent of height k − 1 and, by the induction hypothesis,
admits a decomposition TV =

⊕m
j=1 Ṽj into standard shifts. Denote lj =
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height[(Ṽj , T )]. Let ṽj be of height lj in Ṽj (so that Ṽj = span[T, ṽj ]), and
observe that {T lj−1ṽj} is a basis for Win.

Let vj be such that ṽj = Tvj , write Vj = span[T, vj ], and let Wout =⊕
i≤lWi be a direct sum decomposition into one dimensional subspaces. The

claim now is

(5.5.3) V =
⊕

Vj ⊕
⊕

Wi.

To prove (5.5.3) we need to show that the spaces {Vj ,Wi}, i = 1, . . . , l,
j = 1, . . . ,m, are independent and span V .

Independence: Assume there is a non-trivial relation
∑
uj +

∑
wi = 0

with uj ∈ Vj and wi ∈ Wi. Let h = max height[uj ].

If h > 1, then
∑
T h−1uj = T h−1

(∑
uj +

∑
wi

)
= 0 and we obtain a

non-trivial relation between the Ṽj’s. A contradiction.
If h = 1 we obtain a non-trivial relation between elements of a basis of

ker(T ). Again a contradiction.
Spanning: Denote U = span[{Wi,Vj}], i = 1, . . . , l, j = 1, . . . ,m. T U

contains every ṽj , and hence T U = TV . It folows that U ⊃ Win and since it
contains (by its definition) Wout, we have U ⊃ ker(T ).

For arbitrary v ∈ V , let v̂ ∈ U be such that Tv = T v̂. Then v − v̂ ∈
ker(T ) ⊂ U so that v ∈ U , and U = V .

Finally, if we denote by n(h) the number of summands Vj in (5.5.3) of
dimension (i.e., height) h, then n(k) = dimT k−1V while, for l = 0, . . . , k−2,
we have

(5.5.4) dimT lV =
k∑

h=l+1

(h− l)n(h),

which determines {n(h)} completely. J

Corollary. An irreducible nilpotent system is a standard shift.

EXERCISES FOR SECTION 5.5

V.5.1. Assume F = R and minPT = Φ(x) = x2 + 1. Prove that a+ bT 7→ a+ bi is
a (field) isomorphism of FΦ onto C.
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What is FΦ if minPT = Φ(x) = x2 + 3?

V.5.2. Assume minPT = Φm with irreducible Φ. Can you explain (justify) the
statement: (V, T ) is “essentially” a standard m-shift over FΦ.

?5.6 THE CYCLIC DECOMPOSITION

We now show that the canonical prime-power decomposition can be refined
to a cyclic decomposition.

DEFINITION: A cyclic decomposition of a system (V, T ) is a direct sum de-
composition of the system into irreducible cyclic subspaces, that is, irreducible
subspaces of the form span[T, v].

The summands in the canonical prime-power decomposition have the form
ker(Φm(T )) with an irreducible polynomial Φ. We show here that such sys-
tems (whose minimal polynomial is Φm, with irreducible Φ) admit a cyclic
decomposition.

In the previous section we proved the special case8 in which Φ(x) = x.
If we use the point of view proposed in subsection ? 5.4.4, the general case
is nothing more than the nilpotent case over the field P(T ) and nothing more
need be proved.

For the reader not used to switching underlying fields we repeat the proof
of the nilpotent case in the present context.

5.6.1 We assume now that minPT = Φm with irreducible Φ of degree d. For
every v ∈ V , minPT,v = Φk(v), 1 ≤ k ≤ m, and maxv k(v) = m; we refer to
k(v) as the Φ-height, or simply height, of v.

Theorem. There exist vectors vj ∈ V such that V =
⊕

span[T, vj ]. Moreover,
the set of the Φ–heights of the vj’s is uniquely determined.

PROOF: We use induction on the Φ-height m.

a. m = 1. See 5.4.

b. Assume that minPT = Φm, and the theorem valid for heights lower thanm.
WriteWin = ker(Φ(T ))∩Φ(T )V and letWout ⊂ ker(Φ(T )) be a complemen-

8Notice that when Φ(x) = x, a cyclic space is what we called a standard shift.
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tary T -invariant subspace, i.e., ker(Φ(T )) = Win ⊕Wout. Such complemen-
tary T -invariant subspace of ker(Φ(T )) exists since the system (ker(Φ(T )), T )
is semisimple, see 5.4.

(Φ(T )V, T ) is of height m − 1 and, by the induction hypothesis, admits
a decomposition Φ(T )V =

⊕m
j=1 Ṽj into cyclic subspaces, Ṽj = span[T, ṽj ].

Let vj be such that ṽj = Φ(T )vj .
Write Vj = span[T, vj ], and let Wout =

⊕
i≤lWi be a direct sum decom-

position into cyclic subspaces. The claim now is

(5.6.1) V =
⊕

Vj ⊕
⊕

Wi.

To prove (5.6.1) we need to show that the spaces {Vj ,Wi}, i = 1, . . . , l,
j = 1, . . . ,m, are independent, and that they span V .

Independence: Assume there is a non-trivial relation
∑
uj +

∑
wi = 0

with uj ∈ Vj and wi ∈ Wi. Let h = max Φ-height[uj ].

If h > 1, then
∑

Φ(T )h−1uj = Φ(T )h−1
(∑

uj +
∑
wi

)
= 0 and we

obtain a non-trivial relation between the Ṽj’s. A contradiction.
If h = 1 we obtain a non-trivial relation between elements of a basis of

ker(Φ)(T ). Again a contradiction.
Spanning: Denote U = span[{Wi,Vj}], i = 1, . . . , l, j = 1, . . . ,m. No-

tice first that U ⊃ ker(T ).
Φ(T )U contains every ṽj , and hence T U = TV . For v ∈ V , let ṽ ∈ U be

such that Tv = T ṽ. Then v − ṽ ∈ ker(T ) ⊂ U so that v ∈ U , and U = V .
Finally, just as in the previous subsection, denote by n(h) the number of

vj’s of Φ–height h in the decomposition. Then dn(m) = dim Φ(T )m−1V and,
for l = 0, . . . ,m− 2, we have

(5.6.2) dim Φ(T )lV = d
k∑

h=l+1

(h− l)n(h),

which determines {n(h)} completely. J

5.6.2 THE GENERAL CASE.
We now refine the canonical prime-power decomposition (5.3.6) by apply-

ing Theorem 5.6.1 to each of the summands:
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Theorem (General cyclic decomposition). Let (V, T ) be a linear system over
a field F. Let minPT =

∏
Φmj

j be the prime-power decomposition of its mini-
mal polynomial. Then (V, T ) admits a cyclic decomposition

V =
⊕

Vk.

For each k, the minimal polynomial of T on Vk is Φl(k)
j(k) for some l(k) ≤ mj(k),

and mj(k) = max l(k).

The polynomials Φl(k)
j(k) are called the elementary divisors of T .

Remark: We defined cyclic decomposition as one in which the summands are
irreducible. The requirement of irreducibility is satisfied automatically if the
minimal polynomial is a “prime-power”, i.e., has the form Φm with irreducible
Φ. If one omits this requirement and the minimal polynomial has several rela-
tively prime factors, we no longer have uniqueness of the decomposition since
the direct sum of cyclic subspaces with relatively prime minimal polynomials
is itself cyclic.

EXERCISES FOR SECTION 5.6

V.6.1. Assume minPT,v = Φm with irreducible Φ. Let u ∈ span[T, v], and assume
Φ-height[u] = m. Prove that span[T, u] = span[T, v].

V.6.2. Give an example of two operators, T and S in L(C5), such that minPT =
minPS and χT = χS , and yet S and T are not similar.

V.6.3. Assume F is a subfield of F1. Let B1, B2 ∈ M(n,F) and assume that they
are F1-similar, i.e., B2 = C−1B1C for some invertible C ∈ M(n,F1). Prove that
they are F-similar.

5.7 THE JORDAN CANONICAL FORM

5.7.1 BASES AND CORRESPONDING MATRICES. Let (V, T ) be cyclic,
that is V = span[T, v], and minPT = minPT,v = Φm, with Φ irreducible of
degree d. The cyclic decomposition provides several natural bases:

i. The (ordered) set {T jv}dm−1
j=0 is a basis, and the matrix of T with respect

to this basis is the companion matrix of Φm.
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ii. Another natural, and in some ways more useful, basis in this context is

(5.7.1) {T kv}d−1
k=0 ∪ {Φ(T )T kv}d−1

k=0 ∪ · · · ∪ {Φ(T )m−1T kv}d−1
k=0

And the matrix AΦm of T relative to this ordered basis consists of m copies
of the companion matrix of Φ arranged on the diagonal, with 1’s in the unused
positions in the sub-diagonal.

If AΦ is the companion matrix of Φ then the matrix AΦ4 is

(5.7.2) AΦ4 =



AΦ

1 AΦ

1
AΦ

1
AΦ



5.7.2 Consider the special case of linear Φ, which is the rule when the un-
derlying field F is algebraically closed, and in particular when F = C.

If Φ(x) = x− λ for some λ ∈ F, then its companion matrix is 1× 1 with
λ its only entry.

Since now d = 1 the basis (5.7.1) is now simply {(T − λ)jv}m−1
j=0 and the

matrixA(x−λ)m in this case is them×mmatrix that has all its diagonal entries
equal to λ, all the entries just below the diagonal (assuming m > 1) are equal
to 1, and all the other entries are 0.

(5.7.3) A(x−λ)m =



λ 0 0 . . . 0 0
1 λ 0 . . . 0 0
0 1 λ . . . 0 0
...

...
...

...
0 0 . . . 1 λ 0
0 0 . . . 0 1 λ


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5.7.3 THE JORDAN CANONICAL FORM. Consider a system (V, T ) such
that all the irreducible factors of minPT are linear, (in particular, an arbitrary
system (V, T ) over C). The prime-power factorization of minPT is now 9

minPT =
∏

λ∈σ(T )

(x− λ)m(λ)

where m(λ) is the multiplicity of λ in minPT.
The space Vλ = ker((T − λ)m(λ)) is called the generalized eigenspace or

nilspace of λ, see 5.3.4. The canonical decomposition of (V, T ) is given by:

(5.7.4) V =
⊕

λ∈σ(T )

Vλ.

For λ ∈ σ(T ), the restriction of T − λ to Vλ is nilpotent of height m(λ).
We apply to Vλ the cyclic decomposition

Vλ =
⊕

span[T, vj ].

and take as basis in span[T, vj ] the set {(T −λ)svj}
h(vj)−1
s=0 , where h(vj) is the

(T − λ)-height of vj .
The matrix of the restriction of T to each span[T, vj ] has the form (5.7.3),

the matrix AT,Vλ
of T on Vλ is the diagonal sum of these, and the matrix of T

on V is the diagonal sum of AT,Vλ
for all λ ∈ σ(T ).

5.7.4 THE CANONICAL FORM FOR REAL VECTOR SPACES. When
(V, T ) is defined over R, the irreducible factors Φ of minPT are either linear
or quadratic, i.e., have the form

Φ(x) = x− λ, or Φ(x) = x2 + 2bx+ c with b2 − c < 0.

The companion matrix in the quadratic case is

(5.7.5)

[
0 −c
1 −2b

]
.

9Recall that the spectrum of T is the set σ(T ) = {λj} of the eigenvalues of T , that is,
the set of zeros of minPT.
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(Over C we have x2 + 2bx+ c = (x−λ)(x−λ) with λ = −b+
√
b2 − c, and

the matrix similar to the diagonal matrix with λ and λ on the diagonal.)

EXERCISES FOR SECTION 5.7

V.7.1. Assume that v1, . . . , vk are eigenvectors of T with the associated eigenvalues
λ1, . . . , λk all distinct. Prove that v1, . . . , vk are linearly independent.

V.7.2. Show that if we allow complex coefficients, the matrix (5.7.5) is similar to[
λ 0
0 λ

]
with λ = −b+

√
b2 − c.

V.7.3. T is given by the matrix AT =

0 0 2
1 0 0
0 1 0

 acting on F3.

a. What is the basic decomposition when F = C, when F = R, and when F = Q?
b. Prove that when F = Q every non-zero vector is cyclic. Hence, every non-zero

rational vector is cyclic when F = R or C.
c. What happens to the basic decomposition under the action of an operator S that

commutes with T ?

d. Describe the set of matrices A ∈ M(3; F) that commute with AT where
F = C, R, resp. Q.

V.7.4. Prove that the matrix
[
0 −1
1 0

]
is not similar to a triangular matrix if the un-

derlying field is R, and is diagonalizable over C. Why doesn’t this contradict exercise
V.6.3?

V.7.5. Let A ∈ M(n; C) such that {Aj : j ∈ N} is bounded (all the entries are
uniformly bounded). Prove that all the eigenvalues of A are of absolute value not
bigger than 1. Moreover, if λ ∈ σ(A) and |λ| = 1, there are no ones under λ in the
Jordan canonical form of A.

V.7.6. Let A ∈ M(n; C) such that {Aj : j ∈ Z} is bounded. Prove that A is
diagonalizable, and all its eigenvalues have absolute value 1.

V.7.7. Let T ∈ L(V). Write χT =
∏

Φmj

j with Φj irreducible, but not necessar-
ily distinct, and mj are the corresponding heights in the cyclic decomposition of the
system.

Find a basis of the form (5.7.1) for each of the components. and describe the
matrix of T relative to this basis.
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V.7.8. Let A be the m ×m matrix A(x−λ)m defined in (5.7.3). Compute An for all
n > 1.

5.8 FUNCTIONS OF AN OPERATOR

5.8.1 THEORETICAL. If P =
∑
ajx

j is a polynomial with coefficients in
F, we defined P (T ) by

P (T ) =
∑

ajT
j .

Is there a natural extension of the definition to a larger class of functions?
The map P 7→ P (T ) is a homomorphism of F[x] onto a subalgebra of

L(V). We can often extend the homomorphism to a bigger function space, but
in most cases the range stays the same. The advantage will be in having a better
match with the natural notation arising in applications.

Assume that the underlying field is either R or C.

Write minPT(z) =
∏
λ∈σ(T )(z − λ)m(λ) and observe that a necessary and

sufficient condition for a polynomial Q to be divisible by minPT is that Q be
divisible by (z − λ)m(λ) for every λ ∈ σ(T ), that is, have a zero of order at
least m(λ) at λ. It follows that P1(T ) = P2(T ) if, and only if, the Taylor
expansion of the two polynomials are the same up to, and including, the term
of order m(λ)− 1 at every λ ∈ σ(T ).

In particular, if m(λ) = 1 for all λ ∈ σ(T ) (i.e., if (V, T ) is semisimple)
the condition P1(λ) = P2(λ) for all λ ∈ σ(T ) is equivalent to P1(T ) =
P2(T ).

If f is an arbitrary numerical function defined on σ(T ), the only consistent
way to define f(T ) is by setting f(T ) = P (T ) where P is any polynomial that
takes the same values as f at each point of σ(T ). This defines a homomor-
phism of the space of all numerical functions on σ(T ) onto the (the same old)
subalgebra generated by T in L(V).

In the general (not necessarily semisimple) case, f needs to be defined and
sufficiently differentiable10 in a neighborhood of every λ ∈ σ(T ), and we
define f(T ) = P (T ) where P is a polynomial whose Taylor expansion is the

10That is, differentiable at least m(λ)− 1 times.
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same as that of f up to, and including, the term of order m(λ) − 1 at every
λ ∈ σ(T ).

