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Abstract. We show that a real Banach space of dimension N = 4k + 2 ≥ 6, N 6= 134,
all of whose codimension 1 subspaces are isometrically isomorphic to each other, is a

Hilbert space. This gives a partial answer to a conjecture of Stefan Banach from 1932.
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1. Introduction

1.1. The main theorem. S. Banach asked in 1932 the following question:

Let X be a Banach space, real or complex, finite or infinite dimensional, all of whose
n-dimensional subspaces, for some fixed integer n, 2 ≤ n < dim(X), are isometrically
isomorphic to each other. Is it true that X is a Hilbert space? (See [Ba], remarks on Chap.
XII, property (5), p. 244.)

The question1 has been answered affirmatively in the following cases. In 1935, Auerbach,
Mazur and Ulam [AMU] gave a positive answer in case V is a real 3-dimensional Banach
space and n = 2. In 1959, A. Dvoretzky [Dv] proved a theorem, from which follows an
affirmative answer for all real infinite dimensional V and n ≥ 2. Dvoretzky’s theorem was
extended in 1971 to the complex case by V. Milman [Mi]. In 1967, M. Gromov [Gr] gave
an affirmative answer in case V is finite dimensional, real or complex, except when n is odd

Date: May 29, 2019.
1Following a long established tradition starting with [Gr], we rename Banach’s question a ‘conjecture’ in

this article, although Banach himself, as far as we know, did not conjecture a positive answer to his question.
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and dim(V ) = n + 1 in the real case, or n is odd and n < dim(V ) < 2n in the complex
case. A recent, and very thorough, account of the history behind this conjecture can be
read in section 6, p. 388, of [So]. This article also discusses many related problems in convex
geometry. It is also worthwhile to see [Pe] and the notes of Section 9 of [MMO], p. 206.

For a finite dimensional real Banach space V , by considering the closed unit ball B =
{‖x‖ ≤ 1} ⊂ V , since a finite dimensional Banach space is a Hilbert space if and only if its
unit ball is an ellipsoid, Banach’s question can be reformulated as follows:

Let B ⊂ RN be a symmetric convex body, all of whose sections by n-dimensional sub-
spaces, for some fixed integer n, 2 ≤ n < N , are linearly equivalent. Is it true that B is an
ellipsoid?

We give an affirmative answer to ‘one half’ of the remaining cases of this question, as
follows.

Theorem 1.1 (Main theorem). Let B ⊂ Rn+1, n = 4k + 1 ≥ 5, n 6= 133, be a convex
symmetric body, all of whose sections by n-dimensional subspaces are linearly equivalent.
Then B is an ellipsoid.

Remark 1.2. The reason for the strange exception n 6= 133 will become clearer during the
proof (133 is the dimension of the exceptional Lie group E7).

In fact, using Theorem 1 of [Mo1], one can drop the symmetry assumption on B in
Theorem 1 above, obtaining:

Our main convex geometry theorem. Let B ⊂ Rn+1, n = 4k + 1 ≥ 5, n 6= 133, be a
convex body, all of whose sections by n-dimensional affine subspaces through a fixed interior
point are affinely equivalent. Then B is an ellipsoid.

1.2. Sketch of the proof of the main theorem. Our proof of Theorem 1.1 combines
two main ingredients: convex geometry and algebraic topology. To describe these, we need
to recall first some standard definitions.

A symmetric convex body is a compact convex subset of a finite dimensional real vector
space with a nonempty interior, invariant under x 7→ −x. A hyperplane is a codimension 1
linear subspace. An affine hyperplane is the translation of a hyperplane by some vector. A
hyperplane section of a subset in a vector space is its intersection with a hyperplane. Two
sets, each a subset of a vector space, are linearly (respectively, affinely) equivalent if they
can be mapped to each other by a linear (respectively, affine) isomorphism between their
ambient vector spaces. An ellipsoid is a subset of a vector space which is affinely equivalent
to the unit ball in euclidean space.

A symmetric convex body K ⊂ Rn is a symmetric body of revolution if it admits an
axis of revolution, i.e., a 1-dimensional linear subspace L such that each section of K by
an affine hyperplane A orthogonal to L is an n− 1 dimensional closed euclidean ball in A,
centered at A ∩ L (possibly empty or just a point). If L is an axis of revolution of K then
L⊥ is the associated hyperplane of revolution. An affine symmetric body of revolution is a
convex body linearly equivalent to a symmetric body of revolution. The images, under the
linear equivalence, of an axis of revolution and its associated hyperplane of revolution of
the body of revolution are an axis of revolution and associated hyperplane of revolution of
the affine body of revolution (not necessarily perpendicular anymore). Clearly, an ellipsoid
centered at the origin is an affine symmetric body of revolution and any hyperplane serves
as a hyperplane of revolution.
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With these definitions understood, the convex geometry result that we use in the proof
of Theorem 1.1 is the following characterization of ellipsoids.

Theorem 1.3. A symmetric convex body B ⊂ Rn+1, n ≥ 4, all of whose hyperplane sections
are linearly equivalent affine symmetric bodies of revolution, is an ellipsoid.

The main ingredient in the proof of this theorem is the following result, possibly of
independent interest.

Theorem 1.4. Let B ⊂ Rn+1, n ≥ 4, be a symmetric convex body, all of whose hyperplane
sections are affine symmetric bodies of revolution. Then, at least one of the sections is an
ellipsoid.

Note that in Theorem 1.4, unlike Theorem 1.3, we do not assume that all hyperplane
sections of B are necessarily linearly equivalent to each other. If we add this assumption
then it follows from Theorem 1.4 that all hyperplane sections of B are ellipsoids. The
following well known characterization of ellipsoids then implies that B itself is an ellipsoid,
thus proving Theorem 1.3.

Proposition 1.5. Let B ⊂ Rn+1, n ≥ 2, be a symmetric convex body, all of whose hyper-
plane sections are ellipsoids. Then B is an ellipsoid.

In fact, this result is known to hold even without the symmetry assumption on B (see,
e.g., Theorem 2.12.4 of [MMO], p. 43). At the end of Section 2 we give a proof of the above
symmetric case which is somewhat simpler than the general case.

It is an open question whether a symmetric convex body all of whose sections are affine
symmetric bodies of revolution is itself a body of revolution (the converse of Lemma 2.2). In
Remark 2.5 we briefly discuss this question and explain why Theorem 1.4 may be considered
as a first step towards an affirmative answer.

Theorem 1.4 and Proposition 1.5 are proved in Section 2. The rest of the article consists of
using topological methods to show that, under the hypotheses of Theorem 1.1, all hyperplane
sections of B are necessarily affine symmetric bodies of revolution. The link to topology is
via a beautiful idea that traces back to the work of Gromov [Gr]. It consists of the following
key observation.