5.8.2 MORE PRACTICAL. The discussion in the previous subsection can
only be put to use in practice if one has the complete spectral information about
T—its minimal polynomial, its zeros including their multiplicities given ex-
plicitly.

One can often define F (T ) without explicit knowledge of this information
if F holomorphic in a sufficiently large set, and always if F is an entire func-
tion, that is a function that admits a power series representation in the entire
complex plane. This is done formally just as it was for polynomials, namely,
for F (z) =

∑∞
0 anz

n, we write F (T ) =
∑∞

0 anT
n. To verify that the defini-

tion makes sense we check the convergence of the series. Since L(V) is finite
dimensional so that all the norms on it are equivalent, we can use a submul-
tiplicative, “operator norm”, as defined by (2.6.1). This keeps the estimates a
little cleaner since ‖Tn‖ ≤ ‖T‖n, and if the radius of convergence of the series
is bigger than ‖T‖, the convergence of

∑∞
0 anT

n is assured.
Two simple examples:

a. Assume the norm used is submultiplicative, and ‖T‖ < 1, then (I − T ) is
invertible and (I − T )−1 =

∑∞
n=0 T

n.
b. Define eaT =

∑ Tn

n! . The series clearly convergent for every T ∈ L(V)
and number a. As a function of the parameter a it has the usual properties of
the exponential function. We can consider it as a function of T and check if
e(T+S) = eT eS . We find that the answer is yes if S and T commute, but no in
general.

EXERCISES FOR SECTION 5.8

V.8.1. Prove that eaT ebT = e(a+b)T .

V.8.2. Prove that if S and T commute, then e(T+S) = eT eS .

V.8.3. Give an example of operators S and T such that e(T+S) 6= eT eS .
Hint: Try for eSeT 6= eT eS .
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Chapter VI

Operators on inner-product spaces

6.1 INNER-PRODUCT SPACES

Inner-product spaces, are real or complex vector spaces endowed with an
additional structure, called inner-product. The inner-product permits the in-
troduction of a fair amount of geometry. Finite dimensional real inner-product
spaces are often called Euclidean spaces. Complex inner-product spaces are
also called Unitary spaces.

6.1.1 DEFINITION:
a. An inner-product on a real vector space V is a symmetric, real-valued, posi-
tive definite bilinear form on V . That is, a form satisfying

1. 〈u, v〉 = 〈v, u〉

2. 〈u, v〉 is bilinear.

3. 〈u, u〉 ≥ 0, with 〈u, u〉 = 0 if, and only if, u = 0.

b. An inner-product on a complex vector space V is a Hermitian1, complex-
valued, positive definite, sesquilinear form on V . That is, a form satisfying

1. 〈u, v〉 = 〈v, u〉

2. 〈u, v〉 is sesquilinear, that is, linear in u and skew linear in v:

〈λu, v〉 = λ〈u, v〉 and 〈u, λv〉 = λ〈u, v〉.

3. 〈u, u〉 ≥ 0, with 〈u, u〉 = 0 if and only if u = 0.

1A complex-valued form ϕ is Hermitian if ϕ(u, v) = ϕ(v, u).
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Notice that the sesquilinearity follows from the Hermitian symmetry, con-
dition 1., combined with the assumption of linearity in the first entry.

EXAMPLES:

a. The classical Euclidean n-space En is Rn in which 〈a,b〉 =
∑
ajbj where

a = (a1, . . . , an) and b = (b1, . . . , bn).

b. The space CR([0, 1]) of all continuous real-valued functions on [0, 1]. The
inner-product is defined by 〈f, g〉 =

∫
f(x)g(x)dx.

c. In Cn for a = (a1, . . . , an) and b = (b1, . . . , bn) we set 〈a,b〉 =
∑
aj b̄j

which can be written as matrix multiplication: 〈a,b〉 = abTr. If we con-

sider the vector as columns, a =

a1

...
an

 and b =

b1

...
bn

 then 〈a,b〉 = bTra.

d. The space C([0, 1]) of all continuous complex-valued functions on [0, 1].
The inner-product is defined by 〈f, g〉 =

∫ 1
0 f(x)g(x)dx.

We shall reserve the notation H for inner-product vector spaces.

6.1.2 Given an inner-product space H we define a norm on it by:

(6.1.1) ‖v‖ =
√
〈v, v〉.

Lemma (Cauchy–Schwarz).

(6.1.2) |〈u, v〉| ≤ ‖u‖‖v‖.

PROOF: If v is a scalar multiple of u we have equality. If v, u are not propor-
tional, then for λ ∈ R,

0 < 〈u+ λv, u+ λv〉 = ‖u‖2 + 2λ<〈u, v〉+ λ2‖v‖2.

A quadratic polynomial with real coefficients and no real roots has negative
discriminant, here (<〈u, v〉)2 − ‖u‖2‖v‖2 < 0.

For every τ with |τ | = 1 we have |<〈τu, v〉| ≤ ‖u‖‖v‖; take τ such that
〈τu, v〉 = |〈u, v〉|. J
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The norm has the following properties:

a. Positivity: If v 6= 0 then ‖v‖ > 0; ‖0‖ = 0.

b. Homogeneity: ‖av‖ = |a|‖v‖ for scalars a and vectors v.

c. The triangle inequality: ‖v + u‖ ≤ ‖v‖+ ‖u‖.

d. The parallelogram law: ‖v + u‖2 + ‖v − u‖2 = 2(‖v‖2 + ‖u‖2).

Properties a. and b. are obvious. Property c. is equivalent to

‖v‖2 + ‖u‖2 + 2<〈v, u〉 ≤ ‖v‖2 + ‖u‖2 + 2‖v‖‖u‖,

which reduces to (6.1.2). The parallelogram law is obtained by “opening brack-
ets” in the inner-products that correspond the the various ‖ ‖2.

The first three properties are common to all norms, whether defined by an
inner-product or not. They imply that the norm can be viewed as length, and
ρ(u, v) = ‖u− v‖ has the properties of a metric.

The parallelogram law, on the other hand, is specific to, and in fact charac-
teristic of, the norms defined by an inner-product.

A norm defined by an inner-product determines the inner-product, see ex-
ercises VI.1.11 and VI.1.12.

6.1.3 ORTHOGONALITY. Let H be an inner-product space. The vectors
v, u in H are (mutually) orthogonal, denoted v ⊥ u, if 〈v, u〉 = 0. Observe
that, since 〈u, v〉 = 〈v, u〉, the relation is symmetric: u ⊥ v ⇐⇒ v ⊥ u.

The vector v is orthogonal to a set A ⊂ H, denoted v ⊥ A, if it is orthog-
onal to every vector in A. If v ⊥ A, u ⊥ A, and w ∈ A is arbitrary, then
〈av + bu, w〉 = a〈v, w〉+ b〈u,w〉 = 0. It follows that for any set A ⊂ H, the
set2 A⊥ = {v : v ⊥ A} is a subspace of H.

Similarly, if we assume that v ⊥ A, w1 ∈ A, and w2 ∈ A, we obtain
〈v, aw1 + bw2〉 = ā〈v, w1〉 + b̄〈v, w2〉 = 0 so that v ⊥ (span[A]). In other
words: A⊥ = (span[A])⊥.

2This notation is consistent with 3.1.2, see 6.2.1 below.
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A vector v is normal if ‖v‖ = 1. A sequence {v1, . . . , vm} is orthonormal

if

(6.1.3) 〈vi, vj〉 = δi,j (i.e., 1 if i = j, and 0 if i 6= j);

that is, if the vectors vj are normal and pairwise orthogonal.

Lemma. Let {u1, . . . , um} be orthonormal, v, w ∈ H arbitrary.
a. {u1, . . . , um} is linearly independent.
b. The vector v1 = v −

∑m
1 〈v, uj〉uj is orthogonal to span[u1, . . . , um].

c. If {u1, . . . , um} is an orthonormal basis, then

(6.1.4) v =
m∑
1

〈v, uj〉uj .

d. Parseval’s identity. If {u1, . . . , um} is an orthonormal basis for H, then

(6.1.5) 〈v, w〉 =
m∑
1

〈v, uj〉〈w, uj〉.

e. Bessel’s inequality and identity. If {uj} is orthonormal then

(6.1.6)
∑
|〈v, uj〉|2 ≤ ‖v‖2.

If {u1, . . . , um} is an orthonormal basis for H, then ‖v‖2 =
∑m

1 |〈v, uj〉|2.

PROOF:

a. If
∑
ajuj = 0 then ak = 〈

∑
ajuj , uk〉 = 0 for all k ∈ [1, m].

b. 〈v1, uk〉 = 〈v, uk〉 − 〈v, uk〉 = 0 for all k ∈ [1, m]; (skew-)linearity extends
the orthogonality to linear combinations, that is to the span of {u1, . . . , um}.

c. If the span is the entire H, v1 is orthogonal to itself, and so v1 = 0.

d.
〈v, w〉 =〈

∑
〈v, uj〉uj ,

∑
〈w, ul〉ul〉 =

∑
j,l〈v, uj〉〈w, ul〉〈uj , ul〉

=
∑
j〈v, uj〉〈w, uj〉

e. This is clearly weaker that (6.1.5). J
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6.1.4 Proposition (Gram-Schmidt). Let {v1, . . . , vm} be independent. There
exists an orthonormal {u1, . . . , um} such that for all k ∈ [1,m],

(6.1.7) span[u1, . . . , uk] = span[v1, . . . , vk].

PROOF: (By induction on m). The independence of {v1, . . . , vm} implies that
v1 6= 0. Write u1 = v1/‖v1‖. Then u1 is normal and (6.1.7) is satisfied for
k = 1.

Assume that {u1, . . . , ul} is orthonormal and that (6.1.7) is satisfied for
k ≤ l. Since vl+1 6∈ span[{v1, . . . , vl}] the vector

ṽl+1 = vl+1 −
l∑

j=1

〈vl+1, uj〉uj

is non-zero and we set ul+1 = ṽl+1/‖ṽl+1‖. J

One immediate corollary is: every finite dimensional H has an orthonormal
basis. Another is that every orthonormal sequence {uj}k1 can be completed to
an orthonormal basis. For this we observe that {uj}k1 is independent, complete
it to a basis, apply the Gram-Schmidt process and notice that it does not change
the vectors uj , 1 ≤ j ≤ k.

If W ⊂ H is a subspace, {vj}n1 is a basis for H such that {vj}m1 is a basis
for W , then the basis {uj}n1 obtained by the Gram-Schmidt process splits into
two: {uj}m1 ∪ {uj}nm+1, where {uj}m1 is an o.n. basis3 for W and {uj}nm+1

is one for W⊥. This gives a direct sum (in fact, orthogonal) decomposition
H = W ⊕W⊥.

The map

(6.1.8) πW : v 7→
m∑
1

〈v, uj〉uj

is called the orthogonal projection onto W . It depends only on W and not on
the particular basis we started from. In fact, if v = v1 + v2 = u1 + u2 with v1
and u1 in W , and both v2 and u2 in W⊥, we have

v1 − u1 = u2 − v2 ∈ W ∩W⊥

3“o.n.” is short for “orthonormal”
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which means v1 − u1 = u2 − v2 = 0.

6.1.5 The definition of the distance ρ(v1, v2) (= ‖v1 − v2‖) between two
vectors, extends to that of the distance between a point (v ∈ H) and a set

(E ⊂ H) by setting ρ(v,E) = infu∈E ρ(v, u). The distance between two

sets, Ej ⊂ H j = 1, 2, is defined by

(6.1.9) ρ(E1, E2) = inf{‖v1 − v2‖ : vj ∈ Ej}.

Proposition. Let W ⊂ H be a subspace, and v ∈ H. Then

ρ(v,W) = ‖v − πWv‖.

In other words, πWv is the vector in W closest to v.

The proof is left as an exercise (VI.1.5) below).

EXERCISES FOR SECTION 6.1

VI.1.1. Let V be a finite dimensional real or complex space, and {v1, . . . , vn} a basis.
Explain: “declaring {v1, . . . , vn} to be orthonormal defines an inner-product on V”.

VI.1.2. Prove that if H is a complex inner-product space and T ∈ L(H), there
exists an orthonormal basis forH such that the matrix of T with respect to this basis is
triangular.

Hint: See corollary 5.1.6.

VI.1.3. a. Let H be a real inner-product space. The vectors v, u are mutually
orthogonal if, and only if, ‖v + u‖2 = ‖v‖2 + ‖u‖2.

b. IfH is a complex inner-product space, v, u ∈ H, then ‖v+u‖2 = ‖v‖2 +‖u‖2
is necessary, but not sufficient, for v ⊥ u.
Hint: Connect to the condition “< u, v > purely imaginary”.

c. If H is a complex inner-product space, and v, u ∈ H, the condition: For all
a, b ∈ C, ‖av + bu‖2 = |a|2‖v‖2 + |b|2‖u‖2 is necessary and sufficient for v ⊥ u.

d. Let V and U be subspaces of H. Prove that V ⊥ U if, and only if, for v ∈ V
and u ∈ U , ‖v + u‖2 = ‖v‖2 + ‖u‖2.

e. The set {v1, . . . , vm} is orthonormal if, and only if ‖
∑
ajvj‖2 =

∑
|aj |2 for

all choices of scalars aj , j = 1, . . . ,m. (Here H is either real or complex.)
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VI.1.4. Show that the map πW defined in (6.1.8) is an idempotent linear operator 4

and is independent of the particular basis used in its definition.

VI.1.5. Prove proposition 6.1.5.

VI.1.6. Let Ej = vj +Wj be affine subspaces in H. What is ρ(E1, E2)?

VI.1.7. Show that the sequence {u1, . . . , um} obtained by the Gram-Schmidt pro-
cedure is essentially unique: each uj is unique up to multiplication by a number of
modulus 1.

Hint: If {v1, . . . , vm} is independent, Wk = span[{v1, . . . , vk}], k = 0, . . . ,m− 1,
then uj is cπW⊥

j−1
vj , with |c| = ‖πW⊥

j−1
vj‖−1.

VI.1.8. Over C: Every matrix is unitarily equivalent to a triangular matrix.

VI.1.9. Let A ∈ M(n,C) and assume that its rows wj , considered as vectors in
Cn are pairwise orthogonal. Prove that AATr is a diagonal matrix, and conclude that
|detA| =

∏
‖wj‖.

VI.1.10. Let {v1, . . . , vn} ⊂ Cn be the rows of the matrix A. Prove Hadamard’s
inequality:

(6.1.10) |detA| ≤
∏
‖vj‖

Hint: WriteWk = span[{v1, . . . , vk}], k = 0, . . . , n−1, wj = πW⊥
j−1

vj , and apply
the previous problem.

VI.1.11. Prove that in a real inner-product space, the inner-product is determined by
the norm: (polarization formula over R)

(6.1.11) 〈u, v〉 =
1
4
(
‖u+ v‖2 − ‖u− v‖2

)

VI.1.12. Prove: In a complex inner-product space, the inner-product is determined
by the norm, in fact, (polarization formula over C)

(6.1.12) 〈u, v〉 =
1
4
(
‖u+ v‖2 − ‖u− v‖2 + i‖u+ iv‖2 − i‖u− iv‖2

)
.

4An operator T is idempotent if T 2 = T .
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VI.1.13. Show that the polarization formula (6.1.12) does not depend on positivity, to
wit, define the Hermitian quadratic form associated with a sesquilinear Hermitian
form ψ (on a vector space over C or a subfield thereof) by:

(6.1.13) Q(v) = ψ(v, v).

Prove

(6.1.14) ψ(u, v) =
1
4
(
Q(u+ v)−Q(u− v) + iQ(u+ iv)− iQ(u− iv)

)
.

VI.1.14. A bilinear form ϕ on a vector space V over a field of characteristic 6= 2, can
be expressed uniquely as a sum of a symmetric and an alternating form: ϕ = ϕsym +
ϕalt where 2ϕsym(v, u) = ϕ(v, u) + ϕ(u, v) and 2ϕalt(v, u) = ϕ(v, u)− ϕ(u, v).

The quadratic form associated with ϕ is, by definition q(v) = ϕ(v, v). Show
that q determines ϕsym, in fact

(6.1.15) ϕsym(v, u) =
1
2
(
q(v + u)− q(v)− q(u)

)
.

6.2 DUALITY AND THE ADJOINT.

6.2.1 H AS ITS OWN DUAL. The inner-product defined inH associates with
every vector u ∈ H the linear functional ϕu : v 7→ 〈v, u〉. In fact every linear
functional is obtained this way:

Theorem. Let ϕ be a linear functional on a finite dimensional inner-product
space H. Then there exist a unique u ∈ H such that ϕ = ϕu , that is,

(6.2.1) ϕ(v) = 〈v, u〉

for all v ∈ H.

PROOF: Let {wj} be an orthonormal basis in H, and let u =
∑
ϕ(wj)wj . For

every v ∈ H we have v =
∑
〈v, wj〉wj , and by Parseval’s identity, 6.1.3,

(6.2.2) ϕ(v) =
∑
〈v, wj〉ϕ(wj) = 〈v, u〉.

J

In particular, an orthonormal basis in H is its own dual basis.
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6.2.2 THE ADJOINT OF AN OPERATOR. Once we identify H with its dual
space, the adjoint of an operator T ∈ L(H) is again an operator on H. We
repeat the argument of 3.2 in the current context. Given u ∈ H, the mapping
v 7→ 〈Tv, u〉 is a linear functional and therefore equal to v 7→ 〈v, w〉 for some
w ∈ H. We write T ∗u = w and check that u 7→ w is linear. In other words T ∗

is a linear operator on H, characterized by

(6.2.3) 〈Tv, u〉 = 〈v, T ∗u〉.

Lemma. For T ∈ L(H), (T ∗)∗ = T .

PROOF: 〈v, (T ∗)∗u〉 = 〈T ∗v, u〉 = 〈u, T ∗v〉 = 〈Tu, v〉 = 〈v, Tu〉. J

Proposition 3.2.4 reads in the present context as

Proposition. For T ∈ L(H), range(T ) = (ker(T ∗))⊥.

PROOF: 〈Tx, y〉 = 〈x, T ∗y〉 so that y ⊥ range(T ) if, and only if y ∈ ker(T ∗).
J

6.2.3 THE ADJOINT OF A MATRIX.

DEFINITION: The adjoint of a matrixA ∈M(n,C) is the matrixA∗ = A
Tr.

A is self-adjoint, aka Hermitian, if A = A∗, that is, if aij = aji for all i, j.
If A = AT,v is the matrix of an operator T relative to an orthonormal basis

v, see 2.4.3, and AT ∗,v is the matrix of T ∗ relative to the same basis, then,
writing the inner-product as matrix multiplication:

(6.2.4) 〈Tv, u〉 = uTrAv = (ATr
u)

Tr
v, and 〈v, T ∗u〉 = (A∗u)Trv,

we obtain AT ∗,v = (AT,v)∗. The matrix of the adjoint is the adjoint of the

matrix.
In particular, T is self-adjoint if, and only if, AT,v, for some (every) or-

thonormal basis v, is self-adjoint.

EXERCISES FOR SECTION 6.2

VI.2.1. Prove that if T, S ∈ L(H), then (ST )∗ = T ∗S∗.
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VI.2.2. Prove that if T ∈ L(H), then ker(T ∗T ) = ker(T ).

VI.2.3. Prove that χT∗ is the complex conjugate of χT .

VI.2.4. If Tv = λv, T ∗u = µu, and µ 6= λ̄, then 〈v, u〉 = 0.

VI.2.5. Rewrite the proof of Theorem 6.2.1 along these lines: If ker(ϕ) = H then
ϕ = 0 and u∗ = 0. Otherwise, dim ker(ϕ) = dimH − 1 and (ker(ϕ))⊥ 6= ∅. Take
any non-zero ũ ∈ (ker(ϕ))⊥ and set u∗ = cũ where the constant c is the one that
guarantees 〈ũ, cũ〉 = ϕ(ũ), that is c̄ = ‖ũ‖−2ϕ(ũ).

6.3 UNITARY AND ORTHOGONAL OPERATORS

We have mentioned that the norm in H defines a metric, the distance be-
tween the vectors v and u given by ρ(v, u) = ‖v−u‖. Mappings that preserve a
metric are called isometries (of the given metric). Operators U ∈ L(H) which
are isometries, that is such that ‖Uv‖ = ‖v‖ for all v ∈ H are called unitary

operators whenH is complex, and orthogonal whenH is real. The operator U
is unitary if

‖Uv‖2 = 〈Uv,Uv〉 = 〈v, U∗Uv〉 = 〈v, v〉

which is equivalent to U∗U = I or U∗ = U−1.

Proposition. Let H be an inner-product space, T ∈ L(H). The following
statements are equivalent:

a. T is unitary;
b. T maps some orthonormal basis onto an orthonormal basis;
c. T maps every orthonormal basis onto an orthonormal basis.

The columns of the matrix of a unitary operator U relative to an orthonor-
mal basis {vj}, are the coefficient vectors of Uvj and, by Parseval’s identity
6.1.3, are orthonormal in Cn (resp. Rn). Such matrices (with orthonormal
columns) are called unitary when the underlying field is C, and orthogonal

when the field is R.
The set U(n) ⊂M(n,C) of unitary n×nmatrices is a group under matrix

multiplication. It is caled the unitary group.
The set O(n) ⊂ M(n,R) of orthogonal n × n matrices is a group under

matrix multiplication. It is caled the orthogonal group.
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DEFINITION: The matrices A, B ∈ M(n) are unitarily equivalent if there
exists U ∈ U(n) such that A = U−1BU .

The matrices A, B ∈ M(n) are orthogonally equivalent if there exists
C ∈ O(n) such that A = O−1BO.

The added condition here, compared to similarity, is that the conjugating
matrix U , resp. O, be unitary, resp. orthogonal, and not just invertible.

EXERCISES FOR SECTION 6.3

VI.3.1. Prove that the set of rows of a unitary matrix is orthonormal.

VI.3.2. Prove that the spectrum of a unitary operator is contained in the unit circle
{z : |z| = 1}.

VI.3.3. An operator T whose spectrum is contained in the unit circle is similar to a
unitary operator if, and only if, it is semisimple.

VI.3.4. An operator T whose spectrum is contained in the unit circle is unitary if,
and only if, it is semisimple and eigenvectors corresponding to distinct eigenvalues are
mutually orthogonal.

VI.3.5. Let T ∈ L(H) be invertible and assume that ‖T j‖ is uniformly bounded for
j ∈ Z. Prove that T is similar to a unitary operator.

6.4 SELF-ADJOINT OPERATORS

6.4.1 DEFINITION: An operator T ∈ L(H) is self-adjoint if it coincides
with it’s adjoint: T = T ∗, (that is, if 〈Tu, v〉 = 〈u, Tv〉 for every u, v ∈ H).

For every T ∈ L(H), the operators <T = 1
2(T + T ∗), =T = 1

2i(T − T ∗),
T ∗T , and TT ∗ are all self-adjoint.

Proposition. Assume that T is self-adjoint on H.

a. σ(T ) ⊂ R.

b. If W ⊂ H is T -invariant then so is W⊥ (the orthogonal complement of
W). In particular, every T -invariant subspace is reducing, so that T is
semisimple.

c. If W ⊂ H is T -invariant then T W , the restriction of T to W , is self-
adjoint.
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PROOF:

a. If λ ∈ σ(T ) and v is a corresponding eigenvector, then

λ‖v‖2 = 〈Tv, v〉 = 〈v, Tv〉 = λ̄‖v‖2, so that λ = λ̄.

b. If v ∈ W⊥ then, for anyw ∈ W , 〈Tv,w〉 = 〈v, Tw〉 = 0 (since Tw ∈ W),
so that Tv ∈ W⊥.

c. The condition 〈Tw1, w2〉 = 〈w1, Tw2〉 is valid when wj ∈ W since it
holds for all vectors in H.

J

6.4.2 Part b. of the proposition implies that for self-adjoint operators T the
generalized eigenspaces Hλ, λ ∈ σ(T ), are not generalized, they are simply
kernels: Hλ = ker(T − λ). The Canonical Decomposition Theorem reads in
this context:

Proposition. Assume T self-adjoint. Then H = ⊕λ∈σ(T ) ker(T − λ).

6.4.3 The final improvement we bring to the Canonical Decomposition The-
orem for self-adjoint operators is the fact that the eigenspaces corresponding to
distinct eigenvalues are mutually orthogonal: if T is self-adjoint, Tv1 = λ1v1,
Tv2 = λ2v1, and λ1 6= λ2, then5,

λ1〈v1, v2〉 = 〈Tv1, v2〉 = 〈v1, T v2〉 = λ2〈v1, v2〉 = λ2〈v1, v2〉,

so that 〈v1, v2〉 = 0.

Theorem (The spectral theorem for self-adjoint operators). LetH be an inner-
product space and T a self-adjoint operator on H. Then H =

⊕
λ∈σ(T )Hλ

where THλ
, the restriction of T to Hλ, is multiplication by λ, and Hλ1 ⊥ Hλ2

when λ1 6= λ2.

An equivalent formulation of the theorem is:

5Remember that λ2 ∈ R.
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Theorem (Variant). Let H be an inner-product space and T a self-adjoint
operator on H. Then H has an orthonormal basis all whose elements are
eigenvectors for T .

Denote by πλ the orthogonal projection on Hλ. The theorem states:

(6.4.1) I =
∑

λ∈σ(T )

πλ, and T =
∑

λ∈σ(T )

λπλ.

The decomposition H =
⊕

λ∈σ(T )Hλ is often referred to as the spectral

decomposition induced by T on H. The representation of T as
∑
λ∈σ(T ) λπλ

is its spectral decomposition.

6.4.4 If {u1, . . . , un} is an orthonormal basis whose elements are eigenvec-
tors for T , say Tuj = λjuj , then

(6.4.2) Tv =
∑

λj〈v, uj〉uj

for all v ∈ H. Consequently, writing aj = 〈v, uj〉 and v =
∑
ajuj ,

(6.4.3) 〈Tv, v〉 =
∑

λj |aj |2 and ‖Tv‖2 =
∑
|λj |2|〈v, uj〉|2.

Observations. Assume T self-adjoint.

a. ‖T‖ = maxλ∈σ(T )|λ|.

b. If ‖T‖ ≤ 1. Then there exists a unitary operator U that commutes with T ,
such that T = 1

2(U + U∗).

PROOF: a. If λm is an eigenvalue with maximal absolute value in σ(T ), then
‖T‖ ≥ ‖Tum‖ = maxλ∈σ(T )|λ|. Conversely, by (6.4.3),

‖Tv‖2 =
∑
|λj |2|〈v, uj〉|2 ≤ max|λj |2

∑
|〈v, uj〉|2 = max|λj |2‖v‖2.

b. By part a., σ(T ) ⊂ [−1, 1]. For λj ∈ σ(T ) write ζj = λj + i
√

1− λ2
j , so

that λj = <ζj and |ζj | = 1. Define: Uv =
∑
ζj〈v, uj〉uj . J
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6.4.5 Theorem (Spectral theorem for Hermitian/symmetric matrices). Ev-
ery Hermitian matrix in M(n,C) is unitarily equivalent to a diagonal matrix.
Every symmetric matrix in M(n,R) is orthogonally equivalent to a diagonal
matrix.

PROOF: A Hermitian matrix A ∈ M(n,C) is self-adjoint (i.e., the operator
on Cn of multiplication by A is self-adjoint). If the underlying field is R the
condition is being symmetric. In either case, theorem 6.4.3 guarantees that the
standard Cn, resp. Rn, has an orthonormal basis {vj} all whose elements are
eigenvectors for the operator of multiplication by A.

The matrix C of transition from the standard basis to {vj} is unitary, resp.
orthogonal, and CAC−1 = CAC∗ is diagonal. J

6.4.6 COMMUTING SELF-ADJOINT OPERATORS.
Let T is self-adjoint, H =

⊕
λ∈σ(T )Hλ. If S commutes with T , then S

maps eachHλ into itself. Since the subspacesHλ are mutually orthogonal, if S
is self-adjoint then so is its restriction to every Hλ, and we can apply Theorem
6.4.3 to each one of these restrictions and obtain, in each, an orthonormal basis
made up of eigenvectors of S. Since every vector in Hλ is an eigenvector for
T we obtained an orthonormal basis each of whose elements is an eigenvector
both for T and for S. We now have the decomposition

H =
⊕

λ∈σ(T ),µ∈σ(S)

Hλ,µ,

where Hλ,µ = ker(T − λ) ∩ ker(S − µ).
By induction on the number of operators we obtain the following theorem.

Theorem. Let H be a finite dimensional inner-product space, and {Tj} com-
muting self-adjoint operators on H. Then there exists an orthonormal basis
{uk} in H such that each uk is an eigenvector of every Tj .

EXERCISES FOR SECTION 6.4

VI.4.1. Let T ∈ L(H) be self-adjoint, let λ1 ≤ λ2 ≤ · · · ≤ λn be its eigenvalues
and {uj} the corresponding orthonormal eigenvectors. Prove the “minmax principle”:

(6.4.4) λl = min
dimW=l

max
v∈W, ‖v‖=1

〈Tv, v〉.
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Hint: Every l-dimensional subspace intersects span[{uj}n
j=l], see 1.2.5.

VI.4.2. LetW ⊂ H be a subspace, and πW the orthogonal projection ontoW . Prove
that if T is self-adjoint on H, then πWT is self-adjoint on W .

VI.4.3. Use exercise VI.2.2 to prove that a self-adjoint operator T onH is semisimple
(Lemma 6.4.1, part b.).

6.5 NORMAL OPERATORS.

DEFINITION: An operator T ∈ L(H) is normal if it commutes with it’s
adjoint: TT ∗ = T ∗T .

Self-adjoint operators are clearly normal. Unitary operators are normal
since for unitary U we have U∗U = UU∗ = I .

If T is normal then S = TT ∗ = T ∗T is self-adjoint.

6.5.1 THE SPECTRAL THEOREM FOR NORMAL OPERATORS. For every
operator T ∈ L(H), the operators

T1 = <T = 1
2(T + T ∗) and T2 = =T = 1

2i(T − T ∗)

are both self-adjoint, and T = (T1 + iT2). T is normal if, and only if, T1 and
T2 commute.

Theorem. Let T ∈ L(H) be normal. Then there is an orthonormal basis {uk}
of H such that every uk is an eigenvector for T .

PROOF: As above, write T1 = T + T ∗, T2 = −i(T − T ∗). Since T1 and T2

are commuting self-adjoint operators, Theorem 6.4.6 guarantees the existence
of an orthonormal basis {uk} ⊂ H such that each uk is an eigenvector of both
T1 and T2. If Tj =

∑
k tj,kπuk

, j = 1, 2, then

(6.5.1) T =
∑
k

(t1,k + it2,k)πuk
,

and the vectors uk are eigenvectors of T with eigenvalues (t1,k + it2,k). J
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6.5.2 A subalgebraA ⊂ L(H) is self-adjoint if S ∈ A implies that S∗ ∈ A.