Lemma 1.6. Let B ⊂ Rn+1 be a symmetric convex body, all of whose hyperplane sections
are linearly equivalent to some fixed symmetric convex body K ⊂ Rn. Let GK := {g ∈
GLn(R)|g(K) = K} be the group of linear symmetries of K. Then the structure group of
Sn can be reduced to GK .

See Section 3.1 below for a proof of this lemma, as well as a brief reminder about structure
groups of differentiable manifolds and their reductions. Lemma 1.6 can be interpreted
through the notion of a field of convex bodies tangent to Sn. See, for example, Mani [Ma]
and [Mo1], as well as Remark 3.2 below.

Following Lemma 1.6, our task is to understand the possible reductions of the structure
group of Sn (a classical problem in topology). The results we need are contained in the
next purely topological theorem which, when applied to Lemma 1.6 with the dimension
hypothesis of Theorem 1.1, implies that K is an affine symmetric body of revolution.

But first, another definition. We say that a subgroup G ⊂ GLn(R) is reducible if the
induced action on Rn leaves invariant a k-dimensional linear subspace, 1 < k < n; otherwise,
it is an irreducible subgroup of GLn(R). (Beware of the potentially confusing use of the
notions ‘reducible’ and ‘can be reduced’ in the statement of the following theorem.)



4 G. BOR, L. HERNÁNDEZ, V. JIMÉNEZ, AND L. MONTEJANO

Theorem 1.7. Let n ≡ 1 mod 4, n ≥ 5, and suppose that the structure group of Sn can be
reduced to a closed connected subgroup G ⊂ SOn. Then:

(a) If G is reducible then it is conjugate to a subgroup of the standard inclusion SOn−1 ⊂
SOn, acting transitively on Sn−2.

(b) If G is irreducible then G = SOn, or n = 133 and G ⊂ H ⊂ SO133, where H is the
adjoint representation of the simple exceptional Lie group E7.

We prove Theorem 1.7 in Section 3.3 by applying to our situation some known results
from the literature about structure groups on spheres, mainly from [St], [Le] and [CC]. In
case (b) (the irreducible case), we need to supplement these results with several basic facts
about the representation theory and topology of compact Lie groups.

* * *

In summary, Theorem 1.1 is a consequence of the above results, as follows. Since all
hyperplane sections of B are linearly equivalent to each other, they are linearly equivalent
to some fixed symmetric convex body K ⊂ Rn. By Lemma 1.6, the structure group of
Sn can be reduced to GK . It is easy to see that it can be further reduced to the identity
component G0

K ⊂ GK (see Lemma 3.1 below). For a convex body K, GK and G0
K are

compact (Lemma 2.6) and are therefore conjugate to subgroups of On (Lemma 2.7); hence,
by passing to a convex body linearly equivalent to K, we can assume that G0

K ⊂ SOn.
Next, Theorem 1.7 applied to G = G0

K , implies that K is a symmetric body of revolution:
in case (a), Ren is an axis of revolution of K; in case (b), K is a euclidean ball. Thus all
hyperplane sections of B are linearly equivalent to the symmetric body of revolution K. It
follows, by Theorem 1.3, that B is an ellipsoid. �

Acknowledgments. We wish to thank Omar Antolin for very helpful conversations, and to
Ilia Smilga for kindly contributing Lemma 3.6. LM acknowledges support from CONACyT
under project 166306 and support from PAPIIT-UNAM under project IN112614, whereas
GB and LH acknowledge support from CONACyT under project 2017-2018-45886.

2. Affine bodies of Revolution

2.1. Proof of Theorem 1.4. The aim of this section is to prove the following theorem,
announced in the introduction.

Theorem 1.4. Let B ⊂ Rn+1, n ≥ 4, be a symmetric convex body, all of whose hyperplane
sections are affine symmetric bodies of revolution. Then, at least one of the sections is an
ellipsoid.

To prove Theorem 1.4 we need the following four lemmas about affine symmetric bodies
of revolution. Their proofs are given at the end of this section.

Lemma 2.1. A symmetric affine body of revolution K ⊂ Rn, n ≥ 3, admitting two different
hyperplanes of revolution, is an ellipsoid.

Lemma 2.2. Let K ⊂ Rn, n ≥ 3, be an affine symmetric body of revolution. Then any
section K ′ = Γ ∩K with a k-dimensional linear subspace Γ ⊂ Rn, 1 < k < n, is an affine
symmetric body of revolution in Γ. Furthermore, if L is an axis of revolution of K and H
the associated hyperplane of revolution then

(a) If Γ ⊂ H then K ′ is an ellipsoid.
(b) If Γ 6⊂ H then H ′ := Γ ∩H is a hyperplane of revolution of K ′.



ON THE ISOMETRIC CONJECTURE OF BANACH 5

(c) If L ⊂ Γ then L is also the axis of revolution of K ′ associated to the hyperplane of
revolution Γ ∩H.

Lemma 2.3. Let B ⊂ Rn+1 be a symmetric convex body, n ≥ 4, Γ1,Γ2 ⊂ Rn+1 two distinct
hyperplanes, such that the hyperplane sections Ki := Γi ∩ B, i = 1, 2, are affine symmetric
bodies of revolution, with axes and associated hyperplanes of revolution Li, Hi (respectively).
If L1 ⊂ H2 then K1 is an ellipsoid.

Lemma 2.4. Let B ⊂ Rn+1 be a symmetric convex body, all of whose hyperplane sections
are non-ellipsoidal affine symmetric bodies of revolution. For each x ∈ Sn let Lx be the
(unique) axis of revolution of x⊥ ∩B. Then x 7→ Lx is a continuous function Sn → RPn.

Proof of Theorem 1.4. Let B ⊂ Rn+1 be a symmetric convex body, all of whose hyper-
plane sections are affine symmetric bodies of revolution. If none of the sections is an ellipsoid
then, by Lemma 2.1, for each x ∈ Sn the section x⊥ ∩ B has a unique axis of revolution
Lx ⊂ x⊥. By Lemma 2.4, x 7→ Lx defines a continuous function Sn → RPn, i.e., a line
subbundle of TSn. (Note that for even n this is already a contradiction, so we proceed for
odd n.) Now every line bundle on Sn, n ≥ 2, is trivial, i.e., admits a non-vanishing section,
hence one can find a continuous function ψ : Sn → Sn such that ψ(x) ∈ Lx for all x ∈ Sn.
Since ψ(x) ⊥ x, the function F (t, x) := (tψ(x) + (1− t)x)/‖tψ(x) + (1− t)x‖, 0 ≤ t ≤ 1, is
well defined (the denominator does not vanish), defining a homotopy between ψ = F (1, ·)
and the identity map F (0, ·). It follows that ψ is a degree 1 map and is thus surjective.