Theorem. Let A ⊂ L(H) be a self-adjoint commutative subalgebra. Then
there is an orthonormal basis {uk} ofH such that every uk is a common eigen-
vector of every T ∈ A.

PROOF: The elements of A are normal and A is spanned by the self-adjoint
elements it contains. Apply Theorem 6.4.6. J

EXERCISES FOR SECTION 6.5

VI.5.1. If S is normal (or just semisimple), a necessary and sufficient condition for
an operator Q to commute with S is that all the eigenspaces of S be Q-invariant.

VI.5.2. If S is normal and Q commutes with S it commutes also with S∗

VI.5.3. If T ∈ L(H) and {Tn}n∈Z is bounded, then T is similar to a unitary operator.
(T = S−1US)

VI.5.4. Prove without using the spectral theorems:

a. For any Q ∈ L(H), ker(Q∗Q) = ker(Q).

b. If S is normal, then ker(S) = ker(S∗).

c. If T is self-adjoint, then ker(T ) = ker(T 2).

d. If S is normal, then ker(S) = ker(S2).

e. Normal operators are semisimple.

VI.5.5. Prove without using the spectral theorems: If S is normal. then

a. For all v ∈ H, ‖S∗v‖ = ‖Sv‖.

b. If Sv = λv then S∗v = λ̄v.

VI.5.6. If S is normal then S and S∗ have the same eigenvectors with the
corresponding eigenvalues complex conjugate. In particular, σ(S *) = σ(S ). If
T1 = <S = S+S∗

2 and T2 = =S = S−S∗

2i , then if Sv = λv, we have T1v = <λ v,
and T2v = =λ v.

VI.5.7. Prove that the dimension of any commutative self-adjoint subalgebra of
L(H) is bounded by dimH, and every such algebra is contained in a commutative
self-adjoint subalgebra of L(H) of dimension dimH.
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6.6 POSITIVE OPERATORS.

6.6.1 A self-adjoint operator S is nonnegative, written S ≥ 0, if

(6.6.1) 〈Sv, v〉 ≥ 0

for every v ∈ H. S is positive, written S > 0, if, in addition, 〈Sv, v〉 = 0 only
for v = 0.

6.6.2 Lemma. A self-adjoint operator S is nonnegative, resp. positive, if, and
only if, σ(S ) ⊂ [0,∞), resp σ(S ) ⊂ (0,∞).

PROOF: Use the spectral decomposition S =
∑
λ∈σ(T ) λπλ.

We have 〈Sv, v〉 =
∑
λj‖πjv‖2, which, clearly, is nonnegative for all

v ∈ H if, and only if, λ ≥ 0 for all λ ∈ σ(S ). If σ(S ) ⊂ (0,∞) and
‖v‖2 =

∑
‖πλv‖2 > 0 then 〈Sv, v〉 > 0. If 0 ∈ σ(S ) take v ∈ ker(S), then

〈Sv, v〉 = 0 and S is not positive. J

6.6.3 PARTIAL ORDERS ON THE SET OF SELF-ADJOINT OPERATORS.
Let T and S be self-adjoint operators. The notions of positivity and nonnega-
tivity define partial orders, “>” and “≥” on the set of self-adjoint operators on
H. We write T > S if T − S > 0, and T ≥ S if T − S ≥ 0.

Proposition. Let T and S be self-adjoint operators on H, and assume T ≥ S.
Let σ(T ) = {λj} and σ(S ) = {µj}, both arranged in nondecreasing order.
Then λj ≥ µj for j = 1, . . . , n.

PROOF: Use the minmax principle, exercise VI.4.1:

λj = min
dimW=j

max
v∈W, ‖v‖=1

〈Tv, v〉 ≥ min
dimW=j

max
v∈W, ‖v‖=1

〈Sv, v〉 = µj

J

Remark: The condition “λj ≥ µj for j = 1, . . . , n” is necessary but, even
if T and S commute, not sufficient for T ≥ S (unless n = 1). As example
consider : {v1, . . . , vn} is an orthonormal basis, T defined by: Tvj = 2jvj ;
and S defined by: Sv1 = 3v1, Svj = vj for j > 1. The eigenvalues of T − S

are νj = 2j − 1 for j > 1, but ν1 = −1.
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6.7 POLAR DECOMPOSITION

6.7.1 Theorem. A positive operator S onH has a unique positive square root.

PROOF: Write S =
∑
λ∈σ(T ) λπλ as above, and

√
S =

∑√
λπλ, where we

take the positive square roots of the (positive) λ’s. Then (
√
S)2 = S.

If T is positive and T 2 = S then T and S commute so that T preserves all
the eigenspaces Hλ of S. On each Hλ we have S = λI , (the identity operator
on Hλ) so that T =

√
λJ , with positive square root, J positive, and J2 = I .

The eigenvalues of J are ±1, and the positivity of J implies that they are all 1,
so J = I and T =

√
S. J

A nonnegative operator S has square roots: write H = Hnull ⊕ Hpos where
Hnull = ker(S) and Hpos =

⊕
λ∈σ(S) \{0}Hλ. The restriction Spos of S to

Hpos is positive and, by the theorem, has a unique square root
√
Spos.

The restriction of S to Hnull is zero, and any operator T such that T 2 = 0
can serve as a square root of S on Hnull. This is the source of ambiguity in
the definition of the square root. Setting

√
S to be the operator that keeps both

Hnull and Hpos invariant, is zero on Hnull, and is
√
Spos on Hpos, is now a

uniquely defined nonnegative operator whose square is S. We’ll denote it, as
for positive S, by

√
S or by S

1
2 .

6.7.2 Lemma. Let Hj ⊂ H, j = 1, 2, be isomorphic subspaces. Let U1 be an
isometry H1 7→ H2. Then there are unitary operators U on H that extend U1.

PROOF: Define U on H⊥
1 as an arbitrary isometry onto H⊥

2 (which has the
same dimension) and extend by linearity. J

6.7.3 Lemma. Let A, B ∈ L(H), and assume that ‖Av‖ = ‖Bv‖ for all
v ∈ H. Then there exists a unitary operator U such that B = UA.

PROOF: Clearly ker(A) = ker(B). Let {u1, . . . , un} be an orthonormal ba-
sis of H such that {u1, . . . , um} is a basis for ker(A) = ker(B). The subspace
range(A) is spanned by {Auj}nj=m+1 and range(B) is spanned by {Buj}nj=m+1.
The map U1 : Auj 7→ Buj extends by linearity to an isometry of range(A)
onto range(B). Now apply Lemma 6.7.2, and remember that, on the range of
A, U = U1 J
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Remark: The operator U is unique if, and only if, A (or B) is invertible.

6.7.4 We observed, 6.4.1, that for any T ∈ L(H), the operators S1 = T ∗T

and S2 = TT ∗ are self adjoint. Notice that unless T is normal, S1 6= S2.
For any v ∈ H

〈S1v, v〉 = 〈Tv, Tv〉 = ‖Tv‖2 and 〈S2v, v〉 = ‖T ∗v‖2,

so that both S1 and S2 are nonnegative, and both are positive if T is non-
singular.

Let T ∈ L(H). The operators S1 = T ∗T and S2 = TT ∗ are nonnegative
and hence have nonnegative square roots. Observe that

‖Tv‖2 = 〈Tv, Tv〉 = 〈T ∗Tv, v〉 = 〈S1v, v〉 =

= 〈
√
S1v,

√
S1v〉 = ‖

√
S1v‖2.

By Lemma 6.7.3, with A =
√
S1 and B = T there exist unitary operators U

such that T = U
√
S1. This proves

Theorem (Polar decomposition6). Every operator T ∈ L(H) admits a repre-
sentation

(6.7.1) T = UR,

where U is unitary and R =
√
T ∗T nonnegative.

Remark: Starting with T ∗ and taking adjoints at the end, one obtains also a
representation of the form T = R1U1, with unitary U1 and R1 =

√
TT ∗ non-

negative. TypicallyR1 6= R, as shown by following example. Let T be the map
on C2 defined by Tv1 = v2, and Tv2 = 0. Then R is the orthogonal projection
onto the line of the scalar multiples of v1, R1 is the orthogonal projection onto
the multiples of v2, and U = U1 maps each vj on the other.

We shall use the notation |T | =
√
T ∗T .

6Not to be confused with the polarisation formula,
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6.7.5 With T , |T |, and U as above, let {µ1, . . . , µn} denote the eigenval-
ues of (the self-adjoint) |T | =

√
T ∗T , let {u1, . . . , un} be the corresponding

orthonormal eigenvectors, and denote vj = U−1uj . Then {v1, . . . , vn} is or-
thonormal, |T |v =

∑
µj〈v, uj〉uj , and

(6.7.2) Tv =
∑

µj〈v, uj〉vj .

This is sometimes written7 as

(6.7.3) T =
∑

µjuj ⊗ vj .

EXERCISES FOR SECTION 6.7

VI.7.1. Let {w1, . . . , wn} be an orthonormal basis for H and let T be the (weighted)
shift operator on {w1, . . . , wn}, defined by Twj = (n − j)wj+1 for j < n, and
Twn = 0. Describe U and R in (6.7.1), as well as R1 and U1 above.

VI.7.2. An operator T is bounded below by c, written T ≥ c, on a subspace V ⊂ H
if ‖Tv‖ ≥ c‖v‖ for every v ∈ V . Assume that {u1, . . . , un} and {v1, . . . , vn} are
orthonormal sequences, µj > 0, µj+1 ≤ µj , and T =

∑
µjuj ⊗ vj . Show that

µj = max{c : there exists a j-dimensional subspace on which T ≥ c.}

7See ? 4.2.2.
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Chapter VII

Additional topics

Unless stated explicitely otherwise, the underlying field of the vector spaces
discussed in this chapter is either R or C.

7.1 QUADRATIC FORMS

7.1.1 A quadratic form on an n-dimensional inner-product spaceH is a func-
tion of the form Q(v) = 〈Tv, v〉 with T ∈ L(H).

A basis v = {v1, . . . , vn} transforms Q into a function Qv of n variables
on the underlying field, R or C as the case may be. We use the notation appro-
priate1 for C.

Write v =
∑n

1 xjvj and ai,j = 〈Tvi, vj〉; then 〈Tv, v〉 =
∑
i,j ai,jxix̄j and

(7.1.1) Qv(x1, . . . , xn) =
∑
i,j

ai,jxix̄j

expresses Q in terms of the variables {xj}, (i.e., the v-coordinates of v).
We denote the matrix of coefficients (ai,j) by Av, write the coordinates as

a column vector, x =

x1

...
xn

, and observe that

(7.1.2) Qv(x1, . . . , xn) = 〈Ax,x〉 = xTrAvx

transfers the action to Fn.

1If the underlying field is R the complex conjugation can be simply ignored
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7.1.2 When the underlying field is R the quadratic form Q is real-valued. It
does not determine the entries ai,j uniquely. Since xjxi = xixj , the value of
Q depends on ai,j + aj,i and not on each of the summands separately. We may
therefore assume, without modifying Q, that ai,j = aj,i, thereby making the
matrix Av = (ai,j) symmetric.

For real-valued quadratic forms over C the following lemma guarantees
that the matrix of coefficients is Hermitian.

Lemma. A quadratic form xTrAvx on Cn is real-valued if, and only if, the
matrix of coefficients Av is Hermitian2 i.e., ai,j = aj,i.

PROOF: If ai,j = aj,i for all i, j, then
∑
i,j ai,jxixj is it own complex conju-

gate.
Conversely, assume that

∑
i,j ai,jxixj is real-valued for all x1, . . . , xn ∈ C.

Taking xj = 0 for j 6= k, and xk = 1, we obtain ak,k ∈ R. Taking xk = xl = 1
and xj = 0 for j 6= k, l, we obtain ak,l + al,k ∈ R, i.e. =ak,l = −=al,k. For
xk = i, xl = 1 we obtain i(ak,l−al,k) ∈ R, i.e., <ak,l = <al,k and combining
the two we have ak,l = al,k. J

7.1.3 If we replace the basis v by another, say w, the coefficients undergo
a linear change of variables. There exists a matrix C ∈ M(n), that trans-

forms by left multiplication the w-coordinates y =

y1

...
yn

 of a vector into its

v-coordinates: x = Cy. Now

(7.1.3) Qv(x1, . . . , xn) = xTrAvx = yTr C
Tr
AvC y

and the matrix representing Q in terms of the variables yj , is3

(7.1.4) Aw = C
Tr
AvC = C∗AvC.

Notice that the form now is C∗AC, rather then C−1AC (which defines

similarity). The two notions agree if C is unitary, since then C∗ = C−1, and
the matrix of coefficients for the variables {yj} is C−1AC.

2Equivalently, if the operator T is self-adjoint.
3The adjoint of a matrix is introduced in 6.2.3.
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7.1.4 The fact that the matrix of coefficients of a real-valued quadratic form
Q is self-adjoint makes it possible to simplify Q by a (unitary) change of vari-
ables that reduces it to a linear combination of squares. If the given matrix is
A, we invoke the spectral theorem, 6.4.5, to obtain a unitary matrix U , such
that U∗AU = U−1AU is a diagonal matrix whose diagonal consists of the
complete collection, including multiplicity, of the eigenvalues {λj} of A. In
other words, if x = Uy, then

(7.1.5) Q(x1, . . . , xn) =
∑

λj |yj |2.

There are other matrices C which diagonalize Q, and the coefficients in the
diagonal representation Q(y1, . . . , yn) =

∑
bj |yj |2 depend on the one used.

What does not depend on the particular choice of C is the number n+ of posi-
tive coefficients, the number n0 of zeros and the number n− of negative coeffi-
cients. This is known as The law of inertia.

DEFINITION: A quadratic form Q(v) on a (real or complex) vector space V
is positive, resp. negative if Q(v) > 0, resp. Q(v) < 0, for all v 6= 0 in V .

On an inner-product space Q(v) = 〈Av, v〉 with a self-adjoint operator A,
and our current definition is consistent with the definition in 6.6.1: the operator
A is positive if so is Q(v) = 〈Av, v〉.

Denote

n+ = max
V1

dimV1 : Q is positive on V1.

n− = max
V1

dimV1 : Q is negative on V1.
(7.1.6)

and, n0 = n− n+ − n−.

Proposition. Let v be a basis in terms of which Q(y1, . . . , yn) =
∑
bj |yj |2,

and arrange the coordinates so that bj > 0 for j ≤ m and bj ≤ 0 for j > m.
Then m = n+.

PROOF: Denote V+ = span[v1, . . . vm], and V≤0 = span[vm+1, . . . vn] the
complementary subspace.

Q(y1, . . . , yn) is clearly positive on V+, so that m ≤ n+. On the other
hand, by Theorem 2.5.3, every subspace W of dimension > m has elements
v ∈ V≤0, and for such v we clearly have Q(v) ≤ 0. J
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The proposition applied to −Q shows that n− equals the number of negative
bj’s. This proves

Theorem (Law of inertia). LetQ be a real-valued quadratic form. Then in any
representation Q(y1, . . . , yn) =

∑
bj |yj |2, the number of positive coefficients

is n+, the number of negative coefficients is n−, and the number of zeros is n0.

EXERCISES FOR SECTION 7.1

VII.1.1. Prove that if 〈Av, v〉 = 〈Bv, v〉 for all v ∈ Rn, with A, B ∈ M(n,R), and
both symmetric, then A = B.

7.2 POSITIVE MATRICES

A matrix A ∈ M(m,C) is positive4 if all the entries are positive. A is
nonnegative if all the entries are nonnegative.