Now let Γ2 ∩ B be a hyperplane section of B, with hyperplane of revolution H2 ⊂ Γ2.
Let L1 ⊂ H2 be any 1-dimensional subspace. Then the surjectivity of ψ implies that B
admits a hyperplane section K1 = Γ1 ∩B with axis of revolution L1. By Lemma 2.3, K1 is
an ellipsoid, in contradiction to our assumption that none of the hyperplane sections of B
is an ellipsoid. �

Remark 2.5. Lemma 2.2 says that any hyperplane section of an affine symmetric convex
body of revolution B is again an affine symmetric convex body of revolution. The converse
of this result, as far as we know, is an open problem. Let us state a somewhat more general
question:

Let B ⊂ Rn+1, n ≥ 4, be a convex body containing the origin in its interior. If every
hyperplane section of B is an affine body of revolution, is B necessarily an affine body of
revolution?

An obvious necessary condition for B to be an affine body of revolution is that one of its
hyperplane sections is an ellipsoid (take the hyperplane of revolution of B). Thus, Theorem
1.4 can be viewed as a first step for a positive answer to the above question (at least, under
the further assumption of symmetry). Since Theorem 1.4 assumes n ≥ 4, we dare only ask
the above question under the same dimension restriction.

The case n = 2 has a different flavour altogether, where ‘axis of revolution’ of a plane
section is replaced by ‘axis of symmetry’. (For example, there are convex plane regions
with several different axes of symmetry which are not ellipses; this is the reason we proved
Theorem 1.4 only for n ≥ 4). Yet there is a result in this dimension, somewhat related to
Theorem 1.4. It is Theorem 2.1 of [Mo2]: Let B ⊂ R3 be a convex body such that every
plane section through some fixed interior point of B has an axis of symmetry. Then at least
one of the sections is a disk.

2.2. Proofs of Proposition 1.5 and Lemmas 2.1 - 2.4.
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Proposition 1.5. Let B ⊂ Rn+1, n ≥ 2, be a symmetric convex body, all of whose hyper-
plane sections are ellipsoids. Then B is an ellipsoid.

Proof. (See Figure 1.) Let us fix a unit vector u ∈ Rn+1 and the hyperplane Γ := u⊥. We
can then map B linearly to a convex symmetric body B′ ⊂ Rn+1, intersecting Γ in the unit
euclidean ball in Γ, with support planes Γ±u at ±u ∈ B′. Let v be a unit vector in Γ and P
the 2-plane spanned by u, v. Then P ∩B′ is a solid ellipse in P , centered at the origin with
support lines Rv± u, whose boundary is an ellipse passing through ±u,±v. Thus P ∩B′ is
the unit disk in P centered at the origin. As v varies along the unit sphere in Γ, the unit
disks P ∩B′ fill up the unit ball in Rn+1. Thus B′ is a ball and B is an ellipsoid. �

Figure 1. The proof of Proposition 1.5.

In preparation to the proof of Lemma 2.1, we need the two following lemmas.

Lemma 2.6. Let K ⊂ Rn be a symmetric convex body. Then its linear symmetry group
GK = {g ∈ GLn(R) | g(K) = K} is compact.

Proof. Let AK := {a ∈ End(Rn) | a(K) ⊂ K}. Since K is closed in Rn, AK is closed in

End(Rn) ' Rn2

(this follows easily from the continuity of matrix multiplication End(Rn)×
Rn → Rn). Since K is bounded and 0 is an interior point, there exist R, r > 0 such that
Br ⊂ K ⊂ BR, where Bρ ⊂ Rn is the closed ball of radius ρ. It follows that for every
a ∈ AK , a(Br) ⊂ BR, hence ‖a‖ ≤ R/r. Thus AK ⊂ End(Rn) is also bounded and hence
compact. It remains to show that GK ⊂ AK is closed. Let gi ∈ GK with gi → g ∈ End(Rn).
Since (gi)

−1 ∈ AK , (gi)
−1(Br) ⊂ BR, hence 0 < (r/R)‖v‖ ≤ ‖giv‖ for all i and all v 6= 0.

Taking i→ 0 we get 0 < (r/R)‖v‖ ≤ ‖gv‖, hence g is invertible, i.e., g ∈ GK . �

Lemma 2.7. Every compact subgroup G ⊂ GLn(R) is conjugate to a subgroup of On.

Proof. By taking an arbitrary positive inner product on Rn (e.g., the standard inner product∑
xiyi) and averaging it over G with respect to a bi-invariant measure, one obtains a G-

invariant inner product 〈 , 〉 on Rn. Now any two inner products on Rn are isomorphic
to each other, hence one can find an element g ∈ GLn(R) such that (u, v) 7→ 〈gu, gv〉 is
the standard inner product on Rn. It follows that g−1Gg ⊂ On. For more details see, e.g.,
Prop. 3.1 on p. 36 of [Ad]. �

Lemma 2.1. A symmetric affine body of revolution K ⊂ Rn, n ≥ 3, admitting two different
hyperplanes of revolution, is an ellipsoid.

Proof. Let G = G0
K ⊂ GLn(R) be the identity component of the linear symmetry group

of K. By Lemmas 2.6 and 2.7, we can assume, by passing to a body of revolution linearly
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equivalent to K, that G ⊂ SOn. We will show that in this case K is a ball centered at the
origin, by showing that G = SOn.

Now, each hyperplane of revolution of K gives rise to a subgroup of G conjugate in
SOn to SOn−1 (the stabilizer of the hyperplane). It is thus enough to show that the only
connected subgroup G ⊂ SOn satisfying SOn−1 ( G ⊂ SOn is G = SOn (i.e., SOn−1

is a maximal connected subgroup of SOn). Since the three Lie groups SOn−1, G, SOn are
connected, SOn−1 ( G ⊂ SOn is equivalent to their Lie algebras satisfying son−1 ( g ⊂ son
and G = SOn is equivalent to g = son. Consider the conjugation action of SOn−1 on son
(the adjoint representation of SOn restricted to SOn−1). Then son−1, g ⊂ son are invariant
subspaces, hence son−1 ( g implies that g/son−1 is a non-trivial invariant subspace of
son/son−1. Now it is easy to show that son decomposes under SOn−1 as son−1⊕m, where the
action of SOn−1 on the second summand is equivalent to the standard (irreducible) action
of SOn−1 on Rn−1. It follows that son/son−1 ' m is an irreducible SOn−1 representation,
hence g/son−1 = son/son−1. Thus g = son and so G = SOn. �

Lemma 2.2. Let K ⊂ Rn, n ≥ 3, be an affine symmetric body of revolution. Then any
section K ′ = Γ ∩K with a k-dimensional linear subspace Γ ⊂ Rn, 1 < k < n, is an affine
symmetric body of revolution in Γ. Furthermore, if L is an axis of revolution of K and H
the associated hyperplane of revolution then

(a) If Γ ⊂ H then K ′ is an ellipsoid.
(b) If Γ 6⊂ H then H ′ := Γ ∩H is a hyperplane of revolution of K ′.
(c) If L ⊂ Γ then L is also the axis of revolution of K ′ associated to the hyperplane of

revolution Γ ∩H.

Proof. (a) If Γ ⊂ H then Γ∩K is a linear section of the ellipsoid H∩K, hence is an ellipsoid.

(b) We can assume, by applying an appropriate linear transformation, as in the proof of
Proposition 1.5, that K is a symmetric body of revolution with an axis of revolution L = Ren
and plane of revolution H = L⊥ = {xn = 0}, such that H∩K is the unit ball in H and H±en
are support hyperplanes of K at ±en. Furthermore, we can also arrange that H ′ := Γ ∩H
is spanned by e1, . . . , ek−1 and so Γ is spanned by e1, . . . , ek−1, v, where v = λen−1 + en for
some λ ∈ R. To show that H ′ is a hyperplane of revolution of K ′ with an associated axis
of revolution L′ = Rv, we need to show that every non empty section of K ′ by an affine
hyperplane of the form H ′+ tv, t ∈ R, is an (n− 2)-dimensional ball in H ′+ tv, centered at
tv. The latter section is the section of the (n− 1)-dimensional ball (H + ten)∩K, centered
at ten, by H ′ + tv, an affine hyperplane of H + ten, hence is an (n − 2)-dimensional ball,
centered at tv, as needed.

(c) In the previous item, if L ⊂ Γ, we can choose v = en. �

In preparation to proving Lemma 2.3, we prove the following lemma.

Lemma 2.8. Let K ⊂ Rn, n ≥ 3, be an affine symmetric body of revolution with an axis of
revolution L. Suppose a section of K by a linear subspace Γ ⊂ Rn of dimension ≥ 2 passing
through L is an ellipsoid. Then K is an ellipsoid.

Proof. Let e1, . . . , en be the standard basis of Rn. By passing to a linearly equivalent
body of revolution, we can assume that K is a symmetric body of revolution with an axis
of revolution L = Ren and associated hyperplane of revolution H = L⊥ = {xn = 0}.
Furthermore, we can also assume that H ∩ K is the unit ball in H and that H ± en are
support hyperplanes of K at ±en. We will show that, under these assumptions, K is the
unit ball in Rn. To this end, it is enough to show that each section of K by a 2 dimensional
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subspace ∆ containing L is the unit disk in ∆ centered at the origin. Let us choose a
2-dimensional subspace ∆ ⊂ Γ containing L and a unit vector v in the 1-dimensional space
∆ ∩ H. Then ∆ ∩ K is a (solid) ellipse, centered at the origin, whose boundary passes
through ±v,±en, with support lines Rv± en at ±en. It follows that ∆∩K is the unit disk
in ∆ centered at the origin. Now since L = Ren is an axis of revolution of K, all rotations in
Rn about L leave K invariant. Applying all such rotations to ∆, we obtain all 2-dimensional
subspaces containing L, and each of them intersects K in a unit disk centered at the origin,
as needed. �

Lemma 2.3. Let B ⊂ Rn+1 be a symmetric convex body, n ≥ 4, Γ1,Γ2 ⊂ Rn+1 two distinct
hyperplanes, such that the hyperplane sections Ki := Γi ∩ B, i = 1, 2, are affine symmetric
bodies of revolution, with axes and associated hyperplanes of revolution Li, Hi (respectively).
If L1 ⊂ H2 then K1 is an ellipsoid.

Proof. Let E := K1 ∩K2. We will show that E is an ellipsoid. This implies, by Lemma 2.8,
that K1 is an ellipsoid, since E = K1 ∩ Γ2 and Γ2 contains L1, an axis of revolution of K1.

To show that E is an ellipsoid, we note first that Γ2 does not contain H1, else L1, H1 ⊂ Γ2

would imply Γ1 = L1 ⊕ H1 ⊂ Γ2. Hence, by Lemma 2.2(b), Γ2 ∩ H1 is a hyperplane of
revolution of E = Γ2 ∩K1.

Next we look at Γ1 ∩ Γ2. This has codimension 1 in Γ2. If it coincides with H2, then
E = Γ1 ∩K2 = H2 ∩K2, which is an ellipsoid, by Lemma 2.2(a). If Γ1 ∩ Γ2 6= H2, then by
Lemma 2.2(b), Γ1 ∩H2 is a hyperplane of revolution of E = Γ1 ∩K2.

Now Γ1∩H2, Γ2∩H1 are two distinct hyperplanes of revolution of E, since L1 is contained
in the first but not in the second. It follows from Lemma 2.1 that E is an ellipsoid. �

In order to show Lemma 2.4, we prove the following lemma. Its statement has appeared
elsewhere (e.g., statement III of the proof of Theorem 2.2 of [Mo2]), but no written proof
of it was available (perhaps because it is intuitively clear and a hassle to prove).

Lemma 2.9. Let B ⊂ Rn+1 be a symmetric convex body and xi → x a convergent sequence
in Sn. Assume each hyperplane section x⊥i ∩ B is an affine symmetric body of revolution
with an axis of revolution Li ⊂ x⊥i . If {Li} is a convergent sequence in RPn, Li → L, then
x⊥ ∩B is an affine symmetric body of revolution with an axis of revolution L.

Proof. Let Γi := x⊥i ,Γ := x⊥, Ki := Γi∩B, K := Γ∩B. Assume, without loss of generality,
that x = en+1, so that Γ = Rn.

Claim 1. Ki → K in the Hausdorf metric.

We postpone for the moment the proof this claim (and the two subsequent ones). Define
π : Rn+1 → Rn by (x1, . . . , xn+1) 7→ (x1, . . . , xn). Note that π(K) = K and π(L) = L.

Claim 2. For large enough i, π|Γi
: Γi → Rn is a linear isomorphism.

We henceforth restrict to a subsequence of {Ki} such that each π|Γi
is an isomorphism.

Let K ′i := π(Ki) ⊂ Rn, L′i := π(Li) ⊂ Rn. Then each K ′i ⊂ Rn is an affine symmetric body
of revolution with an axis of revolution L′i, L

′
i → L and K ′i → K (by Claim 1). By definition

of affine symmetric body of revolution, there exist linear isomorphisms Ti : Rn → Rn such
that K ′′i := Ti(K

′
i) is a (honest) symmetric body of revolution. By postcomposing Ti

with appropriate elements of GLn(R), we can also assume that Ren = Ti(L
′
i) is an axis of

revolution of K ′′i , that Rn−1±en are support hyperplanes of K ′′i at ±en and that K ′′i ∩Rn−1

is the unit n− 1 dimensional closed ball in Rn−1, centered at the origin.