Similarly, a vector v ∈ Cm is positive, resp. nonnegative, if all its entries
are positive, resp. non-negative.

With Aj denoting either matrices or vectors, A1 ≥ A2, A1 	 A2, and
A1 > A2 will mean respectively that A1 −A2 is nonnegative, nonnegative but
not zero, positive.

7.2.1 We write ‖A‖sp = max{|τ | : τ ∈ σ(A)}, and refer to it as the spectral

norm of A.

DEFINITION: An eigenvalue λ of a matrix A is called dominant if
a. λ is simple (that is ker((A−λ)2) = ker(A−λ) is one dimensional), and
b. every other eigenvalue µ of A satisfies |µ| < |λ|.

Notice that b. implies that |λ| = ‖A‖sp.

Theorem (Perron). Let A = (ai,j) be a positive matrix. Then it has a posi-
tive dominant eigenvalue and a positive corresponding eigenvector. Moreover,
there is no other nonnegative eigenvector for A.

4Not to be confused with positivity of the operator of multiplication by A.
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PROOF: Let p(A) be the set of all positive numbers µ such that there exist
nonnegative vectors v 6= 0 such that

(7.2.1) Av ≥ µv.

Clearly mini ai,i ∈ p(A); also µ ≤ mmaxi,j ai,j for all µ ∈ p(A). Hence
p(A) is non-empty and bounded.

Write λ = supµ∈p(A) µ. We propose to show that λ ∈ p(A), and is the
dominant eigenvalue for A.

Let µn ∈ p(A) be such that µn → λ, and vn = (vn(1), · · · , vn(m)) 	 0
such that Avn ≥ µnvn. We normalize vn by the condition

∑
j vn(j) = 1, and

since now 0 ≤ vn(j) ≤ 1 for all n and j, we can choose a (sub)sequence nk
such that vnk

(j) converges for each 1 ≤ j ≤ m. Denote the limit by v∗(j)
and let v∗ = (v∗(1), · · · , v∗(m)). Since all the entries of Avnk

converge to the
corresponding entries in Av∗ we have

∑
j v∗(j) = 1, and

(7.2.2) Av∗ ≥ λv∗.

Claim: the inequality (7.2.2) is in fact an equality, so that λ is an eigenvalue
and v∗ a corresponding eigenvector.

If one of the entries in λv∗, say λv∗(l), were smaller than the l’th entry in
Av∗, we could replace v∗ by v∗∗ = v∗+εel (where el is the unit vector that has
1 as its l’th entry and zero everywhere else) with ε > 0 small enough to have

Av∗(l) ≥ λv∗∗(l).

Since Ael is (strictly) positive, we would have Av∗∗ > Av∗ ≥ λv∗∗, and for
δ > 0 sufficiently small we would have

Av∗∗ ≥ (λ+ δ)v∗∗

contradicting the definition of λ.
Since Av is positive for any v 	 0, a nonnegative vector which is an eigen-

vector of A with positive eigenvalue, is positive. In particular, v∗ > 0.
Claim: λ is a simple eigenvalue.
a. If Au = λu for some vector u, then A<u = λ<u and A=u = λ=u.

So it would be enough to show that u is a constant multiple of v∗ under the
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assumption that u has real entries. There exists a constant c 6= 0 such that
v∗ + cu has nonnegative entries and at least one vanishing entry. Since v∗ + cu

is an eigenvector for λ, the previous remark shows that v∗ + cu = 0 and u is a
multiple of v∗.

b. We need to show that ker((A − λ)2) = ker((A − λ)). Assume the
contrary, and let u ∈ ker((A− λ)2) \ ker((A− λ)), so that

(7.2.3) Au = λu+ cv∗

with c 6= 0. Splitting (7.2.3) into its real and imaginary parts we have:

(7.2.4) A<u = λ<u+ <cv∗ A=u = λ=u+ =cv∗.

Either c1 = <c 6= 0 or c2 = =c 6= 0 (or both). This shows that there is no loss
of generality in assuming that u and c in (7.2.3) are real valued.

Replace u, if necessary, by u1 = −u to obtain Au1 = λu1 + c1v∗ with
c1 > 0. Let a > 0 be such that u1 + av∗ > 0, and observe that

A(u1 + av∗) = λ(u1 + av∗) + c1v∗

so that A(u1 + av∗) > λ(u1 + av∗) contradicting the maximality of λ.

c. Claim: Every eigenvalue µ 6= λ of A satisfies |µ| < λ.
Let µ be an eigenvalue ofA, and let w 6= 0 be a corresponding eigenvector:

Aw = µw. Denote |w| = (|w(1)|, · · · , |w(m)|).
The positivity of A implies A|w| ≥ |Aw| and,

(7.2.5) A|w| ≥ |Aw| ≥ |µ||w|

so that |µ| ∈ p(A), i.e., |µ| ≤ λ. If |µ| = λ we must have equality in (7.2.5)
and |w| = cv∗. Equality in (7.2.5) can only happen if A|w| = |Aw| which
means that all the entries in w have the same argument, i.e. w = eiϑ|w|, in
other words, w is a constant multiple of v∗, and µ = λ.

Finally, let µ 6= λ be an eigenvalue ofA andw a corresponding eigenvector.
The adjoint A∗ = A

Tr is a positive matrix and has the same dominant eigen-
value λ. If v∗ is the positive eigenvector corresponding to λ then 〈w, v∗〉 = 0
(see exercise VI.2.4) and since v∗ is strictly positive, w must have both positive
and negative entries. J
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EXERCISES FOR SECTION 7.2

VII.2.1. What part of the conclusion of Perron’s theorem remains valid if the as-
sumption is replaced by “A is similar to a positive matrix” ?

7.3 NONNEGATIVE MATRICES

Nonnegative matrices exhibit a variety of modes of behavior. Consider the
following n× n matrices

a. The identity matrix. 1 is the only eigenvalue, multiplicity n.

b. The nilpotent matrix having ones below the diagonal, zeros elsewhere. The
spectrum is {0}.

c. The matrix Aσ of a permutation σ ∈ Sn. The spectrum depends on the
decomposition of σ into cycles. If σ is a unique cycle then the spectrum of
Aσ is the set of roots of unity of order n. The eigenvalue 1 has (1, . . . , 1)
as a unique eigenvector. If the decomposition of σ consists of k cycles of
lengths lj , j = 1, . . . , k, then the spectrum of Aσ is the union of the sets
of roots of unity of order lj . The eigenvalue 1 now has multiplicity k.

7.3.1 Let 111 denote the matrix all of whose entries are 1. If A ≥ 0 then
A + 1

m111 > 0 and has, by Perron’s theorem, a dominant eigenvalue λm and
a corresponding positive eigenvector vm which we normalize by the condition∑n
j=1 vm(j) = 1.
λm is monotone non increasing as m→∞ and converges to a limit λ ≥ 0

which clearly dominates the spectrum of A. λ can well be zero, as can be seen
from example b. above. For a sequence {mi} the vectors vmi converge to a
(normalized) nonnegative vector v∗ which, by continuity, is an eigenvector for
λ.

Thus, a nonnegative matrix has λ = ‖A‖sp as an eigenvalue with nonneg-
ative eigenvector v∗, however

1. λ may be zero,

2. λ may have high multiplicity,
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3. λ may not have positive eigenvectors.

4. There may be other eigenvalues of modulus ‖A‖sp.

The first three problems disappear, and the last explained for transitive

nonnegative matrices. See below.

7.3.2 DEFINITIONS. Assume A ≥ 0. We use the following terminology:
A connects the index j to i (connects (j, i) for short) directly if ai,j 6= 0.

SinceAej =
∑
ai,jei,A connects (j, i) if ei appears (with nonzero coefficient)

in the expansion of Aej .
A connects j to i (connects (j, i) for short) if there is a connecting chain for

(j, i), that is, a sequence {sl}kl=0 such that j = s0, i = sk and
∏k
l=1 asl,sl−1

6=
0. The existence of connecting chain for (j, i) is equivalent to: ei appears (with
nonzero coefficient) in the expansion of Akej .

An index j is A-recurrent if A connects it to itself—there is a connecting
chain for (j, j). The lengths k of connecting chains for (j, j) are called return

times for j. Since connecting chains for (j, j) can be concatenated, the set of
return times for a recurrent index is an additive semigroup of N.

A is transitive 5 if it connects every pair (j, i).

Lemma. IfA is a nonnegative transitive matrix, every index isA-recurrent. In
particular, A is not nilpotent.

PROOF: Left as an exercise. J

Corollary. If A is a nonnegative transitive matrix then λ = ‖A‖sp > 0.

7.3.3 We write i ≤A j if A connects (i, j). This defines a partial order and
induces an equivalence relation in the set of A-recurrent indices. (The non-
recurrent indices are not equivalent to themselves, nor to anybody else.)

We can reorder the indices in a way that gives each equivalence class a con-
secutive bloc, and is compatible with the partial order, i.e., such that for non-
equivalent indices, i ≤A j implies i ≤ j. This ordering is not unique: equiv-
alent indices can be ordered arbitrarily within their equivalence class; pairs of

5Also called irreducible, or ergodic.
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equivalence classes may be ≤A comparable or not comparable in which case
each may precede the other; non-recurrent indices may be placed consistently
in more than one place. Yet, such order gives the matrix A a “quasi-super-
triangular form”: if we denote the coefficients of the “reorganized” A again by
ai,j , then ai,j = 0 for i greater than the end of the bloc containing j. That
means that now A has square transitive matrices centered on the diagonal—the
squares Jl × Jl corresponding to the equivalence classes, while the entries on
the rest of diagonal, at the non-recurrent indices, as well as in the rest of the
sub-diagonal, are all zeros. This reduces much of the study of the general A to
that of transitive matrices.

7.3.4 We focus now on transitive matrices.
A nonnegative matrix A is transitive if, and only if, B =

∑n
j=1A

j is
positive. Since, by 7.3.1, λ = ‖A‖sp is an eigenvalue for A, it follows that
β =

∑n
1 λ

j is an eigenvalue for B, having the same eigenvalue v∗.
Either by observing that β = ‖B‖sp, or by invoking the part in Perron’s

theorem stating that (up to constant multiples) there is only one nonnegative
eigenvector for B (and it is in fact positive), we see that β is the dominant
eigenvalue for B and v∗ is positive.

Lemma. Assume A transitive, v ≥ 0, µ > 0, Av 	 µv. Then there exists a
positive vector u ≥ v such that Au > µu.

PROOF: As in the proof of Perron’s theorem: let l be such that Av(l) > µvl,
let 0 < ε1 < Av(l)− µvl and v1 = v + ε1el. Then Av ≥ µv1, hence

Av1 = Av + ε1Ael ≥ µv1 + ε1Ael,

and Av1 is strictly bigger than µv1 at l and at all the entries on which Ael is
positive, that is the i’s such that ai,l > 0. Now define v2 = v1 + ε2Ael with
ε2 > 0 sufficiently small so that Av2 ≥ µv2 with strict inequality for l and the
indices on which Ael+A2el is positive. Continue in the same manner with v3,
and Av3 ≥ µv3 with strict inequality on the support of (I + A + A2 + A3)el
etc. The transitivity of A guarantees that after k ≤ n such steps we obtain
u = vk > 0 such that Au > µu. J
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The lemma implies in particular that if, for some µ > 0, there exists a vector
v ≥ 0 such that Av 	 µv, then µ < ‖A‖sp. This since the condition Au > µu

implies6 (A+ 1
m111)u > (1 + a)µu for a > 0 sufficiently small, and all m. In

turn this implies λm > (1 + a)µ for all m, and hence λ ≥ (1 + a)µ.
In what follows we simplify the notation somewhat by normalizing (multi-

plying by a positive constant) the nonnegative transitive matrices under discus-
sion so that ‖A‖sp = 1.

Corollary. Assume ‖A‖sp = 1. If µ = eiϕ is an eigenvalue of A and uµ a
corresponding7 eigenvector, then |uµ| = v∗.

PROOF: A|uµ| ≥ |Auµ| = |µuµ| = |uµ|.

If A|uµ| 6= |uµ| the lemma would contradict the assumption ‖A‖sp = 1. J

7.3.5 For v ∈ Cn, |v| > 0 we write arg v = (arg v1, . . . , arg vn), and8

ei arg v = (ei arg v1 , . . . , ei arg vn).
The key observation is: if Auµ = µuµ, then A|uµ| = |Auµ| which means

that every entry inAuµ is a linear combination of entries of uµ having the same

argument, that is on which arg uµ is constant. The set [1, . . . , n] is partitioned
into the level sets Ij on which arg uµ = ϑj , and A maps el for every l ∈ Ij ,
and hence span[{el}k∈Ij ], into span[{ek}k∈Is ] where ϑs = ϑj + ϕ.

Let ν = eiψ be another eigenvalue of A, with eigenvector uν = ei arg uνv∗,
and let Jk be the level sets on which arg uν = γk. A maps el for every l ∈ Jk,
into span[{em}m∈Js ] where γs = γk + ψ.

It follows that for l ∈ Ij ∩ Jk, Ael ∈ span[{ek}k∈Is ] ∩ span[{em}m∈Jt ]
where ϑs = ϑj+ϕ and γt = γk+ψ. If we write uµν = ei(arg uµ+arg uν)v∗, then
argAei(ϑj+γk)el = arg uµ + arg uν + ϕ+ ψ, which means: Auµν = µν uµν .

This proves that the product µν = ei(ϕ+ψ) of eigenvalues of A is an eigen-
value, and σ(A)∩{z : |z| = 1} is a subgroup of the multiplicative unit circle;
i.e., the group of roots of unity of order m for an appropriate m.

6See 7.3.1 for the notation.
7Normalized:

∑
j
|uµ(j)| = 1.

8The notation considers Cn as an algebra of functions on the space [1, . . . , n].
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The group σ(A)∩{z : |z| = 1}, (or {eit : ‖A‖speit ∈ σ(A)} if A is not
normalized), is called the period group of A and its order m is the periodicity

of A.
We call the partition of [1, . . . , n] into the the level sets Ij of arg vµ, where

µ is a generator of the period group of A, the basic partition.
The subspaces Vj = span[{el : l ∈ Ij}] are Am-invariant and the restric-

tion of Am to Vj is transitive with the dominant eigenvalue 1, and v∗,j =∑
l∈Ij v∗(l)el the corresponding eigenvector.

The restriction of Am to Vj has |Ij | − 1 eigenvalues of modulus < 1. Sum-
ming for 1 ≤ j ≤ m and invoking the Spectral Mapping Theorem, 5.1.2, we
see that A has n−m eigenvalues of modulus < 1. This proves that the eigen-
values in the period group are simple and have no generalized eigenvectors.

Theorem (Frobenius). Let A be a transitive nonnegative n × n matrix. Then
λ = ‖A‖sp is a simple eigenvalue of A and has a positive eigenvector v∗. The
set {eit :λeit ∈ σ(A)} is a subgroup of the unit circle.

7.3.6 DEFINITION: A matrix A ≥ 0 is strongly transitive if Am is transi-
tive for all m ∈ [1, . . . , n].

Theorem. If A is strongly transitive, then ‖A‖sp is a dominant eigenvalue for
A, and has a positive corresponding eigenvector.

PROOF: The periodicity of A has to be 1. J

EXERCISES FOR SECTION 7.3

VII.3.1. A nonnegative matrix A is nilpotent if, and only if, no index is A-recurrent.

VII.3.2. Prove that a nonnegative matrix A is transitive if, and only if, B =
∑n

l=1A
l

is positive.
Hint: Check that A connects (i, j) if, and only if,

∑n
l=1A

l connects j to i directly.