Claim 3. {Ti} is contained in a compact subset of GLn(R).
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It follows that there is a subsequence of {Ti}, which we rename {Ti}, converging to an
element T ∈ GLn(R). Let K ′′ := T (K). Then limK ′′i = limTi(K

′
i) = (limTi)(limK ′i) =

T (K) = K ′′, and T (L) = (limTi)(limL′i) = limTi(Li) = Ren. It is thus enough to show
that Ren is an axis of revolution of K ′′. Now Ren is an axis of revolution of each K ′′i hence
gK ′′i = K ′′i for all g ∈ On−1 (the elements of On leaving Ren fixed). Taking the limit i→∞
we obtain g(K ′′) = K ′′. Hence Ren is an axis of revolution of K ′′.

Proof of the 3 claims:

(1) Let Γ ⊂ Rn be a hyperplane and U ⊂ Rn an open subset such that Γ ∩ B ⊂ U . Then
there is a δ > 0 such that Γδ ∩ B ⊂ U , where Γδ is the δ-neighbourhood around Γ (this
follows since the distance between the compact Γ ∩B and the closed Rn+1 \ U is positive).

For x, x′ ∈ Sn, let Γ = x⊥ and Γ′ = x′⊥. For any fixed R > 0, the ball of radius R in
Γ′ will be contained in Γδ provided Γ and Γ′ are close enough (i.e., provided 〈x, x′〉 is close
enough to 1). Thus Γ′ ∩B ⊂ Γδ ∩B for Γ and Γ′ sufficiently close.

Fix an ε > 0 and take U = Kε; then there is δ > 0 such that Γδ ∩ B ⊂ Kε, but then
Ki = Γi ∩B ⊂ Γδ ∩B ⊂ Kε, for all i sufficiently large.

The argument is symmetric, thus K ⊂ (Ki)ε for all sufficiently large i. �

(2) Ker(π) = Ren+1, hence Ker(π|Γi
) 6= 0 if and only if en+1 ⊥ xi. But xi → en+1 implies

〈xi, en+1〉 → 1, hence 〈xi, en+1〉 6= 0 for all i sufficiently large.

(3) For each pair of constants c, C > 0 the set of elements A ∈ GLn(R) satisfying c‖v‖ ≤
‖Av‖ ≤ C‖v‖ for all v ∈ Rn is clearly closed. It is also bounded because its elements satisfy
‖A‖ ≤ C (using the operator norm on End(Rn)). It is thus enough to find constants c, C > 0
such that c‖v‖ ≤ ‖Tiv‖ ≤ C‖v‖ for all v ∈ Rn and all i.

Denote by Bρ the closed ball in Rn of radius ρ centered at the origin. Then there are
constants r′, R′, r′′, R′′ > 0 such that Br′ ⊂ π(B) ⊂ BR′ and Br′′ ⊂ K ′′i ⊂ BR′′ for all i. It
follows that Ti(Br′) ⊂ Ti(K

′
i) = K ′′i ⊂ BR′′ , thus ‖Tiv‖ ≤ C‖v‖ for all v ∈ Rn and all i,

where C = R′′/r′.
Next, (Ti)

−1Br′′ ⊂ (Ti)
−1(K ′′i ) = K ′i ⊂ BR′ , hence ‖(Ti)−1w‖ ≤ c′‖w‖ for all w ∈ Rn and

all i, where c′ = R′/r′′. Substituting w = Tiv in the last inequality we obtain c‖v‖ ≤ ‖Tiv‖
for all v ∈ Rn and all i, where c = 1/c′ = r′′/R′. �

Lemma 2.4. Let B ⊂ Rn+1 be a symmetric convex body, all of whose hyperplane sections
are non-ellipsoidal affine symmetric bodies of revolution. For each x ∈ Sn let Lx be the
(unique) axis of revolution of x⊥ ∩B. Then x 7→ Lx is a continuous function Sn → RPn.

Proof. Let xi → x be a converging sequence in Sn. To show that Lxi
→ Lx it is enough

to show that Lxi
is convergent and its limit is an axis of revolution of x⊥ ∩ B. Since RPn

is a compact metric space, to show that Lxi
is convergent it is enough to show that all its

convergent subsequences have the same limit. To show this, it is enough to show that the
limit of a convergent subsequence of Lxi is an axis of revolution of x⊥ ∩ B. This is the
statement of Lemma 2.9. �

3. Structure groups of spheres

3.1. A reminder on structure groups of manifolds and their reduction. First, let
us recall the following basic definitions (see, for example, §5 of Chap. I of [KN], or Part I of
[St]).

Let G be a topological group, M a topological space and P → M a principal G-bundle.
A reduction of the structure group of P →M to a closed subgroup H ⊂ G is a principal H-
subbundle of P . Equivalently, it is a continuous section of the bundle P/H →M associated
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with the leftG-action onG/H. The frame bundle of an n-dimensional differentiable manifold
M is the GLn(R)-principal bundle F (M)→ M , whose fiber at a point x ∈ M is the set of
all linear isomorphisms Rn → TxM , with the GLn(R) right action given by precomposition
of linear maps. A G-reduction of the structure group of a smooth n-manifold M (or a G-
structure) is the reduction of the structure group GLn(R) of its frame bundle to a closed
subgroup G ⊂ GLn(R). Equivalently, it is given by an open cover of M , together with a
trivilization of the restriction of TM to each of the covering open subsets, such that the
transition functions between the trivilizations on overlapping members of the cover take
values in G (Prop. 5.3 of [KN], p. 53). For M = Sn, there is a standard cover by two
‘hemispheres’, intersecting along a neighborhood of the ‘equator’ Sn−1, hence its structure
group is given by a single transition function χn : Sn−1 → GLn(R), called the characteristic
map (§18 of [St], pp. 96-100).

Here is a standard result on reductions of structure groups on spheres. Let Sn := {x ∈
Rn+1 | ‖x‖ = 1}.

Lemma 3.1. If the structure group of Sn, n ≥ 2, can be reduced to some closed subgroup
G ⊂ GLn(R) then it can be further reduced to its identity component G0 ⊂ G.

Proof. The structure group of Sn can be reduced to G if and only if the characteristic map
χn : Sn−1 → GLn(R) is homotopic to a map whose image is contained in G. The maps
and homotopies in question are all ‘pointed’, i.e., they send some fixed point of the equator
∗ ∈ Sn−1 7→ e ∈ GLn(R). Since Sn−1 is connected, its image under χn is connected as well,
hence is contained in G0. �

3.2. Proof of Lemma 1.6. Let us recall Lemma 1.6, announced in the introduction.

Lemma 1.6. Let B ⊂ Rn+1 be a symmetric convex body, all of whose hyperplane sections
are linearly equivalent to some fixed symmetric convex body K ⊂ Rn. Let GK := {g ∈
GLn(R)|g(K) = K} be the group of linear symmetries of K. Then the structure group of
Sn can be reduced to GK .