VII.3.3. Prove that the conclusion Perron’s theorem holds under the weaker assump-
tion: “the matrix A is nonnegative and has a full row of positive entries”.

VII.3.4. Prove that if the elements Ij of the basic partition are not equal in size, then
ker(A) is nontrivial.
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Hint: Show that dim ker(A) ≥ max|Ij | −min|Ij |.

VII.3.5. Describe the matrix of a transitive A if the basis elements are reordered so
that the elements of the basic partition are blocs of consecutive integers in [1, . . . , n],

VII.3.6. Prove that if A ≥ 0 is transitive, then so is A∗.

VII.3.7. Prove that if A ≥ 0 is transitive, λ = ‖A‖sp, and v∗ is the positive
eigenvector of A∗, normalized by the condition 〈v∗, v∗〉 = 1 then for all v ∈ Cn,

(7.3.1) lim
N→∞

1
N

N∑
1

λ−jAjv = 〈v, v∗〉v∗.

VII.3.8. Let σ be a permutation of [1, . . . , n]. Let Aσ be the n × n matrix whose
entries aij are defined by

(7.3.2) aij =

{
1 if i = σ(j)

0 otherwise.

What is the spectrum of Aσ , and what are the corresponding eigenvectors.

VII.3.9. Let 1 < k < n, and let σ ∈ Sn, be the permutation consisting of
the two cycles (1, . . . , k) and (k + 1, . . . , n), and Aσ as defined above. (So that the
corresponding operator on Cn maps the basis vector ei onto eσ(i).)

a. Describe the positive eigenvectors of A. What are the corresponding eigenval-
ues?

b. Let 0 < a, b < 1. Denote by Aa,b the matrix obtained from A by replacing
the k’th and the n’th columns of A by (ci,k) and (ci,n), resp., where c1,k = 1 − a,
ck+1,k = a and all other entries zero; c1,n = b, ck+1,n = 1 − b and all other entries
zero.

Show that 1 is a simple eigenvalue ofAa.b and find a positive corresponding eigen-
vector. Show also that for other eigenvalues there are no nonnegative eignevectors.

7.4 STOCHASTIC MATRICES.

7.4.1 A stochastic matrix is a nonnegative matrix A = (ai,j) such that the
sum of the entries in each column9 is 1:

(7.4.1)
∑
i

ai,j = 1.

9The action of the matrix is (left) multiplication of column vectors. The columns of the
matrix are the images of the standard basis in Rn or Cn
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A probability vector is a nonnegative vector π = (pl) ∈ Rn such that∑
l pl = 1. Observe that if A is a stochastic matrix and π a probability vector,

then Aπ is a probability vector.
In applications, one considers a set of possible outcomes of an “experi-

ment” at a given time. The outcomes are often referred to as states, and a prob-
ability vector assigns probabilities to the various states. The word probability
is taken here in a broad sense—if one is studying the distribution of various
populations, the “probability” of a given population is simply its proportion in
the total population.

A (stationary) n-state Markov chain is a sequence {vj}j≥0 of probability
vectors in Rn, such that

(7.4.2) vj = Avj−1 = Ajv0,

where A is an n× n stochastic matrix.
The matrix A is the transition matrix, and the vector v0 is referred to as

the initial probability vector. The parameter j is often referred to as time.

7.4.2 POSITIVE TRANSITION MATRIX. When the transition matrix A is
positive, we get a clear description of the evolution of the Markov chain from
Perron’s theorem 7.2.1.

Condition (7.4.1) is equivalent to u∗A = u∗, where u∗ is the row vector
(1, . . . , 1). This means that the dominant eigenvalue for A∗ is 1, hence the
dominant eigenvalue for A is 1. If v∗ is the corresponding (positive) eigen-
vector, normalized so as to be a probability vector, then Av∗ = v∗ and hence
Ajv∗ = v∗ for all j.

If w is another eigenvector (or generalized eigenvector), it is orthogonal
to u∗, that is:

∑n
1 w(j) = 0. Also,

∑
|Alw(j)| is exponentially small (as a

function of l).
If v0 is any probability vector, we write v0 = cv∗ + w with w in the span

of the eigenspaces of the non dominant eigenvalues. By the remark above
c =

∑
v0(j) = 1. Then Alv0 = v∗ + Alw and, since Alw → 0 as l →∞, we

have Alv0 → v∗.
Finding the vector v∗ amounts to solving a homogeneous system of n equa-

tions (knowing a-priori that the solution set is one dimensional). The observa-
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tion v∗ = limAlv0, with v0 an arbitrary probability vector, may be a fast way
way to obtain a good approximation of v∗.

7.4.3 TRANSITIVE TRANSITION MATRIX. Denote vµ the eigenvectors of
A corresponding to eigenvalues µ of absolute value 1, normalized so that v1 =
v∗ is a probability vector, and |vµ| = v∗. If the periodicity of A is m, then,
for every probability vector v0, the sequence Ajv0 is equal to an m-periodic
sequence (periodic sequence of of period m) plus a sequence that tends to zero
exponentially fast.

Observe that for an eigenvalue µ 6= 1 of absolute value 1,
∑m

1 µl = 0. It
follows that if v0 is a probability vector, then

(7.4.3)
1
m

k+m∑
l=k+1

Alv0 → v∗

exponential fast (as a function of k).

7.4.4 REVERSIBLE MARKOV CHAINS. One way of obtaining a transition
matrix is from a nonnegative symmetric matrix (pi,j) by writing Wj =

∑
i pij

and, assuming Wj > 0 for all i, ai,j = pi,j

Wi
. Then A = (ai,j) is stochastic since∑

i ai,j = 1 for all j.
We can identify the “stable distribution”—theA-invariant vector—by think-

ing in terms of “population mouvement”. Assume that at a given time we have
population of size bj in state j and in the next unit of time ai,j proportion of this
population shifts to state i. The absolute size of the j to i shift is ai,jbj so that
the new distribution is given by Ab, where b is the column vector with entries
bj . This description applies to any stochastic matrix, and the stable distribution
is given by b which is invariant under A, Ab = b.

The easiest way to find b in this case is to go back to the matrix (pi,j) and
the weights Wj . The vector w with entries Wj is A-invariant in a very strong
sense. Not only is Aw = w, but the exchange of mass between any two states
is even:

• the mass going from i to j is: Wiaj,i = pj,i,
• the mass going from j to i is: Wjai,j = pi,j ,
• the two are equal since pi,j = pj,i.
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EXERCISES FOR SECTION 7.4

VII.4.1. Let σ be a permutation of [1, . . . , n]. Let Aσ be the n × n matrix whose
entries aij are defined by

(7.4.4) aij =

{
1 if i = σ(j)

0 otherwise.

What is the spectrum of Aσ , and what are the corresponding eigenvectors.

VII.4.2. Let 1 < k < n, and let σ ∈ Sn, be the permutation consisting of
the two cycles (1, . . . , k) and (k + 1, . . . , n), and Aσ as defined above. (So that the
corresponding operator on Cn maps the basis vector ei onto eσ(i).)

a. Describe the positive eigenvectors of A. What are the corresponding eigenval-
ues?

b. Let 0 < a, b < 1. Denote by Aa,b the matrix obtained from A by replacing
the k’th and the n’th columns of A by (ci,k) and (ci,n), resp., where c1,k = 1 − a,
ck+1,k = a and all other entries zero; c1,n = b, ck+1,n = 1 − b and all other entries
zero.

Show that 1 is a simple eigenvalue ofAa.b and find a positive corresponding eigen-
vector. Show also that for other eigenvalues there are no nonnegative eignevectors.

7.5 REPRESENTATION OF FINITE GROUPS

A representation of a group G in a vector space V is a homomorphism
σ : g 7→ g of G into the group GL(V) of invertible elements in LV .

Throughout this section G will denote a finite group.
A representation of G in V turns V into a G-module, or a G-space. That

means that in addition to the vector space operations there is an action of G on
V by linear maps: for every g ∈ G and v ∈ V the element g v ∈ V is well
defined and,

g(av1 + bv2) = agv1 + bgv2 while (g1g2)v = g1(g2v).

The data (σ,V), i.e., V as a G-space, is called a representation of G in V .
The representation is faithful if σ is injective.

Typically, σ is assumed known and is omitted from the notation. We shall
use the terms G-space, G-module, and representation as synonyms.
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We shall deal mainly in the case in which the underlying field is C, or R,
and the space has an inner-product structure. The inner-product is assumed
for convenience only: it identifies the space with its dual, and makes LV self-
adjoint. An inner product can always be introduced (e.g., by declaring a given
basis to be orthonormal).

7.5.1 THE DUAL REPRESENTATION. If σ is a representation of G in V
we obtain a representation σ∗ of G in V∗ by setting σ∗(g) = (σ(g−1)∗ (the
adjoint of the inverse of the action of G on V). Since both g 7→ g−1 and
g 7→ g∗ reverse the order of factors in a product, their combination as used
above preserves the order, and we have

σ∗(g1g2) = σ∗(g1)σ∗(g2)

so that σ∗ is in fact a homomorphism.
When V is endowed with an inner product, and is thereby identified with

its dual, and if σ is unitary, then σ∗ = σ.

7.5.2 Let Vj beG-spaces. We extend the actions ofG to V1⊕V2 and V1⊗V2

by declaring10

(7.5.1) g(v1 ⊕ v2) = gv1 ⊕ gv2 and g(v1 ⊗ v2) = gv1 ⊗ gv2

L(V1,V2) = V2 ⊗ V∗1 and as such it is a G-space.

7.5.3 G-MAPS. Let Hj be G-spaces, j = 1, 2. A map S : H1 7→ H2 is
a G-map if it commutes with the action of G. This means: for every g ∈ G,
Sg = gS. The domains of the various actions is more explicit in the diagram

H1
S−−−−→ H2

g

y yg

H1
S−−−−→ H2

and the requirement is that it commute.

10Observe that the symbol g signifies, in (7.5.1) and elswhere, different operators, acting on
different spaces.
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The prefix G- can be attached to all words describing linear maps, thus, a
G-isomorphism is an isomorphism which is a G-map, etc.

If Vj , j = 1, 2, are G-spaces, we denote by LG(V1,V2) the space of linear
G-maps of V1 into V2.

7.5.4 Lemma. Let S : H1 7→ H2 be a G-homomorphism. Then ker(S) is a
subrepresentation, i.e., G-subspace, of H1, and range(S) is a subrepresenta-
tion of H2.

DEFINITION: Two representations Hj of G are equivalent if there is a
G-isomorphism S : H1 7→ H2, that is, if they are isomorphic as G-spaces.

7.5.5 AVERAGING, I. For a finite subgroup G ⊂ GL(H) we write

(7.5.2) IG = {v ∈ H :gv = v for all g ∈ G}.

In words: IG is the space of all the vectors inH which are invariant under every
g in G.

Theorem. The operator

(7.5.3) πG =
1
|G|

∑
g∈G

g

is a projection onto IG .

PROOF: πG is clearly the identity on IG . All we need to do is show that
range(πG) = IG , and for that observe that if v = 1

|G|
∑

g∈G gu, then

g1v =
1
|G|

∑
g∈G

g1gu

and since {g1g :g ∈ G} = G, we have g1v = v. J

7.5.6 AVERAGING, II. The operatorQ =
∑

g∈G g∗g is positive, selfadjoint,
and can be used to define a new inner product

(7.5.4) 〈v, u〉Q = 〈Qv, u〉 =
∑
g∈G

〈gv,gu〉
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and the corresponding norm

‖v‖2
Q =

∑
g∈G

〈gv,gv〉 =
∑
g∈G

‖gv‖2.

Since {g :g ∈ G} = {gh :g ∈ G}, we have

(7.5.5) 〈hv,hu〉Q =
∑
g∈G

〈ghv,ghu〉 = 〈Qv, u〉,

and ‖hv‖Q = ‖v‖Q. Thus, G is a subgroup of the “unitary group” correspond-
ing to 〈·, ·〉Q.

Denote by HQ the inner product space obtained by replacing the given
inner-product by 〈·, ·〉Q. Let {u1, . . . , un} be an orthonormal basis of H, and
{v1, . . . , vn} be an orthonormal basis of HQ. Define S ∈ GL(H) by imposing
Suj = vj . Now, S is an isometry from H onto HQ, g unitary on HQ (for any
g ∈ G), and S−1 an isometry from HQ back to H; hence S−1gS ∈ U(n). In
other words, S conjugates G to a subgroup of the unitary group U(H). This
proves the following theorem

Theorem. Every finite subgroup of GL(H) is conjugate to a subgoup of the
unitary group U(H).

7.5.7 DEFINITION: A unitary representation of a group G in an inner-
product space H is a representation such that g is unitary for all g ∈ G.

The following is an immediate corollary of Theorem 7.5.6

Theorem. Every finite dimensional representation of a finite group is equiva-
lent to a unitary representation.

7.5.8 Let G be a finite group and H a finite dimensional G-space (a finite
dimensional representation of G).

A subspace U ⊂ H is G-invariant if it is invariant under all the maps g,
g ∈ G. If U ⊂ H is G-invariant, restricting the maps g, g ∈ G, to U defines U
as a representation of G and we refer to U as a subrepresentation of H.

A subspace U is G-reducing if it is G-invariant and has a G-invariant com-
plement, i.e., H = U ⊕ V with both summands G-invariant.
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Lemma. Every G-invariant subspace is reducing.

PROOF: Endow the space with the inner product given by (7.5.4) (which makes
the representation unitary) and observe that if U is a nontrivialG-invariant sub-
space, then so is its orthogonal complement, and we have a direct sum decom-
position H = U ⊕ V with both summands G-invariant. J

We say that (the representation) H is irreducible if there is no non-trivial
G-invariant subspace ofH and (completely) reducible otherwise. In the termi-
nology of V.2.7, H is irreducible if (H,G) is minimal.

Thus, if H is reducible, there is a (non-trivial) direct sum decomposition
H = U ⊕ V with both summands G-invariant. We say, in this case, that σ is
the sum of the representations U and V . If either representation is reducible we
can write it as a sum of representations corresponding to a further direct sum
decomposition of the space (U or V) intoG invariant subspaces. After no more
than dimH such steps we obtain H as a sum of irreducible representations.
This proves the following theorem:

Theorem. Every finite dimensional representation H of a finite group G is a
sum of irreducible representations. That is

(7.5.6) H =
⊕

Uj

Uniqueness of the decomposition into irreducibles

Lemma. Let V and U be irreducible subrepresentations of H. Then, either
W = U ∩ V = {0}, or U = V .

PROOF: W is clearly G-invariant. J

7.5.9 THE REGULAR REPRESENTATION. Let G be a finite group. Denote
by `2(G) the vector space of all complex valued functions on G, and define the
inner product, for ϕ, ψ ∈ `2(G), by

〈ϕ,ψ〉 =
∑
x∈G

ϕ(x)ψ(x).
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For g ∈ G, the left translation by g is the operator τ (g) on `2(G) defined by

(τ (g)ϕ)(x) = ϕ(g−1x).

Clearly τ (g) is linear and, in fact, unitary. Moreover,

(τ (g1g2)ϕ)(x) = ϕ((g1g2)−1x) = ϕ(g−1
2 (g−1

1 x)) = (τ (g1)τ (g2)ϕ)(x)

so that τ (g1g2) = τ (g1)τ (g2) and τ is a unitary representation of G. It is
called the regular representation of G.

If H ⊂ G is a subgroup we denote by `2(G/H) the subspace of `2(G) of
the functions that are constant on left cosets of H .

Since multiplication on the left by arbitrary g ∈ G maps left H-cosets onto
left H-cosets, `2(G/H) is τ (g) invariant, and unless G is simple, that is—has
no nontrivial subgroups, τ is reducible.

If H is not a maximal subgroup, that is, there exists a proper subgroup
H1 that contains H properly, then left cosets of H1 split into left cosets of H
so that `2(G/H1) ⊂ `2(G/H) and τ `2(G/H) is reducible. This proves the
following:

Lemma. If the regular representation of G is irreducible, then G is simple.

The converse is false! A cyclic group of order p, with prime p, is simple.
Yet its regular representation is reducible. In fact,

Proposition. Every representation of a finite abelian group is a direct sum of
one-dimensional representations.

PROOF: Exercise VII.5.2 J

7.5.10 Let W be a G space and let 〈 , 〉 be an inner-product in W . Fix a
non-zero vector u ∈ W and, for v ∈ W and g ∈ G, define

(7.5.7) fv(g) = 〈g−1v, u〉

The map S : v 7→ fv is a linear map from W into `2(G). If W is irreducible
and v 6= 0, the set {gv : g ∈ G} spans W which implies that fv 6= 0, i.e., S is
injective.
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Observe that for γ ∈ G,

(7.5.8) τ (γ)fv(g) = fv(γ−1g) = 〈g−1γv, u〉 = fγv(g),

so that the space SW = WS ⊂ `2(G) is a reducing subspace of the regu-
lar representation of `2(G) and S maps σ onto the (restriction of the) regular
representation τ (to) on WS .

This proves in particular

Proposition. Every irreducible representation of G is equivalent to a subrep-
resentation of the regular representation.

Corollary. There are only a finite number of distinct irreducible representa-
tions of a finite group G.

EXERCISES FOR SECTION 7.5

VII.5.1. If G is finite abelian group and σ a representation of G in H, then the linear
span of {σ(g) : g ∈ G} is a selfadjoint commutative subalgebra of LH.

VII.5.2. Prove that every representation of a finite abelian group is a direct sum of
one-dimensional representations.
Hint: 6.5.2

VII.5.3. Consider the representation of Z in R2 defined by σ(n) =
(

1 n

0 1

)
. Check

the properties shown above for representations of finite groups that fail for σ.
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Appendix

A.1 EQUIVALENCE RELATIONS — PARTITIONS.

A.1.1 EQUIVALENCE RELATIONS. A binary relation on a setX is a subset
R ⊂ X ×X . We write xRy when (x, y) ∈ R.

EXAMPLES:

a. Equality: R = {(x, x) :x ∈ X}, xRy means x = y.

b. Order in Z: R = {(x, y) :x < y}.

DEFINITION: An equivalence relation in a set X , is a binary relation (de-
noted here x ≡ y) that is

reflexive: for all x ∈ X , x ≡ x;
symmetric: for all x, y ∈ X , if x ≡ y, then y ≡ x;

and transitive: for all x, y, z ∈ X , if x ≡ y and y ≡ z, then x ≡ z.

EXAMPLES:

a. Of the two binary relations above, equality is an equivalence relation, order

is not.

b. Congruence modulo an integer. Here X = Z, the set of integers. Fix an
integer k. x is congruent to y modulo k and write x ≡ y (mod k) if x−y
is an integer multiple of k.

c. For X = {(m,n) :m,n ∈ Z, n 6= 0}, define (m,n) ≡ (m1, n1) by the
condition mn1 = m1n. This will be familiar if we write the pairs as m

n

instead of (m,n) and observe that the condition mn1 = m1n is the one
defining the equality of the rational fractions m

n and m1
n1

.
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A.1.2 PARTITIONS.

DEFINITION: A partition of X is a collectionP of (pairwise) disjoint subsets
Pα ⊂ X whose union is X .

A partition P defines an equivalence relation: by definition, x ≡ y if, and
only if, x and y belong to the same element of the partition.

Conversely, given an equivalence relation on X , we define the equivalence

class of x ∈ X as the set Ex = {y ∈ X :x ≡ y}. The defining properties of
equivalence can be rephrased as: a. x ∈ Ex, b. If y ∈ Ex, then x ∈ Ey, and c.
If y ∈ Ex, and z ∈ Ey, then z ∈ Ex. These conditions guarantee that different
equivalence classes are disjoint and the collection of all the equivalence classes
is a partition of X (which defines the given equivalence relation).

EXERCISES FOR SECTION A.1

A.1.1. Write R1 ⊂ R× R = {(x, y) : |x− y| < 1} and x ∼1 y when (x, y) ∈ R1. Is
this an equivalence relation, and if not—what fails?

A.1.2. Identify the equivalence classes for congruence mod k.

A.2 MAPS

The terms used to describe properties of maps vary by author, by time, by
subject matter, etc. We shall use the following:

A map ϕ : X 7→ Y is injective if x1 6= x2 =⇒ ϕ(x1) 6= ϕ(x2). Equiva-
lent terminology: ϕ is one-to-one (or 1–1), or ϕ is a monomorphism.

A map ϕ : X 7→ Y is surjective if ϕ(X) = {ϕ(x) :x ∈ X} = Y . Equiva-
lent terminology: ϕ is onto, or ϕ is an epimorphism.

A map ϕ : X 7→ Y is bijective if it is both injective and surjective: for
every y ∈ Y there is precisely one x ∈ X such that y = ϕ(x). Bijective maps
are invertible—the inverse map deifed by: ϕ−1(y) = x if y = ϕ(x).

Maps that preserve some structure are called morphisms, often with a pre-
fix providing additional information. Besides the mono- and epi- mentioned
above, we use systematically homomorphism, isomorphism, etc.

A permutation of a set is a bijective map of the set onto itself.
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A.3 GROUPS

A.3.1 DEFINITION: A group is a pair (G, ∗), where G is a set and ∗ is a
binary operation (x, y) 7→ x ∗ y, defined for all pairs (x, y) ∈ G × G, taking
values in G, and satisfying the following conditions:

G-1 The operation is associative: For x, y, z ∈ G, (x ∗ y) ∗ z = x ∗ (y ∗ z).

G-2 There exists a unique element e ∈ G called the identity element or the
unit of G, such that e ∗ x = x ∗ e = x for all x ∈ G.

G-3 For every x ∈ G there exists a unique element x−1, called the inverse of
x, such that x−1 ∗ x = x ∗ x−1 = e.

A group (G, ∗) is Abelian, or commutative if x ∗ y = y ∗ x for all x and y.
The group operation in a commutative group is often written and referred to as
addition, in which case the identity element is written as 0, and the inverse of
x as −x.

When the group operation is written as multiplication, the operation symbol
∗ is sometimes written as a dot (i.e., x · y rather than x ∗ y) and is often omitted
altogether. We also simplify the notation by referring to the group, when the
binary operation is “assumed known”, as G, rather than (G, ∗).

EXAMPLES:

a. (Z,+), the integers with standard addition.

b. (R \ {0}, ·), the non-zero real numbers, standard multiplication.

c. Sn, the symmetric group on [1, . . . , n]. Here n is a positive integer, the
elements of Sn are all the permutations σ of the set [1, . . . , n], and the
operation is concatenation: for σ, τ ∈ Sn and 1 ≤ j ≤ n we set (τσ)(j) =
τ(σ(j)).

More generally, if X is a set, the collection S(X) of permutations, i.e.,
invertible self-maps of X , is a group under concatenation. (Thus Sn =
S([1, . . . , n])).

The first two examples are commutative; the third, if n > 2, is not.
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A.3.2 Let Gi, i = 1, 2, be groups.

DEFINITION: A map ϕ : G1 7→ G2 is a homomorphism if

(A.3.1) ϕ(xy) = ϕ(x)ϕ(y)

Notice that the multiplication on the left-hand side is in G1, while that on the
right-hand side is in G2.

The definition of homomorphism is quite broad; we don’t assume the map-
ping to be injective (1-1), nor surjective (onto). We use the proper adjectives
explicitly whenever relevant: monomorphism for injective homomorphism and
epimorphism for one that is surjective.

An isomorphism is a homomorphism which is bijective, that is both injec-
tive and surjective. Bijective maps are invertible, and the inverse of an isomor-
phism is an isomorphism. For the proof we only have to show that ϕ−1 is multi-
plicative (as in (A.3.1)), that is that for g, h ∈ G2, ϕ−1(gh) = ϕ−1(g)ϕ−1(h).
But, if g = ϕ(x) and h = ϕ(y), this is equivalent to gh = ϕ(xy), which is the
multiplicativity of ϕ.

If ϕ : G1 7→ G2 and ψ : G2 7→ G3 are both isomorphisms, then ψϕ : G1 7→
G3 is an isomorphism as well..

We say that two groups G and G1 are isomorphic if there is an isomor-
phism of one onto the other. The discussion above makes it clear that this is an
equivalence relation.

A.3.3 INNER AUTOMORPHISMS AND CONJUGACY CLASSES. An iso-
morphism of a group onto itself is called an automorphism. A special class of
automorphisms, the inner automorphisms, are the conjugations by elements

y ∈ G:

(A.3.2) Ayx = y−1xy

One checks easily (left as exercise) that for all y ∈ G, the map Ay is in fact an
automorphism.

An important fact is that conjugacy, defined by x ∼ z if z = Ayx = y−1xy

for some y ∈ G, is an equivalence relation. To check that every x is conjugate
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to itself take y = e, the identity. If z = Ayx, then x = Ay−1z, proving the
symmetry. Finally, if z = y−1xy and u = w−1zw, then

u = w−1zw = w−1y−1xyw = (yw)−1x(yw),

which proves the transitivity.
The equivalence classes defined on G by conjugation are called conjugacy

classes.

A.3.4 SUBGROUPS AND COSETS.
DEFINITION: A subgroup of a group G is a subset H ⊂ G such that

SG-1 H is closed under multiplication, that is, if h1, h2 ∈ H then h1h2 ∈ H .

SG-2 e ∈ H .

SG-3 If h ∈ H , then h−1 ∈ H

EXAMPLES:

a. {e}, the subset whose only term is the identity element

b. In Z, the set qZ of all the integral multiples of some integer q. This is a
special case of the following example.

c. For any x ∈ G, the set {xk}k∈Z is the subgroup generated by x. The
element x is of order m, if the group it generates is a cyclic group of order
m. (That is if m is the smallest positive integer for which xm = e). x has
infinite order if {xn} is infinite, in which case n 7→ xn is an isomorphism
of Z onto the group generated by x.

d. If ϕ : G 7→ G1 is a homomorphism and e1 denotes the identity in G1, then
{g ∈ G :ϕg = e1} is a subgroup of G (the kernel of ϕ).

e. The subset of Sn of all the permutations that leave some (fixed) l ∈ [1, . . . , n]
in its place, that is, {σ ∈ Sn :σ(l) = l}.

Let H ⊂ G a subgroup. For x ∈ G write xH = {xz : z ∈ H}. Sets of the
form xH are called left cosets of H .
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Lemma. For any x, y ∈ G the cosets xH and yH are either identical or
disjoint. In other words, the collection of distinct xH is a partition of G.

PROOF: We check that the binary relation defined by “x ∈ yH” which is
usually denoted by x ≡ y (mod H), is an equivalence relation. The cosets
xH are the elements of the associated partition.

a. Reflexive: x ∈ xH , since x = xe and e ∈ H .
b. Symmetric: If y ∈ xH then x ∈ yH . y ∈ xH means that there exists

z ∈ H , such that y = xz. But then yz−1 = x, and since z−1 ∈ H , x ∈ yH .
c. Transitive: If w ∈ yH and y ∈ xH , then w ∈ xH . For appropriate

z1, z2 ∈ H , y = xz1 and w = yz2 = xz1z2, and z1z2 ∈ H . J

EXERCISES FOR SECTION A.3

A.3.1. Check that, for any group G and every y ∈ G, the map Ayx = y−1xy is an
automorphism of G.

A.3.2. Let G be a finite group of order m. Let H ⊂ G be a subgroup. Prove that the
order of H divides m.

?A.4 GROUP ACTIONS

A.4.1 ACTIONS. DEFINITION: An action of G on X is a homomorphism
ϕ of G into S(X), the group of invertible self-maps (permutations) of X .

The action defines a map (g, x) 7→ ϕ(g)x. The notation ϕ(g)x often re-
placed, when ϕ is “understood”, by the simpler gx, and the assumption that ϕ
is a homomorphism is equivalent to the conditions:

ga1. ex = x for all x ∈ X , (e is the identity element of G).

ga2. (g1g2)x = g1(g2x) for all gj ∈ G, x ∈ X .

EXAMPLES:

a. G acts on itself (X = G) by left multiplication: (x, y) 7→ xy.

b. G acts on itself (X = G) by right multiplication (by the inverse): (x, y) 7→
yx−1. (Remember that (ab)−1 = b−1a−1)
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c. G acts on itself by conjugation: (x, y) 7→ ϕ(x)y where ϕ(x)y = xyx−1.

d. Sn acts as mappings on {1, . . . , n}.

A.4.2 ORBITS. The orbit of an element x ∈ X under the action of a

group G is the set Orb (x) = {gx : g ∈ G}.
The orbits of a G action form a partition of X . This means that any two

orbits, Orb (x1) and Orb (x2) are either identical (as sets) or disjoint. In fact,
if x ∈ Orb (y), then x = g0y and then y = g−1

0 x, and gy = gg−1
0 x. Since

the set {gg−1
0 : g ∈ G} is exactly G, we have Orb (y) = Orb (x). If x̃ ∈

Orb (x1)∩Orb (x2) then Orb (x̃) = Orb (x1) = Orb (x2). The corresponding
equivalence relation is: x ≡ y when Orb (x) = Orb (y).

EXAMPLES:

a. A subgroup H ⊂ G acts on G by right multiplication: (h, g) 7→ gh. The
orbit of g ∈ G under this action is the (left) coset gH .

b. Sn acts on [1, . . . , n], (σ, j) 7→ σ(j). Since the action is transitive, there is
a unique orbit—[1, . . . , n].

c. If σ ∈ Sn, the group (σ) (generated by σ) is the subgroup {σk} of all the
powers of σ. Orbit of elements a ∈ [1, . . . , n] under the action of (σ), i.e.
the set {σk(a)}, are called cycles of σ and are written (a1, . . . , al), where
aj+1 = σ(aj), and l, the period of a1 under σ, is the first positive integer
such that σl(a1) = a1.

Notice that cycles are “enriched orbits”, that is orbits with some additional
structure, here the cyclic order inherited from Z. This cyclic order defines σ
uniquely on the orbit, and is identified with the permutation that agrees with σ
on the elements that appear in it, and leaves every other element in its place.
For example, (1, 2, 5) is the permutation that maps 1 to 2, maps 2 to 5, and
5 to 1, leaving every other element unchanged. Notice that n, the cardinality
of the complete set on which Sn acts, does not enter the notation and is in
fact irrelevant (provided that all the entries in the cycle are bounded by it; here
n ≥ 5). Thus, breaking [1, . . . , n] into σ-orbits amounts to writing σ as a
product of disjoint cycles.
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A.4.3 CONJUGATION. Two actions of a group G, ϕ1 : G×X1 7→ X1, and
ϕ2 : G ×X2 7→ X2 are conjugate to each other if there is an invertible map
Ψ: X1 7→ X2 such that for all x ∈ G and y ∈ X1,

(A.4.1) ϕ2(x)Ψy = Ψ(ϕ1(x)y) or, equivalently, ϕ2 = Ψϕ1Ψ−1.