Proof. Identify for each x ∈ Sn, by parallel translation in Rn+1, the tangent space to Sn

at x with x⊥. Define the set Px ⊂ Fx(Sn) of frames at x as the set of linear isomorphisms
Rn → x⊥ mapping K to x⊥∩B. It is easy to check that P ⊂ F (Sn) is a GK-structure. �

Remark 3.2. The proof of Lemma 1.6 is deceptively simple and somewhat hard to appre-
ciate. It is a special case of a correspondence between a large class of geometric structures
on manifolds, those given by a distribution of linearly equivalent tangent objects, and re-
ductions of their structure group (the proof of Lemma 1.6 clearly does not use any property
of K).

For example, choosing an orientation on an (orientable) n-manifold M corresponds to
choosing a set of ‘positively oriented frames’, which amounts to a reduction of the structure
group of the manifold to the subgroup GL+

n (R) ⊂ GLn(R) of matrices with positive determi-
nant. Similarly, choosing a riemannian metric on a manifold is equivalent to deciding which
frames are orthonormal, amounting to a reduction of the structure group of the manifold to
the orthogonal group On ⊂ GLn(R). Choosing both a riemannian metric and orientation
reduces the structure group to SOn(R) = On ∩GL+

n (R).
How far can one reduce the structure group of a manifold is an indication – a sort of a

quantitative group theoretic measure – of the triviality of its tangent bundle. In our case,
Theorem 1.7 states, roughly speaking, that the structure group of S4k+1 cannot be reduced
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much, and so Lemma 1.6 implies that K must be highly symmetric (its linear symmetry
group GK is ‘large’).

Here is another example. An odd dimensional sphere S2k+1 ⊂ Ck+1, k ≥ 0, admits a
non-vanishing vector field v, coming from scalar multiplication in Ck+1 by unitary complex
numbers. In the language of the proof of Lemma 1.6, for each x ∈ S2k+1 there is associated
the subset {v(x)} ⊂ TxS

2k+1, linearly equivalent to K := {e1} ⊂ R2k+1. Thus, according
to Lemma 1.6, the non vanishing vector field v defines a reduction of the structure group of
S2k+1 to the subgroup of GL2k+1(R) consisting of matrices of the form


1 ∗ · · · ∗
0 ∗ · · · ∗
...

...
...

...
0 ∗ · · · ∗

 ,

the stabilizer of e1 in GL2k+1(R). If we also consider along with v the standard riemannian
metric and orientation on S2k+1, then the structure group will further reduce to {1}×SO2k ⊂
SO2k+1 (note that v is a unit vector with respect to the standard metric).

In fact, one can further reduce to the subgroup {1} × SUk ⊂ {1} × SO2k ⊂ SO2k+1, by
introducing a corank 1 subbundle D ⊂ TS2k+1, together with an almost complex structure
on D (a so called ‘CR-structure’) and a compatible complex volume form on it. This can be
constructed using the Hopf fibration π : S2k+1 → CP k, mapping a point x ∈ S2k+1 to the
complex line Cx ∈ CP k. Then it is easy to see that v(x) generates the tangent to the fiber
through x and that D(x) := v(x)⊥ ⊂ TxS

2k+1 defines a corank 1 subbundle, transverse
to the fibers. Restricting dπ : TS2k+1 → TCP k to D, we can pull back the standard
almost complex structure and the canonical line bundle from CP k to D, thus defining an
almost complex structure and a compatible complex volume form on D. Associated with
this structure is the claimed reduction to {1} × SUk ⊂ {1} × SO2k ⊂ SO2k+1.

For odd k = 2m + 1, i.e. S4m+3, there is also a further reduction to {1R3} × Spm ⊂
{1R3}×SU2m ⊂ {1R}×SU2m+1 ⊂ SO4m+3, arising in a similar fashion from the quaternionic
Hopf fibration S4m+3 → HPm. Yet for even k, which is the case considered in this article,
the above reduction to SUk is the ‘smallest possible’, with few exceptions (see Corollary
3.10 below).

3.3. Proof of Theorem 1.7a (the reducible case). Suppose the structure group of Sn

can be reduced to a closed connected subgroup G ⊂ SOn−1, acting reducibly on Rn. Then
G is conjugate to a closed connected subgroup G′ ⊂ SOk×SO′n−k ⊂ SOn for some k, n/2 ≤
k < n, where SO′n−k denotes the subgroup of SOn fixing Rk = {xk+1 = . . . = xn = 0} ⊂ Rn.
If n ≡ 1 mod 4, then such a reduction is possible only if k = n− 1, i.e., G′ ⊂ SOn−1, acting
irreducibly on Rn−1 (see [St], §27.14, §27.18, pp. 143-144). In particular, the structure group
of Sn reduces to SOn−1 but not to SOn−2. Corollary 3.2 of [Le] now implies that G′ acts
transitively on Sn−2. We include the argument.

Consider the standard fibration SOn−2 → SOn−1
π→ Sn−2. If G′ does not act transitively

on Sn−2 it means that the composition G′
i
↪→ SOn−1

π→ Sn−2 is not surjective, and is
therefore null homotopic. Let F : G′× I → Sn−2 be the homotopy. Then, by the homotopy
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lifting property, there exists a map F̃ completing the diagram

G′ SOn−1

G′ × I Sn−2

I×0

i

π
F̃

F

Commutativity of the diagram implies that F̃ (x, 1) ∈ SOn−2 ⊂ SOn−1 for every x ∈ G′.
Let f : G′ → SOn−2 be defined by f(x) = F̃ (x, 1); then, up to homotopy, the following
diagram commutes

G′ SOn−1

SOn−2

f

i

j

But now, precomposing j ◦f with the characteristic map χn : Sn−1 → G′, yields a reduction
of the structure group of Sn to SOn−2, which is a contradiction.

Sn−1 G′ SOn−1

SOn−2

χn

f

i

j

�

3.4. Proof of Theorem 1.7b (the irreducible case). We need the following three lem-
mas.

Lemma 3.3. For all n ≡ 1 mod 4, n ≥ 5, if the structure group of Sn can be reduced to
G ⊂ SOn, then dimG ≥ n− 2.

Proof. This follows readily from Proposition 3.1 of [CC], since – as mentioned above – the
structure group of Sn, n ≡ 1 mod 4, may be reduced to SOn−1 but not to SOn−2. Given
that the argument is a simple one, we include it here.

Assume that dimG = k < n. We are going to show that the structure group of Sn

reduces to the standard SOk+1 ⊂ SOn. This implies the result.
Consider the characteristic map χn : Sn−1 → SOn of Sn. Assuming that the structure

group of Sn reduces to G amounts to the existence of f : Sn−1 → G such that the following
diagram commutes up to homotopy:

Sn−1 SOn

G

f

χn

i

The standard inclusion SOk+1 ↪→ SOn induces isomorphisms πj(SOk+1) ' πj(SOn) for
every j < k (this follows immediately from the long exact sequences of the fibrations
SOk+1+r → SOk+2+r → Sk+1+r for the range of j’s in question).

Now, this implies that G ↪→ SOn factors (up to homotopy) through SOk+1. One way of
seeing this is via obstruction theory. Think of G as a CW-complex. Then the obstruction
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to extend the inclusion G ↪→ SOk+1 from the j-skeleton to the j + 1-skeleton is a cocycle
with coefficients in πj(SOk+1). But the inclusion SOk+1 ↪→ SOn induces isomorphisms
onto πj(SOn) (j < k) where we know that the obstruction vanishes. Therefore, there is no
obstruction to construct G → SOk+1 such that G → SOk+1 ↪→ SOn is homotopic to the
inclusion G ↪→ SOn. Hence, the structure group of Sn reduces to SOk+1. �

Lemma 3.4. If n ≥ 8, then the structure group of Sn cannot be reduced to an irirreduciblee-
ducible subgroup G ( SOn isomorphic to SOk, SUm or Spm, with k ≥ 4,m ≥ 2.

Proof. This is Corollary 2.2 of [CC]. �

Lemma 3.5. For all n ≥ 2, if the structure group of Sn reduces to a closed connected
irreducible maximal subgroup H ( SOn, then H is simple.

Proof. See Theorem 3 of [Le]. �

We now proceed to the proof of Theorem 1.7b, using the above three lemmas. We first
treat n ≥ 9, then n = 5.

The case n ≥ 9. Assume that G ⊂ SOn acts irreducibly on Rn but is not all of SOn.
Then it is contained in some maximal connected closed subgroup H, G ⊂ H ( SOn. The
structure group of Sn then reduces to H, acting also irreducibly on Rn. By Lemma 3.5, H
is simple. By Lemma 3.4, H is a non-classical group, i.e., it is isomorphic to either Spinm,
m ≥ 7, or one of the 5 exceptional simple Lie groups: G2, F4, E6, E7 or E8. By Lemma
3.3, n ≤ dimH + 2. Let V be the complexification of the (irreducible) representation of H
on Rn. Since dimV is odd, V is a complex irreducible representation.

Let us list all the properties of the pair (H,V ) that we have so far:

(i) H is a non-classical compact connected group, i.e., Spinm, m ≥ 7, or one of the five
exceptional compact simple Lie groups.

(ii) V is a complex irreducible representation of H of real type (i.e., the complexification
of a real irreducible representation).

(iii) dimV ≡ 1 mod 4.
(iv) dimV ≤ dim(H) + 2.
(v) If H = Spinm, then its action on V does not factor through SOm.

We claim that these 5 conditions on the pair (H,V ) are incompatible, for dimV ≥ 9,
except if V is the complexified adjoint representation of H = E7, in which case dimV =
dimH = 133 ≡ 1 mod 4. We are unable to exclude this case.

For the exceptional groups, one can simply check (e.g., in Wikipedia) that none of them,
other than E7, has a non-trivial irreducible representation satisfying conditions (iii) and
(iv). In the following table we list the smallest irreducible representations for them; we have
marked in boldface the first dimensions that are ≡ 1 (mod 4).

Group G2 F4 E6 E7 E8

dimG 14 52 78 133 248
Irreps 7 26 27 56 248

14 52 78 133 3875

27 273 351 912
...

64
... 2925

... 1763125

77
...

...
...

...
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For the spin groups, the next lemma shows that conditions (iii) and (v) are incompatible.
(We thank Ilia Smilga for kindly informing us about this lemma and its proof).

Lemma 3.6. Every irreducible complex representation of Spinm, m ≥ 3, which does not
factor through SOm is even dimensional.

Proof. We first review some well-known general facts concerning representations of simple
compact Lie groups (see, for example, [Ad]). With each d-dimensional complex represen-
tation of a compact semi-simple Lie group G of rank r with a maximal torus T , one can
associate its weight system Ω ⊂ t∗, a subset with d points (counting multiplicity). The Weyl
group W = NG(T )/T acts on t∗, preserving Ω. Thus, to show that d is even, it is enough
to show the following:

(a) An irreducible non classical representation V of Spinm does not have a 0 weight.
(b) The Weyl group of Spinm contains a subgroup whose order is a positive power of 2,

and whose only fixed point in t∗ is 0.

Note that (a) and (b) imply that d is even, since under the action of said subgroup of
W , say W ′, Ω breaks into the disjoint union of W ′-orbits, each with an even number of
elements, since, by (a), all stabilizers are strict subgroups of W ′, hence have even index.

To show (a), note that the T action on the 0 weight space is trivial. Now −1 ∈ Spinm is
in T (since it is central), but −1 must act on V by −Id, else the Spinm action on V would
factor through SOm = Spinm/{±1}.

To show (b), let us first take m = 2k. Then Rm decomposes under T as the direct sum of
k 2-planes. Consider the subgroup N ′ ⊂ SOm which leaves invariant each of these 2-planes.
Then N ′ ' S(O2 × . . .×O2), T ⊂ N ′ ⊂ N(T ), and its image W ′ = N ′/T ⊂ W = N(T )/T
acts on t∗ by diagonal matrices with entries ±1 on the diagonal, with an even number of
−1’s. Using this description, it is easy to show that W ′ has order 2k−1 and that its only
fixed point in t∗ is 0.

For m = 2k + 1 the argument is simpler. Under T , Rm decomposes as a direct sum of k
2-planes, plus a line. We take an element in SOm which is a reflection about a line through
the origin in each of these planes, and (−1)k in the line. This is in N(T ) and acts on t∗ by
−Id, hence its image in W has order 2 and its only fixed point in t∗ is the origin. �

The case n = 5. The only reduction of the structure group of S5 that cannot be ruled out
by Lemmas 3.3, 3.4 or 3.5 is the 5-dimensional irreducible representation of SO3. This case
is eliminated by the next lemma.

Lemma 3.7. Let ρ : SO3 → SO5 be the irreducible 5 dimensional representation of SO3.

Then, for any f : S4 → SO3, the composition S4 f→ SO3
ρ→ SO5 is null homotopic. It

follows that the structure group of S5 cannot be reduced to ρ.

Proof. Since the tangent bundle of S5 is not trivial, the characteristic map χ5 : S4 → SO5 is
not null-homotopic. Consequently, to show that the structure group of S5 cannot be reduced

to ρ it is enough to show that any composition S4 f→ SO3
ρ→ SO5 is null homotopic. To

show this, we use the following three claims.

(a) π3(S3) ' π3(SO3) ' π3(SO5) ' Z, π4(S3) ' π4(SO3) ' π4(SO5) ' Z2.
(b) The map ρ∗ : π3(SO3) → π3(SO5) has a cyclic cokernel of even order (the ‘Dynkin

index’ of ρ).
(c) For any topological group G and integers k, n ≥ 2, the composition of maps Sn →

Sk → G defines a bi-additive map πk(G) × πn(Sk) → πn(G), ([f ], [g]) 7→ [f ] ◦ [g] :=
[f ◦ g] (the ‘composition product’).
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Claim (a) is standard (see, e.g., [It], Vol. 2, App. A, Table 6.VII, p. 1745). Claim (b)
is a straightforward Lie algebraic calculation, see next subsection. For claim (c), see [Wh],
Theorem (8.3), p. 479.