This is often stated as: the following diagrams commute

X1
ϕ1−−−−→ X1yΨ

yΨ

X2
ϕ2−−−−→ X2

or

X1
ϕ1−−−−→ X1

Ψ−1

x yΨ

X2
ϕ2−−−−→ X2

meaning that the concatenation of maps associated with arrows along a path
depends only on the starting and the end point, and not on the path chosen.

A.5 FIELDS, RINGS, AND ALGEBRAS

A.5.1 FIELDS.

DEFINITION: A (commutative) field, (F,+, ·) is a set F endowed with two
binary operations, addition: (a, b) 7→ a+ b, and multiplication: (a, b) 7→ a · b
(we often write ab instead of a · b) such that:

F-1 (F,+) is a commutative group, its identity (zero) is denoted by 0.

F-2 (F \ {0}, ·) is a commutative group, whose identity is denoted 1, and
a · 0 = 0 · a = 0 for all a ∈ F.

F-3 Addition and multiplication are related by the distributive law:

a(b+ c) = ab+ ac.

EXAMPLES:

a. Q, the field of rational numbers.

b. R, the field of real numbers.

c. C, the field of complex numbers.
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d. Z2 denotes the field consisting of the two elements 0, 1, with addition and
multiplication defined mod 2 (so that 1 + 1 = 0).

Similarly, if p is a prime, the set Zp of residue classes mod p, with addition
and multiplication mod p, is a field. (See exercise I.5.2.)

A.5.2 RINGS.
DEFINITION: A ring is a triplet (R,+, ·),R is a set, + and · binary operations
on R called addition, resp. multiplication, such that (R,+) is a commutative
group, the multiplication is associative (but not necessarily commutative), and
the addition and multiplication are related by the distributive laws:

a(b+ c) = ab+ ac, and (b+ c)a = ba+ ca.

A subring R1 of a ring R is a subset of R that is a ring under the operations
induced by the ring operations, i.e., addition and multiplication, in R.

Z is an example of a commutative ring with a multiplicative identity; 2Z,
(the even integers), is a subring. 2Z is an example of a commutative ring with-
out a multiplicative identity.

A.5.3 ALGEBRAS.
DEFINITION: An Algebra over a field F is a ring A and a multiplication of
elements of A by scalars (elements of F), that is, a map F×A 7→ A such that
if we denote the image of (a, u) by au we have, for a, b ∈ F and u, v ∈ A,

identity: 1u = u;

associativity: a(bu) = (ab)u, a(uv) = (au)v;

distributivity: (a+ b)u = au+ bu, and a(u+ v) = au+ av.

A subalgebraA1 ⊂ A is a subring ofA that is also closed under multiplication
by scalars.

EXAMPLES:

a. F[x] – The algebra of polynomials in one variable x with coefficients from
F, and the standard addition, multiplication, and multiplication by scalars.
It is an algebra over F.
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b. C[x, y] – The (algebra of) polynomials in two variables x, y with complex
coefficients, and the standard operations. C[x, y] is “complex algebra”, that
is an algebra over C.

Notice that by restricting the scalar field to, say, R, a complex algebra can
be viewed as a “real algebra” i.e., and algebra over R. The underlying field
is part of the definition of an algebra. The “complex” and the “real” C[x, y]
are different algebras.

c. M(n), the n× n matrices with matrix multiplication as product.

DEFINITION: A left (resp. right) ideal in a ringR is a subring I that is closed
under multiplication on the left (resp. right) by elements of R: for a ∈ R and
h ∈ I we have ah ∈ I (resp. ha ∈ I). A two-sided ideal is a subring that is
both a left ideal and a right ideal.

A left (resp. right, resp. two-sided) ideal in an algebra A is a subalgebra of
A that is closed under left (resp. right, resp, either left or right) multiplication
by elements of A.

If the ring (resp. algebra) is commutative the adjectives “left”, “right” are
irrelevant.

Assume that R has an identity element. For g ∈ R, the set Ig = {ag : a ∈
R} is a left ideal in R, and is clearly the smallest (left) ideal that contains g.

Ideals of the form Ig are called principal left ideals, and g a generator of
Ig. One defines principal right ideals similarly.

A.5.4 Z AS A RING. Notice that since multiplication by an integer can be
accomplished by repeated addition, the ring Z has the (uncommon) property
that every subgroup in it is in fact an ideal.

Another special property is: Z is a principal ideal domain—every nontriv-
ial1 ideal I ⊂ Z is principal, that is, has the form mZ for some positive integer
m.

In fact if m is the smallest positive element of I and n ∈ I , n > 0, we can
“divide with remainder” n = qm+ r with q, r integers, and 0 ≤ r < m. Since
both n and qm are in I so is r. Since m is the smallest positive element in I ,

1Not reduced to {0}.
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r = 0 and n = qm. Thus, all the positive elements of I are divisible by m (and
so are their negatives).

If mj ∈ Z, j = 1, 2, the set Im1,m2 = {n1m1 + n2m2 :n1, n2 ∈ Z} is an
ideal in Z, and hence has the form gZ. As g divides every element in Im1,m2 ,
it divides both m1 and m2; as g = n1m1 + n2m2 for appropriate nj , every
common divisor of m1 and m2 divides g. It follows that g is their greatest

common divisor, g = gcd(m1,m2). We summarize:

Proposition. If m1 and m2 are integers, then for appropriate integers n1, n2,

gcd(m1,m2) = n1m1 + n2m2.

EXERCISES FOR SECTION A.5

A.5.1. Let R be a ring with identity, B ⊂ R a set. Prove that the ideal generated by

B, that is the smallest ideal that contains B, is: I = {
∑
ajbj : aj ∈ R. bj ∈ B}.

A.5.2. Verify that Zp is a field.
Hint: If p is a prime and 0 < m < p then gcd(m, p) = 1.

A.5.3. Prove that the set of invertible elements in a ring with and identity is a multi-
plicative group.

A.5.4. Show that the set of polynomials {P :P =
∑

j≥2 ajx
j} is an ideal in F[x], and

that {P :P =
∑

j≤7 ajx
j} is an additive subgroup but not an ideal.

A.6 POLYNOMIALS

Let F be a field and F[x] the algebra of polynomials P =
∑n

0 ajx
j in the

variable x with coefficients from F. The degree of P , deg(P ), is the highest
power of x appearing in P with non-zero coefficient. If deg(P ) = n, then anxn

is called the leading term of P , and an the leading coefficient. A polynomial
is called monic if its leading coefficient is 1.

A.6.1 DIVISION WITH REMAINDER. By definition, an ideal in a ring is
principal if it consists of all the multiples of one of its elements, called a gener-

ator of the ideal. The ring F[x] shares with Z the property of being a principal

ideal domain—every ideal is principal. The proof for F[x] is virtually the same
as the one we had for Z, and is again based on division with remainder.
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Theorem. Let P, F ∈ F[x]. There exist polynomials Q, R ∈ F[x] such that
deg(R) < deg(F ), and

(A.6.1) P = QF +R.

PROOF: Write P =
∑n
j=0 ajx

j and F =
∑m
j=0 bjx

j with an 6= 0 and bm 6= 0,
so that deg(P ) = n, deg(F ) = m.

If n < m there is nothing to prove: P = 0 · F + P .
If n ≥ m, we write qn−m = an/bm, and P1 = P − qn−mx

n−mF , so that
P = qn−mx

n−mF + P1 with n1 = deg(P1) < n.
If n1 < m we are done. If n1 ≥ m, write the leading term of P1 as

a1,n1x
n1 , and set qn1−m = a1,n1/bm, and P2 = P1 − qn1−mx

n1−mF . Now
deg(P2) < deg(P1) and P = (qn−mxn−m + qn1−mx

n1−m)F + P2.
Repeating the procedure a total of k times, k ≤ n − m + 1, we obtain

P = QF +Pk with deg(Pk) < m, and the statement follows with R = Pk. J

Corollary. Let I ⊂ F[x] be an ideal, and let P0 be an element of minimal
degree in I . Then P0 is a generator for I .

PROOF: If P ∈ I , write P = QP0 + R, with deg(R) < deg(P0). Since
R = P −QP0 ∈ I , and 0 is the only element of I whose degree is smaller than
deg(P0), P = QP0. J

The generator P0 is unique up to multiplication by a scalar. If P1 is another
generator, each of the two divides the other and since the degree has to be the
same the quotients are scalars. It follows that if we normalize P0 by requiring
that it be monic, that is with leading coefficient 1, it is unique and we refer to it
as the generator.

A.6.2 Given polynomials Pj , j = 1, . . . , l any ideal that contains them all
must contain all the polynomials P =

∑
qjPj with arbitrary polynomial coeffi-

cients qj . On the other hand the set of all theses sums is clearly an ideal in F[x].
It follows that the ideal generated by {Pj} is equal to the set of polynomials of
the form P =

∑
qjPj with polynomial coefficients qj .

The generator G of this ideal divides every one of the Pj’s, and, since G
can be expressed as

∑
qjPj , every common factor of all the Pj’s divides G. In
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other words, G = gcd{P1, . . . , Pl}, the greatest common divisor of {Pj}. This
implies

Theorem. Given polynomials Pj , j = 1, . . . , l there exist polynomials qj such
that gcd{P1, . . . , Pl} =

∑
qjPj .

In particular:

Corollary. If P1 and P2 are relatively prime, there exist polynomials q1, q2
such that P1q1 + P2q2 = 1.

A.6.3 FACTORIZATION. A polynomial P in F[x] is irreducible or prime if
it has no proper factors, that is, if every factor of P is either scalar multiple of
P or a scalar.

Lemma. If gcd(P, P1) = 1 and P P1P2, then P P2.

PROOF: There exist q, q1 such that qP + q1P1 = 1. Then the left-hand side of
qPP2 + q1P1P2 = P2 is divisible by P , and hence so is P2. J

Theorem (Prime power factorization). Every P ∈ F[x] admits a factorization
P =

∏
Φmj

j , where each factor Φj is irreducible in F[x], and they are all
distinct.

The factorization is unique up to the order in which the factors are enumer-
ated, and up to multiplication by non-zero scalars.

A.6.4 THE FUNDAMENTAL THEOREM OF ALGEBRA. A field F is alge-

braically closed if it has the property that every P ∈ F[x] has roots in F, that is
elements λ ∈ F such that P (λ) = 0. The so-called fundamental theorem of

algebra states that C is algebraically closed.

Theorem. Given a non-constant polynomial P with complex coefficients, there
exist complex numbers λ such that P (λ) = 0.
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A.6.5 We now observe that P (λ) = 0 is equivalent to the statement that
(z − λ) divides P . By Theorem A.6.1, P (z) = (z − λ)Q(z) + R with degR
smaller than deg (z − λ) = 1, so that R is a constant. Evaluating P (z) =
(z−λ)Q(z)+R at z = λ shows thatR = P (λ), hence the claimed equivalence.
It follows that a non-constant polynomial P ∈ C[z] is prime if and only if it is
linear.

Theorem. Let P ∈ C[z] be a polynomial of degree n. There exist complex
numbers λ1, . . . , λn, (not necessarily distinct), and a 6= 0 (the leading coeffi-
cient of P ), such that

(A.6.2) P (z) = a
n∏
1

(z − λj).

The theorem and its proof apply verbatim to polynomials over any alge-
braically closed field.

A.6.6 FACTORIZATION IN R[x]. The factorization (A.6.2) applies, of course,
to polynomials with real coefficients, but the roots need not be real. The basic
example is P (x) = x2 + 1 with the roots ±i.

We observe that for polynomials P whose coefficients are all real, we have
P (λ̄) = P (λ), which means in particular that if λ is a root of P then so is λ̄.

A second observation is that

(A.6.3) (x− λ)(x− λ̄) = x2 − 2x<λ+ |λ|2

has real coefficients.
Combining these observations with (A.6.2) we obtain that the prime factors

in R[x] are the linear polynomials and the quadratic of the form (A.6.3) where
λ 6∈ R.

Theorem. Let P ∈ R[x] be a polynomial of degree n. P admits a factorization

(A.6.4) P (z) = a
∏

(x− λj)
∏

Qj(x),

where a is the leading coefficient, {λj} is the set of real zeros of P and Qj are
irreducible quadratic polynomials of the form (A.6.3) corresponding to (pairs
of conjugate) non-real roots of P .
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Either product may be empty, in which case it is interpreted as 1.
As mentioned above, the factors appearing in (A.6.4) need not be distinct—

the same factor may be repeated several times. We can rewrite the product as

(A.6.5) P (z) = a
∏

(x− λj)lj
∏

Q
kj

j (x),

with λj and Qj now distinct, and the exponents lj resp. kj their multiplicities.
The factors (x− λj)lj and Qkj

j (x) appearing in (A.6.5) are pairwise relatively
prime.
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Ideal, 146
Idempotent, 101
Independent

subspaces, 5
vectors, 9

Inertia, law of, 118
Inner-product, 95
Irreducible

polynomial, 149
system, 75

Isomorphism, 3

Jordan canonical form, 88, 90

Kernel, 35

Ladder, 68
Linear

system, 65
Linear equations

homogeneous, 14
non-homogeneous, 14

Markov chain, 127
reversible, 128

Matrix
orthogonal, 104
unitary , 104
augmented, 16
companion, 72
diagonal, 5
Hermitian, 103
nonnegative, 121
permutation, 30
positive, 118
self-adjoint, 103
stochastic, 126
strongly transitive, 125
transitive, 122

triangular, 5, 63, 68
Minimal

system, 74
Minimal polynomial, 72

for (T,v), 70
Minmax principle, 108
Monic polynomial, 147
Multilinear

form, 54
map, 53

Nilpotent, 83
Nilspace, 79, 90
Nonsingular, 37
Norm, 39
Normal

operator, 109
Nullity, 35
Nullspace, 35

Operator
nonnegative, 111
normal, 109
orthogonal, 104
positive, 111
self-adjoint, 105
unitary, 104

Orientation, 59
Orthogonal

operator, 104
projection, 99
vectors, 97

Orthogonal equivalence, 105
Orthonormal, 98

Period group, 125
Permutation, 51, 138
Perron, 118
Polarization, 101
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Primary components, 78
Probability vector, 127
Projection

along a subspace, 24
orthogonal, 99

Quadratic form
positive, 117

Quadratic forms, 115
Quotient space, 6

Range, 35
Rank

column, 20
of a matrix, 21
of an operator, 35
row, 17

Reducing subspace, 75
Regular representation, 133
Ring, 145
Row echelon form, 18
Row equivalence, 17

Schur’s lemma, 74
Self-adjoint

algebra, 110
matrix, 108
operator, 105

Semisimple, 81
k-shift , 84
Similar, 35
Similarity, 34
Solution-set, 4
Span, 5, 9
Spectral mapping theorem, 66
Spectral norm, 118
Spectral Theorems, 106–110
Spectrum, 60, 66, 79
Steinitz’ lemma, 11

Symmetric group, 51

Tensor product, 7
Trace, 62
Transition matrix, 127
Transposition, 51

Unitary
operator, 104
space, 95

Unitary equivalence, 105

Vandermonde, 64
Vector space, 1

complex, 1
real, 1
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Symbols

C, 1
Q, 1
R, 1

χT , 60
Cv, 25
Cw,v, 33

dimV , 11

{e1, . . . , en}, 10

Fn, 2
F[x], 2

GL(H) , 131
GL(V) , 27

height[v], 83

M(n; F), 2
M(n,m; F), 2
minPT, 72
minPT,v , 69

O(n), 104

P(T ), 27, 82

Sn, 51
span[E], 5
span[T, v], 66
‖ ‖sp , 118

TW , 68

U(n), 104
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