Now let f : S4 → SO3 be any (pointed) continuous map and f̃ : S4 → S3 its lift to the
universal double cover π : S3 → SO3. By (b), the composition ρ̃ := ρ◦π : S3 → SO5 has an
even Dynkin index (in fact, it is the same as the index of ρ, since π, being a cover, has index
1). In particular, [ρ̃] = 2[u] ∈ π3(SO5), for some u : S3 → SO5. By (c), with n = 4, k =

3, G = SO5, [ρ ◦ f ] = [ρ̃ ◦ f̃ ] = [ρ̃] ◦ [f̃ ] = (2[u]) ◦ [f̃ ] = 2([u] ◦ [f̃ ]) = 0 ∈ π4(SO5) ' Z2. �

S3

S4 SO3 SO5

π
ρ̃f̃

f ρ

3.5. The Dynkin index. Here we prove claim (b) from the proof of Lemma 3.7 of the
previous subsection. We begin with some background.

Let ρ : H → G be a homomorphism of compact simple Lie groups. The third homotopy
group of any simple Lie group is infinite cyclic (isomorphic to Z), hence the induced map
ρ∗ : π3(H) → π3(G) has a cyclic cokernel of order j ∈ N, called the Dynkin index of ρ (if

ρ∗ = 0 then j = 0, by definition). Clearly, j is multiplicative, i.e., if H̃ is a simple compact

Lie group and π : H̃ → H is a homomorphism, then j(ρ ◦ π) = j(ρ)j(π).
There is a simple Lie algebraic expression for j(ρ). To state it, the Killing form on

any simple compact Lie algebra needs to be normalized first by 〈δ, δ〉 = 2, where δ is the
longest root. Next, the pullback by ρ : H → G of the Killing form of G is an AdH -invariant
quadratic form on the Lie algebra of H, hence, by simplicity of H, is a non-negative multiple
of the Killing form of H. This multiple turns out to be precisely the Dynkin index of ρ.

Theorem 3.8. Let ρ : H → G be a homomorphism of compact simple Lie groups and
ρ∗ : h→ g the induced Lie algebra homomorphism. Then

(1) 〈ρ∗X, ρ∗Y 〉g = j(ρ)〈X,Y 〉h
for all X,Y ∈ h.

In fact, Dynkin defined j(ρ) via Formula 1 (see [Dy, formula (2.2), p. 130]), and showed
in the same article that j(ρ) is an integer, without reference to its topological interpretation.
Later, it was shown to have an equivalent definition via homotopy groups, as given above
(we are not sure who proved it first, we learned it from [On], §2 of Chapter 5, p. 257).

Lemma 3.9. j(ρ) = 10 for the irreducible representation ρ : SO3 → SO5.

Proof. Theorem 3.8 gives an easy to follow recipe for j. To apply it, one needs to compute
first the normalization of the Killing forms of SO3 and SO5.

Let so5 be the set of 5 × 5 antisymmetric real matrices, the Lie algebra of SO5, with
t ⊂ so5 the set of block diagonal matrices of the form (x1J ⊕ x2J ⊕ 0), where J =

(
0 −1
1 0

)
.

The roots are ±x1 ± x2,±x1,±x2, with δ := x1 + x2. Since tr(XY ) is clearly an Ad-
invariant non-trivial bilinear form on so5, the normalized Killing form of so5 is of the form
〈X,Y 〉 = λ tr(XY ), for some λ ∈ R. The normalization condition is 〈δ[, δ[〉 = 2, where δ[ ∈ t
is defined via δ(X) = 〈δ[, X〉 for all X ∈ t. Let δ[ = λ′(J⊕J⊕0), for some λ′ ∈ R. Then for
all X ∈ t, 〈δ[, X〉 = λtr(δ[X) = −2λλ′δ(X), thus −2λλ′ = 1, so δ[ = − 1

2λ (J ⊕ J ⊕ 0) and

2 = 〈δ[, δ[〉 = λtr[(δ[)2] = −1/λ, hence λ = −1/2. It follows that 〈X,Y 〉so5 = −tr(XY )/2.
For so3 we get by a similar argument 〈X,Y 〉so3

= −tr(XY )/4.
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Now let ρ : SO3 → SO5 be the 5-dimensional irreducible representation on R5 (con-
jugation of traceless symmetric 3 × 3 matrices). Let X = (J ⊕ 0) ∈ so3. To calculate
tr[(ρ∗X)2], we let X act on S2((C3)∗) (complexifying, passing to the dual and adding
an extra trivial summand does not affect trace). Now x1 ± ix2, x3 are X eigenvectors in
(C3)∗, with eigenvalue ±i, 0, hence the eigenvalues of the ρ∗X action on S2((C3)∗) are
±2i,±i, 0, 0, and those of (ρ∗X)2 are −4,−4,−1,−1, 0, 0, giving tr[(ρ∗X)2] = −10. Thus
j(ρ) = 〈ρ∗X, ρ∗X〉so5/〈X,X〉so3 = 2 tr[(ρ∗X)2]/tr(X2) = 10, as claimed. �

A byproduct of the proof of Theorem 1.7 is the following corollary that could be of some
interest to topologists.

Corollary 3.10. Suppose that the structure group of Sn can be reduced to a closed connected
subgroup G ( SOn. If n = 4k + 1 ≥ 5, but n 6= 9, 17 or 133, then G is conjugate to the
standard inclusion of SO4k, U2k or SU2k in SO4k+1. For n = 9, G is conjugate to the
standard inclusion of SO8, U4, SU4 or Spin7 ⊂ SO8 in SO9.

Proof. By Theorem 1.7(b), such a G is conjugate to a subgroup of the standard inclusion
SO4k ⊂ SO4k+1, acting transitively on S4k−1. The only closed connected subgroups G ⊂
SO4k acting transitively on S4k−1, in the said dimensions, are the standard linear actions
of SO4k, U2k, SU2k, SpkSp1, SpkU1, Spk on R4k = C2k = Hk, or the spin representation
of Spin7 on C4 (see, e.g., [Be, 7.13, p. 179]). But the groups SpkSp1, SpkU1, Spk, k ≥ 1,
cannot occur as structure groups of S4k+1, since they contain the last one, Spk, which is
excluded by Theorem 2.1 of [CC]. �

Remark 3.11. For n = 17, the group Spin9 ⊂ SO16 acts transitively on S15, but we do
not know if the structure group of S17 could be reduced to it. For n = 133, as explained
before, we do not know if the group E7 ⊂ SO133 (or some subgroup of it acting irreducibly
on R133) may appear as a reduction of the structure group of S133.
